1
|
Yaghmour MH, Sajeevan T, Thiele C, Kuerschner L. Phosphatidylcholine synthesis and remodeling in brain endothelial cells. J Lipid Res 2025; 66:100773. [PMID: 40074037 PMCID: PMC12002869 DOI: 10.1016/j.jlr.2025.100773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2025] [Revised: 02/21/2025] [Accepted: 03/07/2025] [Indexed: 03/14/2025] Open
Abstract
Mammalian cells synthesize hundreds of different variants of their prominent membrane lipid phosphatidylcholine (PC), all differing in the side chain composition. This batch is constantly remodeled by the Lands cycle, a metabolic pathway replacing one chain at a time. Using the alkyne lipid lyso-phosphatidylpropargylcholine (LpPC), a precursor and intermediate in PC synthesis and remodeling, we study both processes in brain endothelial bEND3 cells. A novel method for multiplexed sample analysis by mass spectrometry is developed that offers high throughput and molecular species resolution of the propargyl-labeled PC lipids. Their time-resolved profiles and kinetic parameters of metabolism demonstrate the plasticity of the PC pool and the acute handling of lipid influx in endothelial cells differs from that in hepatocytes. Side chain remodeling as a form of lipid cycling adapts the PC pool to the cell's need and maintains lipid homeostasis. We estimate that endothelial cells possess the theoretical capacity to remodel up to 99% of their PC pool within 3.5 h using the Lands cycle. However, PC species are not subjected stochastically to this remodeling pathway as different species containing duplets of saturated, omega-3, and omega-6 side chains show different decay kinetics. Our findings emphasize the essential function of Lands cycling for monitoring and adapting the side chain composition of PC in endothelial cells.
Collapse
Affiliation(s)
- Mohamed H Yaghmour
- LIMES Life and Medical Sciences Institute, University of Bonn, Bonn, Germany
| | - Theja Sajeevan
- LIMES Life and Medical Sciences Institute, University of Bonn, Bonn, Germany
| | - Christoph Thiele
- LIMES Life and Medical Sciences Institute, University of Bonn, Bonn, Germany
| | - Lars Kuerschner
- LIMES Life and Medical Sciences Institute, University of Bonn, Bonn, Germany.
| |
Collapse
|
2
|
Jamecna D, Höglinger D. The use of click chemistry in sphingolipid research. J Cell Sci 2024; 137:jcs261388. [PMID: 38488070 DOI: 10.1242/jcs.261388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2024] Open
Abstract
Sphingolipid dysregulation is involved in a range of rare and fatal diseases as well as common pathologies including cancer, infectious diseases or neurodegeneration. Gaining insights into how sphingolipids are involved in these diseases would contribute much to our understanding of human physiology, as well as the pathology mechanisms. However, scientific progress is hampered by a lack of suitable tools that can be used in intact systems. To overcome this, efforts have turned to engineering modified lipids with small clickable tags and to harnessing the power of click chemistry to localize and follow these minimally modified lipid probes in cells. We hope to inspire the readers of this Review to consider applying existing click chemistry tools for their own aspects of sphingolipid research. To this end, we focus here on different biological applications of clickable lipids, mainly to follow metabolic conversions, their visualization by confocal or superresolution microscopy or the identification of their protein interaction partners. Finally, we describe recent approaches employing organelle-targeted and clickable lipid probes to accurately follow intracellular sphingolipid transport with organellar precision.
Collapse
Affiliation(s)
- Denisa Jamecna
- Heidelberg University Biochemistry Center, Im Neuenheimer Feld 328, 69118 Heidelberg, Germany
| | - Doris Höglinger
- Heidelberg University Biochemistry Center, Im Neuenheimer Feld 328, 69118 Heidelberg, Germany
| |
Collapse
|
3
|
Pelgrom LR, Davis GM, O'Shaughnessy S, Wezenberg EJM, Van Kasteren SI, Finlay DK, Sinclair LV. QUAS-R: An SLC1A5-mediated glutamine uptake assay with single-cell resolution reveals metabolic heterogeneity with immune populations. Cell Rep 2023; 42:112828. [PMID: 37478011 DOI: 10.1016/j.celrep.2023.112828] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 05/26/2023] [Accepted: 07/03/2023] [Indexed: 07/23/2023] Open
Abstract
System-level analysis of single-cell data is rapidly transforming the field of immunometabolism. Given the competitive demand for nutrients in immune microenvironments, there is a need to understand how and when immune cells access these nutrients. Here, we describe a new approach for single-cell analysis of nutrient uptake where we use in-cell biorthogonal labeling of a functionalized amino acid after transport into the cell. In this manner, the bona fide active uptake of glutamine via SLC1A5/ASCT2 could be quantified. We used this assay to interrogate the transport capacity of complex immune subpopulations, both in vitro and in vivo. Taken together, our findings provide an easy sensitive single-cell assay to assess which cells support their function via SLC1A5-mediated uptake. This is a significant addition to the single-cell metabolic toolbox required to decode the metabolic landscape of complex immune microenvironments.
Collapse
Affiliation(s)
- Leonard R Pelgrom
- Leiden Institute of Chemistry and the Institute of Chemical Immunology, Leiden University, Einsteinweg 55, 2333 CC Leiden, the Netherlands
| | - Gavin M Davis
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, 152-160 Pearse Street, D02R590 Dublin, Ireland
| | - Simon O'Shaughnessy
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, 152-160 Pearse Street, D02R590 Dublin, Ireland
| | - Emilie J M Wezenberg
- Leiden Institute of Chemistry and the Institute of Chemical Immunology, Leiden University, Einsteinweg 55, 2333 CC Leiden, the Netherlands
| | - Sander I Van Kasteren
- Leiden Institute of Chemistry and the Institute of Chemical Immunology, Leiden University, Einsteinweg 55, 2333 CC Leiden, the Netherlands.
| | - David K Finlay
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, 152-160 Pearse Street, D02R590 Dublin, Ireland; School of Pharmacy and Pharmaceutical Sciences, Trinity Biomedical Sciences Institute, Trinity College Dublin, 152-160 Pearse Street, D02R590 Dublin, Ireland.
| | - Linda V Sinclair
- School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, Scotland, UK.
| |
Collapse
|
4
|
Abstract
Lipids are essential cellular components forming membranes, serving as energy reserves, and acting as chemical messengers. Dysfunction in lipid metabolism and signaling is associated with a wide range of diseases including cancer and autoimmunity. Heterogeneity in cell behavior including lipid signaling is increasingly recognized as a driver of disease and drug resistance. This diversity in cellular responses as well as the roles of lipids in health and disease drive the need to quantify lipids within single cells. Single-cell lipid assays are challenging due to the small size of cells (∼1 pL) and the large numbers of lipid species present at concentrations spanning orders of magnitude. A growing number of methodologies enable assay of large numbers of lipid analytes, perform high-resolution spatial measurements, or permit highly sensitive lipid assays in single cells. Covered in this review are mass spectrometry, Raman imaging, and fluorescence-based assays including microscopy and microseparations.
Collapse
Affiliation(s)
- Ming Yao
- Department of Bioengineering, University of Washington, Seattle, Washington, USA; , ,
| | | | - Nancy L Allbritton
- Department of Bioengineering, University of Washington, Seattle, Washington, USA; , ,
| |
Collapse
|
5
|
Li L, Li J, Ma L, Shang H, Zou Z. SAR-guided development of indole-matrine hybrids as potential anticancer agents via mitochondrial stress/cytochrome c/caspase 3 signaling pathway. Bioorg Chem 2023; 134:106341. [PMID: 36842321 DOI: 10.1016/j.bioorg.2023.106341] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/31/2022] [Accepted: 01/02/2023] [Indexed: 01/06/2023]
Abstract
Matrine is a clinically used adjuvant anticancer drug, yet its mild potency limited its application. To improve the anticancer activity of matrine, a total of 31 indole-matrine hybrids were constructed in four rounds of SAR-guided iterative structural optimization process. All of the synthesized compounds were evaluated for their antiproliferative activities against a panel of four human cancer cell lines (Hela, MCF-7, SGC-7901, HepG2) and two normal cell lines (GES-1, LO2). The most active hybrid 8g exhibited the anticancer IC50 values of 0.9 to 1.2 μM, which was 3-magnitude of orders more potent than matrine. 8g also showed better selectivity towards cancer cells with the selectivity index value raised from 1.5 to 6.2. Mechanistic studies demonstrated a mitochondrial distribution for 8g by intracellular click chemistry approaches, which led to the discovery that 8g strongly induced mitochondrial stress, as evidenced by impaired energy metabolism, depolarized mitochondrial membrane potential, overload of mitochondrial calcium and escalated ROS production. 8g-induced mitochondrial stress further led to the release of cytochrome c and subsequent activation of caspase 3, which significantly promoted cellular death and inhibited colony formation.
Collapse
Affiliation(s)
- Lingyu Li
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China; State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Jingrong Li
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China; State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Liyan Ma
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China; State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Hai Shang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China; State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China.
| | - Zhongmei Zou
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China; State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China.
| |
Collapse
|
6
|
Punt J, van der Vliet D, van der Stelt M. Chemical Probes to Control and Visualize Lipid Metabolism in the Brain. Acc Chem Res 2022; 55:3205-3217. [PMID: 36283077 PMCID: PMC9670861 DOI: 10.1021/acs.accounts.2c00521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Signaling lipids, such as the endocannabinoids, play an important role in the brain. They regulate synaptic transmission and control various neurophysiological processes, including pain sensation, appetite, memory formation, stress, and anxiety. Unlike classical neurotransmitters, lipid messengers are produced on demand and degraded by metabolic enzymes to control their lifespan and signaling actions. Chemical biology approaches have become one of the main driving forces to study and unravel the physiological role of lipid messengers in the brain. Here, we review how the development and use of chemical probes has allowed one to study endocannabinoid signaling by (i) inhibiting the biosynthetic and metabolic enzymes; (ii) visualizing the activity of these enzymes; and (iii) controlling the release and transport of the endocannabinoids. Activity-based probes were instrumental to guide the discovery of highly selective and in vivo active inhibitors of the biosynthetic (DAGL, NAPE-PLD) and metabolic (MAGL, FAAH) enzymes of endocannabinoids. These inhibitors allowed one to study the role of these enzymes in animal models of disease. For instance, the DAGL-MAGL axis was shown to control neuroinflammation and the NAPE-PLD-FAAH axis to regulate emotional behavior. Activity-based protein profiling and chemical proteomics were essential to guide the drug discovery and development of compounds targeting MAGL and FAAH, such as ABX-1431 (Lu AG06466) and PF-04457845, respectively. These experimental drugs are now in clinical trials for multiple indications, including multiple sclerosis and post-traumatic stress disorders. Activity-based probes have also been used to visualize the activity of these lipid metabolizing enzymes with high spatial resolution in brain slices, thereby showing the cell type-specific activity of these lipid metabolizing enzymes. The transport, release, and uptake of signaling lipids themselves cannot, however, be captured by activity-based probes in a spatiotemporal controlled manner. Therefore, bio-orthogonal lipids equipped with photoreactive, photoswitchable groups or photocages have been developed. These chemical probes were employed to investigate the protein interaction partners of the endocannabinoids, such as putative membrane transporters, as well as to study the functional cellular responses within milliseconds upon irradiation. Finally, genetically encoded sensors have recently been developed to monitor the real-time release of endocannabinoids with high spatiotemporal resolution in cultured neurons, acute brain slices, and in vivo mouse models. It is anticipated that the combination of chemical probes, highly selective inhibitors, and sensors with advanced (super resolution) imaging modalities, such as PharmacoSTORM and correlative light-electron microscopy, will uncover the fundamental basis of lipid signaling at nanoscale resolution in the brain. Furthermore, chemical biology approaches enable the translation of these fundamental discoveries into clinical solutions for brain diseases with aberrant lipid signaling.
Collapse
|
7
|
Maxwell ZA, Suazo KF, Brown HM, Distefano MD, Arriaga EA. Combining Isoprenoid Probes with Antibody Markers for Mass Cytometric Analysis of Prenylation in Single Cells. Anal Chem 2022; 94:11521-11528. [PMID: 35952372 PMCID: PMC9441216 DOI: 10.1021/acs.analchem.2c01509] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Protein prenylation is an essential post-translational modification that plays a key role in facilitating protein localization. Aberrations in protein prenylation have been indicated in multiple disease pathologies including progeria, some forms of cancer, and Alzheimer's disease. While there are single-cell methods to study prenylation, these methods cannot simultaneously assess prenylation and other cellular changes in the complex cell environment. Here, we report a novel method to monitor, at the single-cell level, prenylation and expression of autophagy markers. An isoprenoid analogue containing a terminal alkyne, substrate of prenylation enzymes, was metabolically incorporated into cells in culture. Treatment with a terbium reporter containing an azide functional group, followed by copper-catalyzed azide-alkyne cycloaddition, covalently attached terbium ions to prenylated proteins within cells. In addition, simultaneous treatment with a holmium-containing analogue of the reporter, without an azide functional group, was used to correct for non-specific retention at the single-cell level. This procedure was compatible with other mass cytometric sample preparation steps that use metal-tagged antibodies. We demonstrate that this method reports changes in levels of prenylation in competitive and inhibitor assays, while tracking autophagy molecular markers with metal-tagged antibodies. The method reported here makes it possible to track prenylation along with other molecular pathways in single cells of complex systems, which is essential to elucidate the role of this post-translational modification in disease, cell response to pharmacological treatments, and aging.
Collapse
|
8
|
de Bus IA, America AHP, de Ruijter NCA, Lam M, van de Sande JW, Poland M, Witkamp RF, Zuilhof H, Balvers MGJ, Albada B. PUFA-Derived N-Acylethanolamide Probes Identify Peroxiredoxins and Small GTPases as Molecular Targets in LPS-Stimulated RAW264.7 Macrophages. ACS Chem Biol 2022; 17:2054-2064. [PMID: 35867905 PMCID: PMC9396616 DOI: 10.1021/acschembio.1c00355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We studied the mechanistic and biological origins of anti-inflammatory poly-unsaturated fatty acid-derived N-acylethanolamines using synthetic bifunctional chemical probes of docosahexaenoyl ethanolamide (DHEA) and arachidonoyl ethanolamide (AEA) in RAW264.7 macrophages stimulated with 1.0 μg mL-1 lipopolysaccharide. Using a photoreactive diazirine, probes were covalently attached to their target proteins, which were further studied by introducing a fluorescent probe or biotin-based affinity purification. Fluorescence confocal microscopy showed DHEA and AEA probes localized in cytosol, specifically in structures that point toward the endoplasmic reticulum and in membrane vesicles. Affinity purification followed by proteomic analysis revealed peroxiredoxin-1 (Prdx1) as the most significant binding interactor of both DHEA and AEA probes. In addition, Prdx4, endosomal related proteins, small GTPase signaling proteins, and prostaglandin synthase 2 (Ptgs2, also known as cyclooxygenase 2 or COX-2) were identified. Lastly, confocal fluorescence microscopy revealed the colocalization of Ptgs2 and Rac1 with DHEA and AEA probes. These data identified new molecular targets suggesting that DHEA and AEA may be involved in reactive oxidation species regulation, cell migration, cytoskeletal remodeling, and endosomal trafficking and support endocytosis as an uptake mechanism.
Collapse
Affiliation(s)
- Ian-Arris de Bus
- Division of Human Nutrition and Health, Wageningen University & Research, Stippeneng 4, 6708 WE Wageningen, The Netherlands.,Laboratory of Organic Chemistry, Wageningen University & Research, Stippeneng 4, 6708 WE Wageningen, The Netherlands
| | - Antoine H P America
- Wageningen Plant Research, Business Unit Bioscience, Wageningen University & Research, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Norbert C A de Ruijter
- Laboratory of Cell Biology, Wageningen Light Microscopy Centre, Wageningen University & Research, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Milena Lam
- Laboratory of Organic Chemistry, Wageningen University & Research, Stippeneng 4, 6708 WE Wageningen, The Netherlands
| | - Jasper W van de Sande
- Laboratory of Organic Chemistry, Wageningen University & Research, Stippeneng 4, 6708 WE Wageningen, The Netherlands
| | - Mieke Poland
- Division of Human Nutrition and Health, Wageningen University & Research, Stippeneng 4, 6708 WE Wageningen, The Netherlands
| | - Renger F Witkamp
- Division of Human Nutrition and Health, Wageningen University & Research, Stippeneng 4, 6708 WE Wageningen, The Netherlands
| | - Han Zuilhof
- Laboratory of Organic Chemistry, Wageningen University & Research, Stippeneng 4, 6708 WE Wageningen, The Netherlands.,School of Pharmaceutical Sciences and Technology, Tianjin University, 92 Weijin Road, 300072 Tianjin, People's Republic of China.,Department of Chemical and Materials Engineering, Faculty of Engineering, King Abdulaziz University, 21589 Jeddah, Saudi Arabia
| | - Michiel G J Balvers
- Division of Human Nutrition and Health, Wageningen University & Research, Stippeneng 4, 6708 WE Wageningen, The Netherlands
| | - Bauke Albada
- Laboratory of Organic Chemistry, Wageningen University & Research, Stippeneng 4, 6708 WE Wageningen, The Netherlands
| |
Collapse
|
9
|
Kuerschner L, Thiele C. Tracing Lipid Metabolism by Alkyne Lipids and Mass Spectrometry: The State of the Art. Front Mol Biosci 2022; 9:880559. [PMID: 35669564 PMCID: PMC9163959 DOI: 10.3389/fmolb.2022.880559] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 04/19/2022] [Indexed: 01/22/2023] Open
Abstract
Lipid tracing studies are a key method to gain a better understanding of the complex metabolic network lipids are involved in. In recent years, alkyne lipid tracers and mass spectrometry have been developed as powerful tools for such studies. This study aims to review the present standing of the underlying technique, highlight major findings the strategy allowed for, summarize its advantages, and discuss some limitations. In addition, an outlook on future developments is given.
Collapse
|
10
|
Nieto-Garai JA, Lorizate M, Contreras FX. Shedding light on membrane rafts structure and dynamics in living cells. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2022; 1864:183813. [PMID: 34748743 DOI: 10.1016/j.bbamem.2021.183813] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 10/21/2021] [Accepted: 10/25/2021] [Indexed: 12/12/2022]
Abstract
Cellular membranes are fundamental building blocks regulating an extensive repertoire of biological functions. These structures contain lipids and membrane proteins that are known to laterally self-aggregate in the plane of the membrane, forming defined membrane nanoscale domains essential for protein activity. Membrane rafts are described as heterogeneous, dynamic, and short-lived cholesterol- and sphingolipid-enriched membrane nanodomains (10-200 nm) induced by lipid-protein and lipid-lipid interactions. Those membrane nanodomains have been extensively characterized using model membranes and in silico methods. However, despite the development of advanced fluorescence microscopy techniques, undoubted nanoscale visualization by imaging techniques of membrane rafts in the membrane of unperturbed living cells is still uncompleted, increasing the skepticism about their existence. Here, we broadly review recent biochemical and microscopy techniques used to investigate membrane rafts in living cells and we enumerate persistent open questions to answer before unlocking the mystery of membrane rafts in living cells.
Collapse
Affiliation(s)
- Jon Ander Nieto-Garai
- Department of Biochemistry and Molecular Biology, University of the Basque Country (UPV/EHU), Barrio Sarriena s/n, 48940 Bilbao, Spain.
| | - Maier Lorizate
- Department of Biochemistry and Molecular Biology, University of the Basque Country (UPV/EHU), Barrio Sarriena s/n, 48940 Bilbao, Spain; Instituto Biofisika (UPV/EHU, CSIC), Barrio Sarriena s/n, 48940 Bilbao, Spain
| | - F-Xabier Contreras
- Department of Biochemistry and Molecular Biology, University of the Basque Country (UPV/EHU), Barrio Sarriena s/n, 48940 Bilbao, Spain; Instituto Biofisika (UPV/EHU, CSIC), Barrio Sarriena s/n, 48940 Bilbao, Spain; IKERBASQUE, Basque Foundation for Science, 48011 Bilbao, Spain.
| |
Collapse
|
11
|
Lorizate M, Terrones O, Nieto-Garai JA, Rojo-Bartolomé I, Ciceri D, Morana O, Olazar-Intxausti J, Arboleya A, Martin A, Szynkiewicz M, Calleja-Felipe M, Bernardino de la Serna J, Contreras FX. Super-Resolution Microscopy Using a Bioorthogonal-Based Cholesterol Probe Provides Unprecedented Capabilities for Imaging Nanoscale Lipid Heterogeneity in Living Cells. SMALL METHODS 2021; 5:e2100430. [PMID: 34928061 DOI: 10.1002/smtd.202100430] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 06/26/2021] [Indexed: 06/14/2023]
Abstract
Despite more than 20 years of work since the lipid raft concept was proposed, the existence of these nanostructures remains highly controversial due to the lack of noninvasive methods to investigate their native nanorganization in living unperturbed cells. There is an unmet need for probes for direct imaging of nanoscale membrane dynamics with high spatial and temporal resolution in living cells. In this paper, a bioorthogonal-based cholesterol probe (chol-N3 ) is developed that, combined with nanoscopy, becomes a new powerful method for direct visualization and characterization of lipid raft at unprecedented resolution in living cells. The chol-N3 probe mimics cholesterol in synthetic and cellular membranes without perturbation. When combined with live-cell super-resolution microscopy, chol-N3 demonstrates the existence of cholesterol-rich nanodomains of <50 nm at the plasma membrane of resting living cells. Using this tool, the lipid membrane structure of such subdiffraction limit domains is identified, and the nanoscale spatiotemporal organization of cholesterol in the plasma membrane of living cells reveals multiple cholesterol diffusion modes at different spatial localizations. Finally, imaging across thick organ samples outlines the potential of this new method to address essential biological questions that were previously beyond reach.
Collapse
Affiliation(s)
- Maier Lorizate
- Department of Biochemistry and Molecular Biology, University of the Basque Country (UPV/EHU) and Instituto Biofisika (UPV/EHU, CSIC), Barrio Sarriena s/n, Leioa, 48940, Spain
| | - Oihana Terrones
- Department of Biochemistry and Molecular Biology, University of the Basque Country (UPV/EHU), Barrio Sarriena s/n, Leioa, 48940, Spain
| | - Jon Ander Nieto-Garai
- Department of Biochemistry and Molecular Biology, University of the Basque Country (UPV/EHU) and Instituto Biofisika (UPV/EHU, CSIC), Barrio Sarriena s/n, Leioa, 48940, Spain
- Fundación Biofísica Bizkaia/Biofisika Bizkaia Fundazioa (FBB), Barrio Sarriena s/n, Leioa, 48940, Spain
| | - Iratxe Rojo-Bartolomé
- Department of Biochemistry and Molecular Biology, University of the Basque Country (UPV/EHU) and Instituto Biofisika (UPV/EHU, CSIC), Barrio Sarriena s/n, Leioa, 48940, Spain
- Fundación Biofísica Bizkaia/Biofisika Bizkaia Fundazioa (FBB), Barrio Sarriena s/n, Leioa, 48940, Spain
| | - Dalila Ciceri
- Fundación Biofísica Bizkaia/Biofisika Bizkaia Fundazioa (FBB), Barrio Sarriena s/n, Leioa, 48940, Spain
| | - Ornella Morana
- Department of Biochemistry and Molecular Biology, University of the Basque Country (UPV/EHU) and Instituto Biofisika (UPV/EHU, CSIC), Barrio Sarriena s/n, Leioa, 48940, Spain
- Fundación Biofísica Bizkaia/Biofisika Bizkaia Fundazioa (FBB), Barrio Sarriena s/n, Leioa, 48940, Spain
| | - June Olazar-Intxausti
- Department of Biochemistry and Molecular Biology, University of the Basque Country (UPV/EHU), Barrio Sarriena s/n, Leioa, 48940, Spain
| | - Aroa Arboleya
- Department of Biochemistry and Molecular Biology, University of the Basque Country (UPV/EHU) and Instituto Biofisika (UPV/EHU, CSIC), Barrio Sarriena s/n, Leioa, 48940, Spain
- Fundación Biofísica Bizkaia/Biofisika Bizkaia Fundazioa (FBB), Barrio Sarriena s/n, Leioa, 48940, Spain
| | - Alexia Martin
- National Heart and Lung Institute, Imperial College London, Sir Alexander Fleming Building, London, SW7 2AZ, UK
| | - Marta Szynkiewicz
- Central Laser Facility, Science and Technology Facilities Council, Rutherford Appleton Laboratory, Research Complex at Harwell, Oxford, OX11 0FA, UK
| | - Maria Calleja-Felipe
- Department of Biochemistry and Molecular Biology, University of the Basque Country (UPV/EHU) and Instituto Biofisika (UPV/EHU, CSIC), Barrio Sarriena s/n, Leioa, 48940, Spain
| | - Jorge Bernardino de la Serna
- National Heart and Lung Institute, Imperial College London, Sir Alexander Fleming Building, London, SW7 2AZ, UK
- Central Laser Facility, Science and Technology Facilities Council, Rutherford Appleton Laboratory, Research Complex at Harwell, Oxford, OX11 0FA, UK
- NIHR Imperial Biomedical Research Centre, London, SW7 2AZ, UK
| | - F-Xabier Contreras
- Department of Biochemistry and Molecular Biology, University of the Basque Country (UPV/EHU) and Instituto Biofisika (UPV/EHU, CSIC), Barrio Sarriena s/n, Leioa, 48940, Spain
- IKERBASQUE, Basque Foundation for Science, Bilbao, 48011, Spain
| |
Collapse
|
12
|
Bos AV, Erkelens MN, Koenders STA, van der Stelt M, van Egmond M, Mebius RE. Clickable Vitamins as a New Tool to Track Vitamin A and Retinoic Acid in Immune Cells. Front Immunol 2021; 12:671283. [PMID: 34305901 PMCID: PMC8298001 DOI: 10.3389/fimmu.2021.671283] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 06/02/2021] [Indexed: 01/24/2023] Open
Abstract
The vitamin A derivative, retinoid acid (RA) is key player in guiding adaptive mucosal immune responses. However, data on the uptake and metabolism of vitamin A within human immune cells has remained largely elusive because retinoids are small, lipophilic molecules which are difficult to detect. To overcome this problem and to be able to study the effect of vitamin A metabolism in human immune cell subsets, we have synthesized novel bio-orthogonal retinoid-based probes (clickable probes), which are structurally and functionally indistinguishable from vitamin A. The probes contain a functional group (an alkyne) to conjugate to a fluorogenic dye to monitor retinoid molecules in real-time in immune cells. We demonstrate, by using flow cytometry and microscopy, that multiple immune cells have the capacity to internalize retinoids to varying degrees, including human monocyte-derived dendritic cells (DCs) and naïve B lymphocytes. We observed that naïve B cells lack the enzymatic machinery to produce RA, but use exogenous retinoic acid to enhance CD38 expression. Furthermore, we showed that human DCs metabolize retinal into retinoic acid, which in co-culture with naïve B cells led to of the induction of CD38 expression. These data demonstrate that in humans, DCs can serve as an exogenous source of RA for naïve B cells. Taken together, through the use of clickable vitamins our data provide valuable insight in the mechanism of vitamin A metabolism and its importance for human adaptive immunity.
Collapse
Affiliation(s)
- Amelie V Bos
- Department of Molecular Cell Biology and Immunology, Amsterdam University Medical Center, location VUmc, Amsterdam, Netherlands
| | - Martje N Erkelens
- Department of Molecular Cell Biology and Immunology, Amsterdam University Medical Center, location VUmc, Amsterdam, Netherlands
| | - Sebastiaan T A Koenders
- Department of Molecular Physiology, Leiden Institute of Chemistry, Leiden University, Leiden, Netherlands
| | - Mario van der Stelt
- Department of Molecular Physiology, Leiden Institute of Chemistry, Leiden University, Leiden, Netherlands
| | - Marjolein van Egmond
- Department of Molecular Cell Biology and Immunology, Amsterdam University Medical Center, location VUmc, Amsterdam, Netherlands.,Department of Surgery, Amsterdam University Medical Center, location VUmc, Amsterdam, Netherlands
| | - Reina E Mebius
- Department of Molecular Cell Biology and Immunology, Amsterdam University Medical Center, location VUmc, Amsterdam, Netherlands
| |
Collapse
|
13
|
Suazo KF, Park KY, Distefano MD. A Not-So-Ancient Grease History: Click Chemistry and Protein Lipid Modifications. Chem Rev 2021; 121:7178-7248. [PMID: 33821625 PMCID: PMC8820976 DOI: 10.1021/acs.chemrev.0c01108] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Protein lipid modification involves the attachment of hydrophobic groups to proteins via ester, thioester, amide, or thioether linkages. In this review, the specific click chemical reactions that have been employed to study protein lipid modification and their use for specific labeling applications are first described. This is followed by an introduction to the different types of protein lipid modifications that occur in biology. Next, the roles of click chemistry in elucidating specific biological features including the identification of lipid-modified proteins, studies of their regulation, and their role in diseases are presented. A description of the use of protein-lipid modifying enzymes for specific labeling applications including protein immobilization, fluorescent labeling, nanostructure assembly, and the construction of protein-drug conjugates is presented next. Concluding remarks and future directions are presented in the final section.
Collapse
Affiliation(s)
- Kiall F. Suazo
- Department of Chemistry, University of Minnesota, Minneapolis, MN 55455 USA
| | - Keun-Young Park
- Department of Chemistry, University of Minnesota, Minneapolis, MN 55455 USA
| | - Mark D. Distefano
- Department of Chemistry, University of Minnesota, Minneapolis, MN 55455 USA
| |
Collapse
|
14
|
Guselnikova O, Váňa J, Phuong LT, Panov I, Rulíšek L, Trelin A, Postnikov P, Švorčík V, Andris E, Lyutakov O. Plasmon-assisted click chemistry at low temperature: an inverse temperature effect on the reaction rate. Chem Sci 2021; 12:5591-5598. [PMID: 34163774 PMCID: PMC8179579 DOI: 10.1039/d0sc05898j] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 03/05/2021] [Indexed: 11/21/2022] Open
Abstract
Plasmon assistance promotes a range of chemical transformations by decreasing their activation energies. In a common case, thermal and plasmon assistance work synergistically: higher temperature results in higher plasmon-enhanced catalysis efficiency. Herein, we report an unexpected tenfold increase in the reaction efficiency of surface plasmon-assisted Huisgen dipolar azide-alkyne cycloaddition (AAC) when the reaction mixture is cooled from room temperature to -35 °C. We attribute the observed increase in the reaction efficiency to complete plasmon-induced annihilation of the reaction barrier, prolongation of plasmon lifetime, and decreased relaxation of plasmon-excited-states under cooling. Furthermore, control quenching experiments supported by theoretical calculations indicate that plasmon-mediated substrate excitation to an electronic triplet state may play the key role in plasmon-assisted chemical transformation. Last but not least, we demonstrated the possible applicability of plasmon assistance to biological systems by AAC coupling of biotin to gold nanoparticles performed at -35 °C.
Collapse
Affiliation(s)
- Olga Guselnikova
- Department of Solid State Engineering, University of Chemistry and Technology 166 28 Prague Czech Republic
- Research School of Chemistry & Applied Biomedical Sciences, National Research Tomsk Polytechnic University Lenin Avenue 30 Tomsk 634050 Russia
| | - Jiří Váňa
- Institute of Organic Chemistry and Technology, Faculty of Chemical Technology, University of Pardubice Studentská 573 532 10 Pardubice Czech Republic
| | - Linh Trinh Phuong
- Department of Solid State Engineering, University of Chemistry and Technology 166 28 Prague Czech Republic
| | - Illia Panov
- Group of Advanced Materials and Organic Synthesis, Institute of Chemical Process Fundamentals, Czech Academy of Sciences Rozvojová 1/135 165 02 Prague Czech Republic
| | - Lubomír Rulíšek
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences Flemingovo náměstí 2 166 10 Prague 6 Czech Republic
| | - Andrii Trelin
- Department of Solid State Engineering, University of Chemistry and Technology 166 28 Prague Czech Republic
| | - Pavel Postnikov
- Department of Solid State Engineering, University of Chemistry and Technology 166 28 Prague Czech Republic
- Research School of Chemistry & Applied Biomedical Sciences, National Research Tomsk Polytechnic University Lenin Avenue 30 Tomsk 634050 Russia
| | - Václav Švorčík
- Department of Solid State Engineering, University of Chemistry and Technology 166 28 Prague Czech Republic
| | - Erik Andris
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences Flemingovo náměstí 2 166 10 Prague 6 Czech Republic
| | - Oleksiy Lyutakov
- Department of Solid State Engineering, University of Chemistry and Technology 166 28 Prague Czech Republic
- Research School of Chemistry & Applied Biomedical Sciences, National Research Tomsk Polytechnic University Lenin Avenue 30 Tomsk 634050 Russia
| |
Collapse
|
15
|
Spannl S, Buhl T, Nellas I, Zeidan SA, Iyer KV, Khaliullina H, Schultz C, Nadler A, Dye NA, Eaton S. Glycolysis regulates Hedgehog signalling via the plasma membrane potential. EMBO J 2020; 39:e101767. [PMID: 33021744 PMCID: PMC7604625 DOI: 10.15252/embj.2019101767] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 08/19/2020] [Accepted: 08/25/2020] [Indexed: 01/04/2023] Open
Abstract
Changes in cell metabolism and plasma membrane potential have been linked to shifts between tissue growth and differentiation, and to developmental patterning. How such changes mediate these effects is poorly understood. Here, we use the developing wing of Drosophila to investigate the interplay between cell metabolism and a key developmental regulator-the Hedgehog (Hh) signalling pathway. We show that reducing glycolysis both lowers steady-state levels of ATP and stabilizes Smoothened (Smo), the 7-pass transmembrane protein that transduces the Hh signal. As a result, the transcription factor Cubitus interruptus accumulates in its full-length, transcription activating form. We show that glycolysis is required to maintain the plasma membrane potential and that plasma membrane depolarization blocks cellular uptake of N-acylethanolamides-lipoprotein-borne Hh pathway inhibitors required for Smo destabilization. Similarly, pharmacological inhibition of glycolysis in mammalian cells induces ciliary translocation of Smo-a key step in pathway activation-in the absence of Hh. Thus, changes in cell metabolism alter Hh signalling through their effects on plasma membrane potential.
Collapse
Affiliation(s)
- Stephanie Spannl
- Max Planck Institute of Molecular Cell Biology and GeneticsDresdenGermany
- Present address:
Department of BiochemistryFaculty of MedicineUniversity of TorontoTorontoONCanada
| | - Tomasz Buhl
- Max Planck Institute of Molecular Cell Biology and GeneticsDresdenGermany
- Biotechnologisches ZentrumTechnische Universität DresdenDresdenGermany
| | - Ioannis Nellas
- Max Planck Institute of Molecular Cell Biology and GeneticsDresdenGermany
- Biotechnologisches ZentrumTechnische Universität DresdenDresdenGermany
| | - Salma A Zeidan
- Max Planck Institute of Molecular Cell Biology and GeneticsDresdenGermany
- Biotechnologisches ZentrumTechnische Universität DresdenDresdenGermany
| | - K Venkatesan Iyer
- Max Planck Institute of Molecular Cell Biology and GeneticsDresdenGermany
- Max Planck Institute for the Physics of Complex SystemsDresdenGermany
| | - Helena Khaliullina
- Max Planck Institute of Molecular Cell Biology and GeneticsDresdenGermany
- Present address:
Department of PhysiologyDevelopment and NeuroscienceUniversity of CambridgeCambridgeUK
| | - Carsten Schultz
- Cell Biology and Biophysics UnitEuropean Molecular Biology LaboratoryHeidelbergGermany
- Department of Chemical Physiology and BiochemistryOregon Health and Science UniversityPortlandORUSA
| | - André Nadler
- Max Planck Institute of Molecular Cell Biology and GeneticsDresdenGermany
| | - Natalie A Dye
- Max Planck Institute of Molecular Cell Biology and GeneticsDresdenGermany
| | - Suzanne Eaton
- Max Planck Institute of Molecular Cell Biology and GeneticsDresdenGermany
- Biotechnologisches ZentrumTechnische Universität DresdenDresdenGermany
- Center for Systems Biology DresdenDresdenGermany
| |
Collapse
|
16
|
Karagiannis F, Masouleh SK, Wunderling K, Surendar J, Schmitt V, Kazakov A, Michla M, Hölzel M, Thiele C, Wilhelm C. Lipid-Droplet Formation Drives Pathogenic Group 2 Innate Lymphoid Cells in Airway Inflammation. Immunity 2020; 52:620-634.e6. [PMID: 32268121 DOI: 10.1016/j.immuni.2020.03.003] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 01/31/2020] [Accepted: 03/12/2020] [Indexed: 12/26/2022]
Abstract
Innate lymphoid cells (ILCs) play an important role in the control and maintenance of barrier immunity. However, chronic activation of ILCs results in immune-mediated pathology. Here, we show that tissue-resident type 2 ILCs (ILC2s) display a distinct metabolic signature upon chronic activation. In the context of allergen-driven airway inflammation, ILC2s increase their uptake of both external lipids and glucose. Externally acquired fatty acids are transiently stored in lipid droplets and converted into phospholipids to promote the proliferation of ILC2s. This metabolic program is imprinted by interleukin-33 (IL-33) and regulated by the genes Pparg and Dgat1, which are both controlled by glucose availability and mTOR signaling. Restricting dietary glucose by feeding mice a ketogenic diet largely ablated ILC2-mediated airway inflammation by impairing fatty acid metabolism and the formation of lipid droplets. Together, these results reveal that pathogenic ILC2 responses require lipid metabolism and identify ketogenic diet as a potent intervention strategy to treat airway inflammation.
Collapse
Affiliation(s)
- Fotios Karagiannis
- Immunopathology Unit, Institute of Clinical Chemistry and Clinical Pharmacology, Medical Faculty, University Hospital Bonn, University of Bonn, 53127 Bonn, Germany
| | - Schekufe Kharabi Masouleh
- Immunopathology Unit, Institute of Clinical Chemistry and Clinical Pharmacology, Medical Faculty, University Hospital Bonn, University of Bonn, 53127 Bonn, Germany
| | - Klaus Wunderling
- Life & Medical Sciences Institute (LIMES), University of Bonn, 53115 Bonn, Germany
| | - Jayagopi Surendar
- Immunopathology Unit, Institute of Clinical Chemistry and Clinical Pharmacology, Medical Faculty, University Hospital Bonn, University of Bonn, 53127 Bonn, Germany
| | - Vanessa Schmitt
- Immunopathology Unit, Institute of Clinical Chemistry and Clinical Pharmacology, Medical Faculty, University Hospital Bonn, University of Bonn, 53127 Bonn, Germany
| | - Alexander Kazakov
- Immunopathology Unit, Institute of Clinical Chemistry and Clinical Pharmacology, Medical Faculty, University Hospital Bonn, University of Bonn, 53127 Bonn, Germany
| | - Marcel Michla
- Immunopathology Unit, Institute of Clinical Chemistry and Clinical Pharmacology, Medical Faculty, University Hospital Bonn, University of Bonn, 53127 Bonn, Germany
| | - Michael Hölzel
- Institute of Experimental Oncology, Medical Faculty, University of Bonn, 53127 Bonn, Germany
| | - Christoph Thiele
- Life & Medical Sciences Institute (LIMES), University of Bonn, 53115 Bonn, Germany
| | - Christoph Wilhelm
- Immunopathology Unit, Institute of Clinical Chemistry and Clinical Pharmacology, Medical Faculty, University Hospital Bonn, University of Bonn, 53127 Bonn, Germany.
| |
Collapse
|
17
|
Varandas PAMM, Cobb AJA, Segundo MA, Silva EMP. Emergent Glycerophospholipid Fluorescent Probes: Synthesis and Applications. Bioconjug Chem 2019; 31:417-435. [DOI: 10.1021/acs.bioconjchem.9b00660] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Pedro A. M. M. Varandas
- LAQV, REQUIMTE, Department of Chemistry Sciences, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| | - Alexander J. A. Cobb
- Department of Chemistry, King’s College London, 7 Trinity Street, London SE1 1DB, United Kingdom
| | - Marcela A. Segundo
- LAQV, REQUIMTE, Department of Chemistry Sciences, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| | - Eduarda M. P. Silva
- LAQV, REQUIMTE, Department of Chemistry Sciences, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| |
Collapse
|
18
|
Multiplexed and single cell tracing of lipid metabolism. Nat Methods 2019; 16:1123-1130. [DOI: 10.1038/s41592-019-0593-6] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Accepted: 09/10/2019] [Indexed: 12/19/2022]
|
19
|
Widder P, Berner F, Summerer D, Drescher M. Double Nitroxide Labeling by Copper-Catalyzed Azide-Alkyne Cycloadditions with Noncanonical Amino Acids for Electron Paramagnetic Resonance Spectroscopy. ACS Chem Biol 2019; 14:839-844. [PMID: 30998314 PMCID: PMC6534342 DOI: 10.1021/acschembio.8b01111] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 04/18/2019] [Indexed: 01/17/2023]
Abstract
Electron paramagnetic resonance spectroscopy in combination with site-directed spin labeling (SDSL) is an important tool to obtain long-range distance restraints for protein structural research. We here study a variety of azide- and alkyne-bearing noncanonical amino acids (ncAA) in terms of protein single- and double-incorporation efficiency via nonsense suppression, metabolic stability, yields of nitroxide labeling via copper-catalyzed [3 + 2] azide-alkyne cycloadditions (CuAAC), and spectroscopic properties in continuous-wave and double electron-electron resonance measurements. We identify para-ethynyl-l-phenylalanine and para-propargyloxy-l-phenylalanine as suitable ncAA for CuAAC-based SDSL that will complement current SDSL approaches, particularly in cases in which essential cysteines of a target protein prevent the use of sulfhydryl-reactive spin labels.
Collapse
Affiliation(s)
- Pia Widder
- Department
of Chemistry and Konstanz Research School Chemical Biology, University of Konstanz, Konstanz, Germany
| | - Frederic Berner
- Department
of Chemistry and Konstanz Research School Chemical Biology, University of Konstanz, Konstanz, Germany
| | - Daniel Summerer
- Faculty
of Chemistry and Chemical Biology, TU Dortmund
University, Dortmund, Germany
| | - Malte Drescher
- Department
of Chemistry and Konstanz Research School Chemical Biology, University of Konstanz, Konstanz, Germany
| |
Collapse
|
20
|
Fink J, Seibel J. Click reactions with functional sphingolipids. Biol Chem 2019; 399:1157-1168. [PMID: 29908120 DOI: 10.1515/hsz-2018-0169] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Accepted: 04/15/2018] [Indexed: 12/17/2022]
Abstract
Sphingolipids and glycosphingolipids can regulate cell recognition and signalling. Ceramide and sphingosine-1-phosphate are major players in the sphingolipid pathways and are involved in the initiation and regulation of signalling, apoptosis, stress responses and infection. Specific chemically synthesised sphingolipid derivatives containing small functionalities like azide or alkyne can mimic the biological properties of natural lipid species, which turns them into useful tools for the investigation of the highly complex sphingolipid metabolism by rapid and selective 'click chemistry' using sensitive tags like fluorophores. Subsequent analysis by various fluorescence microscopy techniques or mass spectrometry allows the identification and quantification of the corresponding sphingolipid metabolites as well as the research of associated enzymes. Here we present an overview of recent advances in the synthesis of ceramide and sphingosine analogues for bioorthogonal click reactions to study biosynthetic pathways and localization of sphingolipids for the development of novel therapeutics against lipid-dependent diseases.
Collapse
Affiliation(s)
- Julian Fink
- University of Würzburg, Institute of Organic Chemistry, Am Hubland, D-97074 Würzburg, Germany
| | - Jürgen Seibel
- University of Würzburg, Institute of Organic Chemistry, Am Hubland, D-97074 Würzburg, Germany
| |
Collapse
|
21
|
Opportunities for Lipid-Based Probes in the Field of Immunology. Curr Top Microbiol Immunol 2018; 420:283-319. [PMID: 30242513 DOI: 10.1007/82_2018_127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2023]
Abstract
Lipids perform a wide range of functions inside the cell, ranging from structural building block of membranes and energy storage to cell signaling. The mode of action of many signaling lipids has remained elusive due to their low abundance, high lipophilicity, and inherent instability. Various chemical biology approaches, such as photoaffinity or activity-based protein profiling methods, have been employed to shed light on the biological role of lipids and the lipid-protein interaction profile. In this review, we will summarize the recent developments in the field of chemical probes to study lipid biology, especially in immunology, and indicate potential avenues for future research.
Collapse
|
22
|
Alecu I, Tedeschi A, Behler N, Wunderling K, Lamberz C, Lauterbach MAR, Gaebler A, Ernst D, Van Veldhoven PP, Al-Amoudi A, Latz E, Othman A, Kuerschner L, Hornemann T, Bradke F, Thiele C, Penno A. Localization of 1-deoxysphingolipids to mitochondria induces mitochondrial dysfunction. J Lipid Res 2016; 58:42-59. [PMID: 27881717 DOI: 10.1194/jlr.m068676] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Revised: 10/27/2016] [Indexed: 12/20/2022] Open
Abstract
1-Deoxysphingolipids (deoxySLs) are atypical sphingolipids that are elevated in the plasma of patients with type 2 diabetes and hereditary sensory and autonomic neuropathy type 1 (HSAN1). Clinically, diabetic neuropathy and HSAN1 are very similar, suggesting the involvement of deoxySLs in the pathology of both diseases. However, very little is known about the biology of these lipids and the underlying pathomechanism. We synthesized an alkyne analog of 1-deoxysphinganine (doxSA), the metabolic precursor of all deoxySLs, to trace the metabolism and localization of deoxySLs. Our results indicate that the metabolism of these lipids is restricted to only some lipid species and that they are not converted to canonical sphingolipids or fatty acids. Furthermore, exogenously added alkyne-doxSA [(2S,3R)-2-aminooctadec-17-yn-3-ol] localized to mitochondria, causing mitochondrial fragmentation and dysfunction. The induced mitochondrial toxicity was also shown for natural doxSA, but not for sphinganine, and was rescued by inhibition of ceramide synthase activity. Our findings therefore indicate that mitochondrial enrichment of an N-acylated doxSA metabolite may contribute to the neurotoxicity seen in diabetic neuropathy and HSAN1. Hence, we provide a potential explanation for the characteristic vulnerability of peripheral nerves to elevated levels of deoxySLs.
Collapse
Affiliation(s)
- Irina Alecu
- Institute for Clinical Chemistry, University of Zurich, Zurich, Switzerland.,Center for Integrative Human Physiology, University of Zurich, Zurich, Switzerland
| | - Andrea Tedeschi
- Axonal Growth and Regeneration, German Center for Neurodegenerative Diseases, Bonn, Germany
| | - Natascha Behler
- LIMES Life and Medical Sciences Institute, University of Bonn, Bonn, Germany
| | - Klaus Wunderling
- LIMES Life and Medical Sciences Institute, University of Bonn, Bonn, Germany
| | - Christian Lamberz
- Cyro-Electron Microscopy and Tomography, German Center for Neurodegenerative Diseases, Bonn, Germany
| | | | - Anne Gaebler
- LIMES Life and Medical Sciences Institute, University of Bonn, Bonn, Germany
| | - Daniela Ernst
- Institute for Clinical Chemistry, University of Zurich, Zurich, Switzerland
| | - Paul P Van Veldhoven
- Laboratory for Lipid Biochemistry and Protein Interactions, Campus Gasthuisberg, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Ashraf Al-Amoudi
- Cyro-Electron Microscopy and Tomography, German Center for Neurodegenerative Diseases, Bonn, Germany
| | - Eicke Latz
- Institute of Innate Immunity, University Hospital Bonn, Bonn, Germany
| | - Alaa Othman
- Institute of Experimental and Clinical Pharmacology and Toxicology, University of Lübeck, Lübeck, Germany
| | - Lars Kuerschner
- LIMES Life and Medical Sciences Institute, University of Bonn, Bonn, Germany
| | - Thorsten Hornemann
- Institute for Clinical Chemistry, University of Zurich, Zurich, Switzerland.,Center for Integrative Human Physiology, University of Zurich, Zurich, Switzerland
| | - Frank Bradke
- Axonal Growth and Regeneration, German Center for Neurodegenerative Diseases, Bonn, Germany
| | - Christoph Thiele
- LIMES Life and Medical Sciences Institute, University of Bonn, Bonn, Germany
| | - Anke Penno
- LIMES Life and Medical Sciences Institute, University of Bonn, Bonn, Germany
| |
Collapse
|