1
|
Lordfard S, Wang J, McIntyre AD, Hegele RA. Rapid DNA Diagnosis of Familial Hypercholesterolemia Due to the LDLR 15.8-Kilobase Deletion. CJC Open 2024; 6:1121-1124. [PMID: 39525829 PMCID: PMC11544266 DOI: 10.1016/j.cjco.2024.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 06/05/2024] [Indexed: 11/16/2024] Open
Affiliation(s)
- Sanaz Lordfard
- Robarts Research Institute, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| | - Jian Wang
- Robarts Research Institute, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| | - Adam D. McIntyre
- Robarts Research Institute, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| | - Robert A. Hegele
- Robarts Research Institute, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
- Department of Medicine, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| |
Collapse
|
2
|
Tani R, Matsunaga K, Toda Y, Inoue T, Fu HY, Minamino T. Phenotypic homozygous familial hypercholesterolemia successfully treated with proprotein convertase subtilisin/kexin type 9 inhibitors. Clin Case Rep 2024; 12:e8537. [PMID: 38380379 PMCID: PMC10876917 DOI: 10.1002/ccr3.8537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 01/16/2024] [Accepted: 01/19/2024] [Indexed: 02/22/2024] Open
Abstract
Recent data reveal phenotypic HoFH patients may be responsive to PCSK9 inhibitors, challenging prior assumptions. Genetic testing advancements now more accurately forecast patient responses to these therapies, improving treatment strategies.
Collapse
Affiliation(s)
- Ryosuke Tani
- Department of Cardiorenal and Cerebrovascular Medicine, Faculty of MedicineKagawa UniversityKagawaJapan
| | - Keiji Matsunaga
- Department of Cardiorenal and Cerebrovascular Medicine, Faculty of MedicineKagawa UniversityKagawaJapan
| | - Yuta Toda
- Department of Cardiorenal and Cerebrovascular Medicine, Faculty of MedicineKagawa UniversityKagawaJapan
| | - Tomoko Inoue
- Department of Cardiorenal and Cerebrovascular Medicine, Faculty of MedicineKagawa UniversityKagawaJapan
| | - Hai Ying Fu
- Department of Cardiorenal and Cerebrovascular Medicine, Faculty of MedicineKagawa UniversityKagawaJapan
| | - Tetsuo Minamino
- Department of Cardiorenal and Cerebrovascular Medicine, Faculty of MedicineKagawa UniversityKagawaJapan
| |
Collapse
|
3
|
Yip MK, Kwan EYW, Leung JYY, Lau EYF, Poon WT. Genetic Spectrum and Cascade Screening of Familial Hypercholesterolemia in Routine Clinical Setting in Hong Kong. Genes (Basel) 2023; 14:2071. [PMID: 38003014 PMCID: PMC10671696 DOI: 10.3390/genes14112071] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 11/11/2023] [Accepted: 11/12/2023] [Indexed: 11/26/2023] Open
Abstract
Familial hypercholesterolemia (FH) is a prevalent but often underdiagnosed monogenic disorder affecting lipoprotein metabolism, and genetic testing for FH has not been widely conducted in Asia in the past. In this cross-sectional study of 31 probands (19 adults and 12 children) and an addition of 15 individuals (12 adults and 3 children), who underwent genetic testing and cascade screening for FH, respectively, during the period between February 2015 and July 2023, we identified a total of 25 distinct LDLR variants in 71.0% unrelated probands. Among the adult proband cohort, a higher proportion of genetically confirmed cases exhibited a positive family history of premature cardiovascular disease. Treatment intensity required to achieve an approximate 50% reduction in pretreatment low-density lipoprotein cholesterol (LDL-C) exhibited potentially better diagnostic performance compared to pretreatment LDL-C levels, Dutch Lipid Clinic Network Diagnostic Criteria (DLCNC) score, and modified DLCNC score. Adult individuals identified through cascade screening demonstrated less severe phenotypes, and fewer of them met previously proposed local criteria for FH genetic testing compared to the probands, indicating that cascade screening played a crucial role in the early detection of new cases that might otherwise have gone undiagnosed. These findings underscore the significance of genetic testing and cascade screening in the accurate identification and management of FH cases.
Collapse
Affiliation(s)
- Man-Kwan Yip
- Department of Clinical Pathology, Pamela Youde Nethersole Eastern Hospital, Chai Wan, Hong Kong, China
| | - Elaine Yin-Wah Kwan
- Department of Paediatrics and Adolescent Medicine, Pamela Youde Nethersole Eastern Hospital, Chai Wan, Hong Kong, China;
| | - Jenny Yin-Yan Leung
- Department of Medicine and Geriatrics, Ruttonjee Hospital, Wan Chai, Hong Kong, China;
| | - Emmy Yuen-Fun Lau
- Department of Medicine, Pamela Youde Nethersole Eastern Hospital, Chai Wan, Hong Kong, China
| | - Wing-Tat Poon
- Department of Clinical Pathology, Pamela Youde Nethersole Eastern Hospital, Chai Wan, Hong Kong, China
| |
Collapse
|
4
|
Guerin A, Iatan I, Ruel I, Ngufor LF, Genest J. Genetic testing for familial hypercholesterolemia in Quebec, Canada: a single-centre retrospective cohort study. CMAJ Open 2023; 11:E754-E764. [PMID: 37607748 PMCID: PMC10449021 DOI: 10.9778/cmajo.20220108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 08/24/2023] Open
Abstract
BACKGROUND Familial hypercholesterolemia (FH) is associated with premature atherosclerotic cardiovascular disease caused by elevated low-density lipoprotein cholesterol (LDL-C) levels. We determined the impact of a full next-generation sequencing (NGS) genetic panel on reclassification of patients with a clinical diagnosis of FH in Quebec compared to the partial genetic panel currently offered by the Quebec Ministère de la Santé et des Services sociaux (Ministry of Health and Social Services) (MSSS), which includes 11 variants that are common in French Canadians. METHODS We conducted a retrospective cohort study in a subgroup of patients in the Canadian FH Registry seen at the McGill University Health Centre Preventive Cardiology/Lipid Clinic, Montréal, between September 2017 and September 2021 who were clinically diagnosed with severe hypercholesterolemia, probable FH or definite FH according to the Canadian definition of FH. Next-generation sequencing of the LDLR, APOB and PCSK9 genes, and multiplex ligation-dependent probe amplification of the LDLR gene to detect genetic variants, were performed. RESULTS Among 335 consecutive patients with heterozygous FH (184 men [54.9%] and 151 women [45.1%]), the baseline LDL-C level was 6.96 (standard deviation 1.79) mmol/L. Patients identified through cascade screening were 11 years younger on average than index patients, and smaller proportions presented to the clinic with cardiovascular risk factors. A pathogenic FH variant was identified in 169 (73.8%) of the 229 patients who underwent genetic testing; the majority had variants in the LDLR (146 [86.4%]) or APOB (24 [14.2%]) gene. The genetic panel offered by the MSSS accounted for only 48% of the variants identified with the full NGS panel. Of the 229 patients, 90 (39.3%, 95% confidence interval 32.9%-46.0%) were reclassified from a clinical diagnosis of probable FH to definite FH after genetic screening with a full FH panel. INTERPRETATION Genetic testing in patients suspected of having FH provided diagnostic certainty and permitted many patients with a clinical diagnosis of probable FH to be reclassified as having definite FH. Genetic screening allows for increased identification of patients with FH and may therefore help reduce the burden of cardiovascular disease and mortality rates among Canadians with FH. Trial registration: ClinicalTrials.gov, no. NCT02009345.
Collapse
Affiliation(s)
- Amanda Guerin
- Research Institute of the McGill University Health Centre (Guerin, Ruel, Fri Ngufor, Genest), Montréal, Que.; Centre for Heart Lung Innovation (Iatan), Healthy Heart Program Prevention Clinic, St. Paul's Hospital, Department of Medicine, University of British Columbia, Vancouver, BC
| | - Iulia Iatan
- Research Institute of the McGill University Health Centre (Guerin, Ruel, Fri Ngufor, Genest), Montréal, Que.; Centre for Heart Lung Innovation (Iatan), Healthy Heart Program Prevention Clinic, St. Paul's Hospital, Department of Medicine, University of British Columbia, Vancouver, BC
| | - Isabelle Ruel
- Research Institute of the McGill University Health Centre (Guerin, Ruel, Fri Ngufor, Genest), Montréal, Que.; Centre for Heart Lung Innovation (Iatan), Healthy Heart Program Prevention Clinic, St. Paul's Hospital, Department of Medicine, University of British Columbia, Vancouver, BC
| | - Linda Fri Ngufor
- Research Institute of the McGill University Health Centre (Guerin, Ruel, Fri Ngufor, Genest), Montréal, Que.; Centre for Heart Lung Innovation (Iatan), Healthy Heart Program Prevention Clinic, St. Paul's Hospital, Department of Medicine, University of British Columbia, Vancouver, BC
| | - Jacques Genest
- Research Institute of the McGill University Health Centre (Guerin, Ruel, Fri Ngufor, Genest), Montréal, Que.; Centre for Heart Lung Innovation (Iatan), Healthy Heart Program Prevention Clinic, St. Paul's Hospital, Department of Medicine, University of British Columbia, Vancouver, BC
| |
Collapse
|
5
|
Clarke SL, Tcheandjieu C, Hilliard AT, Lee KM, Lynch J, Chang KM, Miller D, Knowles JW, O’Donnell C, Tsao P, Rader DJ, Wilson PW, Sun YV, Gaziano M, Assimes TL, VA Million Veteran Program. Coronary Artery Disease Risk of Familial Hypercholesterolemia Genetic Variants Independent of Clinically Observed Longitudinal Cholesterol Exposure. CIRCULATION. GENOMIC AND PRECISION MEDICINE 2022; 15:e003501. [PMID: 35143253 PMCID: PMC10593360 DOI: 10.1161/circgen.121.003501] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 01/17/2022] [Indexed: 01/21/2023]
Abstract
BACKGROUND Familial hypercholesterolemia (FH) genetic variants confer risk for coronary artery disease independent of LDL-C (low-density lipoprotein cholesterol) when considering a single measurement. In real clinical settings, longitudinal LDL-C data are often available through the electronic health record. It is unknown whether genetic testing for FH variants provides additional risk-stratifying information once longitudinal LDL-C is considered. METHODS We used the extensive electronic health record data available through the Million Veteran Program to conduct a nested case-control study. The primary outcome was coronary artery disease, derived from electronic health record codes for acute myocardial infarction and coronary revascularization. Incidence density sampling was used to match case/control exposure windows, defined by the date of the first LDL-C measurement to the date of the first coronary artery disease code of the index case. Adjustments for the first, maximum, or mean LDL-C were analyzed. FH variants in LDLR, APOB, and PCSK9 (Proprotein convertase subtilisin/kexin type 9) were assessed by custom genotype array. RESULTS In a cohort of 23 091 predominantly prevalent cases at enrollment and 230 910 matched controls, FH variant carriers had an increased risk for coronary artery disease (odds ratio [OR], 1.53 [95% CI, 1.24-1.89]). Adjusting for mean LDL-C led to the greatest attenuation of the risk estimate, but significant risk remained (odds ratio, 1.33 [95% CI, 1.08-1.64]). The degree of attenuation was not affected by the number and the spread of LDL-C measures available. CONCLUSIONS The risk associated with carrying an FH variant cannot be fully captured by the LDL-C data available in the electronic health record, even when considering multiple LDL-C measurements spanning more than a decade.
Collapse
Affiliation(s)
- Shoa L. Clarke
- VA Palo Alto Health Care system, Palo Alto, CA
- Dept of Medicine, Division of Cardiovascular Medicine, Stanford Univ School of Medicine, Stanford, CA
| | - Catherine Tcheandjieu
- VA Palo Alto Health Care system, Palo Alto, CA
- Dept of Medicine, Division of Cardiovascular Medicine, Stanford Univ School of Medicine, Stanford, CA
| | - Austin T. Hilliard
- VA Palo Alto Health Care system, Palo Alto, CA
- Dept of Medicine, Division of Cardiovascular Medicine, Stanford Univ School of Medicine, Stanford, CA
| | - Kyung Min Lee
- VA Informatics & Computing Infrastructure, VA Salt Lake City Health Care System, Salt Lake City, UT
| | - Julie Lynch
- VA Informatics & Computing Infrastructure, VA Salt Lake City Health Care System, Salt Lake City, UT
- College of Nursing & Health Sciences, Univ of Massachusetts, Boston, MA
| | - Kyong-Mi Chang
- Corporal Michael J. Crescenz VA Medical Center, Philadelphia, PA
- Dept of Medicine, Univ of Pennsylvania Perelman School of Medicine, Philadelphia, PA
| | - Donald Miller
- Edith Nourse Rogers Memorial VA Hospital, Bedford, MA
- Center for Population Health, Univ of Massachusetts, Lowell, MA
| | - Joshua W. Knowles
- Dept of Medicine, Division of Cardiovascular Medicine, Stanford Univ School of Medicine, Stanford, CA
- Diabetes Research Center, Stanford Univ School of Medicine, Stanford, CA
- Cardiovascular Institute, Stanford Univ School of Medicine, Stanford, CA
| | - Christopher O’Donnell
- VA Boston Healthcare System, Boston, MA
- Dept of Medicine, Harvard Medical School, Boston, MA
| | - Phil Tsao
- VA Palo Alto Health Care system, Palo Alto, CA
- Dept of Medicine, Division of Cardiovascular Medicine, Stanford Univ School of Medicine, Stanford, CA
- Cardiovascular Institute, Stanford Univ School of Medicine, Stanford, CA
| | - Daniel J. Rader
- Dept of Medicine, Univ of Pennsylvania Perelman School of Medicine, Philadelphia, PA
| | - Peter W. Wilson
- Atlanta VA Medical Center, Decatur, GA
- Dept of Medicine, Emory Univ School of Medicine, Atlanta, GA
- Dept of Epidemiology, Emory Univ Rollins School of Public Health, Atlanta, GA
| | - Yan V. Sun
- Atlanta VA Medical Center, Decatur, GA
- Dept of Epidemiology, Emory Univ Rollins School of Public Health, Atlanta, GA
| | | | - Themistocles L. Assimes
- VA Palo Alto Health Care system, Palo Alto, CA
- Dept of Medicine, Division of Cardiovascular Medicine, Stanford Univ School of Medicine, Stanford, CA
- Cardiovascular Institute, Stanford Univ School of Medicine, Stanford, CA
| | | |
Collapse
|
6
|
Saotome M, Maekawa Y. Multiple Ligation-dependent Probe Amplification Along with Whole Exome Sequencing Should be Required for the Diagnosis of Structural Heterozygous Familial Hypercholesteremia. Intern Med 2022; 61:2829-2830. [PMID: 36184533 PMCID: PMC9593164 DOI: 10.2169/internalmedicine.9412-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Masao Saotome
- Division of Cardiology, Internal Medicine III Hamamatsu University School of Medicine, Japan
| | - Yuichiro Maekawa
- Division of Cardiology, Internal Medicine III Hamamatsu University School of Medicine, Japan
| |
Collapse
|
7
|
Okada H, Tada H, Nomura A, Nohara A, Okeie K, Nozue T, Michishita I, Takamura M, Takemura H, Kawashiri MA. Whole Exome Sequencing Insufficient for a Definitive Diagnosis of a Patient with Compound Heterozygous Familial Hypercholesterolemia. Intern Med 2022; 61:2883-2889. [PMID: 36184534 PMCID: PMC9593155 DOI: 10.2169/internalmedicine.8989-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Homozygous familial hypercholesterolemia (HoFH) is a rare genetic disorder, and a genetic analysis is important to make a definitive diagnosis. A comprehensive genetic analysis using next generation sequencing (NGS) and whole exome sequencing (WES) is feasible. However, the application of NGS in the assessment of genomic structural variations is generally limited, and a substantial number of control samples are needed for such assessments. Thus, NGS alone is unlikely to detect genomic structural variations in a "singleton." We present the case of a patient with compound HeFH (heterozygous FH), whose causative mutations in the LDLR gene could not be identified by WES, necessitating the application of the multiplex ligation-dependent probe amplification (MLPA) technique.
Collapse
Affiliation(s)
- Hirofumi Okada
- Department of Cardiovascular Medicine, Kanazawa University Graduate School of Medical Sciences, Japan
| | - Hayato Tada
- Department of Cardiovascular Medicine, Kanazawa University Graduate School of Medical Sciences, Japan
| | - Akihiro Nomura
- Department of Cardiovascular Medicine, Kanazawa University Graduate School of Medical Sciences, Japan
| | - Atsushi Nohara
- Department of Genetics, Ishikawa Prefectural Central Hospital, Japan
| | - Kazuyasu Okeie
- Department of Cardiology, Koseiren Takaoka Hospital, Japan
| | - Tsuyoshi Nozue
- Division of Cardiology, Department of Internal Medicine, Yokohama Sakae Kyosai Hospital, Japan
| | - Ichiro Michishita
- Division of Cardiology, Department of Internal Medicine, Yokohama Sakae Kyosai Hospital, Japan
| | - Masayuki Takamura
- Department of Cardiovascular Medicine, Kanazawa University Graduate School of Medical Sciences, Japan
| | | | - Masa-Aki Kawashiri
- Department of Cardiovascular Medicine, Kanazawa University Graduate School of Medical Sciences, Japan
| |
Collapse
|
8
|
Camacho OFC, Molina GP, Catalá CFM, Reali JR, Cruz RM, Zenteno JC. Familial Hypercholesterolemia: Update and Review. Endocr Metab Immune Disord Drug Targets 2021; 22:198-211. [PMID: 33563162 DOI: 10.2174/1871530321666210208212148] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 12/28/2020] [Accepted: 12/28/2020] [Indexed: 11/22/2022]
Abstract
Knowledge of epidemiology, genetic etiopathogenesis, diagnostic criteria, and management of familial hypercholesterolemia have increased in the last two decades. Several population studies have shown that familial hypercholesterolemia is more frequent than previously thought, making this entity the most common metabolic disease with monogenic inheritence in the world. Identification of causal heterozygous pathogenic variants in LDLR, APOB, and PCSK9 genes have increased diagnostic accuracy of classical criteria (extreme hypercholesterolemia, personal / family history of premature coronary artery disease or other cardiovascular disease). Genetic screening has been recently introduced in many European countries to detect patients with familial hypercholesterolemia, mainly affected pediatric subjects, asymptomatic or those at the beggining of their disease, with the purpose of increasing surveillance and avoiding complications such as cardiovascular diseases. Cholesterol-lowering drugs should be started as soon as the diagnosis is made. Various combinations between drugs can be used when the goal is not achieved. New therapies, including small interference ribonucleic acids (siRNA) are being tested in different clinical trials.
Collapse
Affiliation(s)
| | - Glustein Pozo Molina
- Carrera de Médico Cirujano, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla, . Mexico
| | - Claudia Fabiola Méndez Catalá
- Carrera de Médico Cirujano, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla, . Mexico
| | - Julia Reyes Reali
- Carrera de Médico Cirujano, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla, . Mexico
| | - René Méndez Cruz
- Carrera de Médico Cirujano, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla, . Mexico
| | - Juan Carlos Zenteno
- Biochemistry Department, Faculty Medicine, National Autonomous University of Mexico, Mexico City,. Mexico
| |
Collapse
|
9
|
Hegele RA, Dron JS. 2019 George Lyman Duff Memorial Lecture: Three Decades of Examining DNA in Patients With Dyslipidemia. Arterioscler Thromb Vasc Biol 2020; 40:1970-1981. [PMID: 32762461 DOI: 10.1161/atvbaha.120.313065] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Dyslipidemias include both rare single gene disorders and common conditions that have a complex underlying basis. In London, ON, there is fortuitous close physical proximity between the Lipid Genetics Clinic and the London Regional Genomics Centre. For >30 years, we have applied DNA sequencing of clinical samples to help answer scientific questions. More than 2000 patients referred with dyslipidemias have participated in an ongoing translational research program. In 2013, we transitioned to next-generation sequencing; our targeted panel is designed to concurrently assess both monogenic and polygenic contributions to dyslipidemias. Patient DNA is screened for rare variants underlying 25 mendelian dyslipidemias, including familial hypercholesterolemia, hepatic lipase deficiency, abetalipoproteinemia, and familial chylomicronemia syndrome. Furthermore, polygenic scores for LDL (low-density lipoprotein) and HDL (high-density lipoprotein) cholesterol, and triglycerides are calculated for each patient. We thus simultaneously document both rare and common genetic variants, allowing for a broad view of genetic predisposition for both individual patients and cohorts. For instance, among patients referred with severe hypertriglyceridemia, defined as ≥10 mmol/L (≥885 mg/dL), <1% have a mendelian disorder (ie, autosomal recessive familial chylomicronemia syndrome), ≈15% have heterozygous rare variants (a >3-fold increase over normolipidemic individuals), and ≈35% have an extreme polygenic score (a >3-fold increase over normolipidemic individuals). Other dyslipidemias show a different mix of genetic determinants. Genetic results are discussed with patients and can support clinical decision-making. Integrating DNA testing into clinical care allows for a bidirectional flow of information, which facilitates scientific discoveries and clinical translation.
Collapse
Affiliation(s)
- Robert A Hegele
- From the Department of Medicine (R.A.H.), Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
- Department of Biochemistry (R.A.H., J.S.D.), Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
- Robarts Research Institute (R.A.H., J.S.D.), Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| | - Jacqueline S Dron
- Department of Biochemistry (R.A.H., J.S.D.), Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
- Robarts Research Institute (R.A.H., J.S.D.), Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| |
Collapse
|
10
|
Kellogg G, Thorsson B, Cai Y, Wisotzkey R, Pollock A, Akana M, Fox R, Jansen M, Gudmundsson EF, Patel B, Chang C, Jaremko M, Puig O, Gudnason V, Emilsson V. Molecular screening of familial hypercholesterolemia in Icelanders. Scandinavian Journal of Clinical and Laboratory Investigation 2020; 80:508-514. [DOI: 10.1080/00365513.2020.1795919] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
| | | | - Ying Cai
- Phosphorus Diagnostics, New York, NY, USA
| | | | | | | | | | | | | | | | | | | | - Oscar Puig
- Phosphorus Diagnostics, New York, NY, USA
| | - Vilmundur Gudnason
- Icelandic Heart Association, Kopavogur, Iceland
- Faculty of Medicine, University of Iceland, Reykjavik, Iceland
| | - Valur Emilsson
- Icelandic Heart Association, Kopavogur, Iceland
- Faculty of Medicine, University of Iceland, Reykjavik, Iceland
| |
Collapse
|
11
|
Risk of Premature Atherosclerotic Disease in Patients With Monogenic Versus Polygenic Familial Hypercholesterolemia. J Am Coll Cardiol 2020; 74:512-522. [PMID: 31345425 DOI: 10.1016/j.jacc.2019.05.043] [Citation(s) in RCA: 115] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 05/01/2019] [Accepted: 05/07/2019] [Indexed: 01/17/2023]
Abstract
BACKGROUND A pathogenic variant in LDLR, APOB, or PCSK9 can be identified in 30% to 80% of patients with clinically-diagnosed familial hypercholesterolemia (FH). Alternatively, ∼20% of clinical FH is thought to have a polygenic cause. The cardiovascular disease (CVD) risk associated with polygenic versus monogenic FH is unclear. OBJECTIVES This study evaluated the effect of monogenic and polygenic causes of FH on premature (age <55 years) CVD events in patients with clinically diagnosed FH. METHODS Targeted sequencing of genes known to cause FH as well as common genetic variants was performed to calculate polygenic scores in patients with "possible," "probable," or "definite" FH, according to Dutch Lipid Clinic Network Criteria (n = 626). Patients with a polygenic score ≥80th percentile were considered to have polygenic FH. We examined the risk of unstable angina, myocardial infarction, coronary revascularization, or stoke. RESULTS A monogenic cause of FH was associated with significantly greater risk of CVD (adjusted hazard ratio: 1.96; 95% confidence interval: 1.24 to 3.12; p = 0.004), whereas the risk of CVD in patients with polygenic FH was not significantly different compared with patients in whom no genetic cause of FH was identified. However, the presence of an elevated low-density lipoprotein cholesterol (LDL-C) polygenic risk score further increased CVD risk in patients with monogenic FH (adjusted hazard ratio: 3.06; 95% confidence interval: 1.56 to 5.99; p = 0.001). CONCLUSIONS Patients with monogenic FH and superimposed elevated LDL-C polygenic risk scores have the greatest risk of premature CVD. Genetic testing for FH provides important prognostic information that is independent of LDL-C levels.
Collapse
|
12
|
Trinder M, Francis GA, Brunham LR. Association of Monogenic vs Polygenic Hypercholesterolemia With Risk of Atherosclerotic Cardiovascular Disease. JAMA Cardiol 2020; 5:390-399. [PMID: 32049305 PMCID: PMC7042820 DOI: 10.1001/jamacardio.2019.5954] [Citation(s) in RCA: 148] [Impact Index Per Article: 29.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Accepted: 12/01/2019] [Indexed: 12/13/2022]
Abstract
Importance Monogenic familial hypercholesterolemia (FH) is associated with lifelong elevations in low-density lipoprotein cholesterol (LDL-C) levels and increased risk of atherosclerotic cardiovascular disease (CVD). However, many individuals with hypercholesterolemia have a polygenic rather than a monogenic cause for their condition. It is unclear if a genetic variant for hypercholesterolemia alters the risk of CVD. Objectives To assess whether a genetic variant for hypercholesterolemia alters the risk of atherosclerotic CVD and to evaluate how this risk compares with that of nongenetic hypercholesterolemia. Design, Setting, and Participants In this genetic-association, case-control, cohort study, individuals aged 40 to 69 years were recruited by the UK Biobank from across the United Kingdom between March 13, 2006, and October 1, 2010, and followed up until March 31, 2017. Genotyping array and exome sequencing data from the UK Biobank cohort were used to identify individuals with monogenic (LDLR, APOB, and PCSK9) or polygenic hypercholesterolemia (LDL-C polygenic score >95th percentile based on 223 single-nucleotide variants in the entire cohort). The data were analyzed from July 1, 2019, to December 30, 2019. Main Outcomes and Measures The study investigated the association of genotype with the risk of coronary and carotid revascularization, myocardial infarction, ischemic stroke, and all-cause mortality among the overall study population and among participants with monogenic FH (n = 277), polygenic hypercholesterolemia (n = 2379), or hypercholesterolemia with undetermined cause (n = 2232) at comparable levels of LDL-C measured at study enrollment. Results For the 48 741 individuals with genotyping array and exome sequencing data, the mean (SD) age was 56.6 (8.0) years, and 54.5% were female (n = 26 541 of 48 741). A monogenic FH variant for hypercholesterolemia was found in 277 individuals (0.57%, 1 in 176 individuals). Participants with monogenic FH were significantly more likely than those without monogenic FH to experience an atherosclerotic CVD event at 55 years or younger (17 of 277 [6.1%] vs 988 of 48 464 [2.0%]; P < .001). Compared with the general population, both monogenic and polygenic hypercholesterolemia were associated with an increased risk of CVD events. Moreover, among individuals with comparable levels of LDL-C, both monogenic (hazard ratio, 1.93; 95% CI, 1.34-2.77; P < .001) and polygenic hypercholesterolemia (hazard ratio, 1.26; 95% CI, 1.03-1.55; P = .03) were significantly associated with an increased risk of CVD events compared with the risk of such events in individuals with hypercholesterolemia without an identified genetic cause. Conclusions and Relevance The findings of this study suggest that among individuals with hypercholesterolemia, genetic determinants of LDL-C levels may impose additional risk of CVD. Thus, understanding the possible genetic cause of hypercholesterolemia may provide important prognostic information to treat patients.
Collapse
Affiliation(s)
- Mark Trinder
- Centre for Heart Lung Innovation, University of British Columbia, Vancouver, British Columbia, Canada
- Experimental Medicine Program, Department of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Gordon A. Francis
- Centre for Heart Lung Innovation, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Liam R. Brunham
- Centre for Heart Lung Innovation, University of British Columbia, Vancouver, British Columbia, Canada
- Experimental Medicine Program, Department of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
13
|
Tada H, Hori M, Nomura A, Hosomichi K, Nohara A, Kawashiri MA, Harada-Shiba M. A catalog of the pathogenic mutations of LDL receptor gene in Japanese familial hypercholesterolemia. J Clin Lipidol 2020; 14:346-351.e9. [PMID: 32331935 DOI: 10.1016/j.jacl.2020.03.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Revised: 03/16/2020] [Accepted: 03/16/2020] [Indexed: 12/23/2022]
Abstract
BACKGROUND Little data exist on the pathogenic mutations of LDL receptor in Japanese familial hypercholesterolemia (FH). OBJECTIVE We aimed to catalog the pathogenic mutations of LDL receptor gene in the 2 major Japanese FH-care centers (Kanazawa University and National Cerebral and Cardiovascular Center Research Institute), where genetic testing of FH has been performed centrally on requests from institutes all over Japan during more than past 2 decades. METHODS 796 FH subjects from 472 families who had nonsynonymous mutations in LDL receptor gene were included in this study. Genetic mutations were analyzed for mutations by Sanger sequencing as well as by multiplex ligation probe dependent amplification technique for large rearrangements. Pathogenic mutations were defined either as 1) protein truncated variants, 2) registered as pathogenic in ClinVar, or Human Gene Mutation Database (HGMD), or meet the criteria of American College of Medical Genetics and Genomics guideline, or 3) CADD score > 10. RESULTS We found 138 different mutations. Among them, 132 mutations were considered as pathogenic, including 19 large rearrangement mutations. However, 6 missense mutations were classified as variants of unknown significance. A single mutation accounted for as much as 41% of the FH subjects recruited from Kanazawa University mainly due to founder gene effect, whereas many singleton mutations were found from National Cerebral and Cardiovascular Center Research Institute located in Osaka. CONCLUSIONS We provided the largest catalog of pathogenic mutations of LDL receptor gene in Japanese FH. This could aid to determine the pathogenicity of the LDL receptor genetic mutations not only in Japanese but also in other ethnicities.
Collapse
Affiliation(s)
- Hayato Tada
- Department of Cardiovascular Medicine, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Japan
| | - Mika Hori
- Department of Molecular Innovation in Lipidology, National Cerebral and Cardiovascular Center Research Institute, Suita, Japan
| | - Akihiro Nomura
- Department of Cardiovascular Medicine, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Japan
| | - Kazuyoshi Hosomichi
- Department of Bioinformatics and Genomics, Graduate School of Advanced Preventive Medical Sciences, Kanazawa, Japan
| | - Atsushi Nohara
- Department of Genetics, Ishikawa Prefectural Central Hospital, Kanazawa, Japan
| | - Masa-Aki Kawashiri
- Department of Cardiovascular Medicine, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Japan.
| | - Mariko Harada-Shiba
- Department of Molecular Innovation in Lipidology, National Cerebral and Cardiovascular Center Research Institute, Suita, Japan
| |
Collapse
|
14
|
Hsiung YC, Lin PC, Chen CS, Tung YC, Yang WS, Chen PL, Su TC. Identification of a novel LDLR disease-causing variant using capture-based next-generation sequencing screening of familial hypercholesterolemia patients in Taiwan. Atherosclerosis 2019; 277:440-447. [PMID: 30270083 DOI: 10.1016/j.atherosclerosis.2018.08.022] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2018] [Revised: 08/10/2018] [Accepted: 08/21/2018] [Indexed: 12/30/2022]
Abstract
BACKGROUND AND AIMS Familial hypercholesterolemia (FH) is an autosomal dominant disorder with paramount health impacts. However, less than 1% FH patients in Taiwan were formally diagnosed, partly due to the lack of reliable cost-effective genetic testing. We aimed at using a next-generation sequencing (NGS) platform as the clinical genetic testing method for FH. METHODS We designed probes to capture the whole LDLR gene and all coding sequences of APOB and PCSK9, and then sequenced with Illumina MiSeq platform (2 × 300 bps). The entire pipeline was tested on 13 DNA samples with known causative variants (including 3 large duplications and 2 large deletions). Then we enrolled a new cohort of 28 unrelated FH patients with Dutch Lipid Clinic Network score ≥5. Relatives were included in the cascade screening. RESULTS From the 13 DNA samples, we correctly identify all the variants, including big duplications and deletions. From the new cohort, we identified the causative variants in 21 of the 28 unrelated probands; five of them carrying a novel splice site variant c.1186+2T>G in LDLR. Among the family members, the concentration of LDL cholesterol was 7.82 ± 2.13 mmol/l in LDLR c.1186+2T>G carrier group (n = 26), and was significantly higher than 3.18 ± 1.36 mmol/l in the non-carrier group (n = 25). CONCLUSIONS This is the first capture-based NGS testing for FH to cover the whole LDLR genomic region, and therefore making reliable structural variation detection. This panel can comprehensively detect disease-causing variants in LDLR, APOB, and PCSK9 for FH patients.
Collapse
Affiliation(s)
- Yun-Chieh Hsiung
- Graduate Institute of Medical Genomics and Proteomics, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Po-Chih Lin
- Department of Internal Medicine and Cardiovascular Center, National Taiwan University Hospital, Taipei, Taiwan
| | - Chih-Shan Chen
- Graduate Institute of Medical Genomics and Proteomics, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Yi-Ching Tung
- Department of Pediatrics, National Taiwan University Hospital and College of Medicine, National Taiwan University, Taipei, Taiwan; Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Wei-Shiung Yang
- Graduate Institute of Medical Genomics and Proteomics, National Taiwan University College of Medicine, Taipei, Taiwan; Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan; Division of Endocrinology and Metabolism, Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan; Research Center for Developmental Biology and Regenerative Medicine, National Taiwan University, Taipei, Taiwan; Department of Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Pei-Lung Chen
- Graduate Institute of Medical Genomics and Proteomics, National Taiwan University College of Medicine, Taipei, Taiwan; Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan; Division of Endocrinology and Metabolism, Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan; Research Center for Developmental Biology and Regenerative Medicine, National Taiwan University, Taipei, Taiwan; Department of Medical Genetics, National Taiwan University Hospital, Taipei, Taiwan.
| | - Ta-Chen Su
- Department of Internal Medicine and Cardiovascular Center, National Taiwan University Hospital, Taipei, Taiwan; Institute of Occupational Medicine and Industrial Hygiene, National Taiwan University College of Public Health, Taipei, Taiwan.
| |
Collapse
|
15
|
Iacocca MA, Chora JR, Carrié A, Freiberger T, Leigh SE, Defesche JC, Kurtz CL, DiStefano MT, Santos RD, Humphries SE, Mata P, Jannes CE, Hooper AJ, Wilemon KA, Benlian P, O'Connor R, Garcia J, Wand H, Tichy L, Sijbrands EJ, Hegele RA, Bourbon M, Knowles JW. ClinVar database of global familial hypercholesterolemia-associated DNA variants. Hum Mutat 2019; 39:1631-1640. [PMID: 30311388 PMCID: PMC6206854 DOI: 10.1002/humu.23634] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Revised: 08/02/2018] [Accepted: 08/28/2018] [Indexed: 12/14/2022]
Abstract
Accurate and consistent variant classification is imperative for incorporation of rapidly developing sequencing technologies into genomic medicine for improved patient care. An essential requirement for achieving standardized and reliable variant interpretation is data sharing, facilitated by a centralized open-source database. Familial hypercholesterolemia (FH) is an exemplar of the utility of such a resource: it has a high incidence, a favorable prognosis with early intervention and treatment, and cascade screening can be offered to families if a causative variant is identified. ClinVar, an NCBI-funded resource, has become the primary repository for clinically relevant variants in Mendelian disease, including FH. Here, we present the concerted efforts made by the Clinical Genome Resource, through the FH Variant Curation Expert Panel and global FH community, to increase submission of FH-associated variants into ClinVar. Variant-level data was categorized by submitter, variant characteristics, classification method, and available supporting data. To further reform interpretation of FH-associated variants, areas for improvement in variant submissions were identified; these include a need for more detailed submissions and submission of supporting variant-level data, both retrospectively and prospectively. Collaborating to provide thorough, reliable evidence-based variant interpretation will ultimately improve the care of FH patients.
Collapse
Affiliation(s)
- Michael A Iacocca
- Robarts Research Institute, Western University, London, Ontario, Canada
| | - Joana R Chora
- Instituto Nacional de Saúde Doutor Ricardo Jorge, Lisbon, Portugal.,BioISI, University of Lisbon, Lisbon, Portugal
| | - Alain Carrié
- Hôpitaux Universitaires Pitié-Salpêtrière/Charles-Foix, Molecular and Chromosomal Genetics Center, Obesity and Dyslipidemia Genetics Unit, Assistance Publique-Hôpitaux de Paris, Paris, France.,Inserm, Institute of Cardiometabolism and Nutrition, Hôpital de la Pitié, Sorbonne Université, Paris, France
| | - Tomáš Freiberger
- Centre for Cardiovascular Surgery and Transplantation, Brno, Czech Republic.,Ceitec and Medical Faculty, Masaryk University, Brno, London
| | | | - Joep C Defesche
- Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands
| | - C Lisa Kurtz
- Department of Genetics, University of North Carolina, Chapel Hill, North Carolina
| | | | | | - Steve E Humphries
- Centre for Cardiovascular Genetics, University College of London, London, United Kingdom
| | - Pedro Mata
- Fundacion Hipercolesterolemia Familiar, Madrid, Spain
| | | | - Amanda J Hooper
- PathWest Laboratory Medicine, University of Western Australia, Perth, Australia
| | | | - Pascale Benlian
- CNRS, CHU Lille, UMR 8199 - Integrative Genomics and Metabolic Diseases Modeling, University of Lille, Lille, France
| | | | - John Garcia
- Invitae Corporation, San Francisco, California
| | - Hannah Wand
- Center for Inherited Cardiovascular Disease, Stanford University, Palo Alto, California
| | - Lukáš Tichy
- Center of Molecular Biology and Gene Therapy, University Hospital Brno, Brno, Czech Republic
| | - Eric J Sijbrands
- University Medical Center, Erasmus University, Rotterdam, Netherlands
| | - Robert A Hegele
- Robarts Research Institute, Western University, London, Ontario, Canada
| | - Mafalda Bourbon
- Instituto Nacional de Saúde Doutor Ricardo Jorge, Lisbon, Portugal.,BioISI, University of Lisbon, Lisbon, Portugal
| | - Joshua W Knowles
- FH Foundation, Pasadena, California.,Center for Inherited Cardiovascular Disease, Stanford University, Palo Alto, California
| | | |
Collapse
|
16
|
Berberich AJ, Hegele RA. The role of genetic testing in dyslipidaemia. Pathology 2019; 51:184-192. [DOI: 10.1016/j.pathol.2018.10.014] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 10/08/2018] [Accepted: 10/10/2018] [Indexed: 01/28/2023]
|
17
|
Chan MLY, Cheung CL, Lee ACH, Yeung CY, Siu CW, Leung JYY, Pang HK, Tan KCB. Genetic variations in familial hypercholesterolemia and cascade screening in East Asians. Mol Genet Genomic Med 2018; 7:e00520. [PMID: 30592178 PMCID: PMC6393658 DOI: 10.1002/mgg3.520] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 10/11/2018] [Accepted: 10/25/2018] [Indexed: 11/09/2022] Open
Abstract
Background Familial hypercholesterolemia (FH) is a monogenic disorder of lipoprotein metabolism leading to an increased risk of premature cardiovascular disease. Genetic testing for FH is not commonly used in Asian countries. We aimed to define the genetic spectrum of FH in Hong Kong and to test the feasibility of cascade genetic screening. Methods Ninety‐six Chinese subjects with a clinical diagnosis of FH were recruited, and family‐based cascade screening incorporating genetic testing results was performed. Results Forty‐two distinct mutations were identified in 67% of the index FH cases. The majority of causative mutations were in the LDLR gene. The three commonest mutations in the LDLR gene were NM_000527.4(LDLR): c.1241 T>G, NM_000527.4(LDLR): c.1474G>A, and NM_000527.4(LDLR): c. 682G>A, and nine novel variants were identified. The NM_000384.2(APOB): c.10579 C>T variant of the APOB gene was found in 5% of the index subjects. The presence of causative mutation significantly increased the odds of successful family recruitment for screening with an OR of 3.7 (95% CI: 1.53–9.11, p = 0.004). Conclusion Approximately two‐third of the subjects in this clinically ascertained sample of patients with FH had a discrete genetic basis. Genetic identification improves the response rate and efficiency of family screening.
Collapse
Affiliation(s)
| | - Ching-Lung Cheung
- Department of Pharmacology and Pharmacy, University of Hong Kong, Hong Kong, Hong Kong
| | | | - Chun-Yip Yeung
- Department of Medicine, University of Hong Kong, Hong Kong, Hong Kong
| | - Chung-Wah Siu
- Department of Medicine, University of Hong Kong, Hong Kong, Hong Kong
| | | | - Ho-Kwong Pang
- Department of Medicine, Pamela Youde Nethersole Eastern Hospital, Hong Kong, Hong Kong
| | | |
Collapse
|
18
|
Iacocca MA, Wang J, Sarkar S, Dron JS, Lagace T, McIntyre AD, Lau P, Robinson JF, Yang P, Knoll JH, Cao H, McPherson R, Hegele RA. Whole-Gene Duplication of PCSK9 as a Novel Genetic Mechanism for Severe Familial Hypercholesterolemia. Can J Cardiol 2018; 34:1316-1324. [DOI: 10.1016/j.cjca.2018.07.479] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Revised: 07/30/2018] [Accepted: 07/31/2018] [Indexed: 01/23/2023] Open
|
19
|
|
20
|
Shim JO, Yang HR, Moon JS, Chang JY, Ko JS, Park SS, Seo JK. Multiplex Ligation-dependent Probe Amplification Analysis Subsequent to Direct DNA Full Sequencing for Identifying ATP7B Mutations and Phenotype Correlations in Children with Wilson Disease. J Korean Med Sci 2018; 33:e177. [PMID: 29930488 PMCID: PMC6010744 DOI: 10.3346/jkms.2018.33.e177] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Accepted: 04/17/2018] [Indexed: 11/20/2022] Open
Abstract
BACKGROUND Mutations in ATP7B cause Wilson disease (WD). However, direct DNA full sequencing cannot detect all mutations in patients with WD. Multiplex ligation-dependent probe amplification (MLPA) analysis is reportedly useful in increasing the diagnostic yield in other genetic disorders with large deletions or insertions. The aim of this study was to evaluate whether the detection rate of ATP7B mutations can be increased by using MLPA. METHODS We enrolled 114 children with WD from 104 unrelated families based on biochemical tests and direct DNA full sequencing. The patients with one or zero mutant allele were investigated using MLPA. We analyzed phenotypic correlations. RESULTS Total allele frequency by full sequencing was 87.5%. Full sequencing revealed two mutant alleles in 80 of 104 unrelated children. One mutant allele was detected in 22 children, and no mutations were found in two children. Novel mutations including small deletions with frameshift mutations were identified by DNA sequencing. MLPA revealed no gross deletion or duplication in 24 children with one or zero mutant alleles. The number of detected mutations was not associated with hepatic manifestation, age of onset, Kayser-Fleischer ring, ceruloplasmin, and urinary Cu concentrations. CONCLUSION MLPA showed a limited role to increase the mutation detection rate in children who do not receive a definite genetic diagnosis of WD through DNA full sequencing. This finding suggests that large deletions or duplications might be extremely rare in WD. Further development is needed to improve the genetic diagnosis of WD.
Collapse
Affiliation(s)
- Jung Ok Shim
- Department of Pediatrics, Seoul National University College of Medicine, Seoul, Korea
- Department of Pediatrics, Korea University College of Medicine, Seoul, Korea
| | - Hye Ran Yang
- Department of Pediatrics, Seoul National University College of Medicine, Seoul, Korea
| | - Jin Soo Moon
- Department of Pediatrics, Seoul National University College of Medicine, Seoul, Korea
| | - Ju Young Chang
- Department of Pediatrics, Seoul National University College of Medicine, Seoul, Korea
| | - Jae Sung Ko
- Department of Pediatrics, Seoul National University College of Medicine, Seoul, Korea
| | - Sung Sup Park
- Department of Laboratory Medicine, Seoul National University College of Medicine, Seoul, Korea
| | - Jeong Kee Seo
- Department of Pediatrics, Seoul National University College of Medicine, Seoul, Korea
| |
Collapse
|
21
|
Defesche JC, Gidding SS, Harada-Shiba M, Hegele RA, Santos RD, Wierzbicki AS. Familial hypercholesterolaemia. Nat Rev Dis Primers 2017; 3:17093. [PMID: 29219151 DOI: 10.1038/nrdp.2017.93] [Citation(s) in RCA: 301] [Impact Index Per Article: 37.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Familial hypercholesterolaemia is a common inherited disorder characterized by abnormally elevated serum levels of low-density lipoprotein (LDL) cholesterol from birth, which in time can lead to cardiovascular disease (CVD). Most cases are caused by autosomal dominant mutations in LDLR, which encodes the LDL receptor, although mutations in other genes coding for proteins involved in cholesterol metabolism or LDLR function and processing, such as APOB and PCSK9, can also be causative, although less frequently. Several sets of diagnostic criteria for familial hypercholesterolaemia are available; common diagnostic features are an elevated LDL cholesterol level and a family history of hypercholesterolaemia or (premature) CVD. DNA-based methods to identify the underlying genetic defect are desirable but not essential for diagnosis. Cascade screening can contribute to early diagnosis of the disease in family members of an affected individual, which is crucial because familial hypercholesterolaemia can be asymptomatic for decades. Clinical severity depends on the nature of the gene that harbours the causative mutation, among other factors, and is further modulated by the type of mutation. Lifelong LDL cholesterol-lowering treatment substantially improves CVD-free survival and longevity. Statins are the first-line therapy, but additional drugs, such as ezetimibe, bile acid sequestrants, PCSK9 inhibitors and other emerging therapies, are often required.
Collapse
Affiliation(s)
- Joep C Defesche
- Department of Clinical Genetics, Academic Medical Centre, PO Box 22 660, University of Amsterdam, 1100 DD Amsterdam, The Netherlands
| | - Samuel S Gidding
- Nemours Cardiac Center, Alfred I. DuPont Hospital for Children, Wilmington, Delaware, USA
| | - Mariko Harada-Shiba
- Department of Molecular Innovation in Lipidology, National Cerebral and Cardiovascular Center Research Institute, Suita, Osaka, Japan
| | - Robert A Hegele
- Department of Medicine, Schulich School of Medicine and Dentistry, London, Ontario, Canada.,Robarts Research Institute, 4288A 1151 Richmond Street North, University of Western Ontario, N6A 5B7 London, Ontario, Canada
| | - Raul D Santos
- Lipid Clinic Heart Institute (Incor), University of São Paulo, Medical School Hospital, São Paulo, Brazil.,Preventive Medicine Centre and Cardiology Program Hospital Israelita Albert Einstein, São Paulo, Brazil
| | - Anthony S Wierzbicki
- Metabolic Medicine and Chemical Pathology, Guy's and St. Thomas' Hospitals, London, UK
| |
Collapse
|
22
|
Iacocca MA, Wang J, Dron JS, Robinson JF, McIntyre AD, Cao H, Hegele RA. Use of next-generation sequencing to detect LDLR gene copy number variation in familial hypercholesterolemia. J Lipid Res 2017; 58:2202-2209. [PMID: 28874442 PMCID: PMC5665663 DOI: 10.1194/jlr.d079301] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Revised: 08/31/2017] [Indexed: 12/14/2022] Open
Abstract
Familial hypercholesterolemia (FH) is a heritable condition of severely elevated LDL cholesterol, caused predominantly by autosomal codominant mutations in the LDL receptor gene (LDLR). In providing a molecular diagnosis for FH, the current procedure often includes targeted next-generation sequencing (NGS) panels for the detection of small-scale DNA variants, followed by multiplex ligation-dependent probe amplification (MLPA) in LDLR for the detection of whole-exon copy number variants (CNVs). The latter is essential because ∼10% of FH cases are attributed to CNVs in LDLR; accounting for them decreases false negative findings. Here, we determined the potential of replacing MLPA with bioinformatic analysis applied to NGS data, which uses depth-of-coverage analysis as its principal method to identify whole-exon CNV events. In analysis of 388 FH patient samples, there was 100% concordance in LDLR CNV detection between these two methods: 38 reported CNVs identified by MLPA were also successfully detected by our NGS method, while 350 samples negative for CNVs by MLPA were also negative by NGS. This result suggests that MLPA can be removed from the routine diagnostic screening for FH, significantly reducing associated costs, resources, and analysis time, while promoting more widespread assessment of this important class of mutations across diagnostic laboratories.
Collapse
Affiliation(s)
- Michael A Iacocca
- Departments of Medicine and Biochemistry, Schulich School of Medicine & Dentistry, Western University, London, Ontario, Canada.,Robarts Research Institute, Western University, London, Ontario, Canada
| | - Jian Wang
- Robarts Research Institute, Western University, London, Ontario, Canada
| | - Jacqueline S Dron
- Departments of Medicine and Biochemistry, Schulich School of Medicine & Dentistry, Western University, London, Ontario, Canada.,Robarts Research Institute, Western University, London, Ontario, Canada
| | - John F Robinson
- Robarts Research Institute, Western University, London, Ontario, Canada
| | - Adam D McIntyre
- Robarts Research Institute, Western University, London, Ontario, Canada
| | - Henian Cao
- Robarts Research Institute, Western University, London, Ontario, Canada
| | - Robert A Hegele
- Departments of Medicine and Biochemistry, Schulich School of Medicine & Dentistry, Western University, London, Ontario, Canada .,Robarts Research Institute, Western University, London, Ontario, Canada
| |
Collapse
|
23
|
Iacocca MA, Hegele RA. Recent advances in genetic testing for familial hypercholesterolemia. Expert Rev Mol Diagn 2017; 17:641-651. [DOI: 10.1080/14737159.2017.1332997] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Michael A. Iacocca
- Departments of Medicine and Biochemistry, Schulich School of Medicine and Dentistry, Western University, London, Canada
| | - Robert A. Hegele
- Departments of Medicine and Biochemistry, Schulich School of Medicine and Dentistry, Western University, London, Canada
| |
Collapse
|
24
|
Wang J, Dron JS, Ban MR, Robinson JF, McIntyre AD, Alazzam M, Zhao PJ, Dilliott AA, Cao H, Huff MW, Rhainds D, Low-Kam C, Dubé MP, Lettre G, Tardif JC, Hegele RA. Polygenic Versus Monogenic Causes of Hypercholesterolemia Ascertained Clinically. Arterioscler Thromb Vasc Biol 2016; 36:2439-2445. [DOI: 10.1161/atvbaha.116.308027] [Citation(s) in RCA: 144] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Accepted: 10/10/2016] [Indexed: 11/16/2022]
Abstract
Objective—
Next-generation sequencing technology is transforming our understanding of heterozygous familial hypercholesterolemia, including revision of prevalence estimates and attribution of polygenic effects. Here, we examined the contributions of monogenic and polygenic factors in patients with severe hypercholesterolemia referred to a specialty clinic.
Approach and Results—
We applied targeted next-generation sequencing with custom annotation, coupled with evaluation of large-scale copy number variation and polygenic scores for raised low-density lipoprotein cholesterol in a cohort of 313 individuals with severe hypercholesterolemia, defined as low-density lipoprotein cholesterol >5.0 mmol/L (>194 mg/dL). We found that (1) monogenic familial hypercholesterolemia–causing mutations detected by targeted next-generation sequencing were present in 47.3% of individuals; (2) the percentage of individuals with monogenic mutations increased to 53.7% when copy number variations were included; (3) the percentage further increased to 67.1% when individuals with extreme polygenic scores were included; and (4) the percentage of individuals with an identified genetic component increased from 57.0% to 92.0% as low-density lipoprotein cholesterol level increased from 5.0 to >8.0 mmol/L (194 to >310 mg/dL).
Conclusions—
In a clinically ascertained sample with severe hypercholesterolemia, we found that most patients had a discrete genetic basis detected using a comprehensive screening approach that includes targeted next-generation sequencing, an assay for copy number variations, and polygenic trait scores.
Collapse
Affiliation(s)
- Jian Wang
- From the Robarts Research Institute (J.W., J.S.D., M.R.B., J.F.R., A.D.M., A.A.D., H.C., M.W.H., R.A.H.), Department of Biochemistry (J.S.D., M.A., A.A.D., M.W.H., R.A.H.), and Department of Medicine (P.J.Z., M.W.H., R.A.H.), Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada; Faculté de Médicine, Université de Montréal, Québec, Canada (M.-P.D., G.L., J.-C.T.); and Montréal Heart institute, Québec, Canada (D.R., C.L.-K., M.-P.D., G.L., J.-C.T.)
| | - Jacqueline S. Dron
- From the Robarts Research Institute (J.W., J.S.D., M.R.B., J.F.R., A.D.M., A.A.D., H.C., M.W.H., R.A.H.), Department of Biochemistry (J.S.D., M.A., A.A.D., M.W.H., R.A.H.), and Department of Medicine (P.J.Z., M.W.H., R.A.H.), Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada; Faculté de Médicine, Université de Montréal, Québec, Canada (M.-P.D., G.L., J.-C.T.); and Montréal Heart institute, Québec, Canada (D.R., C.L.-K., M.-P.D., G.L., J.-C.T.)
| | - Matthew R. Ban
- From the Robarts Research Institute (J.W., J.S.D., M.R.B., J.F.R., A.D.M., A.A.D., H.C., M.W.H., R.A.H.), Department of Biochemistry (J.S.D., M.A., A.A.D., M.W.H., R.A.H.), and Department of Medicine (P.J.Z., M.W.H., R.A.H.), Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada; Faculté de Médicine, Université de Montréal, Québec, Canada (M.-P.D., G.L., J.-C.T.); and Montréal Heart institute, Québec, Canada (D.R., C.L.-K., M.-P.D., G.L., J.-C.T.)
| | - John F. Robinson
- From the Robarts Research Institute (J.W., J.S.D., M.R.B., J.F.R., A.D.M., A.A.D., H.C., M.W.H., R.A.H.), Department of Biochemistry (J.S.D., M.A., A.A.D., M.W.H., R.A.H.), and Department of Medicine (P.J.Z., M.W.H., R.A.H.), Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada; Faculté de Médicine, Université de Montréal, Québec, Canada (M.-P.D., G.L., J.-C.T.); and Montréal Heart institute, Québec, Canada (D.R., C.L.-K., M.-P.D., G.L., J.-C.T.)
| | - Adam D. McIntyre
- From the Robarts Research Institute (J.W., J.S.D., M.R.B., J.F.R., A.D.M., A.A.D., H.C., M.W.H., R.A.H.), Department of Biochemistry (J.S.D., M.A., A.A.D., M.W.H., R.A.H.), and Department of Medicine (P.J.Z., M.W.H., R.A.H.), Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada; Faculté de Médicine, Université de Montréal, Québec, Canada (M.-P.D., G.L., J.-C.T.); and Montréal Heart institute, Québec, Canada (D.R., C.L.-K., M.-P.D., G.L., J.-C.T.)
| | - Maher Alazzam
- From the Robarts Research Institute (J.W., J.S.D., M.R.B., J.F.R., A.D.M., A.A.D., H.C., M.W.H., R.A.H.), Department of Biochemistry (J.S.D., M.A., A.A.D., M.W.H., R.A.H.), and Department of Medicine (P.J.Z., M.W.H., R.A.H.), Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada; Faculté de Médicine, Université de Montréal, Québec, Canada (M.-P.D., G.L., J.-C.T.); and Montréal Heart institute, Québec, Canada (D.R., C.L.-K., M.-P.D., G.L., J.-C.T.)
| | - Pei Jun Zhao
- From the Robarts Research Institute (J.W., J.S.D., M.R.B., J.F.R., A.D.M., A.A.D., H.C., M.W.H., R.A.H.), Department of Biochemistry (J.S.D., M.A., A.A.D., M.W.H., R.A.H.), and Department of Medicine (P.J.Z., M.W.H., R.A.H.), Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada; Faculté de Médicine, Université de Montréal, Québec, Canada (M.-P.D., G.L., J.-C.T.); and Montréal Heart institute, Québec, Canada (D.R., C.L.-K., M.-P.D., G.L., J.-C.T.)
| | - Allison A. Dilliott
- From the Robarts Research Institute (J.W., J.S.D., M.R.B., J.F.R., A.D.M., A.A.D., H.C., M.W.H., R.A.H.), Department of Biochemistry (J.S.D., M.A., A.A.D., M.W.H., R.A.H.), and Department of Medicine (P.J.Z., M.W.H., R.A.H.), Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada; Faculté de Médicine, Université de Montréal, Québec, Canada (M.-P.D., G.L., J.-C.T.); and Montréal Heart institute, Québec, Canada (D.R., C.L.-K., M.-P.D., G.L., J.-C.T.)
| | - Henian Cao
- From the Robarts Research Institute (J.W., J.S.D., M.R.B., J.F.R., A.D.M., A.A.D., H.C., M.W.H., R.A.H.), Department of Biochemistry (J.S.D., M.A., A.A.D., M.W.H., R.A.H.), and Department of Medicine (P.J.Z., M.W.H., R.A.H.), Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada; Faculté de Médicine, Université de Montréal, Québec, Canada (M.-P.D., G.L., J.-C.T.); and Montréal Heart institute, Québec, Canada (D.R., C.L.-K., M.-P.D., G.L., J.-C.T.)
| | - Murray W. Huff
- From the Robarts Research Institute (J.W., J.S.D., M.R.B., J.F.R., A.D.M., A.A.D., H.C., M.W.H., R.A.H.), Department of Biochemistry (J.S.D., M.A., A.A.D., M.W.H., R.A.H.), and Department of Medicine (P.J.Z., M.W.H., R.A.H.), Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada; Faculté de Médicine, Université de Montréal, Québec, Canada (M.-P.D., G.L., J.-C.T.); and Montréal Heart institute, Québec, Canada (D.R., C.L.-K., M.-P.D., G.L., J.-C.T.)
| | - David Rhainds
- From the Robarts Research Institute (J.W., J.S.D., M.R.B., J.F.R., A.D.M., A.A.D., H.C., M.W.H., R.A.H.), Department of Biochemistry (J.S.D., M.A., A.A.D., M.W.H., R.A.H.), and Department of Medicine (P.J.Z., M.W.H., R.A.H.), Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada; Faculté de Médicine, Université de Montréal, Québec, Canada (M.-P.D., G.L., J.-C.T.); and Montréal Heart institute, Québec, Canada (D.R., C.L.-K., M.-P.D., G.L., J.-C.T.)
| | - Cécile Low-Kam
- From the Robarts Research Institute (J.W., J.S.D., M.R.B., J.F.R., A.D.M., A.A.D., H.C., M.W.H., R.A.H.), Department of Biochemistry (J.S.D., M.A., A.A.D., M.W.H., R.A.H.), and Department of Medicine (P.J.Z., M.W.H., R.A.H.), Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada; Faculté de Médicine, Université de Montréal, Québec, Canada (M.-P.D., G.L., J.-C.T.); and Montréal Heart institute, Québec, Canada (D.R., C.L.-K., M.-P.D., G.L., J.-C.T.)
| | - Marie-Pierre Dubé
- From the Robarts Research Institute (J.W., J.S.D., M.R.B., J.F.R., A.D.M., A.A.D., H.C., M.W.H., R.A.H.), Department of Biochemistry (J.S.D., M.A., A.A.D., M.W.H., R.A.H.), and Department of Medicine (P.J.Z., M.W.H., R.A.H.), Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada; Faculté de Médicine, Université de Montréal, Québec, Canada (M.-P.D., G.L., J.-C.T.); and Montréal Heart institute, Québec, Canada (D.R., C.L.-K., M.-P.D., G.L., J.-C.T.)
| | - Guillaume Lettre
- From the Robarts Research Institute (J.W., J.S.D., M.R.B., J.F.R., A.D.M., A.A.D., H.C., M.W.H., R.A.H.), Department of Biochemistry (J.S.D., M.A., A.A.D., M.W.H., R.A.H.), and Department of Medicine (P.J.Z., M.W.H., R.A.H.), Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada; Faculté de Médicine, Université de Montréal, Québec, Canada (M.-P.D., G.L., J.-C.T.); and Montréal Heart institute, Québec, Canada (D.R., C.L.-K., M.-P.D., G.L., J.-C.T.)
| | - Jean-Claude Tardif
- From the Robarts Research Institute (J.W., J.S.D., M.R.B., J.F.R., A.D.M., A.A.D., H.C., M.W.H., R.A.H.), Department of Biochemistry (J.S.D., M.A., A.A.D., M.W.H., R.A.H.), and Department of Medicine (P.J.Z., M.W.H., R.A.H.), Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada; Faculté de Médicine, Université de Montréal, Québec, Canada (M.-P.D., G.L., J.-C.T.); and Montréal Heart institute, Québec, Canada (D.R., C.L.-K., M.-P.D., G.L., J.-C.T.)
| | - Robert A. Hegele
- From the Robarts Research Institute (J.W., J.S.D., M.R.B., J.F.R., A.D.M., A.A.D., H.C., M.W.H., R.A.H.), Department of Biochemistry (J.S.D., M.A., A.A.D., M.W.H., R.A.H.), and Department of Medicine (P.J.Z., M.W.H., R.A.H.), Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada; Faculté de Médicine, Université de Montréal, Québec, Canada (M.-P.D., G.L., J.-C.T.); and Montréal Heart institute, Québec, Canada (D.R., C.L.-K., M.-P.D., G.L., J.-C.T.)
| |
Collapse
|
25
|
Sanna C, Stéphenne X, Revencu N, Smets F, Sassolas A, Di Filippo M, Descamps OS, Sokal EM. Homozygous familial hypercholesterolemia in childhood: Genotype-phenotype description, established therapies and perspectives. Atherosclerosis 2016; 247:97-104. [PMID: 26894473 DOI: 10.1016/j.atherosclerosis.2016.02.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Revised: 01/31/2016] [Accepted: 02/03/2016] [Indexed: 12/22/2022]
Abstract
Familial hypercholesterolemia (FH) is a co-dominantly inherited disorder of plasma lipoprotein metabolism. The prevalence of heterozygous FH (HeFH) is between 1/500 and 1/200 whereas that of homozygous form (HoFH) is about 1/1,000,000. Diagnosis is based on cutaneous xanthomas and untreated levels of LDL-cholesterol over 500 mg/dl before 10 years of age. Life expectancy, without treatment, does not exceed 20 years of age. The aim of this study is to characterise in details a cohort of 8 HoFH paediatric patients in order to illustrate all the current therapeutic options and to add some clinical and genetic information about this rare disease. We collected demographic, clinical, biological, imaging and genotype details. Furthermore, clinical and biochemical response to different treatment methods was retrospectively evaluated. All patients had genetically proven HoFH. All patients were subject to a lipid-lowering diet and medical treatment (except one), three patients underwent a liver transplant and one an hepatocytes infusion. Medical treatment was well tolerated with a median reduction of 44% and 47% in LDL-Cholesterol and Total Cholesterol respectively. The hepatocytes transplant produced a further, though slight, decrease in cholesterol levels as opposed to medical therapy alone. Transplanted patients normalized their cholesterol levels. Since the very high cardiovascular risk, HoFH requires immediate diagnosis, treatment and monitoring. Nowadays, the use of statins remains the cornerstone of medical therapy and liver transplantation is the possibly curative therapy. Besides, high hopes are pinned in new drugs (antibody targeting PCSK9, Mipomersen and Lomitapide) and stem cells.
Collapse
Affiliation(s)
- Claudia Sanna
- Université catholique de Louvain, Cliniques Universitaires Saint Luc, Service de Gastroentérologie et Hépatologie Pédiatrique, Bruxelles, Belgium
| | - Xavier Stéphenne
- Université catholique de Louvain, Cliniques Universitaires Saint Luc, Service de Gastroentérologie et Hépatologie Pédiatrique, Bruxelles, Belgium
| | - Nicole Revencu
- Université catholique de Louvain, Cliniques Universitaires Saint Luc, Centre de Génétique Humaine, Bruxelles, Belgium
| | - Françoise Smets
- Université catholique de Louvain, Cliniques Universitaires Saint Luc, Service de Gastroentérologie et Hépatologie Pédiatrique, Bruxelles, Belgium
| | - Agnes Sassolas
- UF Lipides-Dyslipidémies, Laboratoire de Biochimie, CBE, 59 boulevard Pinel, Bron Cedex, France; INSERM U1060, INSA de Lyon, INRA U1235, Univ Lyon-1, Université de Lyon, Villeurbanne, Oullins, France
| | - Mathilde Di Filippo
- UF Lipides-Dyslipidémies, Laboratoire de Biochimie, CBE, 59 boulevard Pinel, Bron Cedex, France; INSERM U1060, INSA de Lyon, INRA U1235, Univ Lyon-1, Université de Lyon, Villeurbanne, Oullins, France
| | | | - Etienne M Sokal
- Université catholique de Louvain, Cliniques Universitaires Saint Luc, Service de Gastroentérologie et Hépatologie Pédiatrique, Bruxelles, Belgium.
| |
Collapse
|
26
|
Marino RB, Kingsley LA, Hussain SK, Bream JH, Penogonda S, Duggal P, Martinson JJ. Lipid levels in HIV-positive men receiving anti-retroviral therapy are not associated with copy number variation of reverse cholesterol transport pathway genes. BMC Res Notes 2015; 8:697. [PMID: 26590594 PMCID: PMC4654814 DOI: 10.1186/s13104-015-1665-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Accepted: 11/02/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The exacerbation of HIV-1 associated dyslipidemia seen in a subset of patients receiving anti-retroviral therapy suggests that genetic factors put these individuals at greater risk of cardiovascular disease. Single nucleotide polymorphisms (SNPs) within genes of and influencing the reverse cholesterol transport (RCT) pathway are associated with lipid levels but little is known regarding their copy number variation (CNV). This form of quantitative genetic variation has the potential to alter the amount of gene product made, thereby also influencing lipid metabolism. RESULTS To examine if CNV in RCT pathway genes was associated with altered serum lipid profiles in HIV-positive individuals receiving therapy, we designed a custom multiplex ligation-dependent probe amplification assay to screen 16 RCT genes within a subset of individuals from the Multicenter AIDS Cohort Study who show extreme lipid phenotypes. Verification of CNV was performed using a custom NanoString assay, and the Illumina HT-12 mRNA expression microarray was used to determine the influence of copy number on gene expression. Among the RCT genes, CNV was observed to be extremely rare. The only CNV seen was in the CETP gene, which showed a loss of copy in 1 of the 320 samples (0.3%) in our study. The genes in our study showed little variation in expression between individuals, and the variation seen was not related to any detected CNV. CONCLUSIONS Whole gene CNV is uncommon in RCT pathway genes, and not a major factor in the development of highly active antiretroviral therapy (HAART) associated dyslipidemia.
Collapse
Affiliation(s)
- Rebecca B Marino
- Department of Infectious Diseases and Microbiology, Graduate School of Public Health, University of Pittsburgh, 130 De Soto St, Pittsburgh, PA, 15261, USA.
| | - Lawrence A Kingsley
- Department of Infectious Diseases and Microbiology, Graduate School of Public Health, University of Pittsburgh, 130 De Soto St, Pittsburgh, PA, 15261, USA.
| | - Shehnaz K Hussain
- Division of Hematology/Oncology, Department of Medicine, Cedars-Sinai Medical Center, 8700 Beverly Blvd, Los Angeles, CA, 90048, USA.
| | - Jay H Bream
- Bloomberg School of Public Health, Johns Hopkins University, 615 Wolfe St, Baltimore, MD, 21205, USA.
| | - Sudhir Penogonda
- Feinberg School of Medicine, Northwestern University, 645 N Michigan Avenue, Chicago, IL, 60611, USA.
| | - Priya Duggal
- Bloomberg School of Public Health, Johns Hopkins University, 615 Wolfe St, Baltimore, MD, 21205, USA.
| | - Jeremy J Martinson
- Department of Infectious Diseases and Microbiology, Graduate School of Public Health, University of Pittsburgh, 130 De Soto St, Pittsburgh, PA, 15261, USA.
| |
Collapse
|
27
|
Tsai CT, Hsieh CS, Chang SN, Chuang EY, Juang JMJ, Lin LY, Lai LP, Hwang JJ, Chiang FT, Lin JL. Next-generation sequencing of nine atrial fibrillation candidate genes identified novel de novo mutations in patients with extreme trait of atrial fibrillation. J Med Genet 2015; 52:28-36. [PMID: 25391453 DOI: 10.1136/jmedgenet-2014-102618] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
BACKGROUND Atrial fibrillation (AF) is the most common sustained cardiac arrhythmia. Genome-wide association studies (GWAS) have identified common variants in nine genomic regions associated with AF (KCNN3, PRRX1, PITX2, WNT8A, CAV1, C9orf3, SYNE2, HCN4 and ZFHX3 genes); however, the genetic variability of these risk variants does not explain the entire genetic susceptibility to AF. Rare variants missed by GWAS may also contribute to genetic risk of AF. METHODS We used an extreme trait design to sequence carefully selected probands with extreme phenotypes and their unaffected parents to identify rare de novo variants or mutations. Based on the hypothesis that common and rare variants may colocate in the same disease susceptibility gene, we used next-generation sequencing to sequence these nine published AF susceptibility genes identified by GWAS (a total of 179 exons) in 20 trios, 200 unrelated patients with AF and 200 non-AF controls. RESULTS We identified a novel mutation in the 5' untranslated region of the PITX2 gene, which localised in the transcriptionally active enhancer region. We also identified one missense exon mutation in KCNN3, two in ZFHX3 and one in SYNE2. None of these mutations were present in other unrelated patients with AF, healthy controls, unaffected parents and are thus novel and de novo (p<10(-4)). Functional study showed that the mutation in the 5' untranslated region of the PITX2 gene significantly downregulated PITX2 expression in atrial myocytes, either in basal condition or during rapid pacing. In silico analysis showed that the missense mutation in ZFHX3 results in damage of the ZFHX3 protein structure. CONCLUSIONS The genetic architecture of subjects with extreme phenotypes of AF is similar to that of rare or Mendelian diseases, and mutations may be the underlying cause.
Collapse
Affiliation(s)
- Chia-Ti Tsai
- Division of Cardiology, Department of Internal Medicine, National Taiwan University College of Medicine and Hospital, Taipei, Taiwan Department of Internal Medicine, National Taiwan University Hospital Yun-Lin Branch, Yun-Lin, Taiwan Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Chia-Shan Hsieh
- Genome and Systems Biology Degree Program, Department of Life Science, National Taiwan University, Taipei, Taiwan Bioinformatics and Biostatistics Core, Center of Genomic Medicine, National Taiwan University, Taipei, Taiwan
| | - Sheng-Nan Chang
- Department of Internal Medicine, National Taiwan University Hospital Yun-Lin Branch, Yun-Lin, Taiwan
| | - Eric Y Chuang
- Genome and Systems Biology Degree Program, Department of Life Science, National Taiwan University, Taipei, Taiwan Bioinformatics and Biostatistics Core, Center of Genomic Medicine, National Taiwan University, Taipei, Taiwan
| | - Jyh-Ming Jimmy Juang
- Division of Cardiology, Department of Internal Medicine, National Taiwan University College of Medicine and Hospital, Taipei, Taiwan
| | - Lian-Yu Lin
- Division of Cardiology, Department of Internal Medicine, National Taiwan University College of Medicine and Hospital, Taipei, Taiwan
| | - Ling-Ping Lai
- Division of Cardiology, Department of Internal Medicine, National Taiwan University College of Medicine and Hospital, Taipei, Taiwan
| | - Juey-Jen Hwang
- Division of Cardiology, Department of Internal Medicine, National Taiwan University College of Medicine and Hospital, Taipei, Taiwan
| | - Fu-Tien Chiang
- Division of Cardiology, Department of Internal Medicine, National Taiwan University College of Medicine and Hospital, Taipei, Taiwan Department of Laboratory Medicine, National Taiwan University College of Medicine and Hospital, Taipei, Taiwan
| | - Jiunn-Lee Lin
- Division of Cardiology, Department of Internal Medicine, National Taiwan University College of Medicine and Hospital, Taipei, Taiwan
| |
Collapse
|
28
|
Faiz F, Nguyen LT, van Bockxmeer FM, Hooper AJ. Genetic screening to improve the diagnosis of familial hypercholesterolemia. ACTA ACUST UNITED AC 2014. [DOI: 10.2217/clp.14.32] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
29
|
Gancheva K, Postadjian A, Brazma D, Grace C, Chanalaris A, Nacheva E, Apostolova M. Copy Number Variants: Distribution in Patients with Coronary Atherosclerosis. BIOTECHNOL BIOTEC EQ 2014. [DOI: 10.1080/13102818.2009.10817620] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
|
30
|
|
31
|
APOE p.Leu167del mutation in familial hypercholesterolemia. Atherosclerosis 2013; 231:218-22. [DOI: 10.1016/j.atherosclerosis.2013.09.007] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2013] [Revised: 08/28/2013] [Accepted: 09/11/2013] [Indexed: 12/24/2022]
|
32
|
Boonpeng H, Yusoff K. The utility of copy number variation (CNV) in studies of hypertension-related left ventricular hypertrophy (LVH): rationale, potential and challenges. Mol Cytogenet 2013; 6:8. [PMID: 23448375 PMCID: PMC3599593 DOI: 10.1186/1755-8166-6-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2012] [Accepted: 01/03/2013] [Indexed: 01/08/2023] Open
Abstract
The ultimate goal of human genetics is to understand the role of genome variation in elucidating human traits and diseases. Besides single nucleotide polymorphism (SNP), copy number variation (CNV), defined as gains or losses of a DNA segment larger than 1 kb, has recently emerged as an important tool in understanding heritable source of human genomic differences. It has been shown to contribute to genetic susceptibility of various common and complex diseases. Despite a handful of publications, its role in cardiovascular diseases remains largely unknown. Here, we deliberate on the currently available technologies for CNV detection. The possible utility and the potential roles of CNV in exploring the mechanisms of cardiac remodeling in hypertension will also be addressed. Finally, we discuss the challenges for investigations of CNV in cardiovascular diseases and its possible implications in diagnosis of hypertension-related left ventricular hypertrophy (LVH).
Collapse
Affiliation(s)
- Hoh Boonpeng
- Institute of Medical Molecular Biotechnology, Faculty of Medicine, Universiti Teknologi MARA, Sungai Buloh Campus, Jalan Hospital, Sungai, Buloh, 47000, Malaysia.
| | | |
Collapse
|
33
|
Etxebarria A, Palacios L, Stef M, Tejedor D, Uribe KB, Oleaga A, Irigoyen L, Torres B, Ostolaza H, Martin C. Functional characterization of splicing and ligand-binding domain variants in the LDL receptor. Hum Mutat 2011; 33:232-43. [PMID: 21990180 DOI: 10.1002/humu.21630] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2011] [Accepted: 09/26/2011] [Indexed: 12/11/2022]
Abstract
Familial hypercholesterolemia (FH) is an autosomal dominant disorder mostly caused by mutations in the LDLR gene. Although the detection of functional mutations in the LDLR gene provides an unequivocal diagnosis of the FH condition, there are many variants whose pathogenicity is still unknown. The aims of this study were to set up a rapid method to determine the effect of LDLR mutations, thereby providing an accurate diagnosis of FH, and to functionally characterize six LDLR mutations detected at high frequency by the LIPOchip(®) platform (Progenika Biopharma, Spain) in the Spanish population. LDLR expression and activity were analyzed by one-single-step flow cytometry assay and confocal microscopy. Splicing effects were determined by sequencing reverse transcription polymerase chain reaction products. The analysis of three heterozygous variants with a single point mutation within the low-density lipoprotein binding domain allowed us to classify the c.806G>A variant as nonpathogenic, and c.862G>A and c.895G>A variants as causative of FH. The results obtained for three variants affecting donor splice sites of the LDLR mRNA, c.313+2dupT, c.1186+5G>A, and c.1845+1G>C, demonstrated that these mutations are pathogenic. These results expand our knowledge of mutations responsible for FH, providing an accurate diagnosis and leading to early treatment to reduce the risk of premature cardiovascular events.
Collapse
Affiliation(s)
- Aitor Etxebarria
- Unidad de Biofísica (Centro Mixto CSIC-UPV/EHU) and Departamento de Bioquímica, Universidad del País Vasco, Apdo. 644, 48080 Bilbao, Spain
| | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Calandra S, Tarugi P, Speedy HE, Dean AF, Bertolini S, Shoulders CC. Mechanisms and genetic determinants regulating sterol absorption, circulating LDL levels, and sterol elimination: implications for classification and disease risk. J Lipid Res 2011; 52:1885-926. [PMID: 21862702 DOI: 10.1194/jlr.r017855] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
This review integrates historical biochemical and modern genetic findings that underpin our understanding of the low-density lipoprotein (LDL) dyslipidemias that bear on human disease. These range from life-threatening conditions of infancy through severe coronary heart disease of young adulthood, to indolent disorders of middle- and old-age. We particularly focus on the biological aspects of those gene mutations and variants that impact on sterol absorption and hepatobiliary excretion via specific membrane transporter systems (NPC1L1, ABCG5/8); the incorporation of dietary sterols (MTP) and of de novo synthesized lipids (HMGCR, TRIB1) into apoB-containing lipoproteins (APOB) and their release into the circulation (ANGPTL3, SARA2, SORT1); and receptor-mediated uptake of LDL and of intestinal and hepatic-derived lipoprotein remnants (LDLR, APOB, APOE, LDLRAP1, PCSK9, IDOL). The insights gained from integrating the wealth of genetic data with biological processes have important implications for the classification of clinical and presymptomatic diagnoses of traditional LDL dyslipidemias, sitosterolemia, and newly emerging phenotypes, as well as their management through both nutritional and pharmaceutical means.
Collapse
Affiliation(s)
- Sebastiano Calandra
- Department of Biomedical Sciences, University of Modena and Reggio Emilia, Modena, Italy.
| | | | | | | | | | | |
Collapse
|
35
|
Familial hypercholesterolemia: the lipids or the genes? Nutr Metab (Lond) 2011; 8:23. [PMID: 21513517 PMCID: PMC3104361 DOI: 10.1186/1743-7075-8-23] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2011] [Accepted: 04/22/2011] [Indexed: 02/05/2023] Open
Abstract
Familial Hypercholesterolemia (FH) is a common cause of premature cardiovascular disease and is often undiagnosed in young people. Although the disease is diagnosed clinically by high LDL cholesterol levels and family history, to date there are no single internationally accepted criteria for the diagnosis of FH. Several genes have been shown to be involved in FH; yet determining the implications of the different mutations on the phenotype remains a hard task. The polygenetic nature of FH is being enhanced by the discovery of new genes that serve as modifiers. Nevertheless, the picture is still unclear and many unknown genes contributing to the phenotype are most likely involved. Because of this evolving polygenetic nature, the diagnosis of FH by genetic testing is hampered by its cost and effectiveness. In this review, we reconsider the clinical versus genetic nomenclature of FH in the literature. After we describe each of the genetic causes of FH, we summarize the known correlation with phenotypic measures so far for each genetic defect. We then discuss studies from different populations on the genetic and clinical diagnoses of FH to draw helpful conclusions on cost-effectiveness and suggestions for diagnosis.
Collapse
|
36
|
Eastaugh LJ, James PA, Phelan DG, Davis AM. Brugada syndrome caused by a large deletion in SCN5A only detected by multiplex ligation-dependent probe amplification. J Cardiovasc Electrophysiol 2011; 22:1073-6. [PMID: 21288276 DOI: 10.1111/j.1540-8167.2010.02003.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A 14-year-old boy presented with atrial flutter. His ECG showed Brugada changes, first-degree AV block and major sinus pauses. Polymorphic VT was inducible at electrophysiology study. A pacemaker defibrillator was placed. Classic sequencing for SCN5A was normal. Multiplex ligation-dependent probe amplification, however, detected a major deletion in SCN5A. It is predicted that this deletion would result in haploinsufficiency. The report is the first description of a large-scale rearrangement of the SCN5A gene and supports the association between the molecular pathology and the phenotypic expression.
Collapse
|
37
|
Taylor A, Bayly G, Patel K, Yarram L, Williams M, Hamilton-Shield J, Humphries SE, Norbury G. A double heterozygote for familial hypercholesterolaemia and familial defective apolipoprotein B-100. Ann Clin Biochem 2010; 47:487-90. [PMID: 20736250 DOI: 10.1258/acb.2010.010089] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Autosomal dominant hypercholesterolaemia is genetically heterogeneous, but most commonly (approximately 93%) caused by mutations in low-density lipoprotein receptor (LDLR), where the disease is known as familial hypercholesterolaemia (FH), or apolipoprotein B-100 (APOB) (approximately 5.5%), where the disease is known as familial defective APOB (FDB), while in approximately 2% of patients the mutation is in the proprotein convertase subtilisin/kexin type 9 gene. Homozygous FH having inheritance of two LDLR mutations is a rare but recognized syndrome associated with an extreme hypercholesterolaemia and early-onset coronary artery disease. We present a 15-year-old girl with untreated total cholesterol levels of 8.8 mmol/L who was heterozygous for both the LDLR p.Leu479Pro and APOB p.Arg3527Gln mutation. Cascade testing confirmed the paternal origin of the LDLR mutation and revealed a maternal diagnosis of FDB. This case provides further evidence that the combined effect of an LDLR and an APOB mutation give rise to a phenotype more severe than either mutation alone and is more severe than homozygous FDB, but less severe than homozygous FH. It also highlights the need to consider the presence of additional mutations in families where relatives have varying phenotypes.
Collapse
Affiliation(s)
- Alison Taylor
- NE Thames Regional Molecular Genetics Laboratory, Great Ormond Street Hospital, Level 6 York House, 37 Queen Square, London WC1N3BH, UK.
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Medeiros AM, Alves AC, Francisco V, Bourbon M. Update of the Portuguese Familial Hypercholesterolaemia Study. Atherosclerosis 2010; 212:553-8. [PMID: 20828696 DOI: 10.1016/j.atherosclerosis.2010.07.012] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2010] [Revised: 07/02/2010] [Accepted: 07/12/2010] [Indexed: 12/22/2022]
Abstract
The main aim of the Portuguese Familial Hypercholesterolaemia Study is to identify the genetic cause of hypercholesterolaemia in individuals with a clinical diagnosis of Familial Hypercholesterolaemia (FH). A total of 1340 blood samples were collected from 482 index patients and 858 relatives with the collaboration of clinicians from several hospitals all over the country. The genetic diagnosis of FH in this study is based on the analyses of three genes: LDLR, APOB and PCSK9. In the last 10 years, the Portuguese FH Study identified a genetic defect in a total of 171 index patients, corresponding to an overall of 48% of the total received cases with clinical diagnosis of FH. Although the Simon Broome FH register criteria have been adapted to our study, 59 patients that did not fulfil all criteria were included in the study and a mutation causing disease was identified in 8 of these patients. In the LDLR gene were found 80 different mutations in 165 unrelated index patients: 159 heterozygous, 3 compounds heterozygous and 3 true homozygous. The APOB p.Arg3527Gln and the PCSK9 p.Asp374His mutation were not found in any of our patients since our last report, but a novel mutation in the APOB gene, predicted to cause a single amino acid substitution p.Tyr3560Cys, was found in one patient. The cascade screening in relatives of these 171 index patients allowed the identification and genetic characterization of a total of 404 FH patients in Portugal.
Collapse
Affiliation(s)
- A M Medeiros
- Grupo de Investigação Cardiovascular, Unidade de I&D, Departamento de Promoção da Saúde e Doenças Crónicas, Instituto Nacional de Saúde Dr Ricardo Jorge, Av. Padre Cruz, 1649-016 Lisboa, Portugal
| | | | | | | | | |
Collapse
|
39
|
Chiou KR, Charng MJ. Detection of mutations and large rearrangements of the low-density lipoprotein receptor gene in Taiwanese patients with familial hypercholesterolemia. Am J Cardiol 2010; 105:1752-8. [PMID: 20538126 DOI: 10.1016/j.amjcard.2010.01.356] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2009] [Revised: 01/22/2010] [Accepted: 01/22/2010] [Indexed: 11/26/2022]
Abstract
Familial hypercholesterolemia (FH) is commonly caused by mutations in the low-density lipoprotein receptor (LDLR), apolipoprotein B, and proprotein convertase subtilisin/kexin type 9 genes. The study aim was to investigate patients with FH in Taiwan, using molecular diagnostic methods, and compare the abnormalities in the small mutation and large DNA rearrangement subgroups. In total, 102 unrelated probands with FH were tested for mutations by exon-by-exon sequence analysis (EBESA) and multiple ligation-dependent probe amplification (MLPA). EBESA identified gene apolipoprotein B R3500W in 8 probands and 25 mis-sense, 5 nonsense, and 6 frameshift LDLR mutations in 52 probands; 11 were novel mutations. Of the 42 probands with mutations undetected by EBESA, 8 had abnormal MLPA patterns, including 2 with exon 6 to 18 deletions, 2 with exon 9 deletion, 1 with exon 6 to 8 deletions, 1 with exon 11 deletion, 1 with exon 3 to 5 duplications, and 1 with exon 7 to 12 duplications. Pedigree analysis showed mutation cosegregation with hypercholesterolemia in affected family members. Mean lipid profiles and rate of failure to lower LDL cholesterol <100 mg/dl in response to rosuvastatin/ezetimibe treatment were similar in groups with abnormal MLPA patterns and groups carrying nonsense or frameshift mutations. In conclusion, frequency of large LDLR rearrangement was approximately 8% in Taiwanese patients with FH. The response to statin drugs differed between probands with abnormal MLPA patterns and probands carrying mis-sense or undetected mutations.
Collapse
|
40
|
A translational view of the genetics of lipodystrophy and ectopic fat deposition. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2010; 94:159-96. [PMID: 21036325 DOI: 10.1016/b978-0-12-375003-7.00006-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
A wide range of lipodystrophy syndromes exist, each with varying clinical presentations, and yet cumulatively they underscore the importance of adipocyte biology in human metabolism. Loss of the ability to retain excess lipids in "classical" adipose tissue stores can lead to the overdevelopment of ectopic fat stores, often creating severe perturbations of both glucose and lipid homeostasis. Linkage analysis and candidate sequencing efforts have successfully identified responsible mutations for multiple forms of lipodystrophy. Recently, the reduction in the cost of DNA sequencing has resulted in discovery of many novel mutations within both known and novel loci. In this review, we present the steps involved in clinical characterization of a suspected lipodystrophy case, an overview of the clinical manifestations, molecular findings, and pathogenic basis of different forms of lipodystrophy, a discussion of therapeutic options for lipodystrophy patients, and an examination of genetic advances that will be used to identify additional pathogenic mechanisms.
Collapse
|
41
|
Abstract
Variation in gene copy number is increasingly recognized as a common, heritable source of inter-individual differences in genomic sequence. The role of copy number variation is well established in the pathogenesis of rare genomic disorders. More recently, germline and somatic copy number variation have been shown to be important pathogenic factors in a range of common diseases, including infectious, autoimmune and neuropsychiatric diseases and cancer. In this review, we describe the range of methods available for measuring copy number variants (CNVs) in individuals and populations, including the limitations of presently available assays, and highlight some key examples of common diseases in which CNVs have been shown clearly to have a pathogenic role. Although there has been major progress in this field in the last 5 years, understanding the full contribution of CNVs to the genetic basis of common diseases will require further studies, with more accurate CNV assays and larger cohorts than have presently been completed.
Collapse
Affiliation(s)
- M Fanciulli
- Imperial College London, Hammersmith Hospital, London, W12 0NN, UK
| | | | | |
Collapse
|
42
|
Whittall RA, Scartezini M, Li K, Hubbart C, Reiner Z, Abraha A, Neil HAW, Dedoussis G, Humphries SE. Development of a high-resolution melting method for mutation detection in familial hypercholesterolaemia patients. Ann Clin Biochem 2009; 47:44-55. [DOI: 10.1258/acb.2009.009076] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Aims Current screening methods, such as single strand conformational polymorphism (SSCP) and denaturing high performance liquid chromatography (dHPLC) that are used for detecting mutations in familial hypercholesterolaemia (FH) subjects are time consuming, costly and only 80–90% sensitive. Here we have tested high-resolution melt (HRM) analysis for mutation detection using the Rotor-Gene6000 realtime rotary analyser. Methods and subjects Polymerase chain reaction and melt conditions (HRM) for 23 fragments of the LDL-receptor gene, a region of exon 26 in the APOB gene (including p.R3527Q) and exon 7 of the PCSK9 gene (including p.D374Y) were optimized. Two double stranded DNA saturating dyes, LC-Green and Syto9, were compared for sensitivity. Eighty-two samples with known mutations were used as positive controls. Twenty-eight Greek FH heterozygous patients and two homozygous patients from the UK and Croatia were screened. Results HRM was able to identify all the positive control mutations tested, with similar results with either dye. Eight different variations were found in 17 of the 28 Greek FH patients for an overall detection rate of 61%: c.41delT (1), p.W165X (1), p.C173R (3), p.S286R (2), p.V429M (4), p.G549D (4), p.V613I (1), and a previously unreported mutation p.F694V (1) which is predicted to be FH-causing by functional algorithms. Mutations were found in both the homozygous patients; p.Q92X (Croatia) and p.Y489C (UK); both patients were homozygous for their respective mutations. Conclusions HRM is a sensitive, robust technique that could significantly reduce the time and cost of screening for mutations in a clinical setting.
Collapse
Affiliation(s)
- R A Whittall
- Centre for Cardiovascular Genetics, British Heart Foundation Laboratories, Royal Free and University College London Medical School, London WC1E 6JJ, UK
| | - M Scartezini
- Centre for Cardiovascular Genetics, British Heart Foundation Laboratories, Royal Free and University College London Medical School, London WC1E 6JJ, UK
- Department of Medical Pathology, Federal University of Paraná, Curitiba–Paraná, 80210–170, Brazil
| | - KaWah Li
- Centre for Cardiovascular Genetics, British Heart Foundation Laboratories, Royal Free and University College London Medical School, London WC1E 6JJ, UK
| | - C Hubbart
- Centre for Cardiovascular Genetics, British Heart Foundation Laboratories, Royal Free and University College London Medical School, London WC1E 6JJ, UK
| | - Z Reiner
- Department of Internal Medicine, University Hospital Center Zagreb, Zagreb 1000, Croatia
| | - A Abraha
- Department of Clinical Biochemistry, Stoke Mandeville Hospital, Aylesbury HP21 8AL, UK
| | - H A W Neil
- Division Public Health & Primary Health Care, University of Oxford, Oxford OX3 7LF, UK
| | - G Dedoussis
- Department of Dietetics-Nutrition, Harokopio University, Athens 17671, Greece
| | - S E Humphries
- Centre for Cardiovascular Genetics, British Heart Foundation Laboratories, Royal Free and University College London Medical School, London WC1E 6JJ, UK
| |
Collapse
|
43
|
Taylor A, Martin B, Wang D, Patel K, Humphries SE, Norbury G. Multiplex ligation-dependent probe amplification analysis to screen for deletions and duplications of the LDLR gene in patients with familial hypercholesterolaemia. Clin Genet 2009; 76:69-75. [PMID: 19538517 DOI: 10.1111/j.1399-0004.2009.01168.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
The most common genetic defect in patients with autosomal dominant hypercholesterolaemia is a mutation of the low-density lipoprotein receptor (LDLR) gene. An estimate of the frequency of major rearrangements has been limited by the availability of an effective analytical method and testing of large cohorts. We present data from a cohort of 611 patients referred with suspected heterozygous familial hypercholesterolaemia (FH) from five UK lipid clinics, who were initially screened for point mutations in LDLR and the common APOB and PCSK9 mutations. The 377 cases in whom no mutation was found were then screened for large rearrangements by multiplex ligation-dependent probe amplification (MLPA) analysis. A rearrangement was identified in 19 patients. This represents 7.5% of the total detected mutations of the cohort. Of these, the majority of mutations (12/19) were deletions of more than one exon, two were duplications of more than one exon and five were single exon deletions that need interpreting with care. Five rearrangements (26%) are previously unreported. We conclude that MLPA analysis is a simple and rapid method for detecting large rearrangements and should be included in diagnostic genetic testing for FH.
Collapse
Affiliation(s)
- A Taylor
- Regional Molecular Genetics Laboratory, Great Ormond Street Hospital for Children, London WC1N 3JH, UK
| | | | | | | | | | | |
Collapse
|
44
|
Update of Japanese common LDLR gene mutations and their phenotypes: Mild type mutation L547V might predominate in the Japanese population. Atherosclerosis 2009; 203:153-60. [DOI: 10.1016/j.atherosclerosis.2008.07.005] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2008] [Revised: 07/02/2008] [Accepted: 07/03/2008] [Indexed: 11/18/2022]
|
45
|
APOA5 genetic variants are markers for classic hyperlipoproteinemia phenotypes and hypertriglyceridemia. ACTA ACUST UNITED AC 2008; 5:730-7. [PMID: 18779834 DOI: 10.1038/ncpcardio1326] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2008] [Accepted: 07/21/2008] [Indexed: 02/06/2023]
Abstract
BACKGROUND Several known candidate gene variants are useful markers for diagnosing hyperlipoproteinemia. In an attempt to identify other useful variants, we evaluated the association of two common APOA5 single-nucleotide polymorphisms across the range of classic hyperlipoproteinemia phenotypes. METHODS We assessed plasma lipoprotein profiles and APOA5 S19W and -1131T>C genotypes in 678 adults from a single tertiary referral lipid clinic and in 373 normolipidemic controls matched for age and sex, all of European ancestry. RESULTS We observed significant stepwise relationships between APOA5 minor allele carrier frequencies and plasma triglyceride quartiles. The odds ratios for hyperlipoproteinemia types 2B, 3, 4 and 5 in APOA5 S19W carriers were 3.11 (95% CI 1.63-5.95), 4.76 (2.25-10.1), 2.89 (1.17-7.18) and 6.16 (3.66-10.3), respectively. For APOA5 -1131T>C carriers, the odds ratios for these hyperlipoproteinemia subtypes were 2.23 (95% CI 1.21-4.08), 3.18 (1.55-6.52), 3.95 (1.85-8.45) and 4.24 (2.64-6.81), respectively. The overall odds ratio for the presence of either allele in lipid clinic patients was 2.58 (95% CI 1.89-3.52). CONCLUSIONS A high proportion of patients with four classic hyperlipoproteinemia phenotypes are carriers of either the APOA5 S19W or -1131T>C variant or both. These two variants are robust genetic biomarkers of a range of clinical hyperlipoproteinemia phenotypes linked by hypertriglyceridemia.
Collapse
|
46
|
Nicholls DP, Cather M, Byrne C, Graham CA, Young IS. Diagnosis of heterozygous familial hypercholesterolaemia in children. Int J Clin Pract 2008; 62:990-4. [PMID: 18492057 DOI: 10.1111/j.1742-1241.2008.01793.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND Most children with familial hypercholesterolaemia (FH) are diagnosed by raised blood cholesterol levels, but the test lacks sensitivity and specificity. As such children have evidence of vascular dysfunction at an early age, correct identification of affected individuals is important so that treatment can be started. AIM To determine levels of total cholesterol (TC) and low-density lipoprotein cholesterol (LDL-C) in children with genetically proven FH and their unaffected siblings, in order to identify a diagnostic cut-off point if possible. DESIGN Retrospective case-note survey. METHODS We studied the notes of 115 children aged 3-16 years, 69 proven FH and 46 unaffected sibs, 65 boys and 50 girls, from 31 families and 21 different mutations. Data recorded were age, sex, TC, and (when available) LDL-C. RESULTS The lowest TC level in an affected individual was 4.7 mmol/l and the highest in normal individual was 6.05 mmol/l. This overlap range included 21 children (18% of the total). The corresponding figures for LDL-C were 3.0 and 3.7 mmol/l, which included eight children (8%). CONCLUSION TC is not an effective test for differentiating affected and unaffected children with FH. LDL-C is better, but genetic testing remains the method of choice, especially if treatment decisions are to be taken.
Collapse
Affiliation(s)
- D P Nicholls
- Regional Lipid Clinic, Royal Victoria Hospital, Belfast, UK.
| | | | | | | | | |
Collapse
|
47
|
Awan Z, Alrasadi K, Francis GA, Hegele RA, McPherson R, Frohlich J, Valenti D, de Varennes B, Marcil M, Gagne C, Genest J, Couture P. Vascular calcifications in homozygote familial hypercholesterolemia. Arterioscler Thromb Vasc Biol 2008; 28:777-85. [PMID: 18239150 DOI: 10.1161/atvbaha.107.160408] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
BACKGROUND Patients with homozygous familial hypercholesterolemia (hmzFH) attributable to LDL receptor gene mutations have shown a remarkable increase in survival over the last 20 years. Early onset coronary heart disease (CHD) and calcific aortic valve stenosis are the major complications of this disorder. We now report extensive premature calcification of the aorta in patients with hmzFH. METHODS AND RESULTS We examined 25 hmzFH patients from Canada; mean age was 32 years (range 5 to 54), and mean baseline cholesterol before treatment was 19+/-5 mmol/L (737+/-206 mg/dL). Aortic calcification was quantified using computed tomography (CT). An elevated mean calcium score was found in patients by age 20 and correlated with age (r(2)=0.53, P=0.001). One quarter (24%) of patients underwent aortic valve surgery. CONCLUSIONS We document premature severe aortic calcifications in all adult hmzFH patients studied. These presented considerable surgical management challenges. Strategies to identify and monitor aortic calcification in hmzFH by noninvasive techniques are required, as are clinical trials to determine whether additional or more intensive therapies will prevent the progression of such calcifications. Whether vascular calcifications in hmzFH subjects are related to sustained increases in LDL-C levels or to other mechanisms, such as abnormal osteoblast activity, remains to be determined.
Collapse
Affiliation(s)
- Z Awan
- McGill University Health Center/Royal Victoria Hospital, 687 Pine avenue West, Montréal, QC H3A 1A1, Canada
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Varret M, Abifadel M, Rabès JP, Boileau C. Genetic heterogeneity of autosomal dominant hypercholesterolemia. Clin Genet 2007; 73:1-13. [DOI: 10.1111/j.1399-0004.2007.00915.x] [Citation(s) in RCA: 139] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
49
|
|
50
|
Hegele RA. Genetic susceptibility to heart disease in Canada: lessons from patients with familial hypercholesterolemia. Genome 2007; 49:1343-50. [PMID: 17426749 DOI: 10.1139/g06-147] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Much of the recent progress in treating patients with heart disease due to narrowed coronary arteries has resulted from studying disease evolution in patients with rare monogenic forms of disease. For instance, autosomal dominant familial hypercholesterolemia (FH, MIM (Mendelian Inheritance in Man) 143890) typically results from heterozygous mutations in LDLR encoding the low-density lipoprotein (LDL) receptor. Deficient LDLR activity results in elevated circulating LDL cholesterol, which accumulates within blood vessel walls, forming arterial plaques that can grow and eventually occlude the arterial lumen. Heterozygous LDLR mutations are usually detected using exon-by-exon sequence analysis (EBESA) of genomic DNA, a technology that has identified approximately 50 mutations in heterozygous FH (HeFH) subjects in Ontario. However, approximately 35% of Ontario HeFH patients had no EBESA-identified LDLR mutation. The diagnostic gap relates both to the genetic heterogeneity of FH and also to inadequate sensitivity of EBESA to detect certain mutation types, such as large deletions or insertions in LDLR. By means of a dedicated method to detect copy number variations (CNVs), additional heterozygous mutations in LDLR ranging from approximately 500 to >15 000 bases were uncovered, accounting for most of the remainder of Ontario HeFH patients. The appreciation of the key role of genomic CNVs in disease coincides with recent genome-wide mapping studies demonstrating that CNVs are common in apparently healthy people. CNVs thus represent a new level of genomic variation that is both an important mechanism of monogenic disease and a contributor to genomic variation in the general population; as well, it may have implications for evolution, biology, and possibly susceptibility to common complex diseases.
Collapse
Affiliation(s)
- Robert A Hegele
- Blackburn Cardiovascular Genetics Laboratory, Robarts Research Institute, Schulich School of Medicine and Dentistry, University of Western Ontario, 406-100 Perth Drive, London, ON N6A 5K8, Canada.
| |
Collapse
|