1
|
Straus AJ, Mavodza G, Senkal CE. Glycosylation of ceramide synthase 6 is required for its activity. J Lipid Res 2025; 66:100715. [PMID: 39608570 PMCID: PMC11732463 DOI: 10.1016/j.jlr.2024.100715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 11/07/2024] [Accepted: 11/24/2024] [Indexed: 11/30/2024] Open
Abstract
Sphingolipids play key roles in membrane structure and cellular signaling. Ceramide synthase (CerS)-generated ceramide is implicated in cellular stress responses and induction of apoptosis. Ceramide and other sphingolipids are linked to the induction of ER stress response pathways. However, the mechanisms by which ceramide modulates ER stress signaling are not well understood. Here, we show that the ER stress inducer brefeldin A (BFA) causes increased glycosylation of CerS6, and that treatment with BFA causes increased endogenous ceramide accumulation. To our surprise, we found that CerS6 activity was not affected by BFA-induced glycosylation. Instead, our data show that basal glycosylation of CerS6 at Asn18 is required for CerS6 activity. We used a robust HCT116 CRISPR-Cas9 CerS6 KO with reintroduction of either WT CerS6 or a mutant CerS6 with a point mutation at asparagine-18 to an alanine (N18A) which abrogated glycosylation at that residue. Our data show that cells stably expressing the N18A mutant CerS6 had significantly lower activity in vitro and in situ as compared to WT CerS6 expressing cells. Further, the defective CerS6 with N18A mutation also had defects in GSK3β, AKT, JNK, and STAT3 signaling. Despite being required for CerS6 activity, Asn18 glycosylation did not influence ER stress response pathways. Overall, our study provides vital insight into the regulation of CerS6 activity by posttranslational modification at Asn18 and identifies glycosylation of CerS6 to be important for ceramide generation and regulation of downstream cellular signaling pathways.
Collapse
Affiliation(s)
- Alexandra J Straus
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University School of Medicine, Richmond, VA, USA; C. Kenneth and Dianne Wright Center for Clinical and Translational Research, Virginia Commonwealth University School of Medicine, Richmond, VA, USA
| | - Grace Mavodza
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University School of Medicine, Richmond, VA, USA
| | - Can E Senkal
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University School of Medicine, Richmond, VA, USA; Massey Comprehensive Cancer Center, Virginia Commonwealth University School of Medicine, Richmond, VA, USA.
| |
Collapse
|
2
|
Zhu Q, Chen S, Funcke JB, Straub LG, Lin Q, Zhao S, Joung C, Zhang Z, Kim DS, Li N, Gliniak CM, Lee C, Cebrian-Serrano A, Pedersen L, Halberg N, Gordillo R, Kusminski CM, Scherer PE. PAQR4 regulates adipocyte function and systemic metabolic health by mediating ceramide levels. Nat Metab 2024; 6:1347-1366. [PMID: 38961186 PMCID: PMC11891014 DOI: 10.1038/s42255-024-01078-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 06/06/2024] [Indexed: 07/05/2024]
Abstract
PAQR4 is an orphan receptor in the PAQR family with an unknown function in metabolism. Here, we identify a critical role of PAQR4 in maintaining adipose tissue function and whole-body metabolic health. We demonstrate that expression of Paqr4 specifically in adipocytes, in an inducible and reversible fashion, leads to partial lipodystrophy, hyperglycaemia and hyperinsulinaemia, which is ameliorated by wild-type adipose tissue transplants or leptin treatment. By contrast, deletion of Paqr4 in adipocytes improves healthy adipose remodelling and glucose homoeostasis in diet-induced obesity. Mechanistically, PAQR4 regulates ceramide levels by mediating the stability of ceramide synthases (CERS2 and CERS5) and, thus, their activities. Overactivation of the PQAR4-CERS axis causes ceramide accumulation and impairs adipose tissue function through suppressing adipogenesis and triggering adipocyte de-differentiation. Blocking de novo ceramide biosynthesis rescues PAQR4-induced metabolic defects. Collectively, our findings suggest a critical function of PAQR4 in regulating cellular ceramide homoeostasis and targeting PAQR4 offers an approach for the treatment of metabolic disorders.
Collapse
Affiliation(s)
- Qingzhang Zhu
- Touchstone Diabetes Center, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Shiuhwei Chen
- Touchstone Diabetes Center, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Jan-Bernd Funcke
- Touchstone Diabetes Center, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Leon G Straub
- Touchstone Diabetes Center, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Qian Lin
- Touchstone Diabetes Center, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Shangang Zhao
- Touchstone Diabetes Center, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Sam and Ann Barshop Institute for Longevity and Aging Studies, Division of Endocrinology, Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Chanmin Joung
- Touchstone Diabetes Center, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Zhuzhen Zhang
- Touchstone Diabetes Center, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Dae-Seok Kim
- Touchstone Diabetes Center, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Na Li
- Touchstone Diabetes Center, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Christy M Gliniak
- Touchstone Diabetes Center, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Charlotte Lee
- Center for Hypothalamic Research, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Alberto Cebrian-Serrano
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Zentrum München, Neuherberg, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Line Pedersen
- Touchstone Diabetes Center, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Department of Biomedicine, University of Bergen, Bergen, Norway
| | - Nils Halberg
- Department of Biomedicine, University of Bergen, Bergen, Norway
| | - Ruth Gordillo
- Touchstone Diabetes Center, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Christine M Kusminski
- Touchstone Diabetes Center, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Philipp E Scherer
- Touchstone Diabetes Center, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
3
|
Wilkerson JL, Tatum SM, Holland WL, Summers SA. Ceramides are fuel gauges on the drive to cardiometabolic disease. Physiol Rev 2024; 104:1061-1119. [PMID: 38300524 PMCID: PMC11381030 DOI: 10.1152/physrev.00008.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 01/23/2024] [Accepted: 01/25/2024] [Indexed: 02/02/2024] Open
Abstract
Ceramides are signals of fatty acid excess that accumulate when a cell's energetic needs have been met and its nutrient storage has reached capacity. As these sphingolipids accrue, they alter the metabolism and survival of cells throughout the body including in the heart, liver, blood vessels, skeletal muscle, brain, and kidney. These ceramide actions elicit the tissue dysfunction that underlies cardiometabolic diseases such as diabetes, coronary artery disease, metabolic-associated steatohepatitis, and heart failure. Here, we review the biosynthesis and degradation pathways that maintain ceramide levels in normal physiology and discuss how the loss of ceramide homeostasis drives cardiometabolic pathologies. We highlight signaling nodes that sense small changes in ceramides and in turn reprogram cellular metabolism and stimulate apoptosis. Finally, we evaluate the emerging therapeutic utility of these unique lipids as biomarkers that forecast disease risk and as targets of ceramide-lowering interventions that ameliorate disease.
Collapse
Affiliation(s)
- Joseph L Wilkerson
- Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, Utah, United States
| | - Sean M Tatum
- Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, Utah, United States
| | - William L Holland
- Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, Utah, United States
| | - Scott A Summers
- Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, Utah, United States
| |
Collapse
|
4
|
Shamshiddinova M, Gulyamov S, Kim HJ, Jung SH, Baek DJ, Lee YM. A Dansyl-Modified Sphingosine Kinase Inhibitor DPF-543 Enhanced De Novo Ceramide Generation. Int J Mol Sci 2021; 22:ijms22179190. [PMID: 34502095 PMCID: PMC8431253 DOI: 10.3390/ijms22179190] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 08/18/2021] [Accepted: 08/19/2021] [Indexed: 12/29/2022] Open
Abstract
Sphingosine-1-phosphate (S1P) synthesized by sphingosine kinase (SPHK) is a signaling molecule, involved in cell proliferation, growth, differentiation, and survival. Indeed, a sharp increase of S1P is linked to a pathological outcome with inflammation, cancer metastasis, or angiogenesis, etc. In this regard, SPHK/S1P axis regulation has been a specific issue in the anticancer strategy to turn accumulated sphingosine (SPN) into cytotoxic ceramides (Cers). For these purposes, there have been numerous chemicals synthesized for SPHK inhibition. In this study, we investigated the comparative efficiency of dansylated PF-543 (DPF-543) on the Cers synthesis along with PF-543. DPF-543 deserved attention in strong cytotoxicity, due to the cytotoxic Cers accumulation by ceramide synthase (CerSs). DPF-543 exhibited dual actions on Cers synthesis by enhancing serine palmitoyltransferase (SPT) activity, and by inhibiting SPHKs, which eventually induced an unusual environment with a high amount of 3-ketosphinganine and sphinganine (SPA). SPA in turn was consumed to synthesize Cers via de novo pathway. Interestingly, PF-543 increased only the SPN level, but not for SPA. In addition, DPF-543 mildly activates acid sphingomyelinase (aSMase), which contributes a partial increase in Cers. Collectively, a dansyl-modified DPF-543 relatively enhanced Cers accumulation via de novo pathway which was not observed in PF-543. Our results demonstrated that the structural modification on SPHK inhibitors is still an attractive anticancer strategy by regulating sphingolipid metabolism.
Collapse
Affiliation(s)
- Maftuna Shamshiddinova
- College of Pharmacy, Chungbuk National University, Chungbuk 28160, Korea; (M.S.); (S.G.); (H.-J.K.); (S.-H.J.)
| | - Shokhid Gulyamov
- College of Pharmacy, Chungbuk National University, Chungbuk 28160, Korea; (M.S.); (S.G.); (H.-J.K.); (S.-H.J.)
| | - Hee-Jung Kim
- College of Pharmacy, Chungbuk National University, Chungbuk 28160, Korea; (M.S.); (S.G.); (H.-J.K.); (S.-H.J.)
| | - Seo-Hyeon Jung
- College of Pharmacy, Chungbuk National University, Chungbuk 28160, Korea; (M.S.); (S.G.); (H.-J.K.); (S.-H.J.)
| | - Dong-Jae Baek
- College of Pharmacy, Mokpo National University, Jeonnam 58628, Korea;
| | - Yong-Moon Lee
- College of Pharmacy, Chungbuk National University, Chungbuk 28160, Korea; (M.S.); (S.G.); (H.-J.K.); (S.-H.J.)
- Correspondence: ; Tel.: +82-43-261-2825
| |
Collapse
|
5
|
Fink J, Schumacher F, Schlegel J, Stenzel P, Wigger D, Sauer M, Kleuser B, Seibel J. Azidosphinganine enables metabolic labeling and detection of sphingolipid de novo synthesis. Org Biomol Chem 2021; 19:2203-2212. [PMID: 33496698 DOI: 10.1039/d0ob02592e] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Here were report the combination of biocompatible click chemistry of ω-azidosphinganine with fluorescence microscopy and mass spectrometry as a powerful tool to elaborate the sphingolipid metabolism. The azide probe was efficiently synthesized over 13 steps starting from l-serine in an overall yield of 20% and was used for live-cell fluorescence imaging of the endoplasmic reticulum in living cells by bioorthogonal click reaction with a DBCO-labeled fluorophore revealing that the incorporated analogue is mainly localized in the endoplasmic membrane like the endogenous species. A LC-MS(/MS)-based microsomal in vitro assay confirmed that ω-azidosphinganine mimics the natural species enabling the identification and analysis of metabolic breakdown products of sphinganine as a key starting intermediate in the complex sphingolipid biosynthetic pathways. Furthermore, the sphinganine-fluorophore conjugate after click reaction was enzymatically tolerated to form its dihydroceramide and ceramide metabolites. Thus, ω-azidosphinganine represents a useful biofunctional tool for metabolic investigations both by in vivo fluorescence imaging of the sphingolipid subcellular localization in the ER and by in vitro high-resolution mass spectrometry analysis. This should reveal novel insights of the molecular mechanisms sphingolipids and their processing enzymes have e.g. in infection.
Collapse
Affiliation(s)
- Julian Fink
- Institute of Organic Chemistry, Julius-Maximilians University Würzburg, Am Hubland C1, 97074 Würzburg, Germany.
| | - Fabian Schumacher
- Institute of Pharmacy, Freie Universität Berlin, Königin-Luise-Str. 2+4, 14195 Berlin, Germany. and Institute of Nutritional Science, Department of Toxicology, University of Potsdam, Arthur-Scheunert-Allee 114-116, 14558 Nuthetal, Germany
| | - Jan Schlegel
- Department of Biotechnology and Biophysics, Biocenter, Julius-Maximilians University Würzburg, 97074 Würzburg, Germany.
| | - Philipp Stenzel
- Institute of Organic Chemistry, Julius-Maximilians University Würzburg, Am Hubland C1, 97074 Würzburg, Germany.
| | - Dominik Wigger
- Institute of Nutritional Science, Department of Toxicology, University of Potsdam, Arthur-Scheunert-Allee 114-116, 14558 Nuthetal, Germany
| | - Markus Sauer
- Department of Biotechnology and Biophysics, Biocenter, Julius-Maximilians University Würzburg, 97074 Würzburg, Germany.
| | - Burkhard Kleuser
- Institute of Pharmacy, Freie Universität Berlin, Königin-Luise-Str. 2+4, 14195 Berlin, Germany. and Institute of Nutritional Science, Department of Toxicology, University of Potsdam, Arthur-Scheunert-Allee 114-116, 14558 Nuthetal, Germany
| | - Jürgen Seibel
- Institute of Organic Chemistry, Julius-Maximilians University Würzburg, Am Hubland C1, 97074 Würzburg, Germany.
| |
Collapse
|
6
|
Skácel J, Slusher BS, Tsukamoto T. Small Molecule Inhibitors Targeting Biosynthesis of Ceramide, the Central Hub of the Sphingolipid Network. J Med Chem 2021; 64:279-297. [PMID: 33395289 PMCID: PMC8023021 DOI: 10.1021/acs.jmedchem.0c01664] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Ceramides are composed of a sphingosine and a single fatty acid connected by an amide linkage. As one of the major classes of biologically active lipids, ceramides and their upstream and downstream metabolites have been implicated in several pathological conditions including cancer, neurodegeneration, diabetes, microbial pathogenesis, obesity, and inflammation. Consequently, tremendous efforts have been devoted to deciphering the dynamics of metabolic pathways involved in ceramide biosynthesis. Given that several distinct enzymes can produce ceramide, different enzyme targets have been pursued depending on the underlying disease mechanism. The main objective of this review is to provide a comprehensive overview of small molecule inhibitors reported to date for each of these ceramide-producing enzymes from a medicinal chemistry perspective.
Collapse
Affiliation(s)
- Jan Skácel
- Johns Hopkins Drug Discovery and Department of Neurology, Johns Hopkins University, Baltimore, Maryland 21205, United States
| | - Barbara S. Slusher
- Johns Hopkins Drug Discovery and Department of Neurology, Johns Hopkins University, Baltimore, Maryland 21205, United States
| | - Takashi Tsukamoto
- Johns Hopkins Drug Discovery and Department of Neurology, Johns Hopkins University, Baltimore, Maryland 21205, United States
| |
Collapse
|
7
|
Fernandes CM, Poeta MD. Fungal sphingolipids: role in the regulation of virulence and potential as targets for future antifungal therapies. Expert Rev Anti Infect Ther 2020; 18:1083-1092. [PMID: 32673125 PMCID: PMC7657966 DOI: 10.1080/14787210.2020.1792288] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 07/02/2020] [Indexed: 12/17/2022]
Abstract
INTRODUCTION The antifungal therapy currently available includes three major classes of drugs: polyenes, azoles and echinocandins. However, the clinical use of these compounds faces several challenges: while polyenes are toxic to the host, antifungal resistance to azoles and echinocandins has been reported. AREAS COVERED Fungal sphingolipids (SL) play a pivotal role in growth, morphogenesis and virulence. In addition, fungi possess unique enzymes involved in SL synthesis, leading to the production of lipids which are absent or differ structurally from the mammalian counterparts. In this review, we address the enzymatic reactions involved in the SL synthesis and their relevance to the fungal pathogenesis, highlighting their potential as targets for novel drugs and the inhibitors described so far. EXPERT OPINION The pharmacological inhibition of fungal serine palmitoyltransferase depends on the development of specific drugs, as myriocin also targets the mammalian enzyme. Inhibitors of ceramide synthase might constitute potent antifungals, by depleting the pool of complex SL and leading to the accumulation of the toxic intermediates. Acylhydrazones and aureobasidin A, which inhibit GlcCer and IPC synthesis, are not toxic to the host and effectively treat invasive mycoses, emerging as promising new classes of antifungal drugs.
Collapse
Affiliation(s)
| | - Maurizio Del Poeta
- Department of Microbiology and Immunology, Stony Brook University, NY, USA
- Division of Infectious Diseases, School of Medicine, Stony Brook University, NY, USA
- Veterans Administration Medical Center, Northport, NY, USA
| |
Collapse
|
8
|
Huang D, Tian W, Feng J, Zhu S. Interaction between nitric oxide and storage temperature on sphingolipid metabolism of postharvest peach fruit. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2020; 151:60-68. [PMID: 32200191 DOI: 10.1016/j.plaphy.2020.03.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 02/23/2020] [Accepted: 03/09/2020] [Indexed: 06/10/2023]
Abstract
Both nitric oxide (NO) and cold storage have positive effects on the maintenance of fruit quality during storage. However, the roles of NO and storage temperatures in regulating the responses of sphingolipids metabolism to chilling injury of peach fruit during storage remain unknown. Peaches were treated by immersion in distilled water and 15 μmol L-1 NO solution, then stored at 25 °C and 0 °C, respectively. The effects of NO-treatment and storage temperature on the activities of enzymes in sphingolipid metabolism and the contents of sphingolipids in peach fruits were studied. NO maintained higher activities of acid phosphatase (AP) and alkaline phosphatase (ALP) in peach fruits at 25 °C, but promoted the decrease in the activities of AP and ALP at 0 °C, suggesting the regulation by NO on AP and ALP could be modulated by temperature. Compared with the storage at 25 °C, cold storage at 0 °C decreased the activities of phospholipase A (PLA), alkaline phosphatase (ALP), 3-ketodihydrosphingosine reductase (KDSR), sphingosine kinase (SPHK), ceramide synthase (CERS), ceramide kinase (CERK), and the contents of sphingosine (SPH), ceramide (CER), sphingosine-1-phosphate (S1P), ceramide-1-phosphate (C1P), sphingomyelin (SM), and increased the activities of phospholipase C (PLC), phospholipase D (PLD), sphingomyelin synthase (SMS). NO significantly increased the contents of sphingolipid metabolites, and the activities of PLA, KDSR, SPHK, CERS, CERK, but decreased the activities of PLC, PLD, SMS of peaches. The results suggested that NO could maintain sphingolipid metabolism to relieve the response of the postharvest fruit to low temperature.
Collapse
Affiliation(s)
- Dandan Huang
- College of Chemistry and Material Science, Shandong Agricultural University, Taian, Shandong, 271018, China
| | - Wen Tian
- College of Chemistry and Material Science, Shandong Agricultural University, Taian, Shandong, 271018, China; Department of Horticulture, College of Agriculture, Shihezi University, Shihezi, Xinjiang, 832000, China
| | - Jianrong Feng
- Department of Horticulture, College of Agriculture, Shihezi University, Shihezi, Xinjiang, 832000, China.
| | - Shuhua Zhu
- College of Chemistry and Material Science, Shandong Agricultural University, Taian, Shandong, 271018, China.
| |
Collapse
|
9
|
Munshi MA, Gardin JM, Singh A, Luberto C, Rieger R, Bouklas T, Fries BC, Del Poeta M. The Role of Ceramide Synthases in the Pathogenicity of Cryptococcus neoformans. Cell Rep 2018; 22:1392-1400. [PMID: 29425496 PMCID: PMC5839121 DOI: 10.1016/j.celrep.2018.01.035] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 12/02/2017] [Accepted: 01/11/2018] [Indexed: 11/22/2022] Open
Abstract
Cryptococcus neoformans (C. neoformans) is estimated to cause about 220,000 new cases every year in patients with AIDS, despite advances in antifungal treatments. C. neoformans possesses a remarkable ability to disseminate through an immunocompromised host, making treatment difficult. Here, we examine the mechanism of survival of C. neoformans under varying host conditions and find a role for ceramide synthase in C. neoformans virulence. This study also provides a detailed lipidomics resource for the fungal lipid research community in addition to discovering a potential target for antifungal therapy.
Collapse
Affiliation(s)
- Mansa A Munshi
- Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, NY 11794, USA
| | | | - Ashutosh Singh
- Department of Biochemistry, University of Lucknow, Lucknow, Uttar Pradesh 226007, India
| | - Chiara Luberto
- Department of Physiology and Biophysics, Stony Brook University, Stony Brook, NY 11794, USA
| | - Robert Rieger
- Proteomics Center, Stony Brook University, Stony Brook, NY 11794, USA
| | - Tejas Bouklas
- Department of Biomedical Sciences, School of Health Professions and Nursing, Long Island University, Brookville, NY 11548, USA
| | - Bettina C Fries
- Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, NY 11794, USA; Division of Infectious Diseases, School of Medicine, Stony Brook University, Stony Brook, NY 11794, USA
| | - Maurizio Del Poeta
- Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, NY 11794, USA; Division of Infectious Diseases, School of Medicine, Stony Brook University, Stony Brook, NY 11794, USA; Veterans Administration Medical Center, Northport, NY 11768, USA.
| |
Collapse
|
10
|
Law BA, Liao X, Moore KS, Southard A, Roddy P, Ji R, Szulc Z, Bielawska A, Schulze PC, Cowart LA. Lipotoxic very-long-chain ceramides cause mitochondrial dysfunction, oxidative stress, and cell death in cardiomyocytes. FASEB J 2018; 32:1403-1416. [PMID: 29127192 DOI: 10.1096/fj.201700300r] [Citation(s) in RCA: 153] [Impact Index Per Article: 21.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Accumulating data support a role for bioactive lipids as mediators of lipotixicity in cardiomyocytes. One class of these, the ceramides, constitutes a family of molecules that differ in structure and are synthesized by distinct enzymes, ceramide synthase (CerS)1-CerS6. Data support that specific ceramides and the enzymes that catalyze their formation play distinct roles in cell function. In a mouse model of diabetic cardiomyopathy, sphingolipid profiling revealed increases in not only the CerS5-derived ceramides but also in very long chain (VLC) ceramides derived from CerS2. Overexpression of CerS2 elevated VLC ceramides caused insulin resistance, oxidative stress, mitochondrial dysfunction, and mitophagy. Palmitate induced CerS2 and oxidative stress, mitophagy, and apoptosis, which were prevented by depletion of CerS2. Neither overexpression nor knockdown of CerS5 had any function in these processes, suggesting a chain-length dependent impact of ceramides on mitochondrial function. This concept was also supported by the observation that synthetic mitochondria-targeted ceramides led to mitophagy in a manner proportional to N-acyl chain length. Finally, blocking mitophagy exacerbated cell death. Taken together, our results support a model by which CerS2 and VLC ceramides have a distinct role in lipotoxicity, leading to mitochondrial damage, which results in subsequent adaptive mitophagy. Our data reveal a novel lipotoxic pathway through CerS2.-Law, B. A., Liao, X., Moore, K. S., Southard, A., Roddy, P., Ji, R., Szulc, Z., Bielawska, A., Schulze, P. C., Cowart, L. A. Lipotoxic very-long-chain ceramides cause mitochondrial dysfunction, oxidative stress, and cell death in cardiomyocytes.
Collapse
Affiliation(s)
- Brittany A Law
- Department of Medicine-Cardiology, Duke University Medical Center, Durham, North Carolina, USA
| | - Xianghai Liao
- Division of Cardiology, Department of Medicine, Columbia University Medical Center, New York, New York, USA
| | - Kelsey S Moore
- Department of Biochemistry and Molecular Biology, The Medical University of South Carolina, Charleston, South Carolina, USA
| | - Abigail Southard
- Department of Biochemistry and Molecular Biology, The Medical University of South Carolina, Charleston, South Carolina, USA
| | - Patrick Roddy
- Department of Biochemistry and Molecular Biology, The Medical University of South Carolina, Charleston, South Carolina, USA
| | - Ruiping Ji
- Division of Cardiology, Department of Medicine, Columbia University Medical Center, New York, New York, USA
| | - Zdzislaw Szulc
- Department of Biochemistry and Molecular Biology, The Medical University of South Carolina, Charleston, South Carolina, USA
| | - Ala Bielawska
- Department of Biochemistry and Molecular Biology, The Medical University of South Carolina, Charleston, South Carolina, USA
| | - P Christian Schulze
- Division of Cardiology, Department of Medicine, Columbia University Medical Center, New York, New York, USA.,Division of Cardiology, Angiology, Pneumology, and Intensive Medical Care, Department of Internal Medicine I, Friedrich-Schiller-University Jena, University of Jena, Jena, Germany; and
| | - L Ashley Cowart
- Department of Biochemistry and Molecular Biology, The Medical University of South Carolina, Charleston, South Carolina, USA.,Department of Veteran's Affairs, Charleston, South Carolina, USA
| |
Collapse
|
11
|
Schulte-Zweckel J, Schneidewind T, Abad JL, Brockmeyer A, Janning P, Triola G. Azide-tagged sphingolipids for the proteome-wide identification of C16-ceramide-binding proteins. Chem Commun (Camb) 2018; 54:13742-13745. [DOI: 10.1039/c8cc05691a] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Unknown ceramide-binding proteins can be identified by combining azide-tagged sphingolipids with MS-based proteomic profiling and protein array analysis.
Collapse
Affiliation(s)
- Janine Schulte-Zweckel
- Department of Chemical Biology
- Max-Planck-Institute of molecular Physiology
- D-44227 Dortmund
- Germany
| | - Tabea Schneidewind
- Department of Chemical Biology
- Max-Planck-Institute of molecular Physiology
- D-44227 Dortmund
- Germany
| | - Jose Luis Abad
- Department of Biological Chemistry
- Institute of Advanced Chemistry of Catalonia (IQAC-CSIC)
- Spanish National Research Council (CSIC)
- 08034 Barcelona
- Spain
| | - Andreas Brockmeyer
- Department of Chemical Biology
- Max-Planck-Institute of molecular Physiology
- D-44227 Dortmund
- Germany
| | - Petra Janning
- Department of Chemical Biology
- Max-Planck-Institute of molecular Physiology
- D-44227 Dortmund
- Germany
| | - Gemma Triola
- Department of Biological Chemistry
- Institute of Advanced Chemistry of Catalonia (IQAC-CSIC)
- Spanish National Research Council (CSIC)
- 08034 Barcelona
- Spain
| |
Collapse
|
12
|
Pieper LA, Strotbek M, Wenger T, Gamer M, Olayioye MA, Hausser A. Secretory pathway optimization of CHO producer cells by co-engineering of the mitosRNA-1978 target genes CerS2 and Tbc1D20. Metab Eng 2017; 40:69-79. [PMID: 28088541 DOI: 10.1016/j.ymben.2017.01.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Revised: 12/23/2016] [Accepted: 01/09/2017] [Indexed: 12/13/2022]
Abstract
Chinese Hamster Ovary (CHO) cells are the most commonly used host for the production of biopharmaceuticals. Although transcription and translation engineering strategies have been employed to generate high-producer cell clones, the secretory pathway still remains a bottleneck in cellular productivity. In this study we show that ectopic expression of a human mitochondrial genome-encoded small RNA (mitosRNA-1978) in an IgG expressing CHO cell line strongly improved specific productivity by functioning in a microRNA-like fashion. By next generation sequencing we identified two endoplasmic reticulum (ER)-localized proteins, Ceramide Synthase 2 (CerS2) and the Rab1 GAP Tbc domain family member 20 (Tbc1D20), as target genes of mitosRNA-1978. Combined transient siRNA-mediated knockdown of CerS2 and Tbc1D20 resulted in increased specific productivity of CHO-IgG cells, thus recapitulating the mitosRNA-1978 phenotype. In support of a function in vesicular trafficking at the level of the ER, we provide evidence for altered cellular ceramide composition upon CerS2 knockdown and increased activity of Rab1 in CHO-IgG cells depleted of Tbc1D20. Importantly, in a fed-batch process, the combined stable knockdown of CerS2 and Tbc1D20 in CHO-IgG cells resulted in dramatically increased antibody production which was accompanied by enhanced cell growth. Thus, by identifying mitosRNA-1978 target genes in combination with an informed shRNA-mediated co-engineering approach we successfully optimized the secretory capacity of CHO producer cells used for the manufacturing of therapeutic proteins.
Collapse
Affiliation(s)
- Lisa A Pieper
- Institute of Cell Biology and Immunology, University of Stuttgart, Germany
| | - Michaela Strotbek
- Institute of Cell Biology and Immunology, University of Stuttgart, Germany
| | - Till Wenger
- Boehringer Ingelheim Pharma GmbH & Co.KG, Birkendorfer Str. 65, 88400 Biberach an der Riß, Germany
| | - Martin Gamer
- Boehringer Ingelheim Pharma GmbH & Co.KG, Birkendorfer Str. 65, 88400 Biberach an der Riß, Germany
| | - Monilola A Olayioye
- Institute of Cell Biology and Immunology, University of Stuttgart, Germany; Stuttgart Research Center Systems Biology, University of Stuttgart, Germany.
| | - Angelika Hausser
- Institute of Cell Biology and Immunology, University of Stuttgart, Germany; Stuttgart Research Center Systems Biology, University of Stuttgart, Germany.
| |
Collapse
|
13
|
Martínez-Montañés F, Schneiter R. Tools for the analysis of metabolic flux through the sphingolipid pathway. Biochimie 2016; 130:76-80. [PMID: 27208414 DOI: 10.1016/j.biochi.2016.05.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Accepted: 05/13/2016] [Indexed: 01/26/2023]
Abstract
Discerning the complex regulation of the enzymatic steps necessary for sphingolipid biosynthesis is facilitated by the utilization of tracers that allow a time-resolved analysis of the pathway dynamics without affecting the metabolic flux. Different strategies have been used and new tools are continuously being developed to probe the various enzymatic conversions that occur within this complex pathway. Here, we provide a short overview of the divergent fungal and mammalian sphingolipid biosynthetic routes, and of the tracers and methods that are frequently employed to follow the flux of intermediates throughout these pathways.
Collapse
Affiliation(s)
| | - Roger Schneiter
- University of Fribourg, Department of Biology, 1700 Fribourg, Switzerland.
| |
Collapse
|
14
|
Martínez-Montañés F, Schneiter R. Following the flux of long-chain bases through the sphingolipid pathway in vivo using mass spectrometry. J Lipid Res 2016; 57:906-15. [PMID: 26977056 DOI: 10.1194/jlr.d066472] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Indexed: 02/06/2023] Open
Abstract
Sphingolipids are essential components of the plasma membrane. Their synthesis is tightly controlled by regulatory proteins, which impinge on the rate-limiting step of the pathway, the condensation of serine and palmitoyl-CoA to long-chain base (LCB). The subsequent conversion of LCB to ceramide by ceramide synthase (CerS) is also tightly regulated, because both the accumulation of LCB as well as an excess of ceramide is toxic. Here we describe an in vivo assay to monitor the flux of LCB through the sphingolipid pathway in yeast. Cells are provided with nonnatural odd-chain sphingosine analogs, C17-dihydrosphingosine or C17-phytosphingosine (PHS), and their incorporation into ceramide and more complex sphingolipids is monitored by mass spectrometry. Incorporation of C17-PHS is time and concentration dependent, is inhibited by fumonisin B1, an inhibitor of CerS, and greatly reduced in double mutant cells lacking components of the CerS, Lac1 and Lag1. The resulting C17-ceramides are further metabolized to more complex sphingolipids, inositol phosphorylceramide and mannosylinositol phosphorylceramide), indicating that the tracer can be used to decipher the regulation of later steps of the pathway. In support of this notion, we show that mutants lacking the Orm proteins, regulators of the rate-limiting step of the pathway, display increased steady-state levels of these intermediates without affecting their rate of synthesis.
Collapse
Affiliation(s)
| | - Roger Schneiter
- Department of Biology, University of Fribourg, 1700 Fribourg, Switzerland
| |
Collapse
|
15
|
Gosejacob D, Jäger PS, Vom Dorp K, Frejno M, Carstensen AC, Köhnke M, Degen J, Dörmann P, Hoch M. Ceramide Synthase 5 Is Essential to Maintain C16:0-Ceramide Pools and Contributes to the Development of Diet-induced Obesity. J Biol Chem 2016; 291:6989-7003. [PMID: 26853464 DOI: 10.1074/jbc.m115.691212] [Citation(s) in RCA: 98] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Indexed: 01/22/2023] Open
Abstract
Ceramides are bioactive sphingolipids, which are composed of sphingoid bases carrying acyl chains of various lengths. Ceramides are synthesized by a family of six ceramide synthases (CerS) in mammals, which produce ceramides with differentN-linked acyl chains. Increased ceramide levels are known to contribute to the development of obesity and insulin resistance. Recently, it has been demonstrated that the ceramide acylation pattern is of particular importance for an organism to maintain energy homeostasis. However, which of theCerSfamily members are involved in this process is not yet completely known. Using newly developedCerS5knock-out mice, we show here thatCerS5is essential to maintain cellular C16:0sphingolipid pools in lung, spleen, muscle, liver, and white adipose tissue. Glycerophospholipid levels inCerS5-deficient mice were not altered. We found a strong impact of CerS5-dependent ceramide synthesis in white adipose tissue after high fat diet feeding. In skeletal muscle, liver, and spleen, C16:0-ceramide levels were altered independent of feeding conditions. The loss ofCerS5is associated with reduced weight gain and improved systemic health, including maintenance of glucose homeostasis and reduced white adipose tissue inflammation after high fat diet challenge. Our findings indicate that reduction of endogenous C16:0-ceramide by genetic inhibition ofCerS5is sufficient to ameliorate obesity and its comorbidities.
Collapse
Affiliation(s)
- Dominic Gosejacob
- From the LIMES-Institute, Program Unit Development, Genetics and Molecular Physiology, Molecular Developmental Biology, University of Bonn, Carl-Troll-Strasse 31 and
| | - Philipp S Jäger
- From the LIMES-Institute, Program Unit Development, Genetics and Molecular Physiology, Molecular Developmental Biology, University of Bonn, Carl-Troll-Strasse 31 and
| | - Katharina Vom Dorp
- IMBIO, Molecular Biotechnology, University of Bonn, Karlrobert-Kreiten-Str. 13, 53115 Bonn, Germany
| | - Martin Frejno
- From the LIMES-Institute, Program Unit Development, Genetics and Molecular Physiology, Molecular Developmental Biology, University of Bonn, Carl-Troll-Strasse 31 and
| | - Anne C Carstensen
- From the LIMES-Institute, Program Unit Development, Genetics and Molecular Physiology, Molecular Developmental Biology, University of Bonn, Carl-Troll-Strasse 31 and
| | - Monika Köhnke
- From the LIMES-Institute, Program Unit Development, Genetics and Molecular Physiology, Molecular Developmental Biology, University of Bonn, Carl-Troll-Strasse 31 and
| | - Joachim Degen
- From the LIMES-Institute, Program Unit Development, Genetics and Molecular Physiology, Molecular Developmental Biology, University of Bonn, Carl-Troll-Strasse 31 and
| | - Peter Dörmann
- IMBIO, Molecular Biotechnology, University of Bonn, Karlrobert-Kreiten-Str. 13, 53115 Bonn, Germany
| | - Michael Hoch
- From the LIMES-Institute, Program Unit Development, Genetics and Molecular Physiology, Molecular Developmental Biology, University of Bonn, Carl-Troll-Strasse 31 and
| |
Collapse
|
16
|
Fluorescent Assays for Ceramide Synthase Activity. Methods Mol Biol 2015; 1376:23-33. [PMID: 26552672 DOI: 10.1007/978-1-4939-3170-5_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
Ceramides are the central lipid metabolite of the sphingolipid family, and exert a potent influence over cell polarity, differentiation, and survival through their biophysical properties and their specific interactions with cell signaling proteins. Literature on the importance of ceramides in physiology and pathological conditions continues to grow, with ceramides having been identified as central effectors in major human pathologies such as diabetes and neurodegenerative conditions. In mammals, ceramide synthesis from a sphingoid base and a variable length fatty acid is catalyzed by a family of six ceramide synthases (CERS1-6), whose active sites exhibit differential specificity for different length fatty acids. CERS activity has traditionally been measured using radioactive substrates. More recently mass spectrometry has been used. In this chapter, we describe a fluorescent CERS assay, the results of which can be quantified using thin-layer chromatography (TLC) or high-performance liquid chromatography (HPLC). Methods for quantification with either TLC or HPLC are described.
Collapse
|
17
|
Realini N, Palese F, Pizzirani D, Pontis S, Basit A, Bach A, Ganesan A, Piomelli D. Acid Ceramidase in Melanoma: EXPRESSION, LOCALIZATION, AND EFFECTS OF PHARMACOLOGICAL INHIBITION. J Biol Chem 2015; 291:2422-34. [PMID: 26553872 DOI: 10.1074/jbc.m115.666909] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Indexed: 11/06/2022] Open
Abstract
Acid ceramidase (AC) is a lysosomal cysteine amidase that controls sphingolipid signaling by lowering the levels of ceramides and concomitantly increasing those of sphingosine and its bioactive metabolite, sphingosine 1-phosphate. In the present study, we evaluated the role of AC-regulated sphingolipid signaling in melanoma. We found that AC expression is markedly elevated in normal human melanocytes and proliferative melanoma cell lines, compared with other skin cells (keratinocytes and fibroblasts) and non-melanoma cancer cells. High AC expression was also observed in biopsies from human subjects with Stage II melanoma. Immunofluorescence studies revealed that the subcellular localization of AC differs between melanocytes (where it is found in both cytosol and nucleus) and melanoma cells (where it is primarily localized to cytosol). In addition to having high AC levels, melanoma cells generate lower amounts of ceramides than normal melanocytes do. This down-regulation in ceramide production appears to result from suppression of the de novo biosynthesis pathway. To test whether AC might contribute to melanoma cell proliferation, we blocked AC activity using a new potent (IC50 = 12 nM) and stable inhibitor. AC inhibition increased cellular ceramide levels, decreased sphingosine 1-phosphate levels, and acted synergistically with several, albeit not all, antitumoral agents. The results suggest that AC-controlled sphingolipid metabolism may play an important role in the control of melanoma proliferation.
Collapse
Affiliation(s)
- Natalia Realini
- From the Department of Drug Discovery and Development, Fondazione Istituto Italiano di Tecnologia, Genova 16163, Italy
| | - Francesca Palese
- From the Department of Drug Discovery and Development, Fondazione Istituto Italiano di Tecnologia, Genova 16163, Italy
| | - Daniela Pizzirani
- From the Department of Drug Discovery and Development, Fondazione Istituto Italiano di Tecnologia, Genova 16163, Italy
| | - Silvia Pontis
- From the Department of Drug Discovery and Development, Fondazione Istituto Italiano di Tecnologia, Genova 16163, Italy
| | - Abdul Basit
- From the Department of Drug Discovery and Development, Fondazione Istituto Italiano di Tecnologia, Genova 16163, Italy
| | - Anders Bach
- From the Department of Drug Discovery and Development, Fondazione Istituto Italiano di Tecnologia, Genova 16163, Italy, the Department of Drug Design and Pharmacology, Faculty of Health and Medical Science, University of Copenhagen, Copenhagen 2100, Denmark, and
| | | | - Daniele Piomelli
- From the Department of Drug Discovery and Development, Fondazione Istituto Italiano di Tecnologia, Genova 16163, Italy, Anatomy and Neurobiology, University of California, Irvine, California 92617
| |
Collapse
|
18
|
Toop HD, Don AS, Morris JC. Synthesis and biological evaluation of analogs of AAL(S) for use as ceramide synthase 1 inhibitors. Org Biomol Chem 2015; 13:11593-6. [PMID: 26535908 DOI: 10.1039/c5ob01931a] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
A convergent synthesis to access hydrophobic tail analogs and head group modifications of AAL(S) is described. The analogs synthesised were evaluated for their ability to inhibit ceramide synthase 1 and for their cytotoxicity in K562 cells. Our results have identified inhibitors which are non-cytotoxic yet maintain CerS1 inhibition.
Collapse
Affiliation(s)
- Hamish D Toop
- School of Chemistry, UNSW Australia, Sydney, NSW 2052, Australia.
| | | | | |
Collapse
|
19
|
Kim KP, Shin KO, Park K, Yun HJ, Mann S, Lee YM, Cho Y. Vitamin C Stimulates Epidermal Ceramide Production by Regulating Its Metabolic Enzymes. Biomol Ther (Seoul) 2015; 23:525-30. [PMID: 26535077 PMCID: PMC4624068 DOI: 10.4062/biomolther.2015.044] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Revised: 05/27/2015] [Accepted: 06/02/2015] [Indexed: 12/03/2022] Open
Abstract
Ceramide is the most abundant lipid in the epidermis and plays a critical role in maintaining epidermal barrier function. Overall ceramide content in keratinocyte increases in parallel with differentiation, which is initiated by supplementation of calcium and/or vitamin C. However, the role of metabolic enzymes responsible for ceramide generation in response to vitamin C is still unclear. Here, we investigated whether vitamin C alters epidermal ceramide content by regulating the expression and/or activity of its metabolic enzymes. When human keratinocytes were grown in 1.2 mM calcium with vitamin C (50 μg/ml) for 11 days, bulk ceramide content significantly increased in conjunction with terminal differentiation of keratinocytes as compared to vehicle controls (1.2 mM calcium alone). Synthesis of the ceramide fractions was enhanced by increased de novo ceramide synthesis pathway via serine palmitoyltransferase and ceramide synthase activations. Moreover, sphingosine-1-phosphate (S1P) hydrolysis pathway by action of S1P phosphatase was also stimulated by vitamin C supplementation, contributing, in part, to enhanced ceramide production. However, activity of sphingomyelinase, a hydrolase enzyme that converts sphingomyelin to ceramide, remained unaltered. Taken together, we demonstrate that vitamin C stimulates ceramide production in keratinocytes by modulating ceramide metabolic-related enzymes, and as a result, could improve overall epidermal barrier function.
Collapse
Affiliation(s)
- Kun Pyo Kim
- Department of Medical Nutrition, Graduate School of East-West Medical Science, Kyung Hee University, Yongin 446-701, Republic of Korea
| | - Kyong-Oh Shin
- College of Pharmacy and MRC, Chungbuk National University, Cheongju 361-763, Republic of Korea
| | - Kyungho Park
- Department of Dermatology, Northern California Institute for Research and Education (NCIRE)-VA Medical Center, University of California, San Francisco (UCSF), San Francisco, California 94158, USA
| | - Hye Jeong Yun
- Department of Medical Nutrition, Graduate School of East-West Medical Science, Kyung Hee University, Yongin 446-701, Republic of Korea
| | - Shivtaj Mann
- Nova Southeastern College of Medicine, Fort Lauderdale, Florida 33314, USA
| | - Yong Moon Lee
- College of Pharmacy and MRC, Chungbuk National University, Cheongju 361-763, Republic of Korea
| | - Yunhi Cho
- Department of Medical Nutrition, Graduate School of East-West Medical Science, Kyung Hee University, Yongin 446-701, Republic of Korea
| |
Collapse
|
20
|
Cingolani F, Futerman AH, Casas J. Ceramide synthases in biomedical research. Chem Phys Lipids 2015; 197:25-32. [PMID: 26248326 DOI: 10.1016/j.chemphyslip.2015.07.026] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Revised: 07/30/2015] [Accepted: 07/31/2015] [Indexed: 01/05/2023]
Abstract
Sphingolipid metabolism consists of multiple metabolic pathways that converge upon ceramide, one of the key molecules among sphingolipids (SLs). In mammals, ceramide synthesis occurs via N-acylation of sphingoid backbones, dihydrosphingosine (dhSo) or sphingosine (So). The reaction is catalyzed by ceramide synthases (CerS), a family of enzymes with six different isoforms, with each one showing specificity towards a restricted group of acyl-CoAs, thus producing ceramides (Cer) and dihydroceramides (dhCer) with different fatty acid chain lengths. A large body of evidence documents the role of both So and dhSo as bioactive molecules, as well as the involvement of dhCer and Cer in physiological and pathological processes. In particular, the fatty acid composition of Cer has different effects in cell biology and in the onset and progression of different diseases. Therefore, modulation of CerS activity represents an attractive target in biomedical research and in finding new treatment modalities. In this review, we discuss functional, structural and biochemical features of CerS and examine CerS inhibitors that are currently available.
Collapse
Affiliation(s)
- Francesca Cingolani
- Research Unit on BioActive Molecules (RUBAM), Department of Biomedicinal Chemistry, Institute for Advanced Chemistry of Catalonia (IQAC-CSIC), Jordi Girona 18, 08034 Barcelona, Spain
| | - Anthony H Futerman
- Department of Biological Chemistry, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Josefina Casas
- Research Unit on BioActive Molecules (RUBAM), Department of Biomedicinal Chemistry, Institute for Advanced Chemistry of Catalonia (IQAC-CSIC), Jordi Girona 18, 08034 Barcelona, Spain.
| |
Collapse
|
21
|
Patmanathan SN, Yap LF, Murray PG, Paterson IC. The antineoplastic properties of FTY720: evidence for the repurposing of fingolimod. J Cell Mol Med 2015; 19:2329-40. [PMID: 26171944 PMCID: PMC4594675 DOI: 10.1111/jcmm.12635] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Accepted: 05/20/2015] [Indexed: 12/20/2022] Open
Abstract
Almost all drugs approved for use in humans possess potentially beneficial 'off-target' effects in addition to their principal activity. In some cases this has allowed for the relatively rapid repurposing of drugs for other indications. In this review we focus on the potential for re-purposing FTY720 (also known as fingolimod, Gilenya(™)), an immunomodulatory drug recently approved for the treatment of multiple sclerosis (MS). The therapeutic benefit of FTY720 in MS is largely attributed to the immunosuppressive effects that result from its modulation of sphingosine 1-phosphate receptor signalling. However, this drug has also been shown to inhibit other cancer-associated signal transduction pathways in part because of its structural similarity to sphingosine, and consequently shows efficacy as an anti-cancer agent both in vitro and in vivo. Here, we review the effects of FTY720 on signal transduction pathways and cancer-related cellular processes, and discuss its potential use as an anti-cancer drug.
Collapse
Affiliation(s)
- Sathya Narayanan Patmanathan
- Department of Oral Biology and Biomedical Sciences and Oral Cancer Research & Coordinating Centre, Faculty of Dentistry, University of Malaya, Kuala Lumpur, Malaysia
| | - Lee Fah Yap
- Department of Oral Biology and Biomedical Sciences and Oral Cancer Research & Coordinating Centre, Faculty of Dentistry, University of Malaya, Kuala Lumpur, Malaysia
| | - Paul G Murray
- School of Cancer Sciences, University of Birmingham, Birmingham, UK
| | - Ian C Paterson
- Department of Oral Biology and Biomedical Sciences and Oral Cancer Research & Coordinating Centre, Faculty of Dentistry, University of Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|
22
|
Luttgeharm KD, Cahoon EB, Markham JE. A mass spectrometry-based method for the assay of ceramide synthase substrate specificity. Anal Biochem 2015; 478:96-101. [PMID: 25725359 DOI: 10.1016/j.ab.2015.02.016] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Revised: 02/12/2015] [Accepted: 02/17/2015] [Indexed: 01/24/2023]
Abstract
The acyl composition of sphingolipids is determined by the specificity of the enzyme ceramide synthase (EC 2.3.1.24). Ceramide contains a long-chain base (LCB) linked to a variety of fatty acids to produce a lipid class with potentially hundreds of structural variants. An optimized procedure for the assay of ceramide synthase in yeast microsomes is reported that uses mass spectrometry to detect any possible LCB and fatty acid combination synthesized from unlabeled substrates provided in the reaction. The assay requires the delivery of substrates with bovine serum albumin for maximum activity within defined limits of substrate concentration and specific methods to stop the reaction and extract the lipid that avoid the non-enzymatic synthesis of ceramide. The activity of ceramide synthase in yeast microsomes is demonstrated with the four natural LCBs found in yeast along with six saturated and two unsaturated fatty acyl-coenzyme As from 16 to 26 carbons in length. The procedure allows for the determination of substrate specificity and kinetic parameters toward natural substrates for ceramide synthase from potentially any organism.
Collapse
Affiliation(s)
- Kyle D Luttgeharm
- Department of Biochemistry and Center for Plant Science Innovation, University of Nebraska-Lincoln, Lincoln, NE 68588, USA
| | - Edgar B Cahoon
- Department of Biochemistry and Center for Plant Science Innovation, University of Nebraska-Lincoln, Lincoln, NE 68588, USA
| | - Jennifer E Markham
- Department of Biochemistry and Center for Plant Science Innovation, University of Nebraska-Lincoln, Lincoln, NE 68588, USA.
| |
Collapse
|
23
|
A Three-Step Assay for Ceramide Synthase Activity Using a Fluorescent Substrate and HPLC. Lipids 2014; 50:101-9. [DOI: 10.1007/s11745-014-3969-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2014] [Accepted: 11/01/2014] [Indexed: 10/24/2022]
|
24
|
Tidhar R, Sims K, Rosenfeld-Gur E, Shaw W, Futerman AH. A rapid ceramide synthase activity using NBD-sphinganine and solid phase extraction. J Lipid Res 2014; 56:193-9. [PMID: 25368106 DOI: 10.1194/jlr.d052001] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Ceramides are synthesized by six mammalian ceramide synthases (CerSs), each of which uses fatty acyl-CoAs of different chain lengths for N-acylation of the sphingoid long-chain base. We now describe a rapid and reliable CerS assay that uses a fluorescent N-[6-[(7-nitrobenzo-2-oxa-1,3-diazol-4-yl) (NBD) sphinganine substrate followed by separation of the NBD-lipid substrate and products using solid phase extraction (SPE) C18 chromatography. SPE chromatography is a quick and reliable alternative to TLC, and moreover, there is no degradation of either NBD-sphinganine or NBD-ceramide. We have optimized the assay for use with minimal amounts of protein in a minimal volume. This assay will prove useful for the analysis of CerS activity, which is of particular importance in light of the growing involvement of CerS in cell regulation and in the pathology of human diseases.
Collapse
Affiliation(s)
- Rotem Tidhar
- Department of Biological Chemistry, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Kacee Sims
- Avanti Polar Lipids Inc., Alabaster, AL 35007-9105
| | - Eden Rosenfeld-Gur
- Department of Biological Chemistry, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Walter Shaw
- Avanti Polar Lipids Inc., Alabaster, AL 35007-9105
| | - Anthony H Futerman
- Department of Biological Chemistry, Weizmann Institute of Science, Rehovot 76100, Israel
| |
Collapse
|
25
|
Ceramide synthase 4 deficiency in mice causes lipid alterations in sebum and results in alopecia. Biochem J 2014; 461:147-58. [PMID: 24738593 DOI: 10.1042/bj20131242] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Five ceramide synthases (CerS2-CerS6) are expressed in mouse skin. Although CerS3 has been shown to fulfill an essential function during skin development, neither CerS6- nor CerS2-deficient mice show an obvious skin phenotype. In order to study the role of CerS4, we generated CerS4-deficient mice (Cers4-/-) and CerS4-specific antibodies. With these biological tools we analysed the tissue distribution and determined the cell-type specific expression of CerS4 in suprabasal epidermal layers of footpads as well as in sebaceous glands of the dorsal skin. Loss of CerS4 protein leads to an altered lipid composition of the sebum, which is more solidified and therefore might cause progressive hair loss due to physical blocking of the hair canal. We also noticed a strong decrease in C20 1,2-alkane diols consistent with the decrease of wax diesters in the sebum of Cers4-/- mice. Cers4-/- mice at 12 months old display additional epidermal tissue destruction due to dilated and obstructed pilary canals. Mass spectrometric analyses additionally show a strong decrease in C20-containing sphingolipids.
Collapse
|
26
|
Park JW, Park WJ, Futerman AH. Ceramide synthases as potential targets for therapeutic intervention in human diseases. Biochim Biophys Acta Mol Cell Biol Lipids 2013; 1841:671-81. [PMID: 24021978 DOI: 10.1016/j.bbalip.2013.08.019] [Citation(s) in RCA: 167] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2013] [Revised: 08/28/2013] [Accepted: 08/29/2013] [Indexed: 01/10/2023]
Abstract
Ceramide is located at a key hub in the sphingolipid metabolic pathway and also acts as an important cellular signaling molecule. Ceramide contains one acyl chain which is attached to a sphingoid long chain base via an amide bond, with the acyl chain varying in length and degree of saturation. The identification of a family of six mammalian ceramide synthases (CerS) that synthesize ceramide with distinct acyl chains, has led to significant advances in our understanding of ceramide biology, including further delineation of the role of ceramide in various pathophysiologies in both mice and humans. Since ceramides, and the complex sphingolipids generated from ceramide, are implicated in disease, the CerS might potentially be novel targets for therapeutic intervention in the diseases in which the ceramide acyl chain length is altered. This article is part of a Special Issue entitled New Frontiers in Sphingolipid Biology.
Collapse
Affiliation(s)
- Joo-Won Park
- Department of Biochemistry, School of Medicine, Ewha Womans University, Seoul 158-710, South Korea
| | - Woo-Jae Park
- Department of Biological Chemistry, Weizmann Institute of Science, Rehovot 76100, Israel; Department of Biochemistry, School of Medicine, Gachon University, Incheon 406-799, South Korea
| | - Anthony H Futerman
- Department of Biological Chemistry, Weizmann Institute of Science, Rehovot 76100, Israel.
| |
Collapse
|
27
|
Ebel P, Vom Dorp K, Petrasch-Parwez E, Zlomuzica A, Kinugawa K, Mariani J, Minich D, Ginkel C, Welcker J, Degen J, Eckhardt M, Dere E, Dörmann P, Willecke K. Inactivation of ceramide synthase 6 in mice results in an altered sphingolipid metabolism and behavioral abnormalities. J Biol Chem 2013; 288:21433-21447. [PMID: 23760501 DOI: 10.1074/jbc.m113.479907] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
The N-acyl chain length of ceramides is determined by the specificity of different ceramide synthases (CerS). The CerS family in mammals consists of six members with different substrate specificities and expression patterns. We have generated and characterized a mouse line harboring an enzymatically inactive ceramide synthase 6 (CerS6KO) gene and lacz reporter cDNA coding for β-galactosidase directed by the CerS6 promoter. These mice display a decrease in C16:0 containing sphingolipids. Relative to wild type tissues the amount of C16:0 containing sphingomyelin in kidney is ∼35%, whereas we find a reduction of C16:0 ceramide content in the small intestine to about 25%. The CerS6KO mice show behavioral abnormalities including a clasping abnormality of their hind limbs and a habituation deficit. LacZ reporter expression in the brain reveals CerS6 expression in hippocampus, cortex, and the Purkinje cell layer of the cerebellum. Using newly developed antibodies that specifically recognize the CerS6 protein we show that the endogenous CerS6 protein is N-glycosylated and expressed in several tissues of mice, mainly kidney, small and large intestine, and brain.
Collapse
Affiliation(s)
- Philipp Ebel
- From the Molecular Genetics, Life and Medical Sciences Institute (LIMES)
| | | | - Elisabeth Petrasch-Parwez
- the Department of Neuroanatomy and Molecular Brain Research, Ruhr-University of Bochum, 44801 Bochum, Germany
| | - Armin Zlomuzica
- the Mental Health Research and Treatment Center, Ruhr-University of Bochum, 44780 Bochum, Germany
| | - Kiyoka Kinugawa
- the Hôpital Charles Foix, Institut de la longévité, Paris 94205, France,; the Université Pierre et Marie Curie, Neurobiologie des Processus Adaptatifs, Paris 75005, France, and
| | - Jean Mariani
- the Hôpital Charles Foix, Institut de la longévité, Paris 94205, France,; the Université Pierre et Marie Curie, Neurobiologie des Processus Adaptatifs, Paris 75005, France, and
| | - David Minich
- From the Molecular Genetics, Life and Medical Sciences Institute (LIMES)
| | - Christina Ginkel
- From the Molecular Genetics, Life and Medical Sciences Institute (LIMES)
| | - Jochen Welcker
- the Department of Neuroscience, Max-Delbrueck-Centrum, Berlin, 13125 Berlin, Germany
| | - Joachim Degen
- From the Molecular Genetics, Life and Medical Sciences Institute (LIMES)
| | - Matthias Eckhardt
- the Institute of Biochemistry and Molecular Biology, University of Bonn, 53115 Bonn, Germany
| | - Ekrem Dere
- the Mental Health Research and Treatment Center, Ruhr-University of Bochum, 44780 Bochum, Germany,; the Hôpital Charles Foix, Institut de la longévité, Paris 94205, France,; the Université Pierre et Marie Curie, Neurobiologie des Processus Adaptatifs, Paris 75005, France, and
| | - Peter Dörmann
- Institute of Molecular Physiology and Biotechnology of Plants, and
| | - Klaus Willecke
- From the Molecular Genetics, Life and Medical Sciences Institute (LIMES),.
| |
Collapse
|
28
|
Gaebler A, Milan R, Straub L, Hoelper D, Kuerschner L, Thiele C. Alkyne lipids as substrates for click chemistry-based in vitro enzymatic assays. J Lipid Res 2013; 54:2282-2290. [PMID: 23709689 DOI: 10.1194/jlr.d038653] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Click chemistry is evolving as a powerful tool in biological applications because it allows the sensitive and specific detection of compounds with alkyne or azido groups. Here we describe the use of alkyne lipids as substrates for in vitro enzymatic assays of lipid modifying enzymes. The small alkyne moiety is introduced synthetically at the terminus of the hydrocarbon chain of various substrate lipids. After the assay, the label is click-reacted with the azide-bearing fluorogenic dye 3-azido-7-hydroxycoumarin, followed by the separation of the lipid mix by thin-layer chromatography and fluorescence detection, resulting in high sensitivity and wide-range linearity. Kinetic analyses using alkyne-labeled substrates for lysophosphatidic acid acyltransferases, lysophosphatidylcholine acyltransferases, and ceramide synthases resulted in Michaelis-Menten constants similar to those for radiolabeled or natural substrates. We tested additional alkyne substrates for several hydrolases and acyltransferases in lipid metabolism. In this pilot study we establish alkyne lipids as a new class of convenient substrates for in vitro enzymatic assays.
Collapse
Affiliation(s)
- Anne Gaebler
- LIMES Life and Medical Sciences Institute, University of Bonn, 53115 Bonn, Germany
| | - Robin Milan
- LIMES Life and Medical Sciences Institute, University of Bonn, 53115 Bonn, Germany
| | - Leon Straub
- LIMES Life and Medical Sciences Institute, University of Bonn, 53115 Bonn, Germany
| | - Dominik Hoelper
- LIMES Life and Medical Sciences Institute, University of Bonn, 53115 Bonn, Germany
| | - Lars Kuerschner
- LIMES Life and Medical Sciences Institute, University of Bonn, 53115 Bonn, Germany
| | - Christoph Thiele
- LIMES Life and Medical Sciences Institute, University of Bonn, 53115 Bonn, Germany.
| |
Collapse
|
29
|
Tidhar R, Futerman AH. The complexity of sphingolipid biosynthesis in the endoplasmic reticulum. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2013; 1833:2511-8. [PMID: 23611790 DOI: 10.1016/j.bbamcr.2013.04.010] [Citation(s) in RCA: 125] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2013] [Revised: 04/03/2013] [Accepted: 04/08/2013] [Indexed: 12/21/2022]
Abstract
Unlike the synthesis of other membrane lipids, sphingolipid synthesis is compartmentalized between the endoplasmic reticulum and the Golgi apparatus. The initial steps of sphingolipid synthesis, from the activity of serine palmitoyltransferase through to dihydroceramide desaturase, take place in the endoplasmic reticulum, but the further metabolism of ceramide to sphingomyelin and complex glycosphingolipids takes place mostly in the Golgi apparatus. Studies over the last decade or so have revealed unexpected levels of complexity in the sphingolipid biosynthetic pathway, mainly due to either the promiscuity of some enzymes towards their substrates, or the tight selectivity of others towards specific substrates. We now discuss two enzymes in this pathway, namely serine palmitoyltransferase (SPT) and ceramide synthase (CerS), and one lipid transport protein, CERT. For SPT and CERT, significant structural information is available, and for CerS, significant information has recently been obtained that sheds light of the roles of the specific ceramide species that are produced by each of the CerS. We consider the mechanisms by which specificity is generated and speculate on the reasons that sphingolipid biosynthesis is so complex. This article is part of a Special Issue entitled: Functional and structural diversity of endoplasmic reticulum.
Collapse
Affiliation(s)
- Rotem Tidhar
- Department of Biological Chemistry, Weizmann Institute of Science, Rehovot, Israel
| | | |
Collapse
|
30
|
Kremser C, Klemm AL, Uelft M, Imgrund S, Ginkel C, Hartmann D, Willecke K. Cell-type-specific expression pattern of ceramide synthase 2 protein in mouse tissues. Histochem Cell Biol 2013; 140:533-47. [DOI: 10.1007/s00418-013-1091-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/20/2013] [Indexed: 12/11/2022]
|
31
|
Zigdon H, Kogot-Levin A, Park JW, Goldschmidt R, Kelly S, Merrill AH, Scherz A, Pewzner-Jung Y, Saada A, Futerman AH. Ablation of ceramide synthase 2 causes chronic oxidative stress due to disruption of the mitochondrial respiratory chain. J Biol Chem 2013; 288:4947-56. [PMID: 23283968 DOI: 10.1074/jbc.m112.402719] [Citation(s) in RCA: 167] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Ceramide is a key intermediate in the pathway of sphingolipid biosynthesis and is an important intracellular messenger. We recently generated a ceramide synthase 2 (CerS2) null mouse that cannot synthesize very long acyl chain (C22-C24) ceramides. This mouse displays severe and progressive hepatopathy. Significant changes were observed in the sphingolipid profile of CerS2 null mouse liver, including elevated C16-ceramide and sphinganine levels in liver and in isolated mitochondrial fractions. Because ceramide may be involved in reactive oxygen species (ROS) formation, we examined whether ROS generation was affected in CerS2 null mice. Levels of a number of anti-oxidant enzymes were elevated, as were lipid peroxidation, protein nitrosylation, and ROS. ROS were generated from mitochondria due to impaired complex IV activity. C16-ceramide, sphingosine, and sphinganine directly inhibited complex IV activity in isolated mitochondria and in mitoplasts, whereas other ceramide species, sphingomyelin, and diacylglycerol were without effect. A fluorescent analog of sphinganine accumulated in mitochondria. Heart mitochondria did not display a substantial alteration in the sphingolipid profile or in complex IV activity. We suggest that C16-ceramide and/or sphinganine induce ROS formation through the modulation of mitochondrial complex IV activity, resulting in chronic oxidative stress. These results are of relevance for understanding modulation of ROS signaling by sphingolipids.
Collapse
Affiliation(s)
- Hila Zigdon
- Department of Biological Chemistry, Weizmann Institute of Science, Rehovot 76100, Israel
| | | | | | | | | | | | | | | | | | | |
Collapse
|