1
|
Velikova T, Vasilev GV, Linkwinstar D, Siliogka E, Kokudeva M, Miteva D, Vasilev GH, Gulinac M, Atliev K, Shumnalieva R. Regulatory T cell-based therapies for type 1 diabetes: a narrative review. METABOLISM AND TARGET ORGAN DAMAGE 2025; 5. [DOI: 10.20517/mtod.2024.52] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2025]
Abstract
Type 1 diabetes (T1D) is an autoimmune disease caused by the destruction of pancreatic insulin-secreting beta cells, resulting in hyperglycemia and a lifelong need for exogenous insulin therapy. Regulatory T cells (Tregs) are essential for maintaining immune tolerance and preventing autoimmune reactions. It has been shown that dysfunctional Tregs participate in the pathophysiology of T1D. Therapeutic approaches designed to enhance Treg stability, survival, and function have progressively emerged as a promising treatment strategy for T1D. This narrative review explores the potential of Treg cell-based therapy as a therapeutic tool to alter the natural history of T1D. It discusses different pharmacological strategies to enhance Treg stability and function, as well as the latest advances in Treg cell-based therapies, including adoptive Treg cell therapy and genetic engineering of Tregs. It also outlines current challenges and future research directions for integrating Treg cell-based therapy into clinical practice, aiming to provide a comprehensive overview of its potential benefits and limitations as an innovative therapeutic intervention for T1D.
Collapse
|
2
|
Shin JH, Bozadjieva-Kramer N, Shao Y, Mercer AJ, Lyons-Abbott S, Awan RR, Lewis A, Seeley RJ. Intraduodenal administration of Reg3g improves gut barrier function and mitigates hepatic steatosis in mice. Am J Physiol Endocrinol Metab 2025; 328:E447-E456. [PMID: 39970263 DOI: 10.1152/ajpendo.00132.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 05/01/2024] [Accepted: 02/05/2025] [Indexed: 02/21/2025]
Abstract
Regenerating islet-derived protein 3 gamma (Reg3g), a gut peptide has been implicated in host defense and various physiological functions including metabolic regulation. Emerging evidence has demonstrated that peripheral administration of Reg3g results in improved glucose regulation as a gut hormone. In this study, we explored the therapeutic potential of Reg3g through intraduodenal infusion in mouse models of metabolic disorders. The objective of this study was to test the hypothesis that administered Reg3g into the intestinal lumen contributes to metabolic improvements by enhancing gut barrier function. Our mouse studies revealed that duodenal infusion of Reg3g reduces gut permeability and systemic endotoxemia. Studies with intestinal organoids supported the role of Reg3g in preserving cellular integrity and antioxidant gene expression under fructose-induced stress. Although Reg3g treatment results in little change to body weight, food intake, or glucose tolerance, Reg3g-treated mice exhibited reduced hepatic lipid accumulation along with the downregulation of lipogenic pathway genes. These data point toward the positive impact of Reg3g administration through intraduodenal infusion to regulate the intricate cross talk between gut barrier function and hepatic steatosis with the gut-liver axis.NEW & NOTEWORTHY This study shows that intraduodenal administration of the gut peptide, regenerating islet-derived protein 3 g (Reg3g), reduces hepatic lipid accumulation, improves gut barrier function, and lowers systemic endotoxemia in mouse models of metabolic disorders. These findings elucidate the therapeutic benefits of Reg3g administration into the gut.
Collapse
Affiliation(s)
- Jae Hoon Shin
- Department of Surgery, University of Michigan, Ann Arbor, Michigan, United States
| | - Nadejda Bozadjieva-Kramer
- Department of Surgery, University of Michigan, Ann Arbor, Michigan, United States
- Veterans Affairs Ann Arbor Healthcare System, Research Service, Ann Arbor, Michigan, United States
| | - Yiaki Shao
- Center for Obesity and Hernia Surgery, Huashan Hospital, Fudan University, Shanghai, People's Republic of China
| | - Aaron J Mercer
- Novo Nordisk Research Center Seattle, Seattle, Washington, United States
- Department of Cardiometabolic Diseases Research, Boehringer Ingelheim Pharmaceuticals, Ridgefield, Connecticut, United States
| | - Sally Lyons-Abbott
- Novo Nordisk Research Center Seattle, Seattle, Washington, United States
- Velia Therapeutics, San Diego, California, United States
| | - Rija Rahmat Awan
- University of Michigan Medical School, Ann Arbor, Michigan, United States
| | - Alfor Lewis
- Department of Surgery, University of Michigan, Ann Arbor, Michigan, United States
| | - Randy J Seeley
- Department of Surgery, University of Michigan, Ann Arbor, Michigan, United States
| |
Collapse
|
3
|
Wang H, Ciccocioppo R, Terai S, Shoeibi S, Carnevale G, De Marchi G, Tsuchiya A, Ishii S, Tonouchi T, Furuyama K, Yang Y, Mito M, Abe H, Di Tinco R, Cardinale V. Targeted animal models for preclinical assessment of cellular and gene therapies in pancreatic and liver diseases: regulatory and practical insights. Cytotherapy 2025; 27:259-278. [PMID: 39755978 PMCID: PMC12068232 DOI: 10.1016/j.jcyt.2024.11.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 11/08/2024] [Accepted: 11/10/2024] [Indexed: 01/07/2025]
Abstract
Cellular and gene therapy (CGT) products have emerged as a popular approach in regenerative medicine, showing promise in treating various pancreatic and liver diseases in numerous clinical trials. Before these therapies can be tested in human clinical trials, it is essential to evaluate their safety and efficacy in relevant animal models. Such preclinical testing is often required to obtain regulatory approval for investigational new drugs. However, there is a lack of detailed guidance on selecting appropriate animal models for CGT therapies targeting specific pancreatic and liver conditions, such as pancreatitis and chronic liver diseases. In this review, the gastrointestinal committee for the International Society for Cell and Gene Therapy provides a summary of current recommendations for animal species and disease model selection, as outlined by the US Food and Drug Administration, with references to EU EMA and Japan PMDA. We discuss a range of small and large animal models, as well as humanized models, that are suitable for preclinical testing of CGT products aimed at treating pancreatic and liver diseases. For each model, we cover the associated pathophysiology, commonly used metrics for assessing disease status, the pros and limitations of the models, and the relevance of these models to human conditions. We also summarize the use and application of humanized mouse and other animal models in evaluating the safety and efficacy of CGT products. This review aims to provide comprehensive guidance for selecting appropriate animal species and models to help bridge the gap between the preclinical research and clinical trials using CGT therapies for specific pancreatic and liver diseases.
Collapse
Affiliation(s)
- Hongjun Wang
- Department of Surgery, Medical University of South Carolina, Charleston, South Carolina, USA; Ralph H Johnson Veteran Medical Center, Charleston, South Carolina, USA.
| | - Rachele Ciccocioppo
- Department of Medicine, Gastroenterology Unit, Pancreas Institute, A.O.U.I. Policlinico G.B. Rossi & University of Verona, Verona, Italy
| | - Shuji Terai
- Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Sara Shoeibi
- Department of Surgery, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Gianluca Carnevale
- Department of Surgery, Medicine, Dentistry and Morphological Sciences with Interest in Transplant, Oncology and Regenerative Medicine, University of Modena and Reggio Emilia, Modena, Italy
| | - Giulia De Marchi
- Department of Medicine, Gastroenterology Unit, Pancreas Institute, A.O.U.I. Policlinico G.B. Rossi & University of Verona, Verona, Italy
| | - Atsunori Tsuchiya
- Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Soichi Ishii
- Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Takafumi Tonouchi
- Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Kaito Furuyama
- Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Yuan Yang
- Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Masaki Mito
- Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Hiroyuki Abe
- Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Rosanna Di Tinco
- Department of Surgery, Medicine, Dentistry and Morphological Sciences with Interest in Transplant, Oncology and Regenerative Medicine, University of Modena and Reggio Emilia, Modena, Italy
| | - Vincenzo Cardinale
- Department of Translational and Precision Medicine, University of Rome, Rome, Italy.
| |
Collapse
|
4
|
Yu L, Wu Q, Jiang S, Liu J, Liu J, Chen G. Controversial Roles of Regenerating Family Proteins in Tissue Repair and Tumor Development. Biomedicines 2024; 13:24. [PMID: 39857608 PMCID: PMC11762848 DOI: 10.3390/biomedicines13010024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 12/23/2024] [Accepted: 12/24/2024] [Indexed: 01/27/2025] Open
Abstract
Background: Over the past 40 years since the discovery of regenerating family proteins (Reg proteins), numerous studies have highlighted their biological functions in promoting cell proliferation and resisting cell apoptosis, particularly in the regeneration and repair of pancreatic islets and exocrine glands. Successively, short peptides derived from Reg3δ and Reg3α have been employed in clinical trials, showing favorable therapeutic effects in patients with type I and type II diabetes. However, continued reports have been limited, presumably attributed to the potential side effects. Methods: This review summarizes extensive research on Reg proteins over the past decade, combined with our own related studies, proposing that Reg proteins exhibit dimorphic effects. Results: The activity of Reg proteins is not as simplistic as previously perceived but shows auto-immunogenicity depending on different pathophysiological microenvironments. The immunogenicity of Reg proteins could recruit immune cells leading to an anti-tumor effect. Such functional diversity is correlated with their structural characteristics: the N-terminal region contributes to autoantigenicity, while the C-type lectin fragment near the C-terminal determines the trophic action. It should be noted that B-cell masking antigens might also reside within the C-type lectin domain. Conclusions: Reg proteins have dual functional roles under various physiological and pathological conditions. These theoretical foundations facilitate the subsequent development of diagnostic reagents and therapeutic drugs targeting Reg proteins.
Collapse
Affiliation(s)
- Luting Yu
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 211816, China; (L.Y.)
| | - Qingyun Wu
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 211816, China; (L.Y.)
| | - Shenglong Jiang
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 211816, China; (L.Y.)
| | - Jia Liu
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 211816, China; (L.Y.)
| | - Junli Liu
- MeDiC Program, The Research Institute of McGill University Health Centre, Montreal, QC H4A 3J1, Canada
- Division of Endocrinology and Metabolism, Department of Medicine, McGill University, Montreal, QC H4A 3J1, Canada
| | - Guoguang Chen
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 211816, China; (L.Y.)
| |
Collapse
|
5
|
Wang G, Qiu X, Sun M, Li Y, Chen A, Tong J, Cheng Z, Zhao W, Chang C, Yu G. RegⅢγ promotes the proliferation, and inhibits inflammation response of macrophages by Akt, STAT3 and NF-κB pathways. Int Immunopharmacol 2024; 143:113442. [PMID: 39490142 DOI: 10.1016/j.intimp.2024.113442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 10/16/2024] [Accepted: 10/17/2024] [Indexed: 11/05/2024]
Abstract
As an inflammatory regulator, intestinal regenerating islet-derived 3 gamma (RegⅢγ) contributes to alleviating liver injury in liver diseases and colitis. However, it is unclear whether hepatic RegⅢγ exerts a vital impact on liver regeneration (LR). In this study, the expression profile and localization of RegⅢγ in LR were demonstrated by microarray analysis, qRT-PCR and immunofluorescence staining. Then, RAW264.7 cells with RegⅢγ deficiency and overexpression were obtained by the CRISPR/Cas9 system and lentivirus infection, respectively. MTT, flow cytometry, EdU, transwell, neutral red phagocytosis, and NO assays were performed to detect the functions of RegⅢγ in RAW264.7 cell proliferation and inflammation. Finally, the regulatory mechanism of RegⅢγ was explored by co-immunoprecipitation and Western blot assays. According to our findings, RegⅢγ showed significant expression changes in Kupffer cells during LR, and RegⅢγ overexpression stimulated the viability, proliferation, phagocytosis and migration of RAW264.7 cells, whereas RegⅢγ deficiency reversed these effects. Similarly, RegⅢγ overexpression facilitated the expression of HO-1 and IL-10, while RegⅢγ deficiency promoted NO production and p-Akt, p-STAT3, p-p65 and TNF-α expression. In conclusion, RegⅢγ may facilitate LR by promoting the proliferation of macrophages and inhibiting their inflammatory response through Akt, STAT3 and NF-κB pathways in the priming stage of LR.
Collapse
Affiliation(s)
- Gaiping Wang
- State Key Laboratory of Cell Differentiation and Regulation, Henan Normal University, Xinxiang 453007, Henan, China; Henan Center for Outstanding Overseas Scientists of Organ Fibrosis, Henan Normal University, Xinxiang 453007, Henan, China; Henan International Joint Laboratory of Pulmonary Fibrosis, Henan Normal University, Xinxiang 453007, Henan, China; Institute of Biomedical Science, Henan Normal University, Xinxiang 453007, Henan, China; College of Life Science, Henan Normal University, Xinxiang 453007, Henan, China.
| | - Xianglei Qiu
- State Key Laboratory of Cell Differentiation and Regulation, Henan Normal University, Xinxiang 453007, Henan, China; College of Life Science, Henan Normal University, Xinxiang 453007, Henan, China
| | - Meiqing Sun
- State Key Laboratory of Cell Differentiation and Regulation, Henan Normal University, Xinxiang 453007, Henan, China; College of Life Science, Henan Normal University, Xinxiang 453007, Henan, China
| | - Yingle Li
- State Key Laboratory of Cell Differentiation and Regulation, Henan Normal University, Xinxiang 453007, Henan, China; College of Life Science, Henan Normal University, Xinxiang 453007, Henan, China
| | - Anqi Chen
- State Key Laboratory of Cell Differentiation and Regulation, Henan Normal University, Xinxiang 453007, Henan, China; College of Life Science, Henan Normal University, Xinxiang 453007, Henan, China
| | - Jiahui Tong
- State Key Laboratory of Cell Differentiation and Regulation, Henan Normal University, Xinxiang 453007, Henan, China; College of Life Science, Henan Normal University, Xinxiang 453007, Henan, China
| | - Zhipeng Cheng
- State Key Laboratory of Cell Differentiation and Regulation, Henan Normal University, Xinxiang 453007, Henan, China; College of Life Science, Henan Normal University, Xinxiang 453007, Henan, China
| | - Weiming Zhao
- Institute of Biomedical Sciences, Henan Academy of Sciences, Zhengzhou 450046, Henan, China
| | - Cuifang Chang
- State Key Laboratory of Cell Differentiation and Regulation, Henan Normal University, Xinxiang 453007, Henan, China; Henan Center for Outstanding Overseas Scientists of Organ Fibrosis, Henan Normal University, Xinxiang 453007, Henan, China; Henan International Joint Laboratory of Pulmonary Fibrosis, Henan Normal University, Xinxiang 453007, Henan, China; Institute of Biomedical Science, Henan Normal University, Xinxiang 453007, Henan, China; College of Life Science, Henan Normal University, Xinxiang 453007, Henan, China
| | - Guoying Yu
- State Key Laboratory of Cell Differentiation and Regulation, Henan Normal University, Xinxiang 453007, Henan, China; Henan Center for Outstanding Overseas Scientists of Organ Fibrosis, Henan Normal University, Xinxiang 453007, Henan, China; Henan International Joint Laboratory of Pulmonary Fibrosis, Henan Normal University, Xinxiang 453007, Henan, China; Institute of Biomedical Science, Henan Normal University, Xinxiang 453007, Henan, China; College of Life Science, Henan Normal University, Xinxiang 453007, Henan, China.
| |
Collapse
|
6
|
Luo Y, Sun S, Zhang Y, Liu S, Zeng H, Li JE, Huang J, Fang L, Yang S, Yu P, Liu J. Effects of Oltipraz on the Glycolipid Metabolism and the Nrf2/HO-1 Pathway in Type 2 Diabetic Mice. Drug Des Devel Ther 2024; 18:5685-5700. [PMID: 39654602 PMCID: PMC11626977 DOI: 10.2147/dddt.s485729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 11/26/2024] [Indexed: 12/12/2024] Open
Abstract
Purpose Oltipraz has various applications, including for treating cancer, liver fibrosis, and cirrhosis. However, its role in regulating metabolic processes, inflammation, oxidative stress, and insulin resistance in STZ-induced T2DM remains unclear. Hence, a comprehensive understanding of how oltipraz ameliorates diabetes, particularly inflammation and oxidative stress, is imperative. Methods The negative control (NC), T2DM model (T2DM), and T2DM models treated with oltipraz (OLTI) and metformin (MET) were constructed. The RNA sequencing (RNA-Seq) was performed on the pancreatic tissues. H&E staining was conducted on the liver and pancreatic tissues. The intraperitoneal glucose tolerance test (IPGTT), blood glucose and lipids, inflammatory factors, and oxidative stress indexes were measured. qPCR and Western blotting examined the nuclear factor erythroid-derived 2-like 2 (Nrf2)/ hemoglobin-1 (HO-1) signaling pathway, cell apoptosis-related genes, and Reg3g levels. Immunofluorescence (IF) analysis of the pancreas was performed to measure insulin secretion. Results A total of 256 DEGs were identified in OLTI_vs_T2DM, and they were mainly enriched in circadian rhythm, cAMP, AMPK, insulin, and MAPK signaling pathways. Moreover, Reg3g exhibits reduced expression in T2DM_vs_NC, and elevated expression in OLTI_vs_T2DM, yet remains unchanged in MET_vs_T2DM. OLTI reduced fasting blood glucose and alleviated T2DM-induced weight loss. It improved blood glucose and insulin resistance, decreased blood lipid metabolism, reduced inflammation and oxidative stress through the Nrf2/HO-1 signaling pathway, mitigated pancreatic and liver tissue injury, and enhanced pancreatic β-cell insulin secretion. OLTI exhibited anti-apoptosis effects in T2DM. Moreover, OLTI exhibits superior antioxidant activity than metformin. Conclusion In summary, OLTI improves blood glucose and insulin resistance, decreases blood lipid metabolism, reduces inflammation and apoptosis, suppresses oxidative stress through the Nrf2/HO-1 signaling pathway, mitigates pancreatic and liver tissue injury, and enhances pancreatic β-cell insulin secretion, thereby mitigating T2DM symptoms. Moreover, Reg3g could be an important target for OLTI treatment of T2DM.
Collapse
Affiliation(s)
- Yunfei Luo
- Department of Endocrinology and Metabolism of the Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, 330031, People’s Republic of China
| | - Shaohua Sun
- Department of Endocrinology and Metabolism of the Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, 330031, People’s Republic of China
- Department of Metabolism and Endocrinology, XinSteel Center Hospital, Xinyu, Jiangxi, 338000, People’s Republic of China
| | - Yuying Zhang
- Department of Endocrinology and Metabolism of the Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, 330031, People’s Republic of China
| | - Shuang Liu
- Department of Endocrinology and Metabolism of the Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, 330031, People’s Republic of China
| | - Haixia Zeng
- Department of Endocrinology and Metabolism of the Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, 330031, People’s Republic of China
| | - jin-E Li
- Department of Endocrinology and Metabolism of the Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, 330031, People’s Republic of China
| | - Jiadian Huang
- Department of Endocrinology and Metabolism of the Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, 330031, People’s Republic of China
| | - Lixuan Fang
- Department of Endocrinology and Metabolism of the Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, 330031, People’s Republic of China
| | - Shiqi Yang
- Department of Endocrinology and Metabolism of the Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, 330031, People’s Republic of China
| | - Peng Yu
- Department of Endocrinology and Metabolism of the Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, 330031, People’s Republic of China
| | - Jianping Liu
- Department of Endocrinology and Metabolism of the Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, 330031, People’s Republic of China
- Institute for the Study of Endocrinology and Metabolism in Jiangxi Province, Nanchang, Jiangxi, 330031, People’s Republic of China
- Branch of National Clinical Research Center for Metabolic Diseases, Nanchang, Jiangxi, 330031, People’s Republic of China
| |
Collapse
|
7
|
Qiu M, Chang L, Tang G, Ye W, Xu Y, Tulufu N, Dan Z, Qi J, Deng L, Li C. Activation of the osteoblastic HIF-1α pathway partially alleviates the symptoms of STZ-induced type 1 diabetes mellitus via RegIIIγ. Exp Mol Med 2024; 56:1574-1590. [PMID: 38945950 PMCID: PMC11297314 DOI: 10.1038/s12276-024-01257-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 02/04/2024] [Accepted: 03/19/2024] [Indexed: 07/02/2024] Open
Abstract
The hypoxia-inducible factor-1α (HIF-1α) pathway coordinates skeletal bone homeostasis and endocrine functions. Activation of the HIF-1α pathway increases glucose uptake by osteoblasts, which reduces blood glucose levels. However, it is unclear whether activating the HIF-1α pathway in osteoblasts can help normalize glucose metabolism under diabetic conditions through its endocrine function. In addition to increasing bone mass and reducing blood glucose levels, activating the HIF-1α pathway by specifically knocking out Von Hippel‒Lindau (Vhl) in osteoblasts partially alleviated the symptoms of streptozotocin (STZ)-induced type 1 diabetes mellitus (T1DM), including increased glucose clearance in the diabetic state, protection of pancreatic β cell from STZ-induced apoptosis, promotion of pancreatic β cell proliferation, and stimulation of insulin secretion. Further screening of bone-derived factors revealed that islet regeneration-derived protein III gamma (RegIIIγ) is an osteoblast-derived hypoxia-sensing factor critical for protection against STZ-induced T1DM. In addition, we found that iminodiacetic acid deferoxamine (SF-DFO), a compound that mimics hypoxia and targets bone tissue, can alleviate symptoms of STZ-induced T1DM by activating the HIF-1α-RegIIIγ pathway in the skeleton. These data suggest that the osteoblastic HIF-1α-RegIIIγ pathway is a potential target for treating T1DM.
Collapse
Affiliation(s)
- Minglong Qiu
- Department of Orthopedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, China
| | - Leilei Chang
- Department of Orthopedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, China
| | - Guoqing Tang
- Kunshan Hospital of Traditional Chinese Medicine, Affiliated Hospital of Yangzhou University, 388 Zuchongzhi Road, Kunshan, 215300, Jiangsu, China
| | - Wenkai Ye
- Department of Orthopedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, China
| | - Yiming Xu
- Department of Orthopedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, China
| | - Nijiati Tulufu
- Department of Orthopedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, China
| | - Zhou Dan
- Department of Orthopedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, China
| | - Jin Qi
- Department of Orthopedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, China.
| | - Lianfu Deng
- Department of Orthopedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, China.
| | - Changwei Li
- Department of Orthopedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, China.
| |
Collapse
|
8
|
Li Y, He C, Liu R, Xiao Z, Sun B. Stem cells therapy for diabetes: from past to future. Cytotherapy 2023; 25:1125-1138. [PMID: 37256240 DOI: 10.1016/j.jcyt.2023.04.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 04/05/2023] [Accepted: 04/24/2023] [Indexed: 06/01/2023]
Abstract
Diabetes mellitus is a chronic disease of carbohydrate metabolism characterized by uncontrolled hyperglycemia due to the body's impaired ability to produce or respond to insulin. Oral or injectable exogenous insulin and its analogs cannot mimic endogenous insulin secreted by healthy individuals, and pancreatic and islet transplants face a severe shortage of sources and transplant complications, all of which limit the widespread use of traditional strategies in diabetes treatment. We are now in the era of stem cells and their potential in ameliorating human disease. At the same time, the rapid development of gene editing and cell-encapsulation technologies has added to the wings of stem cell therapy. However, there are still many unanswered questions before stem cell therapy can be applied clinically to patients with diabetes. In this review, we discuss the progress of strategies to obtain insulin-producing cells from different types of stem cells, the application of gene editing in stem cell therapy for diabetes, as well as summarize the current advanced cell encapsulation technologies in diabetes therapy and look forward to the future development of stem cell therapy in diabetes.
Collapse
Affiliation(s)
- Yumin Li
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, China
| | - Cong He
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, China; Department of Hepatobiliary Surgery, Nanjing Drum Tower Hospital,The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Rui Liu
- Department of Genetic Engineering, College of Natural Science, University of Suwon, Kyunggi-Do, Republic of Korea
| | - Zhongdang Xiao
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, China.
| | - Bo Sun
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, China.
| |
Collapse
|
9
|
Shin JH, Bozadjieva-Kramer N, Seeley RJ. Reg3γ: current understanding and future therapeutic opportunities in metabolic disease. Exp Mol Med 2023; 55:1672-1677. [PMID: 37524871 PMCID: PMC10474034 DOI: 10.1038/s12276-023-01054-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 05/01/2023] [Indexed: 08/02/2023] Open
Abstract
Regenerating family member gamma, Reg3γ (the mouse homolog of human REG3A), belonging to the antimicrobial peptides (AMPs), functions as a part of the host immune system to maintain spatial segregation between the gut bacteria and the host in the intestine via bactericidal activity. There is emerging evidence that gut manipulations such as bariatric surgery, dietary supplementation or drug treatment to produce metabolic benefits alter the gut microbiome. In addition to changes in a wide range of gut hormones, these gut manipulations also induce the expression of Reg3γ in the intestine. Studies over the past decades have revealed that Reg3γ not only plays a role in the gut lumen but can also contribute to host physiology through interaction with the gut microbiota. Herein, we discuss the current knowledge regarding the biology of Reg3γ, its role in various metabolic functions, and new opportunities for therapeutic strategies to treat metabolic disorders.
Collapse
Affiliation(s)
- Jae Hoon Shin
- Department of Surgery, University of Michigan, Ann Arbor, MI, USA
| | | | - Randy J Seeley
- Department of Surgery, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
10
|
Lawand PV, Desai S. Nanobiotechnology-Modified Cellular and Molecular Therapy as a Novel Approach for Autoimmune Diabetes Management. Pharm Nanotechnol 2022; 10:279-288. [PMID: 35927916 DOI: 10.2174/2211738510666220802111315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 04/26/2022] [Accepted: 05/09/2022] [Indexed: 06/15/2023]
Abstract
Several cellular and molecular therapies such as stem cell therapy, cell replacement therapy, gene modification therapy, and tolerance induction therapy have been researched to procure a permanent cure for Type 1 Diabetes. However, due to the induction of undesirable side effects, their clinical utility is questionable. These anti-diabetic therapies can be modified with nanotechnological tools for reducing adverse effects by selectively targeting genes and/or receptors involved directly or indirectly in diabetes pathogenesis, such as the glucagon-like peptide 1 receptor, epidermal growth factor receptor, human leukocyte antigen (HLA) gene, miRNA gene and hepatocyte growth factor (HGF) gene. This paper will review the utilities of nanotechnology in stem cell therapy, cell replacement therapy, beta-cell proliferation strategies, immune tolerance induction strategies, and gene therapy for type 1 diabetes management.
Collapse
Affiliation(s)
- Priyanka Vasant Lawand
- Department of Pharmacology, Dr. D.Y. Patil Institute of Pharmaceutical Sciences and Research, Pimpri, Pune, India
| | - Shivani Desai
- Department of Pharmacy Practice, Dr. D.Y. Patil Institute of Pharmaceutical Sciences and Research, Pimpri, Pune, India
| |
Collapse
|
11
|
Bucheli JEV, Todorov SD, Holzapfel WH. Role of gastrointestinal microbial populations, a terra incognita of the human body in the management of intestinal bowel disease and metabolic disorders. Benef Microbes 2022; 13:295-318. [PMID: 35866598 DOI: 10.3920/bm2022.0022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Intestinal bowel disease (IBD) is a chronic immune-mediated clinical condition that affects the gastrointestinal tract and is mediated by an inflammatory response. Although it has been extensively studied, the multifactorial aetiology of this disorder makes it difficult to fully understand all the involved mechanisms in its development and therefore its treatment. In recent years, the fundamental role played by the human microbiota in the pathogenesis of IBD has been emphasised. Microbial imbalances in the gut bacterial communities and a lower species diversity in patients suffering from inflammatory gastrointestinal disorders compared to healthy individuals have been reported as principal factors in the development of IBD. These served to support scientific arguments for the use of probiotic microorganisms in alternative approaches for the prevention and treatment of IBD. In a homeostatic environment, the presence of bacteria (including probiotics) on the intestinal epithelial surface activates a cascade of processes by which immune responses inhibited and thereby commensal organisms maintained. At the same time these processes may support activities against specific pathogenic bacteria. In dysbiosis, these underlying mechanisms will serve to provoke a proinflammatory response, that, in combination with the use of antibiotics and the genetic predisposition of the host, will culminate in the development of IBD. In this review, we summarised the main causes of IBD, the physiological mechanisms involved and the related bacterial groups most frequently associated with these processes. The intention was to enable a better understanding of the interaction between the intestinal microbiota and the host, and to suggest possibilities by which this knowledge can be useful for the development of new therapeutic treatments.
Collapse
Affiliation(s)
- J E Vazquez Bucheli
- Human Effective Microbes, Department of Advanced Convergence, Handong Global University, Pohang, Gyeongbuk 37554, Republic of Korea
| | - S D Todorov
- ProBacLab, Department of Advanced Convergence, Handong Global University, Pohang, Gyeongbuk 37554, Republic of Korea
| | - W H Holzapfel
- Human Effective Microbes, Department of Advanced Convergence, Handong Global University, Pohang, Gyeongbuk 37554, Republic of Korea
| |
Collapse
|
12
|
Majumdar S, Lin Y, Bettini ML. Host-microbiota interactions shaping T-cell response and tolerance in type 1 diabetes. Front Immunol 2022; 13:974178. [PMID: 36059452 PMCID: PMC9434376 DOI: 10.3389/fimmu.2022.974178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 07/25/2022] [Indexed: 11/29/2022] Open
Abstract
Type-1 Diabetes (T1D) is a complex polygenic autoimmune disorder involving T-cell driven beta-cell destruction leading to hyperglycemia. There is no cure for T1D and patients rely on exogenous insulin administration for disease management. T1D is associated with specific disease susceptible alleles. However, the predisposition to disease development is not solely predicted by them. This is best exemplified by the observation that a monozygotic twin has just a 35% chance of developing T1D after their twin's diagnosis. This makes a strong case for environmental triggers playing an important role in T1D incidence. Multiple studies indicate that commensal gut microbiota and environmental factors that alter their composition might exacerbate or protect against T1D onset. In this review, we discuss recent literature highlighting microbial species associated with T1D. We explore mechanistic studies which propose how some of these microbial species can modulate adaptive immune responses in T1D, with an emphasis on T-cell responses. We cover topics ranging from gut-thymus and gut-pancreas communication, microbial regulation of peripheral tolerance, to molecular mimicry of islet antigens by microbial peptides. In light of the accumulating evidence on commensal influences in neonatal thymocyte development, we also speculate on the link between molecular mimicry and thymic selection in the context of T1D pathogenesis. Finally, we explore how these observations could inform future therapeutic approaches in this disease.
Collapse
Affiliation(s)
- Shubhabrata Majumdar
- Immunology Graduate Program, Baylor College of Medicine, Houston, TX, United States
- Department of Pathology, University of Utah, Salt Lake City, UT, United States
| | - Yong Lin
- Immunology Graduate Program, Baylor College of Medicine, Houston, TX, United States
- Department of Pathology, University of Utah, Salt Lake City, UT, United States
| | - Matthew L. Bettini
- Department of Pathology, University of Utah, Salt Lake City, UT, United States
| |
Collapse
|
13
|
Li S, Zhou H, Xie M, Zhang Z, Gou J, Yang J, Tian C, Ma K, Wang CY, Lu Y, Li Q, Peng W, Xiang M. Regenerating islet-derived protein 3 gamma (Reg3g) ameliorates tacrolimus-induced pancreatic β-cell dysfunction in mice by restoring mitochondrial function. Br J Pharmacol 2022; 179:3078-3095. [PMID: 35060126 DOI: 10.1111/bph.15803] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 12/29/2021] [Accepted: 12/30/2021] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND AND PURPOSE Tacrolimus a first-line medication used after transplantation can induce β-cell dysfunction, causing new-onset diabetes mellitus (NODM). Regenerating islet-derived protein 3 gamma (Reg3g), a member of the pancreatic regenerative gene family, has been reported to improve type 1 diabetes by promoting β-cell regeneration. We aim to investigate the role of Reg3g in reversing tacrolimus-induced β-cell dysfunction and NODM in mice. EXPERIMENTAL APPROACH Circulating REG3A (the human homologue of mouse Reg3g) in heart transplantation patients treated with tacrolimus was detected. The glucose-stimulated insulin secretion and mitochondrial functions, including mitochondria membrane potential (MMP), mitochondria calcium, ATP production, oxygen consumption rate and mitochondrial morphology were investigated in β-cells. Additionally, effects of Reg3g on tacrolimus-induced NODM in mice were analysed. KEY RESULTS Circulating REG3A level in heart transplantation patients with NODM significantly decreased compared with those without diabetes. Tacrolimus down-regulated Reg3g via inhibiting STAT3-mediated transcription activation. Moreover, Reg3g restored glucose-stimulated insulin secretion suppressed by tacrolimus in β-cells by improving mitochondrial functions, including increased MMP, mitochondria calcium uptake, ATP production, oxygen consumption rate and contributing to an intact mitochondrial morphology. Mechanistically, Reg3g increased accumulation of pSTAT3(Ser727) in mitochondria by activating ERK1/2-STAT3 signalling pathway, leading to restoration of tacrolimus-induced mitochondrial impairment. Reg3g overexpression also effectively mitigated tacrolimus-induced NODM in mice. CONCLUSION AND IMPLICATIONS Reg3g can significantly ameliorate tacrolimus-induced β-cell dysfunction by restoring mitochondrial function in a pSTAT3(Ser727)-dependent manner. Our observations identify a novel Reg3g-mediated mechanism that is involved in tacrolimus-induced NODM and establish the novel role of Reg3g in reversing tacrolimus-induced β-cell dysfunction.
Collapse
Affiliation(s)
- Senlin Li
- Department of Pharmacology, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hong Zhou
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Mengyuan Xie
- Department of Pharmacology, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zijun Zhang
- Department of Pharmacology, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jing Gou
- Department of Pharmacology, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jian Yang
- Department of Pharmacology, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Cheng Tian
- Department of Pharmacology, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Kun Ma
- Department of Pharmacology, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Cong-Yi Wang
- The Center for Biomedical Research, Department of Respiratory and Critical Care Medicine, NHC Key Laboratory of Respiratory Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan, China
| | - Yi Lu
- Department of Pharmacology, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qing Li
- Department of Pharmacology, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wen Peng
- Department of General Practice, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ming Xiang
- Department of Pharmacology, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
14
|
Nociceptor-derived Reg3γ prevents endotoxic death by targeting kynurenine pathway in microglia. Cell Rep 2022; 38:110462. [PMID: 35263589 DOI: 10.1016/j.celrep.2022.110462] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 01/11/2022] [Accepted: 02/09/2022] [Indexed: 11/21/2022] Open
Abstract
Nociceptors can fine-tune local or systemic immunity, but the mechanisms of nociceptive modulation in endotoxic death remain largely unknown. Here, we identified C-type lectin Reg3γ as a nociceptor-enriched hormone that protects the host from endotoxic death. During endotoxemia, nociceptor-derived Reg3γ penetrates the brain and suppresses the expression of microglial indoleamine dioxygenase 1, a critical enzyme of the kynurenine pathway, via the Extl3-Bcl10 axis. Endotoxin-administered nociceptor-null mice and nociceptor-specific Reg3γ-deficient mice exhibit a high mortality rate accompanied by decreased brain HK1 phosphorylation and ATP production despite normal peripheral inflammation. Such metabolic arrest is only observed in the brain, and aberrant production of brain quinolinic acid, a neurotoxic metabolite of the kynurenine pathway, causes HK1 suppression. Strikingly, the central administration of Reg3γ protects mice from endotoxic death by enhancing brain ATP production. By identifying nociceptor-derived Reg3γ as a microglia-targeted hormone, this study provides insights into the understanding of tolerance to endotoxic death.
Collapse
|
15
|
Levetan C. Frederick Banting's observations leading to the potential for islet neogenesis without transplantation. J Diabetes 2022; 14:104-110. [PMID: 34967992 PMCID: PMC9060105 DOI: 10.1111/1753-0407.13246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 10/12/2021] [Accepted: 11/15/2021] [Indexed: 11/29/2022] Open
Abstract
On 31 October 1920, Sir Frederick Banting, while preparing for a medical student lecture on diabetes, a topic that he knew little about, learned how pancreatic stones resulted in the formation of new islets of Langerhans. He then scribbled down a potential research study of tying off the ducts of the pancreas and collecting the secretions to improve diabetes. These secretions became known as insulin. A century later, 60 different oral medications and 20 different insulins are available for the treatment of diabetes, yet none stimulate new islet formation. One hundred years later, after the discovery of insulin, more than a dozen research teams from around the world have demonstrated that similar studies to Banting's pancreatic ligation studies have resulted in upregulation of the REG gene. There are now more than 200 publications on the role of Reg gene proteins and shorter Reg peptides in initiating new islet formation islet from exocrine pancreatic ducts and protecting against inflammation to islets resulting in islet death. Human data through Phase 2b in both type 1 and 2 diabetes patients with diabetes for an average of 20 years have demonstrated that the use of a shorter bioactive Reg peptide can generate new endogenous insulin production, resulting in significant reductions in hemoglobin A1C and increases in stimulated C-peptide. The observations of Frederick Banting, one century ago, may now lead to the generation of therapeutics that form new islets without the need for transplantation.
Collapse
Affiliation(s)
- Claresa Levetan
- Fellow with Distinction, American College of Endocrinology, Diplomate, American Board of Internal Medicine, Diabetes, Endocrinology and MetabolismGrand View HealthLansdalePennsylvaniaUSA
| |
Collapse
|
16
|
Srinivasan M, Thangaraj SR, Arzoun H. Gene Therapy - Can it Cure Type 1 Diabetes? Cureus 2021; 13:e20516. [PMID: 35004071 PMCID: PMC8723777 DOI: 10.7759/cureus.20516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/19/2021] [Indexed: 11/20/2022] Open
Abstract
Type 1 diabetes (T1D) is one of the most prevalent early-onset autoimmune diseases, and numerous treatment regimens have been developed over the years with a mainstay focus on insulin injections, infusions, and pumps. However, with the evolution of modern medicine in the recent decade, can gene therapy be a possible solution to prevent and even cure this autoimmune diabetes? In this review, the authors discuss the present-day advancements around the globe where gene therapy is implemented in different techniques to halt and even reverse T1D. The main focus of the final included studies for this review was to regenerate or preserve pancreatic β cells from other cell types in order to optimize insulin secretions in non-obese autoimmune diabetic patients. A literature search was done in various databases such as PubMed, ScienceDirect, and Google Scholar, and a final of eight studies were included. On the whole, the studies reviewed suggested favorable results of gene therapy, although these researches were done mainly in vitro or as animal studies. The application of different virus vector encoding gene transfer through transcription factors, mRNA electroporation, insulin-like growth factor gene expression as well as combination gene transfer concluded beneficial effects on normalizing insulin production, which could pave the path to perfecting gene therapy, and may even find a permanent cure for T1D in the near future.
Collapse
|
17
|
Sharma R, Kumari M, Mishra S, Chaudhary DK, Kumar A, Avni B, Tiwari S. Exosomes Secreted by Umbilical Cord Blood-Derived Mesenchymal Stem Cell Attenuate Diabetes in Mice. J Diabetes Res 2021; 2021:9534574. [PMID: 34926699 PMCID: PMC8683199 DOI: 10.1155/2021/9534574] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 10/21/2021] [Accepted: 11/22/2021] [Indexed: 12/20/2022] Open
Abstract
Mesenchymal stem cell (MSC) therapy is an innovative approach in diabetes due to its capacity to modulate tissue microenvironment and regeneration of glucose-responsive insulin-producing cells. In this study, we investigated the role of MSC-derived exosomes in pancreatic regeneration and insulin secretion in mice with streptozotocin-induced diabetes. Mesenchymal stem cells (MSCs) were isolated and characterized from umbilical cord blood (UCB). Exosomes were isolated and characterized from these MSCs. Diabetes was induced in male C57Bl/6 mice by streptozotocin (STZ; 40 mg/kg body weight, i.p.) for five consecutive days. The diabetic mice were administered (i.v.) with MSC (1 × 105 umbilical cord blood MSC cells/mice/day), their derived exosomes (the MSC-Exo group that received exosomes derived from 1 × 105 MSC cells/mice/day), or the same volume of PBS. Before administration, the potency of MSCs and their exosomes was evaluated in vitro by T cell activation experiments. After day 7 of the treatments, blood samples and pancreatic tissues were collected. Histochemistry was performed to check cellular architecture and β cell regeneration. In body weight, blood glucose level, and insulin level, cell proliferation assay was done to confirm regeneration of cells after MSC and MSC-Exo treatments. Hyperglycemia was also attenuated in these mice with a concomitant increase in insulin production and an improved histological structure compared to mice in the PBS-treated group. We found increased expression of genes associated with tissue regeneration pathways, including Reg2, Reg3, and Amy2b in the pancreatic tissue of mice treated with MSC or MSC-Exo relative to PBS-treated mice. MicroRNA profiling of MSC-derived exosomes showed the presence of miRs that may facilitate pancreatic regeneration by regulating the Extl3-Reg-cyclinD1 pathway. These results demonstrate a potential therapeutic role of umbilical cord blood MSC-derived exosomes in attenuating insulin deficiency by activating pancreatic islets' regenerative abilities.
Collapse
Affiliation(s)
- Rajni Sharma
- Department of Molecular Medicine & Biotechnology, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow 226014, India
| | - Manju Kumari
- Department of Molecular Medicine & Biotechnology, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow 226014, India
| | - Suman Mishra
- Department of Molecular Medicine & Biotechnology, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow 226014, India
| | - Dharmendra K. Chaudhary
- Department of Molecular Medicine & Biotechnology, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow 226014, India
| | - Alok Kumar
- Department of Molecular Medicine & Biotechnology, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow 226014, India
| | - Batia Avni
- Department of Bone Marrow Transplantation and Cancer Immunotherapy, Hadassah-Hebrew University Medical Center, Ein Kerem, Jerusalem, Israel
- Faculty of Medicine, Hebrew University of Jerusalem, Israel
| | - Swasti Tiwari
- Department of Molecular Medicine & Biotechnology, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow 226014, India
| |
Collapse
|
18
|
Lien YC, Lu XM, Won KJ, Wang PZ, Osei-Bonsu W, Simmons RA. The Transcriptome and Epigenome Reveal Novel Changes in Transcription Regulation During Pancreatic Rat Islet Maturation. Endocrinology 2021; 162:6360893. [PMID: 34467975 PMCID: PMC8455347 DOI: 10.1210/endocr/bqab181] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Indexed: 01/03/2023]
Abstract
Islet function is critical for normal glucose homeostasis. Unlike adult β cells, fetal and neonatal islets are more proliferative and have decreased insulin secretion in response to stimuli. However, the underlying mechanisms governing functional maturity of islets have not been completely elucidated. Pancreatic islets comprise different cell types. The microenvironment of islets and interactions between these cell types are critical for β-cell development and maturation. Thus, the study of intact islets is optimal to identify novel molecular mechanisms controlling islet functional development. Transcriptomes and genome-wide histone landscapes of H3K4me3, H3K27me3, and H3K27Ac from intact islets isolated from 2- and 10-week-old Sprague-Dawley rats were integrated to elucidate genes and pathways modulating islet development, as well as the contribution of epigenetic regulation. A total of 4489 differentially expressed genes were identified; 2289 and 2200 of them were up- and down-regulated in 10-week islets, respectively. Ingenuity Pathway Analysis revealed critical pathways regulating functional maturation of islets, including nutrient sensing, neuronal function, immune function, cell replication, and extracellular matrix. Furthermore, we identified significant changes in enrichment of H3K4me3, H3K27me3, and H3K27Ac marks, which correlated with expression changes of genes critical for islet function. These histone marks were enriched at critical transcription factor-binding motifs, such as Hoxa9, C/EBP-β, Gata1, Foxo1, E2f1, E2f3, and Mafb. In addition, our chromatin immunoprecipitation sequencing data revealed multiple potential bivalent genes whose poised states changed with maturation. Collectively, our current study identified critical novel pathways for mature islet function and suggested a role for histone modifications in regulating islet development and maturation.
Collapse
Affiliation(s)
- Yu-Chin Lien
- Center for Research on Reproduction and Women’s Health, Perelman School of Medicine, the University of Pennsylvania, Philadelphia, PA 19104, USA
- Division of Neonatology, Department of Pediatrics, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Xueqing Maggie Lu
- Institute for Biomedical Informatics, Perelman School of Medicine, the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Kyoung-Jae Won
- Biotech Research and Innovation Centre (BRIC), University of Copenhagen, 2200 Copenhagen, Denmark
- Novo Nordisk Foundation Center for Stem Cell Biology (DanStem), Faculty of Health Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Paul Zhiping Wang
- Institute for Biomedical Informatics, Perelman School of Medicine, the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Wendy Osei-Bonsu
- Center for Research on Reproduction and Women’s Health, Perelman School of Medicine, the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Rebecca A Simmons
- Center for Research on Reproduction and Women’s Health, Perelman School of Medicine, the University of Pennsylvania, Philadelphia, PA 19104, USA
- Division of Neonatology, Department of Pediatrics, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Correspondence: Rebecca A. Simmons, MD, BRB II/III, 13th Floor, Rm 1308, 421 Curie Blvd, Perelman School of Medicine, the University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
19
|
Sindhu RK, Madaan P, Chandel P, Akter R, Adilakshmi G, Rahman MH. Therapeutic Approaches for the Management of Autoimmune Disorders via Gene Therapy: Prospects, Challenges, and Opportunities. Curr Gene Ther 2021; 22:245-261. [PMID: 34530709 DOI: 10.2174/1566523221666210916113609] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 07/05/2021] [Accepted: 06/24/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Autoimmune diseases are the diseases that result due to the overactive immune response, and comprise systemic autoimmune diseases like rheumatoid arthritis (RA), sjӧgren's syndrome (SS), and organ-specific autoimmune diseases like type-1 diabetes mellitus (T1DM), myasthenia gravis (MG), and inflammatory bowel disease (IBD). Currently, there is no long-term cure; but, several treatments exist which retard the evolution of the disease, embracing gene therapy, which has been scrutinized to hold immense aptitude for the management of autoimmune diseases. OBJECTIVE The review highlights the pathogenic mechanisms and genes liable for the development of autoimmune diseases, namely T1DM, type-2 diabetes mellitus (T2DM), RA, SS, IBD, and MG. Furthermore, the review focuses on investigating the outcomes of delivering the corrective genes with their specific viral vectors in various animal models experiencing these diseases to determine the effectiveness of gene therapy. METHODS Numerous review and research articles emphasizing the tremendous potential of gene therapy in the management of autoimmune diseases were procured from PubMed, MEDLINE, Frontier, and other databases and thoroughly studied for writing this review article. RESULTS The various animal models that experienced treatment with gene therapy have displayed regulation in the levels of proinflammatory cytokines, infiltration of lymphocytes, manifestations associated with autoimmune diseases, and maintained equilibrium in the immune response, thereby hinder the progression of autoimmune diseases. CONCLUSION Gene therapy has revealed prodigious aptitude in the management of autoimmune diseases in various animal studies, but further investigation is essential to combat the limitations associated with it and before employing it on humans.
Collapse
Affiliation(s)
- Rakesh K Sindhu
- Chitkara College of Pharmacy, Chitkara University, Punjab. India
| | - Piyush Madaan
- Chitkara College of Pharmacy, Chitkara University, Punjab. India
| | - Parteek Chandel
- Chitkara College of Pharmacy, Chitkara University, Punjab. India
| | - Rokeya Akter
- Department of Pharmacy, Jagannath University, Sadarghat, Dhaka-1100. Bangladesh
| | - G Adilakshmi
- Department of PhysicxVikramaSimahpuri University, P.G. Centre, kavil-524201, Andhra Pradesh. India
| | - Md Habibur Rahman
- Department of Pharmacy, Southeast University, Banani, Dhaka-1213. Bangladesh
| |
Collapse
|
20
|
Tangjittipokin W, Borrisut N, Rujirawan P. Prediction, diagnosis, prevention and treatment: genetic-led care of patients with diabetes. EXPERT REVIEW OF PRECISION MEDICINE AND DRUG DEVELOPMENT 2021. [DOI: 10.1080/23808993.2021.1970526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Watip Tangjittipokin
- Department of Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkoknoi, Bangkok, Thailand
- Siriraj Center of Research Excellence for Diabetes and Obesity (Sicore-do), Faculty of Medicine Siriraj, Mahidol University, Bangkoknoi, Bangkok, Thailand
| | - Nutsakol Borrisut
- Department of Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkoknoi, Bangkok, Thailand
| | - Patcharapong Rujirawan
- Department of Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkoknoi, Bangkok, Thailand
| |
Collapse
|
21
|
Eken A, Erdem S, Haliloglu Y, Zehra Okus F, Cakir M, Fatih Yetkin M, Akcakoyunlu M, Karayigit MO, Azizoglu ZB, Bicer A, Gur TN, Aslan K, Hora M, Oukka M, Altuntas HD, Ufuk Nalbantoglu O, Gundogdu A, Mirza M, Canatan H. Temporal overexpression of IL-22 and Reg3γ differentially impacts the severity of experimental autoimmune encephalomyelitis. Immunology 2021; 164:73-89. [PMID: 33876425 PMCID: PMC8358722 DOI: 10.1111/imm.13340] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Revised: 03/30/2021] [Accepted: 03/31/2021] [Indexed: 12/18/2022] Open
Abstract
IL-22 is an alpha-helical cytokine which belongs to the IL-10 family of cytokines. IL-22 is produced by RORγt+ innate and adaptive lymphocytes, including ILC3, γδ T, iNKT, Th17 and Th22 cells and some granulocytes. IL-22 receptor is expressed primarily by non-haematopoietic cells. IL-22 is critical for barrier immunity at the mucosal surfaces in the steady state and during infection. Although IL-22 knockout mice were previously shown to develop experimental autoimmune encephalomyelitis (EAE), a murine model of multiple sclerosis (MS), how temporal IL-22 manipulation in adult mice would affect EAE course has not been studied previously. In this study, we overexpressed IL-22 via hydrodynamic gene delivery or blocked it via neutralizing antibodies in C57BL/6 mice to explore the therapeutic impact of IL-22 modulation on the EAE course. IL-22 overexpression significantly decreased EAE scores and demyelination, and reduced infiltration of IFN-γ+IL-17A+Th17 cells into the central nervous system (CNS). The neutralization of IL-22 did not alter the EAE pathology significantly. We show that IL-22-mediated protection is independent of Reg3γ, an epithelial cell-derived antimicrobial peptide induced by IL-22. Thus, overexpression of Reg3γ significantly exacerbated EAE scores, demyelination and infiltration of IFN-γ+IL-17A+ and IL-17A+GM-CSF+Th17 cells to CNS. We also show that Reg3γ may inhibit IL-2-mediated STAT5 signalling and impair expansion of Treg cells in vivo and in vitro. Finally, Reg3γ overexpression dramatically impacted intestinal microbiota during EAE. Our results provide novel insight into the role of IL-22 and IL-22-induced antimicrobial peptide Reg3γ in the pathogenesis of CNS inflammation in a murine model of MS.
Collapse
Affiliation(s)
- Ahmet Eken
- Department of Medical BiologyErciyes University School of MedicineKayseriTurkey
- Betül‐Ziya Eren Genome and Stem Cell Center (GENKOK)KayseriTurkey
| | - Serife Erdem
- Department of Medical BiologyErciyes University School of MedicineKayseriTurkey
- Betül‐Ziya Eren Genome and Stem Cell Center (GENKOK)KayseriTurkey
| | - Yesim Haliloglu
- Department of Medical BiologyErciyes University School of MedicineKayseriTurkey
- Betül‐Ziya Eren Genome and Stem Cell Center (GENKOK)KayseriTurkey
| | - Fatma Zehra Okus
- Department of Medical BiologyErciyes University School of MedicineKayseriTurkey
- Betül‐Ziya Eren Genome and Stem Cell Center (GENKOK)KayseriTurkey
| | - Mustafa Cakir
- Department of Medical BiologyErciyes University School of MedicineKayseriTurkey
- Betül‐Ziya Eren Genome and Stem Cell Center (GENKOK)KayseriTurkey
- Department of Medical BiologyVan Yuzuncu Yıl University School of MedicineVanTurkey
| | | | - Merve Akcakoyunlu
- Department of NeurologyErciyes University School of MedicineKayseriTurkey
| | | | - Zehra Busra Azizoglu
- Department of Medical BiologyErciyes University School of MedicineKayseriTurkey
- Betül‐Ziya Eren Genome and Stem Cell Center (GENKOK)KayseriTurkey
| | - Ayten Bicer
- Department of Medical BiologyErciyes University School of MedicineKayseriTurkey
- Betül‐Ziya Eren Genome and Stem Cell Center (GENKOK)KayseriTurkey
| | - Tugba Nur Gur
- Department of Medical BiologyErciyes University School of MedicineKayseriTurkey
- Betül‐Ziya Eren Genome and Stem Cell Center (GENKOK)KayseriTurkey
| | - Kubra Aslan
- Department of Medical BiologyErciyes University School of MedicineKayseriTurkey
- Betül‐Ziya Eren Genome and Stem Cell Center (GENKOK)KayseriTurkey
| | - Mehmet Hora
- Betül‐Ziya Eren Genome and Stem Cell Center (GENKOK)KayseriTurkey
| | - Mohamed Oukka
- Department of ImmunologyUniversity of WashingtonSeattleWAUSA
| | - Hamiyet Donmez Altuntas
- Department of Medical BiologyErciyes University School of MedicineKayseriTurkey
- Betül‐Ziya Eren Genome and Stem Cell Center (GENKOK)KayseriTurkey
| | - Ozkan Ufuk Nalbantoglu
- Betül‐Ziya Eren Genome and Stem Cell Center (GENKOK)KayseriTurkey
- Department of Computer EngineeringFaculty of EngineeringErciyes UniversityKayseriTurkey
| | - Aycan Gundogdu
- Betül‐Ziya Eren Genome and Stem Cell Center (GENKOK)KayseriTurkey
- Department of Microbiology and Clinical MicrobiologyErciyes University School of MedicineKayseriTurkey
| | - Meral Mirza
- Department of NeurologyErciyes University School of MedicineKayseriTurkey
| | - Halit Canatan
- Department of Medical BiologyErciyes University School of MedicineKayseriTurkey
- Betül‐Ziya Eren Genome and Stem Cell Center (GENKOK)KayseriTurkey
| |
Collapse
|
22
|
Zhang XS, Yin YS, Wang J, Battaglia T, Krautkramer K, Li WV, Li J, Brown M, Zhang M, Badri MH, Armstrong AJS, Strauch CM, Wang Z, Nemet I, Altomare N, Devlin JC, He L, Morton JT, Chalk JA, Needles K, Liao V, Mount J, Li H, Ruggles KV, Bonneau RA, Dominguez-Bello MG, Bäckhed F, Hazen SL, Blaser MJ. Maternal cecal microbiota transfer rescues early-life antibiotic-induced enhancement of type 1 diabetes in mice. Cell Host Microbe 2021; 29:1249-1265.e9. [PMID: 34289377 PMCID: PMC8370265 DOI: 10.1016/j.chom.2021.06.014] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 04/27/2021] [Accepted: 06/18/2021] [Indexed: 01/04/2023]
Abstract
Early-life antibiotic exposure perturbs the intestinal microbiota and accelerates type 1 diabetes (T1D) development in the NOD mouse model. Here, we found that maternal cecal microbiota transfer (CMT) to NOD mice after early-life antibiotic perturbation largely rescued the induced T1D enhancement. Restoration of the intestinal microbiome was significant and persistent, remediating the antibiotic-depleted diversity, relative abundance of particular taxa, and metabolic pathways. CMT also protected against perturbed metabolites and normalized innate and adaptive immune effectors. CMT restored major patterns of ileal microRNA and histone regulation of gene expression. Further experiments suggest a gut-microbiota-regulated T1D protection mechanism centered on Reg3γ, in an innate intestinal immune network involving CD44, TLR2, and Reg3γ. This regulation affects downstream immunological tone, which may lead to protection against tissue-specific T1D injury.
Collapse
Affiliation(s)
- Xue-Song Zhang
- Center for Advanced Biotechnology and Medicine, Rutgers University, Piscataway, NJ, USA; Human Microbiome Program, New York University Langone Medical Center, New York, NY, USA.
| | - Yue Sandra Yin
- Center for Advanced Biotechnology and Medicine, Rutgers University, Piscataway, NJ, USA; Human Microbiome Program, New York University Langone Medical Center, New York, NY, USA
| | - Jincheng Wang
- Department of Biochemistry and Microbiology, Rutgers University - New Brunswick, New Brunswick, NJ, USA
| | - Thomas Battaglia
- Human Microbiome Program, New York University Langone Medical Center, New York, NY, USA
| | - Kimberly Krautkramer
- The Wallenberg Laboratory, Department of Molecular and Clinical Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Göteborg 41345, Sweden
| | - Wei Vivian Li
- Department of Biostatistics and Epidemiology, Rutgers University School of Public Health, Piscataway, NJ, USA
| | - Jackie Li
- Human Microbiome Program, New York University Langone Medical Center, New York, NY, USA
| | - Mark Brown
- Cardiovascular & Metabolic Sciences, Lerner Research Institute Cleveland Clinic, Cleveland, OH, USA; Center for Microbiome & Human Health, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Meifan Zhang
- Center for Advanced Biotechnology and Medicine, Rutgers University, Piscataway, NJ, USA; Human Microbiome Program, New York University Langone Medical Center, New York, NY, USA
| | - Michelle H Badri
- Human Microbiome Program, New York University Langone Medical Center, New York, NY, USA; New York University, Center for Data Science, New York, NY, USA
| | - Abigail J S Armstrong
- Center for Advanced Biotechnology and Medicine, Rutgers University, Piscataway, NJ, USA
| | - Christopher M Strauch
- Cardiovascular & Metabolic Sciences, Lerner Research Institute Cleveland Clinic, Cleveland, OH, USA
| | - Zeneng Wang
- Cardiovascular & Metabolic Sciences, Lerner Research Institute Cleveland Clinic, Cleveland, OH, USA
| | - Ina Nemet
- Cardiovascular & Metabolic Sciences, Lerner Research Institute Cleveland Clinic, Cleveland, OH, USA
| | - Nicole Altomare
- Center for Advanced Biotechnology and Medicine, Rutgers University, Piscataway, NJ, USA
| | - Joseph C Devlin
- Human Microbiome Program, New York University Langone Medical Center, New York, NY, USA
| | - Linchen He
- Department of Population Health, New York University Langone Medical Center, New York, NY, USA
| | - Jamie T Morton
- Human Microbiome Program, New York University Langone Medical Center, New York, NY, USA; Center for Computational Biology, Flatiron Institute, Simons Foundation, New York, NY, USA
| | - John Alex Chalk
- Center for Advanced Biotechnology and Medicine, Rutgers University, Piscataway, NJ, USA
| | - Kelly Needles
- Center for Advanced Biotechnology and Medicine, Rutgers University, Piscataway, NJ, USA
| | - Viviane Liao
- Center for Advanced Biotechnology and Medicine, Rutgers University, Piscataway, NJ, USA
| | - Julia Mount
- Human Microbiome Program, New York University Langone Medical Center, New York, NY, USA
| | - Huilin Li
- Department of Population Health, New York University Langone Medical Center, New York, NY, USA
| | - Kelly V Ruggles
- Human Microbiome Program, New York University Langone Medical Center, New York, NY, USA
| | - Richard A Bonneau
- Human Microbiome Program, New York University Langone Medical Center, New York, NY, USA; New York University, Center for Data Science, New York, NY, USA; Center for Computational Biology, Flatiron Institute, Simons Foundation, New York, NY, USA
| | - Maria Gloria Dominguez-Bello
- Department of Biochemistry and Microbiology, Rutgers University - New Brunswick, New Brunswick, NJ, USA; Institute for Food, Nutrition and Health, Rutgers University - New Brunswick, New Brunswick, NJ, USA
| | - Fredrik Bäckhed
- The Wallenberg Laboratory, Department of Molecular and Clinical Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Göteborg 41345, Sweden; Region västra Götaland, Sahlgrenska University Hospital, Department of Clinical Physiology, Gothenburg, Sweden; Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Stanley L Hazen
- Cardiovascular & Metabolic Sciences, Lerner Research Institute Cleveland Clinic, Cleveland, OH, USA; Center for Microbiome & Human Health, Cleveland Clinic, Cleveland, OH 44195, USA; Heart, Vascular & Thoracic Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Martin J Blaser
- Center for Advanced Biotechnology and Medicine, Rutgers University, Piscataway, NJ, USA; Human Microbiome Program, New York University Langone Medical Center, New York, NY, USA.
| |
Collapse
|
23
|
Bode D, Cull AH, Rubio-Lara JA, Kent DG. Exploiting Single-Cell Tools in Gene and Cell Therapy. Front Immunol 2021; 12:702636. [PMID: 34322133 PMCID: PMC8312222 DOI: 10.3389/fimmu.2021.702636] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 06/28/2021] [Indexed: 12/12/2022] Open
Abstract
Single-cell molecular tools have been developed at an incredible pace over the last five years as sequencing costs continue to drop and numerous molecular assays have been coupled to sequencing readouts. This rapid period of technological development has facilitated the delineation of individual molecular characteristics including the genome, transcriptome, epigenome, and proteome of individual cells, leading to an unprecedented resolution of the molecular networks governing complex biological systems. The immense power of single-cell molecular screens has been particularly highlighted through work in systems where cellular heterogeneity is a key feature, such as stem cell biology, immunology, and tumor cell biology. Single-cell-omics technologies have already contributed to the identification of novel disease biomarkers, cellular subsets, therapeutic targets and diagnostics, many of which would have been undetectable by bulk sequencing approaches. More recently, efforts to integrate single-cell multi-omics with single cell functional output and/or physical location have been challenging but have led to substantial advances. Perhaps most excitingly, there are emerging opportunities to reach beyond the description of static cellular states with recent advances in modulation of cells through CRISPR technology, in particular with the development of base editors which greatly raises the prospect of cell and gene therapies. In this review, we provide a brief overview of emerging single-cell technologies and discuss current developments in integrating single-cell molecular screens and performing single-cell multi-omics for clinical applications. We also discuss how single-cell molecular assays can be usefully combined with functional data to unpick the mechanism of cellular decision-making. Finally, we reflect upon the introduction of spatial transcriptomics and proteomics, its complementary role with single-cell RNA sequencing (scRNA-seq) and potential application in cellular and gene therapy.
Collapse
Affiliation(s)
- Daniel Bode
- Wellcome Medical Research Council (MRC) Cambridge Stem Cell Institute, University of Cambridge, Cambridge, United Kingdom
- Department of Haematology, University of Cambridge, Cambridge, United Kingdom
| | - Alyssa H. Cull
- York Biomedical Research Institute, Department of Biology, University of York, York, United Kingdom
| | - Juan A. Rubio-Lara
- York Biomedical Research Institute, Department of Biology, University of York, York, United Kingdom
| | - David G. Kent
- York Biomedical Research Institute, Department of Biology, University of York, York, United Kingdom
| |
Collapse
|
24
|
Developmental Programming and Glucolipotoxicity: Insights on Beta Cell Inflammation and Diabetes. Metabolites 2020; 10:metabo10110444. [PMID: 33158303 PMCID: PMC7694373 DOI: 10.3390/metabo10110444] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 09/23/2020] [Accepted: 10/09/2020] [Indexed: 12/12/2022] Open
Abstract
Stimuli or insults during critical developmental transitions induce alterations in progeny anatomy, physiology, and metabolism that may be transient, sometimes reversible, but often durable, which defines programming. Glucolipotoxicity is the combined, synergistic, deleterious effect of simultaneously elevated glucose (chronic hyperglycemia) and saturated fatty acids (derived from high-fat diet overconsumption and subsequent metabolism) that are harmful to organs, micro-organs, and cells. Glucolipotoxicity induces beta cell death, dysfunction, and failure through endoplasmic reticulum and oxidative stress and inflammation. In beta cells, the misfolding of pro/insulin proteins beyond the cellular threshold triggers the unfolded protein response and endoplasmic reticulum stress. Consequentially there is incomplete and inadequate pro/insulin biosynthesis and impaired insulin secretion. Cellular stress triggers cellular inflammation, where immune cells migrate to, infiltrate, and amplify in beta cells, leading to beta cell inflammation. Endoplasmic reticulum stress reciprocally induces beta cell inflammation, whereas beta cell inflammation can self-activate and further exacerbate its inflammation. These metabolic sequelae reflect the vicious cycle of beta cell stress and inflammation in the pathophysiology of diabetes.
Collapse
|
25
|
Eckol protects against acute experimental colitis in mice: Possible involvement of Reg3g. J Funct Foods 2020. [DOI: 10.1016/j.jff.2020.104088] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
|
26
|
Berger C, Bjørlykke Y, Hahn L, Mühlemann M, Kress S, Walles H, Luxenhofer R, Ræder H, Metzger M, Zdzieblo D. Matrix decoded - A pancreatic extracellular matrix with organ specific cues guiding human iPSC differentiation. Biomaterials 2020; 244:119766. [PMID: 32199284 DOI: 10.1016/j.biomaterials.2020.119766] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 11/29/2019] [Accepted: 01/04/2020] [Indexed: 12/19/2022]
Abstract
The extracellular matrix represents a dynamic microenvironment regulating essential cell functions in vivo. Tissue engineering approaches aim to recreate the native niche in vitro using biological scaffolds generated by organ decellularization. So far, the organ specific origin of such scaffolds was less considered and potential consequences for in vitro cell culture remain largely elusive. Here, we show that organ specific cues of biological scaffolds affect cellular behavior. In detail, we report on the generation of a well-preserved pancreatic bioscaffold and introduce a scoring system allowing standardized inter-study quality assessment. Using multiple analysis tools for in-depth-characterization of the biological scaffold, we reveal unique compositional, physico-structural, and biophysical properties. Finally, we prove the functional relevance of the biological origin by demonstrating a regulatory effect of the matrix on multi-lineage differentiation of human induced pluripotent stem cells emphasizing the significance of matrix specificity for cellular behavior in artificial microenvironments.
Collapse
Affiliation(s)
- Constantin Berger
- Chair Tissue Engineering and Regenerative Medicine, University Hospital Würzburg, Würzburg, Germany
| | - Yngvild Bjørlykke
- Department of Clinical Science, University of Bergen, Bergen, Norway; Department of Pediatrics, Haukeland University Hospital, Bergen, Norway
| | - Lukas Hahn
- Functional Polymer Materials, Department of Chemistry and Pharmacy and Bavarian Polymer Institute, Würzburg University, Würzburg, Germany
| | - Markus Mühlemann
- Chair Tissue Engineering and Regenerative Medicine, University Hospital Würzburg, Würzburg, Germany
| | - Sebastian Kress
- Chair Tissue Engineering and Regenerative Medicine, University Hospital Würzburg, Würzburg, Germany
| | - Heike Walles
- Translational Center Regenerative Therapies (TLC-RT), Fraunhofer Institute for Silicate Research ISC, Würzburg, Germany; Otto-von Guericke University, Core Facility Tissue Engineering, Magdeburg, Germany
| | - Robert Luxenhofer
- Functional Polymer Materials, Department of Chemistry and Pharmacy and Bavarian Polymer Institute, Würzburg University, Würzburg, Germany
| | - Helge Ræder
- Department of Clinical Science, University of Bergen, Bergen, Norway; Department of Pediatrics, Haukeland University Hospital, Bergen, Norway
| | - Marco Metzger
- Chair Tissue Engineering and Regenerative Medicine, University Hospital Würzburg, Würzburg, Germany; Translational Center Regenerative Therapies (TLC-RT), Fraunhofer Institute for Silicate Research ISC, Würzburg, Germany
| | - Daniela Zdzieblo
- Chair Tissue Engineering and Regenerative Medicine, University Hospital Würzburg, Würzburg, Germany; Translational Center Regenerative Therapies (TLC-RT), Fraunhofer Institute for Silicate Research ISC, Würzburg, Germany.
| |
Collapse
|
27
|
Molecular Modelling of Islet β-Cell Adaptation to Inflammation in Pregnancy and Gestational Diabetes Mellitus. Int J Mol Sci 2019; 20:ijms20246171. [PMID: 31817798 PMCID: PMC6941051 DOI: 10.3390/ijms20246171] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 12/03/2019] [Accepted: 12/04/2019] [Indexed: 12/16/2022] Open
Abstract
Gestational diabetes mellitus (GDM), a metabolic disease that develops with the increase in insulin resistance during late pregnancy, is currently one of the most common complications affecting pregnancy. The polygenic nature of GDM, together with the interplay between different genetic variants with nutritional and environmental factors has hindered the full understanding of the etiology of this disease. However, an important genetic overlap has been found with type 2 diabetes mellitus (T2DM) and, as in the case of T2DM, most of the identified loci are associated with β-cell function. Early detection of GDM and adequate interventions to control the maternal glycemia are necessary to avoid the adverse outcomes for both the mother and the offspring. The in utero exposure to the diabetic milieu predispose these children for future diseases, among them T2DM, originating a vicious circle implicated in the increased prevalence of both GDM and T2DM. The involvement of inflammatory processes in the development of GDM highlights the importance of pancreatic β-cell factors able to favor the adaptation processes required during gestation, concomitantly with the protection of the islets from an inflammatory milieu. In this regard, two members of the Pax family of transcription factors, PAX4 and PAX8, together with the chromatin remodeler factor HMG20A, have gained great relevance due to their involvement in β-cell mass adaptation together with their anti-inflammatory properties. Mutations in these factors have been associated with GDM, highlighting these as novel candidates for genetic screening analysis in the identification of women at risk of developing GDM.
Collapse
|
28
|
Interleukin (IL)-22 from IL-20 Subfamily of Cytokines Induces Colonic Epithelial Cell Proliferation Predominantly through ERK1/2 Pathway. Int J Mol Sci 2019; 20:ijms20143468. [PMID: 31311100 PMCID: PMC6678670 DOI: 10.3390/ijms20143468] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 07/12/2019] [Accepted: 07/12/2019] [Indexed: 02/06/2023] Open
Abstract
The interleukin (IL)-20 subfamily of cytokines consists of IL-19, IL-20, IL-22, IL-24, and IL-26, and the expression of IL-20, IL-22, and IL-24 is reported to be higher in the colon of patients with ulcerative colitis. Although the receptors for these cytokines are highly expressed in the colon epithelium, their effects on epithelial renewal are not clearly understood. This study evaluated the effects of IL-20, IL-22, and IL-24 in epithelial renewal using the LS174T human colon cancer epithelial cell line. LS174T cells were treated with IL-20, IL-22, and IL-24 (25, 50, and 100 ng/mL) and a live-cell imaging system was used to evaluate the effects on cell proliferation. Following treatment, the signaling pathways contributing to cell proliferation were investigated through Western blotting in LS174T cells and downstream transcriptional changes through qRT-PCR in LS174T cells, and RNA-Seq in primary murine intestinal epithelial cells. Our results demonstrated that only IL-22 promoted LS174T cell proliferation, mediated via extracellular-signal-regulated kinase (ERK)1/2-mediated downstream regulation of p90RSK, c-Jun, and transcriptional changes of TRIM15 and STOM. IL-22 also promoted expression of ERK1/2-independent genes such as DDR2, LCN2, and LRG1, which are known to be involved in cell proliferation and migration. This study suggests that IL-22 induces cell proliferation in highly proliferative cells such as intestinal epithelial cells.
Collapse
|
29
|
Abstract
C-type lectins of the Reg3 family belong to antimicrobial peptides (AMPs), which function as a barrier to protect body surfaces against microorganisms. Reg3 mainly expressed throughout the small intestine modulate host defense process via bactericidal activity. A wide range of studies indicate that Reg3 family plays an important role in the physical segregation of microbiota from host as well as the immune response induced by enteric pathogens. In this review, we review a growing literature on the potential metabolic functions of Reg3 proteins and their potential to act as important gut hormones.
Collapse
Affiliation(s)
- Jae Hoon Shin
- Department of Surgery, University of Michigan, Ann Arbor, Michigan
| | - Randy J Seeley
- Department of Surgery, University of Michigan, Ann Arbor, Michigan
- Department of Surgery, Internal Medicine and Nutritional Sciences, University of Michigan, Ann Arbor, Michigan
- Correspondence: Randy J. Seeley, PhD, Department of Surgery, Internal Medicine and Nutritional Science, University of Michigan, Ann Arbor, Michigan 48109. E-mail:
| |
Collapse
|
30
|
Yu L, Li X, Zhang Z, Du P, Liu JL, Li Y, Yin T, Yu W, Sun H, Wang M, Luo C. Dimorphic autoantigenic and protective effects of Reg2 peptide in the treatment of diabetic β-cell loss. Diabetes Obes Metab 2019; 21:1209-1222. [PMID: 30690849 DOI: 10.1111/dom.13644] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Revised: 01/18/2019] [Accepted: 01/24/2019] [Indexed: 12/26/2022]
Abstract
AIMS The potential effect of regenerating (Reg) proteins in the treatment of diabetes has been indicated in the past decade, but the clinical use of Reg proteins requires more advances in translational medicine. In the present study, we produced recombinant regenerating protein 2 (rReg2), to prove its protective effect against streptozocin (STZ)-induced diabetes in BALB/c mice. MATERIALS AND METHODS rReg2 was administrated in STZ-induced diabetic mice. Blood glucose, body weight, serum insulin and islet β-cell loss were determined. However, Reg2 has also been reported to serve as an autoantigen that induces autoimmune attacks on islets and aggravates diabetic development in non-obese diabetic mice. To address this contradiction, complete Freund's adjuvant was injected to generate a model that was hypersensitive to Reg2. In this model, islet CD8 T-cell infiltration, serum Reg2 antibody and interleukin (IL)-4 and IL-10, and splenic CD4+/interferon (IFN)-γ+ T cells were determined. RESULTS Direct rReg2 pretreatment preserved islet β-cell mass against STZ and improved glycaemia, body weight and serum insulin content. The protection against cell death was further confirmed in cultured mouse islets and MIN6 cells. On the other hand, significant elevations of serum Reg2 antibody and splenic CD4+/IFN-γ+ T cells, and decreases in serum IL-4 and IL-10 were detected in rReg2-vaccinated mice, which may contribute to the accelerated diabetes. Interestingly, these mice, upon further rReg2 treatment, exhibited alleviated diabetic conditions with less islet CD8+ T-cell infiltration. CONCLUSION rReg2 treatment ameliorated STZ-induced diabetes in normal BALB/c mice. By contrast, rReg2 vaccination exacerbated, but further rReg2 treatment alleviated, the severity of STZ-induced diabetes. Thus, the protective effect of rReg2 is predominant over the autoantigenic β-cell destruction, supporting the potential of rReg2 in the clinical treatment of diabetes.
Collapse
Affiliation(s)
- Luting Yu
- Department of Biochemistry, School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
- Fraser Laboratories for Diabetes Research, Department of Medicine, McGill University Health Centre, Montreal, Canada
| | - Xiang Li
- Department of Biochemistry, School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Zhiyuan Zhang
- Department of Biochemistry, School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Pei Du
- Department of Biochemistry, School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Jun-Li Liu
- Fraser Laboratories for Diabetes Research, Department of Medicine, McGill University Health Centre, Montreal, Canada
| | - Youjie Li
- Department of Biochemistry, School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Tianqi Yin
- Department of Biochemistry, School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Weihong Yu
- Department of Biochemistry, School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Hao Sun
- Department of Biochemistry, School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Min Wang
- Department of Biochemistry, School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
- State Key Laboratory of Nature Medicines, China Pharmaceutical University, Nanjing, China
| | - Chen Luo
- Department of Biochemistry, School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| |
Collapse
|
31
|
Casasnovas J, Jo Y, Rao X, Xuei X, Brown ME, Kua KL. High glucose alters fetal rat islet transcriptome and induces progeny islet dysfunction. J Endocrinol 2019; 240:309-323. [PMID: 30508415 DOI: 10.1530/joe-18-0493] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Accepted: 11/30/2018] [Indexed: 12/11/2022]
Abstract
Offspring of diabetic mothers are susceptible to developing type 2 diabetes due to pancreatic islet dysfunction. However, the initiating molecular pathways leading to offspring pancreatic islet dysfunction are unknown. We hypothesized that maternal hyperglycemia alters offspring pancreatic islet transcriptome and negatively impacts offspring islet function. We employed an infusion model capable of inducing localized hyperglycemia in fetal rats residing in the left uterine horn, thus avoiding other factors involved in programming offspring pancreatic islet health. While maintaining euglycemia in maternal dams and right uterine horn control fetuses, hyperglycemic fetuses in the left uterine horn had higher serum insulin and pancreatic beta cell area. Upon completing infusion from GD20 to 22, RNA sequencing was performed on GD22 islets to identify the hyperglycemia-induced altered gene expression. Ingenuity pathway analysis of the altered transcriptome found that diabetes mellitus and inflammation/cell death pathways were enriched. Interestingly, the downregulated genes modulate more diverse biological processes, which includes responses to stimuli and developmental processes. Next, we performed ex and in vivo studies to evaluate islet cell viability and insulin secretory function in weanling and adult offspring. Pancreatic islets of weanlings exposed to late gestation hyperglycemia had decreased cell viability in basal state and glucose-induced insulin secretion. Lastly, adult offspring exposed to in utero hyperglycemia also exhibited glucose intolerance and insulin secretory dysfunction. Together, our results demonstrate that late gestational hyperglycemia alters the fetal pancreatic islet transcriptome and increases offspring susceptibility to developing pancreatic islet dysfunction.
Collapse
Affiliation(s)
- Jose Casasnovas
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Yunhee Jo
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Xi Rao
- Center for Medical Genomics, Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Xiaoling Xuei
- Center for Medical Genomics, Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Mary E Brown
- The Indiana Center for Biological Microscopy, Division of Nephrology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Kok Lim Kua
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, Indiana, USA
| |
Collapse
|
32
|
Therapeutic potential of pancreatic PAX4-regulated pathways in treating diabetes mellitus. Curr Opin Pharmacol 2018; 43:1-10. [DOI: 10.1016/j.coph.2018.07.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Revised: 06/22/2018] [Accepted: 07/04/2018] [Indexed: 12/16/2022]
|
33
|
Chellappan DK, Sivam NS, Teoh KX, Leong WP, Fui TZ, Chooi K, Khoo N, Yi FJ, Chellian J, Cheng LL, Dahiya R, Gupta G, Singhvi G, Nammi S, Hansbro PM, Dua K. Gene therapy and type 1 diabetes mellitus. Biomed Pharmacother 2018; 108:1188-1200. [PMID: 30372820 DOI: 10.1016/j.biopha.2018.09.138] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2018] [Revised: 09/17/2018] [Accepted: 09/26/2018] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Type 1 diabetes mellitus (T1DM) is an autoimmune disorder characterized by T cell-mediated self-destruction of insulin-secreting islet β cells. Management of T1DM is challenging and complicated especially with conventional medications. Gene therapy has emerged as one of the potential therapeutic alternatives to treat T1DM. This review primarily focuses on the current status and the future perspectives of gene therapy in the management of T1DM. A vast number of the studies which are reported on gene therapy for the management of T1DM are done in animal models and in preclinical studies. In addition, the safety of such therapies is yet to be established in humans. Currently, there are several gene level interventions that are being investigated, notably, overexpression of genes and proteins needed against T1DM, transplantation of cells that express the genes against T1DM, stem-cells mediated gene therapy, genetic vaccination, immunological precursor cell-mediated gene therapy and vectors. METHODS We searched the current literature through searchable online databases, journals and other library sources using relevant keywords and search parameters. Only relevant publications in English, between the years 2000 and 2018, with evidences and proper citations, were considered. The publications were then analyzed and segregated into several subtopics based on common words and content. A total of 126 studies were found suitable for this review. FINDINGS Generally, the pros and cons of each of the gene-based therapies have been discussed based on the results collected from the literature. However, there are certain interventions that require further detailed studies to ensure their effectiveness. We have also highlighted the future direction and perspectives in gene therapy, which, researchers could benefit from.
Collapse
Affiliation(s)
- Dinesh Kumar Chellappan
- Department of Life Sciences, International Medical University, Kuala Lumpur, 57000, Malaysia.
| | - Nandhini S Sivam
- School of Pharmacy, International Medical University, Kuala Lumpur, 57000, Malaysia
| | - Kai Xiang Teoh
- School of Pharmacy, International Medical University, Kuala Lumpur, 57000, Malaysia
| | - Wai Pan Leong
- School of Pharmacy, International Medical University, Kuala Lumpur, 57000, Malaysia
| | - Tai Zhen Fui
- School of Pharmacy, International Medical University, Kuala Lumpur, 57000, Malaysia
| | - Kien Chooi
- School of Pharmacy, International Medical University, Kuala Lumpur, 57000, Malaysia
| | - Nico Khoo
- School of Pharmacy, International Medical University, Kuala Lumpur, 57000, Malaysia
| | - Fam Jia Yi
- School of Pharmacy, International Medical University, Kuala Lumpur, 57000, Malaysia
| | - Jestin Chellian
- Department of Life Sciences, International Medical University, Kuala Lumpur, 57000, Malaysia
| | - Lim Lay Cheng
- Department of Life Sciences, International Medical University, Kuala Lumpur, 57000, Malaysia
| | - Rajiv Dahiya
- Laboratory of Peptide Research and Development, School of Pharmacy, Faculty of Medical Sciences, The University of the West Indies, St. Augustine, Trinidad and Tobago
| | - Gaurav Gupta
- School of Pharmaceutical Sciences, Jaipur National University, Jagatpura, 302017, Jaipur, India.
| | - Gautam Singhvi
- Department of Pharmacy, Birla Institute of Technology & Science (BITS), Pilani, Pilani Campus, 333031, Rajasthan, India
| | - Srinivas Nammi
- School of Science and Health, Western Sydney University, NSW, 2751, Australia; NICM Health Research Institute, Western Sydney University, NSW, 2751, Australia
| | - Philip Michael Hansbro
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo NSW, 2007, Australia; School of Biomedical Sciences and Pharmacy, The University of Newcastle, Callaghan, NSW 2308, Australia & Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, Newcastle, NSW, 2305, Australia
| | - Kamal Dua
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo NSW, 2007, Australia; School of Biomedical Sciences and Pharmacy, The University of Newcastle, Callaghan, NSW 2308, Australia & Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, Newcastle, NSW, 2305, Australia; School of Pharmaceutical Sciences, Shoolini University, Solan, Himachal Pradesh, 173229, India
| |
Collapse
|
34
|
Liu X, Zhou Z, Cheng Q, Wang H, Cao H, Xu Q, Tuo Y, Jiang L, Zou Y, Ren H, Xiang M. Acceleration of pancreatic tumorigenesis under immunosuppressive microenvironment induced by Reg3g overexpression. Cell Death Dis 2017; 8:e3033. [PMID: 28880262 PMCID: PMC5636971 DOI: 10.1038/cddis.2017.424] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Revised: 07/18/2017] [Accepted: 07/24/2017] [Indexed: 02/06/2023]
Abstract
Reg3g is a potential risk for pancreatic ductal adenocarcinoma (PDAC). We previously demonstrated that Reg3g promoted pancreatic carcinogenesis via a STAT3 signaling pathway in a murine model of chronic pancreatitis. Whether the immune response is involved in tumorigenesis induced by Reg3g remains unknown. In this study, Reg3g-regulated tumor immunity was evaluated in tumor-implanted murine models, immune cells, and tumor microenvironment. In mice that had been orthotopically or ectopically implanted with Panc02 cells, Reg3g overexpression increased EGFR and Ki67, diminished MHC-I and caspase-3 expression, and accelerated growth of tumors. By interacting with PD-1/PD-L1, Reg3g also promoted differentiation of Tregs and recruitment of MDSC, retarded maturation of DCs and inactivation of CD8+ T cells, and suppressed cross-priming of CD8+ T-cell responses by DCs in tumor-bearing mice. Knockdown of Reg3g delayed tumor development in normal mice, but not in CD8+ T-cell-deficient mice. In vitro, Reg3g upregulated EGFR in DCs, activated heme oxygenase-1 (Hmox1) involved JAK2/STAT3 signaling, raised levels of Th2 cytokines in and suppressed maturation of DCs, and enhanced tumor cell proliferation. These results reveal a novel role of Reg3g as an immunosuppressive promoter that weakens tumor-specific antigenicity and suppresses antitumor effects of CD8+ T cells in a murine model of pancreatic cancer. Reg3g produces these effects by activating the JAK2/STAT3 signaling pathway in DCs, triggering the generation of an immunosuppressive tumor microenvironment.
Collapse
Affiliation(s)
- Xiulan Liu
- Department of Pharmacology, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, China
| | - Zhongshi Zhou
- Department of Pharmacology, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, China
| | - Qi Cheng
- Department of Pharmacology, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, China
| | - Hongjie Wang
- Section of Neurobiology, Torrey Pines Institute for Molecular Studies, Port Saint Lucie, FL, USA
| | - Hui Cao
- Department of Pharmacology, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, China
| | - Qianqian Xu
- Department of Pharmacology, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, China
| | - Yali Tuo
- Department of Pharmacology, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, China
| | - Li Jiang
- Department of Biliary and Pancreatic Surgery, Affiliated Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, China
| | - You Zou
- Department of Gastrointestinal Surgery, Affiliated Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, China
| | - Hongyu Ren
- Department of Digestive Disease, Affiliated Xiehe Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Ming Xiang
- Department of Pharmacology, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, China
| |
Collapse
|
35
|
Fibroblasts accelerate islet revascularization and improve long-term graft survival in a mouse model of subcutaneous islet transplantation. PLoS One 2017; 12:e0180695. [PMID: 28672010 PMCID: PMC5495486 DOI: 10.1371/journal.pone.0180695] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Accepted: 06/20/2017] [Indexed: 02/06/2023] Open
Abstract
Pancreatic islet transplantation has been considered for many years a promising therapy for beta-cell replacement in patients with type-1 diabetes despite that long-term clinical results are not as satisfactory. This fact points to the necessity of designing strategies to improve and accelerate islets engraftment, paying special attention to events assuring their revascularization. Fibroblasts constitute a cell population that collaborates on tissue homeostasis, keeping the equilibrium between production and degradation of structural components as well as maintaining the required amount of survival factors. Our group has developed a model for subcutaneous islet transplantation using a plasma-based scaffold containing fibroblasts as accessory cells that allowed achieving glycemic control in diabetic mice. Transplanted tissue engraftment is critical during the first days after transplantation, thus we have gone in depth into the graft-supporting role of fibroblasts during the first ten days after islet transplantation. All mice transplanted with islets embedded in the plasma-based scaffold reversed hyperglycemia, although long-term glycemic control was maintained only in the group transplanted with the fibroblasts-containing scaffold. By gene expression analysis and histology examination during the first days we could conclude that these differences might be explained by overexpression of genes involved in vessel development as well as in β-cell regeneration that were detected when fibroblasts were present in the graft. Furthermore, fibroblasts presence correlated with a faster graft re-vascularization, a higher insulin-positive area and a lower cell death. Therefore, this work underlines the importance of fibroblasts as accessory cells in islet transplantation, and suggests its possible use in other graft-supporting strategies.
Collapse
|