1
|
Chen J, Markworth JF, Ferreira C, Zhang C, Kuang S. Lipid droplets as cell fate determinants in skeletal muscle. Trends Endocrinol Metab 2024:S1043-2760(24)00274-1. [PMID: 39613547 DOI: 10.1016/j.tem.2024.10.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 10/16/2024] [Accepted: 10/18/2024] [Indexed: 12/01/2024]
Abstract
Lipid droplets (LDs) are dynamic organelles that communicate with other cellular components to orchestrate energetic homeostasis and signal transduction. In skeletal muscle, the presence and importance of LDs have been widely studied in myofibers of both rodents and humans under physiological conditions and in metabolic disorders. However, the role of LDs in myogenic stem cells has only recently begun to be unveiled. In this review we briefly summarize the process of LD biogenesis and degradation in the most prevalent model. We then review recent knowledge on LDs in skeletal muscle and muscle stem cells. We further introduce advanced methodologies for LD imaging and mass spectrometry that have propelled our understanding of the dynamics and heterogeneity of LDs.
Collapse
Affiliation(s)
- Jingjuan Chen
- Department of Animal Sciences, Purdue University, West Lafayette, IN 47907, USA; Department of Orthopaedic Surgery, Duke University, Durham, NC 27710, USA
| | - James F Markworth
- Department of Animal Sciences, Purdue University, West Lafayette, IN 47907, USA
| | - Christina Ferreira
- Bindley Bioscience Center, Purdue University, West Lafayette, IN 47907, USA
| | - Chi Zhang
- Department of Chemistry, Purdue University, West Lafayette, IN 47907, USA
| | - Shihuan Kuang
- Department of Animal Sciences, Purdue University, West Lafayette, IN 47907, USA; Department of Orthopaedic Surgery, Duke University, Durham, NC 27710, USA; Purdue University Institute for Cancer Research, West Lafayette, IN 47907, USA.
| |
Collapse
|
2
|
Annunziato M, Bashirova N, Eeza MNH, Lawson A, Fernandez-Lima F, Tose LV, Matysik J, Alia A, Berry JP. An Integrated Metabolomics-Based Model, and Identification of Potential Biomarkers, of Perfluorooctane Sulfonic Acid Toxicity in Zebrafish Embryos. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2024. [PMID: 38411227 DOI: 10.1002/etc.5824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 08/28/2023] [Accepted: 01/08/2024] [Indexed: 02/28/2024]
Abstract
Known for their high stability and surfactant properties, per- and polyfluoroalkyl substances (PFAS) have been widely used in a range of manufactured products. Despite being largely phased out due to concerns regarding their persistence, bioaccumulation, and toxicity, legacy PFAS such as perfluorooctanesulfonic acid (PFOS) and perfluorooctanoic acid continue to persist at high levels in the environment, posing risks to aquatic organisms. We used high-resolution magic angle spinning nuclear magnetic resonance spectroscopy in intact zebrafish (Danio rerio) embryos to investigate the metabolic pathways altered by PFOS both before and after hatching (i.e., 24 and 72 h post fertilization [hpf], respectively). Assessment of embryotoxicity found embryo lethality in the parts-per-million range with no significant difference in mortality between the 24- and 72-hpf exposure groups. Metabolic profiling revealed mostly consistent changes between the two exposure groups, with altered metabolites generally associated with oxidative stress, lipid metabolism, energy production, and mitochondrial function, as well as specific targeting of the liver and central nervous system as key systems. These metabolic changes were further supported by analyses of tissue-specific production of reactive oxygen species, as well as nontargeted mass spectrometric lipid profiling. Our findings suggest that PFOS-induced metabolic changes in zebrafish embryos may be mediated through previously described interactions with regulatory and transcription factors leading to disruption of mitochondrial function and energy metabolism. The present study proposes a systems-level model of PFOS toxicity in early life stages of zebrafish, and also identifies potential biomarkers of effect and exposure for improved environmental biomonitoring. Environ Toxicol Chem 2024;00:1-19. © 2024 SETAC.
Collapse
Affiliation(s)
- Mark Annunziato
- Institute of Environment, Florida International University, Miami, Florida, USA
- Department of Chemistry and Biochemistry, Florida International University, Miami, Florida, USA
- Biomolecular Science Institute, Florida International University, Miami, Florida, USA
| | - Narmin Bashirova
- Institute for Analytical Chemistry, University of Leipzig, Leipzig, Germany
| | - Muhamed N H Eeza
- Institute for Medical Physics and Biophysics, University of Leipzig, Leipzig, Germany
| | - Ariel Lawson
- Department of Chemistry and Biochemistry, Florida International University, Miami, Florida, USA
| | - Francisco Fernandez-Lima
- Institute of Environment, Florida International University, Miami, Florida, USA
- Department of Chemistry and Biochemistry, Florida International University, Miami, Florida, USA
- Biomolecular Science Institute, Florida International University, Miami, Florida, USA
| | - Lilian V Tose
- Institute of Environment, Florida International University, Miami, Florida, USA
- Department of Chemistry and Biochemistry, Florida International University, Miami, Florida, USA
- Biomolecular Science Institute, Florida International University, Miami, Florida, USA
| | - Jörg Matysik
- Institute for Analytical Chemistry, University of Leipzig, Leipzig, Germany
| | - A Alia
- Institute for Medical Physics and Biophysics, University of Leipzig, Leipzig, Germany
- Leiden Institute of Chemistry, Leiden University, Leiden, The Netherlands
| | - John P Berry
- Institute of Environment, Florida International University, Miami, Florida, USA
- Department of Chemistry and Biochemistry, Florida International University, Miami, Florida, USA
- Biomolecular Science Institute, Florida International University, Miami, Florida, USA
| |
Collapse
|
3
|
Girona J, Soler O, Samino S, Junza A, Martínez-Micaelo N, García-Altares M, Ràfols P, Esteban Y, Yanes O, Correig X, Masana L, Rodríguez-Calvo R. Lipidomics Reveals Myocardial Lipid Composition in a Murine Model of Insulin Resistance Induced by a High-Fat Diet. Int J Mol Sci 2024; 25:2702. [PMID: 38473949 DOI: 10.3390/ijms25052702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 02/18/2024] [Accepted: 02/22/2024] [Indexed: 03/14/2024] Open
Abstract
Ectopic fat accumulation in non-adipose tissues is closely related to diabetes-related myocardial dysfunction. Nevertheless, the complete picture of the lipid metabolites involved in the metabolic-related myocardial alterations is not fully characterized. The aim of this study was to characterize the specific lipid profile in hearts in an animal model of obesity/insulin resistance induced by a high-fat diet (HFD). The cardiac lipidome profiles were assessed via liquid chromatography-mass spectrometry (LC-MS)/MS-MS and laser desorption/ionization-mass spectrometry (LDI-MS) tissue imaging in hearts from C57BL/6J mice fed with an HFD or standard-diet (STD) for 12 weeks. Targeted lipidome analysis identified a total of 63 lipids (i.e., 48 triacylglycerols (TG), 5 diacylglycerols (DG), 1 sphingomyelin (SM), 3 phosphatidylcholines (PC), 1 DihydroPC, and 5 carnitines) modified in hearts from HFD-fed mice compared to animals fed with STD. Whereas most of the TG were up-regulated in hearts from animals fed with an HFD, most of the carnitines were down-regulated, thereby suggesting a reduction in the mitochondrial β-oxidation. Roughly 30% of the identified metabolites were oxidated, pointing to an increase in lipid peroxidation. Cardiac lipidome was associated with a specific biochemical profile and a specific liver TG pattern. Overall, our study reveals a specific cardiac lipid fingerprint associated with metabolic alterations induced by HFD.
Collapse
Affiliation(s)
- Josefa Girona
- Vascular Medicine and Metabolism Unit, Research Unit on Lipids and Atherosclerosis, "Sant Joan" University Hospital, Institut de Investigació Sanitaria Pere Virgili (IISPV), Universitat Rovira i Virgili, 43204 Reus, Spain
- Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM), Institute of Health Carlos III, 28029 Madrid, Spain
| | - Oria Soler
- Vascular Medicine and Metabolism Unit, Research Unit on Lipids and Atherosclerosis, "Sant Joan" University Hospital, Institut de Investigació Sanitaria Pere Virgili (IISPV), Universitat Rovira i Virgili, 43204 Reus, Spain
- Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM), Institute of Health Carlos III, 28029 Madrid, Spain
| | - Sara Samino
- Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM), Institute of Health Carlos III, 28029 Madrid, Spain
- Metabolomics Platform, Department of Electronic Engineering (DEEEA), Universitat Rovira i Virgili, 43002 Tarragona, Spain
| | - Alexandra Junza
- Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM), Institute of Health Carlos III, 28029 Madrid, Spain
- Metabolomics Platform, Department of Electronic Engineering (DEEEA), Universitat Rovira i Virgili, 43002 Tarragona, Spain
| | - Neus Martínez-Micaelo
- Vascular Medicine and Metabolism Unit, Research Unit on Lipids and Atherosclerosis, "Sant Joan" University Hospital, Institut de Investigació Sanitaria Pere Virgili (IISPV), Universitat Rovira i Virgili, 43204 Reus, Spain
- Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM), Institute of Health Carlos III, 28029 Madrid, Spain
| | - María García-Altares
- Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM), Institute of Health Carlos III, 28029 Madrid, Spain
- Metabolomics Platform, Department of Electronic Engineering (DEEEA), Universitat Rovira i Virgili, 43002 Tarragona, Spain
| | - Pere Ràfols
- Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM), Institute of Health Carlos III, 28029 Madrid, Spain
- Metabolomics Platform, Department of Electronic Engineering (DEEEA), Universitat Rovira i Virgili, 43002 Tarragona, Spain
| | - Yaiza Esteban
- Vascular Medicine and Metabolism Unit, Research Unit on Lipids and Atherosclerosis, "Sant Joan" University Hospital, Institut de Investigació Sanitaria Pere Virgili (IISPV), Universitat Rovira i Virgili, 43204 Reus, Spain
- Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM), Institute of Health Carlos III, 28029 Madrid, Spain
| | - Oscar Yanes
- Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM), Institute of Health Carlos III, 28029 Madrid, Spain
- Metabolomics Platform, Department of Electronic Engineering (DEEEA), Universitat Rovira i Virgili, 43002 Tarragona, Spain
| | - Xavier Correig
- Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM), Institute of Health Carlos III, 28029 Madrid, Spain
- Metabolomics Platform, Department of Electronic Engineering (DEEEA), Universitat Rovira i Virgili, 43002 Tarragona, Spain
| | - Lluís Masana
- Vascular Medicine and Metabolism Unit, Research Unit on Lipids and Atherosclerosis, "Sant Joan" University Hospital, Institut de Investigació Sanitaria Pere Virgili (IISPV), Universitat Rovira i Virgili, 43204 Reus, Spain
- Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM), Institute of Health Carlos III, 28029 Madrid, Spain
| | - Ricardo Rodríguez-Calvo
- Vascular Medicine and Metabolism Unit, Research Unit on Lipids and Atherosclerosis, "Sant Joan" University Hospital, Institut de Investigació Sanitaria Pere Virgili (IISPV), Universitat Rovira i Virgili, 43204 Reus, Spain
- Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM), Institute of Health Carlos III, 28029 Madrid, Spain
| |
Collapse
|
4
|
Bu SY. Role of Dgat2 in Glucose Uptake and Fatty Acid Metabolism in C2C12 Skeletal Myotubes. J Microbiol Biotechnol 2023; 33:1563-1575. [PMID: 37644753 PMCID: PMC10772559 DOI: 10.4014/jmb.2307.07018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 07/25/2023] [Accepted: 07/31/2023] [Indexed: 08/31/2023]
Abstract
Acyl-coenzyme A (CoA):diacylglycerol acyltransferase 2 (DGAT2) catalyzes the last stage of triacylglycerol (TAG) synthesis, a process that forms ester bonds with diacylglycerols (DAG) and fatty acyl-CoA substrates. The enzymatic role of Dgat2 has been studied in various biological species. Still, the full description of how Dgat2 channels fatty acids in skeletal myocytes and the consequence thereof in glucose uptake have yet to be well established. Therefore, this study explored the mediating role of Dgat2 in glucose uptake and fatty acid partitioning under short interfering ribonucleic acid (siRNA)-mediated Dgat2 knockdown conditions. Cells transfected with Dgat2 siRNA downregulated glucose transporter type 4 (Glut4) messenger RNA (mRNA) expression and decreased the cellular uptake of [1-14C]-labeled 2-deoxyglucose up to 24.3% (p < 0.05). Suppression of Dgat2 deteriorated insulininduced Akt phosphorylation. Dgat2 siRNA reduced [1-14C]-labeled oleic acid incorporation into TAG, but increased the level of [1-14C]-labeled free fatty acids at 3 h after initial fatty acid loading. In an experiment of chasing radioisotope-labeled fatty acids, Dgat2 suppression augmented the level of cellular free fatty acids. It decreased the level of re-esterification of free fatty acids to TAG by 67.6% during the chase period, and the remaining pulses of phospholipids and cholesteryl esters were decreased by 34.5% and 61%, respectively. Incorporating labeled fatty acids into beta-oxidation products increased in Dgat2 siRNA transfected cells without gene expression involving fatty acid oxidation. These results indicate that Dgat2 has regulatory function in glucose uptake, possibly through the reaction of TAG with endogenously released or recycled fatty acids.
Collapse
Affiliation(s)
- So Young Bu
- Department of Food and Nutrition, College of Engineering, Daegu University, Gyeongsan 38453, Republic of Korea
| |
Collapse
|
5
|
Vanni E, Lindner K, Gavin AC, Montessuit C. Differential intracellular management of fatty acids impacts on metabolic stress-stimulated glucose uptake in cardiomyocytes. Sci Rep 2023; 13:14805. [PMID: 37684349 PMCID: PMC10491837 DOI: 10.1038/s41598-023-42072-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 09/05/2023] [Indexed: 09/10/2023] Open
Abstract
Stimulation of glucose uptake in response to ischemic metabolic stress is important for cardiomyocyte function and survival. Chronic exposure of cardiomyocytes to fatty acids (FA) impairs the stimulation of glucose uptake, whereas induction of lipid droplets (LD) is associated with preserved glucose uptake. However, the mechanisms by which LD induction prevents glucose uptake impairment remain elusive. We induced LD with either tetradecanoyl phorbol acetate (TPA) or 5-aminoimidazole-4-carboxamide-1-β-D-ribofuranoside (AICAR). Triacylglycerol biosynthesis enzymes were inhibited in cardiomyocytes exposed to FA ± LD inducers, either upstream (glycerol-3-phosphate acyltransferases; GPAT) or downstream (diacylglycerol acyltransferases; DGAT) of the diacylglycerol step. Although both inhibitions reduced LD formation in cardiomyocytes treated with FA and LD inducers, only DGAT inhibition impaired metabolic stress-stimulated glucose uptake. DGAT inhibition in FA plus TPA-treated cardiomyocytes reduced triacylglycerol but not diacylglycerol content, thus increasing the diacylglycerol/triacylglycerol ratio. In cardiomyocytes exposed to FA alone, GPAT inhibition reduced diacylglycerol but not triacylglycerol, thus decreasing the diacylglycerol/triacylglycerol ratio, prevented PKCδ activation and improved metabolic stress-stimulated glucose uptake. Changes in AMP-activated Protein Kinase activity failed to explain variations in metabolic stress-stimulated glucose uptake. Thus, LD formation regulates metabolic stress-stimulated glucose uptake in a manner best reflected by the diacylglycerol/triacylglycerol ratio.
Collapse
Affiliation(s)
- Ettore Vanni
- Department of Pathology and Immunology, University of Geneva School of Medicine, Geneva, Switzerland
| | - Karina Lindner
- Department of Cell Physiology and Metabolism, University of Geneva School of Medicine, Geneva, Switzerland
| | - Anne-Claude Gavin
- Department of Cell Physiology and Metabolism, University of Geneva School of Medicine, Geneva, Switzerland
| | - Christophe Montessuit
- Department of Pathology and Immunology, University of Geneva School of Medicine, Geneva, Switzerland.
| |
Collapse
|
6
|
Zhao Y, Chen C, Pan J, Lam SM, Shui G, Yang S, Wu T, Yang N, Tao C, Zhao J, Wang Y. Adipocyte Rnf20 ablation increases the fast-twitch fibers of skeletal muscle via lysophosphatidylcholine 16:0. Cell Mol Life Sci 2023; 80:243. [PMID: 37555936 PMCID: PMC11072846 DOI: 10.1007/s00018-023-04896-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 07/20/2023] [Accepted: 07/23/2023] [Indexed: 08/10/2023]
Abstract
Both adipose tissue and skeletal muscle are highly dynamic tissues and interact at the metabolic and hormonal levels in response to internal and external stress, and they coordinate in maintaining whole-body metabolic homeostasis. In our previous study, we revealed that adipocyte-specific Rnf20 knockout mice (ASKO mice) exhibited lower fat mass but higher lean mass, providing a good model for investigating the adipose-muscle crosstalk and exploring the effect of the adipocyte Rnf20 gene on the physiology and metabolism of skeletal muscle. Here, we confirmed that ASKO mice exhibited the significantly increased body weight and gastrocnemius muscle weight. Fiber-type switching in the soleus muscle of ASKO mice was observed, as evidenced by the increased number of fast-twitch fibers and decreased number of slow-twitch fibers. Serum metabolites with significant alteration in abundance were identified by metabolomic analysis and the elevated lysophosphatidylcholine 16:0 [LysoPC (16:0)] was observed in ASKO mice. In addition, lipidome analysis of gonadal white adipose tissue revealed a significant increase in LysoPCs and LysoPC (16:0) in ASKO mice. Furthermore, knockdown of Rnf20 gene in 3T3-L1 cells significantly increased the secretion of LysoPC, suggesting that LysoPC might be a critical metabolite in the adipose-muscle crosstalk of ASKO mice. Furthermore, in vitro study demonstrated that LysoPC (16:0) could induce the expression of fast-twitch muscle fibers related genes in differentiated C2C12 cells, indicating its potential role in adipose-muscle crosstalk. Taken together, these findings not only expand our understanding of the biological functions of Rnf20 gene in systemic lipid metabolism, but also provide insight into adipose tissue dysfunction-induced physiological alterations in skeletal muscle.
Collapse
Affiliation(s)
- Ying Zhao
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
- College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Chuanhe Chen
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
- College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Jianfei Pan
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
| | - Sin Man Lam
- Institute of Genetics and Development Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Guanghou Shui
- Institute of Genetics and Development Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Shulin Yang
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Tianwen Wu
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Ning Yang
- College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Cong Tao
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
| | - Jianguo Zhao
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Yanfang Wang
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China.
| |
Collapse
|
7
|
Bandet CL, Tan-Chen S, Ali-Berrada S, Campana M, Poirier M, Blachnio-Zabielska A, Pais-de-Barros JP, Rouch C, Ferré P, Foufelle F, Le Stunff H, Hajduch E. Ceramide analogue C2-cer induces a loss in insulin sensitivity in muscle cells through the salvage/recycling pathway. J Biol Chem 2023:104815. [PMID: 37178918 DOI: 10.1016/j.jbc.2023.104815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 05/01/2023] [Accepted: 05/02/2023] [Indexed: 05/15/2023] Open
Abstract
Ceramides have been shown to play a major role in the onset of skeletal muscle insulin resistance and therefore in the prevalence of type 2 diabetes (T2D). However, many of the studies involved in the discovery of deleterious ceramide actions used a non-physiological cell-permeable short-chain ceramide analogue, the C2-ceramide (C2-cer). In the present study, we determined how C2-cer promotes insulin resistance in muscle cells. We demonstrate that C2-cer enters the salvage/recycling pathway and becomes de-acylated, yielding sphingosine, re-acylation of which depends on the availability of long chain fatty acids provided by the lipogenesis pathway in muscle cells. Importantly, we show these salvaged ceramides are actually responsible for the inhibition of insulin signaling induced by C2-cer. Interestingly, we also show that the exogenous and endogenous mono-unsaturated fatty acid oleate prevents C2-cer to be recycled into endogenous ceramide species in a diacylglycerol O-acyltransferase 1 (DGAT1)-dependent mechanism, which forces free fatty acid metabolism towards triacylglyceride production. Altogether, the study highlights for the first time that C2-cer induces a loss in insulin sensitivity through the salvage/recycling pathway in muscle cells. This study also validates C2-cer as a convenient tool to decipher mechanisms by which long-chain ceramides mediate insulin resistance in muscle cells and suggests that in addition to the de novo ceramide synthesis, recycling of ceramide could contribute to muscle insulin resistance observed in obesity and T2D.
Collapse
Affiliation(s)
- Cécile L Bandet
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, F-75006 Paris, France; Institut Hospitalo-Universitaire ICAN, Paris, France
| | - Sophie Tan-Chen
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, F-75006 Paris, France; Institut Hospitalo-Universitaire ICAN, Paris, France
| | - Sarah Ali-Berrada
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, F-75006 Paris, France; Institut Hospitalo-Universitaire ICAN, Paris, France
| | - Mélanie Campana
- Université Paris-Saclay, CNRS UMR 9197, Institut des Neurosciences Paris-Saclay, CNRS UMR 9197, Saclay, France
| | - Maxime Poirier
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, F-75006 Paris, France; Institut Hospitalo-Universitaire ICAN, Paris, France
| | | | - Jean-Paul Pais-de-Barros
- Lipidomics Core Facility, INSERM UMR1231 - Université Bourgogne Franche Comté, 15 Boulevard Mal de Lattre de Tassigny, F-21000 Dijon, France
| | - Claude Rouch
- Université de Paris Cité, Functional and Adaptive Biology Unit, UMR 8251, CNRS, Paris, France
| | - Pascal Ferré
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, F-75006 Paris, France; Institut Hospitalo-Universitaire ICAN, Paris, France
| | - Fabienne Foufelle
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, F-75006 Paris, France; Institut Hospitalo-Universitaire ICAN, Paris, France
| | - Hervé Le Stunff
- Université Paris-Saclay, CNRS UMR 9197, Institut des Neurosciences Paris-Saclay, CNRS UMR 9197, Saclay, France
| | - Eric Hajduch
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, F-75006 Paris, France; Institut Hospitalo-Universitaire ICAN, Paris, France.
| |
Collapse
|
8
|
Li X, Bi X. Integrated Control of Fatty Acid Metabolism in Heart Failure. Metabolites 2023; 13:615. [PMID: 37233656 PMCID: PMC10220550 DOI: 10.3390/metabo13050615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 04/18/2023] [Accepted: 04/27/2023] [Indexed: 05/27/2023] Open
Abstract
Disrupted fatty acid metabolism is one of the most important metabolic features in heart failure. The heart obtains energy from fatty acids via oxidation. However, heart failure results in markedly decreased fatty acid oxidation and is accompanied by the accumulation of excess lipid moieties that lead to cardiac lipotoxicity. Herein, we summarized and discussed the current understanding of the integrated regulation of fatty acid metabolism (including fatty acid uptake, lipogenesis, lipolysis, and fatty acid oxidation) in the pathogenesis of heart failure. The functions of many enzymes and regulatory factors in fatty acid homeostasis were characterized. We reviewed their contributions to the development of heart failure and highlighted potential targets that may serve as promising new therapeutic strategies.
Collapse
Affiliation(s)
| | - Xukun Bi
- Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province, Department of Cardiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China;
| |
Collapse
|
9
|
Abstract
Chronic kidney disease is associated with an increased risk for the development and progression of cardiovascular disorders including hypertension, dyslipidemia, and coronary artery disease. Chronic kidney disease may also affect the myocardium through complex systemic changes, resulting in structural remodeling such as hypertrophy and fibrosis, as well as impairments in both diastolic and systolic function. These cardiac changes in the setting of chronic kidney disease define a specific cardiomyopathic phenotype known as uremic cardiomyopathy. Cardiac function is tightly linked to its metabolism, and research over the past 3 decades has revealed significant metabolic remodeling in the myocardium during the development of heart failure. Because the concept of uremic cardiomyopathy has only been recognized in recent years, there are limited data on metabolism in the uremic heart. Nonetheless, recent findings suggest overlapping mechanisms with heart failure. This work reviews key features of metabolic remodeling in the failing heart in the general population and extends this to patients with chronic kidney disease. The knowledge of similarities and differences in cardiac metabolism between heart failure and uremic cardiomyopathy may help identify new targets for mechanistic and therapeutic research on uremic cardiomyopathy.
Collapse
Affiliation(s)
- T Dung Nguyen
- Department of Internal Medicine I, University Hospital Jena, Jena, Germany
| | | |
Collapse
|
10
|
Chen G, Harwood JL, Lemieux MJ, Stone SJ, Weselake RJ. Acyl-CoA:diacylglycerol acyltransferase: Properties, physiological roles, metabolic engineering and intentional control. Prog Lipid Res 2022; 88:101181. [PMID: 35820474 DOI: 10.1016/j.plipres.2022.101181] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 05/31/2022] [Accepted: 07/04/2022] [Indexed: 12/15/2022]
Abstract
Acyl-CoA:diacylglycerol acyltransferase (DGAT, EC 2.3.1.20) catalyzes the last reaction in the acyl-CoA-dependent biosynthesis of triacylglycerol (TAG). DGAT activity resides mainly in membrane-bound DGAT1 and DGAT2 in eukaryotes and bifunctional wax ester synthase-diacylglycerol acyltransferase (WSD) in bacteria, which are all membrane-bound proteins but exhibit no sequence homology to each other. Recent studies also identified other DGAT enzymes such as the soluble DGAT3 and diacylglycerol acetyltransferase (EaDAcT), as well as enzymes with DGAT activities including defective in cuticular ridges (DCR) and steryl and phytyl ester synthases (PESs). This review comprehensively discusses research advances on DGATs in prokaryotes and eukaryotes with a focus on their biochemical properties, physiological roles, and biotechnological and therapeutic applications. The review begins with a discussion of DGAT assay methods, followed by a systematic discussion of TAG biosynthesis and the properties and physiological role of DGATs. Thereafter, the review discusses the three-dimensional structure and insights into mechanism of action of human DGAT1, and the modeled DGAT1 from Brassica napus. The review then examines metabolic engineering strategies involving manipulation of DGAT, followed by a discussion of its therapeutic applications. DGAT in relation to improvement of livestock traits is also discussed along with DGATs in various other eukaryotic organisms.
Collapse
Affiliation(s)
- Guanqun Chen
- Department of Agricultural, Food, and Nutritional Science, University of Alberta, Edmonton, Alberta T6H 2P5, Canada.
| | - John L Harwood
- School of Biosciences, Cardiff University, Cardiff CF10 3AX, UK
| | - M Joanne Lemieux
- Department of Biochemistry, University of Alberta, Membrane Protein Disease Research Group, Edmonton T6G 2H7, Canada
| | - Scot J Stone
- Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5E5, Canada.
| | - Randall J Weselake
- Department of Agricultural, Food, and Nutritional Science, University of Alberta, Edmonton, Alberta T6H 2P5, Canada
| |
Collapse
|
11
|
Diets Rich in Olive Oil, Palm Oil, or Lard Alter Mitochondrial Biogenesis and Mitochondrial Membrane Composition in Rat Liver. Biochem Res Int 2022; 2022:9394356. [PMID: 35237451 PMCID: PMC8885195 DOI: 10.1155/2022/9394356] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Revised: 01/16/2022] [Accepted: 01/28/2022] [Indexed: 12/25/2022] Open
Abstract
Palm oil (crude or refined) and lard are rich in SFA, while olive oil is rich in polyunsaturated fatty acids. SFA are considered harmful to health, while polyunsaturated fatty acids are beneficial to health. The aim of this study was to determine the effect of diets rich in crude PO, refined PO, OO, or lard on the mitochondrial membrane, the activity of mitochondrial respiratory chain complexes, and mitochondrial biogenesis. This was an experimental study in male Wistar rats fed a diet containing 30% of each oil. Rats had free access to food and water. After being fed for 12 weeks, animals were sacrificed and liver mitochondria were collected. This collection was used to determine membrane potential and ROS production, membrane phospholipid and fatty acid composition, citrate synthase activity and respiratory chain complex, cardiolipin synthase protein expression, and expression of selected genes involved in mitochondrial biogenesis. We found that diets rich in olive oil, palm oil, or lard altered mitochondrial biogenesis by significantly decreasing Pgc1α gene expression and altered the fatty acid composition of rat liver mitochondrial membrane PL.
Collapse
|
12
|
Cañón-Beltrán K, Giraldo-Giraldo J, Cajas YN, Beltrán-Breña P, Hidalgo CO, Vásquez N, Leal CLV, Gutiérrez-Adán A, González EM, Rizos D. Inhibiting diacylglycerol acyltransferase-1 reduces lipid biosynthesis in bovine blastocysts produced in vitro. Theriogenology 2020; 158:267-276. [PMID: 33002770 DOI: 10.1016/j.theriogenology.2020.09.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 09/07/2020] [Accepted: 09/10/2020] [Indexed: 11/28/2022]
Abstract
Diacylglycerol acyltransferase-1 (DGAT1) is one of the DGAT enzymes that catalyzes the final step in the synthesis of triacylglycerol, which is a major component of the lipid droplets in embryos. Intracellular lipids accumulated in embryos produced in vitro have been associated with reduced cryotolerance and quality. The objective of the present study was to investigate the influence of DGAT1 inhibition on embryo development, quality, and post-vitrification survival, in addition to expression profiles of selected lipid metabolism-regulating and oxidative stress genes. Bovine cumulus-oocyte complexes were matured and fertilized in vitro and were cultured in synthetic oviduct fluid (SOF) supplemented with 5% fetal calf serum (FCS) alone (Control) or with 1, 5, 10 or 50 μM DGAT1 inhibitor (A922500®; D1, D5, D10, and D50, respectively) or 0.1% dimethyl sulfoxide (CDMSO: vehicle for DGAT1 inhibitor dilution) from 54 h post-insemination until Day 8 post insemination. No differences were found in blastocyst yield on days 7 and 8 in Control, CDMSO, D10, and D50 groups. Embryos cultured with 10 or 50 μM DGAT1 inhibitor had greater mitochondrial activity (P < 0.01), and increased number of cells (P < 0.05), while the cytoplasmic lipid content was reduced (P < 0.01), the latter associated with altered expression profiles of selected genes regulating lipid metabolism or genes related with oxidative stress (transcript abundance increased for SLC2A1 and SLC2A5 and decreased for DGAT1 and GPX1). Importantly, the survival rate of blastocysts produced with 10 μM DGAT1 was higher than that of Control, CDMSO and D50 groups at 72 h after vitrification and warming (73.8 vs 57.1, 55.9 and 56.1%, respectively, P < 0.001). In conclusion, inhibition of DGAT1 synthesis in bovine embryos produced in vitro abrogates the negative effect of FCS by decreasing their lipid content, increasing mitochondria activity and improving embryo cryotolerance, as well as favoring the expression of lipid metabolism regulating and oxidative stress-related transcripts.
Collapse
Affiliation(s)
- K Cañón-Beltrán
- Department of Animal Reproduction, National Institute for Agriculture and Food Research and Technology (INIA), Madrid, Spain; Departamento de Ciencias Biológicas, Universidad Técnica Particular de Loja, Loja, Ecuador
| | - J Giraldo-Giraldo
- Department of Animal Reproduction, National Institute for Agriculture and Food Research and Technology (INIA), Madrid, Spain; Reproductive Biotechnology Laboratory, School of Biosciences, Science Faculty, National University of Colombia, Medellín, Colombia
| | - Y N Cajas
- Department of Animal Reproduction, National Institute for Agriculture and Food Research and Technology (INIA), Madrid, Spain
| | - P Beltrán-Breña
- Department of Animal Reproduction, National Institute for Agriculture and Food Research and Technology (INIA), Madrid, Spain
| | - C O Hidalgo
- Department of Animal Selection and Reproduction, The Regional Agri-Food Research and Development Service of Asturias (SERIDA), Gijon, Spain
| | - N Vásquez
- Reproductive Biotechnology Laboratory, School of Biosciences, Science Faculty, National University of Colombia, Medellín, Colombia
| | - C L V Leal
- Department of Animal Reproduction, National Institute for Agriculture and Food Research and Technology (INIA), Madrid, Spain; Department of Veterinary Medicine, Faculty of Animal Science and Food Engineering, University of São Paulo, Pirassununga, Brazil
| | - A Gutiérrez-Adán
- Department of Animal Reproduction, National Institute for Agriculture and Food Research and Technology (INIA), Madrid, Spain
| | - E M González
- Department of Anatomy and Embryology, Veterinary Faculty, Complutense University of Madrid (UCM), Madrid, Spain
| | - D Rizos
- Department of Animal Reproduction, National Institute for Agriculture and Food Research and Technology (INIA), Madrid, Spain.
| |
Collapse
|
13
|
Nguyen TD, Schulze PC. Lipid in the midst of metabolic remodeling - Therapeutic implications for the failing heart. Adv Drug Deliv Rev 2020; 159:120-132. [PMID: 32791076 DOI: 10.1016/j.addr.2020.08.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 08/07/2020] [Accepted: 08/07/2020] [Indexed: 02/07/2023]
Abstract
A healthy heart relies on an intact cardiac lipid metabolism. Fatty acids represent the major source for ATP production in the heart. Not less importantly, lipids are directly involved in critical processes such as cell growth, proliferation, and cell death by functioning as building blocks or signaling molecules. In the development of heart failure, perturbations in fatty acid utilization impair cardiac energetics. Furthermore, they may affect glucose and amino acid metabolism and induce the synthesis of several lipid intermediates, whose biological functions are still poorly understood. This work outlines the pivotal role of lipid metabolism in the heart and provides a lipocentric view of metabolic remodeling in heart failure. We will also critically revisit therapeutic attempts targeting cardiac lipid metabolism in heart failure and propose specific strategies for future investigations in this regard.
Collapse
|
14
|
Abstract
Lipid droplets (LDs) are now recognized as omnipresent and dynamic subcellular organelles of amazing morphological and functional diversity. Beyond the obvious benefit of having molecules full of chemical energy stored in a dedicated structural entity, LDs may also be viewed as a safe harbor for potentially damaging metabolites. This protective function might in many cases even supersede the relevance of lipid storage for eventual energy gain and membrane biogenesis. Furthermore, the LD surface constitutes a unique membrane environment, creating a platform for hosting specific proteins and thus enabling their interactions. These metabolic hotspots would contribute decisively to compartmentalized metabolism in the cytosol. LDs are also communicating extensively with other subcellular organelles in directing and regulating lipid metabolism. Deciphering the relevance of LD storage and regulation at the organismic level will be essential for the understanding of widespread and serious metabolic complications in humans. Increasing attention is also devoted to pathogens appropriating LDs for their own benefit. LD biology is still considered an emerging research area in rapid and vibrant development, attracting scientists from all disciplines of the life sciences and beyond, which is mirrored by the accompanying review collection. Here, we present our personal views on areas we believe are especially exciting and hold great potential for future developments. Particularly, we address issues relating to LD biogenesis and heterogeneity, required technological advances, and the complexity of human physiology.
Collapse
|
15
|
Løvsletten NG, Vu H, Skagen C, Lund J, Kase ET, Thoresen GH, Zammit VA, Rustan AC. Treatment of human skeletal muscle cells with inhibitors of diacylglycerol acyltransferases 1 and 2 to explore isozyme-specific roles on lipid metabolism. Sci Rep 2020; 10:238. [PMID: 31937853 PMCID: PMC6959318 DOI: 10.1038/s41598-019-57157-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Accepted: 12/19/2019] [Indexed: 12/30/2022] Open
Abstract
Diacylglycerol acyltransferases (DGAT) 1 and 2 catalyse the final step in triacylglycerol (TAG) synthesis, the esterification of fatty acyl-CoA to diacylglycerol. Despite catalysing the same reaction and being present in the same cell types, they exhibit different functions on lipid metabolism in various tissues. Yet, their roles in skeletal muscle remain poorly defined. In this study, we investigated how selective inhibitors of DGAT1 and DGAT2 affected lipid metabolism in human primary skeletal muscle cells. The results showed that DGAT1 was dominant in human skeletal muscle cells utilizing fatty acids (FAs) derived from various sources, both exogenously supplied FA, de novo synthesised FA, or FA derived from lipolysis, to generate TAG, as well as being involved in de novo synthesis of TAG. On the other hand, DGAT2 seemed to be specialised for de novo synthesis of TAG from glycerol-3-posphate only. Interestingly, DGAT activities were also important for regulating FA oxidation, indicating a key role in balancing FAs between storage in TAG and efficient utilization through oxidation. Finally, we observed that inhibition of DGAT enzymes could potentially alter glucose-FA interactions in skeletal muscle. In summary, treatment with DGAT1 or DGAT2 specific inhibitors resulted in different responses on lipid metabolism in human myotubes, indicating that the two enzymes play distinct roles in TAG metabolism in skeletal muscle.
Collapse
Affiliation(s)
- Nils G Løvsletten
- Section for Pharmacology and Pharmaceutical Biosciences, Department of Pharmacy, University of Oslo, Oslo, Norway
| | - Helene Vu
- Section for Pharmacology and Pharmaceutical Biosciences, Department of Pharmacy, University of Oslo, Oslo, Norway
| | - Christine Skagen
- Section for Pharmacology and Pharmaceutical Biosciences, Department of Pharmacy, University of Oslo, Oslo, Norway
| | - Jenny Lund
- Section for Pharmacology and Pharmaceutical Biosciences, Department of Pharmacy, University of Oslo, Oslo, Norway
| | - Eili T Kase
- Section for Pharmacology and Pharmaceutical Biosciences, Department of Pharmacy, University of Oslo, Oslo, Norway
| | - G Hege Thoresen
- Section for Pharmacology and Pharmaceutical Biosciences, Department of Pharmacy, University of Oslo, Oslo, Norway
- Department of Pharmacology, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Victor A Zammit
- Division of Translational and Experimental medicine, Warwick Medical School, University of Warwick, Coventry, UK
| | - Arild C Rustan
- Section for Pharmacology and Pharmaceutical Biosciences, Department of Pharmacy, University of Oslo, Oslo, Norway.
| |
Collapse
|
16
|
Massart J, Zierath JR. Role of Diacylglycerol Kinases in Glucose and Energy Homeostasis. Trends Endocrinol Metab 2019; 30:603-617. [PMID: 31331711 DOI: 10.1016/j.tem.2019.06.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 06/20/2019] [Accepted: 06/21/2019] [Indexed: 01/22/2023]
Abstract
Diacylglycerol kinases (DGKs) catalyze a reaction that converts diacylglycerol (DAG) to phosphatidic acid (PA). DAG and PA act as intermediates of de novo lipid synthesis, cellular membrane constituents, and signaling molecules. DGK isoforms regulate a variety of intracellular processes by terminating DAG signaling and activating PA-mediated pathways. The ten DGK isoforms are unique, not only structurally, but also in tissue-specific expression profiles, subcellular localization, regulatory mechanisms, and DAG preferences, suggesting isoform-specific functions. DAG accumulation has been associated with insulin resistance; however, this concept is challenged by opposing roles of DGK isoforms in the development of type 2 diabetes and obesity despite elevated DAG levels. This review focuses on the tissue- and isoform-specific role of DGK in glucose and energy homeostasis.
Collapse
Affiliation(s)
- Julie Massart
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Juleen R Zierath
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden; Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden; The Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Science, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
17
|
Zhou H, Lei X, Yan Y, Lydic T, Li J, Weintraub NL, Su H, Chen W. Targeting ATGL to rescue BSCL2 lipodystrophy and its associated cardiomyopathy. JCI Insight 2019; 5:129781. [PMID: 31185001 DOI: 10.1172/jci.insight.129781] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Mutations in BSCL2 gene underlie human type 2 Berardinelli-Seip Congenital Lipodystrophy (BSCL2) disease. Global Bscl2-/- mice recapitulate human BSCL2 lipodystrophy and develop insulin resistance and hypertrophic cardiomyopathy. The pathological mechanisms underlying the development of lipodystrophy and cardiomyopathy in BSCL2 are controversial. Here we report that Bscl2-/- mice develop cardiac hypertrophy due to increased basal IGF1 receptor (IGF1R)-mediated PI3K/AKT signaling. Bscl2-/- hearts exhibited increased adipose triglyceride lipase (ATGL) protein stability and expression causing drastic reduction of glycerolipids. Excessive fatty acid oxidation was overt in Bscl2-/- hearts, partially attributing to the hyperacetylation of cardiac mitochondrial proteins. Intriguingly, pharmacological inhibition or genetic inactivation of ATGL could rescue adipocyte differentiation and lipodystrophy in Bscl2-/- cells and mice. Restoring a small portion of fat mass by ATGL partial deletion in Bscl2-/- mice not only reversed the systemic insulin resistance, but also ameliorated cardiac protein hyperacetylation, normalized cardiac substrate metabolism and improved contractile function. Collectively, our study uncovers novel pathways underlying lipodystrophy-induced cardiac hypertrophy and metabolic remodeling and pinpoints ATGL as a downstream target of BSCL2 in regulating the development of lipodystrophy and its associated cardiomyopathy.
Collapse
Affiliation(s)
- Hongyi Zhou
- Department of Physiology, Medical College of Georgia at Augusta University, Augusta, Georgia, USA
| | - Xinnuo Lei
- Department of Physiology, Medical College of Georgia at Augusta University, Augusta, Georgia, USA
| | - Yun Yan
- Department of Physiology, Medical College of Georgia at Augusta University, Augusta, Georgia, USA
| | - Todd Lydic
- Department of Physiology, Michigan State University, East Lansing, Michigan, USA
| | - Jie Li
- Vascular Biology Center, Medical College of Georgia at Augusta University, Augusta, Georgia, USA
| | - Neal L Weintraub
- Vascular Biology Center, Medical College of Georgia at Augusta University, Augusta, Georgia, USA
| | - Huabo Su
- Vascular Biology Center, Medical College of Georgia at Augusta University, Augusta, Georgia, USA
| | - Weiqin Chen
- Department of Physiology, Medical College of Georgia at Augusta University, Augusta, Georgia, USA
| |
Collapse
|
18
|
Assessment of the Main Compounds of the Lipolytic System in Treadmill Running Rats: Different Response Patterns between the Right and Left Ventricle. Int J Mol Sci 2019; 20:ijms20102556. [PMID: 31137663 PMCID: PMC6566686 DOI: 10.3390/ijms20102556] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 05/09/2019] [Accepted: 05/22/2019] [Indexed: 12/22/2022] Open
Abstract
The aim of the present study was to investigate the time and intensity dependent effects of exercise on the heart components of the lipolytic complex. Wistar rats ran on a treadmill with the speed of 18 m/min for 30 min (M30) or 120 min (M120) or with the speed of 28 m/min for 30 min (F30). The mRNA and protein expressions of the compounds adipose triglyceride lipase (ATGL), comparative gene identification-58 (CGI-58), G0/G1 switch gene 2 (G0S2), hormone sensitive lipase (HSL) and peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α) were examined by real-time PCR and Western blot, respectively. Lipid content of free fatty acids (FFA), diacylglycerols (DG) and triacylglycerols (TG) were estimated by gas liquid chromatography. We observed virtually no changes in the left ventricle lipid contents and only minor fluctuations in its ATGL mRNA levels. This was in contrast with its right counterpart i.e., the content of TG and DG decreased in response to both increased duration and intensity of a run. This occurred in tandem with increased mRNA expression for ATGL, CGI-58 and decreased expression of G0S2. It is concluded that exercise affects behavior of the components of the lipolytic system and the lipid content in the heart ventricles. However, changes observed in the left ventricle did not mirror those in the right one.
Collapse
|
19
|
Nakamura M, Liu T, Husain S, Zhai P, Warren JS, Hsu CP, Matsuda T, Phiel CJ, Cox JE, Tian B, Li H, Sadoshima J. Glycogen Synthase Kinase-3α Promotes Fatty Acid Uptake and Lipotoxic Cardiomyopathy. Cell Metab 2019; 29:1119-1134.e12. [PMID: 30745182 PMCID: PMC6677269 DOI: 10.1016/j.cmet.2019.01.005] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Revised: 11/27/2018] [Accepted: 01/10/2019] [Indexed: 02/06/2023]
Abstract
Obesity induces lipotoxic cardiomyopathy, a condition in which lipid accumulation in cardiomyocytes causes cardiac dysfunction. Here, we show that glycogen synthase kinase-3α (GSK-3α) mediates lipid accumulation in the heart. Fatty acids (FAs) upregulate GSK-3α, which phosphorylates PPARα at Ser280 in the ligand-binding domain (LBD). This modification ligand independently enhances transcription of a subset of PPARα targets, selectively stimulating FA uptake and storage, but not oxidation, thereby promoting lipid accumulation. Constitutively active GSK-3α, but not GSK-3β, was sufficient to drive PPARα signaling, while cardiac-specific knockdown of GSK-3α, but not GSK-3β, or replacement of PPARα Ser280 with Ala conferred resistance to lipotoxicity in the heart. Fibrates, PPARα ligands, inhibited phosphorylation of PPARα at Ser280 by inhibiting the interaction of GSK-3α with the LBD of PPARα, thereby reversing lipotoxic cardiomyopathy. These results suggest that GSK-3α promotes lipid anabolism through PPARα-Ser280 phosphorylation, which underlies the development of lipotoxic cardiomyopathy in the context of obesity.
Collapse
Affiliation(s)
- Michinari Nakamura
- Department of Cell Biology and Molecular Medicine, Cardiovascular Research Institute, Rutgers New Jersey Medical School, Newark, NJ, USA
| | - Tong Liu
- Center for Advanced Proteomics Research, Department of Biochemistry & Molecular Biology, Rutgers New Jersey Medical School, Newark, NJ, USA
| | - Seema Husain
- Department of Microbiology, Biochemistry, and Molecular Genetics, Rutgers New Jersey Medical School, Newark, NJ, USA
| | - Peiyong Zhai
- Department of Cell Biology and Molecular Medicine, Cardiovascular Research Institute, Rutgers New Jersey Medical School, Newark, NJ, USA
| | - Junco S Warren
- Nora Eccles Harrison Cardiovascular Research and Training Institute and Department of Internal Medicine, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Chiao-Po Hsu
- Division of Cardiovascular Surgery, Department of Surgery, Taipei Veterans General Hospital, National Yang-Ming University School of Medicine, Taipei City, Taiwan
| | - Takahisa Matsuda
- Department of Cell Biology and Molecular Medicine, Cardiovascular Research Institute, Rutgers New Jersey Medical School, Newark, NJ, USA
| | - Christopher J Phiel
- Department of Integrative Biology, University of Colorado Denver, Denver, CO, USA
| | - James E Cox
- Metabolomics Core Research Facility and Department of Biochemistry, University of Utah, Salt Lake City, UT, USA
| | - Bin Tian
- Department of Microbiology, Biochemistry, and Molecular Genetics, Rutgers New Jersey Medical School, Newark, NJ, USA
| | - Hong Li
- Center for Advanced Proteomics Research, Department of Biochemistry & Molecular Biology, Rutgers New Jersey Medical School, Newark, NJ, USA
| | - Junichi Sadoshima
- Department of Cell Biology and Molecular Medicine, Cardiovascular Research Institute, Rutgers New Jersey Medical School, Newark, NJ, USA.
| |
Collapse
|
20
|
Lutkewitte AJ, McCommis KS, Schweitzer GG, Chambers KT, Graham MJ, Wang L, Patti GJ, Hall AM, Finck BN. Hepatic monoacylglycerol acyltransferase 1 is induced by prolonged food deprivation to modulate the hepatic fasting response. J Lipid Res 2019; 60:528-538. [PMID: 30610082 PMCID: PMC6399500 DOI: 10.1194/jlr.m089722] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 12/05/2018] [Indexed: 01/14/2023] Open
Abstract
During prolonged fasting, the liver plays a central role in maintaining systemic energy homeostasis by producing glucose and ketones in processes fueled by oxidation of fatty acids liberated from adipose tissue. In mice, this is accompanied by transient hepatic accumulation of glycerolipids. We found that the hepatic expression of monoacylglycerol acyltransferase 1 (Mogat1), an enzyme with monoacylglycerol acyltransferase (MGAT) activity that produces diacyl-glycerol from monoacylglycerol, was significantly increased in the liver of fasted mice compared with mice given ad libitum access to food. Basal and fasting-induced expression of Mogat1 was markedly diminished in the liver of mice lacking the transcription factor PPARα. Suppressing Mogat1 expression in liver and adipose tissue with antisense oligonucleotides (ASOs) reduced hepatic MGAT activity and triglyceride content compared with fasted controls. Surprisingly, the expression of many other PPARα target genes and PPARα activity was also decreased in mice given Mogat1 ASOs. When mice treated with control or Mogat1 ASOs were gavaged with the PPARα ligand, WY-14643, and then fasted for 18 h, WY-14643 administration reversed the effects of Mogat1 ASOs on PPARα target gene expression and liver triglyceride content. In conclusion, Mogat1 is a fasting-induced PPARα target gene that may feed forward to regulate liver PPARα activity during food deprivation.
Collapse
Affiliation(s)
- Andrew J Lutkewitte
- Center for Human Nutrition Washington University School of Medicine, St. Louis, MO
| | - Kyle S McCommis
- Center for Human Nutrition Washington University School of Medicine, St. Louis, MO
| | - George G Schweitzer
- Center for Human Nutrition Washington University School of Medicine, St. Louis, MO
| | - Kari T Chambers
- Center for Human Nutrition Washington University School of Medicine, St. Louis, MO
| | | | - Lingjue Wang
- Department of Chemistry, Washington University, St. Louis, MO
| | - Gary J Patti
- Department of Chemistry, Washington University, St. Louis, MO
- Department of Medicine, Washington University School of Medicine, St. Louis, MO
| | - Angela M Hall
- Center for Human Nutrition Washington University School of Medicine, St. Louis, MO
| | - Brian N Finck
- Center for Human Nutrition Washington University School of Medicine, St. Louis, MO
| |
Collapse
|
21
|
Sphingolipid Metabolism: New Insight into Ceramide-Induced Lipotoxicity in Muscle Cells. Int J Mol Sci 2019; 20:ijms20030479. [PMID: 30678043 PMCID: PMC6387241 DOI: 10.3390/ijms20030479] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 01/10/2019] [Accepted: 01/18/2019] [Indexed: 12/17/2022] Open
Abstract
Insulin-resistance is a characteristic feature of type 2 diabetes (T2D) and plays a major role in the pathogenesis of this disease. Skeletal muscles are quantitatively the biggest glucose users in response to insulin and are considered as main targets in development of insulin-resistance. It is now clear that circulating fatty acids (FA), which are highly increased in T2D, play a major role in the development of muscle insulin-resistance. In healthy individuals, excess FA are stored as lipid droplets in adipocytes. In situations like obesity and T2D, FA from lipolysis and food are in excess and eventually accumulate in peripheral tissues. High plasma concentrations of FA are generally associated with increased risk of developing diabetes. Indeed, ectopic fat accumulation is associated with insulin-resistance; this is called lipotoxicity. However, FA themselves are not involved in insulin-resistance, but rather some of their metabolic derivatives, such as ceramides. Ceramides, which are synthetized de novo from saturated FA like palmitate, have been demonstrated to play a critical role in the deterioration of insulin sensitivity in muscle cells. This review describes the latest progress involving ceramides as major players in the development of muscle insulin-resistance through the targeting of selective actors of the insulin signaling pathway.
Collapse
|
22
|
Roh YS, Kim JW, Park S, Shon C, Kim S, Eo SK, Kwon JK, Lim CW, Kim B. Toll-Like Receptor-7 Signaling Promotes Nonalcoholic Steatohepatitis by Inhibiting Regulatory T Cells in Mice. THE AMERICAN JOURNAL OF PATHOLOGY 2018; 188:2574-2588. [PMID: 30125542 DOI: 10.1016/j.ajpath.2018.07.011] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Revised: 06/09/2018] [Accepted: 07/10/2018] [Indexed: 12/17/2022]
Abstract
Toll-like receptor 7 (TLR7) signaling regulates the production of type 1 interferons (IFNs) and proinflammatory cytokines, such as tumor necrosis factor (TNF)-α, implicated in the control of regulatory T (Treg) cell activity. However, the mechanistic interplay between TLR7 signaling and Treg cells in nonalcoholic steatohepatitis (NASH) has not been elucidated. Our aim was to clarify the role of TLR7 signaling in the pathogenesis of NASH. Steatohepatitis was induced in wild-type (WT), TLR7-deficient, IFN-α/β receptor 1-deficient, and Treg cell-depleted mice. TLR7-deficient and IFN-α/β receptor 1-deficient mice were more protective to steatohepatitis than WT mice. Of interest, both TNF-α and type 1 IFN promoted apoptosis of Treg cells involved in the prevention of NASH. Indeed, Treg cell-depleted mice had aggravated steatohepatitis compared with WT mice. Finally, treatment with immunoregulatory sequence 661, an antagonist of TLR7, efficiently ameliorated NASH in vivo. These results demonstrate that TLR7 signaling can induce TNF-α production in Kupffer cells and type I IFN production in dendritic cells. These cytokines subsequently induce hepatocyte death and inhibit Treg cells activities, leading to the progression of NASH. Thus, manipulating the TLR7-Treg cell axis might be used as a novel therapeutic strategy to treat NASH.
Collapse
|
23
|
Verbrugge SAJ, Schönfelder M, Becker L, Yaghoob Nezhad F, Hrabě de Angelis M, Wackerhage H. Genes Whose Gain or Loss-Of-Function Increases Skeletal Muscle Mass in Mice: A Systematic Literature Review. Front Physiol 2018; 9:553. [PMID: 29910734 PMCID: PMC5992403 DOI: 10.3389/fphys.2018.00553] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Accepted: 04/30/2018] [Indexed: 12/20/2022] Open
Abstract
Skeletal muscle mass differs greatly in mice and humans and this is partially inherited. To identify muscle hypertrophy candidate genes we conducted a systematic review to identify genes whose experimental loss or gain-of-function results in significant skeletal muscle hypertrophy in mice. We found 47 genes that meet our search criteria and cause muscle hypertrophy after gene manipulation. They are from high to small effect size: Ski, Fst, Acvr2b, Akt1, Mstn, Klf10, Rheb, Igf1, Pappa, Ppard, Ikbkb, Fstl3, Atgr1a, Ucn3, Mcu, Junb, Ncor1, Gprasp1, Grb10, Mmp9, Dgkz, Ppargc1a (specifically the Ppargc1a4 isoform), Smad4, Ltbp4, Bmpr1a, Crtc2, Xiap, Dgat1, Thra, Adrb2, Asb15, Cast, Eif2b5, Bdkrb2, Tpt1, Nr3c1, Nr4a1, Gnas, Pld1, Crym, Camkk1, Yap1, Inhba, Tp53inp2, Inhbb, Nol3, Esr1. Knock out, knock down, overexpression or a higher activity of these genes causes overall muscle hypertrophy as measured by an increased muscle weight or cross sectional area. The mean effect sizes range from 5 to 345% depending on the manipulated gene as well as the muscle size variable and muscle investigated. Bioinformatical analyses reveal that Asb15, Klf10, Tpt1 are most highly expressed hypertrophy genes in human skeletal muscle when compared to other tissues. Many of the muscle hypertrophy-regulating genes are involved in transcription and ubiquitination. Especially genes belonging to three signaling pathways are able to induce hypertrophy: (a) Igf1-Akt-mTOR pathway, (b) myostatin-Smad signaling, and (c) the angiotensin-bradykinin signaling pathway. The expression of several muscle hypertrophy-inducing genes and the phosphorylation of their protein products changes after human resistance and high intensity exercise, in maximally stimulated mouse muscle or in overloaded mouse plantaris.
Collapse
Affiliation(s)
- Sander A. J. Verbrugge
- Exercise Biology Group, Faculty of Sport and Health Sciences, Technical University of Munich, Munich, Germany
| | - Martin Schönfelder
- Exercise Biology Group, Faculty of Sport and Health Sciences, Technical University of Munich, Munich, Germany
| | - Lore Becker
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum München, Neuherberg, Germany
| | - Fakhreddin Yaghoob Nezhad
- Exercise Biology Group, Faculty of Sport and Health Sciences, Technical University of Munich, Munich, Germany
| | - Martin Hrabě de Angelis
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum München, Neuherberg, Germany
- Chair of Experimental Genetics, School of Life Science Weihenstephan, Technische Universität München, Freising, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Henning Wackerhage
- Exercise Biology Group, Faculty of Sport and Health Sciences, Technical University of Munich, Munich, Germany
| |
Collapse
|
24
|
The Role of Diacylglycerol Acyltransferase (DGAT) 1 and 2 in Cardiac Metabolism and Function. Sci Rep 2018; 8:4983. [PMID: 29563512 PMCID: PMC5862879 DOI: 10.1038/s41598-018-23223-7] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Accepted: 03/05/2018] [Indexed: 12/11/2022] Open
Abstract
It is increasingly recognized that synthesis and turnover of cardiac triglyceride (TG) play a pivotal role in the regulation of lipid metabolism and function of the heart. The last step in TG synthesis is catalyzed by diacylglycerol:acyltransferase (DGAT) which esterifies the diacylglycerol with a fatty acid. Mammalian heart has two DGAT isoforms, DGAT1 and DGAT2, yet their roles in cardiac metabolism and function remain poorly defined. Here, we show that inactivation of DGAT1 or DGAT2 in adult mouse heart results in a moderate suppression of TG synthesis and turnover. Partial inhibition of DGAT activity increases cardiac fatty acid oxidation without affecting PPARα signaling, myocardial energetics or contractile function. Moreover, coinhibition of DGAT1/2 in the heart abrogates TG turnover and protects the heart against high fat diet-induced lipid accumulation with no adverse effects on basal or dobutamine-stimulated cardiac function. Thus, the two DGAT isoforms in the heart have partially redundant function, and pharmacological inhibition of one DGAT isoform is well tolerated in adult hearts.
Collapse
|
25
|
Carpentier AC. Abnormal Myocardial Dietary Fatty Acid Metabolism and Diabetic Cardiomyopathy. Can J Cardiol 2018; 34:605-614. [PMID: 29627307 DOI: 10.1016/j.cjca.2017.12.029] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Revised: 12/08/2017] [Accepted: 12/19/2017] [Indexed: 12/13/2022] Open
Abstract
Patients with diabetes are at very high risk of hospitalization and death from heart failure. Increased prevalence of coronary heart disease, hypertension, autonomic neuropathy, and kidney failure all play a role in this increased risk. However, cardiac metabolic abnormalities are now recognized to play a role in this increased risk. Increased reliance on fatty acids to produce energy might predispose the diabetic heart to oxidative stress and ischemic damage. Intramyocellular accumulation of toxic lipid metabolites leads to a number of cellular abnormalities that might also contribute to cardiac remodelling and cardiac dysfunction. However, fatty acid availability from circulation and from intracellular lipid droplets to fuel the heart is critical to maintain its function. Fatty acids delivery to the heart is very complex and includes plasma nonesterified fatty acid flux as well as triglyceride-rich lipoprotein-mediated transport. Although many studies have shown a cross-sectional association between enhanced fatty acid delivery to the heart and reduction in left ventricular function in subjects with prediabetes and diabetes, these mechanisms change very rapidly during type 2 diabetes treatment. The present review focuses on the role of fatty acids in cardiac function, with particular emphasis on the possible role of early abnormalities of dietary fatty acid metabolism in the development of diabetic cardiomyopathy.
Collapse
Affiliation(s)
- André C Carpentier
- Division of Endocrinology, Department of Medicine, Centre de recherche du CHUS, Université de Sherbrooke, Sherbrooke, Québec, Canada.
| |
Collapse
|
26
|
Yang C, Lim W, Bazer FW, Song G. Down-regulation of stearoyl-CoA desaturase-1 increases susceptibility to palmitic-acid-induced lipotoxicity in human trophoblast cells. J Nutr Biochem 2017; 54:35-47. [PMID: 29242171 DOI: 10.1016/j.jnutbio.2017.11.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Revised: 09/12/2017] [Accepted: 11/11/2017] [Indexed: 01/22/2023]
Abstract
In early pregnancy, adequate dietary factors are important for the growth of human trophoblast cells, followed by placental development. Although stearoyl-CoA desaturase 1 (SCD1) is expected to relieve palmitic acid (PA)-induced lipotoxicity by regulating diacylglycerol and ceramide, its function is unclear in human trophoblast cells. The aim was to investigate inhibitory effects of SCD1 activity on PA-induced trophoblast cell death. PA induces cell death and inhibits the invasion of human trophoblast cells (HTR8/SVneo). In addition, we demonstrate that SCD1 has a protective role against PA in human trophoblast cells by regulating AKT-mediated signaling pathway and mitochondrial membrane potential. The knockdown of SCD1 enhances the proapoptotic activity of PA in HTR8/SVneo cells. Lastly, we investigated microRNA expression predicted to target SCD1 and diacylglycerol O-acyltransferase 1 (DGAT1) by PA. Collectively, the results suggest potential roles of SCD1 and DGAT1 in alleviating the toxicity of PA and maintaining lipid homeostasis for normal placentation.
Collapse
Affiliation(s)
- Changwon Yang
- Institute of Animal Molecular Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, 02841, Republic of Korea; Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, 02841, Republic of Korea
| | - Whasun Lim
- Department of Biomedical Sciences, Catholic Kwandong University, Gangneung, 25601, Republic of Korea
| | - Fuller W Bazer
- Center for Animal Biotechnology and Genomics and Department of Animal Science, Texas A&M University, College Station, 77843-2471, Texas, USA
| | - Gwonhwa Song
- Institute of Animal Molecular Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, 02841, Republic of Korea; Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, 02841, Republic of Korea.
| |
Collapse
|
27
|
Marín-Royo G, Martínez-Martínez E, Gutiérrez B, Jurado-López R, Gallardo I, Montero O, Bartolomé MV, San Román JA, Salaices M, Nieto ML, Cachofeiro V. The impact of obesity in the cardiac lipidome and its consequences in the cardiac damage observed in obese rats. CLINICA E INVESTIGACION EN ARTERIOSCLEROSIS 2017; 30:10-20. [PMID: 28869040 DOI: 10.1016/j.arteri.2017.07.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Revised: 06/26/2017] [Accepted: 07/06/2017] [Indexed: 12/20/2022]
Abstract
AIMS To explore the impact of obesity on the cardiac lipid profile in rats with diet-induced obesity, as well as to evaluate whether or not the specific changes in lipid species are associated with cardiac fibrosis. METHODS Male Wistar rats were fed either a high-fat diet (HFD, 35% fat) or standard diet (3.5% fat) for 6 weeks. Cardiac lipids were analyzed using by liquid chromatography-tandem mass spectrometry. RESULTS HFD rats showed cardiac fibrosis and enhanced levels of cardiac superoxide anion (O2), HOMA index, adiposity, and plasma leptin, as well as a reduction in those of cardiac glucose transporter (GLUT 4), compared with control animals. Cardiac lipid profile analysis showed a significant increase in triglycerides, especially those enriched with palmitic, stearic, and arachidonic acid. An increase in levels of diacylglycerol (DAG) was also observed. No changes in cardiac levels of diacyl phosphatidylcholine, or even a reduction in total levels of diacyl phosphatidylethanolamine, diacyl phosphatidylinositol, and sphingomyelins (SM) was observed in HFD, as compared with control animals. After adjustment for other variables (oxidative stress, HOMA, cardiac hypertrophy), total levels of DAG were independent predictors of cardiac fibrosis while the levels of total SM were independent predictors of the cardiac levels of GLUT 4. CONCLUSIONS These data suggest that obesity has a significant impact on cardiac lipid composition, although it does not modulate the different species in a similar manner. Nonetheless, these changes are likely to participate in the cardiac damage in the context of obesity, since total DAG levels can facilitate the development of cardiac fibrosis, and SM levels predict GLUT4 levels.
Collapse
Affiliation(s)
- Gema Marín-Royo
- Departamento de Fisiología, Facultad de Medicina, Universidad Complutense de Madrid and Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Spain
| | - Ernesto Martínez-Martínez
- Departamento de Fisiología, Facultad de Medicina, Universidad Complutense de Madrid and Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Spain
| | - Beatriz Gutiérrez
- Instituto de Biología y Genética Molecular, CSIC-Universidad de Valladolid, Spain
| | - Raquel Jurado-López
- Departamento de Fisiología, Facultad de Medicina, Universidad Complutense de Madrid and Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Spain
| | - Isabel Gallardo
- Instituto de Biología y Genética Molecular, CSIC-Universidad de Valladolid, Spain
| | - Olimpio Montero
- Centro de Desarrollo Biotecnológico, CSIC, Valladolid, Spain
| | - Mª Visitación Bartolomé
- Departamento de Oftalmología y Otorrinolaringología, Facultad de Psicología, Universidad Complutense, Madrid, Spain; Ciber de Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III, Madrid, Spain
| | - José Alberto San Román
- Instituto de Ciencias del Corazón (ICICOR), Hospital Clínico Universitario de Valladolid, Valladolid, Spain; Ciber de Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III, Madrid, Spain
| | - Mercedes Salaices
- Departamento de Farmacología, Facultad de Medicina, Universidad Autónoma de Madrid and Instituto de Investigación Hospital Universitario La Paz (IdiPAZ), Spain; Ciber de Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III, Madrid, Spain
| | - María Luisa Nieto
- Instituto de Biología y Genética Molecular, CSIC-Universidad de Valladolid, Spain; Ciber de Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III, Madrid, Spain
| | - Victoria Cachofeiro
- Departamento de Fisiología, Facultad de Medicina, Universidad Complutense de Madrid and Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Spain; Ciber de Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III, Madrid, Spain.
| |
Collapse
|
28
|
Raza GS, Putaala H, Hibberd AA, Alhoniemi E, Tiihonen K, Mäkelä KA, Herzig KH. Polydextrose changes the gut microbiome and attenuates fasting triglyceride and cholesterol levels in Western diet fed mice. Sci Rep 2017; 7:5294. [PMID: 28706193 PMCID: PMC5509720 DOI: 10.1038/s41598-017-05259-3] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Accepted: 05/25/2017] [Indexed: 02/07/2023] Open
Abstract
Obesity and dyslipidemia are hallmarks of metabolic and cardiovascular diseases. Polydextrose (PDX), a soluble fiber has lipid lowering effects. We hypothesize that PDX reduces triglycerides and cholesterol by influencing gut microbiota, which in turn modulate intestinal gene expression. C57BL/6 male mice were fed a Western diet (WD) ±75 mg PDX twice daily by oral gavage for 14 days. Body weight and food intake were monitored daily. Fasting plasma lipids, caecal microbiota and gene expression in intestine and liver were measured after 14 days of feeding. PDX supplementation to WD significantly reduced food intake (p < 0.001), fasting plasma triglyceride (p < 0.001) and total cholesterol (p < 0.05). Microbiome analysis revealed that the relative abundance of Allobaculum, Bifidobacterium and Coriobacteriaceae taxa associated with lean phenotype, increased in WD + PDX mice. Gene expression analysis with linear mixed-effects model showed consistent downregulation of Dgat1, Cd36, Fiaf and upregulation of Fxr in duodenum, jejunum, ileum and colon in WD + PDX mice. Spearman correlations indicated that genera enriched in WD + PDX mice inversely correlated with fasting lipids and downregulated genes Dgat1, Cd36 and Fiaf while positively with upregulated gene Fxr. These results suggest that PDX in mice fed WD promoted systemic changes via regulation of the gut microbiota and gene expression in intestinal tract.
Collapse
Affiliation(s)
- Ghulam Shere Raza
- Research unit of Biomedicine and Biocenter of Oulu, Department of Physiology, University of Oulu, Oulu, Finland
| | - Heli Putaala
- DuPont Nutrition and Health, Global Health and Nutrition Science, Kantvik, Finland
| | - Ashley A Hibberd
- DuPont Nutrition and Health, Genomics & Microbiome Science, St. Louis, MO, USA
| | | | - Kirsti Tiihonen
- DuPont Nutrition and Health, Global Health and Nutrition Science, Kantvik, Finland
| | - Kari Antero Mäkelä
- Research unit of Biomedicine and Biocenter of Oulu, Department of Physiology, University of Oulu, Oulu, Finland
| | - Karl-Heinz Herzig
- Research unit of Biomedicine and Biocenter of Oulu, Department of Physiology, University of Oulu, Oulu, Finland. .,Department of Gastroenterology and Metabolism, Poznan University of Medical Sciences, Poznan, Poland. .,Medical Research Center (MRC), University of Oulu, and University Hospital, Oulu, Finland.
| |
Collapse
|
29
|
Abstract
The heart utilizes large amounts of fatty acids as energy providing substrates. The physiological balance of lipid uptake and oxidation prevents accumulation of excess lipids. Several processes that affect cardiac function, including ischemia, obesity, diabetes mellitus, sepsis, and most forms of heart failure lead to altered fatty acid oxidation and often also to the accumulation of lipids. There is now mounting evidence associating certain species of these lipids with cardiac lipotoxicity and subsequent myocardial dysfunction. Experimental and clinical data are discussed and paths to reduction of toxic lipids as a means to improve cardiac function are suggested.
Collapse
Affiliation(s)
- P Christian Schulze
- From the Divisions of Cardiology, Friedrich-Schiller-University Jena, Germany, and Columbia University, New York, NY (P.C.S.); Metabolic Biology Laboratory, Center for Translational Medicine, Lewis Katz School of Medicine at Temple University, Philadelphia, PA (K.D.); and Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, New York University School of Medicine, New York, NY (I.J.G.).
| | - Konstantinos Drosatos
- From the Divisions of Cardiology, Friedrich-Schiller-University Jena, Germany, and Columbia University, New York, NY (P.C.S.); Metabolic Biology Laboratory, Center for Translational Medicine, Lewis Katz School of Medicine at Temple University, Philadelphia, PA (K.D.); and Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, New York University School of Medicine, New York, NY (I.J.G.)
| | - Ira J Goldberg
- From the Divisions of Cardiology, Friedrich-Schiller-University Jena, Germany, and Columbia University, New York, NY (P.C.S.); Metabolic Biology Laboratory, Center for Translational Medicine, Lewis Katz School of Medicine at Temple University, Philadelphia, PA (K.D.); and Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, New York University School of Medicine, New York, NY (I.J.G.)
| |
Collapse
|
30
|
Abstract
PURPOSE OF REVIEW Experimental evidences are strong for a role of long-chain saturated fatty acids in the development of insulin resistance and type 2 diabetes. Ectopic accretion of triglycerides in lean organs is a characteristic of prediabetes and type 2 diabetes and has been linked to end-organ complications. The contribution of disordered dietary fatty acid (DFA) metabolism to lean organ overexposure and lipotoxicity is still unclear, however. DFA metabolism is very complex and very difficult to study in vivo in humans. RECENT FINDINGS We have recently developed a novel imaging method using PET with oral administration of 14-R,S-F-fluoro-6-thia-heptadecanoic acid (FTHA) to quantify organ-specific DFA partitioning. Our studies thus far confirmed impaired storage of DFA per volume of fat mass in abdominal adipose tissues of individuals with prediabetes. They also highlighted the increased channeling of DFA toward the heart, associated with subclinical reduction in cardiac systolic and diastolic function in individuals with prediabetes. SUMMARY In the present review, we summarize previous work on DFA metabolism in healthy and prediabetic states and discuss these in the light of our novel findings using PET imaging of DFA metabolism. We herein provide an integrated view of abnormal organ-specific DFA partitioning in prediabetes in humans.
Collapse
Affiliation(s)
- Christophe Noll
- Division of Endocrinology, Department of Medicine, Centre de recherche du CHUS, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | | |
Collapse
|
31
|
Evans RD, Hauton D. The role of triacylglycerol in cardiac energy provision. Biochim Biophys Acta Mol Cell Biol Lipids 2016; 1861:1481-91. [DOI: 10.1016/j.bbalip.2016.03.010] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Revised: 03/08/2016] [Accepted: 03/09/2016] [Indexed: 02/07/2023]
|
32
|
Kolwicz SC. Lipid partitioning during cardiac stress. BIOCHIMICA ET BIOPHYSICA ACTA 2016; 1861:1472-80. [PMID: 27040509 DOI: 10.1016/j.bbalip.2016.03.028] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Revised: 03/18/2016] [Accepted: 03/18/2016] [Indexed: 01/11/2023]
Abstract
It is well documented that fatty acids serve as the primary fuel substrate for the contracting myocardium. However, extensive research has identified significant changes in the myocardial oxidation of fatty acids during acute or chronic cardiac stress. As a result, the redistribution or partitioning of fatty acids due to metabolic derangements could have biological implications. Fatty acids can be stored as triacylglycerols, serve as critical components for biosynthesis of phospholipid membranes, and form the potent signaling molecules, diacylglycerol and ceramides. Therefore, the contribution of lipid metabolism to health and disease is more intricate than a balance of uptake and oxidation. In this review, the available data regarding alterations that occur in endogenous cardiac lipid pathways during the pathological stressors of ischemia-reperfusion and pathological hypertrophy/heart failure are highlighted. In addition, changes in endogenous lipids observed in exercise training models are presented for comparison. This article is part of a Special Issue entitled: Heart Lipid Metabolism edited by G.D. Lopaschuk.
Collapse
Affiliation(s)
- Stephen C Kolwicz
- Mitochondria and Metabolism Center, University of Washington, School of Medicine, 850 Republican St., Seattle, WA 98109, United States.
| |
Collapse
|
33
|
Knockdown of triglyceride synthesis does not enhance palmitate lipotoxicity or prevent oleate-mediated rescue in rat hepatocytes. Biochim Biophys Acta Mol Cell Biol Lipids 2016; 1861:1005-1014. [PMID: 27249207 DOI: 10.1016/j.bbalip.2016.05.013] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Revised: 05/14/2016] [Accepted: 05/26/2016] [Indexed: 12/14/2022]
Abstract
Experiments in a variety of cell types, including hepatocytes, consistently demonstrate the acutely lipotoxic effects of saturated fatty acids, such as palmitate (PA), but not unsaturated fatty acids, such as oleate (OA). PA+OA co-treatment fully prevents PA lipotoxicity through mechanisms that are not well defined but which have been previously attributed to more efficient esterification and sequestration of PA into triglycerides (TGs) when OA is abundant. However, this hypothesis has never been directly tested by experimentally modulating the relative partitioning of PA/OA between TGs and other lipid fates in hepatocytes. In this study, we found that addition of OA to PA-treated hepatocytes enhanced TG synthesis, reduced total PA uptake and PA lipid incorporation, decreased phospholipid saturation and rescued PA-induced ER stress and lipoapoptosis. Knockdown of diacylglycerol acyltransferase (DGAT), the rate-limiting step in TG synthesis, significantly reduced TG accumulation without impairing OA-mediated rescue of PA lipotoxicity. In both wild-type and DGAT-knockdown hepatocytes, OA co-treatment significantly reduced PA lipid incorporation and overall phospholipid saturation compared to PA-treated hepatocytes. These data indicate that OA's protective effects do not require increased conversion of PA into inert TGs, but instead may be due to OA's ability to compete against PA for cellular uptake and/or esterification and, thereby, normalize the composition of cellular lipids in the presence of a toxic PA load.
Collapse
|
34
|
Tschapalda K, Zhang YQ, Liu L, Golovnina K, Schlemper T, Eichmann TO, Lal-Nag M, Sreenivasan U, McLenithan J, Ziegler S, Sztalryd C, Lass A, Auld D, Oliver B, Waldmann H, Li Z, Shen M, Boxer MB, Beller M. A Class of Diacylglycerol Acyltransferase 1 Inhibitors Identified by a Combination of Phenotypic High-throughput Screening, Genomics, and Genetics. EBioMedicine 2016; 8:49-59. [PMID: 27428418 PMCID: PMC4919474 DOI: 10.1016/j.ebiom.2016.04.014] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Revised: 04/02/2016] [Accepted: 04/12/2016] [Indexed: 12/13/2022] Open
Abstract
Excess lipid storage is an epidemic problem in human populations. Thus, the identification of small molecules to treat or prevent lipid storage-related metabolic complications is of great interest. Here we screened > 320.000 compounds for their ability to prevent a cellular lipid accumulation phenotype. We used fly cells because the multifarious tools available for this organism should facilitate unraveling the mechanism-of-action of active small molecules. Of the several hundred lipid storage inhibitors identified in the primary screen we concentrated on three structurally diverse and potent compound classes active in cells of multiple species (including human) and negligible cytotoxicity. Together with Drosophila in vivo epistasis experiments, RNA-Seq expression profiles suggested that the target of one of the small molecules was diacylglycerol acyltransferase 1 (DGAT1), a key enzyme in the production of triacylglycerols and prominent human drug target. We confirmed this prediction by biochemical and enzymatic activity tests. We identified > 600 potent small molecule inhibitors of cellular lipid storage deposition. RNA-Seq expression profiling discriminated the activity of three lead scaffolds and guided subsequent functional studies. We discovered a class of DGAT1 inhibitors, which is active in fly and mammalian cell lines as well as whole flies.
Obesity and other lipid storage associated diseases are a growing health threat of human populations. In an undirected phenotypic screen, we identified pharmacologically active small molecules that reduce or enhance lipid storage. Our work focuses on three lead structures that prevent lipid storage in diverse cellular systems including cells from a diabetes patient. In order to elucidate the compound mechanisms-of-action and cellular targets, we used a combination of RNA-Seq transcriptional profiling and diverse functional assays. Our results strongly suggest that one of our lead structures represents a class of inhibitors targeting the key lipogenic enzyme diacylglycerol acyltransferase 1.
Collapse
Affiliation(s)
- Kirsten Tschapalda
- Systems Biology of Lipid Metabolism, Heinrich Heine University Düsseldorf, Germany; Institute for Mathematical Modeling of Biological Systems, Heinrich Heine University Düsseldorf, Germany; Department of Chemical Biology, Max Planck Institute of Molecular Physiology, Dortmund, Germany; Department of Molecular Developmental Biology, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Ya-Qin Zhang
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, USA
| | - Li Liu
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, USA
| | - Kseniya Golovnina
- National Institute of Diabetes, Digestive and Kidney Diseases, National Institutes of Health, Bethesda, USA
| | - Thomas Schlemper
- Systems Biology of Lipid Metabolism, Heinrich Heine University Düsseldorf, Germany; Institute for Mathematical Modeling of Biological Systems, Heinrich Heine University Düsseldorf, Germany
| | | | - Madhu Lal-Nag
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, USA
| | - Urmila Sreenivasan
- Department of Medicine, Division of Endocrinology University of Maryland School of Medicine, USA
| | - John McLenithan
- Department of Medicine, Division of Endocrinology University of Maryland School of Medicine, USA
| | - Slava Ziegler
- Department of Chemical Biology, Max Planck Institute of Molecular Physiology, Dortmund, Germany
| | - Carole Sztalryd
- Department of Medicine, Division of Endocrinology University of Maryland School of Medicine, USA; Baltimore VA Medical Center, VA Research Service, Geriatric Research, Education and Clinical Center (GRECC) and VA Maryland Health Care System, Department of Medicine, Division of Endocrinology University of Maryland School of Medicine, USA
| | - Achim Lass
- Institute of Molecular Biosciences, University of Graz, Austria
| | - Douglas Auld
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, USA
| | - Brian Oliver
- National Institute of Diabetes, Digestive and Kidney Diseases, National Institutes of Health, Bethesda, USA
| | - Herbert Waldmann
- Department of Chemical Biology, Max Planck Institute of Molecular Physiology, Dortmund, Germany
| | - Zhuyin Li
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, USA
| | - Min Shen
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, USA
| | - Matthew B Boxer
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, USA
| | - Mathias Beller
- Systems Biology of Lipid Metabolism, Heinrich Heine University Düsseldorf, Germany; Institute for Mathematical Modeling of Biological Systems, Heinrich Heine University Düsseldorf, Germany.
| |
Collapse
|
35
|
Burgeiro A, Fuhrmann A, Cherian S, Espinoza D, Jarak I, Carvalho RA, Loureiro M, Patrício M, Antunes M, Carvalho E. Glucose uptake and lipid metabolism are impaired in epicardial adipose tissue from heart failure patients with or without diabetes. Am J Physiol Endocrinol Metab 2016; 310:E550-64. [PMID: 26814014 PMCID: PMC4824138 DOI: 10.1152/ajpendo.00384.2015] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Accepted: 01/20/2016] [Indexed: 01/25/2023]
Abstract
Type 2 diabetes mellitus is a complex metabolic disease, and cardiovascular disease is a leading complication of diabetes. Epicardial adipose tissue surrounding the heart displays biochemical, thermogenic, and cardioprotective properties. However, the metabolic cross-talk between epicardial fat and the myocardium is largely unknown. This study sought to understand epicardial adipose tissue metabolism from heart failure patients with or without diabetes. We aimed to unravel possible differences in glucose and lipid metabolism between human epicardial and subcutaneous adipocytes and elucidate the potential underlying mechanisms involved in heart failure. Insulin-stimulated [(14)C]glucose uptake and isoproterenol-stimulated lipolysis were measured in isolated epicardial and subcutaneous adipocytes. The expression of genes involved in glucose and lipid metabolism was analyzed by reverse transcription-polymerase chain reaction in adipocytes. In addition, epicardial and subcutaneous fatty acid composition was analyzed by high-resolution proton nuclear magnetic resonance spectroscopy. The difference between basal and insulin conditions in glucose uptake was significantly decreased (P= 0.006) in epicardial compared with subcutaneous adipocytes. Moreover, a significant (P< 0.001) decrease in the isoproterenol-stimulated lipolysis was also observed when the two fat depots were compared, and it was strongly correlated with lipolysis, lipid storage, and inflammation-related gene expression. Moreover, the fatty acid composition of these tissues was significantly altered by diabetes. These results emphasize potential metabolic differences between both fat depots in the presence of heart failure and highlight epicardial fat as a possible therapeutic target in situ in the cardiac microenvironment.
Collapse
Affiliation(s)
- Ana Burgeiro
- Center of Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - Amelia Fuhrmann
- Center of Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - Sam Cherian
- Faculty of Integrative Sciences and Technology, Quest International University Perak, Perak, Malaysia
| | - Daniel Espinoza
- Center of Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - Ivana Jarak
- Center of Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - Rui A Carvalho
- Center of Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal; Department of Life Sciences, Faculty of Sciences and Technology, University of Coimbra, Coimbra, Portugal;
| | - Marisa Loureiro
- Laboratory of Biostatistics and Medical Informatics, IBILI - Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Miguel Patrício
- Laboratory of Biostatistics and Medical Informatics, IBILI - Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Manuel Antunes
- Cardiothroracic Surgery Unit at the University Hospital of Coimbra, Coimbra, Portugal
| | - Eugénia Carvalho
- Center of Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal; Portuguese Diabetes Association, Lisbon, Portugal; Department of Geriatrics, University of Arkansas for Medical Sciences, Little Rock, Arkansas; and Arkansas Children's Hospital Research Institute, Little Rock, Arkansas
| |
Collapse
|
36
|
Carley AN, Lewandowski ED. Triacylglycerol turnover in the failing heart. Biochim Biophys Acta Mol Cell Biol Lipids 2016; 1861:1492-9. [PMID: 26993578 DOI: 10.1016/j.bbalip.2016.03.012] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Revised: 03/08/2016] [Accepted: 03/09/2016] [Indexed: 12/20/2022]
Abstract
No longer regarded as physiologically inert the endogenous triacylglyceride (TAG) pool within the cardiomyocyte is now recognized to play a dynamic role in metabolic regulation. Beyond static measures of content, the relative rates of interconversion among acyl intermediates are more closely linked to dynamic processes of physiological function in normal and diseased hearts, with the potential for both adaptive and maladaptive contributions. Indeed, multiple inefficiencies in cardiac metabolism have been identified in the decompensated, hypertrophied and failing heart. Among the intracellular responses to physiological, metabolic and pathological stresses, TAG plays a central role in the balance of lipid handling and signaling mechanisms. TAG dynamics are profoundly altered from normal in both diabetic and pathologically stressed hearts. More than just expansion or contraction of the stored lipid pool, the turnover rates of TAG are sensitive to and compete against other enzymatic pathways, anabolic and catabolic, for reactive acyl-CoA units. The rates of TAG synthesis and lipolysis thusly affect multiple components of cardiomyocyte function, including energy metabolism, cell signaling, and enzyme activation, as well as the regulation of gene expression in both normal and diseased states. This review examines the multiple etiologies and metabolic consequences of the failing heart and the central role of lipid storage dynamics in the pathogenic process. This article is part of a Special Issue entitled: Heart Lipid Metabolism edited by G.D. Lopaschuk.
Collapse
Affiliation(s)
- Andrew N Carley
- Sanford Burnham Prebys Medical Discovery Institute, Orlando, FL, United States
| | | |
Collapse
|
37
|
Lipid metabolism and signaling in cardiac lipotoxicity. Biochim Biophys Acta Mol Cell Biol Lipids 2016; 1861:1513-24. [PMID: 26924249 DOI: 10.1016/j.bbalip.2016.02.016] [Citation(s) in RCA: 125] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Revised: 02/19/2016] [Accepted: 02/19/2016] [Indexed: 01/01/2023]
Abstract
The heart balances uptake, metabolism and oxidation of fatty acids (FAs) to maintain ATP production, membrane biosynthesis and lipid signaling. Under conditions where FA uptake outpaces FA oxidation and FA sequestration as triacylglycerols in lipid droplets, toxic FA metabolites such as ceramides, diacylglycerols, long-chain acyl-CoAs, and acylcarnitines can accumulate in cardiomyocytes and cause cardiomyopathy. Moreover, studies using mutant mice have shown that dysregulation of enzymes involved in triacylglycerol, phospholipid, and sphingolipid metabolism in the heart can lead to the excess deposition of toxic lipid species that adversely affect cardiomyocyte function. This review summarizes our current understanding of lipid uptake, metabolism and signaling pathways that have been implicated in the development of lipotoxic cardiomyopathy under conditions including obesity, diabetes, aging, and myocardial ischemia-reperfusion. This article is part of a Special Issue entitled: Heart Lipid Metabolism edited by G.D. Lopaschuk.
Collapse
|
38
|
Heier C, Haemmerle G. Fat in the heart: The enzymatic machinery regulating cardiac triacylglycerol metabolism. Biochim Biophys Acta Mol Cell Biol Lipids 2016; 1861:1500-12. [PMID: 26924251 DOI: 10.1016/j.bbalip.2016.02.014] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Revised: 02/17/2016] [Accepted: 02/19/2016] [Indexed: 01/22/2023]
Abstract
The heart predominantly utilizes fatty acids (FAs) as energy substrate. FAs that enter cardiomyocytes can be activated and directly oxidized within mitochondria (and peroxisomes) or they can be esterified and intracellularly deposited as triacylglycerol (TAG) often simply referred to as fat. An increase in cardiac TAG can be a signature of the diseased heart and may implicate a minor role of TAG synthesis and breakdown in normal cardiac energy metabolism. Often overlooked, the heart has an extremely high TAG turnover and the transient deposition of FAs within the cardiac TAG pool critically determines the availability of FAs as energy substrate and signaling molecules. We herein review the recent literature regarding the enzymes and co-regulators involved in cardiomyocyte TAG synthesis and catabolism and discuss the interconnection of these metabolic pathways in the normal and diseased heart. This article is part of a Special Issue entitled: Heart Lipid Metabolism edited by G.D. Lopaschuk.
Collapse
Affiliation(s)
- Christoph Heier
- Institute of Molecular Biosciences, University of Graz, Austria
| | | |
Collapse
|
39
|
Yuen JJ, Lee SA, Jiang H, Brun PJ, Blaner WS. DGAT1-deficiency affects the cellular distribution of hepatic retinoid and attenuates the progression of CCl4-induced liver fibrosis. Hepatobiliary Surg Nutr 2015; 4:184-96. [PMID: 26151058 DOI: 10.3978/j.issn.2304-3881.2014.12.02] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2014] [Accepted: 10/29/2014] [Indexed: 01/03/2023]
Abstract
BACKGROUND Diacylglycerol O-acyltransferase 1 (DGAT1) catalyzes the final step of triglyceride synthesis, transferring an acyl group from acyl-CoA to diacylglycerol. DGAT1 also catalyzes the acyl-CoA-dependent formation of retinyl esters in vitro and in mouse intestine and skin. Although DGAT1 is expressed in both hepatocytes and hepatic stellate cells (HSCs), we reported genetic and nutritional studies that established that DGAT1 does not contribute to retinyl ester formation in the liver. METHODS We now have explored in more depth the role(s) of DGAT1 in hepatic retinoid metabolism and storage. RESULTS Our data show that DGAT1 affects the cellular distribution between hepatocytes and HSCs of stored and newly absorbed dietary retinol. For livers of Dgat1-deficient mice, a greater percentage of stored retinyl ester is present in HSCs at the expense of hepatocytes. This is also true for newly absorbed oral [(3)H]retinol. These differences are associated with significantly increased expression, by 2.8-fold, of cellular retinol-binding protein, type I (RBP1) in freshly isolated HSCs from Dgat1-deficient mice, raising the possibility that RBP1, which contributes to retinol uptake into cells and retinyl ester synthesis, accounts for the differences. We further show that the retinyl ester-containing lipid droplets in HSCs are affected in Dgat1-null mice, being fewer in number but, on average, larger than in wild type (WT) HSCs. Finally, we demonstrate that DGAT1 affects experimentally induced HSC activation in vivo but that this effect is independent of altered retinoic acid availability or effects on gene expression. CONCLUSIONS Our studies establish that DGAT1 has a role in hepatic retinoid storage and metabolism, but this does not involve direct actions of DGAT1 in retinyl ester synthesis.
Collapse
Affiliation(s)
- Jason J Yuen
- Department of Medicine, Columbia University, New York, NY 10032, USA
| | - Seung-Ah Lee
- Department of Medicine, Columbia University, New York, NY 10032, USA
| | - Hongfeng Jiang
- Department of Medicine, Columbia University, New York, NY 10032, USA
| | | | - William S Blaner
- Department of Medicine, Columbia University, New York, NY 10032, USA
| |
Collapse
|
40
|
Shan T, Zhang P, Bi P, Kuang S. Lkb1 deletion promotes ectopic lipid accumulation in muscle progenitor cells and mature muscles. J Cell Physiol 2015; 230:1033-41. [PMID: 25251157 DOI: 10.1002/jcp.24831] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2014] [Accepted: 09/19/2014] [Indexed: 12/25/2022]
Abstract
Excessive intramyocellular triglycerides (muscle lipids) are associated with reduced contractile function, insulin resistance, and Type 2 diabetes, but what governs lipid accumulation in muscle is unclear. Here we report a role of Lkb1 in regulating lipid metabolism in muscle stem cells and their descendent mature muscles. We used Myod(Cre) and Lkb1(flox/flox) mice to specifically delete Lkb1 in myogenic cells including stem and differentiated cells, and examined the lipid accumulation and gene expression of myoblasts cultured from muscle stem cells (satellite cells). Genetic deletion of Lkb1 in myogenic progenitors led to elevated expression of lipogenic genes and ectopic lipid accumulation in proliferating myoblasts. Interestingly, the Lkb1-deficient myoblasts differentiated into adipocyte-like cells upon adipogenic induction. However, these adipocyte-like cells maintained myogenic gene expression with reduced ability to form myotubes efficiently. Activation of AMPK by AICAR prevented ectopic lipid formation in the Lkb1-null myoblasts. Notably, Lkb1-deficient muscles accumulated excessive lipids in vivo in response to high-fat diet feeding. These results demonstrate that Lkb1 acts through AMPK to limit lipid deposition in muscle stem cells and their derivative mature muscles, and point to the possibility of controlling muscle lipid content using AMPK activating drugs.
Collapse
Affiliation(s)
- Tizhong Shan
- Department of Animal Science, Purdue University, West Lafayette, Indiana
| | | | | | | |
Collapse
|
41
|
Zizola C, Kennel PJ, Akashi H, Ji R, Castillero E, George I, Homma S, Schulze PC. Activation of PPARδ signaling improves skeletal muscle oxidative metabolism and endurance function in an animal model of ischemic left ventricular dysfunction. Am J Physiol Heart Circ Physiol 2015; 308:H1078-85. [PMID: 25713305 DOI: 10.1152/ajpheart.00679.2014] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2014] [Accepted: 02/18/2015] [Indexed: 01/06/2023]
Abstract
Exercise intolerance in heart failure has been linked to impaired skeletal muscle oxidative capacity. Oxidative metabolism and exercise capacity are regulated by PPARδ signaling. We hypothesized that PPARδ stimulation reverts skeletal muscle oxidative dysfunction. Myocardial infarction (MI) was induced in C57BL/6 mice and the development of ventricular dysfunction was monitored over 8 wk. Mice were randomized to the PPARδ agonist GW501516 (5 mg/kg body wt per day for 4 wk) or placebo 8 wk post-MI. Muscle function was assessed through running tests and grip strength measurements. In muscle, we analyzed muscle fiber cross-sectional area and fiber types, metabolic gene expression, fatty acid (FA) oxidation and ATP content. Signaling pathways were studied in C2C12 myotubes. FA oxidation and ATP levels decreased in muscle from MI mice compared with sham- operated mice. GW501516 administration increased oleic acid oxidation levels in skeletal muscle of the treated MI group compared with placebo treatment. This was accompanied by transcriptional changes including increased CPT1 expression. Further, the PPARδ-agonist improved running endurance compared with placebo. Cell culture experiments revealed protective effects of GW501516 against the cytokine-induced decrease of FA oxidation and changes in metabolic gene expression. Skeletal muscle dysfunction in HF is associated with impaired PPARδ signaling and treatment with the PPARδ agonist GW501516 corrects oxidative capacity and FA metabolism and improves exercise capacity in mice with LV dysfunction. Pharmacological activation of PPARδ signaling could be an attractive therapeutic intervention to counteract the progressive skeletal muscle dysfunction in HF.
Collapse
Affiliation(s)
- Cynthia Zizola
- Department of Medicine, Division of Cardiology, Columbia University Medical Center, New York, New York; and
| | - Peter J Kennel
- Department of Medicine, Division of Cardiology, Columbia University Medical Center, New York, New York; and
| | - Hirokazu Akashi
- Department of Medicine, Division of Cardiology, Columbia University Medical Center, New York, New York; and
| | - Ruiping Ji
- Department of Medicine, Division of Cardiology, Columbia University Medical Center, New York, New York; and
| | - Estibaliz Castillero
- Division of Cardiothoracic Surgery, Columbia University Medical Center, New York, New York
| | - Isaac George
- Division of Cardiothoracic Surgery, Columbia University Medical Center, New York, New York
| | - Shunichi Homma
- Department of Medicine, Division of Cardiology, Columbia University Medical Center, New York, New York; and
| | - P Christian Schulze
- Department of Medicine, Division of Cardiology, Columbia University Medical Center, New York, New York; and
| |
Collapse
|
42
|
Gaspar JA, Doss MX, Hengstler JG, Cadenas C, Hescheler J, Sachinidis A. Unique metabolic features of stem cells, cardiomyocytes, and their progenitors. Circ Res 2014; 114:1346-60. [PMID: 24723659 DOI: 10.1161/circresaha.113.302021] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Recently, growing attention has been directed toward stem cell metabolism, with the key observation that the plasticity of stem cells also reflects the plasticity of their energy substrate metabolism. There seems to be a clear link between the self-renewal state of stem cells, in which cells proliferate without differentiation, and the activity of specific metabolic pathways. Differentiation is accompanied by a shift from anaerobic glycolysis to mitochondrial respiration. This metabolic switch of differentiating stem cells is required to cover the energy demands of the different organ-specific cell types. Among other metabolic signatures, amino acid and carbohydrate metabolism is most prominent in undifferentiated embryonic stem cells, whereas the fatty acid metabolic signature is unique in cardiomyocytes derived from embryonic stem cells. Identifying the specific metabolic pathways involved in pluripotency and differentiation is critical for further progress in the field of developmental biology and regenerative medicine. The recently generated knowledge on metabolic key processes may help to generate mature stem cell-derived somatic cells for therapeutic applications without the requirement of genetic manipulation. In the present review, the literature about metabolic features of stem cells and their cardiovascular cell derivatives as well as the specific metabolic gene signatures differentiating between stem and differentiated cells are summarized and discussed.
Collapse
Affiliation(s)
- John Antonydas Gaspar
- From the Center of Physiology and Pathophysiology, Institute of Neurophysiology, University of Cologne, Cologne, Germany (J.A.G., M.X.D., J.H., A.S.); and Leibniz Research Centre for Working Environment and Human Factors (IfADo), Technical University of Dortmund, Dortmund, Germany (J.G.H., C.C.)
| | | | | | | | | | | |
Collapse
|
43
|
Liu L, Trent CM, Fang X, Son NH, Jiang H, Blaner WS, Hu Y, Yin YX, Farese RV, Homma S, Turnbull AV, Eriksson JW, Hu SL, Ginsberg HN, Huang LS, Goldberg IJ. Cardiomyocyte-specific loss of diacylglycerol acyltransferase 1 (DGAT1) reproduces the abnormalities in lipids found in severe heart failure. J Biol Chem 2014; 289:29881-91. [PMID: 25157099 DOI: 10.1074/jbc.m114.601864] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Diacylglycerol acyltransferase 1 (DGAT1) catalyzes the final step in triglyceride synthesis, the conversion of diacylglycerol (DAG) to triglyceride. Dgat1(-/-) mice exhibit a number of beneficial metabolic effects including reduced obesity and improved insulin sensitivity and no known cardiac dysfunction. In contrast, failing human hearts have severely reduced DGAT1 expression associated with accumulation of DAGs and ceramides. To test whether DGAT1 loss alone affects heart function, we created cardiomyocyte-specific DGAT1 knock-out (hDgat1(-/-)) mice. hDgat1(-/-) mouse hearts had 95% increased DAG and 85% increased ceramides compared with floxed controls. 50% of these mice died by 9 months of age. The heart failure marker brain natriuretic peptide increased 5-fold in hDgat1(-/-) hearts, and fractional shortening (FS) was reduced. This was associated with increased expression of peroxisome proliferator-activated receptor α and cluster of differentiation 36. We crossed hDgat1(-/-) mice with previously described enterocyte-specific Dgat1 knock-out mice (hiDgat1(-/-)). This corrected the early mortality, improved FS, and reduced cardiac ceramide and DAG content. Treatment of hDgat1(-/-) mice with the glucagon-like peptide 1 receptor agonist exenatide also improved FS and reduced heart DAG and ceramide content. Increased fatty acid uptake into hDgat1(-/-) hearts was normalized by exenatide. Reduced activation of protein kinase Cα (PKCα), which is increased by DAG and ceramides, paralleled the reductions in these lipids. Our mouse studies show that loss of DGAT1 reproduces the lipid abnormalities seen in severe human heart failure.
Collapse
Affiliation(s)
- Li Liu
- From the Divisions of Preventive Medicine and Nutrition and Institute of Systems Biomedicine, Peking University Health Science Center, 100083 Beijing, China
| | - Chad M Trent
- From the Divisions of Preventive Medicine and Nutrition and
| | - Xiang Fang
- From the Divisions of Preventive Medicine and Nutrition and Department of Geriatrics, Affiliated Provincial Hospital, Anhui Medical University, 230001 Hefei, China
| | - Ni-Huiping Son
- From the Divisions of Preventive Medicine and Nutrition and
| | - HongFeng Jiang
- From the Divisions of Preventive Medicine and Nutrition and
| | | | - Yunying Hu
- From the Divisions of Preventive Medicine and Nutrition and
| | - Yu-Xin Yin
- Institute of Systems Biomedicine, Peking University Health Science Center, 100083 Beijing, China
| | - Robert V Farese
- Gladstone Institute of Cardiovascular Disease and Departments of Medicine and Biochemistry and Biophysics, University of California, San Francisco, California 94158
| | - Shunichi Homma
- Cardiology, Columbia University College of Physicians and Surgeons, New York, New York 10032
| | | | - Jan W Eriksson
- Astra-Zeneca Company, 431 50 Mölndal, Sweden, Department of Medical Sciences, Uppsala University, 751 05 Uppsala, Sweden, and
| | - Shi-Lian Hu
- Department of Geriatrics, Affiliated Provincial Hospital, Anhui Medical University, 230001 Hefei, China
| | | | - Li-Shin Huang
- From the Divisions of Preventive Medicine and Nutrition and
| | - Ira J Goldberg
- From the Divisions of Preventive Medicine and Nutrition and Cardiology, Columbia University College of Physicians and Surgeons, New York, New York 10032, Division of Endocrinology, Diabetes, and Metabolism, New York University Langone School of Medicine, New York, New York 10016
| |
Collapse
|
44
|
Hepatitis C virus entry is impaired by claudin-1 downregulation in diacylglycerol acyltransferase-1-deficient cells. J Virol 2014; 88:9233-44. [PMID: 24899196 DOI: 10.1128/jvi.01428-14] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
UNLABELLED Diacylglycerol acyltransferase-1 (DGAT1) is involved in the assembly of hepatitis C virus (HCV) by facilitating the trafficking of the HCV core protein to the lipid droplet. Here, we abrogated DGAT1 expression in Huh-7.5 cells by using either the transcription activator-like effector nuclease (TALEN) or lentivirus vector short hairpin RNA (shRNA) and achieved complete long-term silencing of DGAT1. HCV entry was severely impaired in DGAT1-silenced Huh-7.5 cell lines, which showed markedly diminished claudin-1 (CLDN1) expression. In DGAT1-silenced cell lines, the forced expression of CLDN1 restored HCV entry, implying that the downregulation of CLDN1 is a critical factor underlying defective HCV entry. The expression of the gene coding for hepatocyte nuclear factor 4α (HNF4α) and other hepatocyte-specific genes was also reduced in DGAT1-silenced cell lines. After DGAT1 gene rescue, CLDN1 expression was preserved, and HCV entry was restored. Strikingly, after DGAT1 silencing, CLDN1 expression and HCV entry were also restored by low-dose palmitic acid treatment, indicating that the downregulation of CLDN1 was associated with altered fatty acid homeostasis in the absence of DGAT1. Our findings provide novel insight into the role of DGAT1 in the life cycle of HCV. IMPORTANCE In this study, we report the novel effect of complete silencing of DGAT1 on the entry of HCV. DGAT1 was recently reported as a host factor of HCV, involved in the assembly of HCV by facilitating the trafficking of the HCV core protein to lipid droplets. We achieved complete and long-term silencing of DGAT1 by either TALEN or repeated transduction of lentivirus shRNA. We found that HCV entry was severely impaired in DGAT1-silenced cell lines. The impairment of HCV entry was caused by CLDN1 downregulation, and the expression of HNF4α and other hepatocyte-specific genes was also downregulated in DGAT1-silenced cell lines. Our results suggest new roles of DGAT1 in human liver-derived cells: maintaining intracellular lipid homeostasis and affecting HCV entry by modulating CLDN1 expression.
Collapse
|
45
|
Denison H, Nilsson C, Löfgren L, Himmelmann A, Mårtensson G, Knutsson M, Al-Shurbaji A, Tornqvist H, Eriksson JW. Diacylglycerol acyltransferase 1 inhibition with AZD7687 alters lipid handling and hormone secretion in the gut with intolerable side effects: a randomized clinical trial. Diabetes Obes Metab 2014; 16:334-43. [PMID: 24118885 DOI: 10.1111/dom.12221] [Citation(s) in RCA: 81] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2013] [Revised: 08/21/2013] [Accepted: 09/30/2013] [Indexed: 02/02/2023]
Abstract
AIM Inhibition of diacylglycerol acyltransferase 1 (DGAT1) is a potential treatment modality for patients with type 2 diabetes mellitus and obesity, based on preclinical data suggesting it is associated with insulin sensitization and weight loss. This randomized, placebo-controlled, phase 1 study in 62 overweight or obese men explored the effects and tolerability of AZD7687, a reversible and selective DGAT1 inhibitor. METHODS Multiple doses of AZD7687 (1, 2.5, 5, 10 and 20 mg/day, n = 6 or n = 12 for each) or placebo (n = 20) were administered for 1 week. Postprandial serum triacylglycerol (TAG) was measured for 8 h after a standardized 45% fat meal. Glucagon-like peptide-1 (GLP-1) and peptide YY (PYY) were measured and a paracetamol challenge was performed to assess gastric emptying. RESULTS Dose-dependent reductions in postprandial serum TAG were demonstrated with AZD7687 doses ≥5 mg compared with placebo (p < 0.01). Significant (p < 0.001) increases in plasma GLP-1 and PYY levels were seen at these doses, but no clear effect on gastric emptying was demonstrated at the end of treatment. With AZD7687 doses >5 mg/day, gastrointestinal (GI) side effects increased; 11/18 of these participants discontinued treatment owing to diarrhoea. CONCLUSIONS Altered lipid handling and hormone secretion in the gut were demonstrated during 1-week treatment with the DGAT1 inhibitor AZD7687. However, the apparent lack of therapeutic window owing to GI side effects of AZD7687, particularly diarrhoea, makes the utility of DGAT1 inhibition as a novel treatment for diabetes and obesity questionable.
Collapse
|
46
|
Kolwicz SC, Purohit S, Tian R. Cardiac metabolism and its interactions with contraction, growth, and survival of cardiomyocytes. Circ Res 2013; 113:603-16. [PMID: 23948585 DOI: 10.1161/circresaha.113.302095] [Citation(s) in RCA: 582] [Impact Index Per Article: 48.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The network for cardiac fuel metabolism contains intricate sets of interacting pathways that result in both ATP-producing and non-ATP-producing end points for each class of energy substrates. The most salient feature of the network is the metabolic flexibility demonstrated in response to various stimuli, including developmental changes and nutritional status. The heart is also capable of remodeling the metabolic pathways in chronic pathophysiological conditions, which results in modulations of myocardial energetics and contractile function. In a quest to understand the complexity of the cardiac metabolic network, pharmacological and genetic tools have been engaged to manipulate cardiac metabolism in a variety of research models. In concert, a host of therapeutic interventions have been tested clinically to target substrate preference, insulin sensitivity, and mitochondrial function. In addition, the contribution of cellular metabolism to growth, survival, and other signaling pathways through the production of metabolic intermediates has been increasingly noted. In this review, we provide an overview of the cardiac metabolic network and highlight alterations observed in cardiac pathologies as well as strategies used as metabolic therapies in heart failure. Lastly, the ability of metabolic derivatives to intersect growth and survival are also discussed.
Collapse
Affiliation(s)
- Stephen C Kolwicz
- Mitochondria and Metabolism Center, Department of Anesthesiology and Pain Medicine, University of Washington School of Medicine, Seattle, WA 98109, USA
| | | | | |
Collapse
|
47
|
Liu J, Gorski JN, Gold SJ, Chen D, Chen S, Forrest G, Itoh Y, Marsh DJ, McLaren DG, Shen Z, Sonatore L, Carballo-Jane E, Craw S, Guan X, Karanam B, Sakaki J, Szeto D, Tong X, Xiao J, Yoshimoto R, Yu H, Roddy TP, Balkovec J, Pinto S. Pharmacological inhibition of diacylglycerol acyltransferase 1 reduces body weight and modulates gut peptide release--potential insight into mechanism of action. Obesity (Silver Spring) 2013; 21:1406-15. [PMID: 23671037 DOI: 10.1002/oby.20193] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2012] [Accepted: 11/11/2012] [Indexed: 02/03/2023]
Abstract
OBJECTIVE Investigation was conducted to understand the mechanism of action of diacylglycerol acyltransferase 1 (DGAT1) using small molecules DGAT1 inhibitors, compounds K and L. DESIGN AND METHODS Biochemical and stable-label tracer approaches were applied to interrogate the functional activities of compounds K and L on TG synthesis and changes of carbon flow. Energy homeostasis and gut peptide release upon DGAT1 inhibition was conducted in mouse and dog models. RESULTS Compounds K and L, dose-dependently inhibits post-prandial TG excursion in mouse and dog models. Weight loss studies in WT and Dgat1(-/-) mice, confirmed that the effects of compound K on body weight loss is mechanism-based. Compounds K and L altered incretin peptide release following oral fat challenge. Immunohistochemical studies with intestinal tissues demonstrate lack of detectable DGAT1 immunoreactivity in enteroendocrine cells. Furthermore, (13) C-fatty acid tracing studies indicate that compound K inhibition of DGAT1 increased the production of phosphatidyl choline (PC). CONCLUSION Treatment with DGAT1 inhibitors improves lipid metabolism and body weight. DGAT1 inhibition leads to enhanced PC production via alternative carbon channeling. Immunohistological studies suggest that DGAT1 inhibitor's effects on plasma gut peptide levels are likely via an indirect mechanism. Overall these data indicate a translational potential towards the clinic.
Collapse
Affiliation(s)
- Jinqi Liu
- Merck Research Laboratories, Rahway, New Jersey, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Cardiac-specific adipose triglyceride lipase overexpression protects from cardiac steatosis and dilated cardiomyopathy following diet-induced obesity. Int J Obes (Lond) 2013; 38:205-15. [PMID: 23817015 DOI: 10.1038/ijo.2013.103] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2013] [Revised: 04/25/2013] [Accepted: 05/22/2013] [Indexed: 01/22/2023]
Abstract
BACKGROUND Although obesity increases the risk of developing cardiomyopathy, the mechanisms underlying the development of this cardiomyopathy are incompletely understood. As obesity is also associated with increased intramyocardial triacylglycerol (TAG) deposition, also referred to as cardiac steatosis, we hypothesized that alterations in myocardial TAG metabolism and excess TAG accumulation contribute to obesity-induced cardiomyopathy. OBJECTIVE AND DESIGN To test if increased TAG catabolism could ameliorate obesity-induced cardiac steatosis and dysfunction, we utilized wild-type (WT) mice and mice with cardiomyocyte-specific overexpression of adipose triglyceride lipase (MHC-ATGL mice), which regulates cardiac TAG hydrolysis. WT and MHC-ATGL mice were fed either regular chow (13.5 kcal% fat) or high fat-high sucrose (HFHS; 45 kcal% fat and 17 kcal% sucrose) diet for 16 weeks to induce obesity and mice were subsequently studied at the physiological, biochemical and molecular level. RESULTS Obese MHC-ATGL mice were protected from increased intramyocardial TAG accumulation, despite similar increases in body weight and systemic insulin resistance as obese WT mice. Importantly, analysis of in vivo cardiac function using transthoracic echocardiography showed that ATGL overexpression protected from obesity-induced systolic and diastolic dysfunction and ventricular dilatation. Ex vivo working heart perfusions revealed impaired cardiac glucose oxidation following obesity in both WT and MHC-ATGL mice, which was consistent with similar impaired cardiac insulin signaling between genotypes. However, hearts from obese MHC-ATGL mice exhibited reduced reliance on palmitate oxidation when compared with the obese WT, which was accompanied by decreased expression of proteins involved in fatty acid uptake, storage and oxidation in MHC-ATGL hearts. CONCLUSION These findings suggest that cardiomyocyte-specific ATGL overexpression was sufficient to prevent cardiac steatosis and decrease fatty acid utilization following HFHS diet feeding, leading to protection against obesity-induced cardiac dysfunction.
Collapse
|
49
|
Wende AR, Symons JD, Abel ED. Mechanisms of lipotoxicity in the cardiovascular system. Curr Hypertens Rep 2013; 14:517-31. [PMID: 23054891 DOI: 10.1007/s11906-012-0307-2] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Cardiovascular diseases account for approximately one third of all deaths globally. Obese and diabetic patients have a high likelihood of dying from complications associated with cardiovascular dysfunction. Obesity and diabetes increase circulating lipids that upon tissue uptake, may be stored as triglyceride, or may be metabolized in other pathways, leading to the generation of toxic intermediates. Excess lipid utilization or activation of signaling pathways by lipid metabolites may disrupt cellular homeostasis and contribute to cell death, defining the concept of lipotoxicity. Lipotoxicity occurs in multiple organs, including cardiac and vascular tissues, and a number of specific mechanisms have been proposed to explain lipotoxic tissue injury. In addition, recent data suggests that increased tissue lipids may also be protective in certain contexts. This review will highlight recent progress toward elucidating the relationship between nutrient oversupply, lipotoxicity, and cardiovascular dysfunction. The review will focus in two sections on the vasculature and cardiomyocytes respectively.
Collapse
Affiliation(s)
- Adam R Wende
- Program in Molecular Medicine, Division of Endocrinology, Metabolism, and Diabetes, University of Utah School of Medicine, Salt Lake City, 84112, USA
| | | | | |
Collapse
|
50
|
Garcia-Arcos I, Hiyama Y, Drosatos K, Bharadwaj KG, Hu Y, Son NH, O'Byrne SM, Chang CL, Deckelbaum RJ, Takahashi M, Westerterp M, Obunike JC, Jiang H, Yagyu H, Blaner WS, Goldberg IJ. Adipose-specific lipoprotein lipase deficiency more profoundly affects brown than white fat biology. J Biol Chem 2013; 288:14046-14058. [PMID: 23542081 DOI: 10.1074/jbc.m113.469270] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Adipose fat storage is thought to require uptake of circulating triglyceride (TG)-derived fatty acids via lipoprotein lipase (LpL). To determine how LpL affects the biology of adipose tissue, we created adipose-specific LpL knock-out (ATLO) mice, and we compared them with whole body LpL knock-out mice rescued with muscle LpL expression (MCK/L0) and wild type (WT) mice. ATLO LpL mRNA and activity were reduced, respectively, 75 and 70% in gonadal adipose tissue (GAT), 90 and 80% in subcutaneous tissue, and 84 and 85% in brown adipose tissue (BAT). ATLO mice had increased plasma TG levels associated with reduced chylomicron TG uptake into BAT and lung. ATLO BAT, but not GAT, had altered TG composition. GAT from MCK/L0 was smaller and contained less polyunsaturated fatty acids in TG, although GAT from ATLO was normal unless LpL was overexpressed in muscle. High fat diet feeding led to less adipose in MCK/L0 mice but TG acyl composition in subcutaneous tissue and BAT reverted to that of WT. Therefore, adipocyte LpL in BAT modulates plasma lipoprotein clearance, and the greater metabolic activity of this depot makes its lipid composition more dependent on LpL-mediated uptake. Loss of adipose LpL reduces fat accumulation only if accompanied by greater LpL activity in muscle. These data support the role of LpL as the "gatekeeper" for tissue lipid distribution.
Collapse
Affiliation(s)
- Itsaso Garcia-Arcos
- Department of Medicine, Columbia University College of Physicians and Surgeons, New York, New York 10032
| | - Yaeko Hiyama
- Department of Medicine, Columbia University College of Physicians and Surgeons, New York, New York 10032
| | - Konstantinos Drosatos
- Department of Medicine, Columbia University College of Physicians and Surgeons, New York, New York 10032
| | - Kalyani G Bharadwaj
- Department of Medicine, Columbia University College of Physicians and Surgeons, New York, New York 10032
| | - Yunying Hu
- Department of Medicine, Columbia University College of Physicians and Surgeons, New York, New York 10032
| | - Ni Huiping Son
- Department of Medicine, Columbia University College of Physicians and Surgeons, New York, New York 10032
| | - Sheila M O'Byrne
- Department of Medicine, Columbia University College of Physicians and Surgeons, New York, New York 10032
| | - Chuchun L Chang
- Institute of Human Nutrition, Columbia University College of Physicians and Surgeons, New York, New York 10032
| | - Richard J Deckelbaum
- Institute of Human Nutrition, Columbia University College of Physicians and Surgeons, New York, New York 10032
| | - Manabu Takahashi
- Department of Medicine, Jichii University, Tochigi 329-0498, Japan
| | - Marit Westerterp
- Department of Medicine, Columbia University College of Physicians and Surgeons, New York, New York 10032; Department of Medical Biochemistry, University of Amsterdam, 1105AZ Amsterdam, The Netherlands
| | - Joseph C Obunike
- Department of Biological Sciences, New York City College of Technology, City University of New York, Brooklyn, New York 11201
| | - Hongfeng Jiang
- Department of Medicine, Columbia University College of Physicians and Surgeons, New York, New York 10032
| | - Hiroaki Yagyu
- Department of Medicine, Jichii University, Tochigi 329-0498, Japan
| | - William S Blaner
- Department of Medicine, Columbia University College of Physicians and Surgeons, New York, New York 10032
| | - Ira J Goldberg
- Department of Medicine, Columbia University College of Physicians and Surgeons, New York, New York 10032.
| |
Collapse
|