1
|
Yin F, Vakkalanka MD, Wiley W, Woolf MS, Basir Y, Shah K, Wheeler AM, Yuan M, Mylott WR, Baratta M. A simple surrogate approach for the quantitation of C4 (7α-hydroxy-4-cholesten-3-one) in human serum via LC-MS/MS and its application in a clinical study. J Chromatogr B Analyt Technol Biomed Life Sci 2025; 1261:124651. [PMID: 40382828 DOI: 10.1016/j.jchromb.2025.124651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2025] [Revised: 05/12/2025] [Accepted: 05/13/2025] [Indexed: 05/20/2025]
Abstract
We present a validated LC-MS/MS assay for the quantitation of 7α-hydroxy-4-cholesten-3-one (C4), a key intermediate in the bile acid synthesis pathway from cholesterol, in human serum. A surrogate matrix approach was employed to overcome the challenges posed by the endogenous C4 levels in the biological matrix. Human serum samples were spiked with stable isotope labeled internal standard (SIL-IS), processed using supported liquid extraction (SLE), and analyzed by LC-MS/MS. Parallelism was successfully demonstrated between human serum (authentic matrix) and 5 % bovine serum albumin in phosphate buffered saline containing 0.1 % tween 20 (5 % BSA in PBST) (surrogate matrix). The assay's linear analytical range was established from 0.200 to 200 ng/mL. This validated LC-MS/MS method exhibited excellent accuracy and precision. The overall accuracy was between 97.9 % and 101 % with %CV less than 4.0 % for C4 in human serum. C4 was found to be stable in human serum for up to 24.7 h at room temperature, up to 34 days when stored at -25 °C or - 80 °C, and after five freeze/thaw cycles. The assay has been successfully applied to human serum samples to support a clinical study.
Collapse
Affiliation(s)
- Feng Yin
- Department of Biomarker Science and Technologies, Takeda Development Center Americas, Inc., 35 Landsdowne Street, Cambridge, MA 02139, USA.
| | - Mani Deepika Vakkalanka
- Department of Chromatographic Services, PPD Laboratory Services (a part of Thermo Fisher Scientific), 8700 Quioccasin Road, Henrico, VA 23229, USA
| | - Walter Wiley
- Department of Chromatographic Services, PPD Laboratory Services (a part of Thermo Fisher Scientific), 8700 Quioccasin Road, Henrico, VA 23229, USA
| | - M Shane Woolf
- Department of Chromatographic Services, PPD Laboratory Services (a part of Thermo Fisher Scientific), 8700 Quioccasin Road, Henrico, VA 23229, USA
| | - Yousef Basir
- Department of Chromatographic Services, PPD Laboratory Services (a part of Thermo Fisher Scientific), 8700 Quioccasin Road, Henrico, VA 23229, USA
| | - Kumar Shah
- Department of Chromatographic Services, PPD Laboratory Services (a part of Thermo Fisher Scientific), 8700 Quioccasin Road, Henrico, VA 23229, USA
| | - Aaron M Wheeler
- Department of Chromatographic Services, PPD Laboratory Services (a part of Thermo Fisher Scientific), 8700 Quioccasin Road, Henrico, VA 23229, USA
| | - Moucun Yuan
- Department of Chromatographic Services, PPD Laboratory Services (a part of Thermo Fisher Scientific), 8700 Quioccasin Road, Henrico, VA 23229, USA
| | - William R Mylott
- Department of Chromatographic Services, PPD Laboratory Services (a part of Thermo Fisher Scientific), 8700 Quioccasin Road, Henrico, VA 23229, USA
| | - Mike Baratta
- Department of Biomarker Science and Technologies, Takeda Development Center Americas, Inc., 35 Landsdowne Street, Cambridge, MA 02139, USA
| |
Collapse
|
2
|
Fanti F, Sergi M, Compagnone D. LC-MS/MS based analytical strategies for the detection of lipid peroxidation products in biological matrices. J Pharm Biomed Anal 2025; 256:116681. [PMID: 39847924 DOI: 10.1016/j.jpba.2025.116681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Revised: 01/13/2025] [Accepted: 01/14/2025] [Indexed: 01/25/2025]
Abstract
Oxidative stress (OS) arises mainly from exposure to reactive oxygen species (ROS) such as superoxide anion, hydroxyl radical, and hydrogen peroxide. These molecules can cause significant damage to proteins, DNA, and lipids, leading to various diseases. Cells fight ROS with detoxifying enzymes; however, an imbalance can cause damage leading to ischemic conditions, heart disease progression, and neurological disorders such as Alzheimer's disease. Accurate assessment of OS levels is then crucial and oxidized lipidic products are considered relevant OS biomarkers. In fact, lipids are particularly prone to ROS attack, leading to lipid peroxidation, cell membrane damage, and toxic by-products affecting DNA, proteins, and low-density lipoproteins. This review reports on recent advances in LC-MS/MS approaches for OS lipidic biomarkers, focusing on overcoming analytical challenges. 3 different classes of biomarkers have been reported, malondialdehyde, isoprostanes and oxidised sterols. For each class, the main analytical challenges with a particular focus on derivatisation procedure, sensitivity, matrix effect, ionisation have been described and discussed. The recent advancements of the LC-MS-MS procedures move towards simpler approaches, reducing errors and improving the reliability of the measurement thus enabling a comprehensive and robust OS assessment.
Collapse
Affiliation(s)
- Federico Fanti
- Department of Bioscience and Technology for Food, Agriculture and Environmental, University of Teramo, Via Renato Balzarini 1, Teramo 64100, Italy
| | - Manuel Sergi
- Department of Chemistry, Sapienza University of Rome, Piazzale Aldo Moro 5, Rome 00185, Italy
| | - Dario Compagnone
- Department of Bioscience and Technology for Food, Agriculture and Environmental, University of Teramo, Via Renato Balzarini 1, Teramo 64100, Italy.
| |
Collapse
|
3
|
van Gool R, Cay M, Ren B, Brodeur K, Golden E, Goodlett B, Yang E, Reilly T, Hastings C, Berry-Kravis EM, Lee PY, Di Biase M, Cropley V, Pantelis C, Velakoulis D, Shinn AK, Al-Hertani W, Walterfang M, Upadhyay J. Implications of the choroid plexus in Niemann-Pick disease Type C neuropathogenesis. Brain Behav Immun 2025; 124:376-384. [PMID: 39689839 PMCID: PMC11787871 DOI: 10.1016/j.bbi.2024.12.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 12/04/2024] [Accepted: 12/14/2024] [Indexed: 12/19/2024] Open
Abstract
BACKGROUND Niemann-Pick Disease Type C (NPC) is an ultra-rare disorder characterized by progressive psychiatric and neurologic manifestations, with late infantile, juvenile, and adolescent/adult presentations. We examined morphological properties of the choroid plexus, a protective blood-cerebrospinal fluid barrier, in NPC, and their relationship with neurodegeneration, clinical status, and circulatory markers. This study also determined whether choroid plexus morphology differentiates between NPC and more prevalent illnesses, schizophrenia (SZ) and bipolar disorder (BD), which have overlapping psychiatric symptoms with adolescent and adult-onset NPC and are associated with misdiagnosis. METHODS Patients with NPC were assessed using neuroimaging, clinical instruments, and plasma protein quantification focusing on inflammatory markers. Morphological properties (i.e., choroid plexus volumes) were compared between patients with NPC (n = 17), SZ (n = 20), BD (n = 24), and healthy controls (HCs, n = 106). RESULTS Choroid plexus enlargement (p < 0.05) and reduced thalamic volumes (p < 0.05) were observed in NPC patients versus HCs and SZ or BD patients. A logistic regression model with choroid plexus and thalamic volumes as predictors yielded high prediction accuracy for NPC vs. HCs, NPC vs. SZ, and NPC vs. BD (area under the receiver operating characteristics curve [AUROC] of 1). Choroid plexus volumes were negatively correlated with left (p = 0.009-0.012) and right (p = 0.007-0.025) thalamic volumes, left (r = -0.69, p = 0.003) and right (r = -0.71, p = 0.002) crus I of the cerebellum, and greater severity on the NPC-Suspicion Index psychiatric subscale (ρ = 0.72, p = 0.042). Targeted protein expression quantification revealed differential expression of TGFA, HLA-DRA, TNFSF12, EGF, INFG, and IL-18 in NPC patients vs. HCs (p < 0.05), with higher choroid plexus volumes correlating with IL-18 levels (ρ = 0.71, p = 0.047). CONCLUSION The choroid plexus may play a critical role in NPC neuropathogenesis and serve as a novel biomarker for monitoring neurodegenerative and inflammatory processes in NPC.
Collapse
Affiliation(s)
- Raquel van Gool
- Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA; Department of Neurology, Mental Health and Neuroscience Research Institute, Maastricht University, Maastricht, Limburg, the Netherlands
| | - Mariesa Cay
- Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Boyu Ren
- Department of Psychiatry, McLean Hospital, Harvard Medical School, Belmont, MA, USA
| | - Kailey Brodeur
- Division of Immunology, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA
| | - Emma Golden
- Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Benjamin Goodlett
- Division of Genetics and Genomics, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Edward Yang
- Department of Radiology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Tom Reilly
- Neuropsychiatry Centre, Royal Melbourne Hospital, Melbourne, VIC, Australia
| | - Caroline Hastings
- Department of Pediatric Hematology and Oncology, UCSF Benioff Children's Hospital Oakland (Children Hospital and Research Center Oakland), Oakland, CA
| | - Elizabeth M Berry-Kravis
- Department of Pediatrics, Neurological Sciences and Anatomy and Cell Biology, Rush University Medical Center, Chicago, IL, USA
| | - Pui Y Lee
- Division of Immunology, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA
| | - Maria Di Biase
- Department of Psychiatry, University of Melbourne, Melbourne, VIC, Australia
| | - Vanessa Cropley
- Centre for Youth Mental Health, The University of Melbourne, Vic, Australia Orygen, Parkville, Vic, Australia
| | - Christos Pantelis
- Neuropsychiatry Centre, Royal Melbourne Hospital, Melbourne, VIC, Australia; Department of Psychiatry, University of Melbourne, Melbourne, VIC, Australia; Monash Institute of Pharmaceutical Sciences (MIPS), Monash University, Parkville, Vic, Australia
| | - Dennis Velakoulis
- Neuropsychiatry Centre, Royal Melbourne Hospital, Melbourne, VIC, Australia; Department of Psychiatry, University of Melbourne, Melbourne, VIC, Australia
| | - Ann K Shinn
- Department of Psychiatry, McLean Hospital, Harvard Medical School, Belmont, MA, USA; Schizophrenia and Bipolar Disorder Program, Psychotic Disorders Division, McLean Hospital, Belmont, MA, USA
| | - Walla Al-Hertani
- Division of Genetics and Genomics, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Mark Walterfang
- Neuropsychiatry Centre, Royal Melbourne Hospital, Melbourne, VIC, Australia; Department of Psychiatry, University of Melbourne, Melbourne, VIC, Australia
| | - Jaymin Upadhyay
- Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA; Department of Psychiatry, McLean Hospital, Harvard Medical School, Belmont, MA, USA.
| |
Collapse
|
4
|
Guo Z, Yu H, Yang K, Feng W, Liu M, Wang T, Xiao R. Quantitative Determination of a Series of Oxysterols by an Optimized LC-MS/MS Analysis in Different Tissue Types. Int J Mol Sci 2024; 26:77. [PMID: 39795936 PMCID: PMC11720652 DOI: 10.3390/ijms26010077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 12/16/2024] [Accepted: 12/23/2024] [Indexed: 01/13/2025] Open
Abstract
Oxysterols, as metabolites of cholesterol, play a key role in cholesterol homeostasis, autophagosome formation, and regulation of immune responses. Disorders in oxysterol metabolism are closely related to the pathogenesis of neurodegenerative diseases. To systematically investigate the profound molecular regulatory mechanisms of neurodegenerative diseases, it is necessary to quantify oxysterols and their metabolites in central and peripheral biospecimens simultaneously and accurately. However, there are a lot of unsolved problems with the existing methods, such as the hindrance of applying a single method to different biological specimens or the challenge of simultaneous quantification due to differential groups on the ends of the oxysterol side chains. Herein, according to the physicochemical properties and structure of oxysterols, an optimized liquid chromatography-tandem mass spectrometry method for the quantification of oxysterols was established by optimizing the sample preparation process, chromatographic conditions, mobile phase pH, and solvent selection. Seven oxysterols were detected by this method, including 27-hydroxycholesterol, 7α-hydroxycholesterol, 7α,27-dihydroxycholesterol, 7-dehydrocholesterol, 7α-hydroxy-3-oxo-4-cholestenoic acid, 3-hydroxy-5-cholestenoic acid, and 24(S)-hydroxycholesterol. Non-derivatization extraction with methyl tert-butyl ether was used for different biospecimens, followed by simultaneous chromatographic separation of oxysterols on a phenyl hexyl column. By repeated validation, this method exhibited satisfactory linearity, precision, recovery, sensitivity, repeatability, and stability, and it was successfully applied to the detection of oxysterols in the plasma, cerebral cortex, and liver of mouse. In summary, our optimized method enables concurrent analysis and quantification of oxysterols and their metabolites in various biospecimens, presenting a broad range of applicability.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Rong Xiao
- School of Public Health, Capital Medical University, Beijing 100069, China; (Z.G.); (H.Y.); (K.Y.); (W.F.); (M.L.); (T.W.)
| |
Collapse
|
5
|
Stern S, Crisamore K, Schuck R, Pacanowski M. Evaluation of the landscape of pharmacodynamic biomarkers in Niemann-Pick Disease Type C (NPC). Orphanet J Rare Dis 2024; 19:280. [PMID: 39061081 PMCID: PMC11282650 DOI: 10.1186/s13023-024-03233-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 05/27/2024] [Indexed: 07/28/2024] Open
Abstract
Niemann-Pick disease type C (NPC) is an autosomal recessive, progressive disorder resulting from variants in NPC1 or NPC2 that leads to the accumulation of cholesterol and other lipids in late endosomes and lysosomes. The clinical manifestations of the disease vary by age of onset, and severity is often characterized by neurological involvement. To date, no disease-modifying therapy has been approved by the United States Food and Drug Administration (FDA) and treatment is typically supportive. The lack of robust biomarkers contributes to challenges associated with disease monitoring and quantifying treatment response. In recent years, advancements in detection methods have facilitated the identification of biomarkers in plasma and cerebral spinal fluid from patients with NPC, namely calbindin D, neurofilament light chain, 24(S)hydroxycholesterol, cholestane-triol, trihydroxycholanic acid glycinate, amyloid-β, total and phosphorylated tau, and N-palmitoyl-O-phosphocholine-serine. These biomarkers have been used to support several clinical trials as pharmacodynamic endpoints. Despite the significant advancements in laboratory techniques, translation of those advancements has lagged, and it remains unclear which biomarkers correlate with disease severity and progression, or which biomarkers could inform treatment response. In this review, we assess the landscape of biomarkers currently proposed to guide disease monitoring or indicate treatment response in patients with NPC.
Collapse
Affiliation(s)
- Sydney Stern
- Office of Clinical Pharmacology, Office of Translational Science, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, 10903 New Hampshire Ave, Silver Spring, Maryland, 20993, USA.
| | - Karryn Crisamore
- Office of Clinical Pharmacology, Office of Translational Science, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, 10903 New Hampshire Ave, Silver Spring, Maryland, 20993, USA
| | - Robert Schuck
- Office of Clinical Pharmacology, Office of Translational Science, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, 10903 New Hampshire Ave, Silver Spring, Maryland, 20993, USA
| | - Michael Pacanowski
- Office of Clinical Pharmacology, Office of Translational Science, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, 10903 New Hampshire Ave, Silver Spring, Maryland, 20993, USA
| |
Collapse
|
6
|
Teng YC, Gielen MC, de Gruijter NM, Ciurtin C, Rosser EC, Karu K. Phytosterols in human serum as measured using a liquid chromatography tandem mass spectrometry. J Steroid Biochem Mol Biol 2024; 241:106519. [PMID: 38614432 DOI: 10.1016/j.jsbmb.2024.106519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 04/05/2024] [Accepted: 04/09/2024] [Indexed: 04/15/2024]
Abstract
Phytosterols are lipophilic compounds found in plants with structural similarity to mammalian cholesterol. They cannot be endogenously produced by mammals and therefore always originate from diet. There has been increased interest in dietary phytosterols over the last few decades due to their association with a variety of beneficial health effects including low-density lipoprotein cholesterol lowering, anti-inflammatory and anti-cancerous effects. They are proposed as potential moderators for diseases associated with the central nervous system where cholesterol homeostasis is found to be imperative (multiple sclerosis, dementia, etc.) due to their ability to reach the brain. Here we utilised an enzyme-assisted derivatisation for sterol analysis (EADSA) in combination with a liquid chromatography tandem mass spectrometry (LC-MSn) to characterise phytosterol content in human serum. As little as 100 fg of plant sterol was injected on a reversed phase LC column. The method allows semi-quantitative measurements of phytosterols and their derivatives simultaneously with measurement of cholesterol metabolites. The identification of phytosterols in human serum was based on comparison of their LC retention times and MS2, MS3 spectra with a library of authentic standards. Free campesterol serum concentration was in the range from 0.30-4.10 µg/mL, β-sitosterol 0.16-3.37 µg/mL and fucosterol was at lowest concentration range from 0.05-0.38 µg/mL in ten individuals. This analytical methodology could be applied to the analysis of other biological fluids and tissues.
Collapse
Affiliation(s)
- Yu Chun Teng
- UCL Chemistry Mass Spectrometry Facility, 20 Gordon Street, University College London, London, United Kingdom
| | - Marie Claire Gielen
- UCL Chemistry Mass Spectrometry Facility, 20 Gordon Street, University College London, London, United Kingdom
| | - Nina M de Gruijter
- UCL Chemistry Mass Spectrometry Facility, 20 Gordon Street, University College London, London, United Kingdom; Centre for Adolescent Rheumatology Versus Arthritis at University College London, University College London Hospital and Great Ormond Street Hospital, London, United Kingdom; Centre for Rheumatology Research, Division of Medicine, University College London, London, United Kingdom
| | - Coziana Ciurtin
- Centre for Adolescent Rheumatology Versus Arthritis at University College London, University College London Hospital and Great Ormond Street Hospital, London, United Kingdom; Centre for Rheumatology Research, Division of Medicine, University College London, London, United Kingdom
| | - Elizabeth C Rosser
- Centre for Adolescent Rheumatology Versus Arthritis at University College London, University College London Hospital and Great Ormond Street Hospital, London, United Kingdom; Centre for Rheumatology Research, Division of Medicine, University College London, London, United Kingdom
| | - Kersti Karu
- UCL Chemistry Mass Spectrometry Facility, 20 Gordon Street, University College London, London, United Kingdom.
| |
Collapse
|
7
|
Sun X, Zhou C, Ju M, Feng W, Guo Z, Qi C, Yang K, Xiao R. Roseburia intestinalis Supplementation Could Reverse the Learning and Memory Impairment and m6A Methylation Modification Decrease Caused by 27-Hydroxycholesterol in Mice. Nutrients 2024; 16:1288. [PMID: 38732535 PMCID: PMC11085097 DOI: 10.3390/nu16091288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 04/05/2024] [Accepted: 04/09/2024] [Indexed: 05/13/2024] Open
Abstract
The abnormality in N6-methyladenosine (m6A) methylation is involved in the course of Alzheimer's disease (AD), while the intervention of 27-Hydroxycholesterol (27-OHC) can affect the m6A methylation modification in the brain cortex. Disordered gut microbiota is a key link in 27-OHC leading to cognitive impairment, and further studies have found that the abundance of Roseburia intestinalis in the gut is significantly reduced under the intervention of 27-OHC. This study aims to investigate the association of 27-OHC, Roseburia intestinalis in the gut, and brain m6A modification in the learning and memory ability injury. In this study, 9-month-old male C57BL/6J mice were treated with antibiotic cocktails for 6 weeks to sweep the intestinal flora, followed by 27-OHC or normal saline subcutaneous injection, and then Roseburia intestinalis or normal saline gavage were applied to the mouse. The 27-OHC level in the brain, the gut barrier function, the m6A modification in the brain, and the memory ability were measured. From the results, we observed that 27-OHC impairs the gut barrier function, causing a disturbance in the expression of m6A methylation-related enzymes and reducing the m6A methylation modification level in the brain cortex, and finally leads to learning and memory impairment. However, Roseburia intestinalis supplementation could reverse the negative effects mentioned above. This study suggests that 27-OHC-induced learning and memory impairment might be linked to brain m6A methylation modification disturbance, while Roseburia intestinalis, as a probiotic with great potential, could reverse the damage caused by 27-OHC. This research could help reveal the mechanism of 27-OHC-induced neural damage and provide important scientific evidence for the future use of Roseburia intestinalis in neuroprotection.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Rong Xiao
- Beijing Key Laboratory of Environmental Toxicology, School of Public Health, Capital Medical University, Beijing 100069, China; (X.S.); (C.Z.); (M.J.); (W.F.); (Z.G.); (C.Q.); (K.Y.)
| |
Collapse
|
8
|
Rojas D, Benachenhou S, Laroui A, Aden AA, Abolghasemi A, Galarneau L, Irakoze TJ, Plantefeve R, Bouhour S, Toupin A, Corbin F, Fink G, Mallet PL, Çaku A. Development and validation of a liquid chromatography-tandem mass spectrometry assay to quantify plasma 24(S)-hydroxycholesterol and 27-hydroxycholesterol: A new approach integrating the concept of ion ratio. J Steroid Biochem Mol Biol 2023; 235:106408. [PMID: 37806531 DOI: 10.1016/j.jsbmb.2023.106408] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 10/02/2023] [Accepted: 10/05/2023] [Indexed: 10/10/2023]
Abstract
Accurate quantification of 24(S)-hydroxycholesterol and 27-hydroxycholesterol holds substantial biological significance due to their involvement in pivotal cellular processes, encompassing cholesterol homeostasis, inflammatory responses, neuronal signaling, and their potential as disease biomarkers. The plasma determination of these oxysterols is challenging considering their low concentrations and similarities in terms of empirical formulae, molecular structure, and physicochemical properties across all human endogenous plasma oxysterols. To overcome these sensitivity and specificity issues, we developed and validated a quantification method using liquid chromatography coupled to a tandem mass spectrometry instrument. Validation studies were designed inspired by Clinical and Laboratory Standards Institute (CLSI) C62-A Guidelines. The linearity ranged between 20 and 300 nM for both oxysterols with limits of quantification at 20 nM and 30 nM for 24(S)-OHC and 27-OHC, respectively. Inter-day precision coefficient variations (CV) were lower than 10% for both oxysterols. An optimal separation of 25-OHC was obtained from 24(S)-OHC and 27-OHC with a resolution (Rs) > 1.25. The determination and validation of ion ratios for 24(S)-OHC and 27-OHC enabled another quality check in identifying interferents that could impact the quantification. Our developed and validated LC-MS/MS method allows consistent and reliable quantification of human plasmatic 24(S)-OHC and 27-OHC that is warranted in fundamental and clinical research projects.
Collapse
Affiliation(s)
- Daniela Rojas
- Department of Biochemistry and Functional Genomics, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Sérine Benachenhou
- Department of Biochemistry and Functional Genomics, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Asma Laroui
- Department of Biochemistry and Functional Genomics, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Amira Abdourahim Aden
- Department of Biochemistry and Functional Genomics, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Armita Abolghasemi
- Department of Biochemistry and Functional Genomics, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Luc Galarneau
- The Medical Physics Unit, McGill University Health Center, Montreal, QC, Canada
| | - Taratibu Janvière Irakoze
- Department of Biochemistry and Functional Genomics, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Rosalie Plantefeve
- Department of Biochemistry and Functional Genomics, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Sophie Bouhour
- Department of Biochemistry and Functional Genomics, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Amanda Toupin
- Department of Biochemistry and Functional Genomics, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - François Corbin
- Department of Biochemistry and Functional Genomics, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Guy Fink
- Department of Biochemistry and Functional Genomics, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Pierre-Luc Mallet
- Department of Biochemistry and Functional Genomics, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Artuela Çaku
- Department of Biochemistry and Functional Genomics, Université de Sherbrooke, Sherbrooke, QC, Canada.
| |
Collapse
|
9
|
Wang D, Xiao H, Lv X, Chen H, Wei F. Mass Spectrometry Based on Chemical Derivatization Has Brought Novel Discoveries to Lipidomics: A Comprehensive Review. Crit Rev Anal Chem 2023; 55:21-52. [PMID: 37782560 DOI: 10.1080/10408347.2023.2261130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/04/2023]
Abstract
Lipids, as one of the most important organic compounds in organisms, are important components of cells and participate in energy storage and signal transduction of living organisms. As a rapidly rising field, lipidomics research involves the identification and quantification of multiple classes of lipid molecules, as well as the structure, function, dynamics, and interactions of lipids in living organisms. Due to its inherent high selectivity and high sensitivity, mass spectrometry (MS) is the "gold standard" analysis technique for small molecules in biological samples. The combination chemical derivatization with MS detection is a unique strategy that could improve MS ionization efficiency, facilitate structure identification and quantitative analysis. Herein, this review discusses derivatization-based MS strategies for lipidomic analysis over the past decade and focuses on all the reported lipid categories, including fatty acids and modified fatty acids, glycerolipids, glycerophospholipids, sterols and saccharolipids. The functional groups of lipids mainly involved in chemical derivatization include the C=C group, carboxyl group, hydroxyl group, amino group, carbonyl group. Furthermore, representative applications of these derivatization-based lipid profiling methods were summarized. Finally, challenges and countermeasures of lipid derivatization are mentioned and highlighted to guide future studies of derivatization-based MS strategy in lipidomics.
Collapse
Affiliation(s)
- Dan Wang
- Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Key Laboratory of Oilseeds Processing of Ministry of Agriculture, Hubei Key Laboratory of Lipid Chemistry and Nutrition, Wuhan, Hubei, PR China
| | - Huaming Xiao
- Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Key Laboratory of Oilseeds Processing of Ministry of Agriculture, Hubei Key Laboratory of Lipid Chemistry and Nutrition, Wuhan, Hubei, PR China
| | - Xin Lv
- Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Key Laboratory of Oilseeds Processing of Ministry of Agriculture, Hubei Key Laboratory of Lipid Chemistry and Nutrition, Wuhan, Hubei, PR China
| | - Hong Chen
- Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Key Laboratory of Oilseeds Processing of Ministry of Agriculture, Hubei Key Laboratory of Lipid Chemistry and Nutrition, Wuhan, Hubei, PR China
| | - Fang Wei
- Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Key Laboratory of Oilseeds Processing of Ministry of Agriculture, Hubei Key Laboratory of Lipid Chemistry and Nutrition, Wuhan, Hubei, PR China
- Hubei Hongshan Laboratory, Wuhan, Hubei, PR China
| |
Collapse
|
10
|
Siemiątkowska A, Kagan L. New biological matrix - Full method validation: Exaggeration or necessity? A case study with tariquidar. J Chromatogr B Analyt Technol Biomed Life Sci 2023; 1228:123842. [PMID: 37524013 DOI: 10.1016/j.jchromb.2023.123842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 07/16/2023] [Accepted: 07/23/2023] [Indexed: 08/02/2023]
Affiliation(s)
- Anna Siemiątkowska
- Department of Pharmaceutics and Center of Excellence for Pharmaceutical Translational Research and Education, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, 160 Frelinghuysen Road, Piscataway, NJ 08854, USA; Department of Physical Pharmacy and Pharmacokinetics, Poznan University of Medical Sciences, 3 Rokietnicka Street, 60-806 Poznań, Poland.
| | - Leonid Kagan
- Department of Pharmaceutics and Center of Excellence for Pharmaceutical Translational Research and Education, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, 160 Frelinghuysen Road, Piscataway, NJ 08854, USA.
| |
Collapse
|
11
|
Dickson AL, Yutuc E, Thornton CA, Wang Y, Griffiths WJ. Identification of unusual oxysterols biosynthesised in human pregnancy by charge-tagging and liquid chromatography - mass spectrometry. Front Endocrinol (Lausanne) 2022; 13:1031013. [PMID: 36440193 PMCID: PMC9685423 DOI: 10.3389/fendo.2022.1031013] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 10/18/2022] [Indexed: 11/12/2022] Open
Abstract
The aim of this study was to identify oxysterols and any down-stream metabolites in placenta, umbilical cord blood plasma, maternal plasma and amniotic fluid to enhance our knowledge of the involvement of these molecules in pregnancy. We confirm the identification of 20S-hydroxycholesterol in human placenta, previously reported in a single publication, and propose a pathway from 22R-hydroxycholesterol to a C27 bile acid of probable structure 3β,20R,22R-trihydroxycholest-5-en-(25R)26-oic acid. The pathway is evident not only in placenta, but pathway intermediates are also found in umbilical cord plasma, maternal plasma and amniotic fluid but not non-pregnant women.
Collapse
|
12
|
Anschütz NH, Gerbig S, Ventura AMP, Silva LMR, Larrazabal C, Hermosilla C, Taubert A, Spengler B. Atmospheric-pressure scanning microprobe matrix-assisted laser desorption/ionization mass spectrometry imaging of Neospora caninum-infected cell monolayers. ANALYTICAL SCIENCE ADVANCES 2022; 3:244-254. [PMID: 38716083 PMCID: PMC10989629 DOI: 10.1002/ansa.202200016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 08/04/2022] [Accepted: 08/06/2022] [Indexed: 11/17/2024]
Abstract
Neospora caninum is an obligate intracellular protozoan parasite of the phylum Alveolata (subphylum Apicomplexa) which has not been studied extensively in a biochemical context. N. caninum is a primary cause of reproductive disorders causing mummification and abortion not only in cattle but also in other small ruminant species resulting in a substantial economic impact on the livestock industry. In canids, which are the final hosts of N. caninum, clinical disease includes neuromuscular symptoms, ataxia, and ascending paralysis. Fatal outcomes of neosporosis have also been reported depending on the host species, age and immune status, however, its zoonotic potential is still uncertain. Therefore, N. caninum should be thoroughly investigated. Matrix-assisted laser desorption/ionisation (MALDI) mass spectrometry (MS) and MS imaging (MSI) were used, combined with high-performance liquid chromatography (HPLC) to investigate these intracellular parasites. The aim of this study was to identify molecular biomarkers for N. caninum tachyzoite-infected host cells and to further clarify their functions. By atmospheric-pressure scanning microprobe MALDI MS(I), sections of N. caninum-infected and non-infected host cell pellets were examined in order to determine potential markers. In vivo, N. caninum infects different types of nucleated cells, such as endothelial cells which represent a highly immunoreactive cell type. Therefore, primary bovine umbilical vein endothelial cells were here used as a suitable infection system. For comparison, the permanent MARC-145 cell line was used as an additional, simplified in vitro cell culture model. HPLC-tandem MS (HPLC-MS/MS) experiments combined with database search were employed for structural verification of markers. The statistically relevant biomarkers found by MS and identified by HPLC-MS/MS measurements were partly also found in infected monolayers. Marker signals were imaged in cell layers of N. caninum-infected and non-infected host cells at 5 µm lateral resolution.
Collapse
Affiliation(s)
- Nils H. Anschütz
- Institute of Inorganic and Analytical ChemistryJustus Liebig University GiessenGiessenGermany
| | - Stefanie Gerbig
- Institute of Inorganic and Analytical ChemistryJustus Liebig University GiessenGiessenGermany
| | | | | | - Camilo Larrazabal
- Institute of ParasitologyJustus Liebig University GiessenGiessenGermany
| | - Carlos Hermosilla
- Institute of ParasitologyJustus Liebig University GiessenGiessenGermany
| | - Anja Taubert
- Institute of ParasitologyJustus Liebig University GiessenGiessenGermany
| | - Bernhard Spengler
- Institute of Inorganic and Analytical ChemistryJustus Liebig University GiessenGiessenGermany
| |
Collapse
|
13
|
Validation and application of hybridization liquid chromatography-tandem mass spectrometry methods for quantitative bioanalysis of antisense oligonucleotides. Bioanalysis 2022; 14:589-601. [PMID: 35545949 DOI: 10.4155/bio-2022-0015] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Background: Antisense oligonucleotide (ASO), an emerging modality in drug research and development, demands accurate and sensitive bioanalysis to understand its pharmacokinetic and pharmacodynamic properties. Results: By combining the advantages of both ligand binding and liquid chromatography-mass spectrometry/tandem mass (LC-MS/MS), hybridization LC-MS/MS methods were successfully developed and validated/qualified in a good lab practice (GLP) environment for the quantitation of an ASO drug candidate in monkey serum, cerebrospinal fluid (CSF) and tissues in the range of 0.5-500 ng/ml. Special treatment of CSF samples was employed to mitigate nonspecific binding, improve long-term storage stability and enable the usage of artificial CSF as a more accessible surrogate matrix. The method was also qualified and applied to ASO quantitation in various monkey tissue samples using a cocktail tissue homogenate as a surrogate matrix. Conclusion: This work was the first reported GLP validation and application of ASO bioanalysis using the hybridization LC-MS/MS platform.
Collapse
|
14
|
New Function of Cholesterol Oxidation Products Involved in Osteoporosis Pathogenesis. Int J Mol Sci 2022; 23:ijms23042020. [PMID: 35216140 PMCID: PMC8876989 DOI: 10.3390/ijms23042020] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 02/05/2022] [Accepted: 02/09/2022] [Indexed: 12/13/2022] Open
Abstract
Osteoporosis (OP) is a systemic bone disease characterized by decreased bone strength, microarchitectural changes in bone tissues, and increased risk of fracture. Its occurrence is closely related to various factors such as aging, genetic factors, living habits, and nutritional deficiencies as well as the disturbance of bone homeostasis. The dysregulation of bone metabolism is regarded as one of the key influencing factors causing OP. Cholesterol oxidation products (COPs) are important compounds in the maintenance of bone metabolic homeostasis by participating in several important biological processes such as the differentiation of mesenchymal stem cells, bone formation in osteoblasts, and bone resorption in osteoclasts. The effects of specific COPs on mesenchymal stem cells are mainly manifested by promoting osteoblast genesis and inhibiting adipocyte genesis. This review aims to elucidate the biological roles of COPs in OP development, starting from the molecular mechanisms of OP, pointing out opportunities and challenges in current research, and providing new ideas and perspectives for further studies of OP pathogenesis.
Collapse
|
15
|
Li W, Cang S, Sun Z, Bi K, Li Q, Li Z, Liu R. Development of an LC-MS/MS method for simultaneous quantitative analysis of macromolecular pharmaceutical adjuvant 2-hydroxypropyl-β-cyclodextrin and active pharmaceutical ingredients butylphthalide in rat plasma. J Sep Sci 2021; 44:2680-2692. [PMID: 33971083 DOI: 10.1002/jssc.202100141] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 04/25/2021] [Accepted: 04/27/2021] [Indexed: 12/15/2022]
Abstract
Hydroxypropyl-β-cyclodextrin, which possesses a high water solubility and low hemolycity, is widely used as a solubilizer and an excipient. It had also been reported that hydroxypropyl-β-cyclodextrin has the activity of regulating lipid homeostasis. In order to further understand the metabolism, the primary focus was to establish a quantitative method for hydroxypropyl-β-cyclodextrin. The analytes were extracted from plasma by protein precipitation with methanol and then carried out on a Waters CORTECS T3 column in the gradient elution of pure water and methanol. Finally, liquid chromatography-tandem mass spectrometry was applied in multiple reaction monitoring mode to complete the quantitative analysis of hydroxypropyl-β-cyclodextrin. This validated method had been successfully applied to investigate the interaction between hydroxypropyl-β-cyclodextrin and butylphthalide in vivo by optimizing the extraction reagent, simplifying the experimental procedure, and improving the sensitivity while considering the difference of drug chemical properties. Results showed that the inclusion of hydroxypropyl-β-cyclodextrin with butylphthalide significantly improved the pharmacokinetic behavior of free body hydroxypropyl-β-cyclodextrin and 3-n-butylphthalide in vivo. It had been implied that the metabolism of hydroxypropyl-β-cyclodextrin and the drug active ingredients could impact each other. It will help better application of hydroxypropyl-β-cyclodextrin and the developed method might lay the foundation for development of hydroxypropyl-β-cyclodextrin as a treatment drug for brain diseases.
Collapse
Affiliation(s)
- Wanjun Li
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, P. R. China
| | - Song Cang
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, P. R. China
| | - Zheng Sun
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, P. R. China
| | - Kaishun Bi
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, P. R. China
| | - Qing Li
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, P. R. China
| | - Zuojing Li
- School of Medical Devices, Shenyang Pharmaceutical University, Shenyang, P. R. China
| | - Ran Liu
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, P. R. China.,School of Applied Chemistry and Biological Technology, Shenzhen Polytechnic, Shenzhen, P. R. China
| |
Collapse
|
16
|
Konishi KI, Mizuochi T, Takei H, Yasuda R, Sakaguchi H, Ishihara J, Takaki Y, Kinoshita M, Hashizume N, Fukahori S, Shoji H, Miyano G, Yoshimaru K, Matsuura T, Sanada Y, Tainaka T, Uchida H, Kubo Y, Tanaka H, Sasaki H, Murai T, Fujishiro J, Yamashita Y, Nio M, Nittono H, Kimura A. A Japanese prospective multicenter study of urinary oxysterols in biliary atresia. Sci Rep 2021; 11:4986. [PMID: 33654186 PMCID: PMC7925559 DOI: 10.1038/s41598-021-84445-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Accepted: 01/19/2021] [Indexed: 01/09/2023] Open
Abstract
Diagnosis of biliary atresia (BA) can involve uncertainties. In the present prospective multicenter study, we considered whether urinary oxysterols represent a useful marker for diagnosis of BA in Japanese children. Subjects under 6 months old at 7 pediatric centers in Japan were prospectively enrolled, including patients with cholestasis and healthy controls (HC) without liver disease. Patients with cholestasis constituted 2 groups representing BA patients and others with cholestasis from other causes (non-BA). We quantitatively analyzed 7 oxysterols including 4β-, 20(S)-, 22(S)-, 22(R)-, 24(S)-, 25-, and 27-hydroxycholesterol by liquid chromatography/electrospray ionization-tandem mass spectrometry. Enrolled subjects included 14 with BA (median age 68 days; range 26-170) and 10 non-BA cholestatic controls (59; 14-162), as well as 10 HC (57; 25-120). Total urinary oxysterols were significantly greater in BA (median, 153.0 μmol/mol creatinine; range 24.1-486.7; P < 0.001) and non-BA (36.2; 5.8-411.3; P < 0.05) than in HC (2.7; 0.8-7.6). In patients with BA, urinary 27-hydroxycholesterol (3.61; 0.42-11.09; P < 0.01) was significantly greater than in non-BA (0.71; 0-5.62). In receiver operating characteristic (ROC) curve analysis for distinguishing BA from non-BA, the area under the ROC curve for urinary 27-hydroxycholesterol was 0.83. In conclusion, this first report of urinary oxysterol analysis in patients with BA indicated that 27-hydroxycholesterol may be a useful marker for distinguishing BA from other causes of neonatal cholestasis.
Collapse
Affiliation(s)
- Ken-Ichiro Konishi
- Department of Pediatrics and Child Health, Kurume University School of Medicine, 67 Asahi-machi, Kurume, 8300011, Japan
- Department of Pediatric Surgery, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Tatsuki Mizuochi
- Department of Pediatrics and Child Health, Kurume University School of Medicine, 67 Asahi-machi, Kurume, 8300011, Japan.
| | - Hajime Takei
- Junshin Clinic Bile Acid Institute, Tokyo, Japan
| | - Ryosuke Yasuda
- Department of Pediatrics and Child Health, Kurume University School of Medicine, 67 Asahi-machi, Kurume, 8300011, Japan
| | - Hirotaka Sakaguchi
- Department of Pediatrics and Child Health, Kurume University School of Medicine, 67 Asahi-machi, Kurume, 8300011, Japan
| | - Jun Ishihara
- Department of Pediatrics and Child Health, Kurume University School of Medicine, 67 Asahi-machi, Kurume, 8300011, Japan
| | - Yugo Takaki
- Department of Pediatrics and Child Health, Kurume University School of Medicine, 67 Asahi-machi, Kurume, 8300011, Japan
| | - Masahiro Kinoshita
- Department of Pediatrics and Child Health, Kurume University School of Medicine, 67 Asahi-machi, Kurume, 8300011, Japan
| | - Naoki Hashizume
- Department of Pediatric Surgery, Kurume University School of Medicine, Kurume, Japan
| | - Suguru Fukahori
- Department of Pediatric Surgery, Kurume University School of Medicine, Kurume, Japan
| | - Hiromichi Shoji
- Department of Pediatrics, Juntendo University School of Medicine, Tokyo, Japan
| | - Go Miyano
- Department of Pediatric General and Urogenital Surgery, Juntendo University School of Medicine, Tokyo, Japan
| | - Koichiro Yoshimaru
- Department of Pediatric Surgery, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Toshiharu Matsuura
- Department of Pediatric Surgery, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yukihiro Sanada
- Department of Surgery, Division of Gastroenterological, General and Transplant Surgery, Jichi Medical University, Shimotsuke, Japan
| | - Takahisa Tainaka
- Department of Pediatric Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Hiroo Uchida
- Department of Pediatric Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yumiko Kubo
- Department of Pediatric Surgery, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Hiromu Tanaka
- Department of Pediatric Surgery, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Hideyuki Sasaki
- Department of Pediatric Surgery, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Tsuyoshi Murai
- School of Pharmaceutical Sciences, Health Sciences University of Hokkaido, Hokkaido, Japan
| | - Jun Fujishiro
- Department of Pediatric Surgery, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Yushiro Yamashita
- Department of Pediatrics and Child Health, Kurume University School of Medicine, 67 Asahi-machi, Kurume, 8300011, Japan
| | - Masaki Nio
- Department of Pediatric Surgery, Tohoku University Graduate School of Medicine, Sendai, Japan
| | | | - Akihiko Kimura
- Department of Pediatrics and Child Health, Kurume University School of Medicine, 67 Asahi-machi, Kurume, 8300011, Japan
| |
Collapse
|
17
|
Yutuc E, Dickson AL, Pacciarini M, Griffiths L, Baker PRS, Connell L, Öhman A, Forsgren L, Trupp M, Vilarinho S, Khalil Y, Clayton PT, Sari S, Dalgic B, Höflinger P, Schöls L, Griffiths WJ, Wang Y. Deep mining of oxysterols and cholestenoic acids in human plasma and cerebrospinal fluid: Quantification using isotope dilution mass spectrometry. Anal Chim Acta 2021; 1154:338259. [PMID: 33736801 PMCID: PMC7988461 DOI: 10.1016/j.aca.2021.338259] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 01/25/2021] [Indexed: 01/01/2023]
Abstract
Both plasma and cerebrospinal fluid (CSF) are rich in cholesterol and its metabolites. Here we describe in detail a methodology for the identification and quantification of multiple sterols including oxysterols and sterol-acids found in these fluids. The method is translatable to any laboratory with access to liquid chromatography – tandem mass spectrometry. The method exploits isotope-dilution mass spectrometry for absolute quantification of target metabolites. The method is applicable for semi-quantification of other sterols for which isotope labelled surrogates are not available and approximate quantification of partially identified sterols. Values are reported for non-esterified sterols in the absence of saponification and total sterols following saponification. In this way absolute quantification data is reported for 17 sterols in the NIST SRM 1950 plasma along with semi-quantitative data for 8 additional sterols and approximate quantification for one further sterol. In a pooled (CSF) sample used for internal quality control, absolute quantification was performed on 10 sterols, semi-quantification on 9 sterols and approximate quantification on a further three partially identified sterols. The value of the method is illustrated by confirming the sterol phenotype of a patient suffering from ACOX2 deficiency, a rare disorder of bile acid biosynthesis, and in a plasma sample from a patient suffering from cerebrotendinous xanthomatosis, where cholesterol 27-hydroxylase is deficient. Absolute quantification of oxysterols and cholestenoic acids. Methodology applicable to plasma and cerebrospinal fluid. Data generated for non-esterified and total sterols. Diastereoisomers at C-24 and C-25 separated and quantified.
Collapse
Affiliation(s)
- Eylan Yutuc
- Swansea University Medical School, ILS1 Building, Singleton Park, Swansea, SA2 8PP, Wales, UK
| | - Alison L Dickson
- Swansea University Medical School, ILS1 Building, Singleton Park, Swansea, SA2 8PP, Wales, UK
| | - Manuela Pacciarini
- Swansea University Medical School, ILS1 Building, Singleton Park, Swansea, SA2 8PP, Wales, UK
| | - Lauren Griffiths
- Swansea University Medical School, ILS1 Building, Singleton Park, Swansea, SA2 8PP, Wales, UK
| | | | | | - Anders Öhman
- Department of Integrative Medical Biology, Umeå University, SE-901 87, Umeå, Sweden
| | - Lars Forsgren
- Department of Clinical Science, Neurosciences, Umeå University, SE-901 85, Umeå, Sweden
| | - Miles Trupp
- Department of Clinical Science, Neurosciences, Umeå University, SE-901 85, Umeå, Sweden
| | - Sílvia Vilarinho
- Departments of Internal Medicine, Section of Digestive Diseases, and of Pathology, Yale University School of Medicine, New Haven, CT, USA
| | - Youssef Khalil
- Inborn Errors of Metabolism, Genetics and Genomic Medicine, UCL Great Ormond Street Institute of Child Health, 30 Guilford Street, London, WC1N 1EH, UK
| | - Peter T Clayton
- Inborn Errors of Metabolism, Genetics and Genomic Medicine, UCL Great Ormond Street Institute of Child Health, 30 Guilford Street, London, WC1N 1EH, UK
| | - Sinan Sari
- Department of Pediatrics, Division of Gastroenterology, Gazi University Faculty of Medicine, Ankara, Turkey
| | - Buket Dalgic
- Department of Pediatrics, Division of Gastroenterology, Gazi University Faculty of Medicine, Ankara, Turkey
| | - Philip Höflinger
- Department of Neurology and Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - Ludger Schöls
- Department of Neurology and Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany; German Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany
| | - William J Griffiths
- Swansea University Medical School, ILS1 Building, Singleton Park, Swansea, SA2 8PP, Wales, UK.
| | - Yuqin Wang
- Swansea University Medical School, ILS1 Building, Singleton Park, Swansea, SA2 8PP, Wales, UK
| |
Collapse
|
18
|
Abdulaziz Abbod Abdo A, Zhang C, Lin Y, Liang X, Kaddour B, Wu Q, Li X, Fan G, Yang R, Teng C, Xu Y, Li W. Xylo-oligosaccharides ameliorate high cholesterol diet induced hypercholesterolemia and modulate sterol excretion and gut microbiota in hamsters. J Funct Foods 2021. [DOI: 10.1016/j.jff.2020.104334] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
|
19
|
Wang Y, Yutuc E, Griffiths WJ. Cholesterol metabolism pathways - are the intermediates more important than the products? FEBS J 2021; 288:3727-3745. [PMID: 33506652 PMCID: PMC8653896 DOI: 10.1111/febs.15727] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 01/04/2021] [Accepted: 01/25/2021] [Indexed: 12/25/2022]
Abstract
Every cell in vertebrates possesses the machinery to synthesise cholesterol and to metabolise it. The major route of cholesterol metabolism is conversion to bile acids. Bile acids themselves are interesting molecules being ligands to nuclear and G protein‐coupled receptors, but perhaps the intermediates in the bile acid biosynthesis pathways are even more interesting and equally important. Here, we discuss the biological activity of the different intermediates generated in the various bile acid biosynthesis pathways. We put forward the hypothesis that the acidic pathway of bile acid biosynthesis has primary evolved to generate signalling molecules and its utilisation by hepatocytes provides an added bonus of producing bile acids to aid absorption of lipids in the intestine.
Collapse
|
20
|
Wang Y, Yutuc E, Griffiths WJ. Standardizing and increasing the utility of lipidomics: a look to the next decade. Expert Rev Proteomics 2020; 17:699-717. [PMID: 33191815 DOI: 10.1080/14789450.2020.1847086] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Introduction: We present our views on the current application of mass spectrometry (MS) based lipidomics and how lipidomics can develop in the next decade to be most practical use to society. That is not to say that lipidomics has not already been of value. In-fact, in its earlier guise as metabolite profiling most of the pathways of steroid biosynthesis were uncovered and via focused lipidomics many inborn errors of metabolism are routinely clinically identified. However, can lipidomics be extended to improve biochemical understanding of, and to diagnose, the most prevalent diseases of the 21st century? Areas covered: We will highlight the concept of 'level of identification' and the equally crucial topic of 'quantification'. Only by using a standardized language for these terms can lipidomics be translated to fields beyond academia. We will remind the lipid scientist of the value of chemical derivatization, a concept exploited since the dawn of lipid biochemistry. Expert opinion: Only by agreement of the concepts of identification and quantification and their incorporation in lipidomics reporting can lipidomics maximize its value.
Collapse
Affiliation(s)
- Yuqin Wang
- Swansea University Medical School , Swansea, Wales, UK
| | - Eylan Yutuc
- Swansea University Medical School , Swansea, Wales, UK
| | | |
Collapse
|
21
|
Gowrishankar S, Cologna SM, Givogri MI, Bongarzone ER. Deregulation of signalling in genetic conditions affecting the lysosomal metabolism of cholesterol and galactosyl-sphingolipids. Neurobiol Dis 2020; 146:105142. [PMID: 33080336 PMCID: PMC8862610 DOI: 10.1016/j.nbd.2020.105142] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 09/04/2020] [Accepted: 10/14/2020] [Indexed: 12/15/2022] Open
Abstract
The role of lipids in neuroglial function is gaining momentum in part due to a better understanding of how many lipid species contribute to key cellular signalling pathways at the membrane level. The description of lipid rafts as membrane domains composed by defined classes of lipids such as cholesterol and sphingolipids has greatly helped in our understanding of how cellular signalling can be regulated and compartmentalized in neurons and glial cells. Genetic conditions affecting the metabolism of these lipids greatly impact on how some of these signalling pathways work, providing a context to understand the biological function of the lipid. Expectedly, abnormal metabolism of several lipids such as cholesterol and galactosyl-sphingolipids observed in several metabolic conditions involving lysosomal dysfunction are often accompanied by neuronal and myelin dysfunction. This review will discuss the role of lysosomal biology in the context of deficiencies in the metabolism of cholesterol and galactosyl-sphingolipids and their impact on neural function in three genetic disorders: Niemann-Pick type C, Metachromatic leukodystrophy and Krabbe's disease.
Collapse
Affiliation(s)
- S Gowrishankar
- Department of Anatomy and Cell Biology, University of Illinois, Chicago, IL, USA.
| | - S M Cologna
- Department of Chemistry, University of Illinois, Chicago, IL, USA.
| | - M I Givogri
- Department of Anatomy and Cell Biology, University of Illinois, Chicago, IL, USA.
| | - E R Bongarzone
- Department of Anatomy and Cell Biology, University of Illinois, Chicago, IL, USA.
| |
Collapse
|
22
|
Kakiyama G, Marques D, Martin R, Takei H, Rodriguez-Agudo D, LaSalle SA, Hashiguchi T, Liu X, Green R, Erickson S, Gil G, Fuchs M, Suzuki M, Murai T, Nittono H, Hylemon PB, Zhou H, Pandak WM. Insulin resistance dysregulates CYP7B1 leading to oxysterol accumulation: a pathway for NAFL to NASH transition. J Lipid Res 2020; 61:1629-1644. [PMID: 33008924 PMCID: PMC7707165 DOI: 10.1194/jlr.ra120000924] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
NAFLD is an important public health issue closely associated with the pervasive epidemics of diabetes and obesity. Yet, despite NAFLD being among the most common of chronic liver diseases, the biological factors responsible for its transition from benign nonalcoholic fatty liver (NAFL) to NASH remain unclear. This lack of knowledge leads to a decreased ability to find relevant animal models, predict disease progression, or develop clinical treatments. In the current study, we used multiple mouse models of NAFLD, human correlation data, and selective gene overexpression of steroidogenic acute regulatory protein (StarD1) in mice to elucidate a plausible mechanistic pathway for promoting the transition from NAFL to NASH. We show that oxysterol 7α-hydroxylase (CYP7B1) controls the levels of intracellular regulatory oxysterols generated by the "acidic/alternative" pathway of cholesterol metabolism. Specifically, we report data showing that an inability to upregulate CYP7B1, in the setting of insulin resistance, results in the accumulation of toxic intracellular cholesterol metabolites that promote inflammation and hepatocyte injury. This metabolic pathway, initiated and exacerbated by insulin resistance, offers insight into approaches for the treatment of NAFLD.
Collapse
Affiliation(s)
- Genta Kakiyama
- Department of Internal Medicine, Virginia Commonwealth University, Richmond, VA, USA; Department of Veterans Affairs, McGuire Veterans Administration Medical Center, Richmond, VA, USA.
| | - Dalila Marques
- Department of Internal Medicine, Virginia Commonwealth University, Richmond, VA, USA; Department of Veterans Affairs, McGuire Veterans Administration Medical Center, Richmond, VA, USA
| | - Rebecca Martin
- Department of Microbiology and Immunology, Virginia Commonwealth University, Richmond, VA, USA
| | - Hajime Takei
- Junshin Clinic Bile Acid Institute, Tokyo, Japan
| | - Daniel Rodriguez-Agudo
- Department of Internal Medicine, Virginia Commonwealth University, Richmond, VA, USA; Department of Veterans Affairs, McGuire Veterans Administration Medical Center, Richmond, VA, USA
| | - Sandra A LaSalle
- Department of Veterans Affairs, McGuire Veterans Administration Medical Center, Richmond, VA, USA
| | | | - Xiaoying Liu
- Department of Medicine, Northwestern University, Chicago, IL, USA
| | - Richard Green
- Department of Medicine, Northwestern University, Chicago, IL, USA
| | - Sandra Erickson
- School of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Gregorio Gil
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, VA, USA; Massey Cancer Center, Virginia Commonwealth University, Richmond, VA, USA
| | - Michael Fuchs
- Department of Internal Medicine, Virginia Commonwealth University, Richmond, VA, USA; Department of Veterans Affairs, McGuire Veterans Administration Medical Center, Richmond, VA, USA
| | - Mitsuyoshi Suzuki
- Department of Pediatrics, Juntendo University Faculty of Medicine, Tokyo, Japan
| | - Tsuyoshi Murai
- School of Pharmaceutical Sciences, Health Sciences University of Hokkaido, Hokkaido, Japan
| | | | - Phillip B Hylemon
- Department of Veterans Affairs, McGuire Veterans Administration Medical Center, Richmond, VA, USA; Department of Microbiology and Immunology, Virginia Commonwealth University, Richmond, VA, USA; Massey Cancer Center, Virginia Commonwealth University, Richmond, VA, USA
| | - Huiping Zhou
- Department of Veterans Affairs, McGuire Veterans Administration Medical Center, Richmond, VA, USA; Department of Microbiology and Immunology, Virginia Commonwealth University, Richmond, VA, USA; Massey Cancer Center, Virginia Commonwealth University, Richmond, VA, USA
| | - William M Pandak
- Department of Internal Medicine, Virginia Commonwealth University, Richmond, VA, USA; Department of Veterans Affairs, McGuire Veterans Administration Medical Center, Richmond, VA, USA; Massey Cancer Center, Virginia Commonwealth University, Richmond, VA, USA
| |
Collapse
|
23
|
Sodero AO. 24S-hydroxycholesterol: Cellular effects and variations in brain diseases. J Neurochem 2020; 157:899-918. [PMID: 33118626 DOI: 10.1111/jnc.15228] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 10/13/2020] [Accepted: 10/17/2020] [Indexed: 12/12/2022]
Abstract
The adult brain exhibits a characteristic cholesterol homeostasis, with low synthesis rate and active catabolism. Brain cholesterol turnover is possible thanks to the action of the enzyme cytochrome P450 46A1 (CYP46A1) or 24-cholesterol hydroxylase, that transforms cholesterol into 24S-hydroxycholesterol (24S-HC). But before crossing the blood-brain barrier (BBB), this oxysterol, that is the most abundant in the brain, can act locally, affecting the functioning of neurons, astrocytes, oligodendrocytes, and vascular cells. The first part of this review addresses different aspects of 24S-HC production and elimination from the brain. The second part concentrates in the effects of 24S-HC at the cellular level, describing how this oxysterol affects cell viability, amyloid β production, neurotransmission, and transcriptional activity. Finally, the role of 24S-HC in Alzheimer, Huntington and Parkinson diseases, multiple sclerosis and amyotrophic lateral sclerosis, as well as the possibility of using this oxysterol as predictive and/or evolution biomarker in different brain disorders is discussed.
Collapse
Affiliation(s)
- Alejandro O Sodero
- Institute of Biomedical Research (BIOMED), Pontifical Catholic University of Argentina (UCA) and National Scientific and Technical Research Council (CONICET), Buenos Aires, Argentina
| |
Collapse
|
24
|
Ruthirakuhan M, Herrmann N, Andreazza AC, Verhoeff NPLG, Gallagher D, Black SE, Kiss A, Lanctôt KL. 24S-Hydroxycholesterol Is Associated with Agitation Severity in Patients with Moderate-to-Severe Alzheimer's Disease: Analyses from a Clinical Trial with Nabilone. J Alzheimers Dis 2020; 71:21-31. [PMID: 31322567 PMCID: PMC6839471 DOI: 10.3233/jad-190202] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Background: Agitation is a prevalent and difficult-to-treat symptom of Alzheimer’s disease (AD). The endocannabinoid system (ECS) has been a target of interest for the treatment of agitation. However, ECS signaling may interact with AD-related changes in brain cholesterol metabolism. Elevated brain cholesterol, reflected by reduced serum 24-S-hydroxycholesterol (24S-OHC), is associated with reduced membrane fluidity, preventing ligand binding to cannabinoid receptor 1. Objective: To assess whether 24S-OHC was associated with agitation severity and response to nabilone. Methods: 24S-OHC was collected from AD patients enrolled in a clinical trial on nabilone at the start and end of each phase. This allowed for the cross-sectional and longitudinal investigation between 24S-OHC and agitation (Cohen Mansfield Agitation Inventory, CMAI). Post-hoc analyses included adjustments for baseline standardized Mini-Mental Status Exam (sMMSE), and analyses with CMAI subtotals consistent with the International Psychogeriatric Association (IPA) definition for agitation (physical aggression and nonaggression, and verbal aggression). Results: 24S-OHC was not associated with CMAI scores cross-sectionally or longitudinally, before and after adjusting for baseline sMMSE. However, 24S-OHC was associated with greater CMAI IPA scores at baseline (F(1,36) = 4.95, p = 0.03). In the placebo phase only, lower 24S-OHC at baseline was associated with increases in CMAI IPA scores (b = –35.2, 95% CI –65.6 to –5.0, p = 0.02), and decreases in 24S-OHC were associated with increases in CMAI IPA scores (b = –20.94, 95% CI –57.9 to –4.01, p = 0.03). Conclusion: 24S-OHC was associated with agitation severity cross-sectionally, and longitudinally in patients with AD. However, 24S-OHC did not predict treatment response, and does not change over time with nabilone.
Collapse
Affiliation(s)
- Myuri Ruthirakuhan
- Hurvitz Brain Sciences Program, Sunnybrook Research Institute, Toronto, Ontario, Canada.,Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada
| | - Nathan Herrmann
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada.,Department of Psychiatry, Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada
| | - Ana C Andreazza
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada
| | | | - Damien Gallagher
- Hurvitz Brain Sciences Program, Sunnybrook Research Institute, Toronto, Ontario, Canada
| | - Sandra E Black
- Hurvitz Brain Sciences Program, Sunnybrook Research Institute, Toronto, Ontario, Canada.,Department of Medicine (Neurology), University of Toronto and Sunnybrook HSC, Toronto, ON, Canada
| | - Alex Kiss
- Hurvitz Brain Sciences Program, Sunnybrook Research Institute, Toronto, Ontario, Canada.,Department of Research Design and Biostatistics, Sunnybrook Research Institute, Toronto, ON, Canada
| | - Krista L Lanctôt
- Hurvitz Brain Sciences Program, Sunnybrook Research Institute, Toronto, Ontario, Canada.,Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada.,Department of Psychiatry, Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada
| |
Collapse
|
25
|
Quantitation of uridine and L-dihydroorotic acid in human plasma by LC-MS/MS using a surrogate matrix approach. J Pharm Biomed Anal 2020; 192:113669. [PMID: 33120310 DOI: 10.1016/j.jpba.2020.113669] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 09/29/2020] [Accepted: 09/30/2020] [Indexed: 11/22/2022]
Abstract
Uridine and L-dihydroorotate (DHO) are important intermediates of de novo as well as salvage pathways for the biosynthesis of pyrimidines, which are the building blocks of nucleic acids - DNA and RNA. These metabolites are known to be significant biomarkers of pyrimidine synthesis during the development of DHODH inhibitor drugs for treatment of several cancers and immunological disorders. Here we are reporting a validated LC-MS/MS assay for the quantitation of uridine and DHO in K2EDTA human plasma. Due to presence of endogenous uridine and DHO in the biological matrix, a surrogate matrix approach with bovine serum albumin (BSA) solution was used. Human plasma samples were spiked with stable isotope labeled internal standards, processed by protein precipitation, and analyzed using LC-MS/MS. Parallelism was successfully demonstrated between human plasma (the authentic matrix) and BSA (the surrogate matrix). The linear analytical ranges of the assay were set at 30.0-30,000 ng/mL for uridine and 3.00-3,000 ng/mL for DHO. This validated LC-MS/MS method demonstrated excellent accuracy and precision. The overall accuracy was between 91.9 % and 106 %, and the inter-assay precision (%CV) were less than 4.2 % for uridine in human plasma. The overall accuracy was between 92.8 % and 106 %, and the inter-assay precision (%CV) were less than 7.2 % for DHO in human plasma. Uridine and DHO were found to be stable in human plasma for at least 24 h at room temperature, 579 days when stored at -20 °C, 334 days when stored at -70 °C, and after five freeze/thaw cycles. The assay has been successfully applied to human plasma samples to support clinical studies. Novel Aspect: A surrogate matrix approach to quantify endogenous uridine and DHO concentrations in human plasma.
Collapse
|
26
|
Borah K, Rickman OJ, Voutsina N, Ampong I, Gao D, Baple EL, Dias IH, Crosby AH, Griffiths HR. A quantitative LC-MS/MS method for analysis of mitochondrial -specific oxysterol metabolism. Redox Biol 2020; 36:101595. [PMID: 32574926 PMCID: PMC7317222 DOI: 10.1016/j.redox.2020.101595] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Revised: 05/15/2020] [Accepted: 05/22/2020] [Indexed: 02/07/2023] Open
Abstract
Oxysterols are critical regulators of inflammation and cholesterol metabolism in cells. They are oxidation products of cholesterol and may be differentially metabolised in subcellular compartments and in biological fluids. New analytical methods are needed to improve our understanding of oxysterol trafficking and the molecular interplay between the cellular compartments required to maintain cholesterol/oxysterol homeostasis. Here we describe a method for isolation of oxysterols using solid phase extraction and quantification by liquid chromatography-mass spectrometry, applied to tissue, cells and mitochondria. We analysed five monohydroxysterols; 24(S)-hydroxycholesterol, 25-hydroxycholesterol, 27-hydroxycholesterol, 7α-hydroxycholesterol, 7 ketocholesterol and three dihydroxysterols 7α-24(S)dihydroxycholesterol, 7α-25dihydroxycholesterol, 7α-27dihydroxycholesterol by LC-MS/MS following reverse phase chromatography. Our new method, using Triton and DMSO extraction, shows improved extraction efficiency and recovery of oxysterols from cellular matrix. We validated our method by reproducibly measuring oxysterols in mouse brain tissue and showed that mice fed a high fat diet had significantly lower levels of 24S/25diOHC, 27diOHC and 7ketoOHC. We measured oxysterols in mitochondria from peripheral blood mononuclear cells and highlight the importance of rapid cell isolation to minimise effects of handling and storage conditions on oxysterol composition in clinical samples. In addition, in vitro cell culture systems, of THP-1 monocytes and neuronal-like SH-SH5Y cells, showed mitochondrial-specific oxysterol metabolism and profiles were lineage specific. In summary, we describe a robust and reproducible method validated for improved recovery, quantitative linearity and detection, reproducibility and selectivity for cellular oxysterol analysis. This method enables subcellular oxysterol metabolism to be monitored and is versatile in its application to various biological and clinical samples.
Collapse
Affiliation(s)
- Khushboo Borah
- Department of Nutrition, Faculty of Health and Medical Sciences, University of Surrey, Guildford, GU2 7XH, UK
| | - Olivia J Rickman
- University of Exeter Medical School, RILD Building, RD&E Hospital Wonford, Barrack Road, Exeter, EX2 5DW, UK
| | - Nikol Voutsina
- University of Exeter Medical School, RILD Building, RD&E Hospital Wonford, Barrack Road, Exeter, EX2 5DW, UK
| | - Isaac Ampong
- Department of Nutrition, Faculty of Health and Medical Sciences, University of Surrey, Guildford, GU2 7XH, UK
| | - Dan Gao
- Department of Human Anatomy,Histology and Embryology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, China
| | - Emma L Baple
- University of Exeter Medical School, RILD Building, RD&E Hospital Wonford, Barrack Road, Exeter, EX2 5DW, UK
| | | | - Andrew H Crosby
- University of Exeter Medical School, RILD Building, RD&E Hospital Wonford, Barrack Road, Exeter, EX2 5DW, UK
| | - Helen R Griffiths
- Department of Nutrition, Faculty of Health and Medical Sciences, University of Surrey, Guildford, GU2 7XH, UK.
| |
Collapse
|
27
|
Wang Y, Yutuc E, Griffiths WJ. Neuro-oxysterols and neuro-sterols as ligands to nuclear receptors, GPCRs, ligand-gated ion channels and other protein receptors. Br J Pharmacol 2020; 178:3176-3193. [PMID: 32621622 DOI: 10.1111/bph.15191] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 06/16/2020] [Accepted: 06/21/2020] [Indexed: 12/13/2022] Open
Abstract
The brain is the most cholesterol rich organ in the body containing about 25% of the body's free cholesterol. Cholesterol cannot pass the blood-brain barrier and be imported or exported; instead, it is synthesised in situ and metabolised to oxysterols, oxidised forms of cholesterol, which can pass the blood-brain barrier. 24S-Hydroxycholesterol is the dominant oxysterol in the brain after parturition, but during development, a myriad of other oxysterols are produced, which persist as minor oxysterols after birth. During both development and in later life, sterols and oxysterols interact with a variety of different receptors, including nuclear receptors, membrane bound GPCRs, the oxysterol/sterol sensing proteins INSIG and SCAP, and the ligand-gated ion channel NMDA receptors found in nerve cells. In this review, we summarise the different oxysterols and sterols found in the CNS whose biological activity is transmitted via these different classes of protein receptors. LINKED ARTICLES: This article is part of a themed issue on Oxysterols, Lifelong Health and Therapeutics. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v178.16/issuetoc.
Collapse
Affiliation(s)
- Yuqin Wang
- Swansea University Medical School, Swansea, UK
| | - Eylan Yutuc
- Swansea University Medical School, Swansea, UK
| | | |
Collapse
|
28
|
Quantitation of 2-hydroxyglutarate in human plasma via LC–MS/MS using a surrogate analyte approach. Bioanalysis 2020; 12:1149-1159. [DOI: 10.4155/bio-2020-0131] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Aim: 2-Hydroxyglutarate (2-HG) is a target engagement biomarker in patients after treatment with inhibitors of mutated isocitrate dehydrogenase (mIDH). Accurate measurement of 2-HG is critical for monitoring the inhibition effectiveness of the inhibitors. Materials & methods: Human plasma samples were spiked with stable isotope labelled internal standard, processed by protein precipitation, and analyzed using LC–MS/MS. This method was validated following regulatory guidance and has been successfully applied in a clinical study for mIDH inhibition. Results: An LC–MS/MS method with a surrogate analyte approach was developed and validated to measure 2-HG in human plasma with acceptable intra- and inter-assay accuracy and precision. Conclusion: A sensitive and robust LC–MS/MS method was developed and validated for measuring 2-HG in human plasma.
Collapse
|
29
|
Novel biomarkers for lysosomal storage disorders: Metabolomic and proteomic approaches. Clin Chim Acta 2020; 509:195-209. [PMID: 32561345 DOI: 10.1016/j.cca.2020.06.028] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 06/13/2020] [Accepted: 06/15/2020] [Indexed: 12/20/2022]
Abstract
Lysosomal storage disorders (LSDs) are characterized by the accumulation of specific disease substrates inside the lysosomes of various cells, eventually leading to the deterioration of cellular function and multisystem organ damage. With the continuous discovery and validation of novel and advanced therapies for most LSDs, there is an urgent need to discover more versatile and clinically relevant biomarkers. The utility of these biomarkers should ideally extend beyond the screening and diagnosis of LSDs to the evaluation of disease severity and monitoring of therapy. Metabolomic and proteomic approaches provide the means to the discovery and validation of such novel biomarkers. This is achieved mainly through the application of various mass spectrometric techniques to common and easily accessible biological samples, such as plasma, urine and dried blood spots. In this review, we tried to summarize the complexity of the lysosomal disorders phenotypes, their current diagnostic and therapeutic approaches, the various techniques supporting metabolomic and proteomic studies and finally we tried to explore the newly discovered biomarkers for most LSDs and their reported clinical values.
Collapse
|
30
|
Urinary and serum oxysterols in children: developmental pattern and potential biomarker for pediatric liver disease. Sci Rep 2020; 10:6752. [PMID: 32317688 PMCID: PMC7174363 DOI: 10.1038/s41598-020-63758-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Accepted: 04/06/2020] [Indexed: 01/13/2023] Open
Abstract
Few reports describe oxysterols in healthy children or in children with liver disease. We aimed to determine whether developmental changes in urinary and serum oxysterols occur during childhood, and to assess whether oxysterols might be biomarkers for pediatric liver disease. Healthy children enrolled as subjects (36 and 35 for urine and serum analysis, respectively) included neonates, infants, preschoolers, and school-age children, studied along with 14 healthy adults and 8 children with liver disease. We quantitated 7 oxysterols including 4β-, 20(S)-, 22(S)-, 22(R)-, 24(S)-, 25-, and 27-hydroxycholesterol using liquid chromatography/electrospray ionization-tandem mass spectrometry. Urinary total oxysterols were significantly greater in neonates than in infants (P < 0.05), preschoolers (P < 0.001), school-age children (P < 0.001), or adults (P < 0.001), declining with age. Serum total oxysterols in neonates were significantly lower than in infants (P < 0.05), preschoolers (P < 0.001), school-age children (P < 0.05), or adults (P < 0.01). Compared with healthy children, total oxysterols and 24(S)-hydroxycholesterol in liver disease were significantly increased in both urine (P < 0.001 and P < 0.001, respectively) and serum (P < 0.001 and P < 0.05, respectively). Oxysterols in liver disease, particularly 24(S)-hydroxycholesterol, were greater in urine than serum. Oxysterols change developmentally and might serve as a biomarker for pediatric liver disease. To our knowledge, this is the first such report.
Collapse
|
31
|
Metabolomic Studies of Lipid Storage Disorders, with Special Reference to Niemann-Pick Type C Disease: A Critical Review with Future Perspectives. Int J Mol Sci 2020; 21:ijms21072533. [PMID: 32260582 PMCID: PMC7178094 DOI: 10.3390/ijms21072533] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 03/27/2020] [Accepted: 04/01/2020] [Indexed: 01/18/2023] Open
Abstract
Lysosomal storage disorders (LSDs) are predominantly very rare recessive autosomal neurodegenerative diseases.Sphingolipidoses, a sub-group of LSDs, result from defects in lysosomal enzymes involved in sphingolipid catabolism, and feature disrupted storage systems which trigger complex pathogenic cascades with other organelles collaterally affected. This process leads to cell dysfunction and death, particularly in the central nervous system. One valuable approach to gaining insights into the global impact of lysosomal dysfunction is through metabolomics, which represents a discovery tool for investigating disease-induced modifications in the patterns of large numbers of simultaneously-analysed metabolites, which also features the identification of biomarkers Here, the scope and applications of metabolomics strategies to the investigation of sphingolipidoses is explored in order to facilitate our understanding of the biomolecular basis of these conditions. This review therefore surveys the benefits of applying ’state-of-the-art’ metabolomics strategies, both univariate and multivariate, to sphingolipidoses, particularly Niemann-Pick type C disease. Relevant limitations of these techniques are also discussed, along with the latest advances and developments. We conclude that metabolomics strategies are highly valuable, distinctive bioanalytical techniques for probing LSDs, most especially for the detection and validation of potential biomarkers. They also show much promise for monitoring disease progression and the evaluation of therapeutic strategies and targets.
Collapse
|
32
|
Yin F, Keller J, Kraus D, Mangus H, Li F, Liu G. A double surrogate approach for the quantitation of 2-Hydroxyglutarate – An oncometabolite in human brain tumors via LC-MS/MS. J Pharm Biomed Anal 2020; 179:112916. [DOI: 10.1016/j.jpba.2019.112916] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 09/11/2019] [Accepted: 10/05/2019] [Indexed: 10/25/2022]
|
33
|
Standard-flow LC and thermal focusing ESI elucidates altered liver proteins in late stage Niemann-Pick, type C1 disease. Bioanalysis 2019; 11:1067-1083. [PMID: 31251104 PMCID: PMC9933893 DOI: 10.4155/bio-2018-0232] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Aim: Mass spectrometry (MS)-based proteomics, particularly with the development of nano-ESI, have been invaluable to our understanding of altered proteins related to human disease. Niemann-Pick, type C1 (NPC1) disease is a fatal, autosomal recessive, neurodegenerative disorder. The resulting defects include unesterified cholesterol and sphingolipids accumulation in the late endosomal/lysosomal system resulting in organ dysfunction including liver disease. Materials & methods: First, we performed MS analysis of a complex mammalian proteome using both nano- and standard-flow ESI with the intent of developing a differential proteomics platform using standard-flow ESI. Next, we measured the differential liver proteome in the NPC1 mouse model via label-free quantitative MS using standard-flow ESI. Results: Using the standard-flow ESI approach, we found altered protein levels including, increased Limp2 and Rab7a in liver tissue of Npc1-/- compared to control mice. Conclusion: Standard-flow ESI can be a tool for quantitative proteomic studies when sample amount is not limited. Using this method, we have identified new protein markers of NPC1.
Collapse
|
34
|
Stable isotope labeling derivatization coupled with magnetic dispersive solid phase extraction for the determination of hydroxyl-containing cholesterol and metabolites by in vivo microdialysis and ultra-high performance liquid chromatography tandem mass spectrometry. J Chromatogr A 2019; 1594:23-33. [DOI: 10.1016/j.chroma.2019.02.021] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 02/04/2019] [Accepted: 02/10/2019] [Indexed: 01/01/2023]
|
35
|
Mukhutdinova KA, Kasimov MR, Zakyrjanova GF, Gumerova MR, Petrov AM. Oxysterol modulates neurotransmission via liver-X receptor/NO synthase-dependent pathway at the mouse neuromuscular junctions. Neuropharmacology 2019; 150:70-79. [DOI: 10.1016/j.neuropharm.2019.03.018] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Revised: 02/15/2019] [Accepted: 03/13/2019] [Indexed: 02/08/2023]
|
36
|
Ke Y, Dury A, Labrie F. A highly sensitive LC-MS/MS method for the simultaneous quantitation of serum androstane-3α, 17β-diol and androstane-3β, 17β-diol in post-menopausal women. J Chromatogr B Analyt Technol Biomed Life Sci 2019; 1113:30-36. [PMID: 30877984 DOI: 10.1016/j.jchromb.2019.03.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2018] [Revised: 02/28/2019] [Accepted: 03/06/2019] [Indexed: 11/16/2022]
Abstract
Sensitive and accurate measurement of androstane-3β,17β-diol and androstane-3α,17β-diol in the circulation is important for clinical research and accurate clinical diagnosis. This report describes a highly sensitive, specific, precise and reliable assay for the simultaneous accurate measurement of serum androstane-3α,17β-diol and androstane-3β,17β-diol in postmenopausal women. The LLOQ of 1 pg/mL has been achieved with nicotinic acid derivatization, which is superior to picolinic acid by a factor of 5 to 10 in terms of signal to noise ratio. The difference is attributed to the higher acidity of picolinic acid which forms a more stable intermediate, thus decreasing derivatization efficiency. Potential interference from androstane-3α, 17α-diol, androstane-3β, 17α-diol, and 5-androstenediol has been well separated from the two target diols. The high level of specificity has been determined by well-developed chromatography and ion ratio monitoring. A good linearity in the range of 1 pg/mL to 200 pg/mL (0.03 pg to 6 pg on column) was obtained for both compounds at R > 0.998. The bias and coefficients of variation of all the QC levels are within the range of 10% while the recovery in both charcoal-stripped and unstripped human serum is around 85%. The matrix effect was evaluated and the results well met the acceptance criteria according to the guidelines of bioanalytical method development and validation. Using this newly developed method, the concentrations of both androstane-3α,17β diol and androstane-3β,17β diol were measured in normal postmenopausal serum, where the concentrations range from 2 pg/mL to 32 pg/mL for androstane-3α,17β diol and from 1 pg/mL to 10 pg/mL for androstane-3β,17β diol, respectively.
Collapse
Affiliation(s)
- Yuyong Ke
- Endoceutics Inc., 2795 Laurier Blvd, Suite 500, Quebec G1V 4M7, QC, Canada.
| | - Alain Dury
- Endoceutics Inc., 2795 Laurier Blvd, Suite 500, Quebec G1V 4M7, QC, Canada
| | - Fernand Labrie
- Endoceutics Inc., 2795 Laurier Blvd, Suite 500, Quebec G1V 4M7, QC, Canada
| |
Collapse
|
37
|
Oxysterol research: a brief review. Biochem Soc Trans 2019; 47:517-526. [PMID: 30936243 PMCID: PMC6490702 DOI: 10.1042/bst20180135] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 02/25/2019] [Accepted: 02/27/2019] [Indexed: 12/16/2022]
Abstract
In the present study, we discuss the recent developments in oxysterol research. Exciting results have been reported relating to the involvement of oxysterols in the fields of neurodegenerative disease, especially in Huntington's disease, Parkinson's disease and Alzheimer's disease; in signalling and development, in particular, in relation to Hedgehog signalling; and in cancer, with a special focus on (25R)26-hydroxycholesterol. Methods for the measurement of oxysterols, essential for understanding their mechanism of action in vivo, and valuable for diagnosing rare diseases of cholesterol biosynthesis and metabolism are briefly considered.
Collapse
|
38
|
Developing an Enzyme-Assisted Derivatization Method for Analysis of C 27 Bile Alcohols and Acids by Electrospray Ionization-Mass Spectrometry. Molecules 2019; 24:molecules24030597. [PMID: 30736477 PMCID: PMC6384595 DOI: 10.3390/molecules24030597] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 01/29/2019] [Accepted: 01/30/2019] [Indexed: 01/08/2023] Open
Abstract
Enzyme-assisted derivatization for sterol analysis (EADSA) is a technology designed to enhance sensitivity and specificity for sterol analysis using electrospray ionization⁻mass spectrometry. To date it has only been exploited on sterols with a 3β-hydroxy-5-ene or 3β-hydroxy-5α-hydrogen structure, using bacterial cholesterol oxidase enzyme to convert the 3β-hydroxy group to a 3-oxo group for subsequent derivatization with the positively charged Girard hydrazine reagents, or on substrates with a native oxo group. Here we describe an extension of the technology by substituting 3α-hydroxysteroid dehydrogenase (3α-HSD) for cholesterol oxidase, making the method applicable to sterols with a 3α-hydroxy-5β-hydrogen structure. The 3α-HSD enzyme works efficiently on bile alcohols and bile acids with this stereochemistry. However, as found by others, derivatization of the resultant 3-oxo group with a hydrazine reagent does not go to completion in the absence of a conjugating double bond in the sterol structure. Nevertheless, Girard P derivatives of bile alcohols and C27 acids give an intense molecular ion ([M]⁺) upon electrospray ionization and informative fragmentation spectra. The method shows promise for analysis of bile alcohols and 3α-hydroxy-5β-C27-acids, enhancing the range of sterols that can be analyzed at high sensitivity in sterolomic studies.
Collapse
|
39
|
Simultaneous Quantification of Ten Oxysterols Based on LC–MS/MS and its Application in Atherosclerosis Human Serum Samples. Chromatographia 2018. [DOI: 10.1007/s10337-018-3654-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
40
|
Niemann-Pick type C disease: The atypical sphingolipidosis. Adv Biol Regul 2018; 70:82-88. [PMID: 30205942 DOI: 10.1016/j.jbior.2018.08.001] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Accepted: 08/27/2018] [Indexed: 12/29/2022]
Abstract
Niemann-Pick type C (NPC) disease is a lysosomal storage disorder resulting from mutations in either the NPC1 (95%) or NPC2 (5%) genes. NPC typically presents in childhood with visceral lipid accumulation and complex progressive neurodegeneration characterized by cerebellar ataxia, dysphagia, and dementia, resulting in a shortened lifespan. While cholesterol is widely acknowledged as the principal storage lipid in NPC, multiple species of sphingolipids accumulate as well. This accumulation of sphingolipids led to the initial assumption that NPC disease was caused by a deficiency in a sphingolipid catabolism enzyme, similar to sphingomyelinase deficiencies with which it shares a family name. It took about half a century to determine that NPC was in fact caused by a cholesterol trafficking defect, and still as we approach a century after the initial identification of the disease, the mechanisms by which sphingolipids accumulate remain poorly understood. Here we focus on the defects of sphingolipid catabolism in the endolysosomal compartment and how they contribute to the biology and pathology observed in NPC disease. This review highlights the need for further work on understanding and possibly developing treatments to correct the accumulation of sphingolipids in addition to cholesterol in this currently untreatable disease.
Collapse
|
41
|
Yang B, Li R, Michael Greenlief C, Fritsche KL, Gu Z, Cui J, Lee JC, Beversdorf DQ, Sun GY. Unveiling anti-oxidative and anti-inflammatory effects of docosahexaenoic acid and its lipid peroxidation product on lipopolysaccharide-stimulated BV-2 microglial cells. J Neuroinflammation 2018; 15:202. [PMID: 29986724 PMCID: PMC6038194 DOI: 10.1186/s12974-018-1232-3] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2018] [Accepted: 06/20/2018] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Phospholipids in the central nervous system are enriched in n-3 and n-6 polyunsaturated fatty acids (PUFA), especially docosahexaenoic acid (DHA) and arachidonic acid (ARA). These PUFA can undergo enzymatic reactions to produce lipid mediators, as well as reaction with oxygen free radicals to produce 4-hydroxyhexenal (4-HHE) from DHA and 4-hydroxynonenal (4-HNE) from ARA. Recent studies demonstrated pleiotropic properties of these peroxidation products through interaction with oxidative and anti-oxidant response pathways. In this study, BV-2 microglial cells were used to investigate ability for DHA, 4-HHE, and 4-HNE to stimulate the anti-oxidant stress responses involving the nuclear factor erythroid-2-related factor 2 (Nrf2) pathway and synthesis of heme oxygenase (HO-1), as well as to mitigate lipopolysaccharide (LPS)-induced nitric oxide (NO), reactive oxygen species (ROS), and cytosolic phospholipase A2 (cPLA2). In addition, LC-MS/MS analysis was carried out to examine effects of exogenous DHA and LPS stimulation on endogenous 4-HHE and 4-HNE levels in BV-2 microglial cells. METHODS Effects of DHA, 4-HHE, and 4-HNE on LPS-induced NO production was determined using the Griess reagent. LPS-induced ROS production was measured using CM-H2DCFDA. Western blots were used to analyze expression of p-cPLA2, Nrf2, and HO-1. Cell viability and cytotoxicity were measured using the WST-1 assay, and cell protein concentrations were measured using the BCA protein assay kit. An ultra-high-performance liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis was used to determine levels of free 4-HHE and 4-HNE in cells. RESULTS DHA (12.5-100 μM), 4-HHE (1.25-10 μM), and 4-HNE (1.25-10 μM) dose dependently suppressed LPS-induced production of NO, ROS, and as p-cPLA2 in BV-2 microglial cells. With the same concentrations, these compounds could enhance Nrf2 and HO-1 expression in these cells. Based on the estimated IC50 values, 4-HHE and 4-HNE were five- to tenfold more potent than DHA in inhibiting LPS-induced NO, ROS, and p-cPLA2. LC-MS/MS analysis indicated ability for DHA (10-50 μM) to increase levels of 4-HHE and attenuate levels of 4-HNE in BV-2 microglial cells. Stimulation of cells with LPS caused an increase in 4-HNE which could be abrogated by cPLA2 inhibitor. In contrast, bromoenol lactone (BEL), a specific inhibitor for the Ca2+-independent phospholipase A2 (iPLA2), could only partially suppress levels of 4-HHE induced by DHA or DHA + LPS. CONCLUSIONS This study demonstrated the ability of DHA and its lipid peroxidation products, namely, 4-HHE and 4-HNE at 1.25-10 μM, to enhance Nrf2/HO-1 and mitigate LPS-induced NO, ROS, and p-cPLA2 in BV-2 microglial cells. In addition, LC-MS/MS analysis of the levels of 4-HHE and 4-HNE in microglial cells demonstrates that increases in production of 4-HHE from DHA and 4-HNE from LPS are mediated by different mechanisms.
Collapse
Affiliation(s)
- Bo Yang
- Chemistry Department, University of Missouri, Columbia, MO, USA
| | - Runting Li
- Biochemistry Department, University of Missouri, 117 Schweitzer Hall, Columbia, MO, 65211, USA
| | | | - Kevin L Fritsche
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, MO, USA
| | - Zezong Gu
- Department of Pathology and Anatomical Sciences, University of Missouri, Columbia, MO, USA
| | - Jiankun Cui
- Department of Pathology and Anatomical Sciences, University of Missouri, Columbia, MO, USA
| | - James C Lee
- Department of Bioengineering, University of Illinois at Chicago, Chicago, IL, USA
| | - David Q Beversdorf
- Departments of Radiology, Neurology and Psychological Sciences, University of Missouri, Columbia, MO, USA
| | - Grace Y Sun
- Biochemistry Department, University of Missouri, 117 Schweitzer Hall, Columbia, MO, 65211, USA. .,Department of Pathology and Anatomical Sciences, University of Missouri, Columbia, MO, USA.
| |
Collapse
|
42
|
Chin SF, Osman J, Jamal R. Simultaneous determination of 25-hydroxyvitamin D 2 and 25-hydroxyvitamin D 3 in human serum by ultra performance liquid chromatography: An economical and validated method with bovine serum albumin. Clin Chim Acta 2018; 485:60-66. [PMID: 29935177 DOI: 10.1016/j.cca.2018.06.024] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Revised: 06/19/2018] [Accepted: 06/20/2018] [Indexed: 01/16/2023]
Abstract
A simple and economical method has been developed for simultaneous determination of human serum 25-hydroxyvitamin D2 (25OHD2) and 25-hydroxyvitamin D3 (25OHD3) using Ultra Performance Liquid Chromatography (UPLC). Non-human matrix of 4% BSA was used to construct the calibration curve and in quality control samples' preparation to avoid interference of the endogenous 25-hydroxyvitamin D (25OHD) present in the human serum. 25OHD2, 25OHD3 and dodecanophenone (internal standard, IS) were separated on a CORTECS solid-core particle column and monitored by photodiode array detector at wavelength of 265 nm within five min run time. The relationship between 25OHD concentration and peak area ratio (25OHD:IS) was linear over the range of 12.5 - 200 nM with mean correlation coefficients (r2) >0.998. The limit of detection (LOD) for 25OHD2 and 25OHD3 was 3.00 nM and 3.79 nM, while the lower limit of quantification (LLOQ) was 9.11 nM and 11.48 nM, respectively. High repeatability was obtained for both isomers with intra-day CV% <5.6% and <5.3% for inter-day assay. This method was further tested with a commercial lyophilized serum control with an accuracy of 92.87-108.31% and applied on 214 human serum samples. In summary, this validated method with BSA can be reliably applied for routine quantification of 25OHD in adults.
Collapse
Affiliation(s)
- Siok-Fong Chin
- UKM Medical Molecular Biology Institute (UMBI), Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia.
| | - Junaida Osman
- UKM Medical Molecular Biology Institute (UMBI), Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Rahman Jamal
- UKM Medical Molecular Biology Institute (UMBI), Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| |
Collapse
|
43
|
Reinicke M, Schröter J, Müller-Klieser D, Helmschrodt C, Ceglarek U. Free oxysterols and bile acids including conjugates - Simultaneous quantification in human plasma and cerebrospinal fluid by liquid chromatography-tandem mass spectrometry. Anal Chim Acta 2018; 1037:245-255. [PMID: 30292299 DOI: 10.1016/j.aca.2018.02.049] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 02/14/2018] [Accepted: 02/18/2018] [Indexed: 01/19/2023]
Abstract
A liquid chromatography-electrospray ionization-tandem mass spectrometry (LC-ESI(+)-MS/MS) assay was developed and qualified for analyzing 35 analytes of the cholesterol metabolism, including free cholesterol, 17 free, non-esterified oxysterols and 17 free and conjugated bile acids in plasma and cerebrospinal fluid. As internal standards, 25 commercially available stable deuterium-labeled analogs of the analytes were used. Pre-analytical investigations included stability tests of analyte concentrations affected by different anticoagulation additives: lithium heparin-, citrate-, EDTA-K3-stabilized plasma and serum, and the stability in EDTA whole blood at RT. This LC-ESI(+)-MS/MS method was successfully applied for the analysis of paired serum/cerebrospinal fluid samples of patients with and without blood-brain barrier disturbance, as well as of 100 plasma samples of a LIFE-Adult study sub-cohort. A fast and simple sample preparation including protein precipitation and on-line solid-phase extraction was developed. As little as 55 μL of human plasma/serum or cerebrospinal fluid were needed for the analysis. It was possible to separate isomeric oxysterols and bile acids within 23 min using a C18 core-shell column. The assay is capable of quantifying in a linear range of 0.8-250 ng mL-1 for free hydroxycholesterols, 0.2-10 ng mL-1 for dihydroxycholesterols, 0.2-500 ng mL-1 for bile acids and 16-2000 μg mL-1 for cholesterol with acceptable accuracy and precision. In cerebrospinal fluid one free oxysterols, five free and five conjugated bile acids could be quantified. No significant differences between patients with and without blood-brain barrier disturbance were obtained. In the LIFE-Adult sub-cohort two free oxysterols, four free and seven conjugated bile acids could be quantified in EDTA plasma. Men showed significantly higher concentrations of 26-OHC than women (p = 0.035). Furthermore, in women lower levels of cholic acid, glycocholic acid, glycodeoxycholic acid, chenodeoxycholic acid, glycochenodeoxycholic acid, glycoursodeoxycholic acid, glycolithocholic acid and higher levels of taurocholic acid, taurochenodeoxycholic acid, ursodeoxycholic acid/hyodeoxycholic acid were quantified.
Collapse
Affiliation(s)
- Madlen Reinicke
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, Leipzig University, Liebigstr. 27, 04103 Leipzig, Germany.
| | - Jenny Schröter
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, Leipzig University, Liebigstr. 27, 04103 Leipzig, Germany
| | - Daniel Müller-Klieser
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, Leipzig University, Liebigstr. 27, 04103 Leipzig, Germany
| | - Christin Helmschrodt
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, Leipzig University, Liebigstr. 27, 04103 Leipzig, Germany
| | - Uta Ceglarek
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, Leipzig University, Liebigstr. 27, 04103 Leipzig, Germany; LIFE - Leipzig Research Center for Civilization Diseases, Leipzig University, Philipp-Rosenthal-Str. 27, 04103 Leipzig, Germany
| |
Collapse
|
44
|
Determination of total plasma oxysterols by enzymatic hydrolysis, solid phase extraction and liquid chromatography coupled to mass-spectrometry. J Pharm Biomed Anal 2018; 150:396-405. [DOI: 10.1016/j.jpba.2017.12.033] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Revised: 12/15/2017] [Accepted: 12/16/2017] [Indexed: 01/04/2023]
|
45
|
Mashima R, Maekawa M. Lipid biomarkers for the peroxisomal and lysosomal disorders: their formation, metabolism and measurement. Biomark Med 2018; 12:83-95. [DOI: 10.2217/bmm-2017-0225] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Lipid biomarkers play important roles in the diagnosis of and monitoring of treatment in peroxisomal disorders and lysosomal storage disorders. Today, a variety of lipids, including very long chain fatty acids, glycolipids, bile acids and the oxidation products of cholesterol, have been considered as biomarkers for these disorders. In this brief review, the authors summarized the recent advances regarding these lipid biomarkers in terms of their formation, metabolism and measurement in these disorders. An understanding of these biomarkers will offer a key to the development of novel diagnoses and help create more effective therapies in the future.
Collapse
Affiliation(s)
- Ryuichi Mashima
- Department of Clinical Laboratory Medicine, National Center for Child Health & Development, 2–10–1 Okura, Setagaya-ku, Tokyo 157–8535, Japan
| | - Masamitsu Maekawa
- Department of Pharmaceutical Sciences, Tohoku University Hospital, 1–1 Seiryo-machi, Aoba-ku, Sendai 980–8574, Japan
| |
Collapse
|
46
|
Kang L, Connolly TM, Weng N, Jian W. LC-MS/MS quantification of 7α-hydroxy-4-cholesten-3-one (C4) in rat and monkey plasma. J Chromatogr B Analyt Technol Biomed Life Sci 2017; 1064:49-55. [PMID: 28915417 DOI: 10.1016/j.jchromb.2017.09.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Revised: 08/31/2017] [Accepted: 09/02/2017] [Indexed: 11/26/2022]
Abstract
7α-hydroxy-4-cholesten-3-one (C4) is an oxidative enzymatic product of cholesterol metabolism via cholesterol 7α-hydroxylase, an enzyme also known as cholesterol 7-alpha-monooxygenase or cytochrome P450 7A1 (CYP7A1). C4 is a stable intermediate in the rate limiting pathway of bile acid biosynthesis. Previous studies showed that plasma C4 levels correlated with CYP7A1 enzymatic activity and could serve as a biomarker for bile acid synthesis. Here we developed and qualified a simple and robust high-throughput method using liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS) to quantify C4 in rat and monkey plasma. As C4 being an endogenous compound, this method used calibration standards in 50/50: acetonitrile/water (v/v). In order to mimic the incurred samples, quality control samples were prepared in the authentic plasma. Stable isotope labeled C4 (C4-d7) was used as the internal standard. The sample volume for analysis was 20μL and the sample preparation method was protein precipitation with acetonitrile. The average endogenous C4 concentrations, from 10 different lots of rat and monkey plasma, were 53.0±16.5ng/mL and 6.8±5.6ng/mL, respectively. Based on these observed endogenous C4 levels, the calibration curve ranges were established at 1-200ng/mL and 0.5-100ng/mL for rat assay and monkey assay, respectively. The method was qualified with acceptable accuracy, precision, linearity, and specificity. Matrix effect, recovery, and plasma stability of bench-top, freeze-thaw, and long-term frozen storage were also evaluated. The method has been successfully applied to pre-clinical studies.
Collapse
Affiliation(s)
- Lijuan Kang
- Janssen Research & Development, Johnson & Johnson, 1400 McKean Road, Spring House, PA, 19477, USA
| | - Thomas M Connolly
- Janssen Research & Development, Johnson & Johnson, 1400 McKean Road, Spring House, PA, 19477, USA
| | - Naidong Weng
- Janssen Research & Development, Johnson & Johnson, 1400 McKean Road, Spring House, PA, 19477, USA
| | - Wenying Jian
- Janssen Research & Development, Johnson & Johnson, 1400 McKean Road, Spring House, PA, 19477, USA.
| |
Collapse
|
47
|
Kasimov M, Fatkhrakhmanova M, Mukhutdinova K, Petrov A. 24S-Hydroxycholesterol enhances synaptic vesicle cycling in the mouse neuromuscular junction: Implication of glutamate NMDA receptors and nitric oxide. Neuropharmacology 2017; 117:61-73. [DOI: 10.1016/j.neuropharm.2017.01.030] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Revised: 01/24/2017] [Accepted: 01/27/2017] [Indexed: 12/29/2022]
|
48
|
Early experience with compassionate use of 2 hydroxypropyl-beta-cyclodextrin for Niemann-Pick type C disease: review of initial published cases. Neurol Sci 2017; 38:727-743. [PMID: 28155026 DOI: 10.1007/s10072-017-2833-9] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Accepted: 01/25/2017] [Indexed: 10/20/2022]
Abstract
Niemann-Pick type C (NP-C) is a rare neurodegenerative disorder. Management is mainly supportive and symptomatic. The investigational use of 2-hydroxypropyl-β-cyclodextrin (HP-β-CD) showed a promising role in treating NP-C, although efficacy and safety have not been established. We conducted searches of MEDLINE, Cochrane, EMBASE, and other databases of reported cases of HP-β-CD compassionate use in NP-C disease. Sixteen reported cases were eligible, including evaluable information of 17 patients. The median onset age of HP-β-CD was 14 years (range 2-49 years). Intrathecal route was employed in 16 patients, in 3 patients simultaneously to IV infusions. Intracerebroventricular route was used in two patients. An objective improvement of clinical outcomes was measured in 14 patients, mainly by the NIH NP-C Clinical Severity Score and brainstem auditory evoked potential. Besides, an increase in metabolism and activities of the brain were observed in image tests and cholesterol biomarkers. Most patients showed some clinical benefit or a stabilization of NP-C progression. There were 17 adverse events (AEs) reported in 11 patients, 11 of them related to the drug and 6 to the route of administration. Loss of hearing was reported in four patients. The most severe AE were fever and chemical meningitis. Results suggest that efficacy may be partial and dependent on the early administration of the drug, the severity of the disease, and interpersonal variability. HP-β-CD could help stabilize NP-C with low toxicity potential, although some AEs have been reported. Moreover, controlled clinical trials would be necessary to evaluate the role of HP-β-CD in NP-C.
Collapse
|
49
|
Griffiths WJ, Abdel-Khalik J, Yutuc E, Morgan AH, Gilmore I, Hearn T, Wang Y. Cholesterolomics: An update. Anal Biochem 2017; 524:56-67. [PMID: 28087213 PMCID: PMC5378159 DOI: 10.1016/j.ab.2017.01.009] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Revised: 12/23/2016] [Accepted: 01/09/2017] [Indexed: 01/04/2023]
Abstract
Cholesterolomics can be regarded as the identification and quantification of cholesterol, its precursors post squalene, and metabolites of cholesterol and of its precursors, in a biological sample. These molecules include 1,25-dihydroxyvitamin D3, steroid hormones and bile acids and intermediates in their respective biosynthetic pathways. In this short article we will concentrate our attention on intermediates in bile acid biosynthesis pathways, in particular oxysterols and cholestenoic acids. These molecular classes are implicated in the aetiology of a diverse array of diseases including autoimmune disease, Parkinson's disease, motor neuron disease, breast cancer, the lysosomal storage disease Niemann-Pick type C and the autosomal recessive disorder Smith-Lemli-Opitz syndrome. Mass spectrometry (MS) is the dominant technology for sterol analysis including both gas-chromatography (GC)-MS and liquid chromatography (LC)-MS and more recently matrix-assisted laser desorption/ionisation (MALDI)-MS for tissue imaging studies. Here we will discuss exciting biological findings and recent analytical improvements.
Collapse
Affiliation(s)
| | | | - Eylan Yutuc
- Swansea University Medical School, Singleton Park, Swansea SA2 8PP, UK
| | - Alwena H Morgan
- Swansea University Medical School, Singleton Park, Swansea SA2 8PP, UK
| | - Ian Gilmore
- Swansea University Medical School, Singleton Park, Swansea SA2 8PP, UK
| | - Thomas Hearn
- Swansea University Medical School, Singleton Park, Swansea SA2 8PP, UK
| | - Yuqin Wang
- Swansea University Medical School, Singleton Park, Swansea SA2 8PP, UK.
| |
Collapse
|
50
|
Bobillo Lobato J, Jiménez Hidalgo M, Jiménez Jiménez LM. Biomarkers in Lysosomal Storage Diseases. Diseases 2016; 4:diseases4040040. [PMID: 28933418 PMCID: PMC5456325 DOI: 10.3390/diseases4040040] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Revised: 12/04/2016] [Accepted: 12/12/2016] [Indexed: 12/22/2022] Open
Abstract
A biomarker is generally an analyte that indicates the presence and/or extent of a biological process, which is in itself usually directly linked to the clinical manifestations and outcome of a particular disease. The biomarkers in the field of lysosomal storage diseases (LSDs) have particular relevance where spectacular therapeutic initiatives have been achieved, most notably with the introduction of enzyme replacement therapy (ERT). There are two main types of biomarkers. The first group is comprised of those molecules whose accumulation is directly enhanced as a result of defective lysosomal function. These molecules represent the storage of the principal macro-molecular substrate(s) of a specific enzyme or protein, whose function is deficient in the given disease. In the second group of biomarkers, the relationship between the lysosomal defect and the biomarker is indirect. In this group, the biomarker reflects the effects of the primary lysosomal defect on cell, tissue, or organ functions. There is no “gold standard” among biomarkers used to diagnosis and/or monitor LSDs, but there are a number that exist that can be used to reasonably assess and monitor the state of certain organs or functions. A number of biomarkers have been proposed for the analysis of the most important LSDs. In this review, we will summarize the most promising biomarkers in major LSDs and discuss why these are the most promising candidates for screening systems.
Collapse
Affiliation(s)
- Joaquin Bobillo Lobato
- Servicio de Bioquímica Clínica, Unidad de Gestión Clínica de Laboratorios, Hospital Universitario Nuestra Señora de Valme, 41014-Sevilla, Spain.
| | - Maria Jiménez Hidalgo
- Servicio de Fisiopatología Celular y Bioenergética, Servicios Centrales de Investigación, Universidad Pablo de Olavide, 41013-Sevilla, Spain.
| | - Luis M Jiménez Jiménez
- Servicio de Fisiopatología Celular y Bioenergética, Servicios Centrales de Investigación, Universidad Pablo de Olavide, 41013-Sevilla, Spain.
| |
Collapse
|