1
|
Thibaut MM, Roumain M, Piron E, Gillard J, Loriot A, Neyrinck AM, Rodriguez J, Massart I, Thissen JP, Huot JR, Pin F, Bonetto A, Delzenne NM, Muccioli GG, Bindels LB. The microbiota-derived bile acid taurodeoxycholic acid improves hepatic cholesterol levels in mice with cancer cachexia. Gut Microbes 2025; 17:2449586. [PMID: 39780051 PMCID: PMC11730681 DOI: 10.1080/19490976.2025.2449586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 11/20/2024] [Accepted: 12/30/2024] [Indexed: 01/11/2025] Open
Abstract
Alterations in bile acid profile and pathways contribute to hepatic inflammation in cancer cachexia, a syndrome worsening the prognosis of cancer patients. As the gut microbiota impinges on host metabolism through bile acids, the current study aimed to explore the functional contribution of gut microbial dysbiosis to bile acid dysmetabolism and associated disorders in cancer cachexia. Using three mouse models of cancer cachexia (the C26, MC38 and HCT116 models), we evidenced a reduction in the hepatic levels of several secondary bile acids, mainly taurodeoxycholic (TDCA). This reduction in hepatic TDCA occurred before the appearance of cachexia. Longitudinal analysis of the gut microbiota pinpointed an ASV, identified as Xylanibacter rodentium, as a bacterium potentially involved in the reduced production of TDCA. Coherently, stable isotope-based experiments highlighted a robust decrease in the microbial 7α-dehydroxylation (7α-DH) activity with no changes in the bile salt hydrolase (BSH) activity in cachectic mice. This approach also highlighted a reduced microbial 7α-hydroxysteroid dehydrogenase (7α-HSDH) and 12α-hydroxysteroid dehydrogenase (12α-HSDH) activities in these mice. The contribution of the lower production of TDCA to cancer cachexia was explored in vitro and in vivo. In vitro, TDCA prevented myotube atrophy, whereas in vivo hepatic whole transcriptome analysis revealed that TDCA administration to cachectic mice improved the unfolded protein response and cholesterol homeostasis pathways. Coherently, TDCA administration reversed hepatic cholesterol accumulation in these mice. Altogether, this work highlights the contribution of the gut microbiota to bile acid dysmetabolism and the therapeutic interest of the secondary bile acid TDCA for hepatic cholesterol homeostasis in the context of cancer cachexia. Such discovery may prove instrumental in the understanding of other metabolic diseases characterized by microbial dysbiosis. More broadly, our work demonstrates the interest and relevance of microbial activity measurements using stable isotopes, an approach currently underused in the microbiome field.
Collapse
Affiliation(s)
- Morgane M. Thibaut
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute, UCLouvain, Université catholique de Louvain, Brussels, Belgium
| | - Martin Roumain
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute, UCLouvain, Université catholique de Louvain, Brussels, Belgium
- Bioanalysis and Pharmacology of Bioactive Lipids Research Group, Louvain Drug Research Institute, UCLouvain, Université catholique de Louvain, Brussels, Belgium
| | - Edwige Piron
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute, UCLouvain, Université catholique de Louvain, Brussels, Belgium
| | - Justine Gillard
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute, UCLouvain, Université catholique de Louvain, Brussels, Belgium
- Laboratory of Hepato-Gastroenterology, Institut de Recherche Expérimentale et Clinique, UCLouvain, Université catholique de Louvain, Brussels, Belgium
| | - Axelle Loriot
- Computational Biology and Bioinformatics Unit (CBIO), de Duve Institute, UCLouvain, Université catholique de Louvain, Brussels, Belgium
| | - Audrey M. Neyrinck
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute, UCLouvain, Université catholique de Louvain, Brussels, Belgium
| | - Julie Rodriguez
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute, UCLouvain, Université catholique de Louvain, Brussels, Belgium
| | - Isabelle Massart
- Endocrinology, Diabetology and Nutrition Department, Institut de Recherches Expérimentales et Cliniques, UCLouvain, Université catholique de Louvain, Cliniques Universitaires Saint-Luc, Brussels, Belgium
| | - Jean-Paul Thissen
- Endocrinology, Diabetology and Nutrition Department, Institut de Recherches Expérimentales et Cliniques, UCLouvain, Université catholique de Louvain, Cliniques Universitaires Saint-Luc, Brussels, Belgium
| | - Joshua R. Huot
- Department of Anatomy, Cell Biology and Physiology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Fabrizio Pin
- Department of Anatomy, Cell Biology and Physiology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Andrea Bonetto
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Nathalie M. Delzenne
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute, UCLouvain, Université catholique de Louvain, Brussels, Belgium
| | - Giulio G. Muccioli
- Bioanalysis and Pharmacology of Bioactive Lipids Research Group, Louvain Drug Research Institute, UCLouvain, Université catholique de Louvain, Brussels, Belgium
| | - Laure B. Bindels
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute, UCLouvain, Université catholique de Louvain, Brussels, Belgium
- Welbio Department, WEL Research Institute, Wavre, Belgium
| |
Collapse
|
2
|
Igarashi R, Oda M, Okada R, Yano T, Takahashi S, Pastuhov S, Matano M, Masuda N, Togasaki K, Ohta Y, Sato S, Hishiki T, Suematsu M, Itoh M, Fujii M, Sato T. Generation of human adult hepatocyte organoids with metabolic functions. Nature 2025:10.1038/s41586-025-08861-y. [PMID: 40240606 DOI: 10.1038/s41586-025-08861-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 03/04/2025] [Indexed: 04/18/2025]
Abstract
Proliferating hepatocytes often undergo ductal metaplasia to balance the energy trade-off between cellular functions and replication, hindering the expansion of human adult hepatocytes with functional competency1. Here we demonstrate that the combined activation of Wnt and STAT3 signalling enables long-term self-renewal of human adult hepatocyte organoids. YAP activation facilitates hepatocyte proliferation but commits it towards the biliary duct lineage. By contrast, STAT3 activation by oncostatin M induces hepatocyte proliferation while counteracting ductal metaplasia and maintaining the hepatic identity. Xenotransplanted hepatocyte organoids repopulate the recipient mouse liver and reconstitute the metabolic zonation structure. Upon niche factor removal and hormone supplementation, hepatocyte organoids form cord-like structures with bile canalicular networks and exhibit major liver metabolic functions comparable to those of in vivo hepatocytes. Hepatocyte organoids are amenable to gene editing, prompting functional modelling of inherent metabolic liver diseases. The new culture system offers a promising avenue for developing therapeutic strategies against human liver diseases.
Collapse
Affiliation(s)
- Ryo Igarashi
- Department of Organoid Medicine, Sakaguchi Laboratory, Keio University School of Medicine, Tokyo, Japan
- Department of Integrated Medicine and Biochemistry, Keio University School of Medicine, Tokyo, Japan
| | - Mayumi Oda
- Department of Organoid Medicine, Sakaguchi Laboratory, Keio University School of Medicine, Tokyo, Japan
- Department of Integrated Medicine and Biochemistry, Keio University School of Medicine, Tokyo, Japan
| | - Ryo Okada
- JSR-Keio University Medical and Chemical Innovation Center (JKiC), JSR Corporation, Tokyo, Japan
| | - Tomoki Yano
- Department of Organoid Medicine, Sakaguchi Laboratory, Keio University School of Medicine, Tokyo, Japan
- Department of Integrated Medicine and Biochemistry, Keio University School of Medicine, Tokyo, Japan
| | - Sirirat Takahashi
- Department of Organoid Medicine, Sakaguchi Laboratory, Keio University School of Medicine, Tokyo, Japan
- Department of Integrated Medicine and Biochemistry, Keio University School of Medicine, Tokyo, Japan
| | - Strahil Pastuhov
- Department of Organoid Medicine, Sakaguchi Laboratory, Keio University School of Medicine, Tokyo, Japan
- Department of Integrated Medicine and Biochemistry, Keio University School of Medicine, Tokyo, Japan
| | - Mami Matano
- Department of Organoid Medicine, Sakaguchi Laboratory, Keio University School of Medicine, Tokyo, Japan
- Department of Integrated Medicine and Biochemistry, Keio University School of Medicine, Tokyo, Japan
| | - Norio Masuda
- JSR-Keio University Medical and Chemical Innovation Center (JKiC), JSR Corporation, Tokyo, Japan
| | - Kazuhiro Togasaki
- Department of Organoid Medicine, Sakaguchi Laboratory, Keio University School of Medicine, Tokyo, Japan
- Department of Integrated Medicine and Biochemistry, Keio University School of Medicine, Tokyo, Japan
| | - Yuki Ohta
- Department of Organoid Medicine, Sakaguchi Laboratory, Keio University School of Medicine, Tokyo, Japan
- Department of Integrated Medicine and Biochemistry, Keio University School of Medicine, Tokyo, Japan
| | - Saeko Sato
- Department of Organoid Medicine, Sakaguchi Laboratory, Keio University School of Medicine, Tokyo, Japan
- Department of Integrated Medicine and Biochemistry, Keio University School of Medicine, Tokyo, Japan
| | - Takako Hishiki
- Department of Integrated Medicine and Biochemistry, Keio University School of Medicine, Tokyo, Japan
- Department of Biochemistry, Keio University School of Medicine, Tokyo, Japan
| | - Makoto Suematsu
- Department of Integrated Medicine and Biochemistry, Keio University School of Medicine, Tokyo, Japan
- Department of Biochemistry, Keio University School of Medicine, Tokyo, Japan
| | - Manabu Itoh
- JSR-Keio University Medical and Chemical Innovation Center (JKiC), JSR Corporation, Tokyo, Japan
| | - Masayuki Fujii
- Department of Organoid Medicine, Sakaguchi Laboratory, Keio University School of Medicine, Tokyo, Japan
- Department of Integrated Medicine and Biochemistry, Keio University School of Medicine, Tokyo, Japan
| | - Toshiro Sato
- Department of Organoid Medicine, Sakaguchi Laboratory, Keio University School of Medicine, Tokyo, Japan.
- Department of Integrated Medicine and Biochemistry, Keio University School of Medicine, Tokyo, Japan.
| |
Collapse
|
3
|
Sipos A, Kerekes É, Szeőcs D, Szarvas F, Schwarcz S, Tóth E, Ujlaki G, Mikó E, Bai P. Ursodeoxycholic acid prompts glycolytic dominance, reductive stress and epithelial-to-mesenchymal transition in ovarian cancer cells through NRF2 activation. Cell Death Discov 2025; 11:134. [PMID: 40175359 PMCID: PMC11965337 DOI: 10.1038/s41420-025-02398-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 02/17/2025] [Accepted: 03/13/2025] [Indexed: 04/04/2025] Open
Abstract
Numerous secreted bacterial metabolites were identified with bioactivity in various neoplasias, including ovarian cancer. One such metabolite is ursodeoxycholic acid (UDCA), a secondary bile acid that has widespread beneficial effects in neoplasias. Hereby, we assessed the bioactivity of UDCA in cell models of ovarian cancer, by applying UDCA in concentrations corresponding to the serum reference concentrations of UDCA (300 nM). UDCA induced epithelial-to-mesenchymal transition (EMT), increased the flux of glycolysis and reduced the naturally occurring oxidative stress in ovarian cancer cells. These changes were dependent on the activation of NRF2. The tumoral overexpression of UDCA-induced genes in humans correlated with worse survival. These results point out that bacterial metabolites may have opposite effects in different neoplasias and raise the possibility that UDCA-containing remedies on the long run may support cancer progression in ovarian cancer patients.
Collapse
Affiliation(s)
- Adrienn Sipos
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Éva Kerekes
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Dóra Szeőcs
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Fanni Szarvas
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Szandra Schwarcz
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Emese Tóth
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
- HUN-REN Cell Biology and Signaling Research Group, Debrecen, Hungary
| | - Gyula Ujlaki
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Edit Mikó
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, Debrecen, Hungary.
| | - Peter Bai
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, Debrecen, Hungary.
- HUN-REN Cell Biology and Signaling Research Group, Debrecen, Hungary.
- The Hungarian Academy of Sciences, Center of Excellence, Debrecen, Hungary.
- MTA-DE Lendület Laboratory of Cellular Metabolism, Debrecen, Hungary.
- Research Center for Molecular Medicine, Faculty of Medicine, University of Debrecen, Debrecen, Hungary.
| |
Collapse
|
4
|
Karsten REH, Gier K, de Meijer VE, Huibers WHC, Permentier HP, Verpoorte E, Olinga P. Studying the intracellular bile acid concentration and toxicity in drug-induced cholestasis: Comprehensive LC-MS/MS analysis with human liver slices. Toxicol In Vitro 2025; 104:106011. [PMID: 39855581 DOI: 10.1016/j.tiv.2025.106011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 01/14/2025] [Accepted: 01/18/2025] [Indexed: 01/27/2025]
Abstract
Drug-induced cholestasis (DIC) is a leading cause of drug-induced liver injury post-drug marketing, characterized by bile flow obstruction and toxic bile constituent accumulation within hepatocytes. This study investigates the toxicity associated with intracellular bile acid (BA) accumulation during DIC development. Using liquid chromatography with tandem mass spectrometry (LC-MS/MS) analysis, we examined intracellular BA concentrations in human precision-cut liver slices (PCLS) following the administration of cyclosporin A and chlorpromazine, both with and without an established BA mixture. Our findings indicate toxicity of cyclosporin A upon BA addition, while chlorpromazine's toxicity remained unaffected. Although neither drug led to the accumulation of all BAs intracellularly, BA mixture addition resulted in the accumulation of unconjugated BAs associated with DIC, such as deoxycholic acid (DCA) and cholic acid (CA). Additionally, cyclosporin A increased taurolithocholic acid (TLCA) concentrations. In the absence of the BA mixture, a decrease in conjugated BAs was observed, suggesting inhibition of BA metabolism by cholestatic drugs and warranting further investigation. The evident increase in CA and DCA for both drugs (and TLCA for cyclosporin A), despite not exacerbating toxicity with chlorpromazine, suggests these increases may be related to DIC development and possible toxicity. In conclusion, the current human PCLS model is appropriate for investigating and detecting essential contributors to DIC and can be used in future studies elucidating DIC ex vivo.
Collapse
Affiliation(s)
- R E H Karsten
- University of Groningen, Groningen Research Institute of Pharmacy, Department of Pharmaceutical Analysis, Antonius Deusinglaan 1, 9713 AV Groningen, the Netherlands
| | - K Gier
- University of Groningen, Groningen Research Institute of Pharmacy, Department of Pharmaceutical Analysis, Antonius Deusinglaan 1, 9713 AV Groningen, the Netherlands
| | - V E de Meijer
- Department of Surgery, Section of Hepatobiliary Surgery and Liver Transplantation, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ Groningen, the Netherlands
| | - W H C Huibers
- University of Groningen, Groningen Research Institute of Pharmacy, Department of Analytical Biochemistry and Interfaculty Mass Spectrometry Center, A. Deusinglaan 16, 9713 AV Groningen, the Netherlands
| | - H P Permentier
- University of Groningen, Groningen Research Institute of Pharmacy, Department of Analytical Biochemistry and Interfaculty Mass Spectrometry Center, A. Deusinglaan 16, 9713 AV Groningen, the Netherlands
| | - E Verpoorte
- University of Groningen, Groningen Research Institute of Pharmacy, Department of Pharmaceutical Analysis, Antonius Deusinglaan 1, 9713 AV Groningen, the Netherlands
| | - P Olinga
- University of Groningen, Groningen Research Institute of Pharmacy, Department of Pharmaceutical Technology and Biopharmacy, Antonius Deusinglaan 1, 9713 AV Groningen, the Netherlands.
| |
Collapse
|
5
|
Kang MH, Elnar AG, Kim GB. Review on the Function, Substrate Affinity, and Potential Application of Bile Salt Hydrolase Originated from Probiotic Strains of Lactobacillus, Bifidobacterium, and Enterococcus. Food Sci Anim Resour 2025; 45:353-374. [PMID: 40093624 PMCID: PMC11907429 DOI: 10.5851/kosfa.2025.e1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 01/06/2025] [Accepted: 01/06/2025] [Indexed: 03/19/2025] Open
Abstract
Bile salt hydrolase (BSH: EC.3.5.1.24) has been used as a biomarker for probiotics for an extended period. It is mostly present in the gut environment of vertebrates. Additionally, it influences the viability of probiotics. This biomarker is considered a promising nutritional supplement due to its unique ability to effectively address elevated blood cholesterol levels, a common issue in modern society. However, the commercialization of BSH has been limited by an incomplete understanding of the intestinal microbiota and the function of BSH. Hence, in this review, we aim to reveal the current advancements in BSH research and outline the necessary areas of investigation for future studies. The review highlights key findings related to the substrate affinity of BSH in probiotic bacteria and its BSH gene phylogeny that have been researched until today, suggesting further research regarding the differences in multiple BSH genes and corresponding differences in BSH affinity.
Collapse
Affiliation(s)
- Mo Hyeon Kang
- Department of Animal Science and Technology, Chung-Ang University, Anseong 17546, Korea
| | - Arxel G. Elnar
- Department of Animal Science and Technology, Chung-Ang University, Anseong 17546, Korea
| | - Geun-Bae Kim
- Department of Animal Science and Technology, Chung-Ang University, Anseong 17546, Korea
| |
Collapse
|
6
|
Zhang N, Rietjens IMCM, de Bruijn VMP. Application of physiologically based (PBK) modeling to quantify the effect of the antibiotic tobramycin on bile acid levels in human plasma. Arch Toxicol 2025; 99:1073-1083. [PMID: 39731603 DOI: 10.1007/s00204-024-03936-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Accepted: 12/10/2024] [Indexed: 12/30/2024]
Abstract
Systemic bile acid homeostasis plays an important role in human health. In this study, a physiologically based kinetic (PBK) model that includes microbial bile acid deconjugation and intestinal bile acid reuptake via the apical sodium-dependent bile acid transporter (ASBT) was applied to predict the systemic plasma bile acid concentrations in human upon oral treatment with the antibiotic tobramycin. Tobramycin was previously shown to inhibit intestinal deconjugation and reuptake of bile acids and to affect bile acid homeostasis upon oral exposure of rats. Kinetic parameters to define the effects of tobramycin on intestinal bile acid transport were determined in vitro using a Caco-2 cell layer Transwell model for studying the intestinal translocation of 4 model bile acids including glycochenodeoxycholic acid (GCDCA), glycocholic acid (GCA), glycodeoxycholic acid (GDCA), and deoxycholic acid (DCA), the latter as a model for unconjugated bile acids (uBA). Kinetic constants for the effect of tobramycin on intestinal microbial deconjugation were taken from previous in vitro studies using anaerobic fecal incubations. The PBK model simulations predicted that exposure to tobramycin at the dose level also used in the previous 28 day rat study would reduce human plasma Cmax levels of GCA, GCDCA, GDCA, and DCA by 42.4%, 27.7%, 16.9%, and 75.8%. The reduction of conjugated bile acids is governed especially via an effect on ASBT-mediated intestinal uptake, and not via the effect of tobramycin on intestinal conjugation, likely because deconjugation happens to a large extent in the colon which has limited subsequent bile acid reuptake. The results reflect that oral exposure to xenobiotics that are not or poorly bioavailable can affect systemic bile acid homeostasis. Altogether, the PBK model appears to provide a 3R compliant tool to evaluate the effect of oral exposure to xenobiotics on host bile acid homeostasis via effects on intestinal bile acid deconjugation and reuptake.
Collapse
Affiliation(s)
- Nina Zhang
- Division of Toxicology, Wageningen University and Research, Stippeneng 4, 6708 WE, Wageningen, The Netherlands.
| | - Ivonne M C M Rietjens
- Division of Toxicology, Wageningen University and Research, Stippeneng 4, 6708 WE, Wageningen, The Netherlands
| | - Véronique M P de Bruijn
- Division of Toxicology, Wageningen University and Research, Stippeneng 4, 6708 WE, Wageningen, The Netherlands
| |
Collapse
|
7
|
Tsenkova M, Brauer M, Pozdeev VI, Kasakin M, Busi SB, Schmoetten M, Cheung D, Meyers M, Rodriguez F, Gaigneaux A, Koncina E, Gilson C, Schlicker L, Herebian D, Schmitz M, de Nies L, Mayatepek E, Haan S, de Beaufort C, Cramer T, Meiser J, Linster CL, Wilmes P, Letellier E. Ketogenic diet suppresses colorectal cancer through the gut microbiome long chain fatty acid stearate. Nat Commun 2025; 16:1792. [PMID: 39979287 PMCID: PMC11842570 DOI: 10.1038/s41467-025-56678-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 01/28/2025] [Indexed: 02/22/2025] Open
Abstract
Colorectal cancer (CRC) patients have been shown to possess an altered gut microbiome. Diet is a well-established modulator of the microbiome, and thus, dietary interventions might have a beneficial effect on CRC. An attenuating effect of the ketogenic diet (KD) on CRC cell growth has been previously observed, however the role of the gut microbiome in driving this effect remains unknown. Here, we describe a reduced colonic tumor burden upon KD consumption in a CRC mouse model with a humanized microbiome. Importantly, we demonstrate a causal relationship through microbiome transplantation into germ-free mice, whereby alterations in the gut microbiota were maintained in the absence of continued selective pressure from the KD. Specifically, we identify a shift toward bacterial species that produce stearic acid in ketogenic conditions, whereas consumers were depleted, resulting in elevated levels of free stearate in the gut lumen. This microbial product demonstrates tumor-suppressing properties by inducing apoptosis in cancer cells and decreasing colonic Th17 immune cell populations. Taken together, the beneficial effects of the KD are mediated through alterations in the gut microbiome, including, among others, increased stearic acid production, which in turn significantly reduces intestinal tumor growth.
Collapse
Grants
- OT2 OD030544 NIH HHS
- U2C DK119886 NIDDK NIH HHS
- This work was supported by the Luxembourg National Research Fund (FNR) (grant nos. CORE/C16/BM/11282028 (E.L.), PoC/18/12554295 (E.L.), AFR 17103240 (C.G.), PRIDE17/11823097 (M.T., M.K., L.d.N.) and CORE/15/BM/10404093 (P.W.)), by the Luxembourg National Research Fund and the Fondation Cancer Luxembourg (grant no. CORE/C20/BM/14591557 (E.L.)), AFR 17103240 as well as by the Fondation du Pélican de Mie and Pierre Hippert-Faber under the aegis of the Fondation de Luxembourg (‘Pelican Grant’; M.T. and M.M.), a FNRS-Télévie grant to M.M., no. 7.4565.21-40007364), an Internal Research Project at the University of Luxembourg (MiDiCa—integrated analysis of the effects of microbiome-diet interactions on human colorectal adenocarcinoma enterocytes; E.L., P.W. and S.H.), the Fondation Cancer and the Fondation Kriibskrank Kanner Luxembourg (V.I.P), the Action LIONS Vaincre le Cancer Luxembourg and a European Research Council grant under the European Union’s Horizon 2020 research and innovation programme (grant agreement no. 863664 to P.W.). This project was also supported by the Doctoral School in Science and Engineering (M.T., M.K., M.M. and L.d.N.) and the Department of Life Sciences and Medicine at the University of Luxembourg. The funders had no role in study design, data collection and analysis, decision to publish or preparation of the manuscript.
Collapse
Affiliation(s)
- Mina Tsenkova
- Department of Life Sciences and Medicine, Faculty of Science, Technology and Medicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Madita Brauer
- Department of Life Sciences and Medicine, Faculty of Science, Technology and Medicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
- Institute for Advanced Studies, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Vitaly Igorevich Pozdeev
- Department of Life Sciences and Medicine, Faculty of Science, Technology and Medicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Marat Kasakin
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Susheel Bhanu Busi
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
- UK Centre for Ecology and Hydrology, Wallingford, United Kingdom
| | - Maryse Schmoetten
- Department of Life Sciences and Medicine, Faculty of Science, Technology and Medicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Dean Cheung
- Department of Life Sciences and Medicine, Faculty of Science, Technology and Medicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Marianne Meyers
- Department of Life Sciences and Medicine, Faculty of Science, Technology and Medicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Fabien Rodriguez
- Department of Life Sciences and Medicine, Faculty of Science, Technology and Medicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Anthoula Gaigneaux
- Department of Life Sciences and Medicine, Faculty of Science, Technology and Medicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Eric Koncina
- Department of Life Sciences and Medicine, Faculty of Science, Technology and Medicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Cedric Gilson
- Department of Life Sciences and Medicine, Faculty of Science, Technology and Medicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Lisa Schlicker
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Diran Herebian
- Department of General Pediatrics, Neonatology and Pediatric Cardiology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University, Düsseldorf, Germany
| | - Martine Schmitz
- Department of Life Sciences and Medicine, Faculty of Science, Technology and Medicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Laura de Nies
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Ertan Mayatepek
- Department of General Pediatrics, Neonatology and Pediatric Cardiology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University, Düsseldorf, Germany
| | - Serge Haan
- Department of Life Sciences and Medicine, Faculty of Science, Technology and Medicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Carine de Beaufort
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
- Pediatric Clinic, Centre Hospitalier de Luxembourg, Luxembourg, Luxembourg
| | - Thorsten Cramer
- Department of General, Visceral, Children and Transplantation Surgery, RWTH University Hospital Aachen, Aachen, Germany
| | - Johannes Meiser
- Department of Cancer Research (DOCR), Luxembourg Institute of Health, Luxembourg, Luxembourg
| | - Carole L Linster
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Paul Wilmes
- Department of Life Sciences and Medicine, Faculty of Science, Technology and Medicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Elisabeth Letellier
- Department of Life Sciences and Medicine, Faculty of Science, Technology and Medicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg.
| |
Collapse
|
8
|
Hermeling S, Plagge J, Krautbauer S, Ecker J, Burkhardt R, Liebisch G. Rapid quantification of murine bile acids using liquid chromatography-tandem mass spectrometry. Anal Bioanal Chem 2025; 417:687-696. [PMID: 39621039 PMCID: PMC11772536 DOI: 10.1007/s00216-024-05668-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 11/11/2024] [Accepted: 11/18/2024] [Indexed: 01/28/2025]
Abstract
Interest in bile acids (BAs) is growing due to their emerging role as signaling molecules and their association with various diseases such as colon cancer and metabolic syndrome. Analyzing BAs requires chromatographic separation of isomers, often with long run times, which hinders BA analysis in large studies. Here, we present a high-throughput method based on liquid chromatography-tandem mass spectrometry to quantify BAs in mouse samples. After acidic protein precipitation in the presence of a comprehensive mixture of stable isotope-labeled internal standards (SIL-ISs), BAs are separated on a biphenyl column by gradient elution at basic pH. Quantification is performed using a six-point calibration curve. Except for the separation of β- and ω-muricholic acid (MCA) species, a rapid separation of 27 BA species was achieved in a run time of 6.5 min. Plasma quality controls (QCs) were used to evaluate intra- and inter-day precision. The CV was less than 10% for most BA species and exceeded 20% only for glycohyodeoxycholic (GHDCA) and taurohyodeoxycholic acid (THDCA) due to the lack of a corresponding SIL-IS. The limit of quantification (LoQ) was tested using diluted QCs and was found to be compromised for some BA species as a result of insufficient isotopic purity of the SIL-IS, leading to significant interference with the respective analyte. Finally, we tested the mouse sample material requirements for plasma, bile, and liver samples and determined BA concentrations in C57/BL6N wild-type mice. In conclusion, the LC-MS/MS method presented here permits a rapid and reproducible quantification of the major murine BAs.
Collapse
Affiliation(s)
- Sven Hermeling
- ZIEL Institute for Food & Health, Research Group Lipid Metabolism, Technical University Munich, Munich, Germany
- Institute of Clinical Chemistry and Laboratory Medicine, University Hospital Regensburg, 93053, Regensburg, Germany
| | - Johannes Plagge
- ZIEL Institute for Food & Health, Research Group Lipid Metabolism, Technical University Munich, Munich, Germany
| | - Sabrina Krautbauer
- Institute of Clinical Chemistry and Laboratory Medicine, University Hospital Regensburg, 93053, Regensburg, Germany
| | - Josef Ecker
- ZIEL Institute for Food & Health, Research Group Lipid Metabolism, Technical University Munich, Munich, Germany
- Institute of Clinical Chemistry and Laboratory Medicine, University Hospital Regensburg, 93053, Regensburg, Germany
| | - Ralph Burkhardt
- Institute of Clinical Chemistry and Laboratory Medicine, University Hospital Regensburg, 93053, Regensburg, Germany
| | - Gerhard Liebisch
- Institute of Clinical Chemistry and Laboratory Medicine, University Hospital Regensburg, 93053, Regensburg, Germany.
| |
Collapse
|
9
|
Roumain M, Muccioli GG. Development and application of an LC-MS/MS method for the combined quantification of oxysterols and bile acids. J Lipid Res 2025; 66:100697. [PMID: 39557296 PMCID: PMC11761337 DOI: 10.1016/j.jlr.2024.100697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 11/05/2024] [Accepted: 11/06/2024] [Indexed: 11/20/2024] Open
Abstract
Oxysterols and bile acids are interconnected bioactive lipids playing pivotal roles in diverse physiological and pathological processes. For this reason, they are increasingly studied together for their implications in various diseases. However, due to analytical challenges inherent to the nature of these analytes, very few methods have been developed for the simultaneous analysis of these lipids. We here report the development of a sensitive LC-MS/MS method for the combined quantification of 18 oxysterols, 11 unconjugated, 15 conjugated bile acids, and 1 bile acid precursor, using 8 isotope-labeled internal standards, addressing the need for a more comprehensive analysis of these interesting lipid families. During the method development, we investigated different extraction protocols, set up a purification step, and achieved chromatographic separation for these lipids, overcoming challenges such as the large number of analytes, isomers, and wide range of polarity across the analytes. Finally, the method was successfully applied to the analysis of preclinical and clinical samples, quantifying 12 oxysterols and 14 bile acids in human plasma, 10 oxysterols and 18 bile acids in mouse plasma from the vena cava, and 10 oxysterols and 20 bile acids in mouse plasma from the portal vein within a single chromatographic run.
Collapse
Affiliation(s)
- Martin Roumain
- Bioanalysis and Pharmacology of Bioactive Lipids Research Group, Louvain Drug Research Institute, Université catholique de Louvain, Brussels, Belgium
| | - Giulio G Muccioli
- Bioanalysis and Pharmacology of Bioactive Lipids Research Group, Louvain Drug Research Institute, Université catholique de Louvain, Brussels, Belgium.
| |
Collapse
|
10
|
Klindt C, Truong JK, Bennett AL, Pachura KJ, Herebian D, Mayatepek E, Luedde T, Ebert M, Karpen SJ, Dawson PA. Hepatic bile acid accretion correlates with cholestatic liver injury and therapeutic response in Cyp2c70 knockout mice with a humanized bile acid composition. Am J Physiol Gastrointest Liver Physiol 2024; 327:G789-G809. [PMID: 39350733 PMCID: PMC11684888 DOI: 10.1152/ajpgi.00129.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 09/16/2024] [Accepted: 09/25/2024] [Indexed: 11/12/2024]
Abstract
Cyp2c70 knockout (KO) mice lack the liver enzyme responsible for synthesis of 6-hydroxylated muricholate bile acid species and possess a more hydrophobic human-like bile acid composition. Cyp2c70 KO mice develop cholestatic liver injury that can be prevented by the administration of an ileal bile acid transporter (IBAT) inhibitor. In this study, we investigated the potential of an ileal bile acid transporter (IBAT) inhibitor (SC-435) and steroidal farnesoid X receptor (FXR) agonist (cilofexor) to modulate established hepatobiliary injury and the consequent relationship of intrahepatic bile acid content and hydrophobicity to the cholestatic liver injury phenotype. Oral administration of SC-435, cilofexor, or combined treatment for 2 wk markedly reduced serum markers of liver injury and improved histological and gene expression markers of fibrosis, liver inflammation, and ductular reaction in male and female Cyp2c70 KO mice, with the greatest benefit in the combination treatment group. The IBAT inhibitor and FXR agonist significantly reduced intrahepatic bile acid content but not hepatic bile acid pool hydrophobicity, and markers of liver injury were strongly correlated with intrahepatic total bile acid and taurochenodeoxycholic acid accretion. Biomarkers of liver injury increased linearly with similar hepatic thresholds for pathological accretion of hydrophobic bile acids in male and female Cyp2c70 KO mice. These findings further support targeting intrahepatic bile acid retention as a component of treatments for cholestatic liver disease.NEW & NOTEWORTHY Bile acids are implicated as a common contributor to the pathogenesis and progression of cholestatic liver disease. Using a mouse model with a humanized bile acid composition, we demonstrated that mono and combination therapy using an IBAT inhibitor and FXR nonsteroidal agonist were effective at reducing hepatic bile acid accretion and reversing liver injury, without reducing hepatic bile acid hydrophobicity. The findings support the concept of a therapeutically tractable threshold for bile acid-induced liver injury.
Collapse
Affiliation(s)
- Caroline Klindt
- Department of Pediatrics, Emory University School of Medicine and Children's Healthcare of Atlanta, Atlanta, Georgia, United States
- Department of Gastroenterology, Hepatology and Infectious Diseases, Heinrich-Heine University, Duesseldorf, Germany
- Department of Medicine II, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Jennifer K Truong
- Department of Pediatrics, Emory University School of Medicine and Children's Healthcare of Atlanta, Atlanta, Georgia, United States
- Rectify Pharma, Cambridge, Massachusetts, United States
| | - Ashley L Bennett
- Department of Pediatrics, Emory University School of Medicine and Children's Healthcare of Atlanta, Atlanta, Georgia, United States
| | - Kimberly J Pachura
- Department of Pediatrics, Emory University School of Medicine and Children's Healthcare of Atlanta, Atlanta, Georgia, United States
| | - Diran Herebian
- Department of General Pediatrics, Neonatology and Pediatric Cardiology, Medical Faculty and University Hospital Duesseldorf, Heinrich-Heine University Duesseldorf, Duesseldorf, Germany
| | - Ertan Mayatepek
- Department of General Pediatrics, Neonatology and Pediatric Cardiology, Medical Faculty and University Hospital Duesseldorf, Heinrich-Heine University Duesseldorf, Duesseldorf, Germany
| | - Tom Luedde
- Department of Gastroenterology, Hepatology and Infectious Diseases, Heinrich-Heine University, Duesseldorf, Germany
| | - Matthias Ebert
- Department of Medicine II, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Saul J Karpen
- Department of Pediatrics, Emory University School of Medicine and Children's Healthcare of Atlanta, Atlanta, Georgia, United States
- Stravitz-Sanyal Liver Institute for Liver Disease and Metabolic Health, Virginia Commonwealth University, Richmond, Virginia, United States
| | - Paul A Dawson
- Department of Pediatrics, Emory University School of Medicine and Children's Healthcare of Atlanta, Atlanta, Georgia, United States
| |
Collapse
|
11
|
Zeng F, He S, Sun Y, Li X, Chen K, Wang H, Man S, Lu F. Abnormal enterohepatic circulation of bile acids caused by fructooligosaccharide supplementation along with a high-fat diet. Food Funct 2024; 15:11432-11443. [PMID: 39450588 DOI: 10.1039/d4fo03353a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2024]
Abstract
Fructooligosaccharide (FOS) is a widely used prebiotic and health food ingredient, but few reports have focused on its risk to specific populations. Recently, it has been shown that the intake of inulin, whose main component is FOS, can lead to cholestasis and induce hepatocellular carcinoma in mice fed a high-fat diet (HFD); however, the molecular mechanism behind this is not clear. This study found that FOS supplementation induced abnormal enterohepatic circulation of bile acids in HFD-fed mice, which showed a significant increase in bile acid levels in the blood and liver, especially the secondary bile acids with high cytotoxicity, such as deoxycholic acid. The abundance of Clostridium, Bacteroides, and other bacteria in the gut microbiota also increased significantly. The analysis of the signaling pathway involved in regulating the enterohepatic circulation of bile acids showed that the weakening of the feedback inhibition of FXR-FGF15 and FXR-SHP signalling pathways possibly induced the enhancement of CYP7A1 activity and bile acid reabsorption in the blood and liver and led to an increase in bile acid synthesis and accumulation in the liver, increasing the risk of cholestasis. This study showed the risk of health damage caused by FOS supplementation in HFD-fed mice, which is caused by gut microbiota dysfunction and abnormal enterohepatic circulation of bile acids. Therefore, the application of FOS should be standardized to avoid the health risks of unreasonable FOS use in specific populations.
Collapse
Affiliation(s)
- Fang Zeng
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, The College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, P. R. China.
| | - Shi He
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, The College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, P. R. China.
| | - Ying Sun
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, The College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, P. R. China.
| | - Xue Li
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, The College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, P. R. China.
| | - Kaiyang Chen
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, The College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, P. R. China.
| | - Hongbin Wang
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, The College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, P. R. China.
| | - Shuli Man
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, The College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, P. R. China.
| | - Fuping Lu
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, The College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, P. R. China.
| |
Collapse
|
12
|
Lee KCY, Williams AL, Wang L, Xie G, Jia W, Fujimoto A, Gerschenson M, Shohet RV. PKM2 regulates metabolic flux and oxidative stress in the murine heart. Physiol Rep 2024; 12:e70040. [PMID: 39256891 PMCID: PMC11387154 DOI: 10.14814/phy2.70040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 08/28/2024] [Accepted: 08/28/2024] [Indexed: 09/12/2024] Open
Abstract
Cardiac metabolism ensures a continuous ATP supply, primarily using fatty acids in a healthy state and favoring glucose in pathological conditions. Pyruvate kinase muscle (PKM) controls the final step of glycolysis, with PKM1 being the main isoform in the heart. PKM2, elevated in various heart diseases, has been suggested to play a protective role in cardiac stress, but its function in basal cardiac metabolism remains unclear. We examined hearts from global PKM2 knockout (PKM2-/-) mice and found reduced intracellular glucose. Isotopic tracing of U-13C glucose revealed a shift to biosynthetic pathways in PKM2-/- cardiomyocytes. Total ATP content was two-thirds lower in PKM2-/- hearts, and functional analysis indicated reduced mitochondrial oxygen consumption. Total reactive oxygen species (ROS) and mitochondrial superoxide were also increased in PKM2-/- cardiomyocytes. Intriguingly, PKM2-/- hearts had preserved ejection fraction compared to controls. Mechanistically, increased calcium/calmodulin-dependent kinase II activity and phospholamban phosphorylation may contribute to higher sarcoendoplasmic reticulum calcium ATPase 2 pump activity in PKM2-/- hearts. Loss of PKM2 led to altered glucose metabolism, diminished mitochondrial function, and increased ROS in cardiomyocytes. These data suggest that cardiac PKM2 acts as an important rheostat to maintain ATP levels while limiting oxidative stress. Although loss of PKM2 did not impair baseline contractility, its absence may make hearts more sensitive to environmental stress or injury.
Collapse
Affiliation(s)
- Katie C. Y. Lee
- Department of Medicine, John A. Burns School of MedicineUniversity of HawaiiHonoluluHawaiiUSA
- Department of Cell and Molecular Biology, John A. Burns School of MedicineUniversity of HawaiiHonoluluHawaiiUSA
| | - Allison L. Williams
- Department of Medicine, John A. Burns School of MedicineUniversity of HawaiiHonoluluHawaiiUSA
| | - Lu Wang
- University of Hawaii Cancer CenterHonoluluHawaiiUSA
| | - Guoxiang Xie
- University of Hawaii Cancer CenterHonoluluHawaiiUSA
| | - Wei Jia
- University of Hawaii Cancer CenterHonoluluHawaiiUSA
| | - Anastasia Fujimoto
- Department of Cell and Molecular Biology, John A. Burns School of MedicineUniversity of HawaiiHonoluluHawaiiUSA
| | - Mariana Gerschenson
- Department of Cell and Molecular Biology, John A. Burns School of MedicineUniversity of HawaiiHonoluluHawaiiUSA
| | - Ralph V. Shohet
- Department of Medicine, John A. Burns School of MedicineUniversity of HawaiiHonoluluHawaiiUSA
| |
Collapse
|
13
|
Brea R, Casanova N, Alvarez-Lucena C, Fuertes-Agudo M, Luque-Tevar M, Cucarella C, Capitani MC, Marinochi MV, Fusini ME, Lahoz A, Nogueroles ML, Fraile J, Ronco MT, Boscá L, González-Rodríguez Á, García-Monzón C, Martín-Sanz P, Casado M, Francés DE. Beneficial effects of hepatic cyclooxygenase-2 expression against cholestatic injury after common bile duct ligation in mice. Liver Int 2024; 44:2409-2423. [PMID: 38847511 DOI: 10.1111/liv.16004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 05/01/2024] [Accepted: 05/23/2024] [Indexed: 08/30/2024]
Abstract
BACKGROUND AND AIMS Cyclooxygenase-2 (COX-2) is involved in different liver diseases, but little is known about the significance of COX-2 in cholestatic injury. This study was designed to elucidate the role of COX-2 expression in hepatocytes during the pathogenesis of obstructive cholestasis. METHODS We used genetically modified mice constitutively expressing human COX-2 in hepatocytes. Transgenic mice (hCOX-2-Tg) and their wild-type (Wt) littermates were either subjected to a mid-abdominal laparotomy or common bile duct ligation (BDL) for 2 or 5 days. Then, we explored the mechanisms underlying the role of COX-2 and its derived prostaglandins in liver function, and the synthesis and excretion of bile acids (BA) in response to cholestatic liver injury. RESULTS After BDL, hCOX-2-Tg mice showed lower grades of hepatic necrosis and inflammation than Wt mice, in part by a reduced hepatic neutrophil recruitment associated with lower mRNA levels of pro-inflammatory cytokines. Furthermore, hCOX-2-Tg mice displayed a differential metabolic pattern of BA synthesis that led to an improved clearance after BDL-induced accumulation. In addition, an enhanced response to the BDL-induced oxidative stress and hepatic apoptosis was observed. In vitro experiments using hepatic cells that stably express hCOX-2 confirmed the cytoprotective role of prostaglandin E2 against BA toxicity. CONCLUSIONS Taken together, our data indicate that constitutive expression of COX-2 in hepatocytes ameliorates cholestatic liver injury in mice by reducing inflammation and cell damage and by modulating BA metabolism, pointing to a role for COX-2 as a defensive response against cholestasis-derived BA accumulation and injury.
Collapse
Affiliation(s)
- Rocío Brea
- Instituto de Investigaciones Biomédicas Sols-Morreale (IIBM), CSIC-UAM, Madrid, Spain
| | - Natalia Casanova
- Instituto de Investigaciones Biomédicas Sols-Morreale (IIBM), CSIC-UAM, Madrid, Spain
| | | | - Marina Fuertes-Agudo
- Instituto de Biomedicina de Valencia (IBV), CSIC, Valencia, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Madrid, Spain
| | - María Luque-Tevar
- Instituto de Biomedicina de Valencia (IBV), CSIC, Valencia, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Madrid, Spain
| | - Carme Cucarella
- Instituto de Biomedicina de Valencia (IBV), CSIC, Valencia, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Madrid, Spain
| | - María C Capitani
- Instituto de Fisiología Experimental (IFISE-CONICET), Rosario, Argentina
| | - María V Marinochi
- Instituto de Fisiología Experimental (IFISE-CONICET), Rosario, Argentina
| | - Matías E Fusini
- Cátedra de Histología y Embriología Humana-Fac. Cs. Médicas-UNR, Rosario, Argentina
| | | | | | - Juan Fraile
- Instituto de Investigaciones Biomédicas Sols-Morreale (IIBM), CSIC-UAM, Madrid, Spain
| | - María T Ronco
- Instituto de Fisiología Experimental (IFISE-CONICET), Rosario, Argentina
| | - Lisardo Boscá
- Instituto de Investigaciones Biomédicas Sols-Morreale (IIBM), CSIC-UAM, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | - Águeda González-Rodríguez
- Instituto de Investigaciones Biomédicas Sols-Morreale (IIBM), CSIC-UAM, Madrid, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Madrid, Spain
| | - Carmelo García-Monzón
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Madrid, Spain
- Liver Research Unit, Hospital Universitario Santa Cristina, Instituto de Investigación Sanitaria Princesa, Madrid, Spain
| | - Paloma Martín-Sanz
- Instituto de Investigaciones Biomédicas Sols-Morreale (IIBM), CSIC-UAM, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Madrid, Spain
| | - Marta Casado
- Instituto de Biomedicina de Valencia (IBV), CSIC, Valencia, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Madrid, Spain
| | - Daniel E Francés
- Instituto de Fisiología Experimental (IFISE-CONICET), Rosario, Argentina
| |
Collapse
|
14
|
Hu Y, Wu A, Yan H, Pu J, Luo J, Zheng P, Luo Y, Yu J, He J, Yu B, Chen D. Secondary bile acids are associated with body lipid accumulation in obese pigs. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2024; 18:246-256. [PMID: 39281048 PMCID: PMC11402430 DOI: 10.1016/j.aninu.2024.04.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 02/22/2024] [Accepted: 04/03/2024] [Indexed: 09/18/2024]
Abstract
The aim of this study was to investigate the reasons for the differences in lipid accumulation between lean and obese pigs. The bile acids with varying levels within two types of pigs were found and then in vitro experiments were conducted to identify whether these bile acids can directly affect lipid accumulation. Fourteen pigs, including seven lean and seven obese pigs with body weights of approximately 80 kg, were fed the same diet at an amount approximately equivalent to 3% of their respective body weights daily for 42 d. In vitro, 3T3-L1 preadipocytes were cultured in medium with high glucose levels and were differentiated into mature adipocytes using differentiation medium. Then, bile acids were added to mature adipocytes for 4 d. The results showed that there was a difference in body lipids levels and gut microbiota composition between obese and lean pigs (P < 0.05). According to the results of gut microbial function prediction, the bile acid biosynthesis in colonic digesta of obese pigs were different from that in lean pig. Sixty-five bile acids were further screened by metabolomics, of which 4 were upregulated (P < 0.05) and 2 were downregulated (P < 0.05) in obese pigs compared to lean pigs. The results of the correlation analysis demonstrated that chenodeoxycholic acid-3-β-D-glucuronide (CDCA-3Gln) and ω-muricholic acid (ω-MCA) had a negative correlation with abdominal fat weight and abdominal fat rate, while isoallolithocholic acid (IALCA) was positively associated with crude fat in the liver and abdominal fat rate. There was a positive correlation between loin muscle area and CDCA-3Gln and ω-MCA (P < 0.05), however, IALCA and 3-oxodeoxycholic acid (3-oxo-DCA) were negatively associated with loin eye muscle area (P < 0.05). Isoallolithocholic acid increased the gene expression of peroxisome proliferator-activated receptor gamma (PPARG) and the number of lipid droplets (P < 0.05), promoting the lipid storage when IALCA was added to 3T3-L1 mature adipocytes in vitro. In conclusion, the concentration of bile acids, especially gut microbiota related-secondary bile acids, in obese pigs was different from that in lean pigs, which may contribute to lipid accumulation within obese pigs.
Collapse
Affiliation(s)
- Yaolian Hu
- Key Laboratory of Animal Disease-Resistant Nutrition, Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Ya'an 625014, China
| | - Aimin Wu
- Key Laboratory of Animal Disease-Resistant Nutrition, Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Ya'an 625014, China
| | - Hui Yan
- Key Laboratory of Animal Disease-Resistant Nutrition, Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Ya'an 625014, China
| | - Junning Pu
- Key Laboratory of Animal Disease-Resistant Nutrition, Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Ya'an 625014, China
| | - Junqiu Luo
- Key Laboratory of Animal Disease-Resistant Nutrition, Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Ya'an 625014, China
| | - Ping Zheng
- Key Laboratory of Animal Disease-Resistant Nutrition, Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Ya'an 625014, China
| | - Yuheng Luo
- Key Laboratory of Animal Disease-Resistant Nutrition, Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Ya'an 625014, China
| | - Jie Yu
- Key Laboratory of Animal Disease-Resistant Nutrition, Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Ya'an 625014, China
| | - Jun He
- Key Laboratory of Animal Disease-Resistant Nutrition, Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Ya'an 625014, China
| | - Bing Yu
- Key Laboratory of Animal Disease-Resistant Nutrition, Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Ya'an 625014, China
| | - Daiwen Chen
- Key Laboratory of Animal Disease-Resistant Nutrition, Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Ya'an 625014, China
| |
Collapse
|
15
|
He S, Li L, Yao Y, Su J, Lei S, Zhang Y, Zeng H. Bile acid and its bidirectional interactions with gut microbiota: a review. Crit Rev Microbiol 2024; 50:684-701. [PMID: 37766478 DOI: 10.1080/1040841x.2023.2262020] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 09/14/2023] [Accepted: 09/18/2023] [Indexed: 09/29/2023]
Abstract
Bile acids (BAs) are an important metabolite produced by cholesterol catabolism. It serves important roles in glucose and lipid metabolism and host-microbe interaction. Recent research has shown that different gut-microbiota can secrete different metabolic-enzymes to mediate the deconjugation, dehydroxylation and epimerization of BAs. In addition, microbes mediate BAs transformation and exert physiological functions in metabolic diseases may have a potentially close relationship with diet. Therefore, elaborating the pathways by which gut microbes mediate the transformation of BAs through enzymatic reactions involved are principal to understand the mechanism of effects between dietary patterns, gut microbes and BAs, and to provide theoretical knowledge for the development of functional foods to regulate metabolic diseases. In the present review, we summarized works on the physiological function of BAs, as well as the classification and composition of BAs in different animal models and its organs. In addition, we mainly focus on the bidirectional interactions of gut microbes with BAs transformation, and discuss the effects of diet on microbial transformation of BAs. Finally, we raised the question of further in-depth investigation of the food-gut microbial-BAs relationship, which might contribute to the improvement of metabolic diseases through dietary interventions in the future.
Collapse
Affiliation(s)
- Shuqi He
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, China
- Fujian Provincial Key Laboratory of Quality Science and Processing Technology in Special Starch, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Lanxin Li
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, China
- Fujian Provincial Key Laboratory of Quality Science and Processing Technology in Special Starch, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yingning Yao
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, China
- Fujian Provincial Key Laboratory of Quality Science and Processing Technology in Special Starch, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Jinhan Su
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, China
- Fujian Provincial Key Laboratory of Quality Science and Processing Technology in Special Starch, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Suzhen Lei
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, China
- Fujian Provincial Key Laboratory of Quality Science and Processing Technology in Special Starch, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yi Zhang
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, China
- Fujian Provincial Key Laboratory of Quality Science and Processing Technology in Special Starch, Fujian Agriculture and Forestry University, Fuzhou, China
- Engineering Research Centre of Fujian-Taiwan Special Marine Food Processing and Nutrition, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Hongliang Zeng
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, China
- Fujian Provincial Key Laboratory of Quality Science and Processing Technology in Special Starch, Fujian Agriculture and Forestry University, Fuzhou, China
- Engineering Research Centre of Fujian-Taiwan Special Marine Food Processing and Nutrition, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
16
|
Poljo A, Peterli R, Kraljević M. Effects of limb lengths in gastric bypass surgery. Br J Surg 2024; 111:znae220. [PMID: 39190791 DOI: 10.1093/bjs/znae220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 07/11/2024] [Accepted: 08/07/2024] [Indexed: 08/29/2024]
Affiliation(s)
- Adisa Poljo
- Division of Metabolic Bariatric Surgery, Department of Visceral Surgery, Clarunis-University Digestive Healthcare Center Basel, University Hospital Basel and St. Clara Hospital, Basel, Switzerland
| | - Ralph Peterli
- Division of Metabolic Bariatric Surgery, Department of Visceral Surgery, Clarunis-University Digestive Healthcare Center Basel, University Hospital Basel and St. Clara Hospital, Basel, Switzerland
| | - Marko Kraljević
- Division of Metabolic Bariatric Surgery, Department of Visceral Surgery, Clarunis-University Digestive Healthcare Center Basel, University Hospital Basel and St. Clara Hospital, Basel, Switzerland
| |
Collapse
|
17
|
Cheng X, Zhang R, Qi X, Wang H, Gao T, Zheng L, Qiao M, Li Y, Gao S, Chen J, Chang R, Zheng G, Dong H. Metabolomics and network pharmacology exploration of the effects of bile acids on carotid atherosclerosis and potential underlying mechanisms. Front Endocrinol (Lausanne) 2024; 15:1430720. [PMID: 39076513 PMCID: PMC11284041 DOI: 10.3389/fendo.2024.1430720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 06/07/2024] [Indexed: 07/31/2024] Open
Abstract
BACKGROUND Bile acids (BAs), products of gut microbiota metabolism, have long been implicated in atherosclerotic disease pathogenesis. Characterizing the serum bile acid profile and exploring its potential role in carotid atherosclerosis (CAS) development are crucial tasks. METHODS In this study, we recruited 73 patients with CAS as the disease group and 77 healthy individuals as the control group. We systematically measured the serum concentrations of 15 bile acids using ultrahigh-performance liquid chromatography-mass spectrometry (UPLC-MS/MS). Multivariate logistic regression and least absolute shrinkage and selection operator (LASSO) regression were applied to analyze the impact of bile acids on the disease and select the key BAs. The possible molecular mechanism was elucidated by network pharmacology. RESULTS (1) The BA profile of patients with CAS significantly differed. (2) Multifactorial logistic regression analysis identified elevated levels of GCDCA (OR: 1.01, P < 0.001), DCA (OR: 1.01, P = 0.005), and TDCA (OR: 1.05, P = 0.002) as independent risk factors for CAS development. Conversely, GCA (OR: 0.99, P = 0.020), LCA (OR: 0.83, P = 0.002), and GUDCA (OR: 0.99, P = 0.003) were associated with protective effects against the disease. GCA, DCA, LCA, and TDCA were identified as the four key BAs. (3) TNF, FXR, GPBAR1, ESR1 and ACE were predicted to be targets of BAs against AS. These four BAs potentially impact AS progression by triggering signaling pathways, including cAMP, PPAR, and PI3K-AKT pathways, via their targets. CONCLUSION This study offers valuable insights into potential therapeutic strategies for atherosclerosis that target bile acids.
Collapse
Affiliation(s)
- Xing Cheng
- Department of Vascular Surgery, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Ruijing Zhang
- Department of Nephrology, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Xiaotong Qi
- Department of Vascular Surgery, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Heng Wang
- Department of Vascular Surgery, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Tingting Gao
- Department of Vascular Surgery, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Lin Zheng
- Department of Vascular Surgery, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Maolin Qiao
- Department of Vascular Surgery, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Yaling Li
- Department of Vascular Surgery, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Siqi Gao
- Department of Vascular Surgery, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Jinshan Chen
- Department of Vascular Surgery, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Runze Chang
- Department of Vascular Surgery, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Guoping Zheng
- Centre for Transplantation and Renal Research, University of Sydney at Westmead Millennium Institute, Westmead, NSW, Australia
| | - Honglin Dong
- Department of Vascular Surgery, The Second Hospital of Shanxi Medical University, Taiyuan, China
| |
Collapse
|
18
|
Ali RO, Haddad JA, Quinn GM, Zhang GY, Townsend E, Scheuing L, Hill KL, Menkart M, Oringher JL, Umarova R, Rampertaap S, Rosenzweig SD, Koh C, Levy EB, Kleiner DE, Etzion O, Heller T. Taurine-conjugated bile acids and their link to hepatic S1PR2 play a significant role in hepatitis C-related liver disease. Hepatol Commun 2024; 8:e0478. [PMID: 38967598 PMCID: PMC11227361 DOI: 10.1097/hc9.0000000000000478] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 04/26/2024] [Indexed: 07/06/2024] Open
Abstract
BACKGROUND Bile acids mediate gut-liver cross-talk through bile acid receptors. Serum, hepatic, and microbial bile acid metabolism was evaluated in HCV-compensated chronic liver disease. METHODS Patients underwent liver biopsy; portal and peripheral blood were obtained before (HCVi), and 6 months after sustained virologic response (SVR), splenic blood was obtained only after SVR. The fecal microbiome and liver transcriptome were evaluated using RNA-Seq. Twenty-four bile acids were measured in serum, summed as free, taurine-conjugated bile acids (Tau-BAs), and glycine-conjugated bile acids. RESULTS Compared to SVR, HCVi showed elevated conjugated bile acids, predominantly Tau-BA, compounded in HCVi cirrhosis. In the liver, transcription of bile acids uptake, synthesis, and conjugation was decreased with increased hepatic spillover into systemic circulation in HCVi. There was no difference in the transcription of microbial bile acid metabolizing genes in HCVi. Despite an overall decrease, Tau-BA remained elevated in SVR cirrhosis, mainly in splenic circulation. Only conjugated bile acids, predominantly Tau-BA, correlated with serum proinflammatory markers and hepatic proinflammatory pathways, including NLRP3 and NFKB. Among hepatic bile acid receptors, disease-associated conjugated bile acids showed the strongest association with hepatic spingosine-1-phosphate receptor 2 (S1PR2). CONCLUSIONS Enhanced expression of hepatic S1PR2 in HCVi and HCVi-cirrhosis and strong associations of S1PR2 with Tau-BAs suggest pathological relevance of Tau-BA-hepatic S1PR2 signaling in chronic liver disease. These findings have therapeutic implications in chronic liver diseases.
Collapse
Affiliation(s)
- Rabab O. Ali
- Translational Hepatology Section, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - James A. Haddad
- Translational Hepatology Section, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Gabriella M. Quinn
- Translational Hepatology Section, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Grace Y. Zhang
- Translational Hepatology Section, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Elizabeth Townsend
- Translational Hepatology Section, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Lisa Scheuing
- Translational Hepatology Section, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Kareen L. Hill
- Translational Hepatology Section, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Matthew Menkart
- Translational Hepatology Section, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Jenna L. Oringher
- Translational Hepatology Section, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Regina Umarova
- Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Shakuntala Rampertaap
- Immunology Service, Department of Laboratory Medicine, Clinical Center, National Institutes of Health, Bethesda, Maryland, USA
| | - Sergio D. Rosenzweig
- Immunology Service, Department of Laboratory Medicine, Clinical Center, National Institutes of Health, Bethesda, Maryland, USA
| | - Christopher Koh
- Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Elliot B. Levy
- Center for Interventional Oncology, Radiology and Imaging Sciences, Clinical Center, National Institutes of Health, Bethesda, Maryland, USA
| | - David E. Kleiner
- Laboratory of Pathology, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Ohad Etzion
- Translational Hepatology Section, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Theo Heller
- Translational Hepatology Section, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
19
|
Román-Sagüillo S, Quiñones Castro R, Juárez-Fernández M, Soluyanova P, Stephens C, Robles-Díaz M, Jorquera Plaza F, González-Gallego J, Martínez-Flórez S, García-Mediavilla MV, Nistal E, Jover R, Sánchez-Campos S. Idiosyncratic Drug-Induced Liver Injury and Amoxicillin-Clavulanate: Spotlight on Gut Microbiota, Fecal Metabolome and Bile Acid Profile in Patients. Int J Mol Sci 2024; 25:6863. [PMID: 38999973 PMCID: PMC11241776 DOI: 10.3390/ijms25136863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 06/18/2024] [Accepted: 06/20/2024] [Indexed: 07/14/2024] Open
Abstract
Several hepatic disorders are influenced by gut microbiota, but its role in idiosyncratic drug-induced liver injury (iDILI), whose main causative agent is amoxicillin-clavulanate, remains unknown. This pioneering study aims to unravel particular patterns of gut microbiota composition and associated metabolites in iDILI and iDILI patients by amoxicillin-clavulanate (iDILI-AC). Thus, serum and fecal samples from 46 patients were divided into three study groups: healthy controls (n = 10), non-iDILI acute hepatitis (n = 12) and iDILI patients (n = 24). To evaluate the amoxicillin-clavulanate effect, iDILI patients were separated into two subgroups: iDILI non-caused by amoxicillin-clavulanate (iDILI-nonAC) (n = 18) and iDILI-AC patients (n = 6). Gut microbiota composition and fecal metabolome plus serum and fecal bile acid (BA) analyses were performed, along with correlation analyses. iDILI patients presented a particular microbiome profile associated with reduced fecal secondary BAs and fecal metabolites linked to lower inflammation, such as dodecanedioic acid and pyridoxamine. Moreover, certain taxa like Barnesiella, Clostridia UCG-014 and Eubacterium spp. correlated with significant metabolites and BAs. Additionally, comparisons between iDILI-nonAC and iDILI-AC groups unraveled unique features associated with iDILI when caused by amoxicillin-clavulanate. In conclusion, specific gut microbiota profiles in iDILI and iDILI-AC patients were associated with particular metabolic and BA status, which could affect disease onset and progression.
Collapse
Affiliation(s)
- Sara Román-Sagüillo
- Instituto Universitario de Biomedicina (IBIOMED), Universidad de León, 24071 León, Spain
| | - Raisa Quiñones Castro
- Servicio de Aparato Digestivo, Complejo Asistencial Universitario de León, 24008 León, Spain
| | - María Juárez-Fernández
- Instituto Universitario de Biomedicina (IBIOMED), Universidad de León, 24071 León, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Polina Soluyanova
- Unidad Mixta de Investigación en Hepatología Experimental, IIS Hospital La Fe, 46026 Valencia, Spain
- Departamento de Bioquímica y Biología Molecular, Universidad de Valencia, 46010 Valencia, Spain
| | - Camilla Stephens
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Unidad de Gestión Clínica de Aparato Digestivo y Servicio de Farmacología Clínica, Instituto de Investigación Biomédica de Málaga-IBIMA Plataforma BIONAND, Hospital Universitario Virgen de la Victoria, Facultad de Medicina, Universidad de Málaga, 29010 Málaga, Spain
| | - Mercedes Robles-Díaz
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Unidad de Gestión Clínica de Aparato Digestivo y Servicio de Farmacología Clínica, Instituto de Investigación Biomédica de Málaga-IBIMA Plataforma BIONAND, Hospital Universitario Virgen de la Victoria, Facultad de Medicina, Universidad de Málaga, 29010 Málaga, Spain
| | - Francisco Jorquera Plaza
- Instituto Universitario de Biomedicina (IBIOMED), Universidad de León, 24071 León, Spain
- Servicio de Aparato Digestivo, Complejo Asistencial Universitario de León, 24008 León, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Javier González-Gallego
- Instituto Universitario de Biomedicina (IBIOMED), Universidad de León, 24071 León, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Susana Martínez-Flórez
- Instituto Universitario de Biomedicina (IBIOMED), Universidad de León, 24071 León, Spain
| | - María Victoria García-Mediavilla
- Instituto Universitario de Biomedicina (IBIOMED), Universidad de León, 24071 León, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Esther Nistal
- Instituto Universitario de Biomedicina (IBIOMED), Universidad de León, 24071 León, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Ramiro Jover
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Unidad Mixta de Investigación en Hepatología Experimental, IIS Hospital La Fe, 46026 Valencia, Spain
- Departamento de Bioquímica y Biología Molecular, Universidad de Valencia, 46010 Valencia, Spain
| | - Sonia Sánchez-Campos
- Instituto Universitario de Biomedicina (IBIOMED), Universidad de León, 24071 León, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, 28029 Madrid, Spain
| |
Collapse
|
20
|
Liu B, Du Z, Zhang W, Guo X, Lu Y, Jiang Y, Tu P. A pseudo-targeted metabolomics for discovery of potential biomarkers of cardiac hypertrophy in rats. J Chromatogr B Analyt Technol Biomed Life Sci 2024; 1240:124133. [PMID: 38733887 DOI: 10.1016/j.jchromb.2024.124133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 04/07/2024] [Accepted: 04/21/2024] [Indexed: 05/13/2024]
Abstract
Cardiac hypertrophy (CH) is one of the stages in the occurrence and development of severe cardiovascular diseases, and exploring its biomarkers is beneficial for delaying the progression of severe cardiovascular diseases. In this research, we established a comprehensive and highly efficient pseudotargeted metabolomics method, which demonstrated a superior capacity to identify differential metabolites when compared to traditionaluntargeted metabolomics. The intra/inter-day precision and reproducibility results proved the method is reliable and precise. The established method was then applied to seek the potential differentiated metabolic biomarkers of cardiac hypertrophy (CH) rats, and oxylipins, phosphorylcholine (PC), lysophosphatidylcholine (LysoPC), lysophosphatidylethanolamine (LysoPE), Krebs cycle intermediates, carnitines, amino acids, and bile acids were disclosed to be the possible differentiate components. Their metabolic pathway analysis revealed that the potential metabolic alterations in CH rats were mainly associated with phenylalanine, tyrosine and tryptophan biosynthesis, phenylalanine metabolism, arachidonic acid metabolism, citrate cycle, glyoxylate and dicarboxylate metabolism, and tyrosine metabolism. In sum, this research provided a comprehensiveand reliable LC-MS/MS MRM platform for pseudo-targeted metabolomics investigation of disease condition, and some interesting potential biomarkers were disclosed for CH, which merit further exploration in the future.
Collapse
Affiliation(s)
- Bing Liu
- School of Pharmaceutical Sciences, State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing, China
| | - Zhiyong Du
- National Clinical Research Center for Cardiovascular Diseases, Beijing Institute of Heart Lung and Blood Vessel Disease, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Wenxin Zhang
- School of Pharmaceutical Sciences, State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing, China
| | - Xiaoyu Guo
- School of Pharmaceutical Sciences, State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing, China
| | - Yingyuan Lu
- School of Pharmaceutical Sciences, State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing, China.
| | - Yong Jiang
- School of Pharmaceutical Sciences, State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing, China.
| | - Pengfei Tu
- School of Pharmaceutical Sciences, State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing, China.
| |
Collapse
|
21
|
Ay Ü, Leníček M, Haider RS, Classen A, van Eijk H, Koelfat KV, van der Kroft G, Neumann UP, Hoffmann C, Bolm C, Olde Damink SW, Schaap FG. Microbially conjugated bile salts found in human bile activate the bile salt receptors TGR5 and FXR. Hepatol Commun 2024; 8:e0383. [PMID: 38517202 PMCID: PMC10962891 DOI: 10.1097/hc9.0000000000000383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 12/06/2023] [Indexed: 03/23/2024] Open
Abstract
BACKGROUND Bile salts of hepatic and microbial origin mediate interorgan cross talk in the gut-liver axis. Here, we assessed whether the newly discovered class of microbial bile salt conjugates (MBSCs) activate the main host bile salt receptors (Takeda G protein-coupled receptor 5 [TGR5] and farnesoid X receptor [FXR]) and enter the human systemic and enterohepatic circulation. METHODS N-amidates of (chenodeoxy) cholic acid and leucine, tyrosine, and phenylalanine were synthesized. Receptor activation was studied in cell-free and cell-based assays. MBSCs were quantified in mesenteric and portal blood and bile of patients undergoing pancreatic surgery. RESULTS MBSCs were activating ligands of TGR5 as evidenced by recruitment of Gsα protein, activation of a cAMP-driven reporter, and diminution of lipopolysaccharide-induced cytokine release from macrophages. Intestine-enriched and liver-enriched FXR isoforms were both activated by MBSCs, provided that a bile salt importer was present. The affinity of MBSCs for TGR5 and FXR was not superior to host-derived bile salt conjugates. Individual MBSCs were generally not detected (ie, < 2.5 nmol/L) in human mesenteric or portal blood, but Leu-variant and Phe-variant were readily measurable in bile, where MBSCs comprised up to 213 ppm of biliary bile salts. CONCLUSIONS MBSCs activate the cell surface receptor TGR5 and the transcription factor FXR and are substrates for intestinal (apical sodium-dependent bile acid transporter) and hepatic (Na+ taurocholate co-transporting protein) transporters. Their entry into the human circulation is, however, nonsubstantial. Given low systemic levels and a surplus of other equipotent bile salt species, the studied MBSCs are unlikely to have an impact on enterohepatic TGR5/FXR signaling in humans. The origin and function of biliary MBSCs remain to be determined.
Collapse
Affiliation(s)
- Ümran Ay
- Department of General, Visceral and Transplant Surgery, University Hospital Aachen, Aachen, Germany
| | - Martin Leníček
- Institute of Medical Biochemistry and Laboratory Diagnostics, Faculty General Hospital and First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Raphael S. Haider
- Institute of Molecular Cell Biology, Center for Molecular Biomedicine, Jena University Hospital, Jena, Germany
- Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, Queen’s Medical Center, University of Nottingham, Nottingham, United Kingdom
- Center of Membrane Protein and Receptors, Universities of Birmingham and Nottingham, Midlands, United Kingdom
| | - Arno Classen
- Institute of Organic Chemistry, RWTH Aachen University, Aachen, Germany
| | - Hans van Eijk
- Department of Surgery, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, The Netherlands
| | - Kiran V.K. Koelfat
- Department of General, Visceral and Transplant Surgery, University Hospital Aachen, Aachen, Germany
| | - Gregory van der Kroft
- Department of General, Visceral and Transplant Surgery, University Hospital Aachen, Aachen, Germany
| | - Ulf. P. Neumann
- Department of General, Visceral and Transplant Surgery, University Hospital Aachen, Aachen, Germany
- Department of Surgery, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, The Netherlands
| | - Carsten Hoffmann
- Institute of Molecular Cell Biology, Center for Molecular Biomedicine, Jena University Hospital, Jena, Germany
| | - Carsten Bolm
- Institute of Organic Chemistry, RWTH Aachen University, Aachen, Germany
| | - Steven W.M. Olde Damink
- Department of General, Visceral and Transplant Surgery, University Hospital Aachen, Aachen, Germany
- Department of Surgery, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, The Netherlands
| | - Frank G. Schaap
- Department of General, Visceral and Transplant Surgery, University Hospital Aachen, Aachen, Germany
- Department of Surgery, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, The Netherlands
| |
Collapse
|
22
|
Németh K, Sterczer Á, Kiss DS, Lányi RK, Hemző V, Vámos K, Bartha T, Buzás A, Lányi K. Determination of Bile Acids in Canine Biological Samples: Diagnostic Significance. Metabolites 2024; 14:178. [PMID: 38668306 PMCID: PMC11052161 DOI: 10.3390/metabo14040178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 03/19/2024] [Accepted: 03/20/2024] [Indexed: 04/28/2024] Open
Abstract
The comprehensive examination of bile acids is of paramount importance across various fields of health sciences, influencing physiology, microbiology, internal medicine, and pharmacology. While enzymatic reaction-based photometric methods remain fundamental for total BA measurements, there is a burgeoning demand for more sophisticated techniques such as liquid chromatography-tandem mass spectrometry (LC-MS/MS) for comprehensive BA profiling. This evolution reflects a need for nuanced diagnostic assessments in clinical practice. In canines, a BA assessment involves considering factors, such as food composition, transit times, and breed-specific variations. Multiple matrices, including blood, feces, urine, liver tissue, and gallbladder bile, offer insights into BA profiles, yet interpretations remain complex, particularly in fecal analysis due to sampling challenges and breed-specific differences. Despite ongoing efforts, a consensus regarding optimal matrices and diagnostic thresholds remains elusive, highlighting the need for further research. Emphasizing the scarcity of systematic animal studies and underscoring the importance of ap-propriate sampling methodologies, our review advocates for targeted investigations into BA alterations in canine pathology, promising insights into pathomechanisms, early disease detection, and therapeutic avenues.
Collapse
Affiliation(s)
- Krisztián Németh
- Department of Physiology and Biochemistry, University of Veterinary Medicine, István u. 2, H-1078 Budapest, Hungary; (K.N.); (D.S.K.); (V.H.); (T.B.)
| | - Ágnes Sterczer
- Department of Internal Medicine, University of Veterinary Medicine, István u. 2, H-1078 Budapest, Hungary;
| | - Dávid Sándor Kiss
- Department of Physiology and Biochemistry, University of Veterinary Medicine, István u. 2, H-1078 Budapest, Hungary; (K.N.); (D.S.K.); (V.H.); (T.B.)
| | - Réka Katalin Lányi
- Faculty of Pharmacy, University of Szeged, Zrínyi u. 9, H-6720 Szeged, Hungary;
| | - Vivien Hemző
- Department of Physiology and Biochemistry, University of Veterinary Medicine, István u. 2, H-1078 Budapest, Hungary; (K.N.); (D.S.K.); (V.H.); (T.B.)
| | - Kriszta Vámos
- Department of Internal Medicine, University of Veterinary Medicine, István u. 2, H-1078 Budapest, Hungary;
| | - Tibor Bartha
- Department of Physiology and Biochemistry, University of Veterinary Medicine, István u. 2, H-1078 Budapest, Hungary; (K.N.); (D.S.K.); (V.H.); (T.B.)
| | - Anna Buzás
- Institute of Food Chain Science, University of Veterinary Medicine, István u. 2, H-1078 Budapest, Hungary; (A.B.); (K.L.)
| | - Katalin Lányi
- Institute of Food Chain Science, University of Veterinary Medicine, István u. 2, H-1078 Budapest, Hungary; (A.B.); (K.L.)
| |
Collapse
|
23
|
Chang Y, Li X, Jiang J, Gui L, Wan L, Zhou X, Liao L, Li K, Lan K. Separation of bile acid isomer plays a pivotal role in bioequivalence evaluation of ursodeoxycholic acid. J Pharm Biomed Anal 2024; 239:115882. [PMID: 38071766 DOI: 10.1016/j.jpba.2023.115882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 11/25/2023] [Accepted: 11/25/2023] [Indexed: 01/05/2024]
Abstract
Based on our experiences in bile acid profiling, this work developed and validated a liquid chromatography electrospray ionization tandem mass spectrometry method to separate endogenous bile acid isomers and quantitatively determine ursodeoxycholic acid (UDCA), glycoursodeoxycholic acid (GUDCA) and tauroursodeoxycholic acid (TUDCA) in human plasma. The separation was performed on a CORTECS C18 column with the mobile phase consisting of 1.0 mM ammonium acetate and acetonitrile-methanol (80:20, v/v). UDCA, GUDCA and TUDCA were detected in the negative mode on a triple-quadrupole mass spectrometer at the ion transitions of m/z 391 > 391, m/z 448 > 74, m/z 498 > 80, respectively. Phosphate buffer was employed as the surrogate matrix to establish the isotope internal standard corrected calibration curves of analytes. The background-method with a linearity range of 10-200 ng/mL was partially validated to determine the endogenous levels of analytes in blank human plasma, which was incorporated into the validation of bioequivalence-method with a linearity range of 50-10000 ng/mL. The bioequivalence (BE)-method was fully validated with special focus on matrix effects, which have been critically evaluated using the precision and accuracy of quality control samples prepared from the blank human plasma of 12 individuals. It is disclosed for the first time that the BE results of UDCA formulation may yield false results when the method is insufficient to separate UDCA from isoursodeoxycholic acid, a microbial metabolite of both endogenous and exogenous UDCA. The present method has established a milestone for the evaluation of UDCA formulations and is expected to provide a valuable reference for the bioanalytical development of endogenous medicinal products.
Collapse
Affiliation(s)
- Yanbo Chang
- Department of Analytical Toxicology, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, China; NMPA Key Laboratory for Technical Research on Drug Products In Vitro and In Vivo Correlation, Sichuan Provincial Institute for Food and Drug Control, Chengdu, China
| | - Xuejing Li
- Chengdu Cynogen Bio-pharmaceutical Tech. Co., Ltd., Chengdu, China
| | - Jinping Jiang
- Chengdu Cynogen Bio-pharmaceutical Tech. Co., Ltd., Chengdu, China
| | - Lanlan Gui
- Chengdu Cynogen Bio-pharmaceutical Tech. Co., Ltd., Chengdu, China; Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, China
| | - Linfei Wan
- Chengdu Cynogen Bio-pharmaceutical Tech. Co., Ltd., Chengdu, China
| | - Xiangxiang Zhou
- Chengdu Cynogen Bio-pharmaceutical Tech. Co., Ltd., Chengdu, China
| | - Linchuan Liao
- Department of Analytical Toxicology, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, China.
| | - Kexin Li
- Clinical Trial Center, Beijing Hospital, Beijing, China.
| | - Ke Lan
- Chengdu Cynogen Bio-pharmaceutical Tech. Co., Ltd., Chengdu, China; Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, China.
| |
Collapse
|
24
|
Xiong X, Gu X, Li X, Jia K, Wei Y, Zhao R. A chemical derivatization-based pseudotargeted liquid chromatography-tandem mass spectrometry method for sensitive and high coverage determination of bile acids in human serum. Anal Chim Acta 2024; 1287:342119. [PMID: 38182391 DOI: 10.1016/j.aca.2023.342119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 11/17/2023] [Accepted: 12/04/2023] [Indexed: 01/07/2024]
Abstract
Global profiling of bile acids (BAs) is imperative for understand their function and disease pathogenesis. But it is still a challenging task, as the collision-induced dissociation (CID) fragment ions of unconjugated BAs showed low ion intensities to insufficient analysis. Herein, we developed a highly sensitive method for pseudotargeted profiling of BAs by chemical derivatization. In the developed method, a labeling reagent, 2-dimethylaminoethylamine (DMED), was adopted to label the carboxyl group of BAs. The results demonstrated that the detection sensitivities of unconjugated BAs were increased by 4-200 folds after DMED-labeling. Moreover, to profile other potential BAs not included in the 91 known targets, diverse survey experiments were performed on Qtrap-MS to search BAs for both precursor and fragment ion species, and retention index (RI) strategy was adopted to facilitate the identification of isomers. Finally, MRM-based LC-MS/MS method was validated for the pseudotargeted profiling of the BAs submetabolome with good linearity (r2 ≥ 0.990 for 89 known BAs) and high sensitivity (0.05-0.5 ng/mL for unconjugated BAs), covering unconjugated, glycine, taurine, sulfuric acid, glucuronic acid, and as well as those doubly-conjugated with above types. With this method, a total of 107 BAs, covering 54 BAs identified by authentic standards and 53 BAs candidates, were successfully determined in human serum of women with intrahepatic cholestasis of pregnancy (ICP). Multivariate analysis revealed deferentially expressed BAs. ICP disease altered the BAs profile with a reduced proportion of unconjugated, sulfate- and doubly-conjugated BAs and an increased proportion of glycine and taurine conjugates. Altered proportion and profile of BAs in ICP groups were gradually recovered during the ursodeoxycholic acid (UDCA) therapy. Overall, the strategy of DMED-labeling technique combined with diverse survey experiments is sufficiently sensitive and robust to comprehensively analysis of metabolic profiling of BAs in human serum.
Collapse
Affiliation(s)
- Xin Xiong
- Department of Pharmacy, Peking University Third Hospital, Beijing, 100191, China; Therapeutic Drug Monitoring and Clinical Toxicology Center of Peking University, Beijing, 100191, China; NMPA Key Laboratory for Research and Evaluation of Generic Drugs, Beijing, 100191, China
| | - Xunke Gu
- Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, 100191, China
| | - Xiaona Li
- Department of Pharmacy, Peking University Third Hospital, Beijing, 100191, China; Therapeutic Drug Monitoring and Clinical Toxicology Center of Peking University, Beijing, 100191, China
| | - Keke Jia
- Department of Clinical Laboratory, Peking University Third Hospital, Beijing, 100191, China
| | - Yuan Wei
- Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, 100191, China.
| | - Rongsheng Zhao
- Department of Pharmacy, Peking University Third Hospital, Beijing, 100191, China; Therapeutic Drug Monitoring and Clinical Toxicology Center of Peking University, Beijing, 100191, China.
| |
Collapse
|
25
|
Pan Y, Zhang H, Li M, He T, Guo S, Zhu L, Tan J, Wang B. Novel approaches in IBD therapy: targeting the gut microbiota-bile acid axis. Gut Microbes 2024; 16:2356284. [PMID: 38769683 PMCID: PMC11110704 DOI: 10.1080/19490976.2024.2356284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 05/13/2024] [Indexed: 05/22/2024] Open
Abstract
Inflammatory bowel disease (IBD) is a chronic and recurrent condition affecting the gastrointestinal tract. Disturbed gut microbiota and abnormal bile acid (BA) metabolism are notable in IBD, suggesting a bidirectional relationship. Specifically, the diversity of the gut microbiota influences BA composition, whereas altered BA profiles can disrupt the microbiota. IBD patients often exhibit increased primary bile acid and reduced secondary bile acid concentrations due to a diminished bacteria population essential for BA metabolism. This imbalance activates BA receptors, undermining intestinal integrity and immune function. Consequently, targeting the microbiota-BA axis may rectify these disturbances, offering symptomatic relief in IBD. Here, the interplay between gut microbiota and bile acids (BAs) is reviewed, with a particular focus on the role of gut microbiota in mediating bile acid biotransformation, and contributions of the gut microbiota-BA axis to IBD pathology to unveil potential novel therapeutic avenues for IBD.
Collapse
Affiliation(s)
- Yinping Pan
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, PR China
| | - Haojie Zhang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, PR China
| | - Minghui Li
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, PR China
| | - Tingjing He
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, PR China
| | - Sihao Guo
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, PR China
| | - Liancai Zhu
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, PR China
| | - Jun Tan
- Chongqing Key Laboratory of Medicinal Resources in the Three Gorges Reservoir Region, School of Biological & Chemical engineering, Chongqing University of Education, Chongqing, PR China
| | - Bochu Wang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, PR China
| |
Collapse
|
26
|
Ma Z, Sheng N, Zhang J. A feasible protocol to profile bile acids in dried blood spots from rats using a UHPLC-MS/MS method combining a surrogate matrix. Analyst 2023; 148:5190-5202. [PMID: 37721130 DOI: 10.1039/d3an00900a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2023]
Abstract
Dried blood spot (DBS) sampling is a promising method for microliter blood sample collection with the advantages of convenient transportation, storage and clinical operations. However, it is challenging to develop an analytical protocol to determine endogenous metabolites, such as bile acids (BAs) in DBSs, due to the low-blood-volume character of DBSs and the complex features of filter paper. Herein, we developed a method of fast ultra-high performance liquid chromatography coupled with tandem mass spectrometry (UHPLC-MS/MS) to profile and quantify BAs in DBSs. The pretreatment methods were optimized and a two-step solvent addition method, where a small amount of water was firstly added to moisten the DBS and then methanol was added, showed high extraction efficiency for multiple BAs in DBSs. The UHPLC-MS/MS conditions were optimized and 35BAs in different types could be profiled with good resolution and quantified with acceptable precision and accuracy. Preparation of a DBS surrogate matrix without endogenous BAs has been well developed using rat erythrocytes in BSA solution and showed good performance on both the signal suppression/enhancement percentage and parallelism assessment evaluation of three different stable-isotope-labeled (SIL) BAs. The established protocol was successfully applied to profile BAs in DBSs of intrahepatic cholestasis model and healthy control rats with good repeatability. To our knowledge, it is the first time that 35 BAs in DBSs could be well profiled and an appropriate DBS surrogate matrix has been developed. This protocol presents future-oriented applications of DBSs for relevant preclinical studies to profile BAs and probe biomarkers.
Collapse
Affiliation(s)
- Ziying Ma
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing 100050, PR China.
| | - Ning Sheng
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing 100050, PR China.
| | - Jinlan Zhang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing 100050, PR China.
| |
Collapse
|
27
|
Jin Y, Chi J, LoMonaco K, Boon A, Gu H. Recent Review on Selected Xenobiotics and Their Impacts on Gut Microbiome and Metabolome. Trends Analyt Chem 2023; 166:117155. [PMID: 37484879 PMCID: PMC10361410 DOI: 10.1016/j.trac.2023.117155] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/25/2023]
Abstract
As it is well known, the gut is one of the primary sites in any host for xenobiotics, and the many microbial metabolites responsible for the interactions between the gut microbiome and the host. However, there is a growing concern about the negative impacts on human health induced by toxic xenobiotics. Metabolomics, broadly including lipidomics, is an emerging approach to studying thousands of metabolites in parallel. In this review, we summarized recent advancements in mass spectrometry (MS) technologies in metabolomics. In addition, we reviewed recent applications of MS-based metabolomics for the investigation of toxic effects of xenobiotics on microbial and host metabolism. It was demonstrated that metabolomics, gut microbiome profiling, and their combination have a high potential to identify metabolic and microbial markers of xenobiotic exposure and determine its mechanism. Further, there is increasing evidence supporting that reprogramming the gut microbiome could be a promising approach to the intervention of xenobiotic toxicity.
Collapse
Affiliation(s)
- Yan Jin
- Center for Translational Science, Florida International University, Port St. Lucie, FL 34987, USA
| | - Jinhua Chi
- Center for Translational Science, Florida International University, Port St. Lucie, FL 34987, USA
| | - Kaelene LoMonaco
- Center for Translational Science, Florida International University, Port St. Lucie, FL 34987, USA
| | - Alexandria Boon
- Center for Translational Science, Florida International University, Port St. Lucie, FL 34987, USA
| | - Haiwei Gu
- Center for Translational Science, Florida International University, Port St. Lucie, FL 34987, USA
| |
Collapse
|
28
|
Eagleston J, Nimeri A. Optimal Small Bowel Limb Lengths of Roux-en-Y Gastric Bypass. Curr Obes Rep 2023; 12:345-354. [PMID: 37466789 DOI: 10.1007/s13679-023-00513-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/18/2023] [Indexed: 07/20/2023]
Abstract
PURPOSE OF REVIEW Gastric bypass and biliopancreatic diversion (BPD) have come full circle, from a loop configuration to a Roux-en-Y and finally back to a loop configuration as one anastomosis gastric bypass and single-anastomosis duodenal switch. Most surgeons performing Roux-en-Y gastric bypass (RYGB) do not measure the common channel (CC) length and most surgeons performing BPD do not measure the biliopancreatic limb length (BPL). RECENT FINDINGS The small bowel length in humans is variable from as short as < 400 cm to as long as > 1000 cm. The combination of these two facts means that even if surgeons keep the limb lengths constant, surgeons will get variable limb length due to the variability of small bowel length in patients. Hence, outcomes of weight loss, resolution of medical problems, or developing nutritional deficiencies which are related to limb length are variable. In this article, we evaluate the published literature related to the effect of varying the Roux limb, BPL, CC, and total alimentary limb lengths on the outcomes of RYGB. We have focused on historical and current randomized controlled trials as well as systematic reviews and meta-analysis to outline the current literature and our interpretation of this literature.
Collapse
Affiliation(s)
- Justin Eagleston
- Bariatric Surgery, Department of Surgery, Atrium Health, Charlotte, USA
| | - Abdelrahman Nimeri
- Wake Forest School of Medicine, Bariatric Surgery, Atrium Health, Charlotte, NC, USA.
- Director, of Bariatric Surgery, Brigham and Womens Hospital, Harvard Medical School, 75 Francis, MA, 02115, Boston, USA.
| |
Collapse
|
29
|
Uher M, Mičuda S, Kacerovský M, Hroch M. An alternative approach to validation of liquid chromatography-mass spectrometry methods for the quantification of endogenous compounds. J Chromatogr A 2023; 1705:464173. [PMID: 37392639 DOI: 10.1016/j.chroma.2023.464173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 04/13/2023] [Accepted: 06/18/2023] [Indexed: 07/03/2023]
Abstract
Despite the progress in the quantification of xenobiotics, the development and validation of methods designed for endogenous substances still remain challenging due to the natural presence of the analytes in a biological matrix, leading to the inability to obtain a blank sample. Several generally recognized procedures are described to solve this issue, like using surrogate or analyte-depleted matrices or surrogate analytes. However, the workflows used do not always meet the requirements for developing a reliable analytical method or are cost-intensive. This study aimed to design an alternative approach for preparing validation reference samples using authentic analytical standards while preserving the nature of the biological matrix and solving the problem with the inherent presence of analyzed compounds in a studied matrix. The methodology used is based on the standard-addition type procedure. However, unlike the original method, the addition is modified according to a previously measured basal concentration of monitored substances in the pooled biological sample to obtain a predefined concentration in reference samples according to the European Medicines Agency (EMA) validation guideline. The study shows the advantages of described approach on an example of LC-MS/MS analysis of 15 bile acids in human plasma and compares it with other methods commonly used in this field. The method was successfully validated according to the EMA guideline with lower limit of quantification of 5 nmol/L and linearity in the range of 5 - 2000 nmol/L. Finally, the method was used in a metabolomic study on a cohort of pregnant women (n = 28) to confirm intrahepatic cholestasis, the major liver disease observed in pregnancy.
Collapse
Affiliation(s)
- Martin Uher
- Department of Medical Biochemistry, Faculty of Medicine in Hradec Králové, Charles University, Šimkova 870, Hradec Králové 500 03, Czech Republic
| | - Stanislav Mičuda
- Department of Pharmacology, Faculty of Medicine in Hradec Králové, Charles University, Šimkova 870, Hradec Králové 500 03, Czech Republic
| | - Marian Kacerovský
- Department of Obstetrics and Gynecology, University Hospital, Hradec Králové, Sokolská 581, Hradec Králové 500 05, Czech Republic
| | - Miloš Hroch
- Department of Medical Biochemistry, Faculty of Medicine in Hradec Králové, Charles University, Šimkova 870, Hradec Králové 500 03, Czech Republic.
| |
Collapse
|
30
|
Ramos-Garcia V, Ten-Doménech I, Vento M, Bullich-Vilarrubias C, Romaní-Pérez M, Sanz Y, Nobili A, Falcone M, Di Stefano M, Quintás G, Kuligowski J. Fast profiling of primary, secondary, conjugated, and sulfated bile acids in human urine and murine feces samples. Anal Bioanal Chem 2023; 415:4961-4971. [PMID: 37338567 DOI: 10.1007/s00216-023-04802-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 06/05/2023] [Accepted: 06/07/2023] [Indexed: 06/21/2023]
Abstract
Bile acids (BAs) are a complex class of metabolites that have been described as specific biomarkers of gut microbiota activity. The development of analytical methods allowing the quantification of an ample spectrum of BAs in different biological matrices is needed to enable a wider implementation of BAs as complementary measures in studies investigating the functional role of the gut microbiota. This work presents results from the validation of a targeted ultra-high performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS) method for the determination of 28 BAs and six sulfated BAs, covering primary, secondary, and conjugated BAs. The analysis of 73 urine and 20 feces samples was used to test the applicability of the method. Concentrations of BAs in human urine and murine feces were reported, ranging from 0.5 to 50 nmol/g creatinine and from 0.012 to 332 nmol/g, respectively. Seventy-nine percent of BAs present in human urine samples corresponded to secondary conjugated BAs, while 69% of BAs present in murine feces corresponded to primary conjugated BAs. Glycocholic acid sulfate (GCA-S) was the most abundant BA in human urine samples, while taurolithocholic acid was the lowest concentrated compound detected. In murine feces, the most abundant BAs were α-murocholic, deoxycholic, dehydrocholic, and β-murocholic acids, while GCA-S was the lowest concentrated BA. The presented method is a non-invasive approach for the simultaneous assessment of BAs and sulfated BAs in urine and feces samples, and the results will serve as a knowledge base for future translational studies focusing on the role of the microbiota in health.
Collapse
Affiliation(s)
- Victoria Ramos-Garcia
- Neonatal Research Unit, Health Research Institute Hospital La Fe, Avda Fernando Abril Martorell 106, 46026, Valencia, Spain
| | - Isabel Ten-Doménech
- Neonatal Research Unit, Health Research Institute Hospital La Fe, Avda Fernando Abril Martorell 106, 46026, Valencia, Spain
| | - Máximo Vento
- Neonatal Research Unit, Health Research Institute Hospital La Fe, Avda Fernando Abril Martorell 106, 46026, Valencia, Spain
- Division of Neonatology, University & Polytechnic Hospital La Fe, Avda Fernando Abril Martorell 106, 46026, Valencia, Spain
| | - Clara Bullich-Vilarrubias
- Institute of Agrochemistry and Food Technology, Spanish National Research Council (IATA-CSIC), Valencia, Spain
| | - Marina Romaní-Pérez
- Institute of Agrochemistry and Food Technology, Spanish National Research Council (IATA-CSIC), Valencia, Spain
| | - Yolanda Sanz
- Institute of Agrochemistry and Food Technology, Spanish National Research Council (IATA-CSIC), Valencia, Spain
| | - Angelica Nobili
- Autoimmune Pathogenesis Unit, IRCCS San Raffaele Scientific Institute, 20132, Milan, Italy
| | - Marika Falcone
- Autoimmune Pathogenesis Unit, IRCCS San Raffaele Scientific Institute, 20132, Milan, Italy
| | - Marina Di Stefano
- Maternal and Child Health Area, IRCCS San Raffaele Scientific Institute, 20132, Milan, Italy
| | - Guillermo Quintás
- Health and Biomedicine, Leitat Technological Center, Carrer de la Innovació, 2, 08225, Terrassa, Spain
| | - Julia Kuligowski
- Neonatal Research Unit, Health Research Institute Hospital La Fe, Avda Fernando Abril Martorell 106, 46026, Valencia, Spain.
| |
Collapse
|
31
|
Tveter KM, Mezhibovsky E, Wu Y, Roopchand DE. Bile acid metabolism and signaling: Emerging pharmacological targets of dietary polyphenols. Pharmacol Ther 2023; 248:108457. [PMID: 37268113 PMCID: PMC10528343 DOI: 10.1016/j.pharmthera.2023.108457] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 04/03/2023] [Accepted: 05/22/2023] [Indexed: 06/04/2023]
Abstract
Beyond their role as emulsifiers of lipophilic compounds, bile acids (BAs) are signaling endocrine molecules that show differential affinity and specificity for a variety of canonical and non-canonical BA receptors. Primary BAs (PBAs) are synthesized in the liver while secondary BAs (SBAs) are gut microbial metabolites of PBA species. PBAs and SBAs signal to BA receptors that regulate downstream pathways of inflammation and energy metabolism. Dysregulation of BA metabolism or signaling has emerged as a feature of chronic disease. Dietary polyphenols are non-nutritive plant-derived compounds associated with decreased risk of metabolic syndrome, type-2 diabetes, hepatobiliary and cardiovascular disease. Evidence suggests that the health promoting effects of dietary polyphenols are linked to their ability to alter the gut microbial community, the BA pool, and BA signaling. In this review we provide an overview of BA metabolism and summarize studies that link the cardiometabolic improvements of dietary polyphenols to their modulation of BA metabolism and signaling pathways, and the gut microbiota. Finally, we discuss approaches and challenges in deciphering cause-effect relationships between dietary polyphenols, BAs, and gut microbes.
Collapse
Affiliation(s)
- Kevin M Tveter
- Rutgers, The State University of New Jersey, Department of Food Science, Institute for Food Nutrition and Health [Center for Microbiome, Nutrition and Health & Rutgers Center for Lipid Research], 61 Dudley Road, New Brunswick, NJ 08901, USA
| | - Esther Mezhibovsky
- Rutgers, The State University of New Jersey, Department of Food Science, Institute for Food Nutrition and Health [Center for Microbiome, Nutrition and Health & Rutgers Center for Lipid Research], 61 Dudley Road, New Brunswick, NJ 08901, USA
| | - Yue Wu
- Rutgers, The State University of New Jersey, Department of Food Science, Institute for Food Nutrition and Health [Center for Microbiome, Nutrition and Health & Rutgers Center for Lipid Research], 61 Dudley Road, New Brunswick, NJ 08901, USA
| | - Diana E Roopchand
- Rutgers, The State University of New Jersey, Department of Food Science, Institute for Food Nutrition and Health [Center for Microbiome, Nutrition and Health & Rutgers Center for Lipid Research], 61 Dudley Road, New Brunswick, NJ 08901, USA.
| |
Collapse
|
32
|
Pérez-Rubio Á, Soluyanova P, Moro E, Quintás G, Rienda I, Periañez MD, Painel A, Vizuete J, Pérez-Rojas J, Castell JV, Trullenque-Juan R, Pareja E, Jover R. Gut Microbiota and Plasma Bile Acids Associated with Non-Alcoholic Fatty Liver Disease Resolution in Bariatric Surgery Patients. Nutrients 2023; 15:3187. [PMID: 37513605 PMCID: PMC10385764 DOI: 10.3390/nu15143187] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 06/29/2023] [Accepted: 07/12/2023] [Indexed: 07/30/2023] Open
Abstract
Bariatric surgery (BS) has several benefits, including resolution of non-alcoholic fatty liver disease (NAFLD) in many patients. However, a significant percentage of patients do not experience improvement in fatty liver after BS, and more than 10% develop new or worsening NAFLD features. Therefore, a question that remains unanswered is why some patients experience resolved NAFLD after BS and others do not. In this study, we investigated the fecal microbiota and plasma bile acids associated with NAFLD resolution in twelve morbidly obese patients undergoing BS, of whom six resolved their steatosis one year after surgery and another six did not. Results indicate that the hallmark of the gut microbiota in responder patients is a greater abundance of Bacteroides, Akkermansia, and several species of the Clostridia class (genera: Blautia, Faecalibacterium, Roseburia, Butyricicoccusa, and Clostridium), along with a decreased abundance of Actinomycetes/Bifidobacterium and Faecalicatena. NAFLD resolution was also associated with a sustained increase in primary bile acids (particularly non-conjugated), which likely results from a reduction in bacterial gut species capable of generating secondary bile acids. We conclude that there are specific changes in gut microbiota and plasma bile acids that could contribute to resolving NAFLD in BS patients. The knowledge acquired can help to design interventions with prebiotics and/or probiotics to promote a gut microbiome that favors NAFLD resolution.
Collapse
Affiliation(s)
- Álvaro Pérez-Rubio
- Servicio de Cirugía General y Aparato Digestivo, Hospital Universitario Dr. Peset, 46017 Valencia, Spain
| | - Polina Soluyanova
- Experimental Hepatology Joint Unit, Health Research Institute La Fe-University of Valencia, 46026 Valencia, Spain
- Departamento de Bioquímica y Biología Molecular, Universitat de València, 46010 Valencia, Spain
| | - Erika Moro
- Experimental Hepatology Joint Unit, Health Research Institute La Fe-University of Valencia, 46026 Valencia, Spain
- Departamento de Bioquímica y Biología Molecular, Universitat de València, 46010 Valencia, Spain
| | - Guillermo Quintás
- Health and Biomedicine, Leitat Technological Center, 08225 Terrassa, Spain
| | - Iván Rienda
- Pathology Department, Hospital Universitario y Politécnico La Fe, 46026 Valencia, Spain
| | - María Dolores Periañez
- Servicio de Cirugía General y Aparato Digestivo, Hospital Universitario Dr. Peset, 46017 Valencia, Spain
| | - Andrés Painel
- Section of Abdominal Imaging, Radiology Department, Hospital Universitario Dr. Peset, 46017 Valencia, Spain
| | - José Vizuete
- Section of Abdominal Imaging, Radiology Department, Hospital Universitario Dr. Peset, 46017 Valencia, Spain
| | - Judith Pérez-Rojas
- Pathology Department, Hospital Universitario y Politécnico La Fe, 46026 Valencia, Spain
| | - José V Castell
- Experimental Hepatology Joint Unit, Health Research Institute La Fe-University of Valencia, 46026 Valencia, Spain
- Departamento de Bioquímica y Biología Molecular, Universitat de València, 46010 Valencia, Spain
- CIBERehd, Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Ramón Trullenque-Juan
- Servicio de Cirugía General y Aparato Digestivo, Hospital Universitario Dr. Peset, 46017 Valencia, Spain
| | - Eugenia Pareja
- Servicio de Cirugía General y Aparato Digestivo, Hospital Universitario Dr. Peset, 46017 Valencia, Spain
- Experimental Hepatology Joint Unit, Health Research Institute La Fe-University of Valencia, 46026 Valencia, Spain
| | - Ramiro Jover
- Experimental Hepatology Joint Unit, Health Research Institute La Fe-University of Valencia, 46026 Valencia, Spain
- Departamento de Bioquímica y Biología Molecular, Universitat de València, 46010 Valencia, Spain
- CIBERehd, Instituto de Salud Carlos III, 28029 Madrid, Spain
| |
Collapse
|
33
|
Li N, Zhang X, Li M, Liu M, Jin Y, Xu H. Simultaneous determination of UDCA and its major metabolites in human plasma with surrogate matrix by a rapid and specific LC-MS/MS method. J Chromatogr B Analyt Technol Biomed Life Sci 2023; 1223:123726. [PMID: 37148852 DOI: 10.1016/j.jchromb.2023.123726] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/17/2023] [Accepted: 04/21/2023] [Indexed: 05/08/2023]
Abstract
A rapid, convenient, and specific liquid chromatography-tandem mass spectrometry method was developed and validated for the simultaneous quantification of ursodeoxycholic acid (UDCA), and its major metabolites, glycoursodeoxycholic acid (GUDCA) and tauroursodeoxycholic acid (TUDCA) in human plasma. Methanol was chosen as surrogate matrix for preparation the calibrators to establish calibration curves. Isotope internal standard was used for each analyte. After plasma samples were deproteinized with methanol, the post-treatment samples were analyzed on a ZORBAX SB-C18 column (2.1 × 50 mm, 1.8 μm) with 2 mM ammonium acetate and acetonitrile as mobile phase at a flow rate of 0.5 mL/min. Detection was performed on a triple quadrupole mass spectrometer operating in multiple reaction monitoring (MRM) employing negative ESI interface using API5500 triple quadrupole tandem mass spectrometer system, with the transitions set at m/z 391.4 → m/z 391.4, m/z 448.3 → m/z 73.9, m/z 498.4 → m/z 80.1, m/z 395.3 → m/z 395.3, m/z 453.3 → m/z 74.0, and m/z 503.2 → m/z 79.9 for UDCA, GUDCA, TUDCA, UDCA-d4, GUDCA-d5, and TUDCA-d5, respectively. The calibration curve ranges were 5.00-2500 ng/mL for UDCA and GUDCA and 0.500-250 ng/mL for TUDCA. The intra- and inter-day precision was within 7.00% in terms of relative standard deviation (RSD%) and the accuracy within 11.75% in terms of relative error. The selectivity, sensitivity, extraction recovery, matrix effect, dilution reliability, and stability were within the acceptable range. The method was successfully applied to a pharmacokinetic study in 12 healthy Chinese volunteers after oral administration of 250 mg UDCA.
Collapse
Affiliation(s)
- Ning Li
- Department of Pharmaceutical Analysis, Pharmacy School, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Xue Zhang
- Department of Pharmaceutical Analysis, Pharmacy School, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Mengxin Li
- Department of Pharmaceutical Analysis, Pharmacy School, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Mengmeng Liu
- Department of Pharmaceutical Analysis, Pharmacy School, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Yi Jin
- Department of Pharmaceutical Analysis, Pharmacy School, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Haiyan Xu
- Department of Pharmaceutical Analysis, Pharmacy School, Shenyang Pharmaceutical University, Shenyang 110016, China.
| |
Collapse
|
34
|
Yagi R, Masuda T, Ito S, Ohtsuki S. Effect of antibiotic-administration period on hepatic bile acid profile and expression of pharmacokinetic-related proteins in mouse liver, kidney, and brain capillaries. Drug Metab Pharmacokinet 2023; 50:100494. [PMID: 37119611 DOI: 10.1016/j.dmpk.2023.100494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 01/12/2023] [Accepted: 02/02/2023] [Indexed: 02/11/2023]
Abstract
Antibiotic administration affects pharmacokinetics through changes in the intestinal microbiota, and bile acids are involved in this regulation. The purpose of the present study was to clarify the effect of different periods of antibiotic administration on the hepatic bile acid profile and expression of pharmacokinetic-related proteins in mouse liver, kidney, and brain capillaries. Vancomycin and polymyxin B were orally administered to mice for either 5- or 25-days. The hepatic bile acid profile of the 25-day treatment group was distinct. In the liver, the protein expression of cytochrome P450 (Cyp)3a11 showed the greatest reduction to 11.4% after the 5-day treatment and further reduced to 7.01% after the 25-day treatment. Similar reductions were observed for sulfotransferase 1d1, Cyp2b10, carboxylesterase 2e, UDP-glucuronosyltransferase (Ugt)1a5, and Ugt1a9. In the kidney and brain capillaries, no drug-metabolizing enzymes or drug transporters were changed with >1.5-fold or <0.66-fold statistical significance in either period. These results suggest that bile acids and metabolizing enzymes in the liver are affected in a period-dependent manner by antibiotic treatment, while the blood-brain barrier and kidneys are less affected. Drug-drug interactions of antibiotics via the intestinal microbiota should be considered by changing drug metabolism in the liver.
Collapse
Affiliation(s)
- Ryotaro Yagi
- Department of Pharmaceutical Microbiology, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto, 862-0973, Japan
| | - Takeshi Masuda
- Department of Pharmaceutical Microbiology, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto, 862-0973, Japan; Department of Pharmaceutical Microbiology, Faculty of Life Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto, 862-0973, Japan
| | - Shingo Ito
- Department of Pharmaceutical Microbiology, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto, 862-0973, Japan; Department of Pharmaceutical Microbiology, Faculty of Life Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto, 862-0973, Japan
| | - Sumio Ohtsuki
- Department of Pharmaceutical Microbiology, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto, 862-0973, Japan; Department of Pharmaceutical Microbiology, Faculty of Life Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto, 862-0973, Japan.
| |
Collapse
|
35
|
Stindt J, Dröge C, Lainka E, Kathemann S, Pfister ED, Baumann U, Stalke A, Grabhorn E, Shagrani MA, Mozer-Glassberg Y, Hartley J, Wammers M, Klindt C, Philippski P, Liebe R, Herebian D, Mayatepek E, Berg T, Schmidt-Choudhury A, Wiek C, Hanenberg H, Luedde T, Keitel V. Cell-based BSEP trans-inhibition: A novel, non-invasive test for diagnosis of antibody-induced BSEP deficiency. JHEP Rep 2023. [DOI: 10.1016/j.jhepr.2023.100690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
|
36
|
Altered serum bile acid profile in fibromyalgia is associated with specific gut microbiome changes and symptom severity. Pain 2023; 164:e66-e76. [PMID: 35587528 DOI: 10.1097/j.pain.0000000000002694] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 05/12/2022] [Indexed: 02/06/2023]
Abstract
ABSTRACT Alterations in the composition and function of the gut microbiome in women with fibromyalgia have recently been demonstrated, including changes in the relative abundance of certain bile acid-metabolizing bacteria. Bile acids can affect multiple physiological processes, including visceral pain, but have yet to be explored for association to the fibromyalgia gut microbiome. In this study, 16S rRNA sequencing and targeted metabolomic approaches were used to characterize the gut microbiome and circulating bile acids in a cohort of 42 women with fibromyalgia and 42 healthy controls. Alterations in the relative abundance of several bacterial species known to metabolize bile acids were observed in women with fibromyalgia, accompanied by significant alterations in the serum concentration of secondary bile acids, including a marked depletion of α-muricholic acid. Statistical learning algorithms could accurately detect individuals with fibromyalgia using the concentration of these serum bile acids. Serum α-muricholic acid was highly correlated with symptom severity, including pain intensity and fatigue. Taken together, these findings suggest serum bile acid alterations are implicated in nociplastic pain. The changes observed in the composition of the gut microbiota and the concentration of circulating secondary bile acids seem congruent with the phenotype of increased nociception and are quantitatively correlated with symptom severity. This is a first demonstration of circulating bile acid alteration in individuals with fibromyalgia, potentially secondary to upstream gut microbiome alterations. If corroborated in independent studies, these observations may allow for the development of molecular diagnostic aids for fibromyalgia as well as mechanistic insights into the syndrome.
Collapse
|
37
|
Semi-Targeted Profiling of Bile Acids by High-Resolution Mass Spectrometry in a Rat Model of Drug-Induced Liver Injury. Int J Mol Sci 2023; 24:ijms24032489. [PMID: 36768813 PMCID: PMC9917070 DOI: 10.3390/ijms24032489] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 01/21/2023] [Accepted: 01/24/2023] [Indexed: 02/01/2023] Open
Abstract
Using a semi-targeted approach, we have investigated the effect of acetaminophen on circulating bile acid profiles in rats, including many known bile acids and potential isomeric structures, as well as glucuronide and sulfate conjugates. The chromatographic separation was based on an optimized reverse-phase method exhibiting excellent resolution for a complex mix of bile acids using a solid-core C18 column, coupled to a high-resolution quadrupole time-of-flight system. The semi-targeted workflow consisted of first assigning all peaks detectable in samples from 46 known bile acids contained in a standard mix, as well as additional peaks for other bile acid isomers. The presence of glucuronide and sulfate conjugates was also examined based on their elemental formulae and detectable peaks with matching exact masses were added to the list of features for statistical analysis. In this study, rats were administered acetaminophen at four different doses, from 75 to 600 mg/kg, with the highest dose being a good model of drug-induced liver injury. Statistically significant changes were found by comparing bile acid profiles between dosing levels. Some tentatively assigned conjugates were further elucidated using in vitro metabolism incubations with rat liver fractions and standard bile acids. Overall, 13 identified bile acids, 23 tentatively assigned bile acid isomers, and 9 sulfate conjugates were found to increase significantly at the highest acetaminophen dose, and thus could be linked to drug-induced liver injury.
Collapse
|
38
|
Feeding Corn Silage or Grass Hay as Sole Dietary Forage Sources: Overall Mechanism of Forages Regulating Health-Promoting Fatty Acid Status in Milk of Dairy Cows. Foods 2023; 12:foods12020303. [PMID: 36673395 PMCID: PMC9857621 DOI: 10.3390/foods12020303] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 01/03/2023] [Accepted: 01/05/2023] [Indexed: 01/11/2023] Open
Abstract
Different dietary forage sources regulate health-promoting fatty acids (HPFAs), such as conjugated linoleic acids (CLAs) and omega-3 polyunsaturated fatty acids (n-3 PUFAs), in the milk of lactating cows. However, the overall mechanism of forages regulating lipid metabolism from the gastrointestinal tract to the mammary glands (MGs) is not clear. Three isocaloric diets that contained (1) 46% corn silage (CS), (2) a mixture of 23% corn silage and 14% grass hays (MIX), and (3) 28% grass hays (GH) as the forage sources and six cannulated (rumen, proximal duodenum, and terminal ileum) lactating cows were assigned to a double 3 × 3 Latin square design. Our results show that a higher proportion of grass hay in the diets increased the relative contents of short-chain fatty acids (SCFAs), CLAs, and n-3 PUFAs. The lower relative content of SCFA in the milk of CS was predominantly due to the reduction in acetate production in the rumen and arteriovenous differences in the MG, indicating that the de novo synthesis pathways were inhibited. The elevated relative contents of total CLA and n-3 PUFA in the milk of GH were attributed to the increases in apparent intestinal digestion and arteriovenous differences in total CLA and n-3 PUFA, together with the higher Δ9-desaturase activity in the MG. In conclusion, this study provides an overall mechanism of dietary forages regulating HPFA status in the milk of dairy cows.
Collapse
|
39
|
Casper J, Nicolle L, Willimann M, Kuzucu EÜ, Tran A, Robin P, Detampel P, Grisch-Chan HM, Thöny B, Huwyler J, Gerber-Lemaire S. Core-Shell Structured Chitosan-Polyethylenimine Nanoparticles for Gene Delivery: Improved Stability, Cellular Uptake, and Transfection Efficiency. Macromol Biosci 2023; 23:e2200314. [PMID: 36200651 DOI: 10.1002/mabi.202200314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 09/26/2022] [Indexed: 01/19/2023]
Abstract
The delivery of nucleic acids relies on vectors that condense and encapsulate their cargo. Especially nonviral gene delivery systems are of increasing interest. However, low transgene expression levels and limited tolerability of these systems remain a challenge. The improvement of nucleic acid delivery using depolymerized chitosan-polyethylenimine DNA complexes (dCS-PEI/DNA) is investigated. The secore complexes are further combined with chitosan-based shells and functionalized with polyethylene glycol (PEG) and cell penetrating peptides. This modular approach allows to evaluate the effect of functional shell components on physicochemical particle characteristics and biological effects. The optimized ternary complex combines a core-dCS-linear PEI/DNA complex with a shell consisting of dCS-PEG-COOH, which results in improved nucleic acid encapsulation, cellular uptake and transfection potency in human hepatoma HuH-7cells and murine primary hepatocytes. Effects on transgene expression are confirmed in wild-type mice following retrograde intrabiliary infusion. After administration of only 100 ng complexed DNA, ternary complexes induced a high reporter gene signal for three days. It is concluded that ternary coreshell structured nanoparticles comprising functionalized chitosan can be used for in vitro andin vivo gene delivery.
Collapse
Affiliation(s)
- Jens Casper
- Division of Pharmaceutical Technology, Department of Pharmaceutical Sciences, University of Basel, Basel, CH-4056, Switzerland
| | - Laura Nicolle
- Group for Functionalized Biomaterials, Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne, Lausanne, CH-1015, Switzerland
| | - Melanie Willimann
- Division of Metabolism and Children's Research Center, University Children's Hospital Zürich, Zürich, CH-8032, Switzerland
| | - Evrim Ümit Kuzucu
- Division of Pharmaceutical Technology, Department of Pharmaceutical Sciences, University of Basel, Basel, CH-4056, Switzerland
| | - Alan Tran
- Division of Pharmaceutical Technology, Department of Pharmaceutical Sciences, University of Basel, Basel, CH-4056, Switzerland
| | - Perrine Robin
- Group for Functionalized Biomaterials, Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne, Lausanne, CH-1015, Switzerland
| | - Pascal Detampel
- Division of Pharmaceutical Technology, Department of Pharmaceutical Sciences, University of Basel, Basel, CH-4056, Switzerland
| | - Hiu Man Grisch-Chan
- Division of Metabolism and Children's Research Center, University Children's Hospital Zürich, Zürich, CH-8032, Switzerland
| | - Beat Thöny
- Division of Metabolism and Children's Research Center, University Children's Hospital Zürich, Zürich, CH-8032, Switzerland
| | - Jörg Huwyler
- Division of Pharmaceutical Technology, Department of Pharmaceutical Sciences, University of Basel, Basel, CH-4056, Switzerland
| | - Sandrine Gerber-Lemaire
- Group for Functionalized Biomaterials, Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne, Lausanne, CH-1015, Switzerland
| |
Collapse
|
40
|
Dai Y, Jia Z, Fang C, Zhu M, Yan X, Zhang Y, Wu H, Feng M, Liu L, Huang B, Li Y, Liu J, Xiao H. Polygoni Multiflori Radix interferes with bile acid metabolism homeostasis by inhibiting Fxr transcription, leading to cholestasis. Front Pharmacol 2023; 14:1099935. [PMID: 36950015 PMCID: PMC10025474 DOI: 10.3389/fphar.2023.1099935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 02/20/2023] [Indexed: 03/08/2023] Open
Abstract
Objective: To explore the possible mechanisms of cholestasis induced by Polygoni Multiflori Radix (PM). Methods: Low and high doses of water extract of PM were given to mice by gavage for 8 weeks. The serum biochemical indexes of aspartate aminotransferase (AST), alanine aminotransferase (ALT), glutamyltransferase (GGT) alkaline phosphatase (ALP) and so on were detected in the second, fourth, sixth, and eighth weeks after administration. At the end of the eighth week of administration, the bile acid metabolic profiles of liver and bile were screened by high-performance liquid chromatography tandem triple quadrupole mass spectrometry (HPLC-QQQ-MS/MS). Liver pathological changes were observed by hematoxylin and eosin staining. Real-time quantitative polymerase chain reaction (RT-qPCR) was used to detect the mRNA transcription of the target genes and Western blotting (WB) was used to the detect target protein expression. Results: Biochemical tests results showed the values of ALP and GGT were two and three times greater than the normal values respectively, and the value of R was less than 2. Histopathology also showed that PM caused lymphocyte infiltration, a small amount of hepatocyte necrosis and nuclear fragmentation in mouse liver. The proliferation of bile duct epithelial cells was observed in the high group. These results indicated that PM may lead to cholestatic liver injury. HPLC-QQQ-MS/MS analysis with the multivariate statistical analysis revealed significant alterations of individual bile acids in liver and gallbladder as compared to those of the control group. RT-qPCR showed that the transcription of Fxr, Shp, Bsep, Bacs, Mdr2, and Ugt1a1 were downregulated and that of Cyp7a1, Mrp3, and Cyp3a11 was significantly upregulated in the treatment group. WB demonstrated that PM also markedly downregulated the protein expression of FXR, BSEP, and MDR2, and upregulated CYP7A1. Conclusion: PM inhibited the expression of FXR, which reduced the expression of MDR2 and BSEP, leading to the obstruction of bile acids outflow, and increased the expression of CYP7A1, resulting in an increase of intrahepatic bile acid synthesis, which can lead to cholestasis.
Collapse
Affiliation(s)
- Yihang Dai
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Zhixin Jia
- Research Center of Chinese Medicine Analysis and Transformation, Beijing University of Chinese Medicine, Beijing, China
- Beijing Academy of Traditional Chinese Medicine, Beijing, China
| | - Cong Fang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Meixia Zhu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Xiaoning Yan
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Yinhuan Zhang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Hao Wu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Menghan Feng
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Lirong Liu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Beibei Huang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Yueting Li
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Jie Liu
- Research Center of Chinese Medicine Analysis and Transformation, Beijing University of Chinese Medicine, Beijing, China
- Beijing Academy of Traditional Chinese Medicine, Beijing, China
| | - Hongbin Xiao
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
- Research Center of Chinese Medicine Analysis and Transformation, Beijing University of Chinese Medicine, Beijing, China
- Beijing Academy of Traditional Chinese Medicine, Beijing, China
- *Correspondence: Hongbin Xiao,
| |
Collapse
|
41
|
Chen L, Wang Y, Zheng W, Zhang H, Sun Y, Chen Y, Liu Q. Improvement of obesity-induced fatty liver disease by intermittent hypoxia exposure in a murine model. Front Pharmacol 2023; 14:1097641. [PMID: 36873991 PMCID: PMC9974667 DOI: 10.3389/fphar.2023.1097641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 02/06/2023] [Indexed: 02/17/2023] Open
Abstract
Background: The high prevalence of non-alcoholic fatty liver disease (NAFLD) in the world raises an important concern for human health. The western diet containing high fat and fructose is the risk factor for NAFLD development. Intermittent hypoxia (IH), known as the basis of obstructive sleep apnea (OSA), normally is correlated with impaired liver function. However, the role of IH in liver injury prevention has been revealed by many other studies based on the different IH paradigms. The current study, therefore, tests the impact of IH on the liver of high-fat and high-fructose diet (HFHFD) fed mice. Material and Method: Mice were exposed to IH (2 min cycle, FiO2 8% for 20 s, FiO2 20.9% for 100 s; 12 h/day) or intermittent air (FiO2 20.9%) for 15 weeks, with normal diet (ND) or high-fat and high-fructose diet (HFHFD). Indices of liver injury and metabolism were measured. Results: IH causes no overt liver injury in mice fed an ND. However, HFHFD-induced lipid accumulation, lipid peroxidation, neutrophil infiltration, and apoptotic process were significantly attenuated by IH exposure. Importantly, IH exposure altered bile acids composition and shifted the hepatic bile acids towards FXR agonism, which was involved in the protection of IH against HFHFD. Conclusion: These results support that the IH pattern in our model prevents liver injury from HFHFD in experimental NAFLD.
Collapse
Affiliation(s)
- Liya Chen
- Department of Pediatric Infectious Disease, Wenzhou, China.,The Second Affiliated Hospital & Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yao Wang
- Department of Pediatric Hematology Disease, Wenzhou, China.,The Second Affiliated Hospital & Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Weikun Zheng
- Department of Pediatric Infectious Disease, Wenzhou, China.,The Second Affiliated Hospital & Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Hu Zhang
- Department of Pediatric Infectious Disease, Wenzhou, China.,The Second Affiliated Hospital & Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yan Sun
- Department of Pediatric Infectious Disease, Wenzhou, China.,The Second Affiliated Hospital & Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yiping Chen
- Department of Pediatric Infectious Disease, Wenzhou, China.,The Second Affiliated Hospital & Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Qi Liu
- Department of Pediatric Infectious Disease, Wenzhou, China.,The Second Affiliated Hospital & Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
42
|
Yoon S, Lee G, Yu J, Lee K, Lee K, Si J, You HJ, Ko G. Distinct Changes in Microbiota-Mediated Intestinal Metabolites and Immune Responses Induced by Different Antibiotics. Antibiotics (Basel) 2022; 11:antibiotics11121762. [PMID: 36551419 PMCID: PMC9774394 DOI: 10.3390/antibiotics11121762] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/28/2022] [Accepted: 12/02/2022] [Indexed: 12/12/2022] Open
Abstract
The cocktails of antibiotics are utilized to study the functions of microbiota. There have been studies on the alteration of not only the microbiota composition but also the host's metabolism or immunity. However, the bacterial species associated with these altered physiologic markers are still unclear. Therefore, we supplied mice with drinking water containing ampicillin (AMP), vancomycin (VAN), neomycin (NEO), or metronidazole (MET) to observe the effect of each antibiotic on helper T cells and inflammation-related gene expression and metabolism, including amino acid metabolism and changes in gut microbiota. We observed major changes in gut microbiota in mice treated with AMP and VAN, respectively, immediately after administration. The abundance of the genera Parabacteroides and Akkermansia increased in the AMP and VAN groups, while Prevotella almost disappeared from both groups. The compositional changes in intestinal metabolites in the AMP and VAN groups were more distinct than those in the NEO and MET groups, which was similar to the microbiome results. In particular, the most distinct changes were observed in amino acid related metabolism in AMP and VAN groups; the amounts of phenylalanine and tyrosine were increased in the AMP group while those were decreased in the VAN group. The changed amounts of intestinal amino acids in each of the AMP and VAN groups were correlated with increases in the abundance of the genera Parabacteroides and Akkermansia in the AMP and VAN groups, respectively. The most distinctive changes in intestinal gene expression were observed in the ileum, especially the expression Th17-related genes such as rorgt, il17a, and il17f, which decreased dramatically in the guts of most of the antibiotic-treated groups. These changes were also associated with a significant decrease in Prevotella in both the AMP and VAN groups. Taken together, these findings indicate that changes in gut microbiota as well as host physiology, including host metabolism and immunity, differ depending on the types of antibiotics, and the antibiotic-induced gut microbiota alteration has a correlation with host physiology such as host metabolic or immunological status. Thus, the immune and metabolic status of the host should be taken into account when administering antibiotics.
Collapse
Affiliation(s)
- Sunghyun Yoon
- Department of Environmental Health Sciences, Graduate School of Public Health, Seoul National University, Seoul 08826, Republic of Korea
| | - Giljae Lee
- Department of Environmental Health Sciences, Graduate School of Public Health, Seoul National University, Seoul 08826, Republic of Korea
- Bio-MAX/N-Bio, Seoul National University, Seoul 08826, Republic of Korea
| | - Junsun Yu
- Department of Environmental Health Sciences, Graduate School of Public Health, Seoul National University, Seoul 08826, Republic of Korea
| | - Kiuk Lee
- KoBioLabs, Inc., Seoul 13488, Republic of Korea
| | - Kyeongju Lee
- Department of Environmental Health Sciences, Graduate School of Public Health, Seoul National University, Seoul 08826, Republic of Korea
| | - Jiyeon Si
- Department of Environmental Health Sciences, Graduate School of Public Health, Seoul National University, Seoul 08826, Republic of Korea
- Institute of Health and Environment, Seoul National University, Seoul 08826, Republic of Korea
- Natural Products Research Center, Korea Institute of Science and Technology (KIST), Gangneung 25451, Republic of Korea
- Center for Human and Environmental Microbiome, Institute of Health and Environment, Seoul National University, Seoul 08826, Republic of Korea
| | - Hyun Ju You
- Department of Environmental Health Sciences, Graduate School of Public Health, Seoul National University, Seoul 08826, Republic of Korea
- KoBioLabs, Inc., Seoul 13488, Republic of Korea
- Institute of Health and Environment, Seoul National University, Seoul 08826, Republic of Korea
- Center for Human and Environmental Microbiome, Institute of Health and Environment, Seoul National University, Seoul 08826, Republic of Korea
- Correspondence: (H.J.Y.); (G.K.)
| | - GwangPyo Ko
- Department of Environmental Health Sciences, Graduate School of Public Health, Seoul National University, Seoul 08826, Republic of Korea
- Bio-MAX/N-Bio, Seoul National University, Seoul 08826, Republic of Korea
- KoBioLabs, Inc., Seoul 13488, Republic of Korea
- Center for Human and Environmental Microbiome, Institute of Health and Environment, Seoul National University, Seoul 08826, Republic of Korea
- Correspondence: (H.J.Y.); (G.K.)
| |
Collapse
|
43
|
Men WJ, Meng ZJ, Wang Q, Chen MY, Zhai YX, Shi H, Wang AH, Zhou K. The changes of hepatic bile acid synthesis and transport and bile acids profiles in isopsoralen-induced liver injury C57BL/6J mice. PHARMACEUTICAL BIOLOGY 2022; 60:1701-1709. [PMID: 36066106 PMCID: PMC9467544 DOI: 10.1080/13880209.2022.2116057] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 06/28/2022] [Accepted: 08/14/2022] [Indexed: 06/15/2023]
Abstract
CONTEST Isopsoralen, one of the main active and quality-control compounds in Psoralea corylifolia L. (Fabaceae), has antitumor and oestrogen-like effects. Previous studies demonstrated that isopsoralen induced hepatotoxicity and its long-term exposure led to cholestatic liver injury. OBJECTIVE This study investigates the effect of three- or seven-day exposure of low dose isopsoralen (80 mg/kg) on bile acid homeostasis in C57BL/6J mice. MATERIALS AND METHODS Forty-two C57BL/6J mice were randomly divided into control, three- and seven-day groups (n = 14 per group, half female and half male). Isopsoralen suspension was administrated intragastrically at 80 mg/kg once a day. Blood and liver samples were collected to measure biochemical indices and transport of BAs. The histopathology of the liver was also observed. HPLC-MS/MS was also used to measure the BAs profiles and transport activity. RESULTS In the study, isopsoralen increased the levels of serum AST, ALT in three- and seven-day groups, and caused vacuolar degeneration and swelling in the liver. Canalicular efflux transporters BSEP, OSTα, MRP2, MRP3, and basolateral uptake transporters NTCP, OATP4 were inhibited after seven-day-administration. Moreover, amino acid binding enzymes (BAAT and BACS) were also inhibited after seven-day-administration. The composition of BAs changed greatly and the concentration of some unconjugated-BAs which have stronger hydrophobicity, such as CA, CDCA, was significantly increased. CONCLUSIONS Isopsoralen (80 mg/kg) caused hepatotoxicity after short-term exposure by inhibiting the expression of efflux transporters, amino acid binding enzymes, and disrupting BAs spectrum.
Collapse
Affiliation(s)
- Wei-jie Men
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Tianjin Institute of Pharmaceutical Research Co., Ltd, Tianjin, China
| | - Zhao-jun Meng
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Qin Wang
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Meng-ying Chen
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yu-xia Zhai
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Hong Shi
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Tianjin Key Laboratory of Chinese Medicine Pharmacology, Tianjin, China
| | - An-hong Wang
- Department of Pharmacy, Gansu Provincial Hospital, Lanzhou, Gansu, China
| | - Kun Zhou
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Tianjin Key Laboratory of Chinese Medicine Pharmacology, Tianjin, China
- State Key Laboratory of Component-based Chinese Medicine, Tianjin, China
| |
Collapse
|
44
|
Luo Z, Li M, Yang J, Li J, Zhang Y, Liu F, El-Omar E, Han L, Bian J, Gong L, Wang M. Ferulic acid attenuates high-fat diet-induced hypercholesterolemia by activating classic bile acid synthesis pathway. Front Nutr 2022; 9:976638. [PMID: 36211528 PMCID: PMC9536491 DOI: 10.3389/fnut.2022.976638] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 08/30/2022] [Indexed: 12/03/2022] Open
Abstract
Ferulic acid (FA), a natural phenolic phytochemical abundantly present in whole grains, displays promising therapeutic effects on hypercholesterolemia while its underlying mechanism not fully elucidated. This study aimed to investigate the cholesterol-lowering effect of FA in high-fat diet (HFD)-fed mice and its potential molecular mechanism. FA supplementation alleviated HFD-induced hypercholesterolemia (–13.2%, p < 0.05), along with increased excretion of bile acids (BAs) in feces (37.0%, p < 0.05). Mechanism studies showed that FA activated the expression of cholesterol 7α hydroxylase (CYP7A1), a rate-limiting enzyme in BA biosynthesis in the liver, which increased the BAs biosynthesis from cholesterol. Surprisingly, increased excretion of BAs in feces is a consequence, not a cause, of CYP7A1 activation. Furthermore, enterohepatic farnesoid X receptor (FXR) signaling is not involved in the activation of hepatic CYP7A1 by FA. In conclusion, FA activates CYP7A1 through non-FXR signaling, which on the one hand effectively prevents hypercholesterolemia, and on the other hand leads to secondary BAs elevation in plasma. The latter may be the key to the anti-obesity and hypoglycemic effects of FA.
Collapse
Affiliation(s)
- Zhixin Luo
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Mengqian Li
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Jiachuan Yang
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Jia Li
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Yao Zhang
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Fang Liu
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Emad El-Omar
- Microbiome Research Centre, St George and Sutherland Clinical School, University of New South Wales, Sydney, NSW, Australia
| | - Lin Han
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
- *Correspondence: Lin Han,
| | - Ji Bian
- Kolling Institute, Sydney Medical School, Faculty of Medicine and Health, University of Sydney, Royal North Shore Hospital, St Leonards, NSW, Australia
- Ji Bian,
| | - Lan Gong
- Microbiome Research Centre, St George and Sutherland Clinical School, University of New South Wales, Sydney, NSW, Australia
- Lan Gong,
| | - Min Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
- Min Wang,
| |
Collapse
|
45
|
Truong JK, Bennett AL, Klindt C, Donepudi AC, Malla SR, Pachura KJ, Zaufel A, Moustafa T, Dawson PA, Karpen SJ. Ileal bile acid transporter inhibition in Cyp2c70 KO mice ameliorates cholestatic liver injury. J Lipid Res 2022; 63:100261. [PMID: 35934110 PMCID: PMC9460185 DOI: 10.1016/j.jlr.2022.100261] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 07/29/2022] [Accepted: 07/30/2022] [Indexed: 02/07/2023] Open
Abstract
Cyp2c70 is the liver enzyme in rodents responsible for synthesis of the primary 6-hydroxylated muricholate bile acid (BA) species. Cyp2c70 KO mice are devoid of protective, hydrophilic muricholic acids, leading to a more human-like BA composition and subsequent cholestatic liver injury. Pharmacological inhibition of the ileal BA transporter (IBAT) has been shown to be therapeutic in cholestatic models. Here, we aimed to determine if IBAT inhibition with SC-435 is protective in Cyp2c70 KO mice. As compared to WT mice, we found male and female Cyp2c70 KO mice exhibited increased levels of serum liver injury markers, and our evaluation of liver histology revealed increased hepatic inflammation, macrophage infiltration, and biliary cell proliferation. We demonstrate serum and histologic markers of liver damage were markedly reduced with SC-435 treatment. Additionally, we show hepatic gene expression in pathways related to immune cell activation and inflammation were significantly upregulated in Cyp2c70 KO mice and reduced to levels indistinguishable from WT with IBAT inhibition. In Cyp2c70 KO mice, the liver BA content was significantly increased, enriched in chenodeoxycholic acid, and more hydrophobic, exhibiting a hydrophobicity index value and red blood cell lysis properties similar to human liver BAs. Furthermore, we determined IBAT inhibition reduced the total hepatic BA levels but did not affect overall hydrophobicity of the liver BAs. These findings suggest that there may be a threshold in the liver for pathological accretion of hydrophobic BAs and reducing hepatic BA accumulation can be sufficient to alleviate liver injury, independent of BA pool hydrophobicity.
Collapse
Affiliation(s)
- Jennifer K Truong
- Department of Pediatrics, Division of Pediatric Gastroenterology, Hepatology and Nutrition, Emory University School of Medicine, Children's Healthcare of Atlanta, Atlanta, Georgia, USA
| | - Ashley L Bennett
- Department of Pediatrics, Division of Pediatric Gastroenterology, Hepatology and Nutrition, Emory University School of Medicine, Children's Healthcare of Atlanta, Atlanta, Georgia, USA
| | - Caroline Klindt
- Department of Pediatrics, Division of Pediatric Gastroenterology, Hepatology and Nutrition, Emory University School of Medicine, Children's Healthcare of Atlanta, Atlanta, Georgia, USA
| | - Ajay C Donepudi
- Department of Pediatrics, Division of Pediatric Gastroenterology, Hepatology and Nutrition, Emory University School of Medicine, Children's Healthcare of Atlanta, Atlanta, Georgia, USA
| | - Sudarshan R Malla
- Department of Pediatrics, Division of Pediatric Gastroenterology, Hepatology and Nutrition, Emory University School of Medicine, Children's Healthcare of Atlanta, Atlanta, Georgia, USA
| | - Kimberly J Pachura
- Department of Pediatrics, Division of Pediatric Gastroenterology, Hepatology and Nutrition, Emory University School of Medicine, Children's Healthcare of Atlanta, Atlanta, Georgia, USA
| | - Alex Zaufel
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | - Tarek Moustafa
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | - Paul A Dawson
- Department of Pediatrics, Division of Pediatric Gastroenterology, Hepatology and Nutrition, Emory University School of Medicine, Children's Healthcare of Atlanta, Atlanta, Georgia, USA.
| | - Saul J Karpen
- Department of Pediatrics, Division of Pediatric Gastroenterology, Hepatology and Nutrition, Emory University School of Medicine, Children's Healthcare of Atlanta, Atlanta, Georgia, USA.
| |
Collapse
|
46
|
Characterization and quantification of representative bile acids in ileal contents and feces of diet-induced obese mice by UPLC-MS/MS. CHINESE JOURNAL OF ANALYTICAL CHEMISTRY 2022. [DOI: 10.1016/j.cjac.2022.100175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
47
|
de Bruijn VMP, Rietjens IMCM, Bouwmeester H. Population pharmacokinetic model to generate mechanistic insights in bile acid homeostasis and drug-induced cholestasis. Arch Toxicol 2022; 96:2717-2730. [PMID: 35876888 PMCID: PMC9352636 DOI: 10.1007/s00204-022-03345-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 07/14/2022] [Indexed: 12/05/2022]
Abstract
Bile acids (BA) fulfill a wide range of physiological functions, but are also involved in pathologies, such as cholestasis. Cholestasis is characterized by an intrahepatic accumulation of BAs and subsequent spillage to the systemic circulation. The aim of the present study was to develop physiologically based kinetic (PBK) models that would provide a tool to predict dose-dependent BA accumulation in humans upon treatment with a Bile Salt Export Pump (BSEP) inhibitor. We developed a PBK model describing the BA homeostasis using glycochenodeoxycholic acid as an exemplary BA. Population wide distributions of BSEP abundances were incorporated in the PBK model using Markov Chain Monte Carlo simulations, and alternatively the total amount of BAs was scaled empirically to describe interindividual differences in plasma BA levels. Next, the effects of the BSEP inhibitor bosentan on the BA levels were simulated. The PBK model developed adequately predicted the in vivo BA dynamics. Both the Markov Chain Monte Carlo simulations based on a distribution of BSEP abundances and empirical scaling of the total BA pool readily described the variations within and between data in human volunteers. Bosentan treatment disproportionally increased the maximum BA concentration in individuals with a large total BA pool or low BSEP abundance. Especially individuals having a large total BA pool size and a low BSEP abundance were predicted to be at risk for rapid saturation of BSEP and subsequent intrahepatic BA accumulation. This model provides a first estimate of personalized safe therapeutic external dose levels of compounds with BSEP-inhibitory properties.
Collapse
Affiliation(s)
- Véronique M P de Bruijn
- Division of Toxicology, Wageningen University and Research, Wageningen, 6708 WE, The Netherlands.
| | - Ivonne M C M Rietjens
- Division of Toxicology, Wageningen University and Research, Wageningen, 6708 WE, The Netherlands
| | - Hans Bouwmeester
- Division of Toxicology, Wageningen University and Research, Wageningen, 6708 WE, The Netherlands
| |
Collapse
|
48
|
Quantitative Profiling of Bile Acids in Feces of Humans and Rodents by Ultra-High-Performance Liquid Chromatography–Quadrupole Time-of-Flight Mass Spectrometry. Metabolites 2022; 12:metabo12070633. [PMID: 35888757 PMCID: PMC9323729 DOI: 10.3390/metabo12070633] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 07/07/2022] [Accepted: 07/08/2022] [Indexed: 12/10/2022] Open
Abstract
A simple, sensitive, and reliable quantification and identification method was developed and validated for simultaneous analysis of 58 bile acids (BAs) in human and rodent (mouse and rat) fecal samples. The method involves an extraction step with a 5% ammonium–ethanol aqueous solution; the BAs were quantified by high-resolution mass spectrometry (ultra-high-performance liquid chromatography coupled with quadrupole-time-of-flight mass spectrometry, UPLC–Q-TOF). The recoveries were 80.05–120.83%, with coefficient variations (CVs) of 0.01–9.82% for three biological species. The limits of detection (LODs) were in the range of 0.01–0.24 μg/kg, and the limits of quantification (LOQs) ranged from 0.03 to 0.81 μg/kg. In addition, the analytical method was used to identify and quantify BAs in end-stage renal disease (ESRD) patients, C57BL/6 mice, and Sprague-Dawley (SD) rats. The fecal BA profile and analysis of BA indices in these samples provide valuable information for further BA metabolic disorder research.
Collapse
|
49
|
Panebianco C, Villani A, Pisati F, Orsenigo F, Ulaszewska M, Latiano TP, Potenza A, Andolfo A, Terracciano F, Tripodo C, Perri F, Pazienza V. Butyrate, a postbiotic of intestinal bacteria, affects pancreatic cancer and gemcitabine response in in vitro and in vivo models. Biomed Pharmacother 2022; 151:113163. [PMID: 35617803 DOI: 10.1016/j.biopha.2022.113163] [Citation(s) in RCA: 66] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 05/16/2022] [Accepted: 05/16/2022] [Indexed: 11/02/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is an aggressive cancer. The characteristic excessive stromatogenesis accompanying the growth of this tumor is believed to contribute to chemoresistance which, together with drug toxicity, results in poor clinical outcome. An increasing number of studies are showing that gut microbiota and their metabolites are implicated in cancer pathogenesis, progression and response to therapies. In this study we tested butyrate, a product of dietary fibers' bacterial fermentation, whose anticancer and anti-inflammatory functions are known. We provided in vitro evidence that, beside slowing proliferation, butyrate enhanced gemcitabine effectiveness against two human pancreatic cancer cell lines, mainly inducing apoptosis. In addition, we observed that, when administered to a PDAC mouse model, alone or combined with gemcitabine treatment, butyrate markedly reduced the cancer-associated stromatogenesis, preserved intestinal mucosa integrity and affected fecal microbiota composition by increasing short chain fatty acids producing bacteria and decreasing some pro-inflammatory microorganisms. Furthermore, a biochemical serum analysis showed butyrate to ameliorate some markers of kidney and liver damage, whereas a metabolomics approach revealed a deep modification of lipid metabolism, which may affect tumor progression or response to therapy. Such results support that butyrate supplementation, in addition to conventional therapies, can interfere with pancreatic cancer biology and response to treatment and can alleviate some damages associated to cancer itself or to chemotherapy.
Collapse
Affiliation(s)
- Concetta Panebianco
- Division of Gastroenterology, Fondazione IRCCS Casa Sollievo della Sofferenza, Viale dei Cappuccini, 1, 71013 San Giovanni Rotondo, FG, Italy
| | - Annacandida Villani
- Division of Gastroenterology, Fondazione IRCCS Casa Sollievo della Sofferenza, Viale dei Cappuccini, 1, 71013 San Giovanni Rotondo, FG, Italy
| | - Federica Pisati
- Histopathology Unit, Cogentech S.C.a.R.L, Via Adamello, 16, 20139 Milan, MI, Italy
| | | | - Marynka Ulaszewska
- Proteomics and Metabolomics Facility (ProMeFa), IRCCS San Raffaele Scientific Institute, Via Olgettina, 60, 20132 Milan, Italy
| | - Tiziana Pia Latiano
- Oncology Unit, Fondazione IRCCS "Casa Sollievo della Sofferenza Hospital, Viale dei Cappuccini, 1, 71013 San Giovanni Rotondo, FG, Italy
| | - Adele Potenza
- Dietetic and Clinical Nutrition Unit, Fondazione IRCCS Casa Sollievo della Sofferenza, Viale dei Cappuccini, 1, 71013 San Giovanni Rotondo, FG, Italy
| | - Annapaola Andolfo
- Proteomics and Metabolomics Facility (ProMeFa), IRCCS San Raffaele Scientific Institute, Via Olgettina, 60, 20132 Milan, Italy
| | - Fulvia Terracciano
- Division of Gastroenterology, Fondazione IRCCS Casa Sollievo della Sofferenza, Viale dei Cappuccini, 1, 71013 San Giovanni Rotondo, FG, Italy
| | - Claudio Tripodo
- Histopathology Unit, Cogentech S.C.a.R.L, Via Adamello, 16, 20139 Milan, MI, Italy; Tumor Immunology Unit, Department of Health Sciences, University of Palermo, Via del Vespro 129, 90127 Palermo, Italy
| | - Francesco Perri
- Division of Gastroenterology, Fondazione IRCCS Casa Sollievo della Sofferenza, Viale dei Cappuccini, 1, 71013 San Giovanni Rotondo, FG, Italy
| | - Valerio Pazienza
- Division of Gastroenterology, Fondazione IRCCS Casa Sollievo della Sofferenza, Viale dei Cappuccini, 1, 71013 San Giovanni Rotondo, FG, Italy.
| |
Collapse
|
50
|
Ring Trial on Quantitative Assessment of Bile Acids Reveals a Method- and Analyte-Specific Accuracy and Reproducibility. Metabolites 2022; 12:metabo12070583. [PMID: 35888707 PMCID: PMC9319092 DOI: 10.3390/metabo12070583] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 06/10/2022] [Accepted: 06/16/2022] [Indexed: 12/27/2022] Open
Abstract
(1) Background: Bile acids are a key mediator of the molecular microbiome-host interaction, and various mass spectrometry-based assays have been developed in the recent decade to quantify a wide range of bile acids. We compare existing methodologies to harmonize them. (2) Methods: Methodology for absolute quantification of bile acids from six laboratories in Europe were compared for the quantification of the primary bile acids cholic acid (CA) and chenodeoxycholic acid (CDCA) and conjugated products glycocholic acid (GCA) and taurocholic acid (TCA). For the bacterially modified secondary bile acids, the quantification of deoxycholic acid (DCA) and lithocholic acid (LCA) was compared. For the murine bile acids, we used the primary muricholic acids (α-MCA and, β-MCA) and the intestinally produced secondary bile acid muricholic (ω-MCA). The standards were spiked into methanol:water (1:1) mix as well as in human and murine serum at either low concentration range (150–3000 nM) or high concentration range (1500–40,000 nM). (3) Results: The precision was better for higher concentrations. Measurements for the hydrophobic unconjugated bile acids LCA and ω-MCA were the most challenging. (4) Conclusions: The quality assessments were generally very similar, and the comprehensive analyses demonstrated that data from chosen locations can be used for comparisons between studies.
Collapse
|