1
|
Mapindra MP, Castillo-Hernandez T, Clark H, Madsen J. Surfactant Protein-A and its immunomodulatory roles in infant respiratory syncytial virus infection: a potential for therapeutic intervention? Am J Physiol Lung Cell Mol Physiol 2025; 328:L179-L196. [PMID: 39662519 DOI: 10.1152/ajplung.00199.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 11/06/2024] [Accepted: 11/06/2024] [Indexed: 12/13/2024] Open
Abstract
The vast majority of early-life hospital admissions globally highlight respiratory syncytial virus (RSV), the leading cause of neonatal lower respiratory tract infections, as the major culprit behind the poor neonatal outcomes following respiratory infections. Unlike those of older children and adults, the immune system of neonates looks rather unique, therefore mostly counting on the innate immune system and antibodies of maternal origins. The collaborations between cells and immune compartments during infancy inclines bias toward a T-helper 2 (Th2) immune profile and thereby away from a T-helper 1 (Th1) immune response. What makes it more problematic is that RSV infection also tends to elicit a stronger Th2-biased immune response and drive an aberrant allergy-like inflammation. It is thus evident how RSV infections potentially pave the way for wheezing recurrences and childhood asthma later in life. Surfactant, the essential lung substance for normal breathing processes in mammals, has immunomodulatory properties including lung collectins such as Surfactant Protein-A (SP-A), which is the most abundant protein component of surfactant, and also Surfactant Protein-D (SP-D). Deficiency of SP-A and SP-D has been found to be associated with impaired pathogen clearance and exacerbated immune responses during infections. We therefore conducted a review of the literature to describe pathomechanisms of RSV infections during blunted neonatal immunity potentially facilitating allergy-like inflammatory events within the developing lungs and highlight the potential protective role of the humoral collectin SP-A to mitigate these in the "early in life" pulmonary immune system.
Collapse
Affiliation(s)
- Muhammad Pradhika Mapindra
- Targeted Lung Immunotherapy Group, Neonatology Department, Elizabeth Garrett Anderson Institute for Women's Health, University College London, London, United Kingdom
| | - Tania Castillo-Hernandez
- Targeted Lung Immunotherapy Group, Neonatology Department, Elizabeth Garrett Anderson Institute for Women's Health, University College London, London, United Kingdom
| | - Howard Clark
- Targeted Lung Immunotherapy Group, Neonatology Department, Elizabeth Garrett Anderson Institute for Women's Health, University College London, London, United Kingdom
| | - Jens Madsen
- Targeted Lung Immunotherapy Group, Neonatology Department, Elizabeth Garrett Anderson Institute for Women's Health, University College London, London, United Kingdom
| |
Collapse
|
2
|
Shen X, He L, Cai W. Role of Lipopolysaccharides in the Inflammation and Pyroptosis of Alveolar Epithelial Cells in Acute Lung Injury and Acute Respiratory Distress Syndrome. J Inflamm Res 2024; 17:5855-5869. [PMID: 39228678 PMCID: PMC11370780 DOI: 10.2147/jir.s479051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 08/22/2024] [Indexed: 09/05/2024] Open
Abstract
Acute lung injury (ALI) and acute respiratory distress syndrome (ARDS) represent a spectrum of common critical respiratory conditions characterized by damage and death of alveolar epithelial cells (AECs). Pyroptosis is a form of programmed cell death with inflammatory characteristics, and activation of pyroptosis markers has been observed in AECs of patients with ALI/ARDS. Lipopolysaccharides (LPS) possess strong pro-inflammatory effects and are a crucial pathological factor leading to ALI in patients and animals. In LPS-induced ALI models, AECs undergo pyroptosis. However, physiologically and pathologically relevant concentrations of LPS lead to minor effects on AEC cell viability and minimal induction of cytokine release in vitro and do not induce classical pyroptosis. Nevertheless, LPS can enter the cytoplasm directly and induce non-classical pyroptosis in AECs when assisted by extracellular vesicles from bacteria, HMGB1, and pathogens. In this review, we have explored the effects of LPS on AECs concerning inflammation, cell viability, and pyroptosis, analyzing key factors that influence LPS actions. Notably, we highlight the intricate response of AECs to LPS within the framework of ALI and ARDS, emphasizing the variable induction of pyroptosis. Despite the minimal effects of LPS on AEC viability and cytokine release in vitro, LPS can induce non-classical pyroptosis under specific conditions, presenting potential pathways for therapeutic intervention. Collectively, understanding these mechanisms is crucial for the development of targeted treatments that mitigate the inflammatory responses in ALI/ARDS, thereby enhancing patient outcomes in these severe respiratory conditions.
Collapse
Affiliation(s)
- Xiao Shen
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, 310053, People’s Republic of China
| | - Linglin He
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, People’s Republic of China
| | - Wanru Cai
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, 310005, People’s Republic of China
| |
Collapse
|
3
|
Tan L, Lv W, Chen Y, Dong J, Mao D, Wei R. Modified Sanliangsan Improved Sjogren's Syndrome Complicated with Interstitial Lung Disease by Suppressing Serum MUC1 Levels. ACS OMEGA 2024; 9:30392-30403. [PMID: 39035955 PMCID: PMC11256294 DOI: 10.1021/acsomega.4c01147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 06/17/2024] [Accepted: 06/27/2024] [Indexed: 07/23/2024]
Abstract
OBJECTIVES To clarify if the mechanism of Sanliangsan in improving Sjogren's syndrome complicated with interstitial lung disease (SS-ILD) involves MUC1 suppression, which is involved in SS-ILD pathogenesis. METHODS Fifty-six patients were randomly divided into two groups receiving Sanliangsan prescription (SP) therapy and conventional therapy (western medicine). In-depth transcriptome profiles from a large database of SS-ILD patients were collected and analyzed to identify candidate genes involved in SS pathogenesis. Clinical symptom scores, metabolic compositions, lung HRCT (high-resolution computed tomography) scores, and serum MUC1 levels were compared between the two groups before and after treatment. Network pharmacology, molecular docking, and ITC assays were performed to identify bioactive compounds of SP in improving SS. Metabolome analyzed the metabolic composition of serum associated with SS-ILD before and after SP treatment. RESULTS Transcriptome results identified the involvement of abnormal expression of genes relevant to the immune system, inflammatory responses, and signaling pathways. Numerous genes, including CD58, CD86, CTLA4, CXCL8, STAT1, and especially MUC1, were involved in SS pathogenesis and could be used to diagnose SS-ILD early. Both treatments improved the lung HRCT scores and clinical symptoms of SS-ILD. The SP therapy improved SS-ILD more effectively than conventional therapy. Moreover, Sanliangsan prescription therapy reduced serum MUC1 levels and restored the abnormal metabolisms, improving the abnormal inflammatory and immune responses of patients. Eugenol directly interacted with MUC1, suppressed related genes, and was the bioactive compound of SP. SP could partially restore the abnormal metabolisms associated with SS-ILD pathogenesis. CONCLUSION Based on conventional Western medicine treatment, modified Sanliangsan can significantly improve the clinical symptoms, signs, and lung function of patients; the mechanism may be due to eugenol and related to MUC1 regulation.
Collapse
Affiliation(s)
- Lihui Tan
- Department
of Rheumatology and Immunology, The People’s
Hospital of Suzhou New District, Suzhou 215000, China
| | - Wang Lv
- Department
of Traditional Chinese Medicine, The Cangzhou
central Hospital, Cangzhou 061000, China
| | - Yuqi Chen
- Department
of Rheumatology and Immunology, The People’s
Hospital of Suzhou New District, Suzhou 215000, China
| | - Jianjian Dong
- Department
of Rheumatology and Immunology, The People’s
Hospital of Suzhou New District, Suzhou 215000, China
| | - Dun Mao
- Department
of Orthopaedic, Community Health Service
Center of Suzhou Science and Technology City, Suzhou 215000, China
| | - Rong Wei
- Department
of Rheumatology and Immunology, The People’s
Hospital of Suzhou New District, Suzhou 215000, China
| |
Collapse
|
4
|
Meng T, Liu C, Chen Y, Yu M, He J, Tan B, Fu X, He J, Xiao D. Dietary Chito-oligosaccharide attenuates LPS-challenged intestinal inflammation via regulating mitochondrial apoptotic and MAPK signaling pathway. Int Immunopharmacol 2024; 126:111153. [PMID: 37979451 DOI: 10.1016/j.intimp.2023.111153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 10/23/2023] [Accepted: 10/29/2023] [Indexed: 11/20/2023]
Abstract
To investigate the regulatory effects of Chito-oligosaccharide (COS) on the anti-oxidative, anti-inflammatory, and MAPK signaling pathways. A total of 40 28-day-old weaned piglets were randomly allotted to 4 equal groups [including the control group, lipopolysaccharide (LPS) group, COS group, and COS*LPS group]. On the morning of d 14 and 21, piglets were injected with saline or LPS. At 2 h post-injection, whole blood samples were collected on d 14 and 21, and small intestine and liver samples were collected and analyzed on d 21. The results showed that COS inhibited the LPS-induced increase of malondialdehyde (MDA) concentration and hepatic TNF-α cytokines. COS significantly increased the serum total antioxidant capability (T-AOC) value on d 14, and total superoxide dismutase (T-SOD) and glutathione peroxidase (GSH-PX) activities in both serum and liver on d 21. Furthermore, it increased hepatic catalase (CAT) activity. COS also increased the LPS-induced decrease in serum IgG concentrations. Immunohistochemical analysis results showed that COS significantly increased the jejunal and ileal Caspase 3, and ileal CD4+ values challenged by LPS. Dietary COS decreased the LPS-induced jejunal and ileal BAX and CCL2 mRNA levels, markedly decreased ileal COX2 and SOD1 mRNA levels, while increasing ileal iNOS. Furthermore, COS significantly increased the LPS-induced jejunal and ileal p-P38 and MyD88, as well as jejunal P38, while it effectively suppressed jejunal JNK1, and jejunal and ileal JNK2, p-JNK1, and p-JNK2 protein expressions. These results demonstrated that COS could be beneficial by attenuating LPS-challenged intestinal inflammation via regulating mitochondrial apoptotic and MAPK signaling pathways.
Collapse
Affiliation(s)
- Tiantian Meng
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China; College of Life Science, Xinyang Normal University, Xinyang 464000, China
| | - Chunming Liu
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Yulian Chen
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Manrong Yu
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Jianfu He
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Bihui Tan
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Xiaoqin Fu
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Jianhua He
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Dingfu Xiao
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China.
| |
Collapse
|
5
|
Marhuenda E, Villarino A, Narciso M, Elowsson L, Almendros I, Westergren-Thorsson G, Farré R, Gavara N, Otero J. Development of a physiomimetic model of acute respiratory distress syndrome by using ECM hydrogels and organ-on-a-chip devices. Front Pharmacol 2022; 13:945134. [PMID: 36188621 PMCID: PMC9517737 DOI: 10.3389/fphar.2022.945134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 08/08/2022] [Indexed: 11/13/2022] Open
Abstract
Acute Respiratory Distress Syndrome is one of the more common fatal complications in COVID-19, characterized by a highly aberrant inflammatory response. Pre-clinical models to study the effect of cell therapy and anti-inflammatory treatments have not comprehensively reproduced the disease due to its high complexity. This work presents a novel physiomimetic in vitro model for Acute Respiratory Distress Syndrome using lung extracellular matrix-derived hydrogels and organ-on-a-chip devices. Monolayres of primary alveolar epithelial cells were cultured on top of decellullarized lung hydrogels containing primary lung mesenchymal stromal cells. Then, cyclic stretch was applied to mimic breathing, and an inflammatory response was induced by using a bacteriotoxin hit. Having simulated the inflamed breathing lung environment, we assessed the effect of an anti-inflammatory drug (i.e., dexamethasone) by studying the secretion of the most relevant inflammatory cytokines. To better identify key players in our model, the impact of the individual factors (cyclic stretch, decellularized lung hydrogel scaffold, and the presence of mesenchymal stromal cells) was studied separately. Results showed that developed model presented a more reduced inflammatory response than traditional models, which is in line with what is expected from the response commonly observed in patients. Further, from the individual analysis of the different stimuli, it was observed that the use of extracellular matrix hydrogels obtained from decellularized lungs had the most significant impact on the change of the inflammatory response. The developed model then opens the door for further in vitro studies with a better-adjusted response to the inflammatory hit and more robust results in the test of different drugs or cell therapy.
Collapse
Affiliation(s)
- Esther Marhuenda
- Unitat de Biofísica i Bioenginyeria, Facultat de Medicina i Ciències de la Salut, University de Barcelona, Barcelona, Spain
- CIBER de Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain
| | - Alvaro Villarino
- Unitat de Biofísica i Bioenginyeria, Facultat de Medicina i Ciències de la Salut, University de Barcelona, Barcelona, Spain
| | - Maria Narciso
- Unitat de Biofísica i Bioenginyeria, Facultat de Medicina i Ciències de la Salut, University de Barcelona, Barcelona, Spain
- The Institute for Bioengineering of Catalonia, The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Linda Elowsson
- Lung Biology, Biomedical Center, Department of Medical Science,Lund University, Lund, Sweden
| | - Isaac Almendros
- Unitat de Biofísica i Bioenginyeria, Facultat de Medicina i Ciències de la Salut, University de Barcelona, Barcelona, Spain
- CIBER de Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain
- Institut d’Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
| | | | - Ramon Farré
- Unitat de Biofísica i Bioenginyeria, Facultat de Medicina i Ciències de la Salut, University de Barcelona, Barcelona, Spain
- CIBER de Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain
- Institut d’Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
| | - Núria Gavara
- Unitat de Biofísica i Bioenginyeria, Facultat de Medicina i Ciències de la Salut, University de Barcelona, Barcelona, Spain
- CIBER de Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain
- The Institute for Bioengineering of Catalonia, The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Jorge Otero
- Unitat de Biofísica i Bioenginyeria, Facultat de Medicina i Ciències de la Salut, University de Barcelona, Barcelona, Spain
- CIBER de Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain
- The Institute for Bioengineering of Catalonia, The Barcelona Institute of Science and Technology, Barcelona, Spain
- *Correspondence: Jorge Otero,
| |
Collapse
|
6
|
Puri A, Ibrahim F, O'Reilly Beringhs A, Isemann C, Zakrevsky P, Whittenburg A, Hargrove D, Kanai T, Dillard RS, de Val N, Nantz MH, Lu X, Shapiro BA. Stealth oxime ether lipid vesicles promote delivery of functional DsiRNA in human lung cancer A549 tumor bearing mouse xenografts. NANOMEDICINE : NANOTECHNOLOGY, BIOLOGY, AND MEDICINE 2022; 44:102572. [PMID: 35671983 PMCID: PMC9427711 DOI: 10.1016/j.nano.2022.102572] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 05/15/2022] [Accepted: 05/24/2022] [Indexed: 11/29/2022]
Abstract
We previously reported that hydroxylated oxime ether lipids (OELs) efficiently deliver functional Dicer substrate siRNAs (DsiRNAs) in cells. Here, we explored in vivo utility of these OELs, using OEL4 as a prototype and report that surface modification of the OEL4 formulations was essential for their in vivo applications. These surface-modified OEL4 formulations were developed by inclusion of various PEGylated lipids. The vesicle stability and gene knock-down were dependent on the PEG chain length. OEL4 containing DSPE-PEG350 and DSPE-PEG1000 (surprisingly not DSPE2000) promoted gene silencing in cells. In vivo studies demonstrated that OEL4 vesicles formulated using 3 mol% DSPE-PEG350 accumulate in human lung cancer (A549-luc2) xenografts in mice and exhibit a significant increase in tumor to liver ratios. These vesicles also showed a statistically significant reduction of luciferase signal in tumors compared to untreated mice. Taken together, the scalable OEL4:DSPE-PEG350 formulation serves as a novel candidate for delivery of RNAi therapeutics.
Collapse
Affiliation(s)
- Anu Puri
- RNA Structure and Design Section, RNA Biology Laboratory, NCI-NIH, Frederick, MD, United States of America.
| | - Faisal Ibrahim
- RNA Structure and Design Section, RNA Biology Laboratory, NCI-NIH, Frederick, MD, United States of America; Department of Chemistry, University of Louisville, Louisville, KY, United States of America
| | | | - Camryn Isemann
- RNA Structure and Design Section, RNA Biology Laboratory, NCI-NIH, Frederick, MD, United States of America
| | - Paul Zakrevsky
- RNA Structure and Design Section, RNA Biology Laboratory, NCI-NIH, Frederick, MD, United States of America
| | - Abigail Whittenburg
- RNA Structure and Design Section, RNA Biology Laboratory, NCI-NIH, Frederick, MD, United States of America
| | - Derek Hargrove
- School of Pharmacy, University of Connecticut, Storrs, CT, United States of America
| | - Tapan Kanai
- Centre for Molecular Microscopy, FNLCR, Leidos Biomedical Research, Inc., Frederick, MD, United States of America
| | - Rebecca S Dillard
- Centre for Molecular Microscopy, FNLCR, Leidos Biomedical Research, Inc., Frederick, MD, United States of America
| | - Natalia de Val
- Centre for Molecular Microscopy, FNLCR, Leidos Biomedical Research, Inc., Frederick, MD, United States of America
| | - Michael H Nantz
- Department of Chemistry, University of Louisville, Louisville, KY, United States of America
| | - Xiuling Lu
- School of Pharmacy, University of Connecticut, Storrs, CT, United States of America
| | - Bruce A Shapiro
- RNA Structure and Design Section, RNA Biology Laboratory, NCI-NIH, Frederick, MD, United States of America.
| |
Collapse
|
7
|
Antineuroinflammatory Effect of Amburana cearensis and Its Molecules Coumarin and Amburoside A by Inhibiting the MAPK Signaling Pathway in LPS-Activated BV-2 Microglial Cells. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:6304087. [PMID: 35528510 PMCID: PMC9072078 DOI: 10.1155/2022/6304087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 03/21/2022] [Indexed: 11/18/2022]
Abstract
Microglia plays an important role in the neuroinflammatory response, identified as one of the major factors in the development and progression of neurodegenerative diseases. Amburana cearensis and its bioactive compounds, including coumarin (CM), vanillic acid (VA), and amburoside A (AMB), exert antioxidant, anti-inflammatory, and neuroprotective activities, on 6-OHDA-induced neurotoxicity in rat mesencephalic cells determined by our group. The present study investigated the anti-inflammatory effect of the dry extract from A. cearensis (DEAC), CM, AMB, and VA on lipopolysaccharide- (LPS-) stimulated microglial cells and elucidated the possible molecular mechanism of action. The DEAC was characterized by HPLC-PDA (chemical markers: CM, AMB, and VA). The BV-2 microglial cell line was pretreated with increasing concentrations of DEAC, CM, AMB, or VA in the presence or absence of LPS to evaluate the toxicity and anti-inflammatory activity. The cytotoxicity of DEAC, CM, AMB, or VA on BV-2 cells was evaluated by the MTT test, the free radical scavenging activity of test drugs was investigated, and the nitric oxide (NO) production was determined using the Griess reagent, while cytokine levels were measured by ELISA. The expressions of toll-like receptor 4 (TLR-4), nuclear factor kappa B (NF-κB), MAPK members (JNK and ERK1/2), and iNOS were determined through Western blot analysis. DEAC, CM, AMB, or VA (5-100 μg/mL) did not induce any detectable cytotoxicity in BV-2 cells. All test drugs (100 μg/mL) showed free radical scavenging activity (hydroxyl and superoxide radicals); however, only DEAC, CM, and AMB (5-100 μg/mL) significantly reduced NO production. DEAC (100 μg/mL), as well as CM (50 and 100 μg/mL) and AMB (25 μg/mL), reduced at least 50% of NO produced and markedly decrease the production of TNF-α and IL-6 but they did not significantly affect IL-10 levels. Only DEAC (100 μg/mL) and AMB (25 μg/mL) reduced the expression of iNOS, and they did not affect arginase activity. DEAC (100 μg/mL) suppressed the activation of the MAPKs JNK and ERK1/2 in LPS-activated BV-2 cells but it did not suppress the expression of TLR-4 nor the phosphorylation of NF-κB. In conclusion, DEAC, CM, and AMB exerted anti-inflammatory activity in LPS-activated microglial cells as observed by the reduction in the production of inflammatory mediators and the expression of iNOS. We identified the MAPK signaling pathway as a probable mechanism of action to the anti-inflammatory effects observed.
Collapse
|
8
|
Charó N, Jerez H, Tatti S, Romero EL, Schattner M. The Anti-Inflammatory Effect of Nanoarchaeosomes on Human Endothelial Cells. Pharmaceutics 2022; 14:736. [PMID: 35456570 PMCID: PMC9027062 DOI: 10.3390/pharmaceutics14040736] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 03/17/2022] [Accepted: 03/24/2022] [Indexed: 01/14/2023] Open
Abstract
Archaebacterias are considered a unique source of novel biomaterials of interest for nanomedicine. In this perspective, the effects of nanoarchaeosomes (ARC), which are nanovesicles prepared from polar lipids extracted from the extreme halophilic Halorubrum tebenquinchense, on human umbilical vein endothelial cells (HUVEC) were investigated in physiological and under inflammatory static conditions. Upon incubation, ARC (170 nm mean size, -41 mV ζ) did not affect viability, cell proliferation, and expression of intercellular adhesion molecule-1 (ICAM-1) and E-selectin under basal conditions, but reduced expression of both molecules and secretion of IL-6 induced by lypopolysaccharide (LPS), Pam3CSK4 or Escherichia coli. Such effects were not observed with TNF-α or IL-1β stimulation. Interestingly, ARC significantly decreased basal levels of von Willebrand factor (vWF) and levels induced by all stimuli. None of these parameters was altered by liposomes of hydrogenated phosphatidylcholine and cholesterol of comparable size and concentration. Only ARC were endocytosed by HUVEC and reduced mRNA expression of ICAM-1 and vWF via NF-ĸB and ERK1/2 in LPS-stimulated cells. This is the first report of the anti-inflammatory effect of ARC on endothelial cells and our data suggest that its future use in vascular disease may hopefully be of particular interest.
Collapse
Affiliation(s)
- Nancy Charó
- Laboratory of Experimental Thrombosis and Immunobiology of Inflammation, Institute of Experimental Medicine, CONICET-National Academy of Medicine, Pacheco de Melo 3081, Buenos Aires 1425, Argentina;
| | - Horacio Jerez
- Center for Research and Development in Nanomedicines (CIDEN), National University of Quilmes, Roque Saenz Peña, Bernal 1876, Argentina;
| | - Silvio Tatti
- Department of Obstetrics and Gynecology, Clinical Hospital, Av. Córdoba 2351, Buenos Aires 1120, Argentina;
| | - Eder Lilia Romero
- Center for Research and Development in Nanomedicines (CIDEN), National University of Quilmes, Roque Saenz Peña, Bernal 1876, Argentina;
| | - Mirta Schattner
- Laboratory of Experimental Thrombosis and Immunobiology of Inflammation, Institute of Experimental Medicine, CONICET-National Academy of Medicine, Pacheco de Melo 3081, Buenos Aires 1425, Argentina;
| |
Collapse
|
9
|
Arber Raviv S, Alyan M, Egorov E, Zano A, Harush MY, Pieters C, Korach-Rechtman H, Saadya A, Kaneti G, Nudelman I, Farkash S, Flikshtain OD, Mekies LN, Koren L, Gal Y, Dor E, Shainsky J, Shklover J, Adir Y, Schroeder A. Lung targeted liposomes for treating ARDS. J Control Release 2022; 346:421-433. [PMID: 35358610 PMCID: PMC8958843 DOI: 10.1016/j.jconrel.2022.03.028] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 03/10/2022] [Accepted: 03/15/2022] [Indexed: 12/18/2022]
Abstract
Acute Respiratory Distress Syndrome (ARDS), associated with Covid-19 infections, is characterized by diffuse lung damage, inflammation and alveolar collapse that impairs gas exchange, leading to hypoxemia and patient’ mortality rates above 40%. Here, we describe the development and assessment of 100-nm liposomes that are tailored for pulmonary delivery for treating ARDS, as a model for lung diseases. The liposomal lipid composition (primarily DPPC) was optimized to mimic the lung surfactant composition, and the drug loading process of both methylprednisolone (MPS), a steroid, and N-acetyl cysteine (NAC), a mucolytic agent, reached an encapsulation efficiency of 98% and 92%, respectively. In vitro, treating lipopolysaccharide (LPS)-stimulated RAW 264.7 macrophages with the liposomes decreased TNFα and nitric oxide (NO) secretion, while NAC increased the penetration of nanoparticles through the mucus. In vivo, we used LPS-induced lung inflammation model to assess the accumulation and therapeutic efficacy of the liposomes in C57BL/6 mice, either by intravenous (IV), endotracheal (ET) or IV plus ET nanoparticles administrations. Using both administration methods, liposomes exhibited an increased accumulation profile in the inflamed lungs over 48 h. Interestingly, while IV-administrated liposomes distributed widely throughout the lung, ET liposomes were present in lungs parenchyma but were not detected at some distal regions of the lungs, possibly due to imperfect airflow regimes. Twenty hours after the different treatments, lungs were assessed for markers of inflammation. We found that the nanoparticle treatment had a superior therapeutic effect compared to free drugs in treating ARDS, reducing inflammation and TNFα, IL-6 and IL-1β cytokine secretion in bronchoalveolar lavage (BAL), and that the combined treatment, delivering nanoparticles IV and ET simultaneously, had the best outcome of all treatments. Interestingly, also the DPPC lipid component alone played a therapeutic role in reducing inflammatory markers in the lungs. Collectively, we show that therapeutic nanoparticles accumulate in inflamed lungs holding potential for treating lung disorders. Significance In this study we compare intravenous versus intratracheal delivery of nanoparticles for treating lung disorders, specifically, acute respiratory distress syndrome (ARDS). By co-loading two medications into lipid nanoparticles, we were able to reduce both inflammation and mucus secretion in the inflamed lungs. Both modes of delivery resulted in high nanoparticle accumulation in the lungs, intravenously administered nanoparticles reached lung endothelial while endotracheal delivery reached lung epithelial. Combining both delivery approaches simultaneously provided the best ARDS treatment outcome.
Collapse
Affiliation(s)
- Sivan Arber Raviv
- The Louis Family Laboratory for Targeted Drug Delivery and Personalized Medicine Technologies, Department of Chemical Engineering, Technion - Israel Institute of Technology, Haifa 32000, Israel
| | - Mohammed Alyan
- The Louis Family Laboratory for Targeted Drug Delivery and Personalized Medicine Technologies, Department of Chemical Engineering, Technion - Israel Institute of Technology, Haifa 32000, Israel; The Interdisciplinary Program for Biotechnology, Technion, Haifa, 3200003, Israel
| | - Egor Egorov
- The Louis Family Laboratory for Targeted Drug Delivery and Personalized Medicine Technologies, Department of Chemical Engineering, Technion - Israel Institute of Technology, Haifa 32000, Israel
| | - Agam Zano
- The Louis Family Laboratory for Targeted Drug Delivery and Personalized Medicine Technologies, Department of Chemical Engineering, Technion - Israel Institute of Technology, Haifa 32000, Israel
| | - Moshit Yaskin Harush
- The Louis Family Laboratory for Targeted Drug Delivery and Personalized Medicine Technologies, Department of Chemical Engineering, Technion - Israel Institute of Technology, Haifa 32000, Israel
| | - Calvin Pieters
- The Louis Family Laboratory for Targeted Drug Delivery and Personalized Medicine Technologies, Department of Chemical Engineering, Technion - Israel Institute of Technology, Haifa 32000, Israel
| | - Hila Korach-Rechtman
- The Louis Family Laboratory for Targeted Drug Delivery and Personalized Medicine Technologies, Department of Chemical Engineering, Technion - Israel Institute of Technology, Haifa 32000, Israel
| | - Adi Saadya
- The Louis Family Laboratory for Targeted Drug Delivery and Personalized Medicine Technologies, Department of Chemical Engineering, Technion - Israel Institute of Technology, Haifa 32000, Israel
| | - Galoz Kaneti
- The Louis Family Laboratory for Targeted Drug Delivery and Personalized Medicine Technologies, Department of Chemical Engineering, Technion - Israel Institute of Technology, Haifa 32000, Israel
| | - Igor Nudelman
- The Louis Family Laboratory for Targeted Drug Delivery and Personalized Medicine Technologies, Department of Chemical Engineering, Technion - Israel Institute of Technology, Haifa 32000, Israel
| | - Shai Farkash
- Department of Pathology, Emek Medical Center, Afula, Israel
| | - Ofri Doppelt Flikshtain
- The Louis Family Laboratory for Targeted Drug Delivery and Personalized Medicine Technologies, Department of Chemical Engineering, Technion - Israel Institute of Technology, Haifa 32000, Israel
| | - Lucy N Mekies
- The Louis Family Laboratory for Targeted Drug Delivery and Personalized Medicine Technologies, Department of Chemical Engineering, Technion - Israel Institute of Technology, Haifa 32000, Israel
| | - Lilach Koren
- The Louis Family Laboratory for Targeted Drug Delivery and Personalized Medicine Technologies, Department of Chemical Engineering, Technion - Israel Institute of Technology, Haifa 32000, Israel
| | - Yoav Gal
- Office Of Assistant Minister of Defense for CBRN Defense, Ministry of Defense, Tel-Aviv, Israel
| | - Ella Dor
- Office Of Assistant Minister of Defense for CBRN Defense, Ministry of Defense, Tel-Aviv, Israel
| | - Janna Shainsky
- The Louis Family Laboratory for Targeted Drug Delivery and Personalized Medicine Technologies, Department of Chemical Engineering, Technion - Israel Institute of Technology, Haifa 32000, Israel
| | - Jeny Shklover
- The Louis Family Laboratory for Targeted Drug Delivery and Personalized Medicine Technologies, Department of Chemical Engineering, Technion - Israel Institute of Technology, Haifa 32000, Israel
| | - Yochai Adir
- Pulmonary Division, Lady Davis, Carmel Medical Center, Faculty of Medicine, The Technion Institute of Technology, Haifa, Israel
| | - Avi Schroeder
- The Louis Family Laboratory for Targeted Drug Delivery and Personalized Medicine Technologies, Department of Chemical Engineering, Technion - Israel Institute of Technology, Haifa 32000, Israel.
| |
Collapse
|
10
|
Calkovska A, Kolomaznik M, Calkovsky V. Alveolar type II cells and pulmonary surfactant in COVID-19 era. Physiol Res 2021; 70:S195-S208. [PMID: 34913352 DOI: 10.33549/physiolres.934763] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
In this review, we discuss the role of pulmonary surfactant in the host defense against respiratory pathogens, including novel coronavirus SARS-CoV-2. In the lower respiratory system, the virus uses angiotensin-converting enzyme 2 (ACE2) receptor in conjunction with serine protease TMPRSS2, expressed by alveolar type II (ATII) cells as one of the SARS-CoV-2 target cells, to enter. ATII cells are the main source of surfactant. After their infection and the resulting damage, the consequences may be severe and may include injury to the alveolar-capillary barrier, lung edema, inflammation, ineffective gas exchange, impaired lung mechanics and reduced oxygenation, which resembles acute respiratory distress syndrome (ARDS) of other etiology. The aim of this review is to highlight the key role of ATII cells and reduced surfactant in the pathogenesis of the respiratory form of COVID-19 and to emphasize the rational basis for exogenous surfactant therapy in COVID-19 ARDS patients.
Collapse
Affiliation(s)
- A Calkovska
- Department of Physiology, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovak Republic; Clinic of Otorhinolaryngology and Head and Neck Surgery, Jessenius Faculty of Medicine, Comenius University, University Hospital Martin, Martin, Slovak Republic.
| | | | | |
Collapse
|
11
|
Screening for Effects of Inhaled Nanoparticles in Cell Culture Models for Prolonged Exposure. NANOMATERIALS 2021; 11:nano11030606. [PMID: 33671010 PMCID: PMC7997552 DOI: 10.3390/nano11030606] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 02/20/2021] [Accepted: 02/23/2021] [Indexed: 12/24/2022]
Abstract
Respiratory exposure of humans to environmental and therapeutic nanoparticles repeatedly occurs at relatively low concentrations. To identify adverse effects of particle accumulation under realistic conditions, monocultures of Calu-3 and A549 cells and co-cultures of A549 and THP-1 macrophages in the air–liquid interphase culture were exposed repeatedly to 2 µg/cm2 20 nm and 200 nm polystyrene particles with different functionalization. Particle accumulation, transepithelial electrical resistance, dextran (3–70 kDa) uptake and proinflammatory cytokine secretion were determined over 28 days. Calu-3 cells showed constant particle uptake without any change in barrier function and cytokine release. A549 cells preferentially ingested amino- and not-functionalized particles combined with decreased endocytosis. Cytokine release was transiently increased upon exposure to all particles. Carboxyl-functionalized demonstrated higher uptake and higher cytokine release than the other particles in the A549/THP-1 co-cultures. The evaluated respiratory cells and co-cultures ingested different amounts and types of particles and caused small (partly transient) effects. The data suggest that the healthy cells can adapt to low doses of non-cytotoxic particles.
Collapse
|
12
|
Zhao ZW, Zhang M, Wang G, Zou J, Gao JH, Zhou L, Wan XJ, Zhang DW, Yu XH, Tang CK. Astragalin Retards Atherosclerosis by Promoting Cholesterol Efflux and Inhibiting the Inflammatory Response via Upregulating ABCA1 and ABCG1 Expression in Macrophages. J Cardiovasc Pharmacol 2021; 77:217-227. [PMID: 33165140 DOI: 10.1097/fjc.0000000000000944] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 10/19/2020] [Indexed: 01/22/2023]
Abstract
ABSTRACT Lipid metabolism disorder and inflammatory response are considered to be the major causes of atherosclerogenesis. Astragalin, the most important functional component of flavonoid obtained from persimmon leaves, has the hypolipidemic effects. However, it is unknown, how astragalin protects against atherosclerosis. The aim of this study was to observe the effects of astragalin on cholesterol efflux and inflammatory response and to explore the underlying mechanisms. Our results showed that astragalin upregulated the expression of ATP-binding cassette transporters A1 and G1 (ABCA1 and ABCG1), promoted cholesterol efflux, and suppressed foam cell formation. Inhibition of the PPARγ/LXRα pathway abrogated the promotive effects of astragalin on both transporter expression and cholesterol efflux. In addition, treatment of astragalin markedly decreased the secretion of inflammatory factors, including interleukin 6, monocyte chemotactic protein 1, tumor necrosis factor α, and interleukin 1β. Mechanistically, astragalin upregulated ABCA1 and ABCG1 expression, which in turn reduced TLR4 surface levels and inhibited NF-κB nuclear translocation. Consistently, astragalin reduced atherosclerotic plaque area in apoE-/- mice. Taken together, these findings suggest that astragalin protects against atherosclerosis by promoting ABCA1- and ABCG1-mediated cholesterol efflux and inhibiting proinflammatory mediator release.
Collapse
Affiliation(s)
- Zhen-Wang Zhao
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Medical Research Experiment Center, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Min Zhang
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Medical Research Experiment Center, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Gang Wang
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Medical Research Experiment Center, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Jin Zou
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Medical Research Experiment Center, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Jia-Hui Gao
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Medical Research Experiment Center, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Li Zhou
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Medical Research Experiment Center, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Xiang-Jun Wan
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Medical Research Experiment Center, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Da-Wei Zhang
- Department of Pediatrics and Group on the Molecular and Cell Biology of Lipids, University of Alberta, Edmonton, Alberta, Canada and
| | - Xiao-Hua Yu
- Institute of Clinical Medicine, The Second Affiliated Hospital of Hainan Medical University, Haikou, Hainan, China
| | - Chao-Ke Tang
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Medical Research Experiment Center, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| |
Collapse
|
13
|
Aboudounya MM, Heads RJ. COVID-19 and Toll-Like Receptor 4 (TLR4): SARS-CoV-2 May Bind and Activate TLR4 to Increase ACE2 Expression, Facilitating Entry and Causing Hyperinflammation. Mediators Inflamm 2021; 2021:8874339. [PMID: 33505220 PMCID: PMC7811571 DOI: 10.1155/2021/8874339] [Citation(s) in RCA: 224] [Impact Index Per Article: 56.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 12/16/2020] [Accepted: 12/22/2020] [Indexed: 01/08/2023] Open
Abstract
Causes of mortality from COVID-19 include respiratory failure, heart failure, and sepsis/multiorgan failure. TLR4 is an innate immune receptor on the cell surface that recognizes pathogen-associated molecular patterns (PAMPs) including viral proteins and triggers the production of type I interferons and proinflammatory cytokines to combat infection. It is expressed on both immune cells and tissue-resident cells. ACE2, the reported entry receptor for SARS-CoV-2, is only present on ~1-2% of the cells in the lungs or has a low pulmonary expression, and recently, the spike protein has been proposed to have the strongest protein-protein interaction with TLR4. Here, we review and connect evidence for SARS-CoV-1 and SARS-CoV-2 having direct and indirect binding to TLR4, together with other viral precedents, which when combined shed light on the COVID-19 pathophysiological puzzle. We propose a model in which the SARS-CoV-2 spike glycoprotein binds TLR4 and activates TLR4 signalling to increase cell surface expression of ACE2 facilitating entry. SARS-CoV-2 also destroys the type II alveolar cells that secrete pulmonary surfactants, which normally decrease the air/tissue surface tension and block TLR4 in the lungs thus promoting ARDS and inflammation. Furthermore, SARS-CoV-2-induced myocarditis and multiple-organ injury may be due to TLR4 activation, aberrant TLR4 signalling, and hyperinflammation in COVID-19 patients. Therefore, TLR4 contributes significantly to the pathogenesis of SARS-CoV-2, and its overactivation causes a prolonged or excessive innate immune response. TLR4 appears to be a promising therapeutic target in COVID-19, and since TLR4 antagonists have been previously trialled in sepsis and in other antiviral contexts, we propose the clinical trial testing of TLR4 antagonists in the treatment of severe COVID-19. Also, ongoing clinical trials of pulmonary surfactants in COVID-19 hold promise since they also block TLR4.
Collapse
Affiliation(s)
- Mohamed M. Aboudounya
- Department of Cardiology, The Rayne Institute, St Thomas' Hospital, British Heart Foundation Centre of Research Excellence, School of Cardiovascular Medicine and Sciences, King's College London, UK
| | - Richard J. Heads
- Department of Cardiology, The Rayne Institute, St Thomas' Hospital, British Heart Foundation Centre of Research Excellence, School of Cardiovascular Medicine and Sciences, King's College London, UK
| |
Collapse
|
14
|
Adverse effects of LPS on membrane proteins in lactating bovine mammary epithelial cells. Cell Tissue Res 2021; 384:435-448. [PMID: 33433684 DOI: 10.1007/s00441-020-03344-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 11/05/2020] [Indexed: 01/16/2023]
Abstract
Mastitis causes a decrease in milk yield and abnormalities in milk components from dairy cows. Escherichia coli and the E. coli lipopolysaccharide (LPS) cell wall component directly downregulate milk production in bovine mammary epithelial cells (BMECs). However, the detailed mechanism by which this occurs in BMECs remains unclear. Various membrane proteins, such as immune sensors (Toll-like receptors, TLR), nutrient transporters (glucose transporter and aquaporin), and tight junction proteins (claudin and occludin) are involved in the onset of mastitis or milk production in BMECs. In this study, we investigated the influence of LPS on membrane proteins using an in vitro culture model. This mastitis model demonstrated a loss of glucose transporter-1 and aquaporin-3 at lateral membranes and a decrease in milk production in response to LPS treatment. LPS disrupted the tight junction barrier and caused compositional changes in localization of claudin-3 and claudin-4, although tight junctions were maintained to separate the apical membrane domains and the basolateral membrane domains. LPS did not significantly affect the expression level and subcellular localization of epidermal growth factor receptor in lactating BMECs with no detectable changes in MEK1/2-ERK1/2 signaling. In contrast, NFκB was concurrently activated with temporal translocation of TLR-4 in the apical membranes, whereas TLR-2 was not significantly influenced by LPS treatment. These findings indicate the importance of investigating the subcellular localization of membrane proteins to understand the molecular mechanism of LPS in milk production in mastitis.
Collapse
|
15
|
Lipid-Protein and Protein-Protein Interactions in the Pulmonary Surfactant System and Their Role in Lung Homeostasis. Int J Mol Sci 2020; 21:ijms21103708. [PMID: 32466119 PMCID: PMC7279303 DOI: 10.3390/ijms21103708] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Revised: 05/22/2020] [Accepted: 05/22/2020] [Indexed: 12/12/2022] Open
Abstract
Pulmonary surfactant is a lipid/protein complex synthesized by the alveolar epithelium and secreted into the airspaces, where it coats and protects the large respiratory air–liquid interface. Surfactant, assembled as a complex network of membranous structures, integrates elements in charge of reducing surface tension to a minimum along the breathing cycle, thus maintaining a large surface open to gas exchange and also protecting the lung and the body from the entrance of a myriad of potentially pathogenic entities. Different molecules in the surfactant establish a multivalent crosstalk with the epithelium, the immune system and the lung microbiota, constituting a crucial platform to sustain homeostasis, under health and disease. This review summarizes some of the most important molecules and interactions within lung surfactant and how multiple lipid–protein and protein–protein interactions contribute to the proper maintenance of an operative respiratory surface.
Collapse
|
16
|
Kim SY, Kim YJ, Lee E, Choi SH, Moon JS, An HS, Ji ES, Na J, Kim BJ. Phospholipid fraction has protective effect by improving inflammation and skin barrier function in ischemia-reperfusion injury in mice. ALL LIFE 2020. [DOI: 10.1080/26895293.2020.1838334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Affiliation(s)
- Su-Young Kim
- Department of Dermatology, College of Medicine, Chung-Ang University, Seoul, Korea
- Department of Medicine, Graduate School, Chung-Ang University, Seoul, Korea
| | - Yu-jin Kim
- Department of Dermatology, College of Medicine, Chung-Ang University, Seoul, Korea
| | - Esther Lee
- Department of Dermatology, College of Medicine, Chung-Ang University, Seoul, Korea
- Department of Medicine, Graduate School, Chung-Ang University, Seoul, Korea
| | | | | | | | - Eun Su Ji
- Lipobiomed Co. Bio-3, Chuncheon, Korea
| | - Jungtae Na
- Department of Dermatology, College of Medicine, Chung-Ang University, Seoul, Korea
- Department of Life Science, Sogang University, Seoul, Korea
| | - Beom Joon Kim
- Department of Dermatology, College of Medicine, Chung-Ang University, Seoul, Korea
- Department of Medicine, Graduate School, Chung-Ang University, Seoul, Korea
| |
Collapse
|
17
|
Yamini S, Eftekhari Z, Mokhber Dezfouli MR, Beikzadeh B, Mehrbod P. Exogenous Lung Surfactant Decreases Interleukin-8 Production and Increases Leukocytes Population and Total Immunoglobulins in Rabbits. MEDICAL LABORATORY JOURNAL 2019. [DOI: 10.29252/mlj.13.6.17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
|
18
|
Sanaki T, Wakabayashi M, Yoshioka T, Yoshida R, Shishido T, Hall WW, Sawa H, Sato A. Inhibition of dengue virus infection by 1-stearoyl-2-arachidonoyl-phosphatidylinositol in vitro. FASEB J 2019; 33:13866-13881. [PMID: 31638831 DOI: 10.1096/fj.201901095rr] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Dengue fever is an acute febrile infectious disease caused by dengue virus (DENV). Despite the significant public health concerns posed by DENV, there are currently no effective anti-DENV therapeutic agents. To develop such drugs, a better understanding of the detailed mechanisms of DENV infection is needed. Both lipid metabolism and lipid synthesis are activated in DENV-infected cells, so we used lipid screening to identify potential antiviral lipid molecules. We identified 1-stearoyl-2-arachidonoyl-phosphatidylinositol (SAPI), which is the most abundant endogenous phosphatidylinositol (PI) molecular species, as an anti-DENV lipid molecule. SAPI suppressed the cytopathic effects induced by DENV2 infection as well as the replication of all DENV serotypes without inhibiting the entry of DENV2 into host cells. However, no other PI molecular species or PI metabolites, including lysophosphatidylinositols and phosphoinositides, displayed anti-DENV2 activity. Furthermore, SAPI suppressed the production of DENV2 infection-induced cytokines and chemokines, including C-C motif chemokine ligand (CCL)5, CCL20, C-X-C chemokine ligand 8, IL-6, and IFN-β. SAPI also suppressed the TNF-α production induced by LPS stimulation in macrophage cells differentiated from THP-1 cells. Our results demonstrated that SAPI is an endogenous inhibitor of DENV and modulated inflammatory responses in DENV2-infected cells, at least in part via TLR 4.-Sanaki, T., Wakabayashi, M., Yoshioka, T., Yoshida, R., Shishido, T., Hall, W. W., Sawa, H., Sato, A. Inhibition of dengue virus infection by 1-stearoyl-2-arachidonoyl-phosphatidylinositol in vitro.
Collapse
Affiliation(s)
- Takao Sanaki
- Drug Discovery and Disease Research Laboratory, Osaka, Japan.,Division of Anti-Virus Drug Research, Hokkaido University, Sapporo, Japan
| | - Masato Wakabayashi
- Biomarker Research and Development Department, Shionogi and Company, Limited, Osaka, Japan
| | - Takeshi Yoshioka
- Biomarker Research and Development Department, Shionogi and Company, Limited, Osaka, Japan
| | - Ryu Yoshida
- Drug Discovery and Disease Research Laboratory, Osaka, Japan
| | - Takao Shishido
- Drug Discovery and Disease Research Laboratory, Osaka, Japan
| | - William W Hall
- Global Institution for Collaborative Research and Education (Gi-CoRE), Hokkaido University, Sapporo, Japan.,Global Virus Network, Baltimore, Maryland, USA; and.,Center for Research in Infectious Diseases, University College of Dublin, Dublin, Ireland
| | - Hirofumi Sawa
- Global Institution for Collaborative Research and Education (Gi-CoRE), Hokkaido University, Sapporo, Japan.,Global Virus Network, Baltimore, Maryland, USA; and.,Division of Molecular Pathobiology, Research Center for Zoonosis Control, Hokkaido University, Sapporo, Japan
| | - Akihiko Sato
- Drug Discovery and Disease Research Laboratory, Osaka, Japan.,Division of Anti-Virus Drug Research, Hokkaido University, Sapporo, Japan
| |
Collapse
|
19
|
Li D, Qi C, Zhou J, Wen Z, Zhu X, Xia H, Song J. LPS-induced inflammation delays the transportation of ASP + due to down-regulation of OCTN1/2 in alveolar epithelial cells. J Drug Target 2019; 28:437-447. [PMID: 31591905 DOI: 10.1080/1061186x.2019.1678169] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Organic cation transporters (OCTNs) can significantly affect drug disposition in alveolar epithelial cells (A549), but this process is not well understood. We investigated the expression and function of OCTN1/2 in A549 cells under different inflammatory status to examine pulmonary drug distribution. This experiment used lipopolysaccharide (LPS)-treated A549 cells to mimic inflammation in alveolar epithelial cells, and the expression of OCTN1/2, interleukin-6 (IL6), IL18, IL1β and tumour necrosis factor-alpha (TNF-α) was investigated by western blot and quantitative real-time PCR (qRT-PCR). The fluorescent compound 4-(4-(dimethylamino)styryl)-N-methylpyridinium iodide (ASP+) was chosen as a probe to study the activity of OCTN1/2. OCTN1/2 down-regulation induced by LPS was more pronounced than that in normal control (NC) groups. Experiments further detected the release of inflammatory factors that revealed a negative correlation between OCTN1/2 expression and inflammation secretion in human alveolar epithelial cells exposed to different concentrations of LPS. The Michaelis constant (Km) and apparent permeability coefficient (Papp) of ASP+ were also decreased significantly. Our results thus show that LPS-induced inflammation could inhibit the expression and activity of OCTN1/2 in vitro and reduce the distribution of inhaled medicine in pulmonary diseases.
Collapse
Affiliation(s)
- Dalang Li
- Institute for Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China.,Institute for the Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Hefei, China
| | - Chuanzong Qi
- Institute for Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China.,Institute for the Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Hefei, China
| | - Jian Zhou
- Institute for Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China.,Institute for the Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Hefei, China
| | - Zeqiang Wen
- Institute for Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China.,Institute for the Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Hefei, China
| | - Xiangyu Zhu
- Institute for Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China.,Institute for the Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Hefei, China
| | - Hongguang Xia
- Institute for Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China.,Institute for the Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Hefei, China
| | - Jue Song
- Institute for Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China.,Institute for the Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Hefei, China
| |
Collapse
|
20
|
Peng Y, Hu M, Lu Q, Tian Y, He W, Chen L, Wang K, Pan S. Flavonoids derived from Exocarpium Citri Grandis inhibit LPS-induced inflammatory response via suppressing MAPK and NF-κB signalling pathways. FOOD AGR IMMUNOL 2019. [DOI: 10.1080/09540105.2018.1550056] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
Affiliation(s)
- Ying Peng
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, People’s Republic of China
| | - Mengjun Hu
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, People’s Republic of China
| | - Qi Lu
- Research Institute of Agricultural Products Processing and Nuclear-Agricultural Technology, Hubei Academy of Agricultural Sciences, Wuhan, People’s Republic of China
| | - Yan Tian
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, People’s Republic of China
| | - Wanying He
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, People’s Republic of China
| | - Liang Chen
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, People’s Republic of China
| | - Kexing Wang
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, People’s Republic of China
| | - Siyi Pan
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, People’s Republic of China
- Key Laboratory of Environment Correlative Dietology, Ministry of Education, Huazhong Agricultural University, Wuhan, People’s Republic of China
| |
Collapse
|
21
|
miR-449a induces EndMT, promotes the development of atherosclerosis by targeting the interaction between AdipoR2 and E-cadherin in Lipid Rafts. Biomed Pharmacother 2019; 109:2293-2304. [DOI: 10.1016/j.biopha.2018.11.114] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Revised: 10/30/2018] [Accepted: 11/25/2018] [Indexed: 02/06/2023] Open
|
22
|
Pu J, Chen D, Tian G, He J, Zheng P, Mao X, Yu J, Huang Z, Zhu L, Luo J, Luo Y, Yu B. Protective Effects of Benzoic Acid, Bacillus Coagulans, and Oregano Oil on Intestinal Injury Caused by Enterotoxigenic Escherichia coli in Weaned Piglets. BIOMED RESEARCH INTERNATIONAL 2018; 2018:1829632. [PMID: 30225247 PMCID: PMC6129782 DOI: 10.1155/2018/1829632] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Revised: 08/05/2018] [Accepted: 08/09/2018] [Indexed: 12/19/2022]
Abstract
The use of antibiotics as growth promoters in feed has been fully or partially banned in several countries. The objective of this study was to investigate the effects of benzoic acid (A), bacillus coagulans (B) and oregano oil (O) combined supplementation on growth performance and intestinal barrier in piglets challenged with enterotoxigenic Escherichia coli (ETEC). Thirty piglets were randomly assigned to 6 treatments: (1) nonchallenged control (CON); (2) ETEC-challenged control (ETEC); (3) antibiotics + ETEC (AT); (4) A + B + ETEC (AB); (5) A + O + ETEC (AO); (6) A + B + O + ETEC (ABO). On day 22, piglets were orally challenged with ETEC or saline. The trial lasted 26 days. Dietary AO and ABO inhibited the reduction of growth performance and the elevation of diarrhoea incidence in piglets induced by ETEC (P<0.05). AB, AO, and ABO prevented the elevation of serum TNF-α and LPS concentrations in piglets induced by ETEC (P<0.05). ABO alleviated the elevation of TNF-α and IL-1β concentrations and the reduction of sIgA level in jejunal mucosa induced by ETEC (P<0.05). Furthermore, ABO upregulated mRNA expressions of Claudin-1 and Mucin2 (P<0.05), downregulated mRNA abundances of TLR4 and NOD2 signaling pathways related genes in jejunal mucosa (P<0.05), and improved the microbiota in jejunal and cecal digesta (P<0.05) compared with ETEC group. These results indicated that benzoic acid, bacillus coagulans, and oregano oil combined supplementation could improve growth performance and alleviate diarrhoea of piglets challenged with ETEC via improving intestinal mucosal barrier integrity, which was possibly associated with the improvement of intestinal microbiota and immune status. The combination of 3000 g/t benzoic acid + 400 g/t bacillus coagulans + 400 g/t oregano oil showed better effects than other treatments in improving growth performance and intestinal health of piglets, which could be used as a viable substitute for antibiotic.
Collapse
Affiliation(s)
- Junning Pu
- Key Laboratory of Animal Disease-Resistance Nutrition, Animal Nutrition Institute, Sichuan Agricultural University, 46# Xinkang Road, Yucheng District, Yaan, Sichuan 625014, China
| | - Daiwen Chen
- Key Laboratory of Animal Disease-Resistance Nutrition, Animal Nutrition Institute, Sichuan Agricultural University, 46# Xinkang Road, Yucheng District, Yaan, Sichuan 625014, China
| | - Gang Tian
- Key Laboratory of Animal Disease-Resistance Nutrition, Animal Nutrition Institute, Sichuan Agricultural University, 46# Xinkang Road, Yucheng District, Yaan, Sichuan 625014, China
| | - Jun He
- Key Laboratory of Animal Disease-Resistance Nutrition, Animal Nutrition Institute, Sichuan Agricultural University, 46# Xinkang Road, Yucheng District, Yaan, Sichuan 625014, China
| | - Ping Zheng
- Key Laboratory of Animal Disease-Resistance Nutrition, Animal Nutrition Institute, Sichuan Agricultural University, 46# Xinkang Road, Yucheng District, Yaan, Sichuan 625014, China
| | - Xiangbing Mao
- Key Laboratory of Animal Disease-Resistance Nutrition, Animal Nutrition Institute, Sichuan Agricultural University, 46# Xinkang Road, Yucheng District, Yaan, Sichuan 625014, China
| | - Jie Yu
- Key Laboratory of Animal Disease-Resistance Nutrition, Animal Nutrition Institute, Sichuan Agricultural University, 46# Xinkang Road, Yucheng District, Yaan, Sichuan 625014, China
| | - Zhiqing Huang
- Key Laboratory of Animal Disease-Resistance Nutrition, Animal Nutrition Institute, Sichuan Agricultural University, 46# Xinkang Road, Yucheng District, Yaan, Sichuan 625014, China
| | - Ling Zhu
- Key Laboratory of Animal Biotechnology Center of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611134, China
| | - Junqiu Luo
- Key Laboratory of Animal Disease-Resistance Nutrition, Animal Nutrition Institute, Sichuan Agricultural University, 46# Xinkang Road, Yucheng District, Yaan, Sichuan 625014, China
| | - Yuheng Luo
- Key Laboratory of Animal Disease-Resistance Nutrition, Animal Nutrition Institute, Sichuan Agricultural University, 46# Xinkang Road, Yucheng District, Yaan, Sichuan 625014, China
| | - Bing Yu
- Key Laboratory of Animal Disease-Resistance Nutrition, Animal Nutrition Institute, Sichuan Agricultural University, 46# Xinkang Road, Yucheng District, Yaan, Sichuan 625014, China
| |
Collapse
|
23
|
Helaly AM, Mokhtar N, Firgany AEDL, Hazem NM, El Morsi E, Ghorab D. Molybdenum bupropion combined neurotoxicity in rats. Regul Toxicol Pharmacol 2018; 98:224-230. [PMID: 30081056 DOI: 10.1016/j.yrtph.2018.08.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 07/31/2018] [Accepted: 08/02/2018] [Indexed: 01/13/2023]
Abstract
Heavy metal toxicity is a common foodborne problem in Egypt, especially in combination. Molybdenum toxicity has been studied as a model of the heavy metal toxicity. Molybdenum could promote toxicity via oxidative-inflammatory mechanisms. Bupropion is a well-known antidepressant that has anti-oxidant mechanisms. It exerts a cytoprotective action against molybdenum induced metal toxicity. The aim of the study is to evaluate the effects of combined bupropion and molybdenum in a toxic animal model. The results showed that the combination of bupropion and high doses of molybdenum was extremely toxic with an evident animal fatality. Bupropion showed a clear anti-oxidant/anti-inflammatory profile detected by the ELISA assay of malondialdehyde (MDA), reduced glutathione, and interleukin -6 (IL-6), and real-time gene expression of nuclear factor erythroid 2-related factor 2 (Nrf2) and tumor necrosis factor-α (TNF-α). The immunohistochemistry of nuclear factor Kappa Beta (NF-κB) showed that bupropion reduced the inflammatory response induced by the molybdenum neurotoxicity. Despite the improved laboratory profile, the animals were extremely intoxicated with recorded fatalities raising the question about other pathways and mechanisms explaining the drug metal interaction. Furthermore, Bupropion even in normal doses was toxic to the animals. Choroid plexus hyperplasia was reported in the histological examination of the animal brain loaded with bupropion, and choroid plexus papilloma was recorded in the combined drug metal group. More wide-scale studies are needed to verify the safety of the current antidepressant medications for the long-term therapy. It is important to focus on drug metal interaction as a possible cause of neuropathology.
Collapse
Affiliation(s)
- A M Helaly
- Forensic and Clinical Toxicology Department, Egypt; Faculty of Medicine, Yarmouk University, Jordan
| | - Naglaa Mokhtar
- Medical Biochemistry Department, Egypt; Faculty of Medicine, Mansoura University, Egypt
| | - Alaa El-Din L Firgany
- Department of Histology and Cell Biology, Egypt; Faculty of Medicine, Mansoura University, Egypt
| | - Noha M Hazem
- Medical Biochemistry Department, Egypt; Faculty of Medicine, Mansoura University, Egypt.
| | - E El Morsi
- Forensic and Clinical Toxicology Department, Egypt; Faculty of Medicine, Mansoura University, Egypt
| | - D Ghorab
- Pathology Department, Egypt; Faculty of Medicine, Mansoura University, Egypt
| |
Collapse
|
24
|
Zhang M, Zhao GJ, Yin K, Xia XD, Gong D, Zhao ZW, Chen LY, Zheng XL, Tang XE, Tang CK. Apolipoprotein A-1 Binding Protein Inhibits Inflammatory Signaling Pathways by Binding to Apolipoprotein A-1 in THP-1 Macrophages. Circ J 2018; 82:1396-1404. [PMID: 29618705 DOI: 10.1253/circj.cj-17-0877] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2024]
Abstract
BACKGROUND It has previously been demonstrated that apolipoprotein A-1 (apoA-1) binding protein (AIBP) promotes apoA-1 binding to ATP-binding cassette transporter A1 (ABCA1) and prevents ABCA1 protein degradation so as to inhibit foam cell formation. Because apoA-1 inhibits inflammatory signaling pathways, whether AIBP has an inhibitory effect on inflammatory signaling pathways in THP-1-derived macrophages is investigated. METHODS AND RESULTS Analysis of inflammation-related gene expression indicated that AIBP decreased lipopolysaccharide (LPS)-mediated macrophage inflammation. AIBP significantly prevented NF-κB nuclear translocation. Further, AIBP prevented the activation of mitogen-activated protein kinases (MAPKs), including p38 MAPK, extracellular-signal regulated kinase and c-Jun N-terminal kinase. AIBP decreased MyD88 expression at both mRNA and protein levels, but did not have any effect on TLR4 expression. Moreover, treatment with both AIBP and apoA-1 decreased the abundance of TLR4 in the lipid raft fraction. AIBP lacking 115-123 amino acids (∆115-123), however, did not have such effects as described for intact AIBP. In addition, knockdown of ABCA1 inhibited the effects of AIBP on inflammatory factor secretion. CONCLUSIONS These results suggest that AIBP inhibits inflammatory signaling pathways through binding to apoA-1 and stabilizing ABCA1, and subsequent alteration of lipid rafts and TLR4 in the cell membrane.
Collapse
Affiliation(s)
- Min Zhang
- Institute of Cardiovascular Disease, Key Lab for Atherosclerology of Hunan Province, Medicine Research Center, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China
| | - Guo-Jun Zhao
- Department of Histology and Embryology, Guilin Medical University
| | - Kai Yin
- Institute of Cardiovascular Disease, Key Lab for Atherosclerology of Hunan Province, Medicine Research Center, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China
| | - Xiao-Dan Xia
- Institute of Cardiovascular Disease, Key Lab for Atherosclerology of Hunan Province, Medicine Research Center, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China
| | - Duo Gong
- Institute of Cardiovascular Disease, Key Lab for Atherosclerology of Hunan Province, Medicine Research Center, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China
| | - Zhen-Wang Zhao
- Institute of Cardiovascular Disease, Key Lab for Atherosclerology of Hunan Province, Medicine Research Center, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China
| | - Ling-Yan Chen
- Institute of Cardiovascular Disease, Key Lab for Atherosclerology of Hunan Province, Medicine Research Center, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China
| | - Xi-Long Zheng
- Department of Biochemistry and Molecular Biology, The Libin Cardiovascular Institute of Alberta, The University of Calgary, Health Sciences Center
- Key Laboratory of Molecular Targets & Clinical Pharmacology, School of Pharmaceutical Sciences, Guangzhou Medical University
| | - Xiao-Er Tang
- Department of Pathophysiology, Shaoyang University
| | - Chao-Ke Tang
- Institute of Cardiovascular Disease, Key Lab for Atherosclerology of Hunan Province, Medicine Research Center, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China
| |
Collapse
|
25
|
Wan J, Zhang J, Chen D, Yu B, Huang Z, Mao X, Zheng P, Yu J, He J. Alginate oligosaccharide enhances intestinal integrity of weaned pigs through altering intestinal inflammatory responses and antioxidant status. RSC Adv 2018; 8:13482-13492. [PMID: 35542522 PMCID: PMC9079839 DOI: 10.1039/c8ra01943f] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Accepted: 04/02/2018] [Indexed: 01/13/2023] Open
Abstract
Alginate oligosaccharide (AOS), prepared from depolymerised alginate, a natural polysaccharide occurring in the cell walls of brown algae, provides beneficial effects for intestinal health. However, the underlying mechanisms by which AOS supplementation maintains the intestinal integrity of weaned pigs remain obscure. Here, we aimed to determine how AOS modulates the intestinal integrity of weaned pigs. Twenty-four weaned pigs were assigned to two treatments: a control group (basal diet) and an AOS group (the basal diet supplemented with 100 mg kg-1 AOS). On day 15, eight pigs per treatment were randomly selected and sacrificed for serum and intestinal samples. We observed that AOS supplementation enhanced the intestinal integrity, as evidenced by the increased (P < 0.05) intestinal occludin protein abundance. Compared to the control group, AOS ingestion both elevated (P < 0.05) the jejunal and ileal catalase activity and decreased (P < 0.05) the duodenal and jejunal tumour necrosis factor-α concentration and mast cell tryptase expression. Furthermore, AOS down-regulated (P < 0.05) the duodenal toll-like receptor 4 (TLR4) and its down-stream signals, myeloid differentiation factor 88 (MyD88), interleukin-1 receptor-associated kinase 1 (IRAK1) and tumour necrosis factor receptor-associated factor 6 (TRAF6) mRNA levels, as well as jejunal nucleotide-binding oligomerisation domain protein 1 (NOD1) and its adaptor molecule, receptor-interacting serine/threonine-protein kinase 2 (RIPK2), mRNA levels. Additionally, phospho-nuclear factor-κB (p-NF-κB) p65 protein abundance in the duodenum and jejunum was down-regulated (P < 0.05) following AOS supplementation. According to the above results, the enhanced intestinal integrity in AOS-supplemented pigs appears to be associated with the elevated antioxidant capacity and the reduced mast cell degranulation, as well as the inhibited pro-inflammatory cytokines production via inhibiting the TLR4/NF-κB and NOD1/NF-κB signalling pathways.
Collapse
Affiliation(s)
- Jin Wan
- Institute of Animal Nutrition, Sichuan Agricultural University Chengdu 611130 Sichuan People's Republic of China +86-28-86290920 +86-13-419354223
| | - Jiao Zhang
- Institute of Animal Nutrition, Sichuan Agricultural University Chengdu 611130 Sichuan People's Republic of China +86-28-86290920 +86-13-419354223
| | - Daiwen Chen
- Institute of Animal Nutrition, Sichuan Agricultural University Chengdu 611130 Sichuan People's Republic of China +86-28-86290920 +86-13-419354223
| | - Bing Yu
- Institute of Animal Nutrition, Sichuan Agricultural University Chengdu 611130 Sichuan People's Republic of China +86-28-86290920 +86-13-419354223
| | - Zhiqing Huang
- Institute of Animal Nutrition, Sichuan Agricultural University Chengdu 611130 Sichuan People's Republic of China +86-28-86290920 +86-13-419354223
| | - Xiangbing Mao
- Institute of Animal Nutrition, Sichuan Agricultural University Chengdu 611130 Sichuan People's Republic of China +86-28-86290920 +86-13-419354223
| | - Ping Zheng
- Institute of Animal Nutrition, Sichuan Agricultural University Chengdu 611130 Sichuan People's Republic of China +86-28-86290920 +86-13-419354223
| | - Jie Yu
- Institute of Animal Nutrition, Sichuan Agricultural University Chengdu 611130 Sichuan People's Republic of China +86-28-86290920 +86-13-419354223
| | - Jun He
- Institute of Animal Nutrition, Sichuan Agricultural University Chengdu 611130 Sichuan People's Republic of China +86-28-86290920 +86-13-419354223
| |
Collapse
|
26
|
Fujita T, Yoshimoto T, Kajiya M, Ouhara K, Matsuda S, Takemura T, Akutagawa K, Takeda K, Mizuno N, Kurihara H. Regulation of defensive function on gingival epithelial cells can prevent periodontal disease. JAPANESE DENTAL SCIENCE REVIEW 2017; 54:66-75. [PMID: 29755617 PMCID: PMC5944110 DOI: 10.1016/j.jdsr.2017.11.003] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Revised: 11/10/2017] [Accepted: 11/14/2017] [Indexed: 02/06/2023] Open
Abstract
Periodontal disease is a bacterial biofilm-associated inflammatory disease that has been implicated in many systemic diseases. A new preventive method for periodontal disease needs to be developed in order to promote the health of the elderly in a super-aged society. The gingival epithelium plays an important role as a mechanical barrier against bacterial invasion and a part of the innate immune response to infectious inflammation in periodontal tissue. The disorganization of cell–cell interactions and subsequent inflammation contribute to the initiation of periodontal disease. These make us consider that regulation of host defensive functions, epithelial barrier and neutrophil activity, may become novel preventive methods for periodontal inflammation. Based on this concept, we have found that several agents regulate the barrier function of gingival epithelial cells and suppress the accumulation of neutrophils in the gingival epithelium. We herein introduce the actions of irsogladine maleate, azithromycin, amphotericin B, and Houttuynia cordata (dokudami in Japanese), which is commonly used in traditional medicine, on the epithelial barrier and neutrophil migration in gingival epithelial cells in vivo and in vitro, in order to provide support for the clinical application of these agents to the prevention of periodontal inflammation.
Collapse
Affiliation(s)
- Tsuyoshi Fujita
- Corresponding author at: Department of Periodontal Medicine, Graduate School of Biomedical & Health Sciences, Hiroshima University, 1-2-3, Kasumi, Minami-ku, Hiroshima 734-8553, Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Liu J, Li G, Chen C, Chen D, Zhou Q. MiR-6835 promoted LPS-induced inflammation of HUVECs associated with the interaction between TLR-4 and AdipoR1 in lipid rafts. PLoS One 2017; 12:e0188604. [PMID: 29190778 PMCID: PMC5708807 DOI: 10.1371/journal.pone.0188604] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Accepted: 11/09/2017] [Indexed: 02/07/2023] Open
Abstract
Background High mortality rate of critically-ill patients could be induced by sepsis and septic shock, which is the extremely life threatening. The purpose of this work is to identify and evaluate the potential regulatory mechanism of LPS-induced inflammation associated with miR-6835 and lipid rafts in HUVECs. Methods The 3’ UTR luciferase activity of AdipoR1 was detected, which was predicted the potential target gene of miR-6835. Moreover, the treated HUVECs with or without inhibitors or mimics of miR-6835 were used. Furthermore, the bio-functions of HUVECs were explored. The protein expression levels of SIRT-1, AMPK, and AdipoR1 were assessed, which were involved in the AdipoR1 signaling pathway. Then, the interaction between TLR-4 and AdipoR1 in lipid rafts and its mediation role on LPS-induced inflammation was investigated in HUVECs. Results MiR-6835 targeted directly on AdipoR1, and suppressed its expression in mRNA (mimics of miR-6835: 0.731±0.016 vs control: 1.527±0.015, P<0.001) and proteins levels, then regulated protein expression of SIRT-1 and AMPK, which were the downstream target genes of AdipoR1 signaling pathway. MiR-6835 enhanced LPS-induced inflammation process in HUVECs (TNF-α: LPS+mimics of miR-6835: 1638.51±78.43 vs LPS: 918.73±39.73, P<0.001; IL-6: LPS+mimics of miR-6835: 1249.35±69.51 vs LPS: 687.52±43.64, P<0.001), which was associated with the interaction between TLR-4 and AdipoR1 in lipid rafts. Conclusions MiR-6835 is the key regulator of LPS-induced inflammation process in HUVECs. The interaction between TLR-4 and AdipoR1 mediated by lipid rafts at membrane of HUVECs with inflammation process induced by miR-6835. Our results demonstrated a hopeful strategy for treatment on sepsis by aiming at lipid rafts and miR-6835.
Collapse
Affiliation(s)
- Jiao Liu
- Department of Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan, Hubei, People’s Republic of China
| | - Guang Li
- Department of Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan, Hubei, People’s Republic of China
| | - Chuang Chen
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, People’s Republic of China
| | - Dechang Chen
- Department of Emergency and Critical Care Medicine, Shanghai Changzheng Hospital, Second Military Medical University, Shanghai, People’s Republic of China
| | - Qingshan Zhou
- Department of Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan, Hubei, People’s Republic of China
- * E-mail:
| |
Collapse
|
28
|
Sun W, Ding Z, Xu S, Su Z, Li H. Crosstalk between TLR2 and Sphk1 in microglia in the cerebral ischemia/reperfusion-induced inflammatory response. Int J Mol Med 2017; 40:1750-1758. [PMID: 29039449 PMCID: PMC5716455 DOI: 10.3892/ijmm.2017.3165] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Accepted: 09/06/2017] [Indexed: 01/06/2023] Open
Abstract
Stroke is associated with high morbidity and mortality, and much remains unknown about the injury-related mechanisms that occur following reperfusion. This study aimed to explore the roles of Toll-like receptor 2 (TLR2) and sphingosine kinase 1 (Sphk1) in microglial cells in inflammatory responses induced by cerebral ischemia/reperfusion (I/R). For this purpose, C57BL/6 mice were randomly divided into 4 groups as follows: the sham-operated group, the I/R group, the I/R group treated with TLR2 antibody, and the I/R group treated with N,N-dimethylsphingosine. Focal cerebral I/R was induced by middle cerebral artery occlusion. Double-labeling immunofluorescence was used to observe the protein expression of TLR2 and Sphk1 in the ischemic brain tissue. Quantitative polymerase chain reaction was performed to determine the mRNA levels of TLR2 and Sphkl in ischemic brain tissue. Enzyme-linked immunosorbent assay was carried out to detect the protein contents of interleukin (IL)-1β, tumor necrosis factor-α (TNF-α), IL-17 and IL-23 in ischemic brain tissue. The results revealed that I/R upregulated TLR2 and Sphk1 expression in microglial cells, and the inhibition of either TLR2 or Sphk1 inhibited the expression of the pro-inflammatory cytokines, IL-1β, TNF-α, IL-17 and IL-23. Notably, the inhibition of TLR2 activity also decreased Sphk1 expression. These results thus indicate that the activation of microglial cells, via a TLR2→Sphk1→pro-inflammatory cytokine (IL-1β, TNF-α, IL-17 and IL-23) pathway, may participate in I/R injury.
Collapse
Affiliation(s)
- Wei Sun
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150081, P.R. China
| | - Zhaoming Ding
- Department of Thyroid Surgery, The Third Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150081, P.R. China
| | - Shengjie Xu
- Department of Pathology, Harbin Medical University, Harbin, Heilongjiang 150081, P.R. China
| | - Zhiqiang Su
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150081, P.R. China
| | - Hulun Li
- Department of Neurobiology, Harbin Medical University, Harbin, Heilongjiang 150081, P.R. China
| |
Collapse
|
29
|
Torrelles JB, Schlesinger LS. Integrating Lung Physiology, Immunology, and Tuberculosis. Trends Microbiol 2017; 25:688-697. [PMID: 28366292 PMCID: PMC5522344 DOI: 10.1016/j.tim.2017.03.007] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Revised: 03/03/2017] [Accepted: 03/10/2017] [Indexed: 11/17/2022]
Abstract
Lungs are directly exposed to the air, have enormous surface area, and enable gas exchange in air-breathing animals. They are constantly 'attacked' by microbes from both outside and inside and thus possess a unique, highly regulated local immune defense system which efficiently allows for microbial clearance while minimizing damaging inflammatory responses. As a prototypic host-adapted airborne pathogen, Mycobacterium tuberculosis traverses the lung and has several 'interaction points' (IPs) which it must overcome to cause infection. These interactions are critical, not only from a pathogenesis perspective but also in considering the effectiveness of therapies and vaccines in the lungs. Here we discuss emerging views on immunologic interactions occurring in the lungs for M. tuberculosis and their impact on infection and persistence.
Collapse
Affiliation(s)
- Jordi B Torrelles
- Department of Microbial Infection and Immunity, College of Medicine, and the Center for Microbial Interface Biology, The Ohio State University, Columbus, OH 43210, USA.
| | - Larry S Schlesinger
- Department of Microbial Infection and Immunity, College of Medicine, and the Center for Microbial Interface Biology, The Ohio State University, Columbus, OH 43210, USA.
| |
Collapse
|
30
|
Fessler MB, Summer RS. Surfactant Lipids at the Host-Environment Interface. Metabolic Sensors, Suppressors, and Effectors of Inflammatory Lung Disease. Am J Respir Cell Mol Biol 2017; 54:624-35. [PMID: 26859434 DOI: 10.1165/rcmb.2016-0011ps] [Citation(s) in RCA: 92] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The lipid composition of pulmonary surfactant is unlike that of any other body fluid. This extracellular lipid reservoir is also uniquely susceptible by virtue of its direct and continuous exposure to environmental oxidants, inflammatory agents, and pathogens. Historically, the greatest attention has been focused on those biophysical features of surfactant that serve to reduce surface tension at the air-liquid interface. More recently, surfactant lipids have also been recognized as bioactive molecules that maintain immune quiescence in the lung but can also be remodeled by the inhaled environment into neolipids that mediate key roles in inflammation, immunity, and fibrosis. This review focuses on the roles in inflammatory and infectious lung disease of two classes of native surfactant lipids, glycerophospholipids and sterols, and their corresponding oxidized species, oxidized glycerophospholipids and oxysterols. We highlight evidence that surfactant composition is sensitive to circulating lipoproteins and that the lipid milieu of the alveolus should thus be recognized as susceptible to diet and common systemic metabolic disorders. We also discuss intriguing evidence suggesting that oxidized surfactant lipids may represent an evolutionary link between immunity and tissue homeostasis that arose in the primordial lung. Taken together, the emerging picture is one in which the unique environmental susceptibility of the lung, together with its unique extracellular lipid requirements, may have made this organ both an evolutionary hub and an engine for lipid-immune cross-talk.
Collapse
Affiliation(s)
- Michael B Fessler
- 1 Immunity, Inflammation, and Disease Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina; and
| | - Ross S Summer
- 2 Center for Translational Medicine and Jane and Leonard Korman Lung Center, Thomas Jefferson University, Philadelphia, Pennsylvania
| |
Collapse
|
31
|
Yan A, Cai G, Xia W, Fu Y. Thromboxane A2 receptor antagonist SQ29548 suppresses the LPS‑induced release of inflammatory cytokines in BV2 microglia cells via suppressing MAPK and NF‑κB signaling pathways. Mol Med Rep 2017; 16:2491-2496. [PMID: 28677768 PMCID: PMC5548048 DOI: 10.3892/mmr.2017.6884] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Accepted: 05/05/2017] [Indexed: 11/06/2022] Open
Abstract
Inflammation in the brain, characterized by the activation of microglia, is hypothesized to participate in the pathogenesis of neuronal disorders. It is proposed that thromboxane A2 receptor (TXA2R) activation is involved in thrombosis/hemostasis and inflammation responses. In the present study, the anti‑inflammatory effects of SQ29548 on lipopolysaccharide (LPS)‑stimulated BV2 microglial cells and its molecular mechanisms were investigated. In the BV2 cell line, LPS‑stimulated nitric oxide (NO) and inflammatory cytokine release, and the phosphorylation of mitogen‑activated protein kinases (MAPKs) and the nuclear factor (NF)‑κB were assessed using an NO assay kit, reverse transcription-quantitative polymerase chain reaction and western blotting, respectively. In vitro studies demonstrated that SQ29548 inhibited LPS‑stimulated BV2 activation and reduced the mRNA expression levels of interleukin (IL)‑1β, IL‑6, tumor necrosis factor‑α and inducible NO synthase via inhibition of MAPKs and the NF‑κB signaling pathway. SQ29548 inhibited the LPS‑induced inflammatory response by blocking MAPKs and NF‑κB activation in BV2 microglial cells.
Collapse
Affiliation(s)
- Aijuan Yan
- Department of Neurology and Institute of Neurology, Rui Jin Hospital, Shanghai Jiao Tong University, Shanghai 200025, P.R. China
| | - Gaoyu Cai
- Department of Neurology and Institute of Neurology, Rui Jin Hospital, Shanghai Jiao Tong University, Shanghai 200025, P.R. China
| | - Weiliang Xia
- School of Biomedical Engineering and Med‑X Research Institute, Shanghai Jiao Tong University, Shanghai 200030, P.R. China
| | - Yi Fu
- Department of Neurology and Institute of Neurology, Rui Jin Hospital, Shanghai Jiao Tong University, Shanghai 200025, P.R. China
| |
Collapse
|
32
|
Backhaus S, Zakrzewicz A, Richter K, Damm J, Wilker S, Fuchs-Moll G, Küllmar M, Hecker A, Manzini I, Ruppert C, McIntosh JM, Padberg W, Grau V. Surfactant inhibits ATP-induced release of interleukin-1β via nicotinic acetylcholine receptors. J Lipid Res 2017; 58:1055-1066. [PMID: 28404637 PMCID: PMC5454502 DOI: 10.1194/jlr.m071506] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Revised: 03/22/2017] [Indexed: 01/04/2023] Open
Abstract
Interleukin (IL)-1β is a potent pro-inflammatory cytokine of innate immunity involved in host defense. High systemic IL-1β levels, however, cause life-threatening inflammatory diseases, including systemic inflammatory response syndrome. In response to various danger signals, the pro-form of IL-1β is synthesized and stays in the cytoplasm unless a second signal, such as extracellular ATP, activates the inflammasome, which enables processing and release of mature IL-1β. As pulmonary surfactant is known for its anti-inflammatory properties, we hypothesize that surfactant inhibits ATP-induced release of IL-1β. Lipopolysaccharide-primed monocytic U937 cells were stimulated with an ATP analog in the presence of natural or synthetic surfactant composed of recombinant surfactant protein (rSP)-C, palmitoylphosphatidylglycerol, and dipalmitoylphosphatidylcholine (DPPC). Both surfactant preparations dose-dependently inhibited IL-1β release from U937 cells. DPPC was the active constituent of surfactant, whereas rSP-C and palmitoylphosphatidylglycerol were inactive. DPPC was also effective in primary mononuclear leukocytes isolated from human blood. Experiments with nicotinic antagonists, siRNA technology, and patch-clamp experiments suggested that stimulation of nicotinic acetylcholine receptors (nAChRs) containing subunit α9 results in a complete inhibition of the ion channel function of ATP receptor, P2X7. In conclusion, the surfactant constituent, DPPC, efficiently inhibits ATP-induced inflammasome activation and maturation of IL-1β in human monocytes by a mechanism involving nAChRs.
Collapse
Affiliation(s)
- Sören Backhaus
- Laboratory of Experimental Surgery, Department of General and Thoracic Surgery Justus-Liebig-University Giessen, Giessen, Germany
| | - Anna Zakrzewicz
- Laboratory of Experimental Surgery, Department of General and Thoracic Surgery Justus-Liebig-University Giessen, Giessen, Germany
| | - Katrin Richter
- Laboratory of Experimental Surgery, Department of General and Thoracic Surgery Justus-Liebig-University Giessen, Giessen, Germany
| | - Jelena Damm
- Laboratory of Experimental Surgery, Department of General and Thoracic Surgery Justus-Liebig-University Giessen, Giessen, Germany
| | - Sigrid Wilker
- Laboratory of Experimental Surgery, Department of General and Thoracic Surgery Justus-Liebig-University Giessen, Giessen, Germany
| | - Gabriele Fuchs-Moll
- Laboratory of Experimental Surgery, Department of General and Thoracic Surgery Justus-Liebig-University Giessen, Giessen, Germany
| | - Mira Küllmar
- Laboratory of Experimental Surgery, Department of General and Thoracic Surgery Justus-Liebig-University Giessen, Giessen, Germany
| | - Andreas Hecker
- Laboratory of Experimental Surgery, Department of General and Thoracic Surgery Justus-Liebig-University Giessen, Giessen, Germany
| | - Ivan Manzini
- Department of Animal Physiology and Molecular Biomedicine, Justus-Liebig-University Giessen, Giessen, Germany
| | - Clemens Ruppert
- Medical Clinic II, Department of Internal Medicine, Universities of Giessen and Marburg Lung Center (UGMLC), German Center for Lung Research (DZL), Justus-Liebig-University Giessen, Giessen, Germany
| | - J Michael McIntosh
- Departments of Biology and Psychiatry, University of Utah and George E. Wahlen Veterans Affairs Medical Center, Salt Lake City, UT
| | - Winfried Padberg
- Laboratory of Experimental Surgery, Department of General and Thoracic Surgery Justus-Liebig-University Giessen, Giessen, Germany
| | - Veronika Grau
- Laboratory of Experimental Surgery, Department of General and Thoracic Surgery Justus-Liebig-University Giessen, Giessen, Germany
| |
Collapse
|
33
|
Movia D, Di Cristo L, Alnemari R, McCarthy JE, Moustaoui H, Lamy de la Chapelle M, Spadavecchia J, Volkov Y, Prina-Mello A. The curious case of how mimicking physiological complexity in in vitro models of the human respiratory system influences the inflammatory responses. A preliminary study focused on gold nanoparticles. ACTA ACUST UNITED AC 2017. [DOI: 10.1002/jin2.25] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Dania Movia
- Laboratory for Biological Characterization of Advanced Materials (LBCAM), Trinity Translational Medicine Institute; School of Medicine, Trinity College; Dublin Ireland
| | - Luisana Di Cristo
- Laboratory for Biological Characterization of Advanced Materials (LBCAM), Trinity Translational Medicine Institute; School of Medicine, Trinity College; Dublin Ireland
| | - Roaa Alnemari
- Department of Clinical Medicine; School of Medicine, Trinity College; Dublin Ireland
| | | | - Hanane Moustaoui
- CNRS, UMR 7244, CSPBAT; Laboratoire de Chimie, Structures et Propriétés de Biomateriaux et d'Agents Therapeutiques Université Paris 13, Sorbonne Paris Cité, Bobigny, France CNRS; Paris France
| | - Marc Lamy de la Chapelle
- CNRS, UMR 7244, CSPBAT; Laboratoire de Chimie, Structures et Propriétés de Biomateriaux et d'Agents Therapeutiques Université Paris 13, Sorbonne Paris Cité, Bobigny, France CNRS; Paris France
| | - Jolanda Spadavecchia
- CNRS, UMR 7244, CSPBAT; Laboratoire de Chimie, Structures et Propriétés de Biomateriaux et d'Agents Therapeutiques Université Paris 13, Sorbonne Paris Cité, Bobigny, France CNRS; Paris France
| | - Yuri Volkov
- Laboratory for Biological Characterization of Advanced Materials (LBCAM), Trinity Translational Medicine Institute; School of Medicine, Trinity College; Dublin Ireland
- Department of Clinical Medicine; School of Medicine, Trinity College; Dublin Ireland
- CRANN Institute, AMBER Centre; Trinity College; Dublin Ireland
| | - Adriele Prina-Mello
- Laboratory for Biological Characterization of Advanced Materials (LBCAM), Trinity Translational Medicine Institute; School of Medicine, Trinity College; Dublin Ireland
- Department of Clinical Medicine; School of Medicine, Trinity College; Dublin Ireland
- CRANN Institute, AMBER Centre; Trinity College; Dublin Ireland
| |
Collapse
|
34
|
Rigo LA, Carvalho-Wodarz CS, Pohlmann AR, Guterres SS, Schneider-Daum N, Lehr CM, Beck RCR. Nanoencapsulation of a glucocorticoid improves barrier function and anti-inflammatory effect on monolayers of pulmonary epithelial cell lines. Eur J Pharm Biopharm 2017; 119:1-10. [PMID: 28512018 DOI: 10.1016/j.ejpb.2017.05.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Revised: 05/08/2017] [Accepted: 05/12/2017] [Indexed: 01/15/2023]
Abstract
The anti-inflammatory effect of polymeric deflazacort nanocapsules (NC-DFZ) was investigated, and possible improvement of epithelial barrier function using filter grown monolayers of Calu-3 cells was assessed. NC prepared from poly(ε-caprolactone) (PCL) had a mean size around 200nm, slightly negative zeta potential (∼-8mV), and low polydispersity index (<0.10). Encapsulation of DFZ had an efficiency of 85%. No cytotoxic effects were observed at particle concentration of 9.85×1011NC/ml, which was therefore chosen to evaluate the effect of NC-DFZ at 1% (w/v) of PCL and 0.5% (w/v) of DFZ on the epithelial barrier function of Calu-3 monolayers. Nanoencapsulated drug at 0.5% (w/v) increased transepithelial electrical resistance and decreased permeability of the paracellular marker sodium fluorescein, while non-encapsulated DFZ failed to improve these parameters. Moreover, NC-DFZ reduced the lipopolysaccharide (LPS) mediated secretion of the inflammatory marker IL-8. In vitro dissolution testing revealed controlled release of DFZ from nanocapsules, which may explain the improved effect of DFZ on the cells. These data suggest that nanoencapsulation of pulmonary delivered corticosteroids could be advantageous for the treatment of inflammatory conditions, such as asthma and chronic obstructive pulmonary diseases.
Collapse
Affiliation(s)
- Lucas A Rigo
- Programa de Pós-Graduação em Ciências Farmacêuticas, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Av. Ipiranga, 2752, 90610-000, Porto Alegre, RS, Brazil
| | - Cristiane S Carvalho-Wodarz
- Drug Delivery (DDEL), Helmholtz-Institute for Pharmaceutical Research Saarland (HIPS), University Campus, Building E8.1, D-66123 Saarbrücken, Germany
| | - Adriana R Pohlmann
- Departamento de Química Orgânica, Instituto de Química, UFRGS, Av. Bento Gonçalves 9500, 91501-970, Brazil
| | - Silvia S Guterres
- Programa de Pós-Graduação em Ciências Farmacêuticas, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Av. Ipiranga, 2752, 90610-000, Porto Alegre, RS, Brazil
| | - Nicole Schneider-Daum
- Drug Delivery (DDEL), Helmholtz-Institute for Pharmaceutical Research Saarland (HIPS), University Campus, Building E8.1, D-66123 Saarbrücken, Germany
| | - Claus-Michael Lehr
- Drug Delivery (DDEL), Helmholtz-Institute for Pharmaceutical Research Saarland (HIPS), University Campus, Building E8.1, D-66123 Saarbrücken, Germany
| | - Ruy C R Beck
- Programa de Pós-Graduação em Ciências Farmacêuticas, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Av. Ipiranga, 2752, 90610-000, Porto Alegre, RS, Brazil.
| |
Collapse
|
35
|
Li Y, Shan F, Chen J. Lipid raft-mediated miR-3908 inhibition of migration of breast cancer cell line MCF-7 by regulating the interactions between AdipoR1 and Flotillin-1. World J Surg Oncol 2017; 15:69. [PMID: 28327197 PMCID: PMC5361711 DOI: 10.1186/s12957-017-1120-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Accepted: 02/14/2017] [Indexed: 02/01/2023] Open
Abstract
Background The mechanisms of lipid raft regulation by microRNAs in breast cancer are not fully understood. This work focused on the evaluation and identification of miR-3908, which may be a potential biomarker related to the migration of breast cancer cells, and elucidates lipid-raft-regulating cell migration in breast cancer. Methods To confirm the prediction that miR-3908 is matched with AdipoR1, we used 3’-UTR luciferase activity of AdipoR1 to assess this. Then, human breast cancer cell line MCF-7 was cultured in the absence or presence of the mimics or inhibitors of miR-3908, after which the biological functions of MCF-7 cells were analyzed. The protein expression of AdipoR1, AMPK, and SIRT-1 were examined. The interaction between AdipoR1 and Flotillin-1, or its effects on lipid rafts on regulating cell migration of MCF-7, was also investigated. Results AdipoR1 is a direct target of miR-3908. miR-3908 suppresses the expression of AdipoR1 and its downstream pathway genes, including AMPK, p-AMPK, and SIRT-1. miR-3908 enhances the process of breast cancer cell clonogenicity. miR-3908 exerts its effects on the proliferation and migration of MCF-7 cells, which are mediated by lipid rafts regulating AdipoR1’s ability to bind Flotillin-1. Conclusions miR-3908 is a crucial mediator of the migration process in breast cancer cells. Lipid rafts regulate the interactions between AdipoR1 and Flotillin-1 and then the migration process associated with miR-3908 in MCF-7 cells. Our findings suggest that targeting miR-3908 and the lipid raft, may be a promising strategy for the treatment and prevention of breast cancer.
Collapse
Affiliation(s)
- Yuan Li
- Department of Obstetrics and Gynecology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing, 100048, China
| | - Fei Shan
- Department of Cardiac Surgery, Affiliated Hospital of Medical College of Yan'an University, Yan'an, Shanxi, 716000, China
| | - Jinglong Chen
- Department of Oncology, Beijing Ditan Hospital, Capital Medical University, Beijing, 100015, China.
| |
Collapse
|
36
|
Hu X, Fu Y, Lu X, Zhang Z, Zhang W, Cao Y, Zhang N. Protective Effects of Platycodin D on Lipopolysaccharide-Induced Acute Lung Injury by Activating LXRα-ABCA1 Signaling Pathway. Front Immunol 2017; 7:644. [PMID: 28096801 PMCID: PMC5206804 DOI: 10.3389/fimmu.2016.00644] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Accepted: 12/13/2016] [Indexed: 12/29/2022] Open
Abstract
The purpose of this study was to investigate the protective effects of platycodin D (PLD) on lipopolysaccharide (LPS)-induced acute lung injury (ALI) and clarify the possible mechanism. An LPS-induced ALI model was used to confirm the anti-inflammatory activity of PLD in vivo. The A549 lung epithelial cells were used to investigate the molecular mechanism and targets of PLD in vitro. In vivo, the results showed that PLD significantly attenuated lung histopathologic changes, myeloperoxidase activity, and pro-inflammatory cytokines levels, including TNF-α, IL-1β, and IL-6. In vitro, PLD inhibited LPS-induced IL-6 and IL-8 production in LPS-stimulated A549 lung epithelial cells. Western blot analysis showed that PLD suppressed LPS-induced NF-κB and IRF3 activation. Moreover, PLD did not act though affecting the expression of TLR4. We also showed that PLD disrupted the formation of lipid rafts by depleting cholesterol and prevented LPS-induced TLR4 trafficking to lipid rafts, thereby blocking LPS-induced inflammatory response. Finally, PLD activated LXRα-ABCA1-dependent cholesterol efflux. Knockdown of LXRα abrogated the anti-inflammatory effects of PLD. The anti-inflammatory effects of PLD was associated with upregulation of the LXRα-ABCA1 pathway, which resulted in disrupting lipid rafts by depleting cholesterol and reducing translocation of TLR4 to lipid rafts.
Collapse
Affiliation(s)
- Xiaoyu Hu
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Yunhe Fu
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Xiaojie Lu
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Zecai Zhang
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Wenlong Zhang
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Yongguo Cao
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Naisheng Zhang
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, China
| |
Collapse
|
37
|
Xueshibojie L, Duo Y, Tiejun W. Taraxasterol inhibits cigarette smoke-induced lung inflammation by inhibiting reactive oxygen species-induced TLR4 trafficking to lipid rafts. Eur J Pharmacol 2016; 789:301-307. [PMID: 27477353 DOI: 10.1016/j.ejphar.2016.07.047] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Revised: 07/26/2016] [Accepted: 07/26/2016] [Indexed: 01/20/2023]
Abstract
Taraxasterol, a pentacyclic-triterpene isolated from Taraxacum officinale, has been demonstrated to have anti-inflammatory effects. However, the protective effects of taraxasterol against cigarette smoke (CS)-induced lung inflammation have not been reported. This study aimed to investigate the protective effects and mechanism of taraxasterol on CS-induced lung inflammation in mice. CS-induced mouse lung inflammation model was used to investigate the protective effects of taraxasterol in vivo. Human bronchial epithelial cells (HBECs) were used to investigate the protective mechanism of taraxasterol in vitro. The results showed that taraxasterol attenuated CS-induced lung pathological changes, inflammatory cells infiltration, inflammatory cytokines TNF-α, IL-6 and IL-1β production. Taraxasterol also up-regulated CS-induced glutathione (GSH) production. In vitro, taraxasterol was found to inhibit CS-induced reactive oxygen species production, recruitment of TLR4 into lipid rafts, NF-κB activation, and IL-8 production. Furthermore, our results showed that antioxidant N-acetyl-L-cysteine (NAC) significantly inhibited CS-induced recruitment of TLR4 into lipid rafts as well as IL-8 production. In conclusion, our results suggested that taraxasterol had protective effects of CS-induced lung inflammation.
Collapse
Affiliation(s)
- Liu Xueshibojie
- Department of Otolaryngology Head and Neck Surgery, 2nd Hospital Affiliated of Jilin University, Changchun, Jilin Province 130041, China
| | - Yu Duo
- Department of Radiotherapy, 2nd Hospital Affiliated of Jilin University, Changchun, Jilin Province 130041, China
| | - Wang Tiejun
- Department of Radiotherapy, 2nd Hospital Affiliated of Jilin University, Changchun, Jilin Province 130041, China.
| |
Collapse
|
38
|
Zhu JW, Li YF, Wang ZT, Jia WQ, Xu RX. Toll-Like Receptor 4 Deficiency Impairs Motor Coordination. Front Neurosci 2016; 10:33. [PMID: 26909014 PMCID: PMC4754460 DOI: 10.3389/fnins.2016.00033] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Accepted: 01/27/2016] [Indexed: 11/13/2022] Open
Abstract
The cerebellum plays an essential role in balance and motor coordination. Purkinje cells (PCs) are the sole output neurons of the cerebellar cortex and are critical for the execution of its functions, including motor coordination. Toll-like receptor (TLR) 4 is involved in the innate immune response and is abundantly expressed in the central nervous system; however, little is known about its role in cerebellum-related motor functions. To address this question, we evaluated motor behavior in TLR4 deficient mice. We found that TLR4(-∕-) mice showed impaired motor coordination. Morphological analyses revealed that TLR4 deficiency was associated with a reduction in the thickness of the molecular layer of the cerebellum. TLR4 was highly expressed in PCs but not in Bergmann glia or cerebellar granule cells; however, loss of TLR4 decreased the number of PCs. These findings suggest a novel role for TLR4 in cerebellum-related motor coordination through maintenance of the PC population.
Collapse
Affiliation(s)
- Jian-Wei Zhu
- Affiliated Bayi Brain Hospital, Military General Hospital of Beijing PLA, Southern Medical University Beijing, China
| | - Yi-Fei Li
- Affiliated Bayi Brain Hospital, Military General Hospital of Beijing PLA, Southern Medical University Beijing, China
| | - Zhao-Tao Wang
- Affiliated Bayi Brain Hospital, Military General Hospital of Beijing PLA, Southern Medical University Beijing, China
| | - Wei-Qiang Jia
- Affiliated Bayi Brain Hospital, Military General Hospital of Beijing PLA, Southern Medical University Beijing, China
| | - Ru-Xiang Xu
- Affiliated Bayi Brain Hospital, Military General Hospital of Beijing PLA, Southern Medical University Beijing, China
| |
Collapse
|
39
|
Glaser K, Fehrholz M, Curstedt T, Kunzmann S, Speer CP. Effects of the New Generation Synthetic Reconstituted Surfactant CHF5633 on Pro- and Anti-Inflammatory Cytokine Expression in Native and LPS-Stimulated Adult CD14+ Monocytes. PLoS One 2016; 11:e0146898. [PMID: 26790130 PMCID: PMC4720484 DOI: 10.1371/journal.pone.0146898] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Accepted: 12/24/2015] [Indexed: 02/01/2023] Open
Abstract
Background Surfactant replacement therapy is the standard of care for the prevention and treatment of neonatal respiratory distress syndrome. New generation synthetic surfactants represent a promising alternative to animal-derived surfactants. CHF5633, a new generation reconstituted synthetic surfactant containing SP-B and SP-C analogs and two synthetic phospholipids has demonstrated biophysical effectiveness in vitro and in vivo. While several surfactant preparations have previously been ascribed immunomodulatory capacities, in vitro data on immunomodulation by CHF5633 are limited, so far. Our study aimed to investigate pro- and anti-inflammatory effects of CHF5633 on native and LPS-stimulated human adult monocytes. Methods Highly purified adult CD14+ cells, either native or simultaneously stimulated with LPS, were exposed to CHF5633, its components, or poractant alfa (Curosurf®). Subsequent expression of TNF-α, IL-1β, IL-8 and IL-10 mRNA was quantified by real-time quantitative PCR, corresponding intracellular cytokine synthesis was analyzed by flow cytometry. Potential effects on TLR2 and TLR4 mRNA and protein expression were monitored by qPCR and flow cytometry. Results Neither CHF5633 nor any of its components induced inflammation or apoptosis in native adult CD14+ monocytes. Moreover, LPS-induced pro-inflammatory responses were not aggravated by simultaneous exposure of monocytes to CHF5633 or its components. In LPS-stimulated monocytes, exposure to CHF5633 led to a significant decrease in TNF-α mRNA (0.57 ± 0.23-fold, p = 0.043 at 4h; 0.56 ± 0.27-fold, p = 0.042 at 14h). Reduction of LPS-induced IL-1β mRNA expression was not significant (0.73 ± 0.16, p = 0.17 at 4h). LPS-induced IL-8 and IL-10 mRNA and protein expression were unaffected by CHF5633. For all cytokines, the observed CHF5633 effects paralleled a Curosurf®-induced modulation of cytokine response. TLR2 and TLR4 mRNA and protein expression were not affected by CHF5633 and Curosurf®, neither in native nor in LPS-stimulated adult monocytes. Conclusion The new generation reconstituted synthetic surfactant CHF5633 was tested for potential immunomodulation on native and LPS-activated adult human monocytes. Our data confirm that CHF5633 does not exert unintended pro-inflammatory effects in both settings. On the contrary, CHF5633 significantly suppressed TNF-α mRNA expression in LPS-stimulated adult monocytes, indicating potential anti-inflammatory effects.
Collapse
Affiliation(s)
- Kirsten Glaser
- University Children´s Hospital, University of Würzburg, Würzburg, Germany
- * E-mail:
| | - Markus Fehrholz
- University Children´s Hospital, University of Würzburg, Würzburg, Germany
| | - Tore Curstedt
- Department of Molecular Medicine and Surgery, Karolinska Institutet at Karolinska University Hospital, Stockholm, Sweden
| | - Steffen Kunzmann
- University Children´s Hospital, University of Würzburg, Würzburg, Germany
| | - Christian P. Speer
- University Children´s Hospital, University of Würzburg, Würzburg, Germany
| |
Collapse
|
40
|
Human rhinovirus-induced inflammatory responses are inhibited by phosphatidylserine containing liposomes. Mucosal Immunol 2016; 9:1303-16. [PMID: 26906404 PMCID: PMC4883656 DOI: 10.1038/mi.2015.137] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Accepted: 11/25/2015] [Indexed: 02/04/2023]
Abstract
Human rhinovirus (HRV) infections are major contributors to the healthcare burden associated with acute exacerbations of chronic airway disease, such as chronic obstructive pulmonary disease and asthma. Cellular responses to HRV are mediated through pattern recognition receptors that may in part signal from membrane microdomains. We previously found Toll-like receptor signaling is reduced, by targeting membrane microdomains with a specific liposomal phosphatidylserine species, 1-stearoyl-2-arachidonoyl-sn-glycero-3-phospho-L-serine (SAPS). Here we explored the ability of this approach to target a clinically important pathogen. We determined the biochemical and biophysical properties and stability of SAPS liposomes and studied their ability to modulate rhinovirus-induced inflammation, measured by cytokine production, and rhinovirus replication in both immortalized and normal primary bronchial epithelial cells. SAPS liposomes rapidly partitioned throughout the plasma membrane and internal cellular membranes of epithelial cells. Uptake of liposomes did not cause cell death, but was associated with markedly reduced inflammatory responses to rhinovirus, at the expense of only modest non-significant increases in viral replication, and without impairment of interferon receptor signaling. Thus using liposomes of phosphatidylserine to target membrane microdomains is a feasible mechanism for modulating rhinovirus-induced signaling, and potentially a prototypic new therapy for viral-mediated inflammation.
Collapse
|
41
|
Shi R, Wang Q, Ouyang Y, Wang Q, Xiong X. Picfeltarraenin IA inhibits lipopolysaccharide-induced inflammatory cytokine production by the nuclear factor-κB pathway in human pulmonary epithelial A549 cells. Oncol Lett 2015; 11:1195-1200. [PMID: 26893718 DOI: 10.3892/ol.2015.4037] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Accepted: 11/06/2015] [Indexed: 01/08/2023] Open
Abstract
The present study aimed to investigate the effect of picfeltarraenin IA (IA) on respiratory inflammation by analyzing its effect on interleukin (IL)-8 and prostaglandin E2 (PGE2) production. The expression of cyclooxygenase 2 (COX2) in human pulmonary adenocarcinoma epithelial A549 cells in culture was also examined. Human pulmonary epithelial A549 cells and the human monocytic leukemia THP-1 cell line were used in the current study. Cell viability was measured using a methylthiazol tetrazolium assay. The production of IL-8 and PGE2 was investigated using an enzyme-linked immunosorbent assay. The expression of COX2 and nuclear factor-κB (NF-κB)-p65 was examined using western blot analysis. Treatment with lipopolysaccharide (LPS; 10 µg/ml) resulted in the increased production of IL-8 and PGE2, and the increased expression of COX2 in the A549 cells. Furthermore, IA (0.1-10 µmol/l) significantly inhibited PGE2 production and COX2 expression in cells with LPS-induced IL-8, in a concentration-dependent manner. The results suggested that IA downregulates LPS-induced COX2 expression, and inhibits IL-8 and PGE2 production in pulmonary epithelial cells. Additionally, IA was observed to suppress the expression of COX2 in THP-1 cells, and also to regulate the expression of COX2 via the NF-κB pathway in the A549 cells, but not in the THP-1 cells. These results indicate that IA regulates LPS-induced cytokine release in A549 cells via the NF-κB pathway.
Collapse
Affiliation(s)
- Rong Shi
- Department of Emergency Internal Medicine, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, P.R. China
| | - Qing Wang
- Department of Emergency Internal Medicine, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, P.R. China
| | - Yang Ouyang
- Department of Emergency Internal Medicine, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, P.R. China
| | - Qian Wang
- Department of Emergency Internal Medicine, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, P.R. China
| | - Xudong Xiong
- Department of Emergency Internal Medicine, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, P.R. China
| |
Collapse
|
42
|
Jian CX, Li MZ, Zheng WY, He Y, Ren Y, Wu ZM, Fan QS, Hu YH, Li CJ. Tormentic acid inhibits LPS-induced inflammatory response in human gingival fibroblasts via inhibition of TLR4-mediated NF-κB and MAPK signalling pathway. Arch Oral Biol 2015; 60:1327-32. [PMID: 26123747 DOI: 10.1016/j.archoralbio.2015.05.005] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2014] [Revised: 03/24/2015] [Accepted: 05/15/2015] [Indexed: 12/22/2022]
Abstract
OBJECTIVE Periodontal disease is one of the most prevalent oral diseases, which is associated with inflammation of the tooth-supporting tissues. Tormentic acid (TA), a triterpene isolated from Rosa rugosa, has been reported to exert anti-inflammatory effects. The aim of this study was to investigate the anti-inflammatory effects of TA on lipopolysaccharide (LPS)-stimulated human gingival fibroblasts (HGFs). METHODS The levels of inflammatory cytokines such as interleukin (IL)-6 and chemokines such as IL-8 were detected by enzyme-linked immunosorbent assay (ELISA). The expression of Toll-like receptor 4 (TLR4), nuclear factor kappa B (NF-κB), IκBα, p38, extracellular signal-regulated kinase (ERK), and c-Jun N-terminal kinase (JNK) was determined by Western blotting. RESULTS The results showed that Porphyromonas gingivalis LPS significantly upregulated the expression of IL-6 and IL-8. TA inhibited the LPS-induced production of IL-6 and IL-8 in a dose-dependent manner. Furthermore, TA inhibited LPS-induced TLR4 expression; NF-κB activation; IκBα degradation; and phosphorylation of ERK, JNK, and P38. CONCLUSION TA inhibits the LPS-induced inflammatory response in HGFs by suppressing the TLR4-mediated NF-κB and mitogen-activated protein kinase (MAPK) signalling pathway.
Collapse
Affiliation(s)
- Cong-Xiang Jian
- Department of Stomatolog, PLA General Hospital of Chengdu Military Region, Chengdu 610083, Sichuan Province, PR China; Chengdu Military Garrison Center for Disease Control and Prevention, Chengdu 650032, Sichuan, PR China
| | - Ming-Zhe Li
- Department of Stomatolog, PLA General Hospital of Chengdu Military Region, Chengdu 610083, Sichuan Province, PR China
| | - Wei-Yin Zheng
- Department of Stomatolog, PLA General Hospital of Chengdu Military Region, Chengdu 610083, Sichuan Province, PR China
| | - Yong He
- Department of Stomatolog, PLA General Hospital of Chengdu Military Region, Chengdu 610083, Sichuan Province, PR China
| | - Yu Ren
- Department of Stomatolog, PLA General Hospital of Chengdu Military Region, Chengdu 610083, Sichuan Province, PR China
| | - Zhong-Min Wu
- Department of Stomatolog, PLA General Hospital of Chengdu Military Region, Chengdu 610083, Sichuan Province, PR China
| | - Quan-Shui Fan
- Chengdu Military Garrison Center for Disease Control and Prevention, Chengdu 650032, Sichuan, PR China
| | - Yong-He Hu
- Chengdu Military Garrison Center for Disease Control and Prevention, Chengdu 650032, Sichuan, PR China
| | - Chen-Jun Li
- Department of Stomatolog, PLA General Hospital of Chengdu Military Region, Chengdu 610083, Sichuan Province, PR China.
| |
Collapse
|
43
|
SP-R210 (Myo18A) Isoforms as Intrinsic Modulators of Macrophage Priming and Activation. PLoS One 2015; 10:e0126576. [PMID: 25965346 PMCID: PMC4428707 DOI: 10.1371/journal.pone.0126576] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2013] [Accepted: 04/06/2015] [Indexed: 11/19/2022] Open
Abstract
The surfactant protein (SP-A) receptor SP-R210 has been shown to increase phagocytosis of SP-A-bound pathogens and to modulate cytokine secretion by immune cells. SP-A plays an important role in pulmonary immunity by enhancing opsonization and clearance of pathogens and by modulating macrophage inflammatory responses. Alternative splicing of the Myo18A gene results in two isoforms: SP-R210S and SP-R210L, with the latter predominantly expressed in alveolar macrophages. In this study we show that SP-A is required for optimal expression of SP-R210L on alveolar macrophages. Interestingly, pre-treatment with SP-A prepared by different methods either enhances or suppresses responsiveness to LPS, possibly due to differential co-isolation of SP-B or other proteins. We also report that dominant negative disruption of SP-R210L augments expression of receptors including SR-A, CD14, and CD36, and enhances macrophages' inflammatory response to TLR stimulation. Finally, because SP-A is known to modulate CD14, we used a variety of techniques to investigate how SP-R210 mediates the effect of SP-A on CD14. These studies revealed a novel physical association between SP-R210S, CD14, and SR-A leading to an enhanced response to LPS, and found that SP-R210L and SP-R210S regulate internalization of CD14 via distinct macropinocytosis-like mechanisms. Together, our findings support a model in which SP-R210 isoforms differentially regulate trafficking, expression, and activation of innate immune receptors on macrophages.
Collapse
|
44
|
Capillarisin Suppresses Lipopolysaccharide-Induced Inflammatory Mediators in BV2 Microglial Cells by Suppressing TLR4-Mediated NF-κB and MAPKs Signaling Pathway. Neurochem Res 2015; 40:1095-101. [DOI: 10.1007/s11064-015-1567-4] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Revised: 03/10/2015] [Accepted: 03/30/2015] [Indexed: 01/24/2023]
|
45
|
Ruysschaert JM, Lonez C. Role of lipid microdomains in TLR-mediated signalling. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2015; 1848:1860-7. [PMID: 25797518 DOI: 10.1016/j.bbamem.2015.03.014] [Citation(s) in RCA: 94] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Revised: 03/09/2015] [Accepted: 03/12/2015] [Indexed: 12/13/2022]
Abstract
Over the last twenty years, evidence has been provided that the plasma membrane is partitioned with microdomains, laterally mobile in the bilayer, providing the necessary microenvironment to specific membrane proteins for signalling pathways to be initiated. We discuss here the importance of such microdomains for Toll-like receptors (TLR) localization and function. First, lipid microdomains favour recruitment and clustering of the TLR machinery partners, i.e. receptors and co-receptors previously identified to be required for ligand recognition and signal transmission. Further, the presence of the so-called Cholesterol Recognition Amino-Acid Consensus (CRAC) sequences in the intracellular juxtamembrane domain of several Toll-like receptors suggests a direct role of cholesterol in the activation process. This article is part of a Special Issue entitled: Lipid-protein interactions.
Collapse
Affiliation(s)
- Jean-Marie Ruysschaert
- Structure and Function of Biological Membranes, Université Libre de Bruxelles, Boulevard du Triomphe, 1050 Brussels, Belgium
| | - Caroline Lonez
- Structure and Function of Biological Membranes, Université Libre de Bruxelles, Boulevard du Triomphe, 1050 Brussels, Belgium; Department of Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge CB3 0ES, United Kingdom.
| |
Collapse
|
46
|
Omega-3 fatty acid intervention suppresses lipopolysaccharide-induced inflammation and weight loss in mice. Mar Drugs 2015; 13:1026-36. [PMID: 25689565 PMCID: PMC4344616 DOI: 10.3390/md13021026] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Revised: 01/30/2015] [Accepted: 02/02/2015] [Indexed: 12/12/2022] Open
Abstract
Bacterial endotoxin lipopolysaccharide (LPS)-induced sepsis is a critical medical condition, characterized by a severe systemic inflammation and rapid loss of muscle mass. Preventive and therapeutic strategies for this complex disease are still lacking. Here, we evaluated the effect of omega-3 (n-3) polyunsaturated fatty acid (PUFA) intervention on LPS-challenged mice with respect to inflammation, body weight and the expression of Toll-like receptor 4 (TLR4) pathway components. LPS administration induced a dramatic loss of body weight within two days. Treatment with n-3 PUFA not only stopped loss of body weight but also gradually reversed it back to baseline levels within one week. Accordingly, the animals treated with n-3 PUFA exhibited markedly lower levels of inflammatory cytokines or markers in plasma and tissues, as well as down-regulation of TLR4 pathway components compared to animals without n-3 PUFA treatment or those treated with omega-6 PUFA. Our data demonstrate that n-3 PUFA intervention can suppress LPS-induced inflammation and weight loss via, at least in part, down-regulation of pro-inflammatory targets of the TLR4 signaling pathway, and highlight the therapeutic potential of n-3 PUFA in the management of sepsis.
Collapse
|
47
|
Protective effect of oroxylin A against lipopolysaccharide and/or D-galactosamine-induced acute liver injury in mice. J Surg Res 2015; 195:522-8. [PMID: 25818981 DOI: 10.1016/j.jss.2015.01.047] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2014] [Revised: 01/13/2015] [Accepted: 01/26/2015] [Indexed: 11/21/2022]
Abstract
BACKGROUND Oroxylin A, a natural flavonoid isolated from Scutellariae baicalensis, has been reported to possess a wide spectrum of pharmacologic activities. However, the effects of oroxylin A on liver injury are poor understood. The purpose of this study was to investigate the effects of oroxylin A on acute liver injury in mice induced by lipopolysaccharide and/or D-galactosamine (LPS and/or D-GalN). METHODS Mice acute liver injury model was induced by LPS (50 μg/kg) and/or GalN (800 mg/kg). Serum alanine aminotransferase, aspartate aminotransferase, and tumor necrosis factor-α levels, hepatic tissue histology, malondialdehyde content, and myeloperoxidase activity were analyzed. Meanwhile, nuclear factor kappa B (NF-κB), heme oxygenase-1 (HO-1), and nuclear factor erythroid2-related factor 2 (Nrf2) expression were detected by Western blotting. RESULTS The results showed that oroxylin A dose-dependently inhibited LPS and/or GalN-induced serum alanine aminotransferase, aspartate aminotransferase, and tumor necrosis factor-α levels. Hepatic malondialdehyde content and myeloperoxidase activity were also suppressed by oroxylin A. We also found that oroxylin A inhibited LPS and/or GalN-induced toll like receptor 4 (TLR4) expression and NF-κB activation. In addition, oroxylin A upregulated the expression of Nrf2 and HO-1 in a dose-dependent manner. CONCLUSIONS In conclusion, oroxylin A protected against LPS and/or GalN-induced liver injury through activating Nrf2 and inhibiting TLR4 signaling pathway.
Collapse
|
48
|
Nikolaeva S, Bayunova L, Sokolova T, Vlasova Y, Bachteeva V, Avrova N, Parnova R. GM1 and GD1a gangliosides modulate toxic and inflammatory effects of E. coli lipopolysaccharide by preventing TLR4 translocation into lipid rafts. Biochim Biophys Acta Mol Cell Biol Lipids 2014; 1851:239-47. [PMID: 25499607 DOI: 10.1016/j.bbalip.2014.12.004] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2014] [Revised: 12/02/2014] [Accepted: 12/05/2014] [Indexed: 12/13/2022]
Abstract
Exogenous gangliosides are known to inhibit the effects of Escherichia coli lipopolysaccharide (LPS) in different cells exhibiting anti-inflammatory and immunosuppressive activities. The mechanisms underlying ganglioside action are not fully understood. Because LPS recognition and receptor complex formation occur in lipid rafts, and gangliosides play a key role in their maintenance, we hypothesize that protective effects of exogenous gangliosides would depend on inhibition of LPS signaling via prevention of TLR4 translocation into lipid rafts. The effect of GM1 and GD1a gangliosides on LPS-induced toxic and inflammatory reactions in PC12 cells, and in epithelial cells isolated from the frog urinary bladder, was studied. In PC12 cells, GD1a and GM1 significantly reduced the effect of LPS on the decrease of cell survival and on stimulation of reactive oxygen species production. In epithelial cells, gangliosides decreased LPS-stimulated iNOS expression, NO, and PGE2 production. Subcellular fractionation, in combination with immunoblotting, showed that pretreatment of cells with GM1, GD1a, or methyl-β-cyclodextrin, completely eliminated the effect of LPS on translocation of TLR4 into lipid rafts. The results are consistent with the hypothesis that ganglioside-induced prevention of TLR4 translocation into lipid rafts could be a mechanism of protection against LPS in various cells.
Collapse
Affiliation(s)
- Svetlana Nikolaeva
- I.M. Sechenov Institute of Evolutionary Physiology and Biochemistry of the Russian Academy of Sciences, 194223 Saint Petersburg, Russia
| | - Lubov Bayunova
- I.M. Sechenov Institute of Evolutionary Physiology and Biochemistry of the Russian Academy of Sciences, 194223 Saint Petersburg, Russia
| | - Tatyana Sokolova
- I.M. Sechenov Institute of Evolutionary Physiology and Biochemistry of the Russian Academy of Sciences, 194223 Saint Petersburg, Russia
| | - Yulia Vlasova
- I.M. Sechenov Institute of Evolutionary Physiology and Biochemistry of the Russian Academy of Sciences, 194223 Saint Petersburg, Russia
| | - Vera Bachteeva
- I.M. Sechenov Institute of Evolutionary Physiology and Biochemistry of the Russian Academy of Sciences, 194223 Saint Petersburg, Russia
| | - Natalia Avrova
- I.M. Sechenov Institute of Evolutionary Physiology and Biochemistry of the Russian Academy of Sciences, 194223 Saint Petersburg, Russia
| | - Rimma Parnova
- I.M. Sechenov Institute of Evolutionary Physiology and Biochemistry of the Russian Academy of Sciences, 194223 Saint Petersburg, Russia.
| |
Collapse
|
49
|
Zwicker JD, Zhang Y, Ren J, Hutchinson MR, Rice KC, Watkins LR, Greer JJ, Funk GD. Glial TLR4 signaling does not contribute to opioid-induced depression of respiration. J Appl Physiol (1985) 2014; 117:857-68. [PMID: 25103966 DOI: 10.1152/japplphysiol.00534.2014] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Opioids activate glia in the central nervous system in part by activating the toll-like receptor 4 (TLR4)/myeloid differentiation 2 (MD2) complex. TLR4/MD2-mediated activation of glia by opioids compromises their analgesic actions. Glial activation is also hypothesized as pivotal in opioid-mediated reward and tolerance and as a contributor to opioid-mediated respiratory depression. We tested the contribution of TLR4 to opioid-induced respiratory depression using rhythmically active medullary slices that contain the pre-Bötzinger Complex (preBötC, an important site of respiratory rhythm generation) and adult rats in vivo. Injection with DAMGO (μ-opioid receptor agonist; 50 μM) or bath application of DAMGO (500 nM) or fentanyl (1 μM) slowed frequency recorded from XII nerves to 40%, 40%, or 50% of control, respectively. This DAMGO-mediated frequency inhibition was unaffected by preapplication of lipopolysaccharides from Rhodobacter sphaeroides (a TLR4 antagonist, 2,000 ng/ml) or (+)naloxone (1-10 μM, a TLR4-antagonist). Bath application of (-)naloxone (500 nM; a TLR4 and μ-opioid antagonist), however, rapidly reversed the opioid-mediated frequency decrease. We also compared the opioid-induced respiratory depression in slices in vitro in the absence and presence of bath-applied minocycline (an inhibitor of microglial activation) and in slices prepared from mice injected (ip) 18 h earlier with minocycline or saline. Minocycline had no effect on respiratory depression in vitro. Finally, the respiratory depression evoked in anesthetized rats by tail vein infusion of fentanyl was unaffected by subsequent injection of (+)naloxone, but completely reversed by (-)naloxone. These data indicate that neither activation of microglia in preBötC nor TLR4/MD2-activation contribute to opioid-induced respiratory depression.
Collapse
Affiliation(s)
- Jennifer D Zwicker
- Department of Physiology, Neuroscience and Mental Health Institute, Women and Children's Health Research Institute, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Yong Zhang
- Department of Physiology, Neuroscience and Mental Health Institute, Women and Children's Health Research Institute, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Jun Ren
- Department of Physiology, Neuroscience and Mental Health Institute, Women and Children's Health Research Institute, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Mark R Hutchinson
- Discipline of Physiology, School of Medical Sciences, University of Adelaide, Adelaide, South Australia, Australia
| | - Kenner C Rice
- Chemical Biology Research Branch, National Institute on Drug Abuse and National Institute on Alcohol Abuse and Alcoholism, Rockville, Maryland; and
| | - Linda R Watkins
- Department of Psychology and The Center for Neuroscience, University of Colorado at Boulder, Boulder, Colorado
| | - John J Greer
- Department of Physiology, Neuroscience and Mental Health Institute, Women and Children's Health Research Institute, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Gregory D Funk
- Department of Physiology, Neuroscience and Mental Health Institute, Women and Children's Health Research Institute, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada;
| |
Collapse
|
50
|
Alpha-mangostin suppresses IL-6 and IL-8 expression in P. gingivalis LPS-stimulated human gingival fibroblasts. Odontology 2014; 103:348-55. [DOI: 10.1007/s10266-014-0160-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2014] [Accepted: 05/10/2014] [Indexed: 12/11/2022]
|