1
|
Novotny LA, Meissner EG. Expression and function of interferon lambda receptor 1 variants. FEBS Lett 2025; 599:466-475. [PMID: 39435588 PMCID: PMC11850208 DOI: 10.1002/1873-3468.15041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 09/05/2024] [Accepted: 09/26/2024] [Indexed: 10/23/2024]
Abstract
Lambda interferons (IFNLs) provide critical host defense against pathogens encountered at mucosal surfaces. In humans, IFNL signaling is regulated in part by low and cell-type restricted expression of the lambda interferon receptor 1 protein with expression restricted primarily to epithelial cells located at mucosal surfaces. This review will examine the evidence suggesting a role for IFNLR1 transcriptional variants in mediating cell responsiveness to IFNL ligand exposure and regulation of pathway activity.
Collapse
Affiliation(s)
- Laura A. Novotny
- Division of Infectious Diseases, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Eric G. Meissner
- Division of Infectious Diseases, Medical University of South Carolina, Charleston, SC 29425, USA
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC 29425, USA
| |
Collapse
|
2
|
Tu M, Xu H, Miao Z, Wang Y, Feng X, Xie L, Wang F. Interleukin 29 is a novel antiangiogenic factor in angiogenesis. Cytokine 2025; 186:156850. [PMID: 39752899 DOI: 10.1016/j.cyto.2024.156850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 12/25/2024] [Accepted: 12/27/2024] [Indexed: 01/14/2025]
Abstract
AIMS Angiogenesis is tightly controlled by growth factors and cytokines in pathophysiological settings. Despite the importance of Interleukin 29 (IL-29), a newly identified cytokine of type III interferon family, its role in angiogenesis remains unknown. We aimed to elucidate IL-29's impact on angiogenesis under both and physiological and pathological conditions. METHODS We employed various assays to evaluate IL-29's effect on proliferation, apoptosis, migration and tube formation of human umbilical vein endothelial cells (HUVEC) in vitro. IL-29's angiogenic effect was assessed using mouse aortic rings ex vivo, and oxygen-induced retinopathy (OIR) mouse model in vivo. Signaling pathways possibly involved in IL-29-induced angiogenesis were investigated by Western blot. Finally, IL-29's impact on tube formation was blocked by inhibiting IL-29/interleukin 10 receptor 2 (IL-10R2) binding. RESULTS IL-29 treatment inhibited endothelial cell migration, tube formation and vessel sprouting, without affecting proliferation or apoptosis. Notably, IL-29 (100 ng/ml) attenuated vessel growth in pathological angiogenesis in OIR mice, accompanied by decreased expression of vascular endothelial growth factor (VEGF) and hypoxia inducible factor-1α (HIF-1α). Mechanistically, IL-29 activated Stat3 signaling pathway, and blocking IL-29/IL-10R2 binding remarkably reversed IL-29's anti-angiogenic effect on tube formation. CONCLUSIONS Our findings demonstrated that IL-29, at a relative low concentration, modulates angiogenesis in both physiological and pathological contexts. Targeting IL-29 or its receptor IL-10R2 offers a promising strategy for angiogenesis regulation in various conditions.
Collapse
Affiliation(s)
- Man Tu
- Department of Traditional Chinese Medicine, the First Affiliated Hospital with Nanjing Medical University, Nanjing 210029, Jiangsu Province, China; Integrated Traditional Chinese and Western Medicine Institute with Nanjing Medical University, Nanjing 210029, Jiangsu Province, China
| | - Huiping Xu
- Department of Cardiology, the First Affiliated Hospital with Nanjing Medical University, Nanjing 210029, Jiangsu Province, China
| | - Zhengyue Miao
- Department of Traditional Chinese Medicine, the First Affiliated Hospital with Nanjing Medical University, Nanjing 210029, Jiangsu Province, China
| | - Yue Wang
- Department of Rheumatology, the First Affiliated Hospital with Nanjing Medical University, Nanjing 210029, Jiangsu Province, China
| | - Xiaoke Feng
- Department of Traditional Chinese Medicine, the First Affiliated Hospital with Nanjing Medical University, Nanjing 210029, Jiangsu Province, China; Integrated Traditional Chinese and Western Medicine Institute with Nanjing Medical University, Nanjing 210029, Jiangsu Province, China
| | - Liqun Xie
- Department of Traditional Chinese Medicine, the First Affiliated Hospital with Nanjing Medical University, Nanjing 210029, Jiangsu Province, China.
| | - Fang Wang
- Department of Cardiology, the First Affiliated Hospital with Nanjing Medical University, Nanjing 210029, Jiangsu Province, China.
| |
Collapse
|
3
|
Osmani Z, Villanueva MA, Joseph-Chazan J, Beudeker BJ, de Knegt RJ, Chung RT, Hacohen N, Aerssens J, Bollekens J, Janssen HLA, Gehring AJ, Lauer GM, Shalek AK, van de Werken HJG, Boonstra A. Intrahepatic plasma cells, but not atypical memory B cells, associate with clinical phases of chronic hepatitis B. Eur J Immunol 2024; 54:e2451085. [PMID: 38813721 DOI: 10.1002/eji.202451085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 05/15/2024] [Accepted: 05/16/2024] [Indexed: 05/31/2024]
Abstract
Studies have traditionally focused on the role of T cells in chronic hepatitis B (CHB), but recent evidence supports a role for B cells. The enrichment of so-called atypical memory (AtM) B cells, which show reduced signaling and impaired differentiation, is believed to be a characteristic feature of CHB, potentially contributing to the observed dysfunctional anti-HBsAg B-cell responses. Our study, involving 62 CHB patients across clinical phases, identified AtM B cells expressing IFNLR1 and interferon-stimulated genes. Contrary to previous reports, we found relatively low frequencies of AtM B cells in the liver, comparable to peripheral blood. However, liver plasma cell frequencies were significantly higher, particularly during phases with elevated viral loads and liver enzyme levels. Liver plasma cells exhibited signs of active proliferation, especially in the immune active phase. Our findings suggest a potential role for plasma cells, alongside potential implications and consequences of local proliferation, within the livers of CHB patients. While the significance of AtM B cells remains uncertain, further investigation is warranted to determine their responsiveness to interferons and their role in CHB.
Collapse
Affiliation(s)
- Zgjim Osmani
- Department of Gastroenterology and Hepatology, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Martin Arreola Villanueva
- Institute for Medical Engineering and Science (IMES), Department of Chemistry, and Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
- The Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, Massachusetts, USA
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Jasmin Joseph-Chazan
- Institute for Medical Engineering and Science (IMES), Department of Chemistry, and Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
- The Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, Massachusetts, USA
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
- Department of Immunology, Harvard Medical School, Boston, Massachusetts, USA
| | - Boris J Beudeker
- Department of Gastroenterology and Hepatology, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Robert J de Knegt
- Department of Gastroenterology and Hepatology, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Raymond T Chung
- Liver Center, Division of Gastroenterology and Liver Center, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Nir Hacohen
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
- Department of Immunology, Harvard Medical School, Boston, Massachusetts, USA
| | - Jeroen Aerssens
- Clinical Translational Science Infectious Diseases, Janssen Research and Development, Beerse, Belgium
| | - Jacques Bollekens
- Clinical Translational Science Infectious Diseases, Janssen Research and Development, Beerse, Belgium
| | - Harry L A Janssen
- Department of Gastroenterology and Hepatology, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Adam J Gehring
- Toronto Centre for Liver Disease, Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada
- Department of Immunology, University of Toronto, Toronto, Ontario, Canada
| | - Georg M Lauer
- The Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, Massachusetts, USA
| | - Alex K Shalek
- Institute for Medical Engineering and Science (IMES), Department of Chemistry, and Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
- The Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, Massachusetts, USA
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | | | - Andre Boonstra
- Department of Gastroenterology and Hepatology, Erasmus University Medical Center, Rotterdam, the Netherlands
| |
Collapse
|
4
|
Wang D, Chen K, Wang Z, Wu H, Li Y. Research progress on interferon and cellular senescence. FASEB J 2024; 38:e70000. [PMID: 39157951 DOI: 10.1096/fj.202400808rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 07/31/2024] [Accepted: 08/06/2024] [Indexed: 08/20/2024]
Abstract
Since the 12 major signs of aging were revealed in 2023, people's interpretation of aging will go further, which is of great significance for understanding the occurrence, development, and intervention in the aging process. As one of the 12 major signs of aging, cellular senescence refers to the process in which the proliferation and differentiation ability of cells decrease under stress stimulation or over time, often manifested as changes in cell morphology, cell cycle arrest, and decreased metabolic function. Interferon (IFN), as a secreted ligand for specific cell surface receptors, can trigger the transcription of interferon-stimulated genes (ISGs) and play an important role in cellular senescence. In addition, IFN serves as an important component of SASP, and the activation of the IFN signaling pathway has been shown to contribute to cell apoptosis and senescence. It is expected to delay cellular senescence by linking IFN with cellular senescence and studying the effects of IFN on cellular senescence and its mechanism. This article provides a review of the research on the relationship between IFN and cellular senescence by consulting relevant literature.
Collapse
Affiliation(s)
- Da Wang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, P.R. China
| | - Kaixian Chen
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, P.R. China
| | - Zheng Wang
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, P.R. China
- National Key Laboratory of Chinese Medicine Modernization, Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing, P.R. China
| | - Huali Wu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, P.R. China
| | - Yiming Li
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, P.R. China
| |
Collapse
|
5
|
Piperakis A, Galani IE, Andreakos E. Type III interferons in innate and adaptive immunity in the respiratory tract. Curr Opin Immunol 2024; 87:102430. [PMID: 38824869 DOI: 10.1016/j.coi.2024.102430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 05/08/2024] [Accepted: 05/22/2024] [Indexed: 06/04/2024]
Abstract
Lambda interferons (IFNλs), also termed type III interferons (IFNs) or interleukins-28/29, have been in the shadow of type I IFNs for a long time. Their common induction mechanisms and signalling cascades with type I IFNs have made difficult the unwinding of their unique nonredundant functions. However, this is now changing with mounting evidence supporting a major role of IFNλs as a specialized antiviral defense system in the body, mediating protection at mucosal barrier surfaces while limiting immunopathology. Here, we review the latest progress on the complex activities of IFNλs in the respiratory tract, focusing on their multiple effects in IFNλ receptor-expressing cells, the modulation of innate and adaptive immune responses in the context of infections and respiratory diseases, and their similarities and differences with type I IFNs. We also discuss their potential in therapeutic applications and the most recent developments in that direction.
Collapse
Affiliation(s)
- Artemios Piperakis
- Laboratory of Immunobiology, Center for Clinical, Experimental Surgery and Translational Research, BRFAA, Athens, Greece
| | - Ioanna E Galani
- Laboratory of Immunobiology, Center for Clinical, Experimental Surgery and Translational Research, BRFAA, Athens, Greece
| | - Evangelos Andreakos
- Laboratory of Immunobiology, Center for Clinical, Experimental Surgery and Translational Research, BRFAA, Athens, Greece.
| |
Collapse
|
6
|
Liu YG, Jin SW, Zhang SS, Xia TJ, Liao YH, Pan RL, Yan MZ, Chang Q. Interferon lambda in respiratory viral infection: immunomodulatory functions and antiviral effects in epithelium. Front Immunol 2024; 15:1338096. [PMID: 38495892 PMCID: PMC10940417 DOI: 10.3389/fimmu.2024.1338096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 02/19/2024] [Indexed: 03/19/2024] Open
Abstract
Type III interferon (IFN-λ), a new member of the IFN family, was initially considered to possess antiviral functions similar to those of type I interferon, both of which are induced via the JAK/STAT pathway. Nevertheless, recent findings demonstrated that IFN-λ exerts a nonredundant antiviral function at the mucosal surface, preferentially produced in epithelial cells in contrast to type I interferon, and its function cannot be replaced by type I interferon. This review summarizes recent studies showing that IFN-λ inhibits the spread of viruses from the cell surface to the body. Further studies have found that the role of IFN-λ is not only limited to the abovementioned functions, but it can also can exert direct and/or indirect effects on immune cells in virus-induced inflammation. This review focuses on the antiviral activity of IFN-λ in the mucosal epithelial cells and its action on immune cells and summarizes the pathways by which IFN-λ exerts its action and differentiates it from other interferons in terms of mechanism. Finally, we conclude that IFN-λ is a potent epidermal antiviral factor that enhances the respiratory mucosal immune response and has excellent therapeutic potential in combating respiratory viral infections.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Ming-Zhu Yan
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Qi Chang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
7
|
Cao L, Qian W, Li W, Ma Z, Xie S. Type III interferon exerts thymic stromal lymphopoietin in mediating adaptive antiviral immune response. Front Immunol 2023; 14:1250541. [PMID: 37809098 PMCID: PMC10556530 DOI: 10.3389/fimmu.2023.1250541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 09/07/2023] [Indexed: 10/10/2023] Open
Abstract
Previously, it was believed that type III interferon (IFN-III) has functions similar to those of type I interferon (IFN-I). However, recently, emerging findings have increasingly indicated the non-redundant role of IFN-III in innate antiviral immune responses. Still, the regulatory activity of IFN-III in adaptive immune response has not been clearly reported yet due to the low expression of IFN-III receptors on most immune cells. In the present study, we reviewed the adjuvant, antiviral, antitumor, and disease-moderating activities of IFN-III in adaptive immunity; moreover, we further elucidated the mechanisms of IFN-III in mediating the adaptive antiviral immune response in a thymic stromal lymphopoietin (TSLP)-dependent manner, a pleiotropic cytokine involved in mucosal adaptive immunity. Research has shown that IFN-III can enhance the antiviral immunogenic response in mouse species by activating germinal center B (GC B) cell responses after stimulating TSLP production by microfold (M) cells, while in human species, TSLP exerts OX40L for regulating GC B cell immune responses, which may also depend on IFN-III. In conclusion, our review highlights the unique role of the IFN-III/TSLP axis in mediating host adaptive immunity, which is mechanically different from IFN-I. Therefore, the IFN-III/TSLP axis may provide novel insights for clinical immunotherapy.
Collapse
Affiliation(s)
- Luhong Cao
- Department of Otolaryngology Head and Neck Surgery Surgery, Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Weiwei Qian
- Department of Emergency Medicine, Laboratory of Emergency Medicine, West China Hospital, and Disaster Medical Center, Sichuan University, Chengdu, Sichuan, China
| | - Wanlin Li
- National Clinical Research Center for Infectious Disease, Shenzhen Third People’s Hospital, Shenzhen, China
| | - Zhiyue Ma
- Department of Otolaryngology Head and Neck Surgery Surgery, Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Shenglong Xie
- Department of Thoracic Surgery, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
8
|
Xia Y, Yang Q, Wu SY, Wu Z, Li Q, Du J. Interferon lambda modulates proinflammatory cytokines production in PBMCs from patients with chronic kidney disease. Hum Immunol 2023; 84:464-470. [PMID: 37394297 DOI: 10.1016/j.humimm.2023.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 06/06/2023] [Accepted: 06/06/2023] [Indexed: 07/04/2023]
Abstract
BACKGROUND CKD is a major cause of morbidity and mortality worldwide. Considerable evidence now indicates that renal inflammation plays a central role in the initiation and progression of CKD. Recent investigations have demonstrated that IFNλ plays an important role in the pathogenesis of autoimmune and inflammatory diseases. However, the association of IFNλ with CKD is still poorly understood. OBJECTIVE To analyze the correlation between IFNλ levels and pro-inflammatory cytokines, and to investigate the effect of IFNλ on PBMCs in patients with CKD. METHODS PBMCs were harvested from patients with CKD and healthy controls for measuring the expression level of inflammatory cytokines by RT-qPCR. Spearman correlation test was used to analyze correlation between IFNλ and cytokines as well as eGFR. PBMCs from healthy individuals and CKD patients were subjected to IFNλ protein stimulation. IL6, TNFα, IL10, ISG15 and MX1 mRNA level were measured by RT-PCR, STAT1 and phosphorylated STAT1 protein level were measured by Western blot. RESULTS Patients with CKD showed higher levels of IFNλ in PBMCs compared to healthy controls. IFNλ mRNA levels were associated with cytokines and eGFR. The transcription of IL6, TNFα, and IL10 was significantly increased in healthy human PBMCs after IFNλ stimulation. In addition, IFNλ acts on PBMCs by p-STAT1 and ISG15 as well as MX1. CONCLUSION High expression of IFNλ was found in CKD patients and was associated with eGFR and disease-related cytokines. More importantly, IFNλ promoted the expression of pro-inflammatory cytokines in PBMCs, suggesting a potential pro-inflammatory role of IFNλ in CKD.
Collapse
Affiliation(s)
- Yuhao Xia
- Weifang Medical University, Shandong, China; Department of Laboratory Medicine, Peking University Shenzhen Hospital, Shenzhen, China.
| | - Qiannan Yang
- Department of Laboratory Medicine, Peking University Shenzhen Hospital, Shenzhen, China.
| | - Shang Ying Wu
- Department of Laboratory Medicine, Peking University Shenzhen Hospital, Shenzhen, China.
| | - Zhicheng Wu
- Department of Laboratory Medicine, Peking University Shenzhen Hospital, Shenzhen, China.
| | - Qian Li
- Department of Laboratory Medicine, Peking University Shenzhen Hospital, Shenzhen, China.
| | - Jing Du
- Department of Laboratory Medicine, Peking University Shenzhen Hospital, Shenzhen, China.
| |
Collapse
|
9
|
Martínez-Espinoza I, Guerrero-Plata A. Current Landscape of IFN-λ: Induction, Inhibition, and Potential Clinical Applications to Treat Respiratory Viral Infections. Immunohorizons 2023; 7:265-272. [PMID: 37071039 PMCID: PMC10579847 DOI: 10.4049/immunohorizons.2200010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 03/23/2023] [Indexed: 04/19/2023] Open
Abstract
IFN-λ or type III IFN is an important mediator of antiviral response. Several respiratory viruses induce the production of IFN-λ during their course of infection. However, they have also developed intricate mechanisms to inhibit its expression and activity. Despite a considerable amount of research on the regulatory mechanisms of respiratory viruses on the IFN-λ response, little is still known about the effect of this cytokine on immune cells and the antiviral effects of all IFN-λ isoforms, and a better understanding of the detrimental effects of IFN-λ treatment is required. Here we highlight the relevance of IFN-λ as an antiviral cytokine in the respiratory tract. Data from studies in vitro, ex vivo, experimental animal models, and ongoing clinical trials emphasize the therapeutic opportunity that IFN-λ represents to treat and prevent different types of respiratory viral infections.
Collapse
Affiliation(s)
- Iván Martínez-Espinoza
- Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA
| | - Antonieta Guerrero-Plata
- Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA
| |
Collapse
|
10
|
Huang LY, Chiu CJ, Hsing CH, Hsu YH. Interferon Family Cytokines in Obesity and Insulin Sensitivity. Cells 2022; 11:4041. [PMID: 36552805 PMCID: PMC9776768 DOI: 10.3390/cells11244041] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 12/09/2022] [Accepted: 12/12/2022] [Indexed: 12/15/2022] Open
Abstract
Obesity and its associated complications are global public health concerns. Metabolic disturbances and immune dysregulation cause adipose tissue stress and dysfunction in obese individuals. Immune cell accumulation in the adipose microenvironment is the main cause of insulin resistance and metabolic dysfunction. Infiltrated immune cells, adipocytes, and stromal cells are all involved in the production of proinflammatory cytokines and chemokines in adipose tissues and affect systemic homeostasis. Interferons (IFNs) are a large family of pleiotropic cytokines that play a pivotal role in host antiviral defenses. IFNs are critical immune modulators in response to pathogens, dead cells, and several inflammation-mediated diseases. Several studies have indicated that IFNs are involved in the pathogenesis of obesity. In this review, we discuss the roles of IFN family cytokines in the development of obesity-induced inflammation and insulin resistance.
Collapse
Affiliation(s)
- Ling-Yu Huang
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan
| | - Chiao-Juno Chiu
- Department of Medical Research, National Taiwan University Hospital, Taipei 100, Taiwan
| | - Chung-Hsi Hsing
- Department of Anesthesiology, Chi Mei Medical Center, Tainan 710, Taiwan
- Department of Medical Research, Chi Mei Medical Center, Tainan 710, Taiwan
| | - Yu-Hsiang Hsu
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan
- Clinical Medicine Research Center, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 704, Taiwan
- Antibody New Drug Research Center, National Cheng Kung University, Tainan 701, Taiwan
| |
Collapse
|
11
|
Alphonse N, Dickenson RE, Alrehaili A, Odendall C. Functions of IFNλs in Anti-Bacterial Immunity at Mucosal Barriers. Front Immunol 2022; 13:857639. [PMID: 35663961 PMCID: PMC9159784 DOI: 10.3389/fimmu.2022.857639] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 04/07/2022] [Indexed: 11/13/2022] Open
Abstract
Type III interferons (IFNs), or IFNλs, are cytokines produced in response to microbial ligands. They signal through the IFNλ receptor complex (IFNLR), which is located on epithelial cells and select immune cells at barrier sites. As well as being induced during bacterial or viral infection, type III IFNs are produced in response to the microbiota in the lung and intestinal epithelium where they cultivate a resting antiviral state. While the multiple anti-viral activities of IFNλs have been extensively studied, their roles in immunity against bacteria are only recently emerging. Type III IFNs increase epithelial barrier integrity and protect from infection in the intestine but were shown to increase susceptibility to bacterial superinfections in the respiratory tract. Therefore, the effects of IFNλ can be beneficial or detrimental to the host during bacterial infections, depending on timing and biological contexts. This duality will affect the potential benefits of IFNλs as therapeutic agents. In this review, we summarize the current knowledge on IFNλ induction and signaling, as well as their roles at different barrier sites in the context of anti-bacterial immunity.
Collapse
Affiliation(s)
- Noémie Alphonse
- Department of Infectious Diseases, School of Immunology and Microbial Sciences, King's College London, London, United Kingdom.,Immunoregulation Laboratory, Francis Crick Institute, London, United Kingdom
| | - Ruth E Dickenson
- Department of Infectious Diseases, School of Immunology and Microbial Sciences, King's College London, London, United Kingdom
| | - Abrar Alrehaili
- Department of Infectious Diseases, School of Immunology and Microbial Sciences, King's College London, London, United Kingdom
| | - Charlotte Odendall
- Department of Infectious Diseases, School of Immunology and Microbial Sciences, King's College London, London, United Kingdom
| |
Collapse
|
12
|
Brakenhoff SM, de Knegt RJ, Oliveira J, van der Eijk AA, van Vuuren AJ, Hansen BE, Janssen HLA, de Man RA, Boonstra A, Sonneveld MJ. Levels of Antibodies to Hepatitis B Core Antigen Are Associated With Liver Inflammation and Response to Peginterferon in Patients With Chronic Hepatitis B. J Infect Dis 2022; 227:113-122. [PMID: 35599306 PMCID: PMC9796168 DOI: 10.1093/infdis/jiac210] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 03/11/2022] [Accepted: 05/19/2022] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND Emerging evidence suggests a pivotal role for B-cell responses in the natural history of chronic hepatitis B. Serum levels of antibodies to hepatitis B core antigen (anti-HBc) vary across infection stages, but their role in predicting response to antiviral therapy is uncertain. METHODS Anti-HBc levels were assessed before peginterferon (PEG-IFN) therapy in patients with chronic hepatitis B who either started de novo PEG-IFN (n = 299; 195 hepatitis B e antigen [HBeAg] positive) or started PEG-IFN as add-on to an existing nucleo(s)tide analogue backbone (n = 91; all HBeAg-positive). Associations were explored between anti-HBc and (1) serum biomarkers, (2) liver histological findings, and (3) treatment response. RESULTS We studied 390 patients. The hepatitis B virus (HBV) genotype were A, B, C, and D in 24%, 9%, 16%, and 49%, respectively; 72% of patients were Caucasian. Among currently untreated HBeAg-positive patients, anti-HBc was correlated with HBV DNA, hepatitis B core-related antigen (HBcrAg), hepatitis B surface antigen (HBsAg), and HBV RNA, but not with alanine aminotransferase (ALT). Higher anti-HBc was associated with more severe histological inflammatory activity (P < .001), irrespective of HBeAg status. After de novo PEG-IFN, higher anti-HBc levels were associated with HBeAg loss, sustained response, HBsAg decline, and HBsAg clearance (P < .050). Among patients treated with add-on PEG-IFN, higher anti-HBc was associated with HBeAg loss (P = .01). CONCLUSIONS Serum anti-HBc levels correlate with histological inflammatory activity. Higher anti-HBc levels were associated with favorable treatment outcomes. These findings suggest that anti-HBc could be used to select patients most likely to respond to immunomodulatory therapy. CLINICAL TRIALS REGISTRATION NCT00114361, NCT00146705, NCT00877760, and NCT01532843.
Collapse
Affiliation(s)
- Sylvia M Brakenhoff
- Correspondence: Sylvia M. Brakenhoff, Erasmus MC, Department of Gastroenterology and Hepatology, internal postal address Na-606, Dr.Molewaterplein 40, 3015 GD Rotterdam, the Netherlands ()
| | - Robert J de Knegt
- Department of Gastroenterology and Hepatology, Erasmus MC, University Medical Center, Rotterdam, the Netherlands
| | - Jeffrey Oliveira
- Department of Gastroenterology and Hepatology, Erasmus MC, University Medical Center, Rotterdam, the Netherlands
| | - Annemiek A van der Eijk
- Department of Viroscience, Erasmus MC, University Medical Center, Rotterdam, the Netherlands
| | - Anneke J van Vuuren
- Department of Gastroenterology and Hepatology, Erasmus MC, University Medical Center, Rotterdam, the Netherlands
| | - Bettina E Hansen
- Department of Gastroenterology and Hepatology, Erasmus MC, University Medical Center, Rotterdam, the Netherlands
| | - Harry L A Janssen
- Department of Gastroenterology and Hepatology, Erasmus MC, University Medical Center, Rotterdam, the Netherlands
| | - Robert A de Man
- Department of Gastroenterology and Hepatology, Erasmus MC, University Medical Center, Rotterdam, the Netherlands
| | - André Boonstra
- Department of Gastroenterology and Hepatology, Erasmus MC, University Medical Center, Rotterdam, the Netherlands
| | | |
Collapse
|
13
|
Krammer S, Sicorschi Gutu C, Grund JC, Chiriac MT, Zirlik S, Finotto S. Regulation and Function of Interferon-Lambda (IFNλ) and Its Receptor in Asthma. Front Immunol 2021; 12:731807. [PMID: 34899691 PMCID: PMC8660125 DOI: 10.3389/fimmu.2021.731807] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 10/12/2021] [Indexed: 12/22/2022] Open
Abstract
Asthma is a chronic respiratory disease affecting people of all ages, especially children, worldwide. Origins of asthma are suggested to be placed in early life with heterogeneous clinical presentation, severity and pathophysiology. Exacerbations of asthma disease can be triggered by many factors, including viral respiratory tract infections. Rhinovirus (RV) induced respiratory infections are the predominant cause of the common cold and also play a crucial role in asthma development and exacerbations. Rhinovirus mainly replicates in epithelial cells lining the upper and lower respiratory tract. Type III interferons, also known as interferon-lambda (IFNλ), are potent immune mediators of resolution of infectious diseases but they are known to be involved in autoimmune diseases as well. The protective role of type III IFNs in antiviral, antibacterial, antifungal and antiprotozoal functions is of major importance for our innate immune system. The IFNλ receptor (IFNλR) is expressed in selected types of cells like epithelial cells, thus orchestrating a specific immune response at the site of viruses and bacteria entry into the body. In asthma, IFNλ restricts the development of TH2 cells, which are induced in the airways of asthmatic patients. Several studies described type III IFNs as the predominant type of interferon increased after infection caused by respiratory viruses. It efficiently reduces viral replication, viral spread into the lungs and viral transmission from infected to naive individuals. Several reports showed that bronchial epithelial cells from asthmatic subjects have a deficient response of type III interferon after RV infection ex vivo. Toll like Receptors (TLRs) recognize pathogen-associated molecular patterns (PAMPs) expressed on infectious agents, and induce the development of antiviral and antibacterial immunity. We recently discovered that activation of TLR7/8 resulted in enhanced IFNλ receptor mRNA expression in PBMCs of healthy and asthmatic children, opening new therapeutic frontiers for rhinovirus-induced asthma. This article reviews the recent advances of the literature on the regulated expression of type III Interferons and their receptor in association with rhinovirus infection in asthmatic subjects.
Collapse
Affiliation(s)
- Susanne Krammer
- Department of Molecular Pneumology, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Cristina Sicorschi Gutu
- Department of Molecular Pneumology, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Janina C Grund
- Department of Molecular Pneumology, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Mircea T Chiriac
- Medical Clinic 1, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Sabine Zirlik
- Medical Clinic 1, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Susetta Finotto
- Department of Molecular Pneumology, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Universitätsklinikum Erlangen, Erlangen, Germany.,Medical Clinic 1, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Universitätsklinikum Erlangen, Erlangen, Germany
| |
Collapse
|
14
|
Sari G, Mulders CE, Zhu J, van Oord GW, Feng Z, Kreeft‐Voermans JJ, Boonstra A, Vanwolleghem T. Treatment induced clearance of hepatitis E viruses by interferon-lambda in liver-humanized mice. Liver Int 2021; 41:2866-2873. [PMID: 34392598 PMCID: PMC9291846 DOI: 10.1111/liv.15033] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 07/02/2021] [Accepted: 07/28/2021] [Indexed: 01/05/2023]
Abstract
BACKGROUND Hepatitis E viruses (HEV) are an underestimated global cause of enterically transmitted viral hepatitis, which may persist in immunocompromised hosts, posing a risk for progressive liver fibrosis with limited treatment options. We previously established liver-humanized mice as a model for chronic HEV infections, which can be cleared by a 2-week pegylated (peg)-Interferon(IFN)α treatment course. However, severe side effects may hamper the use of IFNα in immunocompromised transplant recipient patients. IFNλ may be a valuable alternative, as its receptor is less ubiquitously expressed. AIMS In this study, we assess the in vitro and in vivo potency of pegIFNλ to induce innate immune signalling in liver cells and to clear a persistent HEV infection in liver-humanized mice. METHODS & RESULTS We found that human liver cells expressed the IFNλ receptor (IFNLR1) and are responsive to pegIFNλ. Treatment with pegIFNλ of liver-humanized mice persistently infected with HEV genotype 3 showed that pegIFNλ was well tolerated. Dose escalation studies showed that although HEV was not cleared at pegIFNλ doses up to 0.12 mg/kg for a maximum of 8 weeks, a dose of 0.3 mg/kg pegIFNλ treatment resulted in complete clearance of HEV antigen and HEV RNA from the liver in 8 out of 9 liver-humanized mice. CONCLUSIONS PegIFNλ is well tolerated in mice and leads to clearance of a persistent HEV infection in liver-humanized mice.
Collapse
Affiliation(s)
- Gulce Sari
- Department of Gastroenterology and HepatologyErasmus University Medical CenterRotterdamThe Netherlands
| | - Claudia E. Mulders
- Department of ViroscienceErasmus University Medical CenterRotterdamThe Netherlands
| | - Jingting Zhu
- Center for Vaccines and ImmunityThe Research Institute at Nationwide Children’s HospitalColumbusOhioUSA
| | - Gertine W. van Oord
- Department of Gastroenterology and HepatologyErasmus University Medical CenterRotterdamThe Netherlands
| | - Zongdi Feng
- Center for Vaccines and ImmunityThe Research Institute at Nationwide Children’s HospitalColumbusOhioUSA,Department of PediatricsThe Ohio State University College of MedicineColumbusOhioUSA
| | | | - Andre Boonstra
- Department of Gastroenterology and HepatologyErasmus University Medical CenterRotterdamThe Netherlands
| | - Thomas Vanwolleghem
- Department of Gastroenterology and HepatologyErasmus University Medical CenterRotterdamThe Netherlands,Laboratory of Experimental Medicine and PediatricsFaculty of Medicine and Health SciencesUniversity of AntwerpAntwerpBelgium,Department of Gastroenterology and HepatologyAntwerp University HospitalAntwerpBelgium
| |
Collapse
|
15
|
Barnas JL, Albrecht J, Meednu N, Alzamareh DF, Baker C, McDavid A, Looney RJ, Anolik JH. B Cell Activation and Plasma Cell Differentiation Are Promoted by IFN-λ in Systemic Lupus Erythematosus. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2021; 207:2660-2672. [PMID: 34706932 PMCID: PMC8612983 DOI: 10.4049/jimmunol.2100339] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 09/17/2021] [Indexed: 12/24/2022]
Abstract
Type I IFN is essential for viral clearance but also contributes to the pathogenesis of autoimmune diseases, such as systemic lupus erythematosus (SLE), via aberrant nucleic acid-sensing pathways, leading to autoantibody production. Type III IFN (IFN-λ) is now appreciated to have a nonredundant role in viral infection, but few studies have addressed the effects of IFN-λ on immune cells given the more restricted expression of its receptor primarily to the epithelium. In this study, we demonstrate that B cells display a prominent IFN gene expression profile in patients with lupus. Serum levels of IFN-λ are elevated in SLE and positively correlate with B cell subsets associated with autoimmune plasma cell development, including CD11c+T-bet+CD21- B cells. Although B cell subsets express all IFN receptors, IFNLR1 strongly correlates with the CD11c+CD21- B cell expansion, suggesting that IFN-λ may be an unappreciated driver of the SLE IFN signature and B cell abnormalities. We show that IFN-λ potentiates gene transcription in human B cells typically attributed to type I IFN as well as expansion of T-bet-expressing B cells after BCR and TLR7/8 stimulation. Further, IFN-λ promotes TLR7/8-mediated plasmablast differentiation and increased IgM production. CD11c+ B cells demonstrate IFN-λ hyperresponsive signaling compared with other B cell subsets, suggesting that IFN-λ accelerates plasma cell differentiation through this putative extrafollicular pathway. In summary, our data support type III IFN-λ as a cytokine promoting the Ab-secreting cell pool in human viral and autoimmune disease.
Collapse
Affiliation(s)
- Jennifer L Barnas
- Division of Allergy, Immunology and Rheumatology, University of Rochester Medical Center, Rochester, NY;
| | - Jennifer Albrecht
- Division of Allergy, Immunology and Rheumatology, University of Rochester Medical Center, Rochester, NY
| | - Nida Meednu
- Division of Allergy, Immunology and Rheumatology, University of Rochester Medical Center, Rochester, NY
| | - Diana F Alzamareh
- Division of Allergy, Immunology and Rheumatology, University of Rochester Medical Center, Rochester, NY
| | - Cameron Baker
- University of Rochester Genomics Research Center, University of Rochester Medical Center, Rochester, NY; and
| | - Andrew McDavid
- Department of Biostatistics and Computational Biology, University of Rochester School of Medicine and Dentistry, Rochester, NY
| | - R John Looney
- Division of Allergy, Immunology and Rheumatology, University of Rochester Medical Center, Rochester, NY
| | - Jennifer H Anolik
- Division of Allergy, Immunology and Rheumatology, University of Rochester Medical Center, Rochester, NY
| |
Collapse
|
16
|
Manivasagam S, Klein RS. Type III Interferons: Emerging Roles in Autoimmunity. Front Immunol 2021; 12:764062. [PMID: 34899712 PMCID: PMC8660671 DOI: 10.3389/fimmu.2021.764062] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 10/11/2021] [Indexed: 11/13/2022] Open
Abstract
Type III interferons (IFNs) or the lambda IFNs (IFNLs or IFN-λs) are antimicrobial cytokines that play key roles in immune host defense at endothelial and epithelial barriers. IFNLs signal via their heterodimeric receptor, comprised of two subunits, IFNLR1 and interleukin (IL)10Rβ, which defines the cellular specificity of the responses to the cytokines. Recent studies show that IFNL signaling regulates CD4+ T cell differentiation, favoring Th1 cells, which has led to the identification of IFNL as a putative therapeutic target for autoimmune diseases. Here, we summarize the IFNL signaling pathways during antimicrobial immunity, IFNL-mediated immunomodulation of both innate and adaptive immune cells, and induction of autoimmunity.
Collapse
Affiliation(s)
- Sindhu Manivasagam
- Center for Neuroimmunology & Neuroinfectious Diseases, Washington University School of Medicine, St. Louis, MO, United States
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, United States
| | - Robyn S. Klein
- Center for Neuroimmunology & Neuroinfectious Diseases, Washington University School of Medicine, St. Louis, MO, United States
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, United States
- Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, MO, United States
- Department of Neurosciences, Washington University School of Medicine, St. Louis, MO, United States
| |
Collapse
|
17
|
Regulation of B Cell Responses in SLE by Three Classes of Interferons. Int J Mol Sci 2021; 22:ijms221910464. [PMID: 34638804 PMCID: PMC8508684 DOI: 10.3390/ijms221910464] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 09/24/2021] [Accepted: 09/24/2021] [Indexed: 12/24/2022] Open
Abstract
There are three classes of interferons (type 1, 2, and 3) that can contribute to the development and maintenance of various autoimmune diseases, including systemic lupus erythematosus (SLE). Each class of interferons promotes the generation of autoreactive B cells and SLE-associated autoantibodies by distinct signaling mechanisms. SLE patients treated with various type 1 interferon-blocking biologics have diverse outcomes, suggesting that additional environmental and genetic factors may dictate how these cytokines contribute to the development of autoreactive B cells and SLE. Understanding how each class of interferons controls B cell responses in SLE is necessary for developing optimized B cell- and interferon-targeted therapeutics. In this review, we will discuss how each class of interferons differentially promotes the loss of peripheral B cell tolerance and leads to the development of autoreactive B cells, autoantibodies, and SLE.
Collapse
|
18
|
Talla A, Vasaikar SV, Lemos MP, Moodie Z, Lee Pebworth MP, Henderson KE, Cohen KW, Czartoski JL, Lai L, Suthar MS, Heubeck AT, Genge PC, Roll CR, Weiss M, Reading J, Kondza N, MacMillan H, Fong OC, Thomson ZJ, Graybuck LT, Okada LY, Newell EW, Coffey EM, Meijer P, Becker LA, De Rosa SC, Skene PJ, Torgerson TR, Li XJ, Szeto GL, McElrath MJ, Bumol TF. Longitudinal immune dynamics of mild COVID-19 define signatures of recovery and persistence. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2021:2021.05.26.442666. [PMID: 34075380 PMCID: PMC8168393 DOI: 10.1101/2021.05.26.442666] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/15/2023]
Abstract
SARS-CoV-2 has infected over 200 million and caused more than 4 million deaths to date. Most individuals (>80%) have mild symptoms and recover in the outpatient setting, but detailed studies of immune responses have focused primarily on moderate to severe COVID-19. We deeply profiled the longitudinal immune response in individuals with mild COVID-19 beginning with early time points post-infection (1-15 days) and proceeding through convalescence to >100 days after symptom onset. We correlated data from single cell analyses of peripheral blood cells, serum proteomics, virus-specific cellular and humoral immune responses, and clinical metadata. Acute infection was characterized by vigorous coordinated innate and adaptive immune activation that differed in character by age (young vs. old). We then characterized signals associated with recovery and convalescence to define and validate a new signature of inflammatory cytokines, gene expression, and chromatin accessibility that persists in individuals with post-acute sequelae of SARS-CoV-2 infection (PASC).
Collapse
|
19
|
De M, Bhushan A, Chinnaswamy S. Monocytes differentiated into macrophages and dendritic cells in the presence of human IFN-λ3 or IFN-λ4 show distinct phenotypes. J Leukoc Biol 2021; 110:357-374. [PMID: 33205487 PMCID: PMC7611425 DOI: 10.1002/jlb.3a0120-001rrr] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2020] [Revised: 10/29/2020] [Accepted: 11/01/2020] [Indexed: 12/13/2022] Open
Abstract
Human IFN-λ4 is expressed by only a subset of individuals who possess the ΔG variant allele at the dinucleotide polymorphism rs368234815. Recent genetic studies have shown an association between rs368234815 and different infectious and inflammatory disorders. It is not known if IFN-λ4 has immunomodulatory activity. The expression of another type III IFN, IFN-λ3, is also controlled by genetic polymorphisms that are strongly linked to rs368234815. Therefore, it is of interest to compare these two IFNs for their effects on immune cells. Herein, using THP-1 cells, it was confirmed that IFN-λ4 could affect the differentiation status of macrophage-like cells and dendritic cells (DCs). The global gene expression changes induced by IFN-λ4 were also characterized in in vitro generated primary macrophages. Next, human PBMC-derived CD14+ monocytes were used to obtain M1 and M2 macrophages and DCs in the presence of IFN-λ3 or IFN-λ4. These DCs were cocultured with CD4+ Th cells derived from allogenic donors and their in vitro cytokine responses were measured. The specific activity of recombinant IFN-λ4 was much lower than that of IFN-λ3, as shown by induction of IFN-stimulated genes. M1 macrophages differentiated in the presence of IFN-λ4 showed higher IL-10 secretion than those differentiated in IFN-λ3. Coculture experiments suggested that IFN-λ4 could confer a Th2-biased phenotype to allogenic Th cells, wherein IFN-λ3, under similar circumstances, did not induce a significant bias toward either a Th1 or Th2 phenotype. This study shows for the first time that IFN-λ4 may influence immune responses by immunomodulation.
Collapse
Affiliation(s)
- Manjarika De
- National Institute of Biomedical GenomicsKalyaniWest BengalIndia
| | - Anand Bhushan
- National Institute of Biomedical GenomicsKalyaniWest BengalIndia
| | | |
Collapse
|
20
|
Falkowski B, Szczepanek-Parulska E, Krygier A, Wrotkowska E, Ruchala M. Evaluation of interleukin-29 in autoimmune and inflammatory thyroid diseases. Clin Endocrinol (Oxf) 2021; 94:998-1003. [PMID: 33449383 DOI: 10.1111/cen.14418] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 12/26/2020] [Accepted: 01/04/2021] [Indexed: 01/05/2023]
Abstract
OBJECTIVE Interleukins play an important role in the development of autoimmune disorders. The aim of this study was to compare the concentration of interleukin-29 (IL-29) between healthy controls (CS) and patients with selected thyroid disorders: Graves' disease (GD), Hashimoto's thyroiditis (HT) and subacute thyroiditis (SAT). DESIGN AND METHODS The following parameters were examined in the group of 95 individuals (45 with GD, 22 with HT, 28 with SAT) and 72 CS: thyroid hormones and autoantibodies, inflammatory markers and the concentration of IL-29 in serum. RESULTS The concentration of IL-29 in the GD subgroup was higher than that in the CS subgroup [264.0 (62.5-1018.0) vs. 62.5 (62.5-217.0) pg/mL, P = .001]. We found no differences in IL-29 concentrations between the CS and HT or SAT subgroups. Multivariable linear regression analysis indicated that IL-29 was a statistically significant independent predictor of GD presence (r = 0.24; P = .003) after adjustment for TRAb (R2 = 0.45; P < .001). The ROC analysis of IL-29 at GD diagnosis revealed an IL-29 cut-off of 123 pg/mL (sensitivity: 0.689 and specificity: 0.625) as the best value, which significantly indicated the presence of GD [area under the ROC curve (AUC): 0.676; 95% confidence interval (CI): 0.574-0.778, P < .001]. CONCLUSION This is the first study to demonstrate elevated IL-29 serum levels in patients with GD. Our results suggest that IL-29 might be engaged in one of the pathogenetic pathways of GD, but no HT and SAT. Future studies are required to evaluate the potential of the protein as a therapeutic target in GD.
Collapse
Affiliation(s)
- Bogusz Falkowski
- Department of Endocrinology, Metabolism and Internal Medicine, Poznan University of Medical Sciences, Poznan, Poland
| | - Ewelina Szczepanek-Parulska
- Department of Endocrinology, Metabolism and Internal Medicine, Poznan University of Medical Sciences, Poznan, Poland
| | - Aleksandra Krygier
- Department of Endocrinology, Metabolism and Internal Medicine, Poznan University of Medical Sciences, Poznan, Poland
| | - Elzbieta Wrotkowska
- Department of Endocrinology, Metabolism and Internal Medicine, Poznan University of Medical Sciences, Poznan, Poland
| | - Marek Ruchala
- Department of Endocrinology, Metabolism and Internal Medicine, Poznan University of Medical Sciences, Poznan, Poland
| |
Collapse
|
21
|
Goel RR, Kotenko SV, Kaplan MJ. Interferon lambda in inflammation and autoimmune rheumatic diseases. Nat Rev Rheumatol 2021; 17:349-362. [PMID: 33907323 PMCID: PMC8077192 DOI: 10.1038/s41584-021-00606-1] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/18/2021] [Indexed: 12/23/2022]
Abstract
Interferons are potent antiviral cytokines that modulate immunity in response to infection or other danger signals. In addition to their antiviral functions, type I interferons (IFNα and IFNβ) are important in the pathogenesis of autoimmune diseases. Type III interferons (IFNλs) were initially described as a specialized system that inhibits viral replication at epithelial barrier surfaces while limiting inflammatory damage. However, evidence now suggests that type III interferons have complex effects on both innate and adaptive immune responses and might also be pathogenic in systemic autoimmune diseases. Concentrations of IFNλs are increased in blood and tissues in a number of autoimmune rheumatic diseases, including systemic lupus erythematosus, and are further associated with specific clinical and laboratory parameters. This Review is aimed at providing a critical evaluation of the current literature on IFNλ biology and how type III interferons might contribute to immune dysregulation and tissue damage in autoimmunity. The potential effects of type III interferons on treatment strategies for autoimmune rheumatic diseases, such as interferon blockade, are also considered.
Collapse
Affiliation(s)
- Rishi R Goel
- Systemic Autoimmunity Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD, USA.
- Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| | - Sergei V Kotenko
- Department of Microbiology, Biochemistry and Molecular Genetics, Center for Cell Signaling, Center for Immunity and Inflammation, Rutgers New Jersey Medical School, Newark, NJ, USA
| | - Mariana J Kaplan
- Systemic Autoimmunity Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
22
|
Hahn WO, Pepper M, Liles WC. B cell intrinsic expression of IFNλ receptor suppresses the acute humoral immune response to experimental blood-stage malaria. Virulence 2021; 11:594-606. [PMID: 32407154 PMCID: PMC7549950 DOI: 10.1080/21505594.2020.1768329] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Antibodies play a critical protective role in the host response to blood-stage malaria infection. The role of cytokines in shaping the antibody response to blood-stage malaria is unclear. Interferon lambda (IFNλ), a type III interferon, is a cytokine produced early during blood-stage malaria infection that has an unknown physiological role during malaria infection. We demonstrate that B cell-intrinsic IFNλ signals suppress the acute antibody response, acute plasmablast response, and impede acute parasite clearance during a primary blood-stage malaria infection. Our findings demonstrate a previously unappreciated role for B cell intrinsic IFNλ-signaling in the initiation of the humoral immune response in the host response to experimental malaria.
Collapse
Affiliation(s)
- William O Hahn
- Division of Allergy and Infectious Diseases, Department of Medicine, University of Washington , Seattle, USA
| | - Marion Pepper
- Department of Immunology, University of Washington , Seattle, USA
| | - W Conrad Liles
- Division of Allergy and Infectious Diseases, Department of Medicine, University of Washington , Seattle, USA
| |
Collapse
|
23
|
Gong L, Kwong DLW, Dai W, Wu P, Li S, Yan Q, Zhang Y, Zhang B, Fang X, Liu L, Luo M, Liu B, Chow LKY, Chen Q, Huang J, Lee VHF, Lam KO, Lo AWI, Chen Z, Wang Y, Lee AWM, Guan XY. Comprehensive single-cell sequencing reveals the stromal dynamics and tumor-specific characteristics in the microenvironment of nasopharyngeal carcinoma. Nat Commun 2021; 12:1540. [PMID: 33750785 PMCID: PMC7943808 DOI: 10.1038/s41467-021-21795-z] [Citation(s) in RCA: 119] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 02/08/2021] [Indexed: 12/19/2022] Open
Abstract
The tumor microenvironment (TME) of nasopharyngeal carcinoma (NPC) harbors a heterogeneous and dynamic stromal population. A comprehensive understanding of this tumor-specific ecosystem is necessary to enhance cancer diagnosis, therapeutics, and prognosis. However, recent advances based on bulk RNA sequencing remain insufficient to construct an in-depth landscape of infiltrating stromal cells in NPC. Here we apply single-cell RNA sequencing to 66,627 cells from 14 patients, integrated with clonotype identification on T and B cells. We identify and characterize five major stromal clusters and 36 distinct subpopulations based on genetic profiling. By comparing with the infiltrating cells in the non-malignant microenvironment, we report highly representative features in the TME, including phenotypic abundance, genetic alternations, immune dynamics, clonal expansion, developmental trajectory, and molecular interactions that profoundly influence patient prognosis and therapeutic outcome. The key findings are further independently validated in two single-cell RNA sequencing cohorts and two bulk RNA-sequencing cohorts. In the present study, we reveal the correlation between NPC-specific characteristics and progression-free survival. Together, these data facilitate the understanding of the stromal landscape and immune dynamics in NPC patients and provides deeper insights into the development of prognostic biomarkers and therapeutic targets in the TME.
Collapse
Affiliation(s)
- Lanqi Gong
- Department of Clinical Oncology, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
- Department of Clinical Oncology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Dora Lai-Wan Kwong
- Department of Clinical Oncology, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
- Department of Clinical Oncology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Wei Dai
- Department of Clinical Oncology, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
- Department of Clinical Oncology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Pingan Wu
- Department of Surgery, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| | - Shanshan Li
- Department of Clinical Oncology, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| | - Qian Yan
- Department of Clinical Oncology, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
- Department of Clinical Oncology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Yu Zhang
- Department of Clinical Oncology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Baifeng Zhang
- Department of Clinical Oncology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Xiaona Fang
- Department of Clinical Oncology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Li Liu
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
- The AIDS Institute, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
- State Key Laboratory of Emerging Infectious Disease, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Min Luo
- Department of Clinical Oncology, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| | - Beilei Liu
- Department of Clinical Oncology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Larry Ka-Yue Chow
- Department of Clinical Oncology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Qingyun Chen
- State Key Laboratory of Oncology in Southern China, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Jinlin Huang
- Department of Clinical Oncology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Victor Ho-Fun Lee
- Department of Clinical Oncology, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
- Department of Clinical Oncology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Ka-On Lam
- Department of Clinical Oncology, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
- Department of Clinical Oncology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Anthony Wing-Ip Lo
- Department of Pathology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Zhiwei Chen
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
- The AIDS Institute, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
- State Key Laboratory of Emerging Infectious Disease, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Yan Wang
- Department of Pathology, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| | - Anne Wing-Mui Lee
- Department of Clinical Oncology, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
- Department of Clinical Oncology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Xin-Yuan Guan
- Department of Clinical Oncology, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China.
- Department of Clinical Oncology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China.
- State Key Laboratory of Oncology in Southern China, Sun Yat-sen University Cancer Center, Guangzhou, China.
| |
Collapse
|
24
|
Coto-Llerena M, Lepore M, Spagnuolo J, Di Blasi D, Calabrese D, Suslov A, Bantug G, Duong FH, Terracciano LM, De Libero G, Heim MH. Interferon lambda 4 can directly activate human CD19 + B cells and CD8 + T cells. Life Sci Alliance 2021; 4:e201900612. [PMID: 33158978 PMCID: PMC7668538 DOI: 10.26508/lsa.201900612] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 10/26/2020] [Accepted: 10/26/2020] [Indexed: 12/12/2022] Open
Abstract
Compared with the ubiquitous expression of type I (IFNα and IFNβ) interferon receptors, type III (IFNλ) interferon receptors are mainly expressed in epithelial cells of mucosal barriers of the of the intestine and respiratory tract. Consequently, IFNλs are important for innate pathogen defense in the lung and intestine. IFNλs also determine the outcome of hepatitis C virus (HCV) infections, with IFNλ4 inhibiting spontaneous clearance of HCV. Because viral clearance is dependent on T cells, we explored if IFNλs can directly bind to and regulate human T cells. We found that human B cells and CD8+ T cells express the IFNλ receptor and respond to IFNλs, including IFNλ4. IFNλs were not inhibitors but weak stimulators of B- and T-cell responses. Furthermore, IFNλ4 showed neither synergistic nor antagonistic effects in co-stimulatory experiments with IFNλ1 or IFNα. Multidimensional flow cytometry of cells from liver biopsies of hepatitis patients from IFNλ4-producers showed accumulation of activated CD8+ T cells with a central memory-like phenotype. In contrast, CD8+ T cells with a senescent/exhausted phenotype were more abundant in IFNλ4-non-producers. It remains to be elucidated how IFNλ4 promotes CD8 T-cell responses and inhibits the host immunity to HCV infections.
Collapse
Affiliation(s)
- Mairene Coto-Llerena
- Department of Biomedicine, Hepatology, University Hospital and University of Basel, Basel, Switzerland
| | - Marco Lepore
- Department of Biomedicine, Experimental Immunology, University Hospital and University of Basel, Basel, Switzerland
| | - Julian Spagnuolo
- Department of Biomedicine, Experimental Immunology, University Hospital and University of Basel, Basel, Switzerland
| | - Daniela Di Blasi
- Department of Biomedicine, Hepatology, University Hospital and University of Basel, Basel, Switzerland
- Department of Biomedicine, Experimental Immunology, University Hospital and University of Basel, Basel, Switzerland
| | - Diego Calabrese
- Department of Biomedicine, Hepatology, University Hospital and University of Basel, Basel, Switzerland
| | - Aleksei Suslov
- Department of Biomedicine, Hepatology, University Hospital and University of Basel, Basel, Switzerland
| | - Glenn Bantug
- Department of Biomedicine, Immunobiology, University Hospital and University of Basel, Basel, Switzerland
| | - Francois Ht Duong
- Department of Biomedicine, Hepatology, University Hospital and University of Basel, Basel, Switzerland
| | - Luigi M Terracciano
- Molecular Pathology Division, Institute of Pathology, University Hospital Basel, Basel, Switzerland
| | - Gennaro De Libero
- Department of Biomedicine, Experimental Immunology, University Hospital and University of Basel, Basel, Switzerland
| | - Markus H Heim
- Department of Biomedicine, Hepatology, University Hospital and University of Basel, Basel, Switzerland
- Division of Gastroenterology and Hepatology, Clarunis, University Center for Gastrointestinal and Liver Diseases, Basel, Switzerland
| |
Collapse
|
25
|
Lozhkov AA, Klotchenko SA, Ramsay ES, Moshkoff HD, Moshkoff DA, Vasin AV, Salvato MS. The Key Roles of Interferon Lambda in Human Molecular Defense against Respiratory Viral Infections. Pathogens 2020; 9:pathogens9120989. [PMID: 33255985 PMCID: PMC7760417 DOI: 10.3390/pathogens9120989] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 11/23/2020] [Accepted: 11/24/2020] [Indexed: 12/18/2022] Open
Abstract
Interferons (IFN) are crucial for the innate immune response. Slightly more than two decades ago, a new type of IFN was discovered: the lambda IFN (type III IFN). Like other IFN, the type III IFN display antiviral activity against a wide variety of infections, they induce expression of antiviral, interferon-stimulated genes (MX1, OAS, IFITM1), and they have immuno-modulatory activities that shape adaptive immune responses. Unlike other IFN, the type III IFN signal through distinct receptors is limited to a few cell types, primarily mucosal epithelial cells. As a consequence of their greater and more durable production in nasal and respiratory tissues, they can determine the outcome of respiratory infections. This review is focused on the role of IFN-λ in the pathogenesis of respiratory viral infections, with influenza as a prime example. The influenza virus is a major public health problem, causing up to half a million lethal infections annually. Moreover, the virus has been the cause of four pandemics over the last century. Although IFN-λ are increasingly being tested in antiviral therapy, they can have a negative influence on epithelial tissue recovery and increase the risk of secondary bacterial infections. Therefore, IFN-λ expression deserves increased scrutiny as a key factor in the host immune response to infection.
Collapse
Affiliation(s)
- Alexey A. Lozhkov
- Peter the Great St. Petersburg Polytechnic University, 195251 St. Petersburg, Russia; (A.A.L.); (D.A.M.); (A.V.V.)
- Smorodintsev Research Institute of Influenza, Russian Ministry of Health, 196376 St. Petersburg, Russia; (S.A.K.); (E.S.R.)
| | - Sergey A. Klotchenko
- Smorodintsev Research Institute of Influenza, Russian Ministry of Health, 196376 St. Petersburg, Russia; (S.A.K.); (E.S.R.)
| | - Edward S. Ramsay
- Smorodintsev Research Institute of Influenza, Russian Ministry of Health, 196376 St. Petersburg, Russia; (S.A.K.); (E.S.R.)
| | - Herman D. Moshkoff
- Russian Technological University (MIREA), 119454 Moscow, Russia;
- US Pharma Biotechnology, Inc., 5000 Thayer Center, Suite C, Oakland, MD 21550, USA
| | - Dmitry A. Moshkoff
- Peter the Great St. Petersburg Polytechnic University, 195251 St. Petersburg, Russia; (A.A.L.); (D.A.M.); (A.V.V.)
- Smorodintsev Research Institute of Influenza, Russian Ministry of Health, 196376 St. Petersburg, Russia; (S.A.K.); (E.S.R.)
- US Pharma Biotechnology, Inc., 5000 Thayer Center, Suite C, Oakland, MD 21550, USA
- Global Virus Network(GVN), 725 W Lombard St, Baltimore, MD 21201, USA
| | - Andrey V. Vasin
- Peter the Great St. Petersburg Polytechnic University, 195251 St. Petersburg, Russia; (A.A.L.); (D.A.M.); (A.V.V.)
- Smorodintsev Research Institute of Influenza, Russian Ministry of Health, 196376 St. Petersburg, Russia; (S.A.K.); (E.S.R.)
- Global Virus Network(GVN), 725 W Lombard St, Baltimore, MD 21201, USA
- St. Petersburg State Chemical-Pharmaceutical Academy, 197022 St. Petersburg, Russia
| | - Maria S. Salvato
- Global Virus Network(GVN), 725 W Lombard St, Baltimore, MD 21201, USA
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- Correspondence:
| |
Collapse
|
26
|
Interferon-λ Enhances the Differentiation of Naive B Cells into Plasmablasts via the mTORC1 Pathway. Cell Rep 2020; 33:108211. [DOI: 10.1016/j.celrep.2020.108211] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 06/24/2020] [Accepted: 09/09/2020] [Indexed: 01/21/2023] Open
|
27
|
Falkowski B, Szczepanek-Parulska E, Sawicka-Gutaj N, Krygier A, Ruchala M. Evaluation of IL-29 in Euthyroid Patients with Graves' Orbitopathy: A Preliminary Study. Mediators Inflamm 2020; 2020:4748612. [PMID: 32694926 PMCID: PMC7368201 DOI: 10.1155/2020/4748612] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 04/04/2020] [Accepted: 05/21/2020] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND The most frequent cause of hyperthyroidism is Graves' disease (GD). Orbitopathy is the most prevalent and recognizable extrathyroidal manifestation of Graves' disease with unrevealed pathogenesis. Interleukin 29 (IL-29) is a relatively newly discovered inflammatory cytokine. Thus, the aim of this study was to evaluate the relationship between IL-29 and Graves' orbitopathy (GO) in euthyroid patients. METHODS Thirty-one euthyroid patients with Graves' disease and with active GO [clinical activity score (CAS) ≥ 3/7], seventeen euthyroid patients with GD but without GO, and seventy-two healthy control subjects (CS) matched for age and gender were enrolled in the study. The following parameters were evaluated in every participant: thyroid-related hormones and autoantibodies and inflammatory markers (white blood cells, hsCRP). ELISA assay was applied to measure the concentration of IL-29. RESULTS We found higher level of IL-29 in GO group in comparison with CS [165 (133-747) vs. 62 (62-217) pg/mL, p < 0.001]. Furthermore, participants in the subgroup with GD with GO as compared with GD without GO had higher concentration of IL-29 [165 (133-747) vs. 62 (62-558) pg/mL, p = 0.031]. The ROC analysis for IL-29 revealed IL-29 cut-off of 105 pg/mL (sensitivity 1.000 and specificity 0.597) as the best value significantly indicating the presence of GO in GD [area under the ROC curve (AUC): 0.739, 95% confidence interval (CI): 0.646-0.833, p < 0.001]. CONCLUSIONS The present study revealed for the first time an elevated level of IL-29 in the serum of patients with GD and GO that might suggest its involvement in the pathogenesis of GD ocular complications.
Collapse
Affiliation(s)
- Bogusz Falkowski
- Department of Endocrinology, Metabolism and Internal Medicine, Poznan University of Medical Sciences, Przybyszewskiego 49, 60-355 Poznan, Poland
| | - Ewelina Szczepanek-Parulska
- Department of Endocrinology, Metabolism and Internal Medicine, Poznan University of Medical Sciences, Przybyszewskiego 49, 60-355 Poznan, Poland
| | - Nadia Sawicka-Gutaj
- Department of Endocrinology, Metabolism and Internal Medicine, Poznan University of Medical Sciences, Przybyszewskiego 49, 60-355 Poznan, Poland
| | - Aleksandra Krygier
- Department of Endocrinology, Metabolism and Internal Medicine, Poznan University of Medical Sciences, Przybyszewskiego 49, 60-355 Poznan, Poland
| | - Marek Ruchala
- Department of Endocrinology, Metabolism and Internal Medicine, Poznan University of Medical Sciences, Przybyszewskiego 49, 60-355 Poznan, Poland
| |
Collapse
|
28
|
Hubert M, Gobbini E, Couillault C, Manh TPV, Doffin AC, Berthet J, Rodriguez C, Ollion V, Kielbassa J, Sajous C, Treilleux I, Tredan O, Dubois B, Dalod M, Bendriss-Vermare N, Caux C, Valladeau-Guilemond J. IFN-III is selectively produced by cDC1 and predicts good clinical outcome in breast cancer. Sci Immunol 2020; 5:5/46/eaav3942. [PMID: 32303573 DOI: 10.1126/sciimmunol.aav3942] [Citation(s) in RCA: 103] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Revised: 11/02/2019] [Accepted: 03/26/2020] [Indexed: 12/14/2022]
Abstract
Dendritic cells play a key role in the orchestration of antitumor immune responses. The cDC1 (conventional dendritic cell 1) subset has been shown to be essential for antitumor responses and response to immunotherapy, but its precise role in humans is largely unexplored. Using a multidisciplinary approach, we demonstrate that human cDC1 play an important role in the antitumor immune response through their capacity to produce type III interferon (IFN-λ). By analyzing a large cohort of breast primary tumors and public transcriptomic datasets, we observed specific production of IFN-λ1 by cDC1. In addition, both IFN-λ1 and its receptor were associated with favorable patient outcomes. We show that IFN-III promotes a TH1 microenvironment through increased production of IL-12p70, IFN-γ, and cytotoxic lymphocyte-recruiting chemokines. Last, we showed that engagement of TLR3 is a therapeutic strategy to induce IFN-III production by tumor-associated cDC1. These data provide insight into potential IFN- or cDC1-targeting antitumor therapies.
Collapse
Affiliation(s)
- Margaux Hubert
- Univ Lyon, Université Claude Bernard Lyon 1, INSERM U1052, CNRS 5286, Centre Léon Bérard, Centre de Recherche en Cancérologie de Lyon, Lyon, 69008, France.,Laboratoire d'Immunothérapie des Cancers de Lyon (LICL), Lyon, France
| | - Elisa Gobbini
- Univ Lyon, Université Claude Bernard Lyon 1, INSERM U1052, CNRS 5286, Centre Léon Bérard, Centre de Recherche en Cancérologie de Lyon, Lyon, 69008, France.,CHU Grenoble-Alpes, France
| | - Coline Couillault
- Univ Lyon, Université Claude Bernard Lyon 1, INSERM U1052, CNRS 5286, Centre Léon Bérard, Centre de Recherche en Cancérologie de Lyon, Lyon, 69008, France
| | - Thien-Phong Vu Manh
- Aix Marseille Univ, CNRS, INSERM, Centre d'Immunologie de Marseille-Luminy, Marseille, France
| | - Anne-Claire Doffin
- Univ Lyon, Université Claude Bernard Lyon 1, INSERM U1052, CNRS 5286, Centre Léon Bérard, Centre de Recherche en Cancérologie de Lyon, Lyon, 69008, France
| | - Justine Berthet
- Univ Lyon, Université Claude Bernard Lyon 1, INSERM U1052, CNRS 5286, Centre Léon Bérard, Centre de Recherche en Cancérologie de Lyon, Lyon, 69008, France.,Laboratoire d'Immunothérapie des Cancers de Lyon (LICL), Lyon, France
| | - Céline Rodriguez
- Univ Lyon, Université Claude Bernard Lyon 1, INSERM U1052, CNRS 5286, Centre Léon Bérard, Centre de Recherche en Cancérologie de Lyon, Lyon, 69008, France.,Laboratoire d'Immunothérapie des Cancers de Lyon (LICL), Lyon, France
| | - Vincent Ollion
- Univ Lyon, Université Claude Bernard Lyon 1, INSERM U1052, CNRS 5286, Centre Léon Bérard, Centre de Recherche en Cancérologie de Lyon, Lyon, 69008, France.,LabEx DEVweCAN, Lyon, France
| | - Janice Kielbassa
- Synergie Lyon Cancer, Plateforme de Bio-informatique 'Gilles Thomas', Lyon, France
| | - Christophe Sajous
- Univ Lyon, Université Claude Bernard Lyon 1, INSERM U1052, CNRS 5286, Centre Léon Bérard, Centre de Recherche en Cancérologie de Lyon, Lyon, 69008, France
| | | | | | - Bertrand Dubois
- Univ Lyon, Université Claude Bernard Lyon 1, INSERM U1052, CNRS 5286, Centre Léon Bérard, Centre de Recherche en Cancérologie de Lyon, Lyon, 69008, France.,Laboratoire d'Immunothérapie des Cancers de Lyon (LICL), Lyon, France
| | - Marc Dalod
- Aix Marseille Univ, CNRS, INSERM, Centre d'Immunologie de Marseille-Luminy, Marseille, France
| | - Nathalie Bendriss-Vermare
- Univ Lyon, Université Claude Bernard Lyon 1, INSERM U1052, CNRS 5286, Centre Léon Bérard, Centre de Recherche en Cancérologie de Lyon, Lyon, 69008, France.,Laboratoire d'Immunothérapie des Cancers de Lyon (LICL), Lyon, France.,LabEx DEVweCAN, Lyon, France
| | - Christophe Caux
- Univ Lyon, Université Claude Bernard Lyon 1, INSERM U1052, CNRS 5286, Centre Léon Bérard, Centre de Recherche en Cancérologie de Lyon, Lyon, 69008, France.,Laboratoire d'Immunothérapie des Cancers de Lyon (LICL), Lyon, France.,LabEx DEVweCAN, Lyon, France.,Centre Léon Bérard, F-69008 Lyon, France
| | - Jenny Valladeau-Guilemond
- Univ Lyon, Université Claude Bernard Lyon 1, INSERM U1052, CNRS 5286, Centre Léon Bérard, Centre de Recherche en Cancérologie de Lyon, Lyon, 69008, France. .,LabEx DEVweCAN, Lyon, France
| |
Collapse
|
29
|
Santer DM, Minty GES, Golec DP, Lu J, May J, Namdar A, Shah J, Elahi S, Proud D, Joyce M, Tyrrell DL, Houghton M. Differential expression of interferon-lambda receptor 1 splice variants determines the magnitude of the antiviral response induced by interferon-lambda 3 in human immune cells. PLoS Pathog 2020; 16:e1008515. [PMID: 32353085 PMCID: PMC7217487 DOI: 10.1371/journal.ppat.1008515] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 05/12/2020] [Accepted: 04/03/2020] [Indexed: 12/12/2022] Open
Abstract
Type III interferons (IFN-lambdas(λ)) are important cytokines that inhibit viruses and modulate immune responses by acting through a unique IFN-λR1/IL-10RB heterodimeric receptor. Until now, the primary antiviral function of IFN-λs has been proposed to be at anatomical barrier sites. Here, we examine the regulation of IFN-λR1 expression and measure the downstream effects of IFN-λ3 stimulation in primary human blood immune cells, compared with lung or liver epithelial cells. IFN-λ3 directly bound and upregulated IFN-stimulated gene (ISG) expression in freshly purified human B cells and CD8+ T cells, but not monocytes, neutrophils, natural killer cells, and CD4+ T cells. Despite similar IFNLR1 transcript levels in B cells and lung epithelial cells, lung epithelial cells bound more IFN-λ3, which resulted in a 50-fold greater ISG induction when compared to B cells. The reduced response of B cells could be explained by higher expression of the soluble variant of IFN-λR1 (sIFN-λR1), which significantly reduced ISG induction when added with IFN-λ3 to peripheral blood mononuclear cells or liver epithelial cells. T-cell receptor stimulation potently, and specifically, upregulated membrane-bound IFNLR1 expression in CD4+ T cells, leading to greater antiviral gene induction, and inhibition of human immunodeficiency virus type 1 infection. Collectively, our data demonstrate IFN-λ3 directly interacts with the human adaptive immune system, unlike what has been previously shown in published mouse models, and that type III IFNs could be potentially utilized to suppress both mucosal and blood-borne viral infections.
Collapse
Affiliation(s)
- Deanna M. Santer
- Li Ka Shing Institute of Virology and Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta, Canada
| | - Gillian E. S. Minty
- Li Ka Shing Institute of Virology and Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta, Canada
| | - Dominic P. Golec
- Alberta Diabetes Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Julia Lu
- Li Ka Shing Institute of Virology and Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta, Canada
| | - Julia May
- Li Ka Shing Institute of Virology and Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta, Canada
| | - Afshin Namdar
- Li Ka Shing Institute of Virology and Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta, Canada
- School of Dentistry, University of Alberta, Edmonton, Alberta, Canada
- Department of Oncology, University of Alberta, Edmonton, Alberta, Canada
| | - Juhi Shah
- Li Ka Shing Institute of Virology and Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta, Canada
| | - Shokrollah Elahi
- Li Ka Shing Institute of Virology and Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta, Canada
- School of Dentistry, University of Alberta, Edmonton, Alberta, Canada
- Department of Oncology, University of Alberta, Edmonton, Alberta, Canada
| | - David Proud
- Department of Physiology and Pharmacology and Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta, Canada
| | - Michael Joyce
- Li Ka Shing Institute of Virology and Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta, Canada
| | - D. Lorne Tyrrell
- Li Ka Shing Institute of Virology and Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta, Canada
| | - Michael Houghton
- Li Ka Shing Institute of Virology and Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
30
|
Interferon lambda promotes immune dysregulation and tissue inflammation in TLR7-induced lupus. Proc Natl Acad Sci U S A 2020; 117:5409-5419. [PMID: 32094169 DOI: 10.1073/pnas.1916897117] [Citation(s) in RCA: 90] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Type III IFN lambdas (IFN-λ) have recently been described as important mediators of immune responses at barrier surfaces. However, their role in autoimmune diseases such as systemic lupus erythematosus (SLE), a condition characterized by aberrant type I IFN signaling, has not been determined. Here, we identify a nonredundant role for IFN-λ in immune dysregulation and tissue inflammation in a model of TLR7-induced lupus. IFN-λ protein is increased in murine lupus and IFN-λ receptor (Ifnlr1) deficiency significantly reduces immune cell activation and associated organ damage in the skin and kidneys without effects on autoantibody production. Single-cell RNA sequencing in mouse spleen and human peripheral blood revealed that only mouse neutrophils and human B cells are directly responsive to this cytokine. Rather, IFN-λ activates keratinocytes and mesangial cells to produce chemokines that induce immune cell recruitment and promote tissue inflammation. These data provide insights into the immunobiology of SLE and identify type III IFNs as important factors for tissue-specific pathology in this disease.
Collapse
|
31
|
Wang J, Huang A, Xu W, Su L. Insights into IL-29: Emerging role in inflammatory autoimmune diseases. J Cell Mol Med 2019; 23:7926-7932. [PMID: 31578802 PMCID: PMC6850914 DOI: 10.1111/jcmm.14697] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 08/01/2019] [Accepted: 08/26/2019] [Indexed: 12/22/2022] Open
Abstract
Interleukin-29 (IL-29) is a newly discovered member of type III interferon. It mediates signal transduction via binding to its receptor complex and activates downstream signalling pathways, and therefore induces the generation of inflammatory components. Recent studies reported that expression of IL-29 is dysregulated in inflammatory autoimmune diseases, such as rheumatoid arthritis, systemic lupus erythematosus, osteoarthritis, Sjögren's syndrome, psoriasis and systemic sclerosis. Furthermore, functional analysis revealed that IL-29 may involve in the pathogenesis of the inflammatory autoimmune disorders. In this review, we will systematically review the current knowledge about IL-29. The information collected revealed the regulatory role of IL-29 and may give important implications for its potential in clinical treatment.
Collapse
Affiliation(s)
- Jia‐Min Wang
- Department of Evidence‐Based MedicineSchool of Public HealthSouthwest Medical UniversitySichuanChina
| | - An‐Fang Huang
- Department of Rheumatology and ImmunologyAffiliated Hospital of Southwest Medical UniversitySichuanChina
| | - Wang‐Dong Xu
- Department of Evidence‐Based MedicineSchool of Public HealthSouthwest Medical UniversitySichuanChina
| | - Lin‐Chong Su
- Department of Rheumatology and ImmunologyMinda Hospital of Hubei Minzu UniversityEnshiChina
| |
Collapse
|
32
|
Read SA, Wijaya R, Ramezani-Moghadam M, Tay E, Schibeci S, Liddle C, Lam VWT, Yuen L, Douglas MW, Booth D, George J, Ahlenstiel G. Macrophage Coordination of the Interferon Lambda Immune Response. Front Immunol 2019; 10:2674. [PMID: 31798594 PMCID: PMC6878940 DOI: 10.3389/fimmu.2019.02674] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2019] [Accepted: 10/30/2019] [Indexed: 12/18/2022] Open
Abstract
Lambda interferons (IFN-λs) are a major component of the innate immune defense to viruses, bacteria, and fungi. In human liver, IFN-λ not only drives antiviral responses, but also promotes inflammation and fibrosis in viral and non-viral diseases. Here we demonstrate that macrophages are primary responders to IFN-λ, uniquely positioned to bridge the gap between IFN-λ producing cells and lymphocyte populations that are not intrinsically responsive to IFN-λ. While CD14+ monocytes do not express the IFN-λ receptor, IFNLR1, sensitivity is quickly gained upon differentiation to macrophages in vitro. IFN-λ stimulates macrophage cytotoxicity and phagocytosis as well as the secretion of pro-inflammatory cytokines and interferon stimulated genes that mediate immune cell chemotaxis and effector functions. In particular, IFN-λ induced CCR5 and CXCR3 chemokines, stimulating T and NK cell migration, as well as subsequent NK cell cytotoxicity. Using immunofluorescence and cell sorting techniques, we confirmed that human liver macrophages expressing CD14 and CD68 are highly responsive to IFN-λ ex vivo. Together, these data highlight a novel role for macrophages in shaping IFN-λ dependent immune responses both directly through pro-inflammatory activity and indirectly by recruiting and activating IFN-λ unresponsive lymphocytes.
Collapse
Affiliation(s)
- Scott A Read
- Blacktown Medical School, Western Sydney University, Blacktown, NSW, Australia.,Storr Liver Centre, The Westmead Institute for Medical Research, The University of Sydney and Westmead Hospital, Westmead, NSW, Australia
| | - Ratna Wijaya
- Storr Liver Centre, The Westmead Institute for Medical Research, The University of Sydney and Westmead Hospital, Westmead, NSW, Australia
| | - Mehdi Ramezani-Moghadam
- Storr Liver Centre, The Westmead Institute for Medical Research, The University of Sydney and Westmead Hospital, Westmead, NSW, Australia
| | - Enoch Tay
- Storr Liver Centre, The Westmead Institute for Medical Research, The University of Sydney and Westmead Hospital, Westmead, NSW, Australia
| | - Steve Schibeci
- Centre for Immunology and Allergy Research, The Westmead Institute for Medical Research, The University of Sydney and Westmead Hospital, Westmead, NSW, Australia
| | - Christopher Liddle
- Storr Liver Centre, The Westmead Institute for Medical Research, The University of Sydney and Westmead Hospital, Westmead, NSW, Australia
| | - Vincent W T Lam
- Department of Upper Gastrointestinal Surgery, Westmead Hospital, Westmead, NSW, Australia.,Discipline of Surgery, University of Sydney, Sydney, NSW, Australia
| | - Lawrence Yuen
- Department of Upper Gastrointestinal Surgery, Westmead Hospital, Westmead, NSW, Australia.,Discipline of Surgery, University of Sydney, Sydney, NSW, Australia
| | - Mark W Douglas
- Storr Liver Centre, The Westmead Institute for Medical Research, The University of Sydney and Westmead Hospital, Westmead, NSW, Australia.,Centre for Infectious Diseases and Microbiology, Marie Bashir Institute for Infectious Diseases and Biosecurity, University of Sydney at Westmead Hospital, Westmead, NSW, Australia
| | - David Booth
- Centre for Immunology and Allergy Research, The Westmead Institute for Medical Research, The University of Sydney and Westmead Hospital, Westmead, NSW, Australia
| | - Jacob George
- Storr Liver Centre, The Westmead Institute for Medical Research, The University of Sydney and Westmead Hospital, Westmead, NSW, Australia
| | - Golo Ahlenstiel
- Blacktown Medical School, Western Sydney University, Blacktown, NSW, Australia.,Storr Liver Centre, The Westmead Institute for Medical Research, The University of Sydney and Westmead Hospital, Westmead, NSW, Australia.,Blacktown Hospital, Western Sydney Local Health District (WSLHD), Blacktown, NSW, Australia
| |
Collapse
|
33
|
Vlachiotis S, Andreakos E. Lambda interferons in immunity and autoimmunity. J Autoimmun 2019; 104:102319. [DOI: 10.1016/j.jaut.2019.102319] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Accepted: 08/09/2019] [Indexed: 01/23/2023]
|
34
|
Wisgrill L, Wessely I, Netzl A, Pummer L, Sadeghi K, Spittler A, Berger A, Förster‐Waldl E. Diminished secretion and function of IL-29 is associated with impaired IFN-α response of neonatal plasmacytoid dendritic cells. J Leukoc Biol 2019; 106:1177-1185. [PMID: 31211458 PMCID: PMC6852569 DOI: 10.1002/jlb.4a0518-189r] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Revised: 03/20/2019] [Accepted: 05/15/2019] [Indexed: 12/15/2022] Open
Abstract
Plasmacytoid dendritic cells (pDCs) are key players in the antiviral immune response and type III IFNs such as IL-29 appear to play a pivotal role in pDC function. Pronounced susceptibility to viral infections in neonates is partly resulting from diminished antiviral immune mechanisms. Accordingly, the aim of the present study was to investigate the impact of IL-29 in the altered immune response of neonatal pDCs. PBMCs of adult and term newborns were stimulated with CpG-ODN2216 in the presence or absence of IL-29 and assessed for IFN-α production, downstream-signaling, and activation marker expression. A significantly lower IL-29 production after TLR9-specific stimulation was demonstrated in neonatal pDCs. IL-29 enhanced the IFN-α production of pDCs in adults compared to newborns. Newborn pDCs displayed a significantly lower surface expression of IL-10 and IL-28Rα receptor resulting in diminished STAT1 and IRF7 activation. Interestingly, concomitant stimulation with CpG-ODN2216/IL-29 had no impact on the expression of surface activation and maturation markers of pDCs in neither population. The diminished antiviral immune response of neonatal pDCs is associated with reduced production and cellular responses toward IL-29. Potential therapeutic agents enhancing the IL-29 response in neonatal pDCs possibly augment viral protection in newborns.
Collapse
Affiliation(s)
- Lukas Wisgrill
- Department of Pediatrics and Adolescent MedicineDivision of NeonatologyPediatric Intensive Care & NeuropediatricsMedical University of ViennaViennaAustria
| | - Isabelle Wessely
- Department of Pediatrics and Adolescent MedicineDivision of NeonatologyPediatric Intensive Care & NeuropediatricsMedical University of ViennaViennaAustria
| | - Antonia Netzl
- Department of Pediatrics and Adolescent MedicineDivision of NeonatologyPediatric Intensive Care & NeuropediatricsMedical University of ViennaViennaAustria
| | - Linda Pummer
- Department of Pediatrics and Adolescent MedicineDivision of NeonatologyPediatric Intensive Care & NeuropediatricsMedical University of ViennaViennaAustria
| | - Kambis Sadeghi
- Department of Pediatrics and Adolescent MedicineDivision of NeonatologyPediatric Intensive Care & NeuropediatricsMedical University of ViennaViennaAustria
| | - Andreas Spittler
- Department of Surgery & Core Facility Flow CytometryMedical University of ViennaViennaAustria
| | - Angelika Berger
- Department of Pediatrics and Adolescent MedicineDivision of NeonatologyPediatric Intensive Care & NeuropediatricsMedical University of ViennaViennaAustria
| | - Elisabeth Förster‐Waldl
- Department of Pediatrics and Adolescent MedicineDivision of NeonatologyPediatric Intensive Care & NeuropediatricsMedical University of ViennaViennaAustria
- Center for Congenital ImmunodeficienciesMedical University of ViennaViennaAustria
| |
Collapse
|
35
|
Ansari MA, Aranday-Cortes E, Ip CL, da Silva Filipe A, Lau SH, Bamford C, Bonsall D, Trebes A, Piazza P, Sreenu V, Cowton VM, Hudson E, Bowden R, Patel AH, Foster GR, Irving WL, Agarwal K, Thomson EC, Simmonds P, Klenerman P, Holmes C, Barnes E, Spencer CC, McLauchlan J, Pedergnana V. Interferon lambda 4 impacts the genetic diversity of hepatitis C virus. eLife 2019; 8:42463. [PMID: 31478835 PMCID: PMC6721795 DOI: 10.7554/elife.42463] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Accepted: 08/08/2019] [Indexed: 12/15/2022] Open
Abstract
Hepatitis C virus (HCV) is a highly variable pathogen that frequently establishes chronic infection. This genetic variability is affected by the adaptive immune response but the contribution of other host factors is unclear. Here, we examined the role played by interferon lambda-4 (IFN-λ4) on HCV diversity; IFN-λ4 plays a crucial role in spontaneous clearance or establishment of chronicity following acute infection. We performed viral genome-wide association studies using human and viral data from 485 patients of white ancestry infected with HCV genotype 3a. We demonstrate that combinations of host genetic variants, which determine IFN-λ4 protein production and activity, influence amino acid variation across the viral polyprotein - not restricted to specific viral proteins or HLA restricted epitopes - and modulate viral load. We also observed an association with viral di-nucleotide proportions. These results support a direct role for IFN-λ4 in exerting selective pressure across the viral genome, possibly by a novel mechanism.
Collapse
Affiliation(s)
- M Azim Ansari
- Wellcome Centre Human Genetics, University of Oxford, Oxford, United Kingdom
| | - Elihu Aranday-Cortes
- MRC-University of Glasgow Centre for Virus Research, Sir Michael Stoker Building, Glasgow, United Kingdom
| | - Camilla Lc Ip
- Wellcome Centre Human Genetics, University of Oxford, Oxford, United Kingdom
| | - Ana da Silva Filipe
- MRC-University of Glasgow Centre for Virus Research, Sir Michael Stoker Building, Glasgow, United Kingdom
| | - Siu Hin Lau
- MRC-University of Glasgow Centre for Virus Research, Sir Michael Stoker Building, Glasgow, United Kingdom
| | - Connor Bamford
- MRC-University of Glasgow Centre for Virus Research, Sir Michael Stoker Building, Glasgow, United Kingdom
| | - David Bonsall
- Nuffield Department of Medicine and the Oxford NIHR BRC, University of Oxford, Oxford, United Kingdom
| | - Amy Trebes
- Wellcome Centre Human Genetics, University of Oxford, Oxford, United Kingdom
| | - Paolo Piazza
- Wellcome Centre Human Genetics, University of Oxford, Oxford, United Kingdom
| | - Vattipally Sreenu
- MRC-University of Glasgow Centre for Virus Research, Sir Michael Stoker Building, Glasgow, United Kingdom
| | - Vanessa M Cowton
- MRC-University of Glasgow Centre for Virus Research, Sir Michael Stoker Building, Glasgow, United Kingdom
| | | | - Emma Hudson
- Nuffield Department of Medicine and the Oxford NIHR BRC, University of Oxford, Oxford, United Kingdom
| | - Rory Bowden
- Wellcome Centre Human Genetics, University of Oxford, Oxford, United Kingdom
| | - Arvind H Patel
- MRC-University of Glasgow Centre for Virus Research, Sir Michael Stoker Building, Glasgow, United Kingdom
| | - Graham R Foster
- Blizard Institute, Queen Mary University, London, United Kingdom
| | - William L Irving
- National Institute for Health Research (NIHR) Nottingham Biomedical Research Centre, Nottingham University Hospitals NHS Trust and University of Nottingham, Nottingham, United Kingdom
| | - Kosh Agarwal
- Institute of Liver Studies, King's College Hospital, London, United Kingdom
| | - Emma C Thomson
- MRC-University of Glasgow Centre for Virus Research, Sir Michael Stoker Building, Glasgow, United Kingdom
| | - Peter Simmonds
- Nuffield Department of Medicine and the Oxford NIHR BRC, University of Oxford, Oxford, United Kingdom
| | - Paul Klenerman
- Nuffield Department of Medicine and the Oxford NIHR BRC, University of Oxford, Oxford, United Kingdom
| | - Chris Holmes
- Department of Statistics, University of Oxford, Oxford, United Kingdom
| | - Eleanor Barnes
- Nuffield Department of Medicine and the Oxford NIHR BRC, University of Oxford, Oxford, United Kingdom
| | - Chris Ca Spencer
- Wellcome Centre Human Genetics, University of Oxford, Oxford, United Kingdom
| | - John McLauchlan
- MRC-University of Glasgow Centre for Virus Research, Sir Michael Stoker Building, Glasgow, United Kingdom
| | - Vincent Pedergnana
- Wellcome Centre Human Genetics, University of Oxford, Oxford, United Kingdom.,Laboratoire MIVEGEC (UMR CNRS 5290, IRD, UM), Montpellier, France
| |
Collapse
|
36
|
Chyuan IT, Tzeng HT, Chen JY. Signaling Pathways of Type I and Type III Interferons and Targeted Therapies in Systemic Lupus Erythematosus. Cells 2019; 8:cells8090963. [PMID: 31450787 PMCID: PMC6769759 DOI: 10.3390/cells8090963] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 08/17/2019] [Accepted: 08/20/2019] [Indexed: 02/06/2023] Open
Abstract
Type I and type III interferons (IFNs) share several properties in common, including the induction of signaling pathways, the activation of gene transcripts, and immune responses, against viral infection. Recent advances in the understanding of the molecular basis of innate and adaptive immunity have led to the re-examination of the role of these IFNs in autoimmune diseases. To date, a variety of IFN-regulated genes, termed IFN signature genes, have been identified. The expressions of these genes significantly increase in systemic lupus erythematosus (SLE), highlighting the role of type I and type III IFNs in the pathogenesis of SLE. In this review, we first discussed the signaling pathways and the immunoregulatory roles of type I and type III IFNs. Next, we discussed the roles of these IFNs in the pathogenesis of autoimmune diseases, including SLE. In SLE, IFN-stimulated genes induced by IFN signaling contribute to a positive feedback loop of autoimmunity, resulting in perpetual autoimmune inflammation. Based on this, we discussed the use of several specific IFN blocking strategies using anti-IFN-α antibodies, anti-IFN-α receptor antibodies, and IFN-α-kinoid or downstream small molecules, which intervene in Janus kinase (JAK)-signal transducer and activator of transcription (STAT) pathways, in clinical trials for SLE patients. Hopefully, the development of novel regimens targeting IFN signaling pathways will shed light on promising future therapeutic applications for SLE patients.
Collapse
Affiliation(s)
- I-Tsu Chyuan
- Department of Internal Medicine, Cathay General Hospital, Taipei 10630, Taiwan
- Department of Medical Research, Cathay General Hospital, Taipei 10630, Taiwan
- School of Medicine, College of Medicine, Fu Jen Catholic University, New Taipei City 24205, Taiwan
| | - Hong-Tai Tzeng
- Institute for translational research in biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan
| | - Ji-Yih Chen
- Department of Medicine, Division of Allergy, Immunology and Rheumatology, Chang Gung Memorial Hospital, Taoyuan 33375, Taiwan.
- College of Medicine, Chang Gung University, Taoyuan 33375, Taiwan.
| |
Collapse
|
37
|
Interferon-λ orchestrates innate and adaptive mucosal immune responses. Nat Rev Immunol 2019; 19:614-625. [DOI: 10.1038/s41577-019-0182-z] [Citation(s) in RCA: 186] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/16/2019] [Indexed: 02/07/2023]
|
38
|
Affiliation(s)
- Stefan F Wieland
- Department of Biomedicine, University Hospital Basel, University of Basel, Basel, Switzerland.
| | - Markus H Heim
- Department of Biomedicine, University Hospital Basel, University of Basel, Basel, Switzerland.,Division of Gastroenterology and Hepatology, University Hospital Basel, Basel, Switzerland
| |
Collapse
|
39
|
Lazear HM, Schoggins JW, Diamond MS. Shared and Distinct Functions of Type I and Type III Interferons. Immunity 2019; 50:907-923. [PMID: 30995506 PMCID: PMC6839410 DOI: 10.1016/j.immuni.2019.03.025] [Citation(s) in RCA: 769] [Impact Index Per Article: 128.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2019] [Revised: 03/18/2019] [Accepted: 03/25/2019] [Indexed: 12/12/2022]
Abstract
Type I interferons (IFNs) (IFN-α, IFN-β) and type III IFNs (IFN-λ) share many properties, including induction by viral infection, activation of shared signaling pathways, and transcriptional programs. However, recent discoveries have revealed context-specific functional differences. Here, we provide a comprehensive review of type I and type III IFN activities, highlighting shared and distinct features from molecular mechanisms through physiological responses. Beyond discussing canonical antiviral functions, we consider the adaptive immune priming, anti-tumor, and autoimmune functions of IFNs. We discuss a model wherein type III IFNs serve as a front-line defense that controls infection at epithelial barriers while minimizing damaging inflammatory responses, reserving the more potent type I IFN response for when local responses are insufficient. In this context, we discuss current therapeutic applications targeting these cytokine pathways and highlight gaps in understanding of the biology of type I and type III IFNs in health and disease.
Collapse
Affiliation(s)
- Helen M Lazear
- Department of Microbiology and Immunology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| | - John W Schoggins
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Michael S Diamond
- Departments of Medicine, Pathology & Immunology, and Molecular Microbiology, and The Andrew M. and Jane M. Bursky Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, Saint Louis, MO 63110, USA.
| |
Collapse
|
40
|
Interferon-λ enhances adaptive mucosal immunity by boosting release of thymic stromal lymphopoietin. Nat Immunol 2019; 20:593-601. [PMID: 30886417 DOI: 10.1038/s41590-019-0345-x] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Accepted: 02/05/2019] [Indexed: 12/31/2022]
Abstract
Interferon-λ (IFN-λ) acts on mucosal epithelial cells and thereby confers direct antiviral protection. In contrast, the role of IFN-λ in adaptive immunity is far less clear. Here, we report that mice deficient in IFN-λ signaling exhibited impaired CD8+ T cell and antibody responses after infection with a live-attenuated influenza virus. Virus-induced release of IFN-λ triggered the synthesis of thymic stromal lymphopoietin (TSLP) by M cells in the upper airways that, in turn, stimulated migratory dendritic cells and boosted antigen-dependent germinal center reactions in draining lymph nodes. The IFN-λ-TSLP axis also boosted production of the immunoglobulins IgG1 and IgA after intranasal immunization with influenza virus subunit vaccines and improved survival of mice after challenge with virulent influenza viruses. IFN-λ did not influence the efficacy of vaccines applied by subcutaneous or intraperitoneal routes, indicating that IFN-λ plays a vital role in potentiating adaptive immune responses that initiate at mucosal surfaces.
Collapse
|
41
|
Jenks SA, Cashman KS, Zumaquero E, Marigorta UM, Patel AV, Wang X, Tomar D, Woodruff MC, Simon Z, Bugrovsky R, Blalock EL, Scharer CD, Tipton CM, Wei C, Lim SS, Petri M, Niewold TB, Anolik JH, Gibson G, Lee FEH, Boss JM, Lund FE, Sanz I. Distinct Effector B Cells Induced by Unregulated Toll-like Receptor 7 Contribute to Pathogenic Responses in Systemic Lupus Erythematosus. Immunity 2018; 49:725-739.e6. [PMID: 30314758 PMCID: PMC6217820 DOI: 10.1016/j.immuni.2018.08.015] [Citation(s) in RCA: 672] [Impact Index Per Article: 96.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Revised: 03/13/2018] [Accepted: 08/13/2018] [Indexed: 12/21/2022]
Abstract
Systemic Lupus Erythematosus (SLE) is characterized by B cells lacking IgD and CD27 (double negative; DN). We show that DN cell expansions reflected a subset of CXCR5- CD11c+ cells (DN2) representing pre-plasma cells (PC). DN2 cells predominated in African-American patients with active disease and nephritis, anti-Smith and anti-RNA autoantibodies. They expressed a T-bet transcriptional network; increased Toll-like receptor-7 (TLR7); lacked the negative TLR regulator TRAF5; and were hyper-responsive to TLR7. DN2 cells shared with activated naive cells (aNAV), phenotypic and functional features, and similar transcriptomes. Their PC differentiation and autoantibody production was driven by TLR7 in an interleukin-21 (IL-21)-mediated fashion. An in vivo developmental link between aNAV, DN2 cells, and PC was demonstrated by clonal sharing. This study defines a distinct differentiation fate of autoreactive naive B cells into PC precursors with hyper-responsiveness to innate stimuli, as well as establishes prominence of extra-follicular B cell activation in SLE, and identifies therapeutic targets.
Collapse
Affiliation(s)
- Scott A Jenks
- Department of Medicine, Division of Rheumatology, Lowance Center for Human Immunology, Emory University, Atlanta, GA, USA
| | - Kevin S Cashman
- Department of Medicine, Division of Rheumatology, Lowance Center for Human Immunology, Emory University, Atlanta, GA, USA
| | - Esther Zumaquero
- Department of Microbiology, The University of Alabama at Birmingham, Birmingham, AL, USA
| | - Urko M Marigorta
- Center for Integrative Genomics, Georgia Institute of Technology, Atlanta, GA, USA
| | - Aakash V Patel
- Department of Medicine, Division of Rheumatology, Lowance Center for Human Immunology, Emory University, Atlanta, GA, USA
| | - Xiaoqian Wang
- Department of Medicine, Division of Rheumatology, Lowance Center for Human Immunology, Emory University, Atlanta, GA, USA
| | - Deepak Tomar
- Department of Medicine, Division of Rheumatology, Lowance Center for Human Immunology, Emory University, Atlanta, GA, USA
| | - Matthew C Woodruff
- Department of Medicine, Division of Rheumatology, Lowance Center for Human Immunology, Emory University, Atlanta, GA, USA
| | - Zoe Simon
- Department of Medicine, Division of Rheumatology, Lowance Center for Human Immunology, Emory University, Atlanta, GA, USA
| | - Regina Bugrovsky
- Department of Medicine, Division of Rheumatology, Lowance Center for Human Immunology, Emory University, Atlanta, GA, USA
| | - Emily L Blalock
- Department of Medicine, Division of Rheumatology, Lowance Center for Human Immunology, Emory University, Atlanta, GA, USA
| | | | - Christopher M Tipton
- Department of Medicine, Division of Rheumatology, Lowance Center for Human Immunology, Emory University, Atlanta, GA, USA
| | - Chungwen Wei
- Department of Medicine, Division of Rheumatology, Lowance Center for Human Immunology, Emory University, Atlanta, GA, USA
| | - S Sam Lim
- Department of Medicine, Division of Rheumatology, Lowance Center for Human Immunology, Emory University, Atlanta, GA, USA
| | - Michelle Petri
- Hopkins Lupus Center, Department of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Timothy B Niewold
- Colton Center for Autoimmunity, NYU School of Medicine, New York, NY, USA
| | - Jennifer H Anolik
- Division of Allergy, Immunology and Rheumatology, University of Rochester Medical Center, Rochester, NY, USA
| | - Greg Gibson
- Center for Integrative Genomics, Georgia Institute of Technology, Atlanta, GA, USA
| | - F Eun-Hyung Lee
- Division of Pulmonary, Allergy and Critical Care, Emory University, Atlanta, GA, USA
| | - Jeremy M Boss
- Department of Microbiology and Immunology, Emory University, Atlanta, GA, USA
| | - Frances E Lund
- Department of Microbiology, The University of Alabama at Birmingham, Birmingham, AL, USA
| | - Ignacio Sanz
- Department of Medicine, Division of Rheumatology, Lowance Center for Human Immunology, Emory University, Atlanta, GA, USA.
| |
Collapse
|
42
|
Hemann EA, Gale M, Savan R. Interferon Lambda Genetics and Biology in Regulation of Viral Control. Front Immunol 2017; 8:1707. [PMID: 29270173 PMCID: PMC5723907 DOI: 10.3389/fimmu.2017.01707] [Citation(s) in RCA: 93] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Accepted: 11/20/2017] [Indexed: 12/14/2022] Open
Abstract
Type III interferons, also known as interferon lambdas (IFNλs), are the most recent addition to the IFN family following their discovery in 2003. Initially, IFNλ was demonstrated to induce expression of interferon-stimulated genes and exert antiviral properties in a similar manner to type I IFNs. However, while IFNλ has been described to have largely overlapping expression and function with type I IFNs, it has become increasingly clear that type III IFNs also have distinct functions from type I IFNs. In contrast to type I IFNs, whose receptor is ubiquitously expressed, type III IFNs signal and function largely at barrier epithelial surfaces, such as the respiratory and gastrointestinal tracts, as well as the blood–brain barrier. In further support of unique functions for type III IFNs, single nucleotide polymorphisms in IFNL genes in humans are strongly associated with outcomes to viral infection. These biological linkages have also been more directly supported by studies in mice highlighting roles of IFNλ in promoting antiviral immune responses. In this review, we discuss the current understanding of type III IFNs, and how their functions are similar to, and different from, type I IFN in various immune cell subtypes and viral infections.
Collapse
Affiliation(s)
- Emily A Hemann
- Department of Immunology, Center for Innate Immunity and Immune Diseases, University of Washington, Seattle, WA, United States
| | - Michael Gale
- Department of Immunology, Center for Innate Immunity and Immune Diseases, University of Washington, Seattle, WA, United States
| | - Ram Savan
- Department of Immunology, Center for Innate Immunity and Immune Diseases, University of Washington, Seattle, WA, United States
| |
Collapse
|
43
|
Zanoni I, Granucci F, Broggi A. Interferon (IFN)-λ Takes the Helm: Immunomodulatory Roles of Type III IFNs. Front Immunol 2017; 8:1661. [PMID: 29234323 PMCID: PMC5712353 DOI: 10.3389/fimmu.2017.01661] [Citation(s) in RCA: 91] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Accepted: 11/13/2017] [Indexed: 12/16/2022] Open
Abstract
Type III interferons (IFNs) (or IFN-λ) are the latest addition to the IFN family. Even though they share little protein homology with type I IFN, both exhibit remarkable functional similarities: each can be induced in response to viral infections, and both lead to Janus kinases (JAK) and signal transducer and activator of transcription (STAT) activation. The JAK/STAT pathway induces antiviral responses and IFN-stimulated gene transcription. However, despite the similarities in their effector functions with type I IFNs, IFN-λ also has a non-redundant role in protecting barrier organs: epithelial cells preferentially produce IFN-λ rather than type I IFNs; and interferon lambda receptor 1 (IFNLR1), the specific receptor for IFN-λ, is highly expressed on cells of epithelial lineage. Thus far, IFN-λ has been considered mainly as an epithelial cytokine, which restricts viral replication in epithelial cells and constitutes an added layer of protection at mucosal sites. However, it is now increasingly recognized that IFNLR1 is expressed broadly, and that immune cells such as neutrophils and dendritic cells also respond to IFN-λ. Moreover, in many in vivo models, IFN-λ modulates immune cell functions and thereby configures itself less as a cytokine that is only specific to the epithelium, and more as a cytokine that directly controls the inflammatory response at mucosal sites. Here, we critically review the recent literature on immune modulatory roles for IFN-λ, and distinguish between the direct and indirect effects of this IFN on immune cell functions in different inflammatory settings.
Collapse
Affiliation(s)
- Ivan Zanoni
- Harvard Medical School, Division of Gastroenterology, Boston Children’s Hospital, Boston, MA, United States
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, Italy
| | - Francesca Granucci
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, Italy
| | - Achille Broggi
- Harvard Medical School, Division of Gastroenterology, Boston Children’s Hospital, Boston, MA, United States
| |
Collapse
|
44
|
Sprokholt JK, Kaptein TM, van Hamme JL, Overmars RJ, Gringhuis SI, Geijtenbeek TBH. RIG-I-like receptor activation by dengue virus drives follicular T helper cell formation and antibody production. PLoS Pathog 2017; 13:e1006738. [PMID: 29186193 PMCID: PMC5724900 DOI: 10.1371/journal.ppat.1006738] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Revised: 12/11/2017] [Accepted: 11/07/2017] [Indexed: 12/27/2022] Open
Abstract
Follicular T helper cells (TFH) are fundamental in orchestrating effective antibody-mediated responses critical for immunity against viral infections and effective vaccines. However, it is unclear how virus infection leads to TFH induction. We here show that dengue virus (DENV) infection of human dendritic cells (DCs) drives TFH formation via crosstalk of RIG-I-like receptor (RLR) RIG-I and MDA5 with type I Interferon (IFN) signaling. DENV infection leads to RLR-dependent IKKε activation, which phosphorylates IFNα/β receptor-induced STAT1 to drive IL-27 production via the transcriptional complex ISGF3. Inhibiting RLR activation as well as neutralizing antibodies against IL-27 prevented TFH formation. DENV-induced CXCR5+PD-1+Bcl-6+ TFH cells secreted IL-21 and activated B cells to produce IgM and IgG. Notably, RLR activation by synthetic ligands also induced IL-27 secretion and TFH polarization. These results identify an innate mechanism by which antibodies develop during viral disease and identify RLR ligands as potent adjuvants for TFH-promoting vaccination strategies.
Collapse
Affiliation(s)
- Joris K. Sprokholt
- Department of Experimental Immunology, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
- Amsterdam Infection & Immunity Institute, Amsterdam, the Netherlands
| | - Tanja M. Kaptein
- Department of Experimental Immunology, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
- Amsterdam Infection & Immunity Institute, Amsterdam, the Netherlands
| | - John L. van Hamme
- Department of Experimental Immunology, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
- Amsterdam Infection & Immunity Institute, Amsterdam, the Netherlands
| | - Ronald J. Overmars
- Department of Experimental Immunology, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
- Amsterdam Infection & Immunity Institute, Amsterdam, the Netherlands
| | - Sonja I. Gringhuis
- Department of Experimental Immunology, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
- Amsterdam Infection & Immunity Institute, Amsterdam, the Netherlands
| | - Teunis B. H. Geijtenbeek
- Department of Experimental Immunology, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
- Amsterdam Infection & Immunity Institute, Amsterdam, the Netherlands
| |
Collapse
|
45
|
IFN-λ suppresses intestinal inflammation by non-translational regulation of neutrophil function. Nat Immunol 2017; 18:1084-1093. [PMID: 28846084 DOI: 10.1038/ni.3821] [Citation(s) in RCA: 176] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Accepted: 07/27/2017] [Indexed: 12/17/2022]
Abstract
Interferon-λ (IFN-λ) is a central regulator of mucosal immunity; however, its signaling specificity relative to that of type I interferons is poorly defined. IFN-λ can induce antiviral interferon-stimulated genes (ISGs) in epithelia, while the effect of IFN-λ in non-epithelial cells remains unclear. Here we report that neutrophils responded to IFN-λ. We found that in addition to inducing ISG transcription, IFN-λ (but not IFN-β) specifically activated a translation-independent signaling pathway that diminished the production of reactive oxygen species and degranulation in neutrophils. In mice, IFN-λ was elicited by enteric viruses and acted on neutrophils to decrease oxidative stress and intestinal damage. Thus, IFN-λ acted as a unique immunomodulatory agent by modifying transcriptional and non-translational neutrophil responses, which might permit a controlled development of the inflammatory process.
Collapse
|
46
|
Braun RO, Python S, Summerfield A. Porcine B Cell Subset Responses to Toll-like Receptor Ligands. Front Immunol 2017; 8:1044. [PMID: 28890720 PMCID: PMC5574874 DOI: 10.3389/fimmu.2017.01044] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Accepted: 08/11/2017] [Indexed: 11/13/2022] Open
Abstract
Toll-like receptors (TLR) triggering of B cells are known to promote B cell expansion, differentiation of B cells into antibody-producing and memory cells, but the TLR responses of porcine B cells is poorly characterized. Therefore, this study investigated the response pattern of porcine B cell subsets to a large collection of TLR ligands and demonstrates that the TLR2 ligand Pam3Cys-SK4 and the TLR7/8 ligands gardiquimod and resiquimod are particularly efficient at inducing proliferation, CD25 and CCR7. This activation was also determined in B-cell subpopulations including a CD21+IgM+ subset, an IgG+ subset and two putative B1-like subsets, defined as CD21-IgMhighCD11R1+CD11c+CD14+ and CD21-IgMhigh CD11R1-CD11c+CD14- B cells. The latter two were larger and expressed higher levels of CD80/86 and spontaneous phospholipase C-γ2 phosphorylation. All porcine B-cell subsets were activated by TLR2, TLR7, and TLR9 ligands. Naïve and memory conventional B cells responded similar to TLR ligands. The CD11R1+ B1-like subset had the highest proliferative responses. While both B1-like subsets did not spontaneously secrete IgM, they were the only subsets to produce high level of TLR-induced IgM. Similar to polyclonal IgM responses, memory B cells were efficiently induced to produce specific antibodies by CpG oligodinucleotide, resiquimod, and to a weaker extend by Pam3Cys-SK4. Depletion of plasmacytoid dendritic cells (pDCs) enhanced TLR-induced antibodies. The same set of TLR ligands also induced CD40 on cDCs, pDCs, and monocytes with the exception of TLR4 ligand being unable to activate pDCs. Gardiquimod and resiquimod were particularly efficient at inducing CCR7 on pDCs. Porcine B cells expressed high levels of TLR7, but relatively little other TLR mRNA. Nevertheless, TLR2 on B cells was rapidly upregulated following stimulation, explaining the strong responses following stimulation. Subset-specific analysis of TLR expression demonstrated a comparable expression of TLR2, TLR7, and TLR9 in all B cell subsets, but TLR3 was restricted to B1-like cells, whereas TLR4 was only expressed on conventional B cells, although both at low levels. Altogether, our data describe porcine innate B1-like cells, and how different B cell subsets are involved in innate sensing.
Collapse
Affiliation(s)
- Roman Othmar Braun
- Institute of Virology and Immunology, Mittelhäusern, Switzerland.,Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | - Sylvie Python
- Institute of Virology and Immunology, Mittelhäusern, Switzerland
| | - Artur Summerfield
- Institute of Virology and Immunology, Mittelhäusern, Switzerland.,Vetsuisse Faculty, Department of Infectious Diseases and Pathobiology, University of Bern, Bern, Switzerland
| |
Collapse
|
47
|
Lee S, Baldridge MT. Interferon-Lambda: A Potent Regulator of Intestinal Viral Infections. Front Immunol 2017; 8:749. [PMID: 28713375 PMCID: PMC5491552 DOI: 10.3389/fimmu.2017.00749] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Accepted: 06/13/2017] [Indexed: 12/12/2022] Open
Abstract
Interferon-lambda (IFN-λ) is a recently described cytokine found to be of critical importance in innate immune regulation of intestinal viruses. Endogenous IFN-λ has potent antiviral effects and has been shown to control multiple intestinal viruses and may represent a factor that contributes to human variability in response to infection. Importantly, recombinant IFN-λ has therapeutic potential against enteric viral infections, many of which lack other effective treatments. In this mini-review, we describe recent advances regarding IFN-λ-mediated regulation of enteric viruses with important clinical relevance including rotavirus, reovirus, and norovirus. We also briefly discuss IFN-λ interactions with other cytokines important in the intestine, and how IFN-λ may play a role in regulation of intestinal viruses by the commensal microbiome. Finally, we indicate currently outstanding questions regarding IFN-λ control of enteric infections that remain to be explored to enhance our understanding of this important immune molecule.
Collapse
Affiliation(s)
- Sanghyun Lee
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, United States
| | - Megan T Baldridge
- Department of Medicine, Division of Infectious Diseases, Washington University School of Medicine, St. Louis, MO, United States
| |
Collapse
|
48
|
Santer DM, Minty GES, Mohamed A, Baldwin L, Bhat R, Joyce M, Egli A, Tyrrell DLJ, Houghton M. A novel method for detection of IFN-lambda 3 binding to cells for quantifying IFN-lambda receptor expression. J Immunol Methods 2017; 445:15-22. [PMID: 28274837 DOI: 10.1016/j.jim.2017.03.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2017] [Revised: 02/08/2017] [Accepted: 03/03/2017] [Indexed: 01/23/2023]
Abstract
Type III interferons (IFN-lambdas) are important antiviral cytokines that also modulate immune responses acting through a unique IFN-λR1/IL-10R2 heterodimeric receptor. Conflicting data has been reported for which cells express the IFN-λR1 subunit and directly respond to IFN-λs. In this study we developed a novel method to measure IFN-λ3 binding to IFN-λR1/IL-10R2 on the surface of cells and relate this to a functional readout of interferon stimulated gene (ISG) activity in various cell lines. We show that Huh7.5 hepatoma cells bind IFN-λ3 at the highest levels with the lowest Kd(app), translating to the highest induction of various ISGs. Raji and Jurkat cell lines, representing B and T cells, respectively, moderately bind IFN-λ3 and have lower ISG responses. U937 cells, representing monocytes, did not bind IFN-λ3 well and therefore, did not have any ISG induction. Importantly, knockdown of IFNLR1 in Huh7.5 cells decreased our binding signal proportionally and reduced ISG induction by up to 93%. IFN-λ3 responsiveness increased over time with maximal ISG responses seen at 24h for all but one gene. These data confirm our new IFN-λ3 binding assay can be used to quantify IFN-λ receptor surface expression on a variety of cell types and reflects IFN-λ3 responsiveness.
Collapse
Affiliation(s)
- Deanna M Santer
- Li Ka Shing Institute of Virology and Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta, Canada.
| | - Gillian E S Minty
- Li Ka Shing Institute of Virology and Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta, Canada
| | - Adil Mohamed
- Li Ka Shing Institute of Virology and Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta, Canada
| | - Lesley Baldwin
- Li Ka Shing Institute of Virology and Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta, Canada
| | - Rakesh Bhat
- Li Ka Shing Institute of Virology and Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta, Canada
| | - Michael Joyce
- Li Ka Shing Institute of Virology and Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta, Canada
| | - Adrian Egli
- Division of Clinical Microbiology, University Hospital Basel, Basel, Switzerland; Applied Microbiology Research, Department of Biomedicine, University of Basel, Basel, Switzerland
| | - D Lorne J Tyrrell
- Li Ka Shing Institute of Virology and Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta, Canada
| | - Michael Houghton
- Li Ka Shing Institute of Virology and Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta, Canada.
| |
Collapse
|
49
|
Pott J, Stockinger S. Type I and III Interferon in the Gut: Tight Balance between Host Protection and Immunopathology. Front Immunol 2017; 8:258. [PMID: 28352268 PMCID: PMC5348535 DOI: 10.3389/fimmu.2017.00258] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Accepted: 02/21/2017] [Indexed: 12/19/2022] Open
Abstract
The intestinal mucosa forms an active interface to the outside word, facilitating nutrient and water uptake and at the same time acts as a barrier toward the highly colonized intestinal lumen. A tight balance of the mucosal immune system is essential to tolerate harmless antigens derived from food or commensals and to effectively defend against potentially dangerous pathogens. Interferons (IFN) provide a first line of host defense when cells detect an invading organism. Whereas type I IFN were discovered almost 60 years ago, type III IFN were only identified in the early 2000s. It was initially thought that type I IFN and type III IFN performed largely redundant functions. However, it is becoming increasingly clear that type III IFN exert distinct and non-redundant functions compared to type I IFN, especially in mucosal tissues. Here, we review recent progress made in unraveling the role of type I/III IFN in intestinal mucosal tissue in the steady state, in response to mucosal pathogens and during inflammation.
Collapse
Affiliation(s)
- Johanna Pott
- Sir William Dunn School of Pathology, University of Oxford , Oxford , UK
| | - Silvia Stockinger
- Institute of Animal Breeding and Genetics, University of Veterinary Medicine , Vienna , Austria
| |
Collapse
|
50
|
Syedbasha M, Egli A. Interferon Lambda: Modulating Immunity in Infectious Diseases. Front Immunol 2017; 8:119. [PMID: 28293236 PMCID: PMC5328987 DOI: 10.3389/fimmu.2017.00119] [Citation(s) in RCA: 108] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2016] [Accepted: 01/25/2017] [Indexed: 12/22/2022] Open
Abstract
Interferon lambdas (IFN-λs; IFNL1-4) modulate immunity in the context of infections and autoimmune diseases, through a network of induced genes. IFN-λs act by binding to the heterodimeric IFN-λ receptor (IFNLR), activating a STAT phosphorylation-dependent signaling cascade. Thereby hundreds of IFN-stimulated genes are induced, which modulate various immune functions via complex forward and feedback loops. When compared to the well-characterized IFN-α signaling cascade, three important differences have been discovered. First, the IFNLR is not ubiquitously expressed: in particular, immune cells show significant variation in the expression levels of and susceptibilities to IFN-λs. Second, the binding affinities of individual IFN-λs to the IFNLR varies greatly and are generally lower compared to the binding affinities of IFN-α to its receptor. Finally, genetic variation in the form of a series of single-nucleotide polymorphisms (SNPs) linked to genes involved in the IFN-λ signaling cascade has been described and associated with the clinical course and treatment outcomes of hepatitis B and C virus infection. The clinical impact of IFN-λ signaling and the SNP variations may, however, reach far beyond viral hepatitis. Recent publications show important roles for IFN-λs in a broad range of viral infections such as human T-cell leukemia type-1 virus, rotaviruses, and influenza virus. IFN-λ also potentially modulates the course of bacterial colonization and infections as shown for Staphylococcus aureus and Mycobacterium tuberculosis. Although the immunological processes involved in controlling viral and bacterial infections are distinct, IFN-λs may interfere at various levels: as an innate immune cytokine with direct antiviral effects; or as a modulator of IFN-α-induced signaling via the suppressor of cytokine signaling 1 and the ubiquitin-specific peptidase 18 inhibitory feedback loops. In addition, the modulation of adaptive immune functions via macrophage and dendritic cell polarization, and subsequent priming, activation, and proliferation of pathogen-specific T- and B-cells may also be important elements associated with infectious disease outcomes. This review summarizes the emerging details of the IFN-λ immunobiology in the context of the host immune response and viral and bacterial infections.
Collapse
Affiliation(s)
- Mohammedyaseen Syedbasha
- Applied Microbiology Research, Department of Biomedicine, University of Basel , Basel , Switzerland
| | - Adrian Egli
- Applied Microbiology Research, Department of Biomedicine, University of Basel, Basel, Switzerland; Clinical Microbiology, University Hospital Basel, Basel, Switzerland
| |
Collapse
|