1
|
Lamana A, Castro-Vázquez D, de la Fuente H, Triguero-Martínez A, Martínez-Hernández R, Revenga M, Villanueva-Romero R, Llamas-Velasco M, Chicharro P, Juarranz Y, Marazuela M, Sales-Sanz M, García-Vicuña R, Tomero E, González-Álvaro I, Martínez C, Gomariz RP. VIP/VPAC Axis Expression in Immune-Mediated Inflammatory Disorders: Associated miRNA Signatures. Int J Mol Sci 2022; 23:ijms23158578. [PMID: 35955723 PMCID: PMC9369218 DOI: 10.3390/ijms23158578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 07/27/2022] [Accepted: 07/29/2022] [Indexed: 12/04/2022] Open
Abstract
Few studies have considered immune-mediated inflammatory disorders (IMID) together, which is necessary to adequately understand them given they share common mechanisms. Our goal was to investigate the expression of vasoactive intestinal peptide (VIP) and its receptors VPAC1 and VPAC2 in selected IMID, analyze the effect of biological therapies on them, and identify miRNA signatures associated with their expression. Serum VIP levels and mRNA of VPAC and miRNA expression in peripheral blood mononuclear cells were analyzed from 52 patients with psoriasis, rheumatoid arthritis, Graves’ disease, or spondyloarthritis and from 38 healthy subjects. IMID patients showed higher levels of VIP and increased expression of VPAC2 compared to controls (p < 0.0001 and p < 0.0192, respectively). Receiver operating characteristic curve analysis showed that the levels of VIP or VPAC2 expression were adequate discriminators capable of identifying IMID. Treatment of IMID patients with anti-TNFα and anti-IL12/23 significantly affected serum VIP levels. We identified miRNA signatures associated with levels of serum VIP and VPAC2 expression, which correlated with IMID diagnosis of the patients. The results indicate that the expression of VIP/VPAC2 is able of identify IMIDs and open up a line of research based on the association between the VIP/VPAC axis and miRNA signatures in immune-mediated diseases.
Collapse
Affiliation(s)
- Amalia Lamana
- Department of Cell Biology, Facultad de Biología y Facultad de Medicina, Universidad Complutense de Madrid, 28040 Madrid, Spain; (A.L.); (D.C.-V.); (R.V.-R.); (Y.J.)
| | - David Castro-Vázquez
- Department of Cell Biology, Facultad de Biología y Facultad de Medicina, Universidad Complutense de Madrid, 28040 Madrid, Spain; (A.L.); (D.C.-V.); (R.V.-R.); (Y.J.)
| | - Hortensia de la Fuente
- Department of Immunology, Instituto de Investigación Princesa, Hospital Universitario de La Princesa, 28006 Madrid, Spain;
| | - Ana Triguero-Martínez
- Department of Rheumatology, Instituto de Investigación Princesa Madrid, Hospital Universitario de La Princesa, 28006 Madrid, Spain; (A.T.-M.); (R.G.-V.); (E.T.); (I.G.-Á.)
| | - Rebeca Martínez-Hernández
- Department of Endocrinology, Instituto de Investigación Princesa, Hospital Universitario de La Princesa, 28006 Madrid, Spain; (R.M.-H.); (M.M.)
| | - Marcelino Revenga
- Department of Rheumatology, Hospital Universitario Ramón y Cajal, 28034 Madrid, Spain;
- Department of Medicine and Medical Specialties, Universidad de Alcalá, 28805 Alcalá de Henares, Spain
| | - Raúl Villanueva-Romero
- Department of Cell Biology, Facultad de Biología y Facultad de Medicina, Universidad Complutense de Madrid, 28040 Madrid, Spain; (A.L.); (D.C.-V.); (R.V.-R.); (Y.J.)
| | - Mar Llamas-Velasco
- Department of Dermatology, Instituto de Investigación Princesa, Hospital Universitario de La Princesa, 28006 Madrid, Spain; (M.L.-V.); (P.C.)
| | - Pablo Chicharro
- Department of Dermatology, Instituto de Investigación Princesa, Hospital Universitario de La Princesa, 28006 Madrid, Spain; (M.L.-V.); (P.C.)
| | - Yasmina Juarranz
- Department of Cell Biology, Facultad de Biología y Facultad de Medicina, Universidad Complutense de Madrid, 28040 Madrid, Spain; (A.L.); (D.C.-V.); (R.V.-R.); (Y.J.)
| | - Mónica Marazuela
- Department of Endocrinology, Instituto de Investigación Princesa, Hospital Universitario de La Princesa, 28006 Madrid, Spain; (R.M.-H.); (M.M.)
| | - Marco Sales-Sanz
- Department of Ophthalmology, Hospital Universitario Ramón y Cajal-IRYCIS, 28034 Madrid, Spain;
| | - Rosario García-Vicuña
- Department of Rheumatology, Instituto de Investigación Princesa Madrid, Hospital Universitario de La Princesa, 28006 Madrid, Spain; (A.T.-M.); (R.G.-V.); (E.T.); (I.G.-Á.)
| | - Eva Tomero
- Department of Rheumatology, Instituto de Investigación Princesa Madrid, Hospital Universitario de La Princesa, 28006 Madrid, Spain; (A.T.-M.); (R.G.-V.); (E.T.); (I.G.-Á.)
| | - Isidoro González-Álvaro
- Department of Rheumatology, Instituto de Investigación Princesa Madrid, Hospital Universitario de La Princesa, 28006 Madrid, Spain; (A.T.-M.); (R.G.-V.); (E.T.); (I.G.-Á.)
| | - Carmen Martínez
- Department of Cell Biology, Facultad de Biología y Facultad de Medicina, Universidad Complutense de Madrid, 28040 Madrid, Spain; (A.L.); (D.C.-V.); (R.V.-R.); (Y.J.)
- Correspondence: (C.M.); (R.P.G.); Tel.: +34-91-3944971 (R.P.G.)
| | - Rosa P. Gomariz
- Department of Cell Biology, Facultad de Biología y Facultad de Medicina, Universidad Complutense de Madrid, 28040 Madrid, Spain; (A.L.); (D.C.-V.); (R.V.-R.); (Y.J.)
- Correspondence: (C.M.); (R.P.G.); Tel.: +34-91-3944971 (R.P.G.)
| |
Collapse
|
2
|
Misra DP, Agarwal V. Th17.1 lymphocytes: emerging players in the orchestra of immune-mediated inflammatory diseases. Clin Rheumatol 2022; 41:2297-2308. [PMID: 35546376 DOI: 10.1007/s10067-022-06202-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 05/01/2022] [Accepted: 05/03/2022] [Indexed: 11/25/2022]
Abstract
It is now well established that Th17 lymphocytes associate with myriad immune-mediated inflammatory diseases. Over the past one and a half decades, a subset of Th17 lymphocytes viz. Th17.1 lymphocytes has been identified in pre-clinical and clinical models of inflammatory rheumatic diseases. These lymphocytes secrete IL-17A (signature cytokine of Th17 lymphocytes) as well as IFN-γ (the signature cytokine of Th1 lymphocytes). They express the chemokine markers for Th1 (CXCR3) as well as Th17 (CCR6) lymphocytes. Th17.1 lymphocytes also express the drug efflux protein p-glycoprotein, which associates with resistance to corticosteroids and other immunosuppressive drugs. This narrative review overviews the evidence regarding Th17.1 lymphocytes in different inflammatory rheumatic diseases. It is now recognized that Th17.1 lymphocytes are increased in the synovial fluid of affected joints in rheumatoid arthritis (RA) and associate with poor treatment response to abatacept. Th17.1 lymphocytes from synovial fluid of RA are less responsive to immunosuppression than those from the peripheral blood. In sarcoidosis, Th17.1 lymphocytes are concentrated in mediastinal lymph nodes and alveolar lining. Such Th17.1 lymphocytes in sarcoidosis are the predominant source of IFN-γ in the sarcoid lung. Th17.1 lymphocytes are elevated in lupus and Takayasu arteritis and associate with disease activity. Future studies should evaluate isolated Th17.1 lymphocytes from peripheral blood or sites of pathology such as synovial fluid and assess their modulation with immunosuppressive therapy in vitro. The analysis of gene expression signature of isolated Th17.1 lymphocytes might enable the identification of newer therapeutic strategies specifically targeting these cell populations in inflammatory rheumatic diseases. Key Points • Th17.1 lymphocytes are a subset of Th17 lymphocytes secreting both IFN-γ and IL-17 • Th17.1 lymphocytes drive neutrophilic inflammation, granuloma formation, and corticosteroid resistance • Th17.1 lymphocytes are elevated in rheumatoid arthritis and sarcoidosis at sites of inflammation • Increased circulating Th17.1 lymphocytes have been identified in lupus and Takayasu arteritis and associate with active disease.
Collapse
Affiliation(s)
- Durga Prasanna Misra
- Department of Clinical Immunology and Rheumatology, Sanjay Gandhi Postgraduate Institute of Medical Sciences (SGPGIMS), Lucknow-226014, India.
| | - Vikas Agarwal
- Department of Clinical Immunology and Rheumatology, Sanjay Gandhi Postgraduate Institute of Medical Sciences (SGPGIMS), Lucknow-226014, India
| |
Collapse
|
3
|
Human CD4 +CD45RA + T Cells Behavior after In Vitro Activation: Modulatory Role of Vasoactive Intestinal Peptide. Int J Mol Sci 2022; 23:ijms23042346. [PMID: 35216459 PMCID: PMC8878027 DOI: 10.3390/ijms23042346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 02/11/2022] [Accepted: 02/17/2022] [Indexed: 11/30/2022] Open
Abstract
Naїve CD4+ T cells, which suffer different polarizing signals during T cell receptor activation, are responsible for an adequate immune response. In this study, we aimed to evaluate the behavior of human CD4+CD45RA+ T cells after in vitro activation by anti-CD3/CD28 bead stimulation for 14 days. We also wanted to check the role of the VIP system during this process. The metabolic biomarker Glut1 was increased, pointing to an increase in glucose requirement whereas Hif-1α expression was higher in resting than in activated cells. Expression of Th1 markers increased at the beginning of activation, whereas Th17-associated biomarkers augmented after that, showing a pathogenic Th17 profile with a possible plasticity to Th17/1. Foxp3 mRNA expression augmented from day 4, but no parallel increases were observed in IL-10, IL-2, or TGFβ mRNA expression, meaning that these potential differentiated Treg could not be functional. Both VIP receptors were located on the plasma membrane, and expression of VPAC2 receptor increased significantly with respect to the VPAC1 receptor from day 4 of CD4+CD45RA+ T activation, pointing to a shift in VPAC receptors. VIP decreased IFNγ and IL-23R expression during the activation, suggesting a feasible modulation of Th17/1 plasticity and Th17 stabilization through both VPAC receptors. These novel results show that, without polarizing conditions, CD4+CD45RA+ T cells differentiate mainly to a pathogenic Th17 subset and an unpaired Treg subset after several days of activation. Moreover, they confirm the important immunomodulatory role of VIP, also on naїve Th cells, stressing the importance of this neuropeptide on lymphocyte responses in different pathological or non-pathological situations.
Collapse
|
4
|
Leceta J, Garin MI, Conde C. Mechanism of Immunoregulatory Properties of Vasoactive Intestinal Peptide in the K/BxN Mice Model of Autoimmune Arthritis. Front Immunol 2021; 12:701862. [PMID: 34335612 PMCID: PMC8322839 DOI: 10.3389/fimmu.2021.701862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 06/25/2021] [Indexed: 11/13/2022] Open
Abstract
The K/BxN mouse model of rheumatoid arthritis (RA) closely resembles the human disease. In this model, arthritis results from activation of autoreactive KRN T cells recognizing the glycolytic enzyme glucose-6-phosphate isomerase (GPI) autoantigen, which provides help to GPI-specific B cells, resulting in the production of pathogenic anti-GPI antibodies that ultimately leads to arthritis symptoms from 4 weeks of age. Vasoactive intestinal peptide (VIP) is a neuropeptide broadly distributed in the central and peripheral nervous system that is also expressed in lymphocytes and other immune cell types. VIP is a modulator of innate and adaptive immunity, showing anti-inflammatory and immunoregulatory properties. Basically, this neuropeptide promotes a shift in the Th1/Th2 balance and enhances dedifferentiation of T regulatory cells (Treg). It has demonstrated its therapeutic effects on the collagen-induced arthritis (CIA) mouse model of RA. In the present hypothesis and theory article, we propose that the immunoregulatory properties of VIP may be due likely to the inhibition of T cell plasticity toward non-classic Th1 cells and an enhanced follicular regulatory T cells (Tfr) activity. The consequences of these regulatory properties are the reduction of systemic pathogenic antibody titers.
Collapse
Affiliation(s)
- Javier Leceta
- Department of Cell Biology, Faculty of Biology, Complutense University of Madrid, Madrid, Spain
| | - Marina I Garin
- Division of Hematopoietic Innovative Therapies, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT) and Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBER-ER), Madrid, Spain.,Advanced Therapy Unit, Instituto de Investigación Sanitaria Fundación Jiménez Díaz (IIS-FJD/UAM), Madrid, Spain
| | - Carmen Conde
- Laboratorio de Reumatología Experimental y Observacional, Instituto de Investigación Sanitaria de Santiago (IDIS), Hospital Clínico Universitario de Santiago de Compostela (CHUS), SERGAS, Santiago de Compostela, Spain
| |
Collapse
|
5
|
Duarte LF, Reyes A, Farías MA, Riedel CA, Bueno SM, Kalergis AM, González PA. Crosstalk Between Epithelial Cells, Neurons and Immune Mediators in HSV-1 Skin Infection. Front Immunol 2021; 12:662234. [PMID: 34012447 PMCID: PMC8126613 DOI: 10.3389/fimmu.2021.662234] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 04/06/2021] [Indexed: 12/12/2022] Open
Abstract
Herpes simplex virus type 1 (HSV-1) infection is highly prevalent in humans, with approximately two-thirds of the world population living with this virus. However, only a fraction of those carrying HSV-1, which elicits lifelong infections, are symptomatic. HSV-1 mainly causes lesions in the skin and mucosae but reaches the termini of sensory neurons innervating these tissues and travels in a retrograde manner to the neuron cell body where it establishes persistent infection and remains in a latent state until reactivated by different stimuli. When productive reactivations occur, the virus travels back along axons to the primary infection site, where new rounds of replication are initiated in the skin, in recurrent or secondary infections. During this process, new neuron infections occur. Noteworthy, the mechanisms underlying viral reactivations and the exit of latency are somewhat poorly understood and may be regulated by a crosstalk between the infected neurons and components of the immune system. Here, we review and discuss the immune responses that occur at the skin during primary and recurrent infections by HSV-1, as well as at the interphase of latently-infected neurons. Moreover, we discuss the implications of neuronal signals over the priming and migration of immune cells in the context of HSV-1 infection.
Collapse
Affiliation(s)
- Luisa F Duarte
- Millennium Institute on Immunology and Immunotherapy, Pontificia Universidad Católica de Chile, Santiago, Chile.,Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Antonia Reyes
- Millennium Institute on Immunology and Immunotherapy, Pontificia Universidad Católica de Chile, Santiago, Chile.,Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Mónica A Farías
- Millennium Institute on Immunology and Immunotherapy, Pontificia Universidad Católica de Chile, Santiago, Chile.,Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Claudia A Riedel
- Millennium Institute on Immunology and Immunotherapy, Pontificia Universidad Católica de Chile, Santiago, Chile.,Departamento de Ciencias Biológicas, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
| | - Susan M Bueno
- Millennium Institute on Immunology and Immunotherapy, Pontificia Universidad Católica de Chile, Santiago, Chile.,Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Alexis M Kalergis
- Millennium Institute on Immunology and Immunotherapy, Pontificia Universidad Católica de Chile, Santiago, Chile.,Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile.,Departamento de Endocrinología, Facultad de Medicina, Escuela de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Pablo A González
- Millennium Institute on Immunology and Immunotherapy, Pontificia Universidad Católica de Chile, Santiago, Chile.,Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
6
|
Comparative Study of Senescent Th Biomarkers in Healthy Donors and Early Arthritis Patients. Analysis of VPAC Receptors and Their Influence. Cells 2020; 9:cells9122592. [PMID: 33291545 PMCID: PMC7761848 DOI: 10.3390/cells9122592] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 12/01/2020] [Accepted: 12/03/2020] [Indexed: 02/07/2023] Open
Abstract
Pro-inflammatory CD4+CD28− T cells are characteristic of immunosenescence, but also of several autoimmune/inflammatory diseases. Vasoactive intestinal peptide (VIP) acts as an anti-inflammatory and immunomodulatory mediator on these cells. Our objective was to study the mutual influence between senescent Th cells and VIP axis in early arthritis (EA), comparing with non-EA donors. We characterized the correlation between senescent Th cells and clinic parameters of EA as well as the behavior of senescent Th biomarkers by real-time PCR. Clinical data were systematically recorded at baseline and after 6 months of follow-up. The number of CD4+CD28− T cells measured by sorting is higher in patients who initially meet ACR classification criteria for rheumatoid arthritis (RA) compared to those who were classified as undifferentiated arthritis (UA). A slight positive correlation between EA CD4+CD28− T cells and CRP or ESR and a negative correlation with bone mineral density were found. Th senescent biomarkers in EA CD4+CD28− T cells were similar to donors, however some of them increased after 6 months of follow-up. VPAC receptors were analyzed by real-time PCR and immunofluorescence, and CD4+CD28− T cells showed higher expression of VPAC2 and lower of VPAC1, VPAC2 showing a significant increased expression in EA cells. Sorted CD4+CD28− T cells were in vitro expanded in presence of VIP, wherein VIP increased senescent biomarker CD27, while it diminished CD57 or NKG2 senescent biomarkers. Our study demonstrates for the first time the existence of a link between senescent Th cells and the VIP axis.
Collapse
|
7
|
Qiu R, Zhou L, Ma Y, Zhou L, Liang T, Shi L, Long J, Yuan D. Regulatory T Cell Plasticity and Stability and Autoimmune Diseases. Clin Rev Allergy Immunol 2020; 58:52-70. [PMID: 30449014 DOI: 10.1007/s12016-018-8721-0] [Citation(s) in RCA: 80] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
CD4+CD25+ regulatory T cells (Tregs) are a class of CD4+ T cells with immunosuppressive functions that play a critical role in maintaining immune homeostasis. However, in certain disease settings, Tregs demonstrate plastic differentiation, and the stability of these Tregs, which is characterized by the stable expression or protective epigenetic modifications of the transcription factor Foxp3, becomes abnormal. Plastic Tregs have some features of helper T (Th) cells, such as the secretion of Th-related cytokines and the expression of specific transcription factors in Th cells, but also still retain the expression of Foxp3, a feature of Tregs. Although such Th-like Tregs can secrete pro-inflammatory cytokines, they still possess a strong ability to inhibit specific Th cell responses. Therefore, the plastic differentiation of Tregs not only increases the complexity of the immune circumstances under pathological conditions, especially autoimmune diseases, but also shows an association with changes in the stability of Tregs. The plastic differentiation and stability change of Tregs play vital roles in the progression of diseases. This review focuses on the phenotypic characteristics, functions, and formation conditions of several plastic Tregs and also summarizes the changes of Treg stability and their effects on inhibitory function. Additionally, the effects of Treg plasticity and stability on disease prognosis for several autoimmune diseases were also investigated in order to better understand the relationship between Tregs and autoimmune diseases.
Collapse
Affiliation(s)
- Runze Qiu
- School of Pharmacy, Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Xianlin Dadao 138, Nanjing, 210023, People's Republic of China
| | - Liyu Zhou
- School of Pharmacy, Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Xianlin Dadao 138, Nanjing, 210023, People's Republic of China
| | - Yuanjing Ma
- School of Pharmacy, Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Xianlin Dadao 138, Nanjing, 210023, People's Republic of China
| | - Lingling Zhou
- School of Pharmacy, Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Xianlin Dadao 138, Nanjing, 210023, People's Republic of China
| | - Tao Liang
- School of Pharmacy, Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Xianlin Dadao 138, Nanjing, 210023, People's Republic of China
| | - Le Shi
- School of Pharmacy, Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Xianlin Dadao 138, Nanjing, 210023, People's Republic of China
| | - Jun Long
- School of Pharmacy, Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Xianlin Dadao 138, Nanjing, 210023, People's Republic of China.
| | - Dongping Yuan
- School of Pharmacy, Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Xianlin Dadao 138, Nanjing, 210023, People's Republic of China.
| |
Collapse
|
8
|
Vasoactive intestinal peptide axis is dysfunctional in patients with Graves' disease. Sci Rep 2020; 10:13018. [PMID: 32747757 PMCID: PMC7400547 DOI: 10.1038/s41598-020-70138-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 06/19/2020] [Indexed: 12/26/2022] Open
Abstract
Vasoactive intestinal peptide (VIP) is a neuropeptide with potent immunoregulatory properties. Reduced serum VIP levels and alterations in VIP receptors/signaling on immune cells have been associated with different inflammatory/autoimmune diseases. However, its role in autoimmune thyroid diseases (AITD) remains unknown. This study examined the interrelationship between VIP system, autoimmune background and thyroid hormones in peripheral immune cells in patients with AITD. Only Graves' disease (GD) patients showed significantly lower serum VIP levels when compared to healthy subjects and to Hashimoto's thyroiditis patients. Serum VIP levels were lower at the onset of GD, showing a significant negative correlation with thyroid hormone levels. The expression of VIP receptors, VPAC1 and VPAC2, was significantly upregulated in peripheral blood mononuclear cells (PBMC) from GD patients. There was an impairment of VIP signalling in these patients, probably attributable to a dysfunction of VPAC1 with preservation of VPAC2. The correlation between VPAC1 and thyroid hormone receptor expression in PBMC from healthy subjects was lost in GD patients. In summary, the VIP system is altered in peripheral immune cells of GD patients and this finding is associated with different thyroid hormone receptor patterns, showing a dynamic inter-regulation and a prominent role of VIP in this setting.
Collapse
|
9
|
Strait AA, Wang XJ. The role of transforming growth factor-beta in immune suppression and chronic inflammation of squamous cell carcinomas. Mol Carcinog 2020; 59:745-753. [PMID: 32301180 DOI: 10.1002/mc.23196] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 03/18/2020] [Accepted: 03/25/2020] [Indexed: 12/14/2022]
Abstract
Despite a decline in the incidence of squamous cell carcinomas (SCCs) over the past 20 years, their survival rate has remained nearly the same, indicating that treatment options have not improved relative to other cancer types. Immunotherapies have a high potential for a sustained effect in SCC patients, but their response rate is low. Here, we review the suppressive role of transforming growth factor-beta (TGFβ) on the antitumor immune response in SCC and present its potential as a therapeutic target in combination with the current range of immunotherapies available for SCC patients. We conclude that SCCs are an optimal cancer type to study the effectiveness of TGFβ inhibition due to the prevalence of dysregulated TGFβ signaling in them.
Collapse
Affiliation(s)
- Alexander A Strait
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Xiao-Jing Wang
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, Colorado.,Research Service, Veterans Affairs Medical Center, VA Eastern Colorado Health Care System, Aurora, Colorado
| |
Collapse
|
10
|
Martínez C, Juarranz Y, Gutiérrez-Cañas I, Carrión M, Pérez-García S, Villanueva-Romero R, Castro D, Lamana A, Mellado M, González-Álvaro I, Gomariz RP. A Clinical Approach for the Use of VIP Axis in Inflammatory and Autoimmune Diseases. Int J Mol Sci 2019; 21:E65. [PMID: 31861827 PMCID: PMC6982157 DOI: 10.3390/ijms21010065] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Revised: 12/16/2019] [Accepted: 12/18/2019] [Indexed: 12/11/2022] Open
Abstract
The neuroendocrine and immune systems are coordinated to maintain the homeostasis of the organism, generating bidirectional communication through shared mediators and receptors. Vasoactive intestinal peptide (VIP) is the paradigm of an endogenous neuropeptide produced by neurons and endocrine and immune cells, involved in the control of both innate and adaptive immune responses. Exogenous administration of VIP exerts therapeutic effects in models of autoimmune/inflammatory diseases mediated by G-protein-coupled receptors (VPAC1 and VPAC2). Currently, there are no curative therapies for inflammatory and autoimmune diseases, and patients present complex diagnostic, therapeutic, and prognostic problems in daily clinical practice due to their heterogeneous nature. This review focuses on the biology of VIP and VIP receptor signaling, as well as its protective effects as an immunomodulatory factor. Recent progress in improving the stability, selectivity, and effectiveness of VIP/receptors analogues and new routes of administration are highlighted, as well as important advances in their use as biomarkers, contributing to their potential application in precision medicine. On the 50th anniversary of VIP's discovery, this review presents a spectrum of potential clinical benefits applied to inflammatory and autoimmune diseases.
Collapse
Affiliation(s)
- Carmen Martínez
- Departamento de Biología Celular, Facultad de Biología y Facultad de Medicina, Universidad Complutense de Madrid, 28040 Madrid, Spain; (Y.J.); (I.G.-C.); (M.C.); (S.P.-G.); (R.V.-R.); (D.C.); (A.L.); (R.P.G.)
| | - Yasmina Juarranz
- Departamento de Biología Celular, Facultad de Biología y Facultad de Medicina, Universidad Complutense de Madrid, 28040 Madrid, Spain; (Y.J.); (I.G.-C.); (M.C.); (S.P.-G.); (R.V.-R.); (D.C.); (A.L.); (R.P.G.)
| | - Irene Gutiérrez-Cañas
- Departamento de Biología Celular, Facultad de Biología y Facultad de Medicina, Universidad Complutense de Madrid, 28040 Madrid, Spain; (Y.J.); (I.G.-C.); (M.C.); (S.P.-G.); (R.V.-R.); (D.C.); (A.L.); (R.P.G.)
| | - Mar Carrión
- Departamento de Biología Celular, Facultad de Biología y Facultad de Medicina, Universidad Complutense de Madrid, 28040 Madrid, Spain; (Y.J.); (I.G.-C.); (M.C.); (S.P.-G.); (R.V.-R.); (D.C.); (A.L.); (R.P.G.)
| | - Selene Pérez-García
- Departamento de Biología Celular, Facultad de Biología y Facultad de Medicina, Universidad Complutense de Madrid, 28040 Madrid, Spain; (Y.J.); (I.G.-C.); (M.C.); (S.P.-G.); (R.V.-R.); (D.C.); (A.L.); (R.P.G.)
| | - Raúl Villanueva-Romero
- Departamento de Biología Celular, Facultad de Biología y Facultad de Medicina, Universidad Complutense de Madrid, 28040 Madrid, Spain; (Y.J.); (I.G.-C.); (M.C.); (S.P.-G.); (R.V.-R.); (D.C.); (A.L.); (R.P.G.)
| | - David Castro
- Departamento de Biología Celular, Facultad de Biología y Facultad de Medicina, Universidad Complutense de Madrid, 28040 Madrid, Spain; (Y.J.); (I.G.-C.); (M.C.); (S.P.-G.); (R.V.-R.); (D.C.); (A.L.); (R.P.G.)
| | - Amalia Lamana
- Departamento de Biología Celular, Facultad de Biología y Facultad de Medicina, Universidad Complutense de Madrid, 28040 Madrid, Spain; (Y.J.); (I.G.-C.); (M.C.); (S.P.-G.); (R.V.-R.); (D.C.); (A.L.); (R.P.G.)
| | - Mario Mellado
- Departamento de Inmunología y Oncología, Centro Nacional de Biotecnología (CNB)/CSIC, 28049 Madrid, Spain;
| | - Isidoro González-Álvaro
- Servicio de Reumatología, Instituto de Investigación Médica, Hospital Universitario La Princesa, 28006 Madrid, Spain;
| | - Rosa P. Gomariz
- Departamento de Biología Celular, Facultad de Biología y Facultad de Medicina, Universidad Complutense de Madrid, 28040 Madrid, Spain; (Y.J.); (I.G.-C.); (M.C.); (S.P.-G.); (R.V.-R.); (D.C.); (A.L.); (R.P.G.)
| |
Collapse
|
11
|
Zhang YF, Zhang J, Sun CC, Tang CY, Sun GY, Luo WJ, Zhou Y, Guan CX. Vasoactive intestinal peptide inhibits the activation of murine fibroblasts and expression of interleukin 17 receptor C. Cell Biol Int 2019; 43:770-780. [PMID: 31026365 DOI: 10.1002/cbin.11151] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2018] [Revised: 04/01/2019] [Accepted: 04/24/2019] [Indexed: 12/11/2022]
Abstract
Acute respiratory distress syndrome (ARDS) is an acute, severe, and refractory pulmonary inflammation with high morbidity and mortality. Excessive activation of fibroblast during the fibroproliferative phase plays a pivotal role in the prognosis of ARDS. Our previous study demonstrated that the vasoactive intestinal peptide (VIP) is mediated by lentivirus attenuates lipopolysaccharide (LPS)-induced ARDS in a murine model, and VIP inhibits the release of interleukin-17A (IL-17A) from activation macrophages. However, the effects of VIP on the activation of murine fibroblast and expression of IL-17 receptor (IL-17R) in ARDS remain unclear. Here, a mouse model of ARDS was established by an intratracheal injection of LPS. We found that the gene expression of col3a1 and hydroxyproline contents in the lungs were significantly increased 24 h after LPS injection. IL-17RC rather than IL-17RA was increased in the lungs of mice with ARDS. In vitro, LPS activated NIH3T3 cells, which was suppressed by VIP in a dose-dependent manner. In detail, VIP reduced the hydroxyproline content and col3a1 messenger RNA induced by LPS in NIH3T3 cells, as well as the expression of α-smooth muscle actin. Furthermore, we found that VIP inhibited the expression of IL-17R in the lungs of mice with ARDS and NIH3T3 cells stimulated with LPS, which was partly inhibited by antagonists of protein kinase A and protein kinase C. Taken together, our results demonstrated that VIP inhibited the activation of fibroblast via downregulation of IL-17RC, which may contribute to the protective effects of VIP against ARDS in mice.
Collapse
Affiliation(s)
- Yan-Feng Zhang
- Department of Physiology, Xiangya School of Medicine, Central South University, Changsha, Hunan, China.,Department of Cardiovascular Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jun Zhang
- Department of Physiology, Hunan University of Medicine, Huaihua, Hunan, China
| | - Chen-Chen Sun
- Department of Physiology, Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Chun-Yan Tang
- Department of Physiology, Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Guo-Ying Sun
- Department of Physiology, Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Wan-Jun Luo
- Department of Cardiovascular Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yong Zhou
- Department of Physiology, Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Cha-Xiang Guan
- Department of Physiology, Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| |
Collapse
|
12
|
Villanueva-Romero R, Gutiérrez-Cañas I, Carrión M, González-Álvaro I, Rodríguez-Frade JM, Mellado M, Martínez C, Gomariz RP, Juarranz Y. Activation of Th lymphocytes alters pattern expression and cellular location of VIP receptors in healthy donors and early arthritis patients. Sci Rep 2019; 9:7383. [PMID: 31089161 PMCID: PMC6517580 DOI: 10.1038/s41598-019-43717-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Accepted: 04/29/2019] [Indexed: 12/15/2022] Open
Abstract
Vasoactive Intestinal Peptide (VIP) is an important immunomodulator of CD4+ cells in normal and pathological conditions, which exerts its anti-inflammatory and immunomodulatory actions through VPAC receptors, VPAC1 and VPAC2. Only a decrease in the expression of VPAC1 mRNA on Th cells upon activation has been reported. Thus, the deepening in the knowledge of the behavior of these receptors may contribute to the design of new therapies based on their activation and/or blockade. In this study, we describe the expression pattern, cellular location and functional role of VIP receptors during the activation of human Th cells in healthy conditions and in early arthritis (EA). The protein expression pattern of VPAC1 did not change with the activation of Th lymphocytes, whereas VPAC2 was up-regulated. In resting cells, VPAC1 was located on the plasma membrane and nucleus, whereas it only appeared in the nucleus in activated cells. VPAC2 was always found in plasma membrane location. VIP receptors signaled through a PKA-dependent pathway in both conditions, and also by a PKA-independent pathway in activated cells. Both receptors exhibit a potent immunomodulatory capacity by controlling the pathogenic profile and the activation markers of Th cells. These results highlight a novel translational view in inflammatory/autoimmune diseases.
Collapse
Affiliation(s)
- R Villanueva-Romero
- Departamento de Biología Celular, Universidad Complutense de Madrid, Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), Madrid, Spain
| | - I Gutiérrez-Cañas
- Departamento de Biología Celular, Universidad Complutense de Madrid, Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), Madrid, Spain
| | - M Carrión
- Departamento de Biología Celular, Universidad Complutense de Madrid, Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), Madrid, Spain
| | - I González-Álvaro
- Servicio de Reumatología, Instituto de Investigación Sanitaria Hospital La Princesa (IIS-IP), Madrid, Spain
| | - J M Rodríguez-Frade
- Departamento de Inmunología y Oncología, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - M Mellado
- Departamento de Inmunología y Oncología, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - C Martínez
- Departamento de Biología Celular, Universidad Complutense de Madrid, Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), Madrid, Spain
| | - R P Gomariz
- Departamento de Biología Celular, Universidad Complutense de Madrid, Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), Madrid, Spain
| | - Y Juarranz
- Departamento de Biología Celular, Universidad Complutense de Madrid, Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), Madrid, Spain.
| |
Collapse
|
13
|
Wu H, Shen J, Liu L, Lu X, Xue J. Vasoactive intestinal peptide-induced tolerogenic dendritic cells attenuated arthritis in experimental collagen-induced arthritic mice. Int J Rheum Dis 2019; 22:1255-1262. [PMID: 31062502 DOI: 10.1111/1756-185x.13578] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2018] [Revised: 12/14/2018] [Accepted: 03/05/2019] [Indexed: 12/13/2022]
Abstract
AIM Cumulative evidence has revealed that tolerogenic dendritic cells (tolDC) could relieve inflammation reactions in various autoimmune diseases. This study investigated the potential therapeutic application of vasoactive intestinal peptide (VIP)-induced tolDC (VIP-DC) on arthritis using collagen-induced arthritis (CIA) mice. METHODS Bone marrow cells were differentiated into dendritic cells (DC) using granulocyte macrophage colony-stimulating factor and interleukin (IL)-4. tolDC were induced by either VIP or Bay 11-7082 in vitro. Immunophenotypes and cytokine production of VIP-DC and Bay-DC were detected by fluorescence-activated cell sorting and enzyme-linked immunosorbent assay, respectively. Bay-DC, VIP-DC and untreated DC were ip administrated to CIA mice on day 40 when arthritis was onset. The treatment effects on arthritic and pathological changes, including synovial hyperplasia, pannus formation, inflammation and bone erosion, were assessed. RESULTS VIP-DC (40 ng/mL) and Bay-DC (0.5 µg/mL) had a lower level of major histocompatibility complex II, CD40 and CD86 expression, reduced γ-interferon and increased IL-4 production (P < 0.05 or 0.01), compared with untreated DC. The administration of VIP-DC and Bay-DC decreased the arthritis score clinically at the end of the therapy. Pathological assessments showed that bone erosion and inflammation were alleviated in the VIP-DC group compared with those in the untreated DC group (P < 0.05 and P < 0.01, respectively). CONCLUSION VIP-DC showed reduced immunogenicity and enhanced anti-inflammatory cytokine production. Both VIP-DC and Bay-DC could ameliorate arthritis in CIA mice clinically. VIP-DC were not inferior to Bay 11-7082-induced tolDC but may exert a better preventive effect on bone destruction.
Collapse
Affiliation(s)
- Huaxiang Wu
- Department of Rheumatology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | | | - Lei Liu
- Department of Rheumatology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiaoyong Lu
- Department of Rheumatology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jing Xue
- Department of Rheumatology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
14
|
Duan L, Rao X, Sigdel KR. Regulation of Inflammation in Autoimmune Disease. J Immunol Res 2019; 2019:7403796. [PMID: 30944837 PMCID: PMC6421792 DOI: 10.1155/2019/7403796] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Accepted: 11/29/2018] [Indexed: 01/20/2023] Open
Affiliation(s)
- Lihua Duan
- Department of Rheumatology and Clinical Immunology, Jiangxi Provincial People's Hospital, Nanchang 330006, China
| | - Xiaoquan Rao
- School of Medicine, Case Western Reserve University, Cleveland 44106, USA
| | - Keshav Raj Sigdel
- Department of Internal Medicine, Patan Academy of Health Sciences, Patan 44700, Nepal
| |
Collapse
|
15
|
Gomariz RP, Juarranz Y, Carrión M, Pérez-García S, Villanueva-Romero R, González-Álvaro I, Gutiérrez-Cañas I, Lamana A, Martínez C. An Overview of VPAC Receptors in Rheumatoid Arthritis: Biological Role and Clinical Significance. Front Endocrinol (Lausanne) 2019; 10:729. [PMID: 31695683 PMCID: PMC6817626 DOI: 10.3389/fendo.2019.00729] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Accepted: 10/09/2019] [Indexed: 12/24/2022] Open
Abstract
The axis comprised by the Vasoactive Intestinal Peptide (VIP) and its G protein-coupled receptors (GPCRs), VPAC1, and VPAC2, belong to the B1 family and signal through Gs or Gq proteins. VPAC receptors seem to preferentially interact with Gs in inflammatory cells, rather than Gq, thereby stimulating adenylate cyclase activity. cAMP is able to trigger various downstream pathways, mainly the canonical PKA pathway and the non-canonical cAMP-activated guanine nucleotide exchange factor (EPAC) pathway. Classically, the presence of VPACs has been confined to the plasma membrane; however, VPAC1 location has been described in the nuclear membrane in several cell types such as activated Th cells, where they are also functional. VPAC receptor signaling modulates a number of biological processes by tipping the balance of inflammatory mediators in macrophages and other innate immune cells, modifying the expression of TLRs, and inhibiting MMPs and the expression of adhesion molecules. Receptor signaling also downregulates coagulation factors and acute-phase proteins, promotes Th2 over Th1, stimulates Treg abundance, and finally inhibits a pathogenic Th17 profile. Thus, the VIP axis signaling regulates both the innate and adaptive immune responses in several inflammatory/autoimmune diseases. Rheumatoid arthritis (RA) is a complex autoimmune disease that develops on a substrate of genetically susceptible individuals and under the influence of environmental factors, as well as epigenetic mechanisms. It is a heterogeneous disease with different pathogenic mechanisms and variable clinical forms between patients with the same diagnosis. The knowledge of VIP signaling generated in both animal models and human ex vivo studies can potentially be translated to clinical reality. Most recently, the beneficial effects of nanoparticles of VIP self-associated with sterically stabilized micelles have been reported in a murine model of RA. Another novel research area is beginning to define the receptors as biomarkers in RA, with their expression levels shown to be associated with the activity of the disease and patients-reported impairment. Therefore, VPAC expression together VIP genetic variants could allow patients to be stratified at the beginning of the disease with the purpose of guiding personalized treatment decisions.
Collapse
Affiliation(s)
- Rosa P. Gomariz
- Departamento de Biología Celular, Facultad de Biología y Facultad de Medicina, Universidad Complutense de Madrid, Madrid, Spain
- *Correspondence: Rosa P. Gomariz
| | - Yasmina Juarranz
- Departamento de Biología Celular, Facultad de Biología y Facultad de Medicina, Universidad Complutense de Madrid, Madrid, Spain
| | - Mar Carrión
- Departamento de Biología Celular, Facultad de Biología y Facultad de Medicina, Universidad Complutense de Madrid, Madrid, Spain
| | - Selene Pérez-García
- Departamento de Biología Celular, Facultad de Biología y Facultad de Medicina, Universidad Complutense de Madrid, Madrid, Spain
| | - Raúl Villanueva-Romero
- Departamento de Biología Celular, Facultad de Biología y Facultad de Medicina, Universidad Complutense de Madrid, Madrid, Spain
| | - Isidoro González-Álvaro
- Servicio de Reumatología, Hospital Universitario de la Princesa, Instituto de Investigación Sanitaria la Princesa (IIS-IP), Madrid, Spain
| | - Irene Gutiérrez-Cañas
- Departamento de Biología Celular, Facultad de Biología y Facultad de Medicina, Universidad Complutense de Madrid, Madrid, Spain
| | - Amalia Lamana
- Departamento de Biología Celular, Facultad de Biología y Facultad de Medicina, Universidad Complutense de Madrid, Madrid, Spain
- Servicio de Reumatología, Hospital Universitario de la Princesa, Instituto de Investigación Sanitaria la Princesa (IIS-IP), Madrid, Spain
| | - Carmen Martínez
- Departamento de Biología Celular, Facultad de Biología y Facultad de Medicina, Universidad Complutense de Madrid, Madrid, Spain
| |
Collapse
|
16
|
The Anti-Inflammatory Mediator, Vasoactive Intestinal Peptide, Modulates the Differentiation and Function of Th Subsets in Rheumatoid Arthritis. J Immunol Res 2018; 2018:6043710. [PMID: 30155495 PMCID: PMC6092975 DOI: 10.1155/2018/6043710] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Accepted: 07/19/2018] [Indexed: 12/15/2022] Open
Abstract
Genetic background, epigenetic modifications, and environmental factors trigger autoimmune response in rheumatoid arthritis (RA). Several pathogenic infections have been related to the onset of RA and may cause an inadequate immunological tolerance towards critical self-antigens leading to chronic joint inflammation and an imbalance between different T helper (Th) subsets. Vasoactive intestinal peptide (VIP) is a mediator that modulates all the stages comprised between the arrival of pathogens and Th cell differentiation in RA through its known anti-inflammatory and immunomodulatory actions. This “neuroimmunopeptide” modulates the pathogenic activity of diverse cell subpopulations involved in RA as lymphocytes, fibroblast-like synoviocytes (FLS), or macrophages. In addition, VIP decreases the expression of pattern recognition receptor (PRR) such as toll-like receptors (TLRs) in FLS from RA patients. These receptors act as sensors of pathogen-associated molecular pattern (PAMP) and damage-associated molecular pattern (DAMP) connecting the innate and adaptive immune system. Moreover, VIP modulates the imbalance between Th subsets in RA, decreasing pathogenic Th1 and Th17 subsets and favoring Th2 or Treg profile during the differentiation/polarization of naïve or memory Th cells. Finally, VIP regulates the plasticity between theses subsets. In this review, we provide an overview of VIP effects on the aforementioned features of RA pathology.
Collapse
|
17
|
Muyayalo KP, Li ZH, Mor G, Liao AH. Modulatory effect of intravenous immunoglobulin on Th17/Treg cell balance in women with unexplained recurrent spontaneous abortion. Am J Reprod Immunol 2018; 80:e13018. [PMID: 29984444 DOI: 10.1111/aji.13018] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Accepted: 06/18/2018] [Indexed: 12/15/2022] Open
Abstract
Recurrent spontaneous abortion (RSA) is a growing problem worldwide. In a majority of cases, the cause remains unknown but there is increasing evidence that immunologic factors play an important role. Intravenous immunoglobulin (IVIg) therapy has been proposed to have immune modulatory effects and therefore been applicable for the treatment of patients with RSA. Although its efficacy is still controversial, several recent studies suggest that IVIg treatment may improve pregnancy outcomes. CD4+ T cells and their related cytokines play an important role in maternal-fetal immune regulation, and an imbalance of Th17/Treg cell ratio has been proposed as a cause for RSA. We review the scientific evidence supporting a modulatory effect of IVIg on Th17/Treg cell balance and discuss the potential mechanisms how IVIg might enhance Treg cells function. We propose that correction of Th17/Treg cell dysregulation could be one of the mechanisms that can explain the positive therapeutic effects of IVIg therapy. Consequently, selecting patients with abnormal Th17/Treg cell ratios could increase the success of IVIg therapy.
Collapse
Affiliation(s)
- Kahinho P Muyayalo
- Family Planning Research Institute, Center for Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhi-Hui Li
- Family Planning Research Institute, Center for Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Gil Mor
- Reproductive Immunology Unit, Department of Obstetrics Gynecology and Reproductive Science, Yale University School of Medicine, New Haven, Connecticut
| | - Ai-Hua Liao
- Family Planning Research Institute, Center for Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
18
|
Carvajal Alegria G, Gazeau P, Hillion S, Daïen CI, Cornec DYK. Could Lymphocyte Profiling be Useful to Diagnose Systemic Autoimmune Diseases? Clin Rev Allergy Immunol 2018; 53:219-236. [PMID: 28474288 DOI: 10.1007/s12016-017-8608-5] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Considering the implications of B, T, and natural killer (NK) cells in the pathophysiology of systemic autoimmune diseases, the assessment of their distribution in the blood could be helpful for physicians in the complex process of determining a precise diagnosis. In primary Sjögren's syndrome, transitional and active naive B cells are increased and memory B cells are decreased compared to healthy controls and other systemic diseases. However, their utility to improve the accuracy of classification criteria has not been proven. In early untreated rheumatoid arthritis, proportions of regulatory T cells are constantly reduced, but other patterns are difficult to determine given the heterogeneity of published studies. In systemic lupus erythematosus, the lack of studies using large cohorts of patients and the diversity of the possible pathological mechanisms involved are also important impediments. Nevertheless, transitional B cell and plasma cell proportions are increased in most of the studies, the CD4/CD8 ratio is decreased, and the number of NK cells is reduced. Despite the low number of studies, anomalies of lymphocyte subset distribution was also described in ANCA-associated vasculitis, systemic scleroderma, and myositis. For now, flow cytometric analysis of lymphocyte subsets has focused mainly on specific subpopulations and is more useful for basic and translational research than for diagnostics in clinical practice. However, new modern methods such as mass cytometry and bioinformatics analyses may offer the possibility to simultaneously account for the relative proportions of multiple lymphocyte subsets and define a global profile in homogeneous groups of patients. The years to come will certainly incorporate such global lymphocyte profiling in reclassification of systemic autoimmune diseases.
Collapse
Affiliation(s)
- Guillermo Carvajal Alegria
- Service de Rhumatologie, Hôpital de la Cavale Blanche, CHRU Brest, BP 824, 29609, Brest cedex, France.,INSERM U1227, European University of Brest, Brest, France
| | - Pierre Gazeau
- Service de Rhumatologie, Hôpital de la Cavale Blanche, CHRU Brest, BP 824, 29609, Brest cedex, France
| | - Sophie Hillion
- INSERM U1227, European University of Brest, Brest, France.,Laboratoire d'Immunologie et Immunothérapie, CHRU Morvan, Brest, France
| | - Claire I Daïen
- Rheumatology Department, Lapeyronie Hospital and Montpellier I University, Montpellier, France.,UMR5535, CNRS, Institute of molecular genetic, Montpellier, France
| | - Divi Y K Cornec
- Service de Rhumatologie, Hôpital de la Cavale Blanche, CHRU Brest, BP 824, 29609, Brest cedex, France. .,INSERM U1227, European University of Brest, Brest, France.
| |
Collapse
|
19
|
Sun GY, Yang HH, Guan XX, Zhong WJ, Liu YP, Du MY, Luo XQ, Zhou Y, Guan CX. Vasoactive intestinal peptide overexpression mediated by lentivirus attenuates lipopolysaccharide-induced acute lung injury in mice by inhibiting inflammation. Mol Immunol 2018; 97:8-15. [PMID: 29544087 DOI: 10.1016/j.molimm.2018.03.002] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Revised: 02/01/2018] [Accepted: 03/05/2018] [Indexed: 01/17/2023]
Abstract
Vasoactive intestinal peptide (VIP) is one of the most abundant neuropeptides in the lungs with various biological characters. We have reported that VIP inhibited the expressions of TREM-1 and IL-17A, which are involved in the initiation and amplification of inflammation in acute lung injury (ALI). However, the overall effect of VIP on ALI remains unknown. The aim of this study is to investigate the therapeutic effect of VIP mediated by lentivirus (Lenti-VIP) on lipopolysaccharide (LPS)-induced murine ALI. We found that the expression of intrapulmonary VIP peaked at day7 after the intratracheal injection of Lenti-VIP. Lenti-VIP increased the respiratory rate, lung compliance, and tidal volume, while decreased airway resistance in ALI mice, detected by Buxco system. Lenti-VIP significantly reduced inflammatory cell infiltration and maintained the integrity of the alveolar septa. Lenti-VIP also remarkably decreased the total protein level, the number of neutrophil and lactate dehydrogenase activity in the bronchoalveolar lavage fluid of LPS-induced ALI mice. In addition, Lenti-VIP down-regulated pro-inflammatory tumor necrosis factor (TNF)-α mRNA and protein expression, while up-regulated anti-inflammatory interleukin-10 mRNA and protein expression in lungs of ALI mice. Furthermore, we observed that VIP reduced the TNF-α expression in murine macrophages under LPS stimulation through protein kinase C and protein kinase A pathways. Together, our findings show that in vivo administration of lentivirus expressing VIP exerts a potent therapeutic effect on LPS-induced ALI in mice via inhibiting inflammation.
Collapse
Affiliation(s)
- Guo-Ying Sun
- Department of Physiology, Xiangya School of Medicine, Central South University, Changsha, Hunan 410078, China; School of Medicine, Hunan Normal University, Changsha, Hunan 410013, China
| | - Hui-Hui Yang
- Department of Physiology, Xiangya School of Medicine, Central South University, Changsha, Hunan 410078, China
| | - Xin-Xin Guan
- Department of Physiology, Xiangya School of Medicine, Central South University, Changsha, Hunan 410078, China
| | - Wen-Jing Zhong
- Department of Physiology, Xiangya School of Medicine, Central South University, Changsha, Hunan 410078, China
| | - Yong-Ping Liu
- Department of Physiology, Xiangya School of Medicine, Central South University, Changsha, Hunan 410078, China
| | - Ming-Yuan Du
- Department of Physiology, Xiangya School of Medicine, Central South University, Changsha, Hunan 410078, China
| | - Xiao-Qin Luo
- Department of Physiology, Xiangya School of Medicine, Central South University, Changsha, Hunan 410078, China
| | - Yong Zhou
- Department of Physiology, Xiangya School of Medicine, Central South University, Changsha, Hunan 410078, China.
| | - Cha-Xiang Guan
- Department of Physiology, Xiangya School of Medicine, Central South University, Changsha, Hunan 410078, China.
| |
Collapse
|
20
|
Seoane IV, Martínez C, García-Vicuña R, Ortiz AM, Juarranz Y, Talayero VC, González-Álvaro I, Gomariz RP, Lamana A. Vasoactive intestinal peptide gene polymorphisms, associated with its serum levels, predict treatment requirements in early rheumatoid arthritis. Sci Rep 2018; 8:2035. [PMID: 29391448 PMCID: PMC5794878 DOI: 10.1038/s41598-018-20400-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Accepted: 01/12/2018] [Indexed: 12/14/2022] Open
Abstract
We previously reported that early arthritis (EA) patients with low vasoactive intestinal peptide (VIP) serum levels demonstrate a worse clinical disease course. In this study, we analysed whether variants in the VIP gene correlated with its serum levels and clinical EA parameters. The VIP gene was sequenced in patients with extremely high/low VIP levels, measured by enzyme immunoassay. Sixteen single nucleotide polymorphisms (SNPs) were differentially distributed between both groups, which were subsequently genotyped in two patients’ sets. We observed that patients with rs688136 CC genotype showed higher VIP levels in both discovery (n = 91; p = 0.033) and validation populations (n = 131; p = 0.007). This effect was attenuated by the presence of minor alleles rs35643203 and rs12201140, which showed a clear trend towards low VIP level association (p = 0.118 and p = 0.049, respectively). Functional studies with miR-205-5p, which has a target site in the 3′ UTR close to rs688136, revealed a miRNA-mediated regulatory mechanism explaining the higher VIP gene expression in homozygous patients. Moreover, patients with an rs688136 CC genotype and no minor alleles of the other polymorphisms required less treatment (p = 0.009). We concluded that the identification of polymorphisms associated with VIP serum levels would complement the clinical assessment of the disease severity in rheumatoid arthritis patients.
Collapse
Affiliation(s)
- Iria V Seoane
- Departamento de Biología Celular, Facultad de Biología, Universidad Complutense de Madrid, Madrid, 28040, Spain
| | - Carmen Martínez
- Departamento de Biología Celular, Facultad de Medicina, Universidad Complutense de Madrid, Madrid, 28040, Spain
| | - Rosario García-Vicuña
- Servicio de Reumatología, Hospital Universitario de la Princesa, Instituto de Investigación Sanitaria la Princesa, 28006, Madrid, Spain
| | - Ana M Ortiz
- Servicio de Reumatología, Hospital Universitario de la Princesa, Instituto de Investigación Sanitaria la Princesa, 28006, Madrid, Spain
| | - Yasmina Juarranz
- Departamento de Biología Celular, Facultad de Biología, Universidad Complutense de Madrid, Madrid, 28040, Spain
| | - Vanessa C Talayero
- Servicio de Reumatología, Hospital Universitario de la Princesa, Instituto de Investigación Sanitaria la Princesa, 28006, Madrid, Spain
| | - Isidoro González-Álvaro
- Servicio de Reumatología, Hospital Universitario de la Princesa, Instituto de Investigación Sanitaria la Princesa, 28006, Madrid, Spain
| | - Rosa P Gomariz
- Departamento de Biología Celular, Facultad de Biología, Universidad Complutense de Madrid, Madrid, 28040, Spain.
| | - Amalia Lamana
- Servicio de Reumatología, Hospital Universitario de la Princesa, Instituto de Investigación Sanitaria la Princesa, 28006, Madrid, Spain
| |
Collapse
|
21
|
Ribeiro VR, Romao‐Veiga M, Romagnoli GG, Matias ML, Nunes PR, Borges VTM, Peracoli JC, Peracoli MTS. Association between cytokine profile and transcription factors produced by T-cell subsets in early- and late-onset pre-eclampsia. Immunology 2017; 152:163-173. [PMID: 28502089 PMCID: PMC5543493 DOI: 10.1111/imm.12757] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Revised: 04/18/2017] [Accepted: 05/06/2017] [Indexed: 01/04/2023] Open
Abstract
Pre-eclampsia (PE) is an obstetric pathology characterized by abnormal activation of the innate and adaptive immune systems dependent on the imbalance of T helper subsets. The present study aimed to evaluate the gene and protein expression of T helper type 1 (Th1)/Th2/Th17/regulatory T (Treg) cell transcription factors in peripheral blood lymphocytes from pregnant women with PE employing quantitative RT-PCR and flow cytometry techniques, as well as the cytokine profile produced by these CD4+ T-cell subsets in the plasma of pregnant women with PE, classified as early-onset PE (n = 20), late-onset PE (n = 20) and normotensive pregnant women (n = 20). Results showed a higher percentage of CD4+ T cells expressing the RORc transcription factor (Th17) and a lower percentage of cells expressing FoxP3 (Treg) in women with early-onset PE compared with late-onset PE and normotensive groups. A lower gene expression of GATA-3 transcription factor was detected in cells of women with early-onset PE compared with the late-onset PE group. Endogenous plasma levels of interleukin-6 (IL-6), IL-17 and tumour necrosis factor-α were significantly higher in the early-onset PE group than in the late-onset PE and normotensive groups, whereas IL-4 (Th2 profile) and IL-22 (Th17 profile), were not significantly different between the studied groups. The endogenous levels of transforming growth factor-β and IL-10 were significantly lower in the pre-eclamptic than in the normotensive groups of the same gestational age, with a significant difference between early- and late-onset PE. The results show that in women with PE there is an imbalance between inflammatory and anti-inflammatory profiles in CD4+ T-cell subsets, with polarization to Th17 profiles in the early-onset PE, considered as the severe form of PE.
Collapse
MESH Headings
- Adaptive Immunity
- Adolescent
- Adult
- Biomarkers/blood
- Case-Control Studies
- Cytokines/blood
- Cytokines/genetics
- Cytokines/immunology
- Female
- Forkhead Transcription Factors/blood
- Forkhead Transcription Factors/genetics
- Forkhead Transcription Factors/immunology
- GATA3 Transcription Factor/blood
- GATA3 Transcription Factor/genetics
- GATA3 Transcription Factor/immunology
- Gene Expression Regulation
- Humans
- Inflammation Mediators/blood
- Inflammation Mediators/immunology
- Nuclear Receptor Subfamily 1, Group F, Member 3/blood
- Nuclear Receptor Subfamily 1, Group F, Member 3/genetics
- Nuclear Receptor Subfamily 1, Group F, Member 3/immunology
- Phenotype
- Pre-Eclampsia/blood
- Pre-Eclampsia/diagnosis
- Pre-Eclampsia/genetics
- Pre-Eclampsia/immunology
- Pregnancy
- RNA, Messenger/blood
- RNA, Messenger/genetics
- Severity of Illness Index
- T-Lymphocytes, Regulatory/immunology
- T-Lymphocytes, Regulatory/metabolism
- Th1 Cells/immunology
- Th1 Cells/metabolism
- Th17 Cells/immunology
- Th17 Cells/metabolism
- Th2 Cells/immunology
- Th2 Cells/metabolism
- Transcription Factors/blood
- Transcription Factors/genetics
- Transcription Factors/immunology
- Young Adult
Collapse
Affiliation(s)
- Vanessa R. Ribeiro
- Department of Gynaecology and ObstetricsMedical SchoolBotucatu Sao Paulo State University (UNESP)BotucatuSao PauloBrazil
| | - Mariana Romao‐Veiga
- Department of Microbiology and ImmunologyInstitute of BiosciencesBotucatu Sao Paulo State University (UNESP)BotucatuSao PauloBrazil
| | - Graziela G. Romagnoli
- Department of Microbiology and ImmunologyInstitute of BiosciencesBotucatu Sao Paulo State University (UNESP)BotucatuSao PauloBrazil
| | - Mariana L. Matias
- Department of Gynaecology and ObstetricsMedical SchoolBotucatu Sao Paulo State University (UNESP)BotucatuSao PauloBrazil
| | - Priscila R. Nunes
- Department of Gynaecology and ObstetricsMedical SchoolBotucatu Sao Paulo State University (UNESP)BotucatuSao PauloBrazil
| | - Vera Therezinha M. Borges
- Department of Gynaecology and ObstetricsMedical SchoolBotucatu Sao Paulo State University (UNESP)BotucatuSao PauloBrazil
| | - Jose C. Peracoli
- Department of Gynaecology and ObstetricsMedical SchoolBotucatu Sao Paulo State University (UNESP)BotucatuSao PauloBrazil
| | - Maria Terezinha S. Peracoli
- Department of Microbiology and ImmunologyInstitute of BiosciencesBotucatu Sao Paulo State University (UNESP)BotucatuSao PauloBrazil
| |
Collapse
|
22
|
Cosorich I, Dalla-Costa G, Sorini C, Ferrarese R, Messina MJ, Dolpady J, Radice E, Mariani A, Testoni PA, Canducci F, Comi G, Martinelli V, Falcone M. High frequency of intestinal T H17 cells correlates with microbiota alterations and disease activity in multiple sclerosis. SCIENCE ADVANCES 2017; 3:e1700492. [PMID: 28706993 PMCID: PMC5507635 DOI: 10.1126/sciadv.1700492] [Citation(s) in RCA: 219] [Impact Index Per Article: 27.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Accepted: 06/09/2017] [Indexed: 05/17/2023]
Abstract
T helper 17 (TH17) cells are key players in multiple sclerosis (MS), and studies in animal models demonstrated that effector TH17 cells that trigger brain autoimmunity originate in the intestine. We validate in humans the crucial role of the intestinal environment in promoting TH17 cell expansion in MS patients. We found that increased frequency of TH17 cells correlates with high disease activity and with specific alterations of the gut mucosa-associated microbiota in MS patients. By using 16S ribosomal RNA sequencing, we analyzed the microbiota isolated from small intestinal tissues and found that MS patients with high disease activity and increased intestinal TH17 cell frequency showed a higher Firmicutes/Bacteroidetes ratio, increased relative abundance of Streptococcus, and decreased Prevotella strains compared to healthy controls and MS patients with no disease activity. We demonstrated that the intestinal TH17 cell frequency is inversely related to the relative abundance of Prevotella strains in the human small intestine. Our data demonstrate that brain autoimmunity is associated with specific microbiota modifications and excessive TH17 cell expansion in the human intestine.
Collapse
Affiliation(s)
- Ilaria Cosorich
- Division of Immunology, Transplantation and Infectious Diseases, IRCCS (Istituto di Ricerca e Cura a carattere Scientifico) San Raffaele Scientific Institute, 20132 Milan, Italy
- Vita-Salute San Raffaele University, 20132 Milan, Italy
| | - Gloria Dalla-Costa
- Clinical Neurology Unit, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Chiara Sorini
- Division of Immunology, Transplantation and Infectious Diseases, IRCCS (Istituto di Ricerca e Cura a carattere Scientifico) San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Roberto Ferrarese
- Microbiology Unit, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Maria Josè Messina
- Clinical Neurology Unit, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Jayashree Dolpady
- Division of Immunology, Transplantation and Infectious Diseases, IRCCS (Istituto di Ricerca e Cura a carattere Scientifico) San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Elisa Radice
- Gastroenterology Unit, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Alberto Mariani
- Gastroenterology Unit, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Pier Alberto Testoni
- Gastroenterology Unit, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Filippo Canducci
- Microbiology Unit, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
- Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy
| | - Giancarlo Comi
- Clinical Neurology Unit, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Vittorio Martinelli
- Clinical Neurology Unit, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Marika Falcone
- Division of Immunology, Transplantation and Infectious Diseases, IRCCS (Istituto di Ricerca e Cura a carattere Scientifico) San Raffaele Scientific Institute, 20132 Milan, Italy
- Corresponding author.
| |
Collapse
|
23
|
Brockmann L, Giannou AD, Gagliani N, Huber S. Regulation of T H17 Cells and Associated Cytokines in Wound Healing, Tissue Regeneration, and Carcinogenesis. Int J Mol Sci 2017; 18:E1033. [PMID: 28492497 PMCID: PMC5454945 DOI: 10.3390/ijms18051033] [Citation(s) in RCA: 100] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Revised: 05/02/2017] [Accepted: 05/08/2017] [Indexed: 02/07/2023] Open
Abstract
Wound healing is a crucial process which protects our body against permanent damage and invasive infectious agents. Upon tissue damage, inflammation is an early event which is orchestrated by a multitude of innate and adaptive immune cell subsets including TH17 cells. TH17 cells and TH17 cell associated cytokines can impact wound healing positively by clearing pathogens and modulating mucosal surfaces and epithelial cells. Injury of the gut mucosa can cause fast expansion of TH17 cells and their induction from naïve T cells through Interleukin (IL)-6, TGF-β, and IL-1β signaling. TH17 cells produce various cytokines, such as tumor necrosis factor (TNF)-α, IL-17, and IL-22, which can promote cell survival and proliferation and thus tissue regeneration in several organs including the skin, the intestine, and the liver. However, TH17 cells are also potentially pathogenic if not tightly controlled. Failure of these control mechanisms can result in chronic inflammatory conditions, such as Inflammatory Bowel Disease (IBD), and can ultimately promote carcinogenesis. Therefore, there are several mechanisms which control TH17 cells. One control mechanism is the regulation of TH17 cells via regulatory T cells and IL-10. This mechanism is especially important in the intestine to terminate immune responses and maintain homeostasis. Furthermore, TH17 cells have the potential to convert from a pro-inflammatory phenotype to an anti-inflammatory phenotype by changing their cytokine profile and acquiring IL-10 production, thereby limiting their own pathological potential. Finally, IL-22, a signature cytokine of TH17 cells, can be controlled by an endogenous soluble inhibitory receptor, Interleukin 22 binding protein (IL-22BP). During tissue injury, the production of IL-22 by TH17 cells is upregulated in order to promote tissue regeneration. To limit the regenerative program, which could promote carcinogenesis, IL-22BP is upregulated during the later phase of regeneration in order to terminate the effects of IL-22. This delicate balance secures the beneficial effects of IL-22 and prevents its potential pathogenicity. An important future goal is to understand the precise mechanisms underlying the regulation of TH17 cells during inflammation, wound healing, and carcinogenesis in order to design targeted therapies for a variety of diseases including infections, cancer, and immune mediated inflammatory disease.
Collapse
Affiliation(s)
- Leonie Brockmann
- I. Department of Medicine, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany.
| | - Anastasios D Giannou
- I. Department of Medicine, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany.
| | - Nicola Gagliani
- I. Department of Medicine, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany.
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany.
- Department of Medicine Solna (MedS), Karolinska Institute, 17177 Stochkolm, Sweeden.
| | - Samuel Huber
- I. Department of Medicine, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany.
| |
Collapse
|
24
|
Randell A, Daneshtalab N. Elastin microfibril interface-located protein 1, transforming growth factor beta, and implications on cardiovascular complications. ACTA ACUST UNITED AC 2017; 11:437-448. [PMID: 28545768 DOI: 10.1016/j.jash.2017.04.010] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Revised: 03/07/2017] [Accepted: 04/20/2017] [Indexed: 01/12/2023]
Abstract
Elastin microfibril interface-located protein 1 (EMILIN1), a glycoprotein, is associated with elastin in the extracellular matrix (ECM) of arteries, lymph vasculature, and other tissues. EMILIN1 particularly has a niche role in elastin fiber biogenesis (elastogenesis) by aiding with the fusion of elastin fibers, rendering them more ordered. In addition to elastogenesis, EMILIN1 has been shown to have roles in maintenance of vascular cell morphology, smooth muscle cell adhesion to elastic fibers, and transforming growth factor (TGFβ) regulation, by inhibiting TGFβ activation via blocking the proteolytic production of the latency-associated peptide/active TGFβ complex. The increased TGFβ signaling induced during EMILIN1 deficiency alters TGFβ activity, resulting in vascular smooth muscle cell growth and vascular remodeling. The increasing systemic blood pressure associated with TGFβ signaling may be closely linked to the activity of other mediators that affect cardiovascular homeostasis, such as angiotensin II. The increase in prevalence of hypertension and other cardiovascular diseases in other disease states likely involve a complex activation of TGFβ signaling and ECM dysfunction. Thus, the interaction of TGFβ and ECM components appears to be integrative involving both structural alterations to vessels through EMILIN1 and changes in TGFβ signaling processes. This review summarizes the current knowledge on the EMILIN1-TGFβ relationship; the specific roles of EMILIN1 and TGFβ in blood pressure regulation, their synergistic interaction, and in particular the role of TGFβ (in conjunction with ECM proteins) in other disease states altering cardiovascular homeostasis.
Collapse
Affiliation(s)
- Amy Randell
- Health Sciences Center, School of Pharmacy, Memorial University of Newfoundland, St. John's, Newfoundland, Canada
| | - Noriko Daneshtalab
- Health Sciences Center, School of Pharmacy, Memorial University of Newfoundland, St. John's, Newfoundland, Canada.
| |
Collapse
|
25
|
Mashaghi A, Marmalidou A, Tehrani M, Grace PM, Pothoulakis C, Dana R. Neuropeptide substance P and the immune response. Cell Mol Life Sci 2016; 73:4249-4264. [PMID: 27314883 PMCID: PMC5056132 DOI: 10.1007/s00018-016-2293-z] [Citation(s) in RCA: 300] [Impact Index Per Article: 33.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Revised: 05/25/2016] [Accepted: 06/09/2016] [Indexed: 02/07/2023]
Abstract
Substance P is a peptide mainly secreted by neurons and is involved in many biological processes, including nociception and inflammation. Animal models have provided insights into the biology of this peptide and offered compelling evidence for the importance of substance P in cell-to-cell communication by either paracrine or endocrine signaling. Substance P mediates interactions between neurons and immune cells, with nerve-derived substance P modulating immune cell proliferation rates and cytokine production. Intriguingly, some immune cells have also been found to secrete substance P, which hints at an integral role of substance P in the immune response. These communications play important functional roles in immunity including mobilization, proliferation and modulation of the activity of immune cells. This review summarizes current knowledge of substance P and its receptors, as well as its physiological and pathological roles. We focus on recent developments in the immunobiology of substance P and discuss the clinical implications of its ability to modulate the immune response.
Collapse
Affiliation(s)
- Alireza Mashaghi
- Schepens Eye Research Institute, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA 02114 USA
| | - Anna Marmalidou
- Schepens Eye Research Institute, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA 02114 USA
| | - Mohsen Tehrani
- Schepens Eye Research Institute, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA 02114 USA
| | - Peter M. Grace
- Department of Psychology and Neuroscience, Center for Neuroscience, University of Colorado, Boulder, CO 80309 USA
| | - Charalabos Pothoulakis
- Division of Digestive Diseases, David Geffen School of Medicine, Inflammatory Bowel Disease Center, University of California, Los Angeles, Los Angeles, CA USA
| | - Reza Dana
- Schepens Eye Research Institute, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA 02114 USA
| |
Collapse
|
26
|
Figueiredo AS, Schumacher A. The T helper type 17/regulatory T cell paradigm in pregnancy. Immunology 2016; 148:13-21. [PMID: 26855005 DOI: 10.1111/imm.12595] [Citation(s) in RCA: 204] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Revised: 01/15/2016] [Accepted: 02/04/2016] [Indexed: 12/28/2022] Open
Abstract
T helper type 17 (Th17) and regulatory T (Treg) cells are active players in the establishment of tolerance and defence. These attributes of the immune system enmesh to guarantee the right level of protection. The healthy immune system, on the one hand, recognizes and eliminates dangerous non-self pathogens and, on the other hand, protects the healthy self. However, there are circumstances where this fine balance is disrupted. In fact, in situations such as in pregnancy, the foreign fetal antigens challenge the maternal immune system and Treg cells will dominate Th17 cells to guarantee fetal survival. In other situations such as autoimmunity, where the Th17 responses are often overwhelming, the immune system shifts towards an inflammatory profile and attacks the healthy tissue from the self. Interestingly, autoimmune patients have meliorating symptoms during pregnancy. This connects with the antagonist role of Th17 and Treg cells, and their specific profiles during these two immune challenging situations. In this review, we put into perspective the Th17/Treg ratio during pregnancy and autoimmunity, as well as in pregnant women with autoimmune conditions. We further review existing systems biology approaches that study specific mechanisms of these immune cells using mathematical modelling and we point out possible future directions of investigation. Understanding what maintains or disrupts the balance between these two opponent yet reciprocal cells in healthy physiological settings, sheds light into the development of innovative pharmacological approaches to fight pregnancy loss and autoimmunity.
Collapse
Affiliation(s)
- Ana Sofia Figueiredo
- Medical Faculty, Institute for Experimental Internal Medicine, Otto-von-Guericke University, Magdeburg, Germany
| | - Anne Schumacher
- Medical Faculty, Institute for Experimental Obstetrics and Gynecology, Otto-von-Guericke University, Magdeburg, Germany
| |
Collapse
|
27
|
The CD4(+) T cell methylome contributes to a distinct CD4(+) T cell transcriptional signature in Mycobacterium bovis-infected cattle. Sci Rep 2016; 6:31014. [PMID: 27507428 PMCID: PMC4978967 DOI: 10.1038/srep31014] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Accepted: 07/11/2016] [Indexed: 12/14/2022] Open
Abstract
We hypothesised that epigenetic regulation of CD4+ T lymphocytes contributes to a shift toward a dysfunctional T cell phenotype which may impact on their ability to clear mycobacterial infection. Combined RNA-seq transcriptomic profiling and Reduced Representation Bisulfite Sequencing identified 193 significantly differentially expressed genes and 760 differentially methylated regions (DMRs), between CD4+ T cells from M. bovis infected and healthy cattle. 196 DMRs were located within 10 kb of annotated genes, including GATA3 and RORC, both of which encode transcription factors that promote TH2 and TH17 T helper cell subsets respectively. Gene-specific DNA methylation and gene expression levels for the TNFRSF4 and Interferon-γ genes were significantly negatively correlated suggesting a regulatory relationship. Pathway analysis of DMRs identified enrichment of genes involved in the anti-proliferative TGF-β signaling pathway and TGFB1 expression was significantly increased in peripheral blood leukocytes from TB-infected cattle. This first analysis of the bovine CD4+ T cell methylome suggests that DNA methylation directly contributes to a distinct gene expression signature in CD4+ T cells from cattle infected with M. bovis. Specific methylation changes proximal to key inflammatory gene loci may be critical to the emergence of a non-protective CD4+ T cell response during mycobacterial infection in cattle.
Collapse
|
28
|
Carrión M, Pérez-García S, Martínez C, Juarranz Y, Estrada-Capetillo L, Puig-Kröger A, Gomariz RP, Gutiérrez-Cañas I. VIP impairs acquisition of the macrophage proinflammatory polarization profile. J Leukoc Biol 2016; 100:1385-1393. [PMID: 27381006 DOI: 10.1189/jlb.3a0116-032rr] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Revised: 06/16/2016] [Accepted: 06/22/2016] [Indexed: 12/13/2022] Open
Abstract
This study tested the hypothesis that vasoactive intestinal peptide (VIP) is able to modify the macrophage inflammatory profile, thus supporting its therapeutic role in autoimmune diseases. Macrophages are innate immune cells that display a variety of functions and inflammatory profiles in response to the environment that critically controls their polarization. Deregulation between the pro- and anti-inflammatory phenotypes has been involved in different pathologies. Rheumatoid arthritis (RA) is an autoimmune disease, in which macrophages are considered central effectors of synovial inflammation, displaying a proinflammatory profile. VIP is a pleiotropic neuropeptide with proven anti-inflammatory actions. As modulation of the macrophage phenotype has been implicated in the resolution of inflammatory diseases, we evaluated whether VIP is able to modulate human macrophage polarization. In vitro-polarized macrophages by GM-CSF (GM-MØ), with a proinflammatory profile, expressed higher levels of VIP receptors, vasoactive intestinal polypeptide receptors 1 and 2 (VPAC1 and VPAC2, respectively), than macrophages polarized by M-CSF (M-MØ) with anti-inflammatory activities. RA synovial macrophages, according to their GM-CSF-like polarization state, expressed both VPAC1 and VPAC2. In vitro-generated GM-MØ exposed to VIP exhibited an up-regulation of M-MØ gene marker expression, whereas their proinflammatory cytokine profile was reduced in favor of an anti-inflammatory function. Likewise, in GM-MØ, generated in the presence of VIP, VIP somehow changes the macrophages physiology profile to a less-damaging phenotype. Therefore, these results add new value to VIP as an immunomodulatory agent on inflammatory diseases.
Collapse
Affiliation(s)
- Mar Carrión
- Faculty of Biology, Department of Cell Biology, Complutense University, Madrid, Spain
| | - Selene Pérez-García
- Faculty of Biology, Department of Cell Biology, Complutense University, Madrid, Spain
| | - Carmen Martínez
- Faculty of Medicine, Department of Cell Biology, Complutense University, Madrid, Spain; and
| | - Yasmina Juarranz
- Faculty of Biology, Department of Cell Biology, Complutense University, Madrid, Spain
| | - Lizbeth Estrada-Capetillo
- Immuno-metabolism Laboratory, Hospital General Universitario Gregorio Marañón, Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain
| | - Amaya Puig-Kröger
- Immuno-metabolism Laboratory, Hospital General Universitario Gregorio Marañón, Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain
| | - Rosa P Gomariz
- Faculty of Biology, Department of Cell Biology, Complutense University, Madrid, Spain;
| | - Irene Gutiérrez-Cañas
- Faculty of Biology, Department of Cell Biology, Complutense University, Madrid, Spain
| |
Collapse
|
29
|
Abstract
The roles of inflammation and inflammatory cells such as Th17 cells in the development and progression of cancer have been extensively studied. However, the results have been varied, with conflicting conclusions. Most studies have focused on changes in inflammatory phenotypes once cancers have developed and disease is progressing. Far fewer studies have looked at the immune phenotypic changes that occur during progression of premalignant lesions to cancer. The impact of inflammation and, in particular, Th17 cells on tumor biology is summarized in this review, with a focus on the differences in the outcomes of studies. Possible explanations for the contradictory conclusions are also suggested.
Collapse
Affiliation(s)
- M Rita I Young
- Research Service, Ralph H. Johnson VA Medical Center, Charleston, SC 29401, USA; Department of Otolaryngology - Head and Neck Surgery, Medical University of South Carolina, Charleston, SC 29425, USA
| |
Collapse
|
30
|
Randell A, Daneshtalab N. Adjuvant-induced mono-arthritis potentiates cerebral hemorrhage in the spontaneously hypertensive rats. Life Sci 2016; 151:15-22. [PMID: 26903291 DOI: 10.1016/j.lfs.2016.02.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Revised: 01/14/2016] [Accepted: 02/04/2016] [Indexed: 11/28/2022]
Abstract
AIMS Patients with rheumatoid arthritis (RA), have a higher incidence of hypertension and stroke than the normal population. Currently there exists no animal model to study the pathogenic interactions of hemorrhagic stroke (HS) subsequent to chronic inflammation and hypertension. We have created and defined a hypertensive-mono-arthritic animal model who demonstrate gros signs of cerebral hemorrhage in presence of mono-arthritis. MAIN METHODS Spontaneously hypertensive rats (SHR) were fed either a high salt diet (4% NaCl; HSD) or Purina chow (RD) from weaning. Complete Freund's adjuvant (CFA) was injected into the left hind paw at 21-28weeks (control groups received saline (SAL)). Degree of inflammation, joint swelling, weight and blood pressure were monitored for 21days. Animals were then sacrificed and their brain and left hind paw evaluated. KEY FINDINGS All groups were hypertensive throughout the experimental period (>180mmHg systolic), irrespective of diet. Both CFA groups produced significant local inflammatory response in their injected paw with associated joint degradation and cellular infiltrates. Systemic plasma TNF-α levels were significantly elevated in CFA groups, with significant increase in TNF-α at 7 and 14days, compared to SAL groups. Cerebral hemorrhage was visualized in the CFA groups but not SAL controls, with a higher severity in HSD-CFA group. SIGNIFICANCE The mono-arthritic hypertensive animals are capable of developing HS upon induction of inflammatory insult. The HSD appears to exacerbate the inflammatory response and influence degree of the hemorrhage. Our novel, multi-disease model may provide an appropriate platform to study the pathogenesis of HS among arthritic patients.
Collapse
Affiliation(s)
- Amy Randell
- 300 Prince Philip Drive, Health Sciences Center, Memorial University of Newfoundland, School of Pharmacy, St. John's, Newfoundland A1B 3V6, Canada
| | - Noriko Daneshtalab
- 300 Prince Philip Drive, Health Sciences Center, Memorial University of Newfoundland, School of Pharmacy, St. John's, Newfoundland A1B 3V6, Canada.
| |
Collapse
|
31
|
Seoane IV, Ortiz AM, Piris L, Lamana A, Juarranz Y, García-Vicuña R, González-Álvaro I, Gomariz RP, Martínez C. Clinical Relevance of VPAC1 Receptor Expression in Early Arthritis: Association with IL-6 and Disease Activity. PLoS One 2016; 11:e0149141. [PMID: 26881970 PMCID: PMC4755558 DOI: 10.1371/journal.pone.0149141] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2015] [Accepted: 01/27/2016] [Indexed: 11/19/2022] Open
Abstract
Background The vasoactive intestinal peptide (VIP) receptors VPAC1 and VPAC2 mediate anti-inflammatory and immunoregulatory responses in rheumatoid arthritis (RA). Data on the expression of these receptors could complement clinical assessment in the management of RA. Our goal was to investigate the correlation between expression of both receptors and the 28-Joint Disease Activity Score (DAS28) in peripheral blood mononuclear cells (PBMCs) from patients with early arthritis (EA). We also measured expression of IL-6 to evaluate the association between VIP receptors and systemic inflammation. Methods We analyzed 250 blood samples collected at any of the 5 scheduled follow-up visits from 125 patients enrolled in the Princesa Early Arthritis Register Longitudinal study. Samples from 22 healthy donors were also analyzed. Sociodemographic, clinical, and therapeutic data were systematically recorded. mRNA expression levels were determined using real-time PCR. Then, longitudinal multivariate analyses were performed. Results PBMCs from EA patients showed significantly higher expression of VPAC2 receptors at baseline compared to healthy donors (p<0.001). With time, however, VPAC2 expression tended to be significantly lower while VPAC1 receptor expression increased in correlation with a reduction in DAS28 index. Our results reveal that more severe inflammation, based on high levels of IL-6, is associated with lower expression of VPAC1 (p<0.001) and conversely with increased expression of VPAC2 (p<0.001). A major finding of this study is that expression of VPAC1 is lower in patients with increased disease activity (p = 0.001), thus making it possible to differentiate between patients with various degrees of clinical disease activity. Conclusion Patients with more severe inflammation and higher disease activity show lower levels of VPAC1 expression, which is associated with patient-reported impairment. Therefore, VPAC1 is a biological marker in EA.
Collapse
MESH Headings
- Adult
- Aged
- Arthritis, Rheumatoid/metabolism
- Arthritis, Rheumatoid/physiopathology
- Case-Control Studies
- Female
- Gene Expression Regulation
- Humans
- Interleukin-6/blood
- Interleukin-6/metabolism
- Leukocytes, Mononuclear/metabolism
- Longitudinal Studies
- Male
- Middle Aged
- Receptors, Vasoactive Intestinal Peptide, Type II/blood
- Receptors, Vasoactive Intestinal Peptide, Type II/metabolism
- Receptors, Vasoactive Intestinal Polypeptide, Type I/blood
- Receptors, Vasoactive Intestinal Polypeptide, Type I/metabolism
- Severity of Illness Index
- Signal Transduction
- Social Class
- Time Factors
- Vasoactive Intestinal Peptide/metabolism
Collapse
Affiliation(s)
- Iria V. Seoane
- Departamento de Biología Celular, Facultad de Biología, Universidad Complutense de Madrid, Madrid, Spain
| | - Ana M. Ortiz
- Servicio de Reumatología, Hospital Universitario de la Princesa, Instituto de Investigación Sanitaria la Princesa, Madrid, Spain
| | - Lorena Piris
- Unidad de Apoyo Metodológico, Hospital Universitario de la Princesa, Instituto de Investigación Sanitaria la Princesa, Madrid, Spain
| | - Amalia Lamana
- Servicio de Reumatología, Hospital Universitario de la Princesa, Instituto de Investigación Sanitaria la Princesa, Madrid, Spain
| | - Yasmina Juarranz
- Departamento de Biología Celular, Facultad de Biología, Universidad Complutense de Madrid, Madrid, Spain
| | - Rosario García-Vicuña
- Servicio de Reumatología, Hospital Universitario de la Princesa, Instituto de Investigación Sanitaria la Princesa, Madrid, Spain
| | - Isidoro González-Álvaro
- Servicio de Reumatología, Hospital Universitario de la Princesa, Instituto de Investigación Sanitaria la Princesa, Madrid, Spain
| | - Rosa P. Gomariz
- Departamento de Biología Celular, Facultad de Biología, Universidad Complutense de Madrid, Madrid, Spain
| | - Carmen Martínez
- Departamento de Biología Celular, Facultad de Medicina, Universidad Complutense de Madrid, Madrid, Spain
- * E-mail:
| |
Collapse
|