1
|
Sunata K, Miyata J, Kawashima Y, Konno R, Ishikawa M, Hasegawa Y, Onozato R, Otsu Y, Matsuyama E, Sasaki H, Okuzumi S, Mochimaru T, Masaki K, Kabata H, Kawana A, Arita M, Fukunaga K. Multiomics analysis identified IL-4-induced IL1RL1 high eosinophils characterized by prominent cysteinyl leukotriene metabolism. J Allergy Clin Immunol 2024; 154:1277-1288. [PMID: 39067484 DOI: 10.1016/j.jaci.2024.07.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 07/17/2024] [Accepted: 07/22/2024] [Indexed: 07/30/2024]
Abstract
BACKGROUND Clinical studies have demonstrated that IL-4, a type 2 cytokine, plays an important role in the pathogenesis of chronic rhinosinusitis and eosinophilic asthma. However, the direct effect of IL-4 on eosinophils remains unclear. OBJECTIVE We aimed to elucidate the inflammatory effects of IL-4 on the functions of human eosinophils. METHODS A multiomics analysis comprising transcriptomics, proteomics, lipidomics, quantitative RT-PCR, and flow cytometry was performed by using blood eosinophils from healthy subjects stimulated with IL-4, IL-5, or a combination thereof. RESULTS Transcriptomic and proteomic analyses revealed that both IL-4 and IL-5 upregulate the expression of γ-gultamyl transferase 5, a fatty acid-metabolizing enzyme that converts leukotriene C4 into leukotriene D4. In addition, IL-4 specifically upregulates the expression of IL-1 receptor-like 1 (IL1RL1), a receptor for IL-33 and transglutaminase-2. Additional transcriptomic analysis of cells stimulated with IL-13 revealed altered gene expression profiles, characterized by the upregulation of γ-gultamyl transferase 5, transglutaminase-2, and IL1RL1. The IL-13-induced changes were not totally different from the IL-4-induced changes. Lipidomic analysis revealed that IL-5 and IL-4 additively increased the extracellular release of leukotriene D4. In vitro experiments revealed that STAT6 and IL-4 receptor-α control the expression of these molecules in the presence of IL-4 and IL-13. Analysis of eosinophils derived from patients with allergic disorders indicated the involvement of IL-4 and IL-13 at the inflamed sites. CONCLUSIONS IL-4 induces the proallergic phenotype of IL1RL1high eosinophils, with prominent cysteinyl leukotriene metabolism via STAT6. These cellular changes represent potential therapeutic targets for chronic rhinosinusitis and eosinophilic asthma.
Collapse
Affiliation(s)
- Keeya Sunata
- Division of Pulmonary Medicine, Department of Medicine, Keio University School of Medicine, Tokyo, Japan; Laboratory for Metabolomics, RIKEN Center for Integrative Medical Sciences, Kanagawa, Japan
| | - Jun Miyata
- Division of Pulmonary Medicine, Department of Medicine, Keio University School of Medicine, Tokyo, Japan; Laboratory for Metabolomics, RIKEN Center for Integrative Medical Sciences, Kanagawa, Japan; Division of Infectious Diseases and Respiratory Medicine, Department of Internal Medicine, National Defense Medical College, Saitama, Japan.
| | - Yusuke Kawashima
- Department of Applied Genomics, Kazusa DNA Research Institute, Chiba, Japan
| | - Ryo Konno
- Department of Applied Genomics, Kazusa DNA Research Institute, Chiba, Japan
| | - Masaki Ishikawa
- Department of Applied Genomics, Kazusa DNA Research Institute, Chiba, Japan
| | - Yoshinori Hasegawa
- Department of Applied Genomics, Kazusa DNA Research Institute, Chiba, Japan
| | - Ryuta Onozato
- Division of Pulmonary Medicine, Department of Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Yo Otsu
- Division of Pulmonary Medicine, Department of Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Emiko Matsuyama
- Division of Pulmonary Medicine, Department of Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Hisashi Sasaki
- Division of Infectious Diseases and Respiratory Medicine, Department of Internal Medicine, National Defense Medical College, Saitama, Japan
| | - Shinichi Okuzumi
- Division of Pulmonary Medicine, Department of Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Takao Mochimaru
- Division of Pulmonary Medicine, Department of Medicine, Keio University School of Medicine, Tokyo, Japan; Department of Respiratory Medicine, National Hospital Organization Tokyo Medical Center, Tokyo, Japan
| | - Katsunori Masaki
- Division of Pulmonary Medicine, Department of Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Hiroki Kabata
- Division of Pulmonary Medicine, Department of Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Akihiko Kawana
- Division of Infectious Diseases and Respiratory Medicine, Department of Internal Medicine, National Defense Medical College, Saitama, Japan
| | - Makoto Arita
- Laboratory for Metabolomics, RIKEN Center for Integrative Medical Sciences, Kanagawa, Japan; Graduate School of Medical Life Science, Yokohama City University, Kanagawa, Japan; Division of Physiological Chemistry and Metabolism, Graduate School of Pharmaceutical Sciences, Keio University, Tokyo, Japan; Human Biology-Microbiome-Quantum Research Center (WPI-Bio2Q), Keio University, Tokyo, Japan
| | - Koichi Fukunaga
- Division of Pulmonary Medicine, Department of Medicine, Keio University School of Medicine, Tokyo, Japan
| |
Collapse
|
2
|
Koganesawa M, Dwyer D, Alhallak K, Nagai J, Zaleski K, Samuchiwal S, Hiroaki H, Nishida A, Hirsch TI, Brennan PJ, Puder M, Balestrieri B. Pla2g5 contributes to viral-like-induced lung inflammation through macrophage proliferation and LA/Ffar1 lung cell recruitment. Immunology 2024; 172:144-162. [PMID: 38361249 PMCID: PMC11057362 DOI: 10.1111/imm.13766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 02/01/2024] [Indexed: 02/17/2024] Open
Abstract
Macrophages expressing group V phospholipase A2 (Pla2g5) release the free fatty acid (FFA) linoleic acid (LA), potentiating lung type 2 inflammation. Although Pla2g5 and LA increase in viral infections, their role remains obscure. We generated Pla2g5flox/flox mice, deleted Pla2g5 by using the Cx3cr1cre transgene, and activated bone marrow-derived macrophages (BM-Macs) with poly:IC, a synthetic double-stranded RNA that triggers a viral-like immune response, known Pla2g5-dependent stimuli (IL-4, LPS + IFNγ, IL-33 + IL-4 + GM-CSF) and poly:IC + LA followed by lipidomic and transcriptomic analysis. Poly:IC-activated Pla2g5flox/flox;Cx3cr1cre/+ BM-Macs had downregulation of major bioactive lipids and critical enzymes producing those bioactive lipids. In addition, AKT phosphorylation was lower in poly:IC-stimulated Pla2g5flox/flox;Cx3cr1cre/+ BM-Macs, which was not restored by adding LA to poly:IC-stimulated BM-Macs. Consistently, Pla2g5flox/flox;Cx3cr1cre/+ mice had diminished poly:IC-induced lung inflammation, including inflammatory macrophage proliferation, while challenging Pla2g5flox/flox;Cx3cr1cre/+ mice with poly:IC + LA partially restored lung inflammation and inflammatory macrophage proliferation. Finally, mice lacking FFA receptor-1 (Ffar1)-null mice had reduced poly:IC-induced lung cell recruitment and tissue macrophage proliferation, not corrected by LA. Thus, Pla2g5 contributes to poly:IC-induced lung inflammation by regulating inflammatory macrophage proliferation and LA/Ffar1-mediated lung cell recruitment and tissue macrophage proliferation.
Collapse
Affiliation(s)
- Masaya Koganesawa
- Division of Allergy and Clinical Immunology, Vinik Center for Translational Immunology Research, Brigham and Women’s Hospital, Boston, MA
| | - Daniel Dwyer
- Division of Allergy and Clinical Immunology, Vinik Center for Translational Immunology Research, Brigham and Women’s Hospital, Boston, MA
| | - Kinan Alhallak
- Division of Allergy and Clinical Immunology, Vinik Center for Translational Immunology Research, Brigham and Women’s Hospital, Boston, MA
| | - Jun Nagai
- Division of Allergy and Clinical Immunology, Vinik Center for Translational Immunology Research, Brigham and Women’s Hospital, Boston, MA
| | - Kendall Zaleski
- Division of Allergy and Clinical Immunology, Vinik Center for Translational Immunology Research, Brigham and Women’s Hospital, Boston, MA
| | - Sachin Samuchiwal
- Division of Allergy and Clinical Immunology, Vinik Center for Translational Immunology Research, Brigham and Women’s Hospital, Boston, MA
| | - Hayashi Hiroaki
- Division of Allergy and Clinical Immunology, Vinik Center for Translational Immunology Research, Brigham and Women’s Hospital, Boston, MA
| | - Airi Nishida
- Division of Allergy and Clinical Immunology, Vinik Center for Translational Immunology Research, Brigham and Women’s Hospital, Boston, MA
| | - Thomas I. Hirsch
- Department of Surgery and Vascular Biology Program Boston Children’s Hospital, Boston, MA
| | - Patrick J. Brennan
- Division of Allergy and Clinical Immunology, Vinik Center for Translational Immunology Research, Brigham and Women’s Hospital, Boston, MA
| | - Mark Puder
- Department of Surgery and Vascular Biology Program Boston Children’s Hospital, Boston, MA
| | - Barbara Balestrieri
- Division of Allergy and Clinical Immunology, Vinik Center for Translational Immunology Research, Brigham and Women’s Hospital, Boston, MA
| |
Collapse
|
3
|
Arbildi P, Calvo F, Macías V, Rodríguez-Camejo C, Sóñora C, Hernández A. Study of tissue transglutaminase spliced variants expressed in THP-1 derived macrophages exhibiting distinct functional phenotypes. Immunobiology 2023; 228:152752. [PMID: 37813017 DOI: 10.1016/j.imbio.2023.152752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 09/21/2023] [Accepted: 09/30/2023] [Indexed: 10/11/2023]
Abstract
Tissue transglutaminase (TG2) expressed in monocytes and macrophage is known to participate in processes during either early and resolution stages of inflammation. The alternative splicing of tissue transglutaminase gene is a mechanism that increases its functional diversity. Four spliced variants are known with truncated C-terminal domains (TGM2_v2, TGM2_v3, TGM2_v4a, TGM2_v4b) but scarce information is available about its expression in human monocyte and macrophages. We studied the expression of canonical TG2 (TGM2_v1) and its short spliced variants by RT-PCR during differentiation of TPH-1 derived macrophages (dTHP-1) using two protocols (condition I and II) that differ in Phorbol-12-myristate-13-acetate dose and time schedule. The production of TNF-α and IL-1β in supernatant of dTHP-1, measured by ELISA in supernatants showed higher proinflammatory milieu in condition I. We found that the expression of all mRNA TG2 spliced variants were up-regulated during macrophage differentiation and after IFN-γ treatment of dTHP-1 cells in both conditions. Nevertheless, the relative fold increase or TGM2_v3 in relation with TGM2_v1 was higher only with the condition I. M1/M2-like THP-1 macrophages obtained with IFN-γ/IL-4 treatments showed that the up-regulation of TGM2_v1 induced by IL-4 was higher in relation with any short spliced variants. The qualitative profile of relative contribution of spliced variants in M1/M2-like THP-1 cells showed a trend to higher expression of TGM2_v3 in the inflammatory functional phenotype. Our results contribute to the knowledge about TG2 spliced variants in the biology of monocyte/macrophage cells and show how the differentiation conditions can alter their expression and cell function.
Collapse
Affiliation(s)
- Paula Arbildi
- Unidad Asociada de Inmunología, Instituto de Química Biológica (IQB), Facultad de Ciencias, Universidad de la República, Iguá 4225, Montevideo 11400, Uruguay; Area Inmunología, Departamento de Biociencias (DEPBIO), Facultad de Química, Universidad de la República, General Flores 2124, Montevideo 11800, Uruguay; Laboratorio de Inmunología, Instituto de Higiene "Prof. Arnoldo Berta", Universidad de la República, Alfredo Navarro 3051, Montevideo 11600, Uruguay.
| | - Federico Calvo
- Unidad Asociada de Inmunología, Instituto de Química Biológica (IQB), Facultad de Ciencias, Universidad de la República, Iguá 4225, Montevideo 11400, Uruguay; Area Inmunología, Departamento de Biociencias (DEPBIO), Facultad de Química, Universidad de la República, General Flores 2124, Montevideo 11800, Uruguay; Laboratorio de Inmunología, Instituto de Higiene "Prof. Arnoldo Berta", Universidad de la República, Alfredo Navarro 3051, Montevideo 11600, Uruguay
| | - Victoria Macías
- Unidad Asociada de Inmunología, Instituto de Química Biológica (IQB), Facultad de Ciencias, Universidad de la República, Iguá 4225, Montevideo 11400, Uruguay; Area Inmunología, Departamento de Biociencias (DEPBIO), Facultad de Química, Universidad de la República, General Flores 2124, Montevideo 11800, Uruguay; Laboratorio de Inmunología, Instituto de Higiene "Prof. Arnoldo Berta", Universidad de la República, Alfredo Navarro 3051, Montevideo 11600, Uruguay
| | - Claudio Rodríguez-Camejo
- Unidad Asociada de Inmunología, Instituto de Química Biológica (IQB), Facultad de Ciencias, Universidad de la República, Iguá 4225, Montevideo 11400, Uruguay; Area Inmunología, Departamento de Biociencias (DEPBIO), Facultad de Química, Universidad de la República, General Flores 2124, Montevideo 11800, Uruguay; Laboratorio de Inmunología, Instituto de Higiene "Prof. Arnoldo Berta", Universidad de la República, Alfredo Navarro 3051, Montevideo 11600, Uruguay.
| | - Cecilia Sóñora
- Unidad Asociada de Inmunología, Instituto de Química Biológica (IQB), Facultad de Ciencias, Universidad de la República, Iguá 4225, Montevideo 11400, Uruguay; Area Inmunología, Departamento de Biociencias (DEPBIO), Facultad de Química, Universidad de la República, General Flores 2124, Montevideo 11800, Uruguay; Laboratorio de Inmunología, Instituto de Higiene "Prof. Arnoldo Berta", Universidad de la República, Alfredo Navarro 3051, Montevideo 11600, Uruguay; Escuela Universitaria de Tecnología Médica (EUTM), Facultad de Medicina, Universidad de la República, Alfredo Navarro S/N, Montevideo 11600, Uruguay.
| | - Ana Hernández
- Unidad Asociada de Inmunología, Instituto de Química Biológica (IQB), Facultad de Ciencias, Universidad de la República, Iguá 4225, Montevideo 11400, Uruguay; Area Inmunología, Departamento de Biociencias (DEPBIO), Facultad de Química, Universidad de la República, General Flores 2124, Montevideo 11800, Uruguay; Laboratorio de Inmunología, Instituto de Higiene "Prof. Arnoldo Berta", Universidad de la República, Alfredo Navarro 3051, Montevideo 11600, Uruguay.
| |
Collapse
|
4
|
Dhakal B, Li CMY, Ramezanpour M, Houtak G, Li R, Bouras G, Collela A, Chegeni N, Chataway TK, Drew P, Sallustio BC, Vreugde S, Smith E, Maddern G, Licari G, Fenix K. Proteomic characterisation of perhexiline treatment on THP-1 M1 macrophage differentiation. Front Immunol 2023; 14:1054588. [PMID: 36993962 PMCID: PMC10040681 DOI: 10.3389/fimmu.2023.1054588] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 02/21/2023] [Indexed: 03/16/2023] Open
Abstract
BackgroundDysregulated inflammation is important in the pathogenesis of many diseases including cancer, allergy, and autoimmunity. Macrophage activation and polarisation are commonly involved in the initiation, maintenance and resolution of inflammation. Perhexiline (PHX), an antianginal drug, has been suggested to modulate macrophage function, but the molecular effects of PHX on macrophages are unknown. In this study we investigated the effect of PHX treatment on macrophage activation and polarization and reveal the underlying proteomic changes induced.MethodsWe used an established protocol to differentiate human THP-1 monocytes into M1 or M2 macrophages involving three distinct, sequential stages (priming, rest, and differentiation). We examined the effect of PHX treatment at each stage on the polarization into either M1 or M2 macrophages using flow cytometry, quantitative polymerase chain reaction (qPCR) and enzyme linked immunosorbent assay (ELISA). Quantitative changes in the proteome were investigated using data independent acquisition mass spectrometry (DIA MS).ResultsPHX treatment promoted M1 macrophage polarization, including increased STAT1 and CCL2 expression and IL-1β secretion. This effect occurred when PHX was added at the differentiation stage of the M1 cultures. Proteomic profiling of PHX treated M1 cultures identified changes in metabolic (fatty acid metabolism, cholesterol homeostasis and oxidative phosphorylation) and immune signalling (Receptor Tyrosine Kinase, Rho GTPase and interferon) pathways.ConclusionThis is the first study to report on the action of PHX on THP-1 macrophage polarization and the associated changes in the proteome of these cells.
Collapse
Affiliation(s)
- Bimala Dhakal
- Discipline of Surgery, Adelaide Medical School, The University of Adelaide, Adelaide, SA, Australia
- The Basil Hetzel Institute for Translational Health Research, The Queen Elizabeth Hospital, Adelaide, SA, Australia
| | - Celine Man Ying Li
- Discipline of Surgery, Adelaide Medical School, The University of Adelaide, Adelaide, SA, Australia
- The Basil Hetzel Institute for Translational Health Research, The Queen Elizabeth Hospital, Adelaide, SA, Australia
| | - Mahnaz Ramezanpour
- Discipline of Surgery, Adelaide Medical School, The University of Adelaide, Adelaide, SA, Australia
- The Basil Hetzel Institute for Translational Health Research, The Queen Elizabeth Hospital, Adelaide, SA, Australia
- Department of Surgery-Otolaryngology Head and Neck Surgery, Central Adelaide Local Health Network, Adelaide, SA, Australia
| | - Ghais Houtak
- Discipline of Surgery, Adelaide Medical School, The University of Adelaide, Adelaide, SA, Australia
- The Basil Hetzel Institute for Translational Health Research, The Queen Elizabeth Hospital, Adelaide, SA, Australia
- Department of Surgery-Otolaryngology Head and Neck Surgery, Central Adelaide Local Health Network, Adelaide, SA, Australia
| | - Runhao Li
- Discipline of Surgery, Adelaide Medical School, The University of Adelaide, Adelaide, SA, Australia
- The Basil Hetzel Institute for Translational Health Research, The Queen Elizabeth Hospital, Adelaide, SA, Australia
- Medical Oncology, The Queen Elizabeth Hospital, Adelaide, SA, Australia
| | - George Bouras
- Discipline of Surgery, Adelaide Medical School, The University of Adelaide, Adelaide, SA, Australia
- The Basil Hetzel Institute for Translational Health Research, The Queen Elizabeth Hospital, Adelaide, SA, Australia
- Department of Surgery-Otolaryngology Head and Neck Surgery, Central Adelaide Local Health Network, Adelaide, SA, Australia
| | - Alex Collela
- Flinders Omics Facility, Department of Human Physiology, Flinders University, Adelaide, SA, Australia
| | - Nusha Chegeni
- Flinders Omics Facility, Department of Human Physiology, Flinders University, Adelaide, SA, Australia
| | - Tim Kennion Chataway
- Flinders Omics Facility, Department of Human Physiology, Flinders University, Adelaide, SA, Australia
| | - Paul Drew
- Discipline of Surgery, Adelaide Medical School, The University of Adelaide, Adelaide, SA, Australia
- The Basil Hetzel Institute for Translational Health Research, The Queen Elizabeth Hospital, Adelaide, SA, Australia
| | - Benedetta C. Sallustio
- The Basil Hetzel Institute for Translational Health Research, The Queen Elizabeth Hospital, Adelaide, SA, Australia
- Discipline of Pharmacology, School of Biomedicine, The University of Adelaide, Adelaide, SA, Australia
| | - Sarah Vreugde
- Discipline of Surgery, Adelaide Medical School, The University of Adelaide, Adelaide, SA, Australia
- The Basil Hetzel Institute for Translational Health Research, The Queen Elizabeth Hospital, Adelaide, SA, Australia
- Department of Surgery-Otolaryngology Head and Neck Surgery, Central Adelaide Local Health Network, Adelaide, SA, Australia
| | - Eric Smith
- Discipline of Surgery, Adelaide Medical School, The University of Adelaide, Adelaide, SA, Australia
- The Basil Hetzel Institute for Translational Health Research, The Queen Elizabeth Hospital, Adelaide, SA, Australia
- Medical Oncology, The Queen Elizabeth Hospital, Adelaide, SA, Australia
| | - Guy Maddern
- Discipline of Surgery, Adelaide Medical School, The University of Adelaide, Adelaide, SA, Australia
- The Basil Hetzel Institute for Translational Health Research, The Queen Elizabeth Hospital, Adelaide, SA, Australia
| | - Giovanni Licari
- The Basil Hetzel Institute for Translational Health Research, The Queen Elizabeth Hospital, Adelaide, SA, Australia
- Discipline of Pharmacology, School of Biomedicine, The University of Adelaide, Adelaide, SA, Australia
| | - Kevin Fenix
- Discipline of Surgery, Adelaide Medical School, The University of Adelaide, Adelaide, SA, Australia
- The Basil Hetzel Institute for Translational Health Research, The Queen Elizabeth Hospital, Adelaide, SA, Australia
- Department of Surgery-Otolaryngology Head and Neck Surgery, Central Adelaide Local Health Network, Adelaide, SA, Australia
- *Correspondence: Kevin Fenix,
| |
Collapse
|
5
|
Chen L, Liu S, Xiao L, Chen K, Tang J, Huang C, Luo W, Ferrandon D, Lai K, Li Z. An initial assessment of the involvement of transglutaminase2 in eosinophilic bronchitis using a disease model developed in C57BL/6 mice. Sci Rep 2021; 11:11946. [PMID: 34099759 PMCID: PMC8184915 DOI: 10.1038/s41598-021-90950-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 05/12/2021] [Indexed: 11/09/2022] Open
Abstract
The detailed pathogenesis of eosinophilic bronchitis (EB) remains unclear. Transglutaminase 2 (TG2) has been implicated in many respiratory diseases including asthma. Herein, we aim to assess preliminarily the relationship of TG2 with EB in the context of the development of an appropriate EB model through ovalbumin (OVA) sensitization and challenge in the C57BL/6 mouse strain. Our data lead us to propose a 50 μg dose of OVA challenge as appropriate to establish an EB model in C57BL/6 mice, whereas a challenge with a 400 μg dose of OVA significantly induced asthma. Compared to controls, TG2 is up-regulated in the airway epithelium of EB mice and EB patients. When TG2 activity was inhibited by cystamine treatment, there were no effects on airway responsiveness; in contrast, the lung pathology score and eosinophil counts in bronchoalveolar lavage fluid were significantly increased whereas the cough frequency was significantly decreased. The expression levels of interleukin (IL)-4, IL-13, IL-6, mast cell protease7 and the transient receptor potential (TRP) ankyrin 1 (TRPA1), TRP vanilloid 1 (TRPV1) were significantly decreased. These data open the possibility of an involvement of TG2 in mediating the increased cough frequency in EB through the regulation of TRPA1 and TRPV1 expression. The establishment of an EB model in C57BL/6 mice opens the way for a genetic investigation of the involvement of TG2 and other molecules in this disease using KO mice, which are often generated in the C57BL/6 genetic background.
Collapse
Affiliation(s)
- Lan Chen
- Sino-French Hoffmann Institute, Guangzhou, China
| | - Shuyan Liu
- Sino-French Hoffmann Institute, Guangzhou, China
| | - Linzhuo Xiao
- Sino-French Hoffmann Institute, Guangzhou, China
| | - Kanyao Chen
- Sino-French Hoffmann Institute, Guangzhou, China
| | | | - Chuqin Huang
- State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, Guangzhou Medical University, Guangzhou, China
| | - Wei Luo
- State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, Guangzhou Medical University, Guangzhou, China
| | - Dominique Ferrandon
- Sino-French Hoffmann Institute, Guangzhou, China
- State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, Guangzhou Medical University, Guangzhou, China
- Université de Strasbourg, M3I UPR9022 du CNRS, 67000, Strasbourg, France
| | - Kefang Lai
- State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, Guangzhou Medical University, Guangzhou, China.
| | - Zi Li
- Sino-French Hoffmann Institute, Guangzhou, China.
- State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, Guangzhou Medical University, Guangzhou, China.
| |
Collapse
|
6
|
Heffron SP, Weinstock A, Scolaro B, Chen S, Sansbury BE, Marecki G, Rolling CC, El Bannoudi H, Barrett T, Canary JW, Spite M, Berger JS, Fisher EA. Platelet-conditioned media induces an anti-inflammatory macrophage phenotype through EP4. J Thromb Haemost 2021; 19:562-573. [PMID: 33171016 PMCID: PMC7902474 DOI: 10.1111/jth.15172] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 10/24/2020] [Accepted: 10/27/2020] [Indexed: 02/02/2023]
Abstract
BACKGROUND Platelets are increasingly recognized as immune cells. As such, they are commonly seen to induce and perpetuate inflammation; however, anti-inflammatory activities are increasingly attributed to them. Atherosclerosis is a chronic inflammatory condition. Similar to other inflammatory conditions, the resolution of atherosclerosis requires a shift in macrophages to an M2 phenotype, enhancing their efferocytosis and cholesterol efflux capabilities. OBJECTIVES To assess the effect of platelets on macrophage phenotype. METHODS In several in vitro models employing murine (RAW264.7 and bone marrow-derived macrophages) and human (THP-1 and monocyte-derived macrophages) cells, we exposed macrophages to media in which non-agonized human platelets were cultured for 60 minutes (platelet-conditioned media [PCM]) and assessed the impact on macrophage phenotype and function. RESULTS Across models, we demonstrated that PCM from healthy humans induced a pro-resolving phenotype in macrophages. This was independent of signal transducer and activator of transcription 6 (STAT6), the prototypical pathway for M2 macrophage polarization. Stimulation of the EP4 receptor on macrophages by prostaglandin E2 present in PCM, is at least partially responsible for altered gene expression and associated function of the macrophages-specifically reduced peroxynitrite production, increased efferocytosis and cholesterol efflux capacity, and increased production of pro-resolving lipid mediators (ie, 15R-LXA4 ). CONCLUSIONS Platelet-conditioned media induces an anti-inflammatory, pro-resolving phenotype in macrophages. Our findings suggest that therapies targeting hemostatic properties of platelets, while not influencing pro-resolving, immune-related activities, could be beneficial for the treatment of atherothrombotic disease.
Collapse
Affiliation(s)
- Sean P. Heffron
- NYU Langone Health, Leon H. Charney Division of Cardiology, New York, NY, USA
- NYU Langone Health, NYU Center for the Prevention of Cardiovascular Disease, New York, NY, USA
| | - Ada Weinstock
- NYU Langone Health, Leon H. Charney Division of Cardiology, New York, NY, USA
| | - Bianca Scolaro
- NYU Langone Health, Leon H. Charney Division of Cardiology, New York, NY, USA
| | - Shiyu Chen
- NYU Department of Chemistry, New York, NY, USA
| | - Brian E. Sansbury
- Center for Experimental Therapeutics and Reperfusion Injury, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
| | - Greg Marecki
- NYU Langone Health, Leon H. Charney Division of Cardiology, New York, NY, USA
| | | | - Hanane El Bannoudi
- NYU Langone Health, Leon H. Charney Division of Cardiology, New York, NY, USA
| | - Tessa Barrett
- NYU Langone Health, Leon H. Charney Division of Cardiology, New York, NY, USA
| | | | - Matthew Spite
- Center for Experimental Therapeutics and Reperfusion Injury, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
| | - Jeffrey S. Berger
- NYU Langone Health, Leon H. Charney Division of Cardiology, New York, NY, USA
- NYU Langone Health, NYU Center for the Prevention of Cardiovascular Disease, New York, NY, USA
- NYU Langone Health, Department of Surgery, New York University, New York, NY, USA
| | - Edward A. Fisher
- NYU Langone Health, Leon H. Charney Division of Cardiology, New York, NY, USA
- NYU Langone Health, NYU Center for the Prevention of Cardiovascular Disease, New York, NY, USA
| |
Collapse
|
7
|
Koganesawa M, Yamaguchi M, Samuchiwal SK, Balestrieri B. Lipid Profile of Activated Macrophages and Contribution of Group V Phospholipase A 2. Biomolecules 2020; 11:biom11010025. [PMID: 33383652 PMCID: PMC7823364 DOI: 10.3390/biom11010025] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 12/21/2020] [Accepted: 12/23/2020] [Indexed: 12/17/2022] Open
Abstract
Macrophages activated by Interleukin (IL)-4 (M2) or LPS+ Interferon (IFN)γ (M1) perform specific functions respectively in type 2 inflammation and killing of pathogens. Group V phospholipase A2 (Pla2g5) is required for the development and functions of IL-4-activated macrophages and phagocytosis of pathogens. Pla2g5-generated bioactive lipids, including lysophospholipids (LysoPLs), fatty acids (FAs), and eicosanoids, have a role in many diseases. However, little is known about their production by differentially activated macrophages. We performed an unbiased mass-spectrometry analysis of phospholipids (PLs), LysoPLs, FAs, and eicosanoids produced by Wild Type (WT) and Pla2g5-null IL-4-activated bone marrow-derived macrophages (IL-4)BM-Macs (M2) and (LPS+IFNγ)BM-Macs (M1). Phosphatidylcholine (PC) was preferentially metabolized in (LPS+IFNγ)BM-Macs and Phosphatidylethanolamine (PE) in (IL-4)BM-Macs, with Pla2g5 contributing mostly to metabolization of selected PE molecules. While Pla2g5 produced palmitic acid (PA) in (LPS+IFNγ)BM-Macs, the absence of Pla2g5 increased myristic acid (MA) in (IL-4)BM-Macs. Among eicosanoids, Prostaglandin E2 (PGE2) and prostaglandin D2 (PGD2) were significantly reduced in (IL-4)BM-Macs and (LPS+IFNγ)BM-Macs lacking Pla2g5. Instead, the IL-4-induced increase in 20-carboxy arachidonic acid (20CooH AA) was dependent on Pla2g5, as was the production of 12-hydroxy-heptadecatrienoic acid (12-HHTrE) in (LPS+IFNγ)BM-Macs. Thus, Pla2g5 contributes to PE metabolization, PGE2 and PGD2 production independently of the type of activation, while in (IL-4)BM-Macs, Pla2g5 regulates selective lipid pathways and likely novel functions.
Collapse
|
8
|
Ogden HL, Lai Y, Nolin JD, An D, Frevert CW, Gelb MH, Altemeier WA, Hallstrand TS. Secreted Phospholipase A 2 Group X Acts as an Adjuvant for Type 2 Inflammation, Leading to an Allergen-Specific Immune Response in the Lung. THE JOURNAL OF IMMUNOLOGY 2020; 204:3097-3107. [PMID: 32341057 DOI: 10.4049/jimmunol.2000102] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 04/05/2020] [Indexed: 11/19/2022]
Abstract
Secreted phospholipase A2 (sPLA2) enzymes release free fatty acids, including arachidonic acid, and generate lysophospholipids from phospholipids, including membrane phospholipids from cells and bacteria and surfactant phospholipids. We have shown that an endogenous enzyme sPLA2 group X (sPLA2-X) is elevated in the airways of asthmatics and that mice lacking the sPLA2-X gene (Pla2g10) display attenuated airway hyperresponsiveness, innate and adaptive immune responses, and type 2 cytokine production in a model of airway sensitization and challenge using a complete allergen that induces endogenous adjuvant activity. This complete allergen also induces the expression of sPLA2-X/Pla2g10 In the periphery, an sPLA2 found in bee venom (bee venom PLA2) administered with the incomplete Ag OVA leads to an Ag-specific immune response. In this study, we demonstrate that both bee venom PLA2 and murine sPLA2-X have adjuvant activity, leading to a type 2 immune response in the lung with features of airway hyperresponsiveness and Ag-specific type 2 airway inflammation following peripheral sensitization and subsequent airway challenge with OVA. Further, the adjuvant effects of sPLA2-X that result in the type 2-biased OVA-specific adaptive immune response in the lung were dependent upon the catalytic activity of the enzyme, as a catalytically inactive mutant form of sPLA2-X does not elicit the adaptive component of the immune response, although other components of the immune response were induced by the inactive enzyme, suggesting receptor-mediated effects. Our results demonstrate that exogenous and endogenous sPLA2s play an important role in peripheral sensitization, resulting in airway responses to inhaled Ags.
Collapse
Affiliation(s)
- Herbert Luke Ogden
- Division of Pulmonary, Critical Care and Sleep, Department of Medicine, University of Washington, Seattle, WA 98109
| | - Ying Lai
- Division of Pulmonary, Critical Care and Sleep, Department of Medicine, University of Washington, Seattle, WA 98109
| | - James D Nolin
- Division of Pulmonary, Critical Care and Sleep, Department of Medicine, University of Washington, Seattle, WA 98109
| | - Dowon An
- Division of Pulmonary, Critical Care and Sleep, Department of Medicine, University of Washington, Seattle, WA 98109
| | - Charles W Frevert
- Division of Pulmonary, Critical Care and Sleep, Department of Medicine, University of Washington, Seattle, WA 98109.,Department of Comparative Medicine, University of Washington, Seattle, WA 98109
| | - Michael H Gelb
- Department of Chemistry, University of Washington, Seattle, WA 98195; and.,Department of Biochemistry, University of Washington, Seattle, WA 98195
| | - William A Altemeier
- Division of Pulmonary, Critical Care and Sleep, Department of Medicine, University of Washington, Seattle, WA 98109
| | - Teal S Hallstrand
- Division of Pulmonary, Critical Care and Sleep, Department of Medicine, University of Washington, Seattle, WA 98109;
| |
Collapse
|
9
|
Abdelaziz MH, Abdelwahab SF, Wan J, Cai W, Huixuan W, Jianjun C, Kumar KD, Vasudevan A, Sadek A, Su Z, Wang S, Xu H. Alternatively activated macrophages; a double-edged sword in allergic asthma. J Transl Med 2020; 18:58. [PMID: 32024540 PMCID: PMC7003359 DOI: 10.1186/s12967-020-02251-w] [Citation(s) in RCA: 178] [Impact Index Per Article: 35.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Accepted: 01/30/2020] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Macrophages are heterogenous phagocytic cells with an important role in the innate immunity. They are, also, significant contributors in the adaptive immune system. Macrophages are the most abundant immune cells in the lung during allergic asthma, which is the most common chronic respiratory disease of both adults and children. Macrophages activated by Th1 cells are known as M1 macrophages while those activated by IL-4 and IL-13 are called alternatively activated macrophages (AAM) or M2 cells. AAM are subdivided into four distinct subtypes (M2a, M2b, M2c and M2d), depending on the nature of inducing agent and the expressed markers. BODY: IL-4 is the major effector cytokine in both alternative activation of macrophages and pathogenesis of asthma. Thus, the role of M2a macrophages in asthma is a major concern. However, this is controversial. Therefore, further studies are required to improve our knowledge about the role of IL-4-induced macrophages in allergic asthma, through precisive elucidation of the roles of specific M2a proteins in the pathogenesis of asthma. In the current review, we try to illustrate the different functions of M2a macrophages (protective and pathogenic roles) in the pathogenesis of asthma, including explanation of how different M2a proteins and markers act during the pathogenesis of allergic asthma. These include surface markers, enzymes, secreted proteins, chemokines, cytokines, signal transduction proteins and transcription factors. CONCLUSIONS AAM is considered a double-edged sword in allergic asthma. Finally, we recommend further studies that focus on increased selective expression or suppression of protective and pathogenic M2a markers.
Collapse
Affiliation(s)
- Mohamed Hamed Abdelaziz
- Department of Immunology, School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Sayed F Abdelwahab
- Department of Microbiology and Immunology, Faculty of Medicine, Minia University, Minia, 61511, Egypt.
- Division of Pharmaceutical Microbiology, Department of Pharmaceutics and Pharmaceutical Technology, Taif University, College of Pharmacy, Taif, 21974, Kingdom of Saudi Arabia.
| | - Jie Wan
- Department of Immunology, School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Wei Cai
- Department of Immunology, School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Wang Huixuan
- Department of Immunology, School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Cheng Jianjun
- Department of Immunology, School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Kesavan Dinesh Kumar
- Department of Immunology, School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Aparna Vasudevan
- Department of Immunology, School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Ahmed Sadek
- Department of Microbiology & Immunology, School of Medicine, Assiut University, Assiut, 71515, Egypt
| | - Zhaoliang Su
- Department of Immunology, School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Shengjun Wang
- Department of Immunology, School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Huaxi Xu
- Department of Immunology, School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, China.
| |
Collapse
|
10
|
Sestito C, Brevé JJP, Bol JGJM, Wilhelmus MMM, Drukarch B, van Dam AM. Tissue Transglutaminase contributes to myelin phagocytosis in interleukin-4-treated human monocyte-derived macrophages. Cytokine 2020; 128:155024. [PMID: 32032932 DOI: 10.1016/j.cyto.2020.155024] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 01/14/2020] [Accepted: 01/29/2020] [Indexed: 12/11/2022]
Abstract
Macrophages exert either a detrimental or beneficial role in Multiple Sclerosis (MS) pathology, depending on their inflammatory environment. Tissue Transglutaminase (TG2), a calcium-dependent cross-linking enzyme, has been described as a novel marker for anti-inflammatory, interleukin-4 (IL-4) polarized macrophages (M(IL-4)), which represent a subpopulation of macrophages with phagocytic abilities. Since TG2 is expressed in macrophages in active human MS lesions, we questioned whether TG2 drives the differentiation of M(IL-4) into an anti-inflammatory phenotype and whether it plays a role in the phagocytosis of myelin by these cells. In macrophage-differentiated THP-1 monocytes, TG2 was increased upon IL-4 treatment. Reducing TG2 expression impairs the differentiation of M(IL-4) macrophages into an anti-inflammatory phenotype and drives them into a pro-inflammatory state. In addition, reduced TG2 expression resulted in increased presence of myelin basic protein in macrophages upon myelin exposure of M(IL-4) macrophages. Moreover, the elevated presence of an early endosome marker and equal expression of a lysosome marker compared to control macrophages, suggest that TG2 plays a role in phagosome maturation in M(IL-4) macrophages These data suggest that tuning macrophages into TG2 producing anti-inflammatory cells by IL-4 treatment may benefit effective myelin phagocytosis in e.g. demyelinating MS lesions and open avenues for successful regeneration.
Collapse
Affiliation(s)
- Claudia Sestito
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Anatomy and Neurosciences, Amsterdam Neuroscience, Amsterdam, the Netherlands
| | - John J P Brevé
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Anatomy and Neurosciences, Amsterdam Neuroscience, Amsterdam, the Netherlands
| | - John G J M Bol
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Anatomy and Neurosciences, Amsterdam Neuroscience, Amsterdam, the Netherlands
| | - Micha M M Wilhelmus
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Anatomy and Neurosciences, Amsterdam Neuroscience, Amsterdam, the Netherlands
| | - Benjamin Drukarch
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Anatomy and Neurosciences, Amsterdam Neuroscience, Amsterdam, the Netherlands
| | - Anne-Marie van Dam
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Anatomy and Neurosciences, Amsterdam Neuroscience, Amsterdam, the Netherlands.
| |
Collapse
|
11
|
Espitia Pinzon N, van Mierlo H, de Jonge JC, Brevé JJP, Bol JGJM, Drukarch B, van Dam AM, Baron W. Tissue Transglutaminase Promotes Early Differentiation of Oligodendrocyte Progenitor Cells. Front Cell Neurosci 2019; 13:281. [PMID: 31312122 PMCID: PMC6614186 DOI: 10.3389/fncel.2019.00281] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Accepted: 06/11/2019] [Indexed: 01/09/2023] Open
Abstract
Demyelinated lesions of the central nervous system are characteristic for multiple sclerosis (MS). Remyelination is not very effective, particular at later stages of the disease, which results in a chronic neurodegenerative character with worsening of symptoms. Previously, we have shown that the enzyme Tissue Transglutaminase (TG2) is downregulated upon differentiation of oligodendrocyte progenitor cells (OPCs) into myelin-forming oligodendrocytes and that TG2 knock-out mice lag behind in remyelination after cuprizone-induced demyelination. Here, we examined whether astrocytic or oligodendroglial TG2 affects OPCs in a cell-specific manner to modulate their differentiation, and therefore myelination. Our findings indicate that human TG2-expressing astrocytes did not modulate OPC differentiation and myelination. In contrast, persistent TG2 expression upon OPC maturation or exogenously added recombinant TG2 accelerated OPC differentiation and myelin membrane formation. Continuous exposure of recombinant TG2 to OPCs at different consecutive developmental stages, however, decreased OPC differentiation and myelin membrane formation, while it enhanced myelination in dorsal root ganglion neuron-OPC co-cultures. In MS lesions, TG2 is absent in OPCs, while human OPCs show TG2 immunoreactivity during brain development. Exposure to the MS-relevant pro-inflammatory cytokine IFN-γ increased TG2 expression in OPCs and prolonged expression of endogenous TG2 upon differentiation. However, despite the increased TG2 levels, OPC maturation was not accelerated, indicating that TG2-mediated OPC differentiation may be counteracted by other pathways. Together, our data show that TG2, either endogenously expressed, or exogenously supplied to OPCs, accelerates early OPC differentiation. A better understanding of the role of TG2 in the OPC differentiation process during MS is of therapeutic interest to overcome remyelination failure.
Collapse
Affiliation(s)
- Nathaly Espitia Pinzon
- Department of Anatomy and Neurosciences, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam, Netherlands
| | - Hanneke van Mierlo
- Department of Biomedical Sciences of Cells & Systems, Section Molecular Neurobiology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Jenny C de Jonge
- Department of Biomedical Sciences of Cells & Systems, Section Molecular Neurobiology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - John J P Brevé
- Department of Anatomy and Neurosciences, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam, Netherlands
| | - John G J M Bol
- Department of Anatomy and Neurosciences, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam, Netherlands
| | - Benjamin Drukarch
- Department of Anatomy and Neurosciences, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam, Netherlands
| | - Anne-Marie van Dam
- Department of Anatomy and Neurosciences, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam, Netherlands
| | - Wia Baron
- Department of Biomedical Sciences of Cells & Systems, Section Molecular Neurobiology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| |
Collapse
|
12
|
Lyu X, Jiang Y, Zhang M, Li G, Li G, Qiao Q. Genomic stratification based on radiosensitivity and PD-L1 for tailoring therapeutic strategies in cervical cancer. Epigenomics 2019; 11:1075-1088. [PMID: 31179743 DOI: 10.2217/epi-2019-0108] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Aim: We performed an immunogenomic analysis to help identify a model for the cervical cancer therapeutic module. Patients & methods: Patients were divided into groups according to radiosensitivity and PD-L1 expression status. Results: The PD-L1-low-radioresistant (RR) group indicated worse overall survival under radiotherapy. In addition, the PD-L1-low-RR group showed the lowest immunophenoscore and predicted poor response to anti-PD-1 treatment. Differentially expressed genes associated with the PD-L1-low-RR group were found to play a role in the immune response pathways. FGF19 and PLA2G5 were validated to be upregulated in the PD-L1-low-RR group in the Gene Expression Omnibus database, which predicted the overall survival in the The Cancer Genome Atlas. Conclusion: It will be important to test radiosensitivity and PD-L1 stratification to predict the response to strategies in cervical cancer patients.
Collapse
Affiliation(s)
- Xintong Lyu
- Department of Radiation Oncology, the First Hospital of China Medical University, Shenyang 110001, Liaoning, PR China
| | - Yuanjun Jiang
- Department of Urology, the First Hospital of China Medical University, Shenyang 110001, Liaoning, PR China
| | - Miao Zhang
- Department of Radiation Oncology, the First Hospital of China Medical University, Shenyang 110001, Liaoning, PR China
| | - Guangqi Li
- Department of Radiation Oncology, the First Hospital of China Medical University, Shenyang 110001, Liaoning, PR China
| | - Guang Li
- Department of Radiation Oncology, the First Hospital of China Medical University, Shenyang 110001, Liaoning, PR China
| | - Qiao Qiao
- Department of Radiation Oncology, the First Hospital of China Medical University, Shenyang 110001, Liaoning, PR China.,Department of Radiotherapy, the First Hospital of China Medical University, Shenyang 110001, Liaoning, PR China
| |
Collapse
|
13
|
Sun H, Kaartinen MT. Transglutaminases in Monocytes and Macrophages. ACTA ACUST UNITED AC 2018; 6:medsci6040115. [PMID: 30545030 PMCID: PMC6313455 DOI: 10.3390/medsci6040115] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 12/03/2018] [Accepted: 12/07/2018] [Indexed: 12/28/2022]
Abstract
Macrophages are key players in various inflammatory disorders and pathological conditions via phagocytosis and orchestrating immune responses. They are highly heterogeneous in terms of their phenotypes and functions by adaptation to different organs and tissue environments. Upon damage or infection, monocytes are rapidly recruited to tissues and differentiate into macrophages. Transglutaminases (TGs) are a family of structurally and functionally related enzymes with Ca2+-dependent transamidation and deamidation activity. Numerous studies have shown that TGs, particularly TG2 and Factor XIII-A, are extensively involved in monocyte- and macrophage-mediated physiological and pathological processes. In the present review, we outline the current knowledge of the role of TGs in the adhesion and extravasation of monocytes, the expression of TGs during macrophage differentiation, and the regulation of TG2 expression by various pro- and anti-inflammatory mediators in macrophages. Furthermore, we summarize the role of TGs in macrophage phagocytosis and the understanding of the mechanisms involved. Finally, we review the roles of TGs in tissue-specific macrophages, including monocytes/macrophages in vasculature, alveolar and interstitial macrophages in lung, microglia and infiltrated monocytes/macrophages in central nervous system, and osteoclasts in bone. Based on the studies in this review, we conclude that monocyte- and macrophage-derived TGs are involved in inflammatory processes in these organs. However, more in vivo studies and clinical studies during different stages of these processes are required to determine the accurate roles of TGs, their substrates, and the mechanisms-of-action.
Collapse
Affiliation(s)
- Huifang Sun
- Division of Biomedical Sciences, Faculty of Dentistry, McGill University, Montreal, QC, H3A 0C7, Canada.
| | - Mari T Kaartinen
- Division of Biomedical Sciences, Faculty of Dentistry, McGill University, Montreal, QC, H3A 0C7, Canada.
- Division of Experimental Medicine, Department of Medicine, Faculty of Medicine, McGill University, Montreal, QC, H3A 0C7, Canada.
| |
Collapse
|
14
|
Samuchiwal SK, Balestrieri B. Harmful and protective roles of group V phospholipase A 2: Current perspectives and future directions. Biochim Biophys Acta Mol Cell Biol Lipids 2018; 1864:819-826. [PMID: 30308324 DOI: 10.1016/j.bbalip.2018.10.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2018] [Revised: 09/27/2018] [Accepted: 10/01/2018] [Indexed: 12/17/2022]
Abstract
Group V Phospholipase A2 (Pla2g5) is a member of the PLA2 family of lipid-generating enzymes. It is expressed in immune and non-immune cell types and is inducible during several pathologic conditions serving context-specific functions. In this review, we recapitulate the protective and detrimental functions of Pla2g5 investigated through preclinical and translational approaches. This article is part of a Special Issue entitled Novel functions of phospholipase A2 Guest Editors: Makoto Murakami and Gerard Lambeau.
Collapse
Affiliation(s)
- Sachin K Samuchiwal
- Department of Medicine, Harvard Medical School, Division of Rheumatology, Immunology and Allergy, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Barbara Balestrieri
- Department of Medicine, Harvard Medical School, Division of Rheumatology, Immunology and Allergy, Brigham and Women's Hospital, Boston, MA 02115, USA.
| |
Collapse
|
15
|
Debeuf N, Lambrecht BN. Eicosanoid Control Over Antigen Presenting Cells in Asthma. Front Immunol 2018; 9:2006. [PMID: 30233591 PMCID: PMC6131302 DOI: 10.3389/fimmu.2018.02006] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Accepted: 08/14/2018] [Indexed: 12/11/2022] Open
Abstract
Asthma is a common lung disease affecting 300 million people worldwide. Allergic asthma is recognized as a prototypical Th2 disorder, orchestrated by an aberrant adaptive CD4+ T helper (Th2/Th17) cell immune response against airborne allergens, that leads to eosinophilic inflammation, reversible bronchoconstriction, and mucus overproduction. Other forms of asthma are controlled by an eosinophil-rich innate ILC2 response driven by epithelial damage, whereas in some patients with more neutrophilia, the disease is driven by Th17 cells. Dendritic cells (DCs) and macrophages are crucial regulators of type 2 immunity in asthma. Numerous lipid mediators including the eicosanoids prostaglandins and leukotrienes influence key functions of these cells, leading to either pro- or anti-inflammatory effects on disease outcome. In this review, we will discuss how eicosanoids affect the functions of DCs and macrophages in the asthmatic lung and how this leads to aberrant T cell differentiation that causes disease.
Collapse
Affiliation(s)
- Nincy Debeuf
- Laboratory of Immunoregulation, VIB-UGent Center for Inflammation Research, Ghent, Belgium.,Department of Internal Medicine, Ghent University, Ghent, Belgium
| | - Bart N Lambrecht
- Laboratory of Immunoregulation, VIB-UGent Center for Inflammation Research, Ghent, Belgium.,Department of Internal Medicine, Ghent University, Ghent, Belgium.,Department of Pulmonary Medicine, Erasmus Medical Center, Rotterdam, Netherlands
| |
Collapse
|
16
|
Yamaguchi M, Samuchiwal SK, Quehenberger O, Boyce JA, Balestrieri B. Macrophages regulate lung ILC2 activation via Pla2g5-dependent mechanisms. Mucosal Immunol 2018; 11:615-626. [PMID: 29346348 PMCID: PMC5976507 DOI: 10.1038/mi.2017.99] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Accepted: 10/17/2017] [Indexed: 02/04/2023]
Abstract
Group V phospholipase A2 (Pla2g5) is a lipid-generating enzyme necessary for macrophage effector functions in pulmonary inflammation. However, the lipid mediators involved and their cellular targets have not been identified. Mice lacking Pla2g5 showed markedly reduced lung ILC2 activation and eosinophilia following repetitive Alternaria Alternata inhalation. While Pla2g5-null mice had Wt levels of immediate IL-33 release after one Alternaria dose, they failed to upregulate IL-33 in macrophages following repeated Alternaria administration. Unexpectedly, while adoptive transfer of bone marrow-derived (BM)-macrophages restored ILC2 activation and eosinophilia in Alternaria-exposed Pla2g5-null mice, exogenous IL-33 did not. Conversely, transfers of Pla2g5-null BM-macrophages reduced inflammation in Alternaria-exposed Wt mice. Mass spectrometry analysis of free fatty acids (FFAs) demonstrated significantly reduced FFAs (including linoleic acid (LA) and oleic acid (OA)) in lung and BM-macrophages lacking Pla2g5. Exogenous administration of LA or LA+OA to Wt mice sharply potentiated IL-33-induced lung eosinophilia and ILC2 expansion in vitro and in vivo. In contrast, OA potentiated IL-33-induced inflammation and ILC2 expansion in Pla2g5-null mice, but LA was inactive both in vivo and in vitro. Notably, Pla2g5-null ILC2s showed significantly reduced expression of the FFA-receptor-1 compared to Wt ILC2s. Thus, macrophage-associated Pla2g5 contributes significantly to type-2 immunity through regulation of IL-33 induction and FFA-driven ILC2 activation.
Collapse
Affiliation(s)
- Munehiro Yamaguchi
- Department of Medicine, Harvard Medical School, Jeff and Penny Vinik Center for Allergic Disease Research, Division of Rheumatology, Immunology and Allergy, Brigham and Women’s Hospital, Boston, MA 02115, USA
| | - Sachin K. Samuchiwal
- Department of Medicine, Harvard Medical School, Jeff and Penny Vinik Center for Allergic Disease Research, Division of Rheumatology, Immunology and Allergy, Brigham and Women’s Hospital, Boston, MA 02115, USA
| | - Oswald Quehenberger
- Department of Medicine, Department of Pharmacology, University of California, San Diego, CA 92093, USA
| | - Joshua A. Boyce
- Department of Medicine, Harvard Medical School, Jeff and Penny Vinik Center for Allergic Disease Research, Division of Rheumatology, Immunology and Allergy, Brigham and Women’s Hospital, Boston, MA 02115, USA
| | - Barbara Balestrieri
- Department of Medicine, Harvard Medical School, Jeff and Penny Vinik Center for Allergic Disease Research, Division of Rheumatology, Immunology and Allergy, Brigham and Women’s Hospital, Boston, MA 02115, USA
| |
Collapse
|
17
|
Arbildi P, Sóñora C, Del Río N, Marqués JM, Hernández A. Alternative RNA splicing of leucocyte tissue transglutaminase in coeliac disease. Scand J Immunol 2018. [PMID: 29543397 DOI: 10.1111/sji.12659] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Tissue transglutaminase is a ubiquitous and multifunctional protein that contributes to several processes such as apoptosis/survival, efferocytosis, inflammation and tissue repairing under physiological and pathological conditions. Several activities can be associated with well-established functional domains; in addition, four RNA alternative splice variants have been described, characterized by sequence divergences and residues deletion at the C-terminal domains. Tissue transglutaminase is recognized as the central player in the physiopathology of coeliac disease (CD) mainly through calcium-dependent enzymatic activities. It can be hypothesized that differential regulation of tissue transglutaminase splice variants expression in persons with CD contributes to pathology by altering the protein functionality. We characterized the expression pattern of RNA alternative splice variants by RT-PCR in peripheral cells from patients with CD under free gluten diet adhesion; we considered inflammatory parameters and specific antibodies as markers of the stage of disease. We found significant higher expression of both the full length and the shortest C-truncated splice variants in leucocytes from patients with CD in comparison with healthy individuals. As tissue transglutaminase expression and canonical enzymatic activity are linked to inflammation, we studied the RNA expression of inflammatory cytokines in peripheral leucocytes of persons with CD in relation with splice variants expression; interestingly, we found that recently diagnosed patients showed significant correlation between both the full length and the shortest alternative spliced variants with IL-1 expression. Our results points that regulation of alternative splicing of tissue transglutaminase could account for the complex physiopathology of CD.
Collapse
Affiliation(s)
- P Arbildi
- Cátedra de Inmunología, Facultad de Química y Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - C Sóñora
- Cátedra de Inmunología, Facultad de Química y Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay.,Facultad de Medicina, Escuela Universitaria de Tecnología Médica, Universidad de la República, Montevideo, Uruguay
| | - N Del Río
- Cátedra de Inmunología, Facultad de Química y Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - J M Marqués
- Departamento de Desarrollo Biotecnológico, Facultad de Medicina, Instituto de Higiene, Universidad de la República, Montevideo, Uruguay
| | - A Hernández
- Cátedra de Inmunología, Facultad de Química y Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| |
Collapse
|
18
|
Kong IG, Kim DW. Pathogenesis of Recalcitrant Chronic Rhinosinusitis: The Emerging Role of Innate Immune Cells. Immune Netw 2018; 18:e6. [PMID: 29732233 PMCID: PMC5928419 DOI: 10.4110/in.2018.18.e6] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2017] [Revised: 02/05/2018] [Accepted: 02/13/2018] [Indexed: 12/14/2022] Open
Abstract
Chronic rhinosinusitis (CRS) is a major part of the recalcitrant inflammatory diseases of the upper airway that needs enormous socioeconomic burden. T helper (Th) 2 type immune responses recruiting eosinophils were the most well-known immune players in CRS pathogenesis especially in western countries. By the piling up of a vast amount of researches to elucidate the pathogenic mechanism of CRS recently, heterogeneous inflammatory processes were found to be related to the phenotypes of CRS. Recently more cells other than T cells were in the focus of CRS pathogenesis, such as the epithelial cell, macrophage, innate lymphoid cells, and neutrophils. Here, we reviewed the recent research focusing on the innate immune cells related to CRS pathogenesis.
Collapse
Affiliation(s)
- Il Gyu Kong
- Department of Otorhinolaryngology-Head and Neck Surgery, Hallym University Sacred Heart Hospital, Hallym University College of Medicine, Anyang 14068, Korea
| | - Dae Woo Kim
- Department of Otorhinolaryngology-Head and Neck Surgery, Seoul Metropolitan Government-Seoul National University Boramae Medical Center, Seoul 07061, Korea
| |
Collapse
|
19
|
Is monocyte- and macrophage-derived tissue transglutaminase involved in inflammatory processes? Amino Acids 2016; 49:441-452. [PMID: 27659795 PMCID: PMC5332491 DOI: 10.1007/s00726-016-2334-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Accepted: 09/15/2016] [Indexed: 02/07/2023]
Abstract
Monocytes and macrophages are key players in inflammatory processes following an infection or tissue damage. Monocytes adhere and extravasate into the inflamed tissue, differentiate into macrophages, and produce inflammatory mediators to combat the pathogens. In addition, they take up dead cells and debris and, therefore, take part in the resolution of inflammation. The multifunctional enzyme tissue Transglutaminase (TG2, tTG) is known to participate in most of those monocyte- and macrophage-mediated processes. Moreover, TG2 expression and activity can be regulated by inflammatory mediators. In the present review, we selectively elaborate on the expression, regulation, and contribution of TG2 derived from monocytes and macrophages to inflammatory processes mediated by those cells. In addition, we discuss the role of TG2 in certain pathological conditions, in which inflammation and monocytes and/or macrophages are prominently present, including atherosclerosis, sepsis, and multiple sclerosis. Based on the studies and considerations reported in this review, we conclude that monocyte- and macrophage-derived TG2 is clearly involved in various processes contributing to inflammation. However, TG2’s potential as a therapeutic target to counteract the possible detrimental effects or stimulate the potential beneficial effects on monocyte and macrophage responses during inflammation should be carefully considered. Alternatively, as TG2-related parameters can be used as a marker of disease, e.g., in celiac disease, or of disease-stage, e.g., in cancer, we put forward that this could be subject of research for monocyte- or macrophage-derived TG2 in inflammatory diseases.
Collapse
|
20
|
Dietz K, de Los Reyes Jiménez M, Gollwitzer ES, Chaker AM, Zissler UM, Rådmark OP, Baarsma HA, Königshoff M, Schmidt-Weber CB, Marsland BJ, Esser-von Bieren J. Age dictates a steroid-resistant cascade of Wnt5a, transglutaminase 2, and leukotrienes in inflamed airways. J Allergy Clin Immunol 2016; 139:1343-1354.e6. [PMID: 27554815 DOI: 10.1016/j.jaci.2016.07.014] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Revised: 07/12/2016] [Accepted: 07/26/2016] [Indexed: 02/06/2023]
Abstract
BACKGROUND Airway remodeling is a detrimental and refractory process showing age-dependent clinical manifestations that are mechanistically undefined. The leukotriene (LT) and wingless/integrase (Wnt) pathways have been implicated in remodeling, but age-specific expression profiles and common regulators remained elusive. OBJECTIVE We sought to study the activation of the LT and Wnt pathways during early- or late-onset allergic airway inflammation and to address regulatory mechanisms and clinical relevance in normal human bronchial epithelial cells (NHBEs) and nasal polyp tissues. METHODS Mice were sensitized with house dust mite (HDM) allergens from days 3, 15, or 60 after birth. Remodeling factors in murine bronchoalveolar lavage fluid, lung tissue, or human nasal polyp tissue were analyzed by means of Western blotting, immunoassays, or histology. Regulatory mechanisms were studied in cytokine/HDM-stimulated NHBEs and macrophages. RESULTS Bronchoalveolar lavage fluid LT levels were increased in neonatal and adult but reduced in juvenile HDM-sensitized mice. Lungs of neonatally sensitized mice showed increased 5-lipoxygenase levels, whereas adult mice expressed more group 10 secretory phospholipase A2, Wnt5a, and transglutaminase 2 (Tgm2). Older mice showed colocalization of Wnt5a and LT enzymes in the epithelium, a pattern also observed in human nasal polyps. IL-4 promoted epithelial Wnt5a secretion, which upregulated macrophage Tgm2 expression, and Tgm2 inhibition in turn reduced LT release. Tgm2, group 10 secretory phospholipase A2, and LT enzymes in NHBEs and nasal polyps were refractory to corticosteroids. CONCLUSION Our findings reveal age differences in LT and Wnt pathways during airway inflammation and identify a steroid-resistant cascade of Wnt5a, Tgm2, and LTs, which might represent a therapeutic target for airway inflammation and remodeling.
Collapse
Affiliation(s)
- Katharina Dietz
- Center of Allergy and Environment (ZAUM), Member of the German Center for Lung Research (DZL), Technical University of Munich and Helmholtz Center Munich, Munich, Germany
| | - Marta de Los Reyes Jiménez
- Center of Allergy and Environment (ZAUM), Member of the German Center for Lung Research (DZL), Technical University of Munich and Helmholtz Center Munich, Munich, Germany
| | - Eva S Gollwitzer
- Faculty of Biology and Medicine, University of Lausanne, Service de Pneumologie, Centre Hospitalier Universitaire Vaudois (CHUV), Lausanne, Switzerland
| | - Adam M Chaker
- Center of Allergy and Environment (ZAUM), Member of the German Center for Lung Research (DZL), Technical University of Munich and Helmholtz Center Munich, Munich, Germany; Department of Otolaryngology, Allergy Section, Klinikum Rechts der Isar, Technische Universität München, Munich, Germany
| | - Ulrich M Zissler
- Center of Allergy and Environment (ZAUM), Member of the German Center for Lung Research (DZL), Technical University of Munich and Helmholtz Center Munich, Munich, Germany
| | - Olof P Rådmark
- Division of Physiological Chemistry II, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Hoeke A Baarsma
- Comprehensive Pneumology Center (CPC), Helmholtz Zentrum München, Member of the German Center for Lung Research (DZL) and Ludwig-Maximilians-Universität, University Hospital Grosshadern, Munich, Germany
| | - Melanie Königshoff
- Comprehensive Pneumology Center (CPC), Helmholtz Zentrum München, Member of the German Center for Lung Research (DZL) and Ludwig-Maximilians-Universität, University Hospital Grosshadern, Munich, Germany
| | - Carsten B Schmidt-Weber
- Center of Allergy and Environment (ZAUM), Member of the German Center for Lung Research (DZL), Technical University of Munich and Helmholtz Center Munich, Munich, Germany
| | - Benjamin J Marsland
- Faculty of Biology and Medicine, University of Lausanne, Service de Pneumologie, Centre Hospitalier Universitaire Vaudois (CHUV), Lausanne, Switzerland
| | - Julia Esser-von Bieren
- Center of Allergy and Environment (ZAUM), Member of the German Center for Lung Research (DZL), Technical University of Munich and Helmholtz Center Munich, Munich, Germany.
| |
Collapse
|