1
|
Jeong EY, Kim HJ, Lee S, Park Y, Kim YM. Label-free long-term measurements of adipocyte differentiation from patient-driven fibroblasts and quantitative analyses of in situ lipid droplet generation. JOURNAL OF THE OPTICAL SOCIETY OF AMERICA. A, OPTICS, IMAGE SCIENCE, AND VISION 2024; 41:C125-C136. [PMID: 39889084 DOI: 10.1364/josaa.528703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 09/20/2024] [Indexed: 02/02/2025]
Abstract
The visualization and tracking of adipocytes and their lipid droplets (LDs) during differentiation are pivotal in developmental biology and regenerative medicine studies. Traditional staining or labeling methods, however, pose significant challenges due to their labor-intensive sample preparation, potential disruption of intrinsic cellular physiology, and limited observation timeframe. This study introduces a novel method for long-term visualization and quantification of biophysical parameters of LDs in unlabeled adipocytes, utilizing the refractive index (RI) distributions of LDs and cells. We employ low-coherence holotomography (HT) to systematically investigate and quantitatively analyze the 42-day redifferentiation process of fat cells into adipocytes. This technique yields three-dimensional, high-resolution refractive tomograms of adipocytes, enabling precise segmentation of LDs based on their elevated RI values. Subsequent automated analysis quantifies the mean concentration, volume, projected area, and dry mass of individual LDs, revealing a gradual increase corresponding with adipocyte maturation. Our findings demonstrate that HT is a potent tool for non-invasively monitoring live adipocyte differentiation and analyzing LD accumulation. This study, therefore, offers valuable insights into adipogenesis and lipid research, establishing HT and image-based analysis as a promising approach in these fields.
Collapse
|
2
|
Wang K, Zhang R, Lehwald N, Tao GZ, Liu B, Liu B, Koh Y, Sylvester KG. Wnt/β-catenin signaling activation promotes lipogenesis in the steatotic liver via physical mTOR interaction. Front Endocrinol (Lausanne) 2023; 14:1289004. [PMID: 38152126 PMCID: PMC10751342 DOI: 10.3389/fendo.2023.1289004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 11/27/2023] [Indexed: 12/29/2023] Open
Abstract
Background and aims Wnt/β-catenin signaling plays an important role in regulating hepatic metabolism. This study is to explore the molecular mechanisms underlying the potential crosstalk between Wnt/β-catenin and mTOR signaling in hepatic steatosis. Methods Transgenic mice (overexpress Wnt1 in hepatocytes, Wnt+) mice and wild-type littermates were given high fat diet (HFD) for 12 weeks to induce hepatic steatosis. Mouse hepatocytes cells (AML12) and those transfected to cause constitutive β-catenin stabilization (S33Y) were treated with oleic acid for lipid accumulation. Results Wnt+ mice developed more hepatic steatosis in response to HFD. Immunoblot shows a significant increase in the expression of fatty acid synthesis-related genes (SREBP-1 and its downstream targets ACC, AceCS1, and FASN) and a decrease in fatty acid oxidation gene (MCAD) in Wnt+ mice livers under HFD. Wnt+ mice also revealed increased Akt signaling and its downstream target gene mTOR in response to HFD. In vitro, increased lipid accumulation was detected in S33Y cells in response to oleic acid compared to AML12 cells reinforcing the in vivo findings. mTOR inhibition by rapamycin led to a down-regulation of fatty acid synthesis in S33Y cells. In addition, β-catenin has a physical interaction with mTOR as verified by co-immunoprecipitation in hepatocytes. Conclusions Taken together, our results demonstrate that β-catenin stabilization through Wnt signaling serves a central role in lipid metabolism in the steatotic liver through up-regulation of fatty acid synthesis via Akt/mTOR signaling. These findings suggest hepatic Wnt signaling may represent a therapeutic strategy in hepatic steatosis.
Collapse
Affiliation(s)
- Kewei Wang
- Department of Surgery, Divison of Pediatric Surgery, Stanford University School of Medicine, Stanford, CA, United States
- Department of Gastrointestinal Surgery, First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Rong Zhang
- Department of Surgery, Divison of Pediatric Surgery, Stanford University School of Medicine, Stanford, CA, United States
| | - Nadja Lehwald
- Department of Surgery, Divison of Pediatric Surgery, Stanford University School of Medicine, Stanford, CA, United States
- Department of General, Visceral and Pediatric Surgery, School of Medicine, Heinrich Heine University, Duesseldorf, Germany
| | - Guo-Zhong Tao
- Department of Surgery, Divison of Pediatric Surgery, Stanford University School of Medicine, Stanford, CA, United States
| | - Bowen Liu
- Department of Surgery, Divison of Pediatric Surgery, Stanford University School of Medicine, Stanford, CA, United States
| | - Bo Liu
- Department of Surgery, Divison of Pediatric Surgery, Stanford University School of Medicine, Stanford, CA, United States
| | - Yangseok Koh
- Department of Surgery, Chonnam National University Medical School, Gwangju, Republic of Korea
| | - Karl G. Sylvester
- Department of Surgery, Divison of Pediatric Surgery, Stanford University School of Medicine, Stanford, CA, United States
- Stanford Metabolic Health Center, Stanford University School of Medicine, Stanford, CA, United States
| |
Collapse
|
3
|
Oh S, Lee C, Yang W, Li A, Mukherjee A, Basan M, Ran C, Yin W, Tabin CJ, Fu D, Xie XS, Kirschner MW. Protein and lipid mass concentration measurement in tissues by stimulated Raman scattering microscopy. Proc Natl Acad Sci U S A 2022; 119:e2117938119. [PMID: 35452314 PMCID: PMC9169924 DOI: 10.1073/pnas.2117938119] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 02/21/2022] [Indexed: 01/10/2023] Open
Abstract
Cell mass and chemical composition are important aggregate cellular properties that are especially relevant to physiological processes, such as growth control and tissue homeostasis. Despite their importance, it has been difficult to measure these features quantitatively at the individual cell level in intact tissue. Here, we introduce normalized Raman imaging (NoRI), a stimulated Raman scattering (SRS) microscopy method that provides the local concentrations of protein, lipid, and water from live or fixed tissue samples with high spatial resolution. Using NoRI, we demonstrate that protein, lipid, and water concentrations at the single cell are maintained in a tight range in cells under the same physiological conditions and are altered in different physiological states, such as cell cycle stages, attachment to substrates of different stiffness, or by entering senescence. In animal tissues, protein and lipid concentration varies with cell types, yet an unexpected cell-to-cell heterogeneity was found in cerebellar Purkinje cells. The protein and lipid concentration profile provides means to quantitatively compare disease-related pathology, as demonstrated using models of Alzheimer’s disease. This demonstration shows that NoRI is a broadly applicable technique for probing the biological regulation of protein mass, lipid mass, and water mass for studies of cellular and tissue growth, homeostasis, and disease.
Collapse
Affiliation(s)
- Seungeun Oh
- Department of Systems Biology, Harvard Medical School, Boston, MA 02115
| | - ChangHee Lee
- Department of Genetics, Harvard Medical School, Boston, MA 02115
| | - Wenlong Yang
- Center for Advanced Imaging, Harvard University, Cambridge, MA 20138
| | - Ang Li
- Department of Systems Biology, Harvard Medical School, Boston, MA 02115
| | - Avik Mukherjee
- Department of Systems Biology, Harvard Medical School, Boston, MA 02115
| | - Markus Basan
- Department of Systems Biology, Harvard Medical School, Boston, MA 02115
| | - Chongzhao Ran
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02129
| | - Wei Yin
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02129
| | | | - Dan Fu
- Department of Chemistry, University of Washington, Seattle, WA 98195
| | - X. Sunney Xie
- Biomedical Pioneering Innovation Center, Peking University, Beijing 100871; China
| | - Marc W. Kirschner
- Department of Systems Biology, Harvard Medical School, Boston, MA 02115
| |
Collapse
|
4
|
Dwivedi J, Dwivedi M, Gupta S, Jadaun V, Yadav B, Parashar P, Dhar P, Dwivedi P, Ahmed H, Singh P, Pal A, Paliwal SK, Dwivedi AK, Rawat AKS. Synthesized Phytomolecular Hybrids as Natural Interventions to Manage Hyperlipidemia and to Ameliorate Diabetes in Streptozotocin Induced Mice. Polycycl Aromat Compd 2021. [DOI: 10.1080/10406638.2021.1982731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Jyotsana Dwivedi
- Pharmacognosy and Ethnopharmacology Division, CSIR-National Botanical Research Institute, Lucknow, India
- Pharmaceutics Department, Banasthali Vidyapeeth, Banasthali, India
| | - Monika Dwivedi
- Pharmacognosy and Ethnopharmacology Division, CSIR-National Botanical Research Institute, Lucknow, India
| | - Swati Gupta
- Pharmaceutics and Pharmacokinetics Division, CSIR-Central Drug Research Institute, Lucknow, India
| | | | - Babita Yadav
- Division of Pharmacology, CSIR-Central Drug Research Institute, Lucknow, India
| | | | - Priyanka Dhar
- Department of Botany, Brahmananda Keshab Chandra College, Bon-Hooghly, India
| | - Pankaj Dwivedi
- Pharmaceutics and Pharmacokinetics Division, CSIR-Central Drug Research Institute, Lucknow, India
| | - Hafsa Ahmed
- Pharmaceutics and Pharmacokinetics Division, CSIR-Central Drug Research Institute, Lucknow, India
| | - Priyam Singh
- Department of Biochemistry, Jawaharlal Nehru Medical College, AMU, Aligarh, India
| | - Anirban Pal
- Bioprospection, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, India
| | | | - Anil Kumar Dwivedi
- Pharmaceutics and Pharmacokinetics Division, CSIR-Central Drug Research Institute, Lucknow, India
| | - Ajay Kumar Singh Rawat
- Pharmacognosy and Ethnopharmacology Division, CSIR-National Botanical Research Institute, Lucknow, India
| |
Collapse
|
5
|
Dipta P, Sarsenbayeva A, Shmuel M, Forno F, Eriksson JW, Pereira MJ, Abalo XM, Wabitsch M, Thaysen-Andersen M, Tirosh B. Macrophage-derived secretome is sufficient to confer olanzapine-mediated insulin resistance in human adipocytes. COMPREHENSIVE PSYCHONEUROENDOCRINOLOGY 2021; 7:100073. [PMID: 35757056 PMCID: PMC9216267 DOI: 10.1016/j.cpnec.2021.100073] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 07/22/2021] [Indexed: 12/15/2022] Open
|
6
|
Singh A, Sen P. Lipid droplet: A functionally active organelle in monocyte to macrophage differentiation and its inflammatory properties. Biochim Biophys Acta Mol Cell Biol Lipids 2021; 1866:158981. [PMID: 34119681 DOI: 10.1016/j.bbalip.2021.158981] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 05/06/2021] [Accepted: 05/20/2021] [Indexed: 12/28/2022]
Abstract
Lipid droplets (LDs) perform several important functions like inflammatory responses, membrane trafficking, acts as secondary messengers, etc. rather than simply working as an energy reservoir. LDs have been implicated as a controlling factor in the progression of atherosclerosis followed by foam cell formation that derives from macrophages during the differentiation process. However, the role of LDs in monocyte differentiation or its further immunological function is still an area that mandates in-depth investigation. We report that LD dynamics is important for differentiation of monocytes and is absolutely required for sustained and prolonged functional activity of differentiated macrophages. In THP-1 cell line model system, we elucidated that increase in total LD content in monocyte by external lipid supplements, can induce monocyte differentiation independent of classical stimuli, PMA. Differential expression of PLIN2 and ATGL during the event, together with abrogation of de novo lipogenesis further confirmed the fact. Besides, an increase in LD content by free fatty acid supplement was able to exert a synergistic effect with PMA on differentiation and phagocytic activity compared to when they are used alone. Additionally, we have shown Rab5a to play a vital role in LDs biosynthesis/maturation in monocytes and thereby directly affecting differentiation of monocytes into macrophages via AKT pathway. Thus our study reveals the multi-faceted function of LDs during the process of monocyte to macrophage differentiation and thereby helping to maintain the functional activity.
Collapse
Affiliation(s)
- Arpana Singh
- School of Biological Sciences, Indian Association for the Cultivation of Science, Kolkata 700032, India
| | - Prosenjit Sen
- School of Biological Sciences, Indian Association for the Cultivation of Science, Kolkata 700032, India.
| |
Collapse
|
7
|
Josephson AM, Leclerc K, Remark LH, Lopeź EM, Leucht P. Systemic NF-κB-mediated inflammation promotes an aging phenotype in skeletal stem/progenitor cells. Aging (Albany NY) 2021; 13:13421-13429. [PMID: 34035186 PMCID: PMC8202837 DOI: 10.18632/aging.203083] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 05/11/2021] [Indexed: 01/15/2023]
Abstract
Aging tissues undergo a progressive decline in regenerative potential. This decline in regenerative responsiveness has been attributed to changes in tissue-specific stem cells and their niches. In bone, aged skeletal stem/progenitor cell dysfunction is characterized by decreased frequency and impaired osteogenic differentiation potential. This aging phenotype ultimately results in compromised regenerative responsiveness to injury. The age-associated increase of inflammatory mediators, known as inflamm-aging, has been identified as the main culprit driving skeletal stem cell dysfunction. Here, we utilized a mouse model of parabiosis to decouple aging from inflammation. Using the Nfkb1-/- mouse as a model of inflamm-aging, we demonstrate that a shared systemic circulation between a wild-type and Nfkb1-/- mouse results in an aging phenotype of the wild-type skeletal stem and progenitor cells, shown by CFU-fs and osteogenic and adipogenic differentiation assays. Our findings demonstrate that exposure to an inflammatory secretome results in a phenotype similar to the one observed in aging.
Collapse
Affiliation(s)
- Anne Marie Josephson
- NYU Grossman School of Medicine, NYU Langone Orthopedics, New York, NY 10016, USA
| | - Kevin Leclerc
- NYU Grossman School of Medicine, NYU Langone Orthopedics, New York, NY 10016, USA
| | - Lindsey H. Remark
- NYU Grossman School of Medicine, NYU Langone Orthopedics, New York, NY 10016, USA
| | - Emma Muiños Lopeź
- NYU Grossman School of Medicine, NYU Langone Orthopedics, New York, NY 10016, USA
| | - Philipp Leucht
- NYU Grossman School of Medicine, NYU Langone Orthopedics, New York, NY 10016, USA
- NYU Grossman School of Medicine, Department of Cell Biology, New York, NY 10016, USA
| |
Collapse
|
8
|
Comparison of Cell-Free Extracts from Three Newly Identified Lactobacillus plantarum Strains on the Inhibitory Effect of Adipogenic Differentiation and Insulin Resistance in 3T3-L1 Adipocytes. BIOMED RESEARCH INTERNATIONAL 2021; 2021:6676502. [PMID: 33954196 PMCID: PMC8064791 DOI: 10.1155/2021/6676502] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Revised: 03/09/2021] [Accepted: 03/31/2021] [Indexed: 11/17/2022]
Abstract
Obesity and associated metabolic disorders, including cardiovascular disease and diabetes, are rapidly becoming serious global health problems. It has been reported that Lactobacillus plantarum (L. plantarum) extracts have the beneficial activities of antiobesity and antidiabetes, although few studies have compared the beneficial effects among various L. plantarum extracts. In this study, three new L. plantarum (named LP, LS, and L14) strains were identified, and the antiobesogenic and diabetic effects of their extracts were investigated and compared using 3T3-L1 cells in vitro. Lipid accumulation in maturing 3T3-L1 cells was significantly decreased by the addition of LS and L14 extracts. The mRNA expression levels of Pparγ, C/ebpα, Fabp4, Fas, and Dgat1 were significantly decreased by the addition of LP, LS, and L14 extracts. Interestingly, the protein expression levels of PPARγ, C/EBPα, FABP4, and FAS were downregulated in mature 3T3-L1 cells with the addition of the L14 extract. Moreover, the LS and L14 extract treatments stimulated glucose uptake in maturing adipocytes. The L14 extract treatments exhibited a significant reduction in TNF-α protein expression, which is a key factor of insulin resistance in adipocytes. Of the three extracts, L14 extract markedly reduced adipogenic differentiation and insulin resistance in vitro, suggesting that the L14 extract may be used as a therapeutic agent for obesity-associated metabolic disorders.
Collapse
|
9
|
Neutral lipids as early biomarkers of cellular fate: the case of α-synuclein overexpression. Cell Death Dis 2021; 12:52. [PMID: 33414430 PMCID: PMC7791139 DOI: 10.1038/s41419-020-03254-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 11/17/2020] [Accepted: 11/18/2020] [Indexed: 02/07/2023]
Abstract
α-synuclein (α-syn) accumulation and aggregation is a common pathological factor found in synucleinopathies, a group of neurodegenerative disorders that includes Parkinson´s disease (PD). It has been proposed that lipid dyshomeostasis is responsible for the occurrence of PD-related processes, however, the precise role of lipids in the onset and progression of neurodegenerative disorders remains unclear. Our aim was to investigate the effect of α-syn overexpression on neutral lipid metabolism and how this impacts on neuronal fate. We found lipid droplet (LD) accumulation in cells overexpressing α-syn to be associated with a rise in triacylglycerol (TAG) and cholesteryl ester (CE) levels. α-syn overexpression promoted diacylglycerol acyltransferase 2 upregulation and acyl-CoA synthetase activation, triggering TAG buildup, that was accompanied by an increase in diacylglycerol acylation. Moreover, the CE increment was associated with higher activity of acyl-CoA:cholesterol acyltransferase. Interestingly, α-syn overexpression increased cholesterol lysosomal accumulation. We observed that sterol regulatory element-binding protein (SREBP)-1 and SREBP-2 were differentially regulated by α-syn overexpression. The latter gave rise to a reduction in SREBP-1 nuclear translocation and consequently in fatty acid synthase expression, whereas it produced an increase in SREBP-2 nuclear localization. Surprisingly, and despite increased cholesterol levels, SREBP-2 downstream genes related to cholesterolgenesis were not upregulated as expected. Notably, phospholipid (PL) levels were diminished in cells overexpressing α-syn. This decrease was related to the activation of phospholipase A2 (PLA2) with a concomitant imbalance of the PL deacylation-acylation cycle. Fatty acids released from PLs by iPLA2 and cPLA2 action were esterified into TAGs, thus promoting a biological response to α-syn overexpression with uncompromised cell viability. When the described steady-state was disturbed under conditions favoring higher levels of α-syn, the response was an enhanced LD accumulation, this imbalance ultimately leading to neuronal death.
Collapse
|
10
|
Jana P, Siva A, Soppina V, Kanvah S. Live-cell imaging of lipid droplets using solvatochromic coumarin derivatives. Org Biomol Chem 2020; 18:5608-5616. [DOI: 10.1039/d0ob01277g] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Lipid droplets (LDs), the lipid-rich intracellular organelles were selectively detected using simple coumarin containing fluorophores.
Collapse
Affiliation(s)
- Palash Jana
- Department of Chemistry
- Indian Institute of Technology Gandhinagar
- Gandhinagar 382355
- India
| | - Aravintha Siva
- Department of Biological Engineering
- Indian Institute of Technology Gandhinagar
- Gandhinagar 382355
- India
| | - Virupakshi Soppina
- Department of Biological Engineering
- Indian Institute of Technology Gandhinagar
- Gandhinagar 382355
- India
| | - Sriram Kanvah
- Department of Chemistry
- Indian Institute of Technology Gandhinagar
- Gandhinagar 382355
- India
| |
Collapse
|
11
|
Liu K, Yu W, Wei W, Zhang X, Tian Y, Sherif M, Liu X, Dong C, Wu W, Zhang L, Chen J. Melatonin reduces intramuscular fat deposition by promoting lipolysis and increasing mitochondrial function. J Lipid Res 2019; 60:767-782. [PMID: 30552289 PMCID: PMC6446696 DOI: 10.1194/jlr.m087619] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 12/14/2018] [Indexed: 01/06/2023] Open
Abstract
In obesity and diabetes, intramuscular fat (IMF) content correlates markedly with insulin sensitivity, which makes IMF manipulation an area of therapeutic interest. Melatonin, an important circadian rhythm-regulating hormone, reportedly regulates fat deposition, but its effects on different types of adipose vary. Little is known about the role of melatonin in IMF deposition. Here, using intramuscular preadipocytes in pigs, we investigated to determine whether melatonin affects or regulates IMF deposition. We found that melatonin greatly inhibited porcine intramuscular preadipocyte proliferation. Although melatonin administration significantly upregulated the expression of adipogenic genes, smaller lipid droplets were formed in intramuscular adipocytes. Additional investigation demonstrated that melatonin promoted lipolysis of IMF by activating protein kinase A and the signaling of ERK1/2. Moreover, melatonin increased thermogenesis in intramuscular adipocytes by enhancing mitochondrial biogenesis and mitochondrial respiration. A mouse model, in which untreated controls were compared with mice that received 3 weeks of melatonin treatment, verified the effect of melatonin on IMF deposition. In conclusion, melatonin reduces IMF deposition by upregulating lipolysis and mitochondrial bioactivities. These data establish a link between melatonin signaling and lipid metabolism in mammalian models and suggest the potential for melatonin administration to treat or prevent obesity and related diseases.
Collapse
Affiliation(s)
- Kaiqing Liu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Wensai Yu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Wei Wei
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Xinbao Zhang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Ye Tian
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Melak Sherif
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Xin Liu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Chao Dong
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Wangjun Wu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Lifan Zhang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Jie Chen
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
12
|
Abstract
The combination of next generation sequencing (NGS) and automated liquid handling platforms has led to a revolution in single-cell genomic studies. However, many molecules that are critical to understanding the functional roles of cells in a complex tissue or organs, are not directly encoded in the genome, and therefore cannot be profiled with NGS. Lipids, for example, play a critical role in many metabolic processes but cannot be detected by sequencing. Recent developments in quantitative imaging, particularly coherent Raman scattering (CRS) techniques, have produced a suite of tools for studying lipid content in single cells. This article reviews CRS imaging and computational image processing techniques for non-destructive profiling of dynamic changes in lipid composition and spatial distribution at the single-cell level. As quantitative CRS imaging progresses synergistically with microfluidic and microscopic platforms for single-cell genomic analysis, we anticipate that these techniques will bring researchers closer towards combined lipidomic and genomic analysis.
Collapse
Affiliation(s)
- Anushka Gupta
- UC Berkeley-UC San Francisco Graduate Program in Bioengineering, University of California, Berkeley Graduate Division, Berkeley, California, USA.
| | | | | |
Collapse
|
13
|
Yuan C, Chakraborty S, Chitta KK, Subramanian S, Lim TE, Han W, Bhanu Prakash KN, Sugii S. Fast Adipogenesis Tracking System (FATS)-a robust, high-throughput, automation-ready adipogenesis quantification technique. Stem Cell Res Ther 2019; 10:38. [PMID: 30670100 PMCID: PMC6341617 DOI: 10.1186/s13287-019-1141-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 12/25/2018] [Accepted: 01/07/2019] [Indexed: 12/31/2022] Open
Abstract
Adipogenesis is essential in in vitro experimentation to assess differentiation capability of stem cells, and therefore, its accurate measurement is important. Quantitative analysis of adipogenic levels, however, is challenging and often susceptible to errors due to non-specific reading or manual estimation by observers. To this end, we developed a novel adipocyte quantification algorithm, named Fast Adipogenesis Tracking System (FATS), based on computer vision libraries. The FATS algorithm is versatile and capable of accurately detecting and quantifying percentage of cells undergoing adipogenic and browning differentiation even under difficult conditions such as the presence of large cell clumps or high cell densities. The algorithm was tested on various cell lines including 3T3-L1 cells, adipose-derived mesenchymal stem cells (ASCs), and induced pluripotent stem cell (iPSC)-derived cells. The FATS algorithm is particularly useful for adipogenic measurement of embryoid bodies derived from pluripotent stem cells and was capable of accurately distinguishing adipogenic cells from false-positive stains. We then demonstrate the effectiveness of the FATS algorithm for screening of nuclear receptor ligands that affect adipogenesis in the high-throughput manner. Together, the FATS offer a universal and automated image-based method to quantify adipocyte differentiation of different cell lines in both standard and high-throughput workflows.
Collapse
Affiliation(s)
- Chengxiang Yuan
- Laboratory of Metabolic Medicine, Singapore Bioimaging Consortium (SBIC), Agency for Science, Technology and Research (A*STAR), 11 Biopolis Way #02-02, Singapore, 138667, Singapore
| | - Smarajit Chakraborty
- Laboratory of Metabolic Medicine, Singapore Bioimaging Consortium (SBIC), Agency for Science, Technology and Research (A*STAR), 11 Biopolis Way #02-02, Singapore, 138667, Singapore
| | - Krishna Kanth Chitta
- Signal and Image Processing Group, Singapore Bioimaging Consortium (SBIC), Agency for Science, Technology and Research (A*STAR), 11 Biopolis Way #02-02, Singapore, 138667, Singapore
| | - Subha Subramanian
- Laboratory of Metabolic Medicine, Singapore Bioimaging Consortium (SBIC), Agency for Science, Technology and Research (A*STAR), 11 Biopolis Way #02-02, Singapore, 138667, Singapore
| | - Tau En Lim
- Laboratory of Metabolic Medicine, Singapore Bioimaging Consortium (SBIC), Agency for Science, Technology and Research (A*STAR), 11 Biopolis Way #02-02, Singapore, 138667, Singapore
| | - Weiping Han
- Laboratory of Metabolic Medicine, Singapore Bioimaging Consortium (SBIC), Agency for Science, Technology and Research (A*STAR), 11 Biopolis Way #02-02, Singapore, 138667, Singapore
| | - K N Bhanu Prakash
- Signal and Image Processing Group, Singapore Bioimaging Consortium (SBIC), Agency for Science, Technology and Research (A*STAR), 11 Biopolis Way #02-02, Singapore, 138667, Singapore
| | - Shigeki Sugii
- Laboratory of Metabolic Medicine, Singapore Bioimaging Consortium (SBIC), Agency for Science, Technology and Research (A*STAR), 11 Biopolis Way #02-02, Singapore, 138667, Singapore. .,Duke-NUS Medical School, Singapore, Singapore.
| |
Collapse
|
14
|
Trichur Khabeer S, Prashant A, Haravey Krishnan M. Dietary fatty acids from pomegranate seeds (Punica granatum) inhibit adipogenesis and impact the expression of the obesity-associated mRNA transcripts in human adipose-derived mesenchymal stem cells. J Food Biochem 2018; 43:e12739. [PMID: 31353555 DOI: 10.1111/jfbc.12739] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 10/10/2018] [Accepted: 11/04/2018] [Indexed: 11/30/2022]
Abstract
Obesity is a metabolic disorder that manifests into various forms. Recent studies have indicated that the pomegranate (Punica granatum) seed oil (PSO) has many biologically active components that help in controlling diet-induced obesity and insulin resistance. However, its impact on the adipogenic differentiation of human adipose-derived mesenchymal stem cells (HADMSC) remains unclear. Here we have attempted to study the anti-obesity potential of SHAMstat3pg, a fatty acid composite extracted from PSO. It is composed of three dietary fatty acids: punicic acid [(9Z,11E,13Z)-9,11,13-Octadecatrienoic acid], oleic acid [Cis-9-Octadecenoic acid], and linoleic acid [(9Z,12Z)-octadeca-9,12-dienoic acid]. In this study, we discuss the impact of the fatty acids on adipogenesis, inflammation, glucose uptake, and mitochondrial ATP production. The impact of SHAMstat3pg on the expression of various obesity-associated protein and mRNA transcripts in HADMSC was also analyzed. The results indicate that exposure to 10 µg/ml of SHAMstat3pg (24 hr) inhibited adipogenesis of HADMSC, ameliorated inflammation, attenuated ATP production, and glucose uptake. Also, the extract favorably regulated the mRNA expression of the studied obesity-associated gene transcripts. PRACTICAL APPLICATIONS: SHAMstat3pg has the potential to serve as a multi-targeted therapy for the management of obesity. This study demonstrated that the dietary fatty acids inhibited the differentiation of preadipocytes to adipocytes. SHAMstat3pg has also shown to have a favorable impact on the expression of the obesity-linked proteins and genes in HADMSC that are associated with adipogenesis, inflammation, satiety, energy intake/expenditure (central and peripheral signaling molecules). The study gives an overview of the vast number of genes impacted by the treatment with SHAMstat3pg paving the way for future studies to demonstrate the exact mode of action of how dietary fatty acids can help manage obesity, insulin resistance, and type 2 diabetes.
Collapse
Affiliation(s)
- Shamsiya Trichur Khabeer
- Department of Food Protectants & Infestation Control, Central Food Technological Research Institute (CSIR - CFTRI), Mysore, India.,Academy of Scientific and Innovative Research (AcSIR), New Delhi, India
| | - Akila Prashant
- Centre of Excellence in Molecular Biology and Regenerative Medicine, Department of Biochemistry, JSS Medical College, JSS Academy of Higher Education and Research, Mysore, India
| | - Manonmani Haravey Krishnan
- Department of Food Protectants & Infestation Control, Central Food Technological Research Institute (CSIR - CFTRI), Mysore, India
| |
Collapse
|
15
|
Focal Adhesion Kinase and ROCK Signaling Are Switch-Like Regulators of Human Adipose Stem Cell Differentiation towards Osteogenic and Adipogenic Lineages. Stem Cells Int 2018; 2018:2190657. [PMID: 30275837 PMCID: PMC6157106 DOI: 10.1155/2018/2190657] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 06/07/2018] [Accepted: 07/04/2018] [Indexed: 12/18/2022] Open
Abstract
Adipose tissue is an attractive stem cell source for soft and bone tissue engineering applications and stem cell therapies. The adipose-derived stromal/stem cells (ASCs) have a multilineage differentiation capacity that is regulated through extracellular signals. The cellular events related to cell adhesion and cytoskeleton have been suggested as central regulators of differentiation fate decision. However, the detailed knowledge of these molecular mechanisms in human ASCs remains limited. This study examined the significance of focal adhesion kinase (FAK), Rho-Rho-associated protein kinase (Rho-ROCK), and their downstream target extracellular signal-regulated kinase 1/2 (ERK1/2) on hASCs differentiation towards osteoblasts and adipocytes. Analyses of osteogenic markers RUNX2A, alkaline phosphatase, and matrix mineralization revealed an essential role of active FAK, ROCK, and ERK1/2 signaling for the osteogenesis of hASCs. Inhibition of these kinases with specific small molecule inhibitors diminished osteogenesis, while inhibition of FAK and ROCK activity led to elevation of adipogenic marker genes AP2 and LEP and lipid accumulation implicating adipogenesis. This denotes to a switch-like function of FAK and ROCK signaling in the osteogenic and adipogenic fates of hASCs. On the contrary, inhibition of ERK1/2 kinase activity deceased adipogenic differentiation, indicating that activation of ERK signaling is required for both adipogenic and osteogenic potential. Our findings highlight the reciprocal role of cell adhesion mechanisms and actin dynamics in regulation of hASC lineage commitment. This study enhances the knowledge of molecular mechanisms dictating hASC differentiation and thus opens possibilities for more efficient control of hASC differentiation.
Collapse
|
16
|
Evidence of a DHA Signature in the Lipidome and Metabolome of Human Hepatocytes. Int J Mol Sci 2017; 18:ijms18020359. [PMID: 28208746 PMCID: PMC5343894 DOI: 10.3390/ijms18020359] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Revised: 01/25/2017] [Accepted: 01/26/2017] [Indexed: 12/19/2022] Open
Abstract
Cell supplementation with bioactive molecules often causes a perturbation in the whole intracellular environment. Omics techniques can be applied for the assessment of this perturbation. In this study, the overall effect of docosahexaenoic acid (DHA) supplementation on cultured human hepatocyte lipidome and metabolome has been investigated using nuclear magnetic resonance (NMR) in combination with traditional techniques. The effect of two additional bioactives sharing with DHA the lipid-lowering effect—propionic acid (PRO) and protocatechuic acid (PCA)—has also been evaluated in the context of possible synergism. NMR analysis of the cell lipid extracts showed that DHA supplementation, alone or in combination with PCA or PRO, strongly altered the cell lipid profile. The perfect discrimination between cells receiving DHA (alone or in combination) and the other cells reinforced the idea of a global rearrangement of the lipid environment induced by DHA. Notably, gas chromatography and fluorimetric analyses confirmed the strong discrimination obtained by NMR. The DHA signature was evidenced not only in the cell lipidome, but also in the metabolome. Results reported herein indicate that NMR, combined with other techniques, represents a fundamental approach to studying the effect of bioactive supplementation, particularly in the case of molecules with a broad spectrum of mechanisms of action.
Collapse
|