1
|
Tei R. The dynamic regulatory network of phosphatidic acid metabolism: a spotlight on substrate cycling between phosphatidic acid and diacylglycerol. Biochem Soc Trans 2024; 52:2123-2132. [PMID: 39417337 PMCID: PMC11555698 DOI: 10.1042/bst20231511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 09/23/2024] [Accepted: 09/30/2024] [Indexed: 10/19/2024]
Abstract
Mammalian cells utilize over 1000 different lipid species to maintain cell and organelle membrane properties, control cell signaling and processes, and store energy. Lipid synthesis and metabolism are mediated by highly interconnected and spatiotemporally regulated networks of lipid-metabolizing enzymes and supported by vesicle trafficking and lipid-transfer at membrane contact sites. However, the regulatory mechanisms that achieve lipid homeostasis are largely unknown. Phosphatidic acid (PA) serves as the central hub for phospholipid biosynthesis, acting as a key intermediate in both the Kennedy pathway and the CDP-DAG pathway. Additionally, PA is a potent signaling molecule involved in various cellular processes. This dual role of PA, both as a critical intermediate in lipid biosynthesis and as a significant signaling molecule, suggests that it is tightly regulated within cells. This minireview will summarize the functional diversity of PA molecules based on their acyl tail structures and subcellular localization, highlighting recent tools and findings that shed light on how the physical, chemical, and spatial properties of PA species contribute to their differential metabolic fates and functions. Dysfunctional effects of altered PA metabolism as well as the strategies cells employ to maintain PA regulation and homeostasis will also be discussed. Furthermore, this review will explore the differential regulation of PA metabolism across distinct subcellular membranes. Our recent proximity labeling studies highlight the possibility that substrate cycling between PA and DAG may be location-dependent and have functional significance in cell signaling and lipid homeostasis.
Collapse
Affiliation(s)
- Reika Tei
- Department of Genetics, Stanford University, Stanford, CA 94305, U.S.A
| |
Collapse
|
2
|
Zhou H, Huo Y, Yang N, Wei T. Phosphatidic acid: from biophysical properties to diverse functions. FEBS J 2024; 291:1870-1885. [PMID: 37103336 DOI: 10.1111/febs.16809] [Citation(s) in RCA: 24] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 03/15/2023] [Accepted: 04/26/2023] [Indexed: 04/28/2023]
Abstract
Phosphatidic acid (PA), the simplest phospholipid, acts as a key metabolic intermediate and second messenger that impacts diverse cellular and physiological processes across species ranging from microbes to plants and mammals. The cellular levels of PA dynamically change in response to stimuli, and multiple enzymatic reactions can mediate its production and degradation. PA acts as a signalling molecule and regulates various cellular processes via its effects on membrane tethering, enzymatic activities of target proteins, and vesicular trafficking. Because of its unique physicochemical properties compared to other phospholipids, PA has emerged as a class of new lipid mediators influencing membrane structure, dynamics, and protein interactions. This review summarizes the biosynthesis, dynamics, and cellular functions and properties of PA.
Collapse
Affiliation(s)
- Hejiang Zhou
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, China
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Yanwu Huo
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Na Yang
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- Laboratory of Genetic and Genomics, National Institute on Aging, NIH, Baltimore, MD, USA
| | - Taotao Wei
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
3
|
Yerramilli VS, Ross AH, Scarlata S, Gericke A. IQGAP1 scaffolding links phosphoinositide kinases to cytoskeletal reorganization. Biophys J 2022; 121:793-807. [PMID: 35077666 PMCID: PMC8943696 DOI: 10.1016/j.bpj.2022.01.018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 09/24/2021] [Accepted: 01/21/2022] [Indexed: 11/02/2022] Open
Abstract
IQGAP1 is a multidomain scaffold protein that coordinates the direction and impact of multiple signaling pathways by scaffolding its various binding partners. However, the spatial and temporal resolution of IQGAP1 scaffolding remains unclear. Here, we use fluorescence imaging and correlation methods that allow for real-time live-cell changes in IQGAP1 localization and complex formation during signaling. We find that IQGAP1 and PIPKIγ interact on both the plasma membrane and in cytosol. Epidermal growth factor (EGF) stimulation, which can initiate cytoskeletal changes, drives the movement of the cytosolic pool toward the plasma membrane to promote cytoskeletal changes. We also observe that a significant population of cytosolic IQGAP1-PIPKIγ complexes localize to early endosomes, and in some instances form aggregated clusters which become highly mobile upon EGF stimulation. Our imaging studies show that PIPKIγ and PI3K bind simultaneously to IQGAP1, which may accelerate conversion of PI4P to PI(3,4,5)P3 that is required for cytoskeletal changes. Additionally, we find that IQGAP1 is responsible for PIPKIγ association with two proteins associated with cytoskeletal changes, talin and Cdc42, during EGF stimulation. These results directly show that IQGAP1 provides a physical link between phosphoinositides (through PIPKIγ), focal adhesion formation (through talin), and cytoskeletal reorganization (through Cdc42) upon EGF stimulation. Taken together, our results support the importance of IQGAP1 in regulating cell migration by linking phosphoinositide lipid signaling with cytoskeletal reorganization.
Collapse
Affiliation(s)
- V. Siddartha Yerramilli
- Department of Chemistry and Biochemistry, Worcester Polytechnic Institute, Worcester, Massachusetts
| | - Alonzo H. Ross
- Department of Chemistry and Biochemistry, Worcester Polytechnic Institute, Worcester, Massachusetts,Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts
| | - Suzanne Scarlata
- Department of Chemistry and Biochemistry, Worcester Polytechnic Institute, Worcester, Massachusetts
| | - Arne Gericke
- Department of Chemistry and Biochemistry, Worcester Polytechnic Institute, Worcester, Massachusetts.
| |
Collapse
|
4
|
New Era of Diacylglycerol Kinase, Phosphatidic Acid and Phosphatidic Acid-Binding Protein. Int J Mol Sci 2020; 21:ijms21186794. [PMID: 32947951 PMCID: PMC7555651 DOI: 10.3390/ijms21186794] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 09/11/2020] [Accepted: 09/14/2020] [Indexed: 12/12/2022] Open
Abstract
Diacylglycerol kinase (DGK) phosphorylates diacylglycerol (DG) to generate phosphatidic acid (PA). Mammalian DGK consists of ten isozymes (α–κ) and governs a wide range of physiological and pathological events, including immune responses, neuronal networking, bipolar disorder, obsessive-compulsive disorder, fragile X syndrome, cancer, and type 2 diabetes. DG and PA comprise diverse molecular species that have different acyl chains at the sn-1 and sn-2 positions. Because the DGK activity is essential for phosphatidylinositol turnover, which exclusively produces 1-stearoyl-2-arachidonoyl-DG, it has been generally thought that all DGK isozymes utilize the DG species derived from the turnover. However, it was recently revealed that DGK isozymes, except for DGKε, phosphorylate diverse DG species, which are not derived from phosphatidylinositol turnover. In addition, various PA-binding proteins (PABPs), which have different selectivities for PA species, were recently found. These results suggest that DGK–PA–PABP axes can potentially construct a large and complex signaling network and play physiologically and pathologically important roles in addition to DGK-dependent attenuation of DG–DG-binding protein axes. For example, 1-stearoyl-2-docosahexaenoyl-PA produced by DGKδ interacts with and activates Praja-1, the E3 ubiquitin ligase acting on the serotonin transporter, which is a target of drugs for obsessive-compulsive and major depressive disorders, in the brain. This article reviews recent research progress on PA species produced by DGK isozymes, the selective binding of PABPs to PA species and a phosphatidylinositol turnover-independent DG supply pathway.
Collapse
|
5
|
Nguyen TTN, Koerdt SN, Gerke V. Plasma membrane phosphatidylinositol (4,5)-bisphosphate promotes Weibel-Palade body exocytosis. Life Sci Alliance 2020; 3:3/11/e202000788. [PMID: 32826291 PMCID: PMC7442956 DOI: 10.26508/lsa.202000788] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 08/14/2020] [Accepted: 08/14/2020] [Indexed: 01/26/2023] Open
Abstract
Phosphatidylinositol (4,5)-bisphosphate transiently accumulates at sites of Weibel–Palade body–plasma membrane fusion and promotes agonist-evoked exocytosis of endothelial von-Willebrand factor. Weibel–Palade bodies (WPB) are specialized secretory organelles of endothelial cells that control vascular hemostasis by regulated, Ca2+-dependent exocytosis of the coagulation-promoting von-Willebrand factor. Some proteins of the WPB docking and fusion machinery have been identified but a role of membrane lipids in regulated WPB exocytosis has so far remained elusive. We show here that the plasma membrane phospholipid composition affects Ca2+-dependent WPB exocytosis and von-Willebrand factor release. Phosphatidylinositol (4,5)-bisphosphate [PI(4,5)P2] becomes enriched at WPB–plasma membrane contact sites at the time of fusion, most likely downstream of phospholipase D1-mediated production of phosphatidic acid (PA) that activates phosphatidylinositol 4-phosphate (PI4P) 5-kinase γ. Depletion of plasma membrane PI(4,5)P2 or down-regulation of PI4P 5-kinase γ interferes with histamine-evoked and Ca2+-dependent WPB exocytosis and a mutant PI4P 5-kinase γ incapable of binding PA affects WPB exocytosis in a dominant-negative manner. This indicates that a unique PI(4,5)P2-rich environment in the plasma membrane governs WPB fusion possibly by providing interaction sites for WPB-associated docking factors.
Collapse
Affiliation(s)
- Tu Thi Ngoc Nguyen
- Institute of Medical Biochemistry, Center for Molecular Biology of Inflammation, University of Münster, Münster, Germany
| | - Sophia N Koerdt
- Institute of Medical Biochemistry, Center for Molecular Biology of Inflammation, University of Münster, Münster, Germany
| | - Volker Gerke
- Institute of Medical Biochemistry, Center for Molecular Biology of Inflammation, University of Münster, Münster, Germany
| |
Collapse
|
6
|
González-Mancha N, Mérida I. Interplay Between SNX27 and DAG Metabolism in the Control of Trafficking and Signaling at the IS. Int J Mol Sci 2020; 21:ijms21124254. [PMID: 32549284 PMCID: PMC7352468 DOI: 10.3390/ijms21124254] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 06/09/2020] [Accepted: 06/10/2020] [Indexed: 12/13/2022] Open
Abstract
Recognition of antigens displayed on the surface of an antigen-presenting cell (APC) by T-cell receptors (TCR) of a T lymphocyte leads to the formation of a specialized contact between both cells named the immune synapse (IS). This highly organized structure ensures cell–cell communication and sustained T-cell activation. An essential lipid regulating T-cell activation is diacylglycerol (DAG), which accumulates at the cell–cell interface and mediates recruitment and activation of proteins involved in signaling and polarization. Formation of the IS requires rearrangement of the cytoskeleton, translocation of the microtubule-organizing center (MTOC) and vesicular compartments, and reorganization of signaling and adhesion molecules within the cell–cell junction. Among the multiple players involved in this polarized intracellular trafficking, we find sorting nexin 27 (SNX27). This protein translocates to the T cell–APC interface upon TCR activation, and it is suggested to facilitate the transport of cargoes toward this structure. Furthermore, its interaction with diacylglycerol kinase ζ (DGKζ), a negative regulator of DAG, sustains the precise modulation of this lipid and, thus, facilitates IS organization and signaling. Here, we review the role of SNX27, DAG metabolism, and their interplay in the control of T-cell activation and establishment of the IS.
Collapse
|
7
|
Fu P, Ramchandran R, Shaaya M, Huang L, Ebenezer DL, Jiang Y, Komarova Y, Vogel SM, Malik AB, Minshall RD, Du G, Tonks NK, Natarajan V. Phospholipase D2 restores endothelial barrier function by promoting PTPN14-mediated VE-cadherin dephosphorylation. J Biol Chem 2020; 295:7669-7685. [PMID: 32327488 DOI: 10.1074/jbc.ra119.011801] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 04/03/2020] [Indexed: 11/06/2022] Open
Abstract
Increased permeability of vascular lung tissues is a hallmark of acute lung injury and is often caused by edemagenic insults resulting in inflammation. Vascular endothelial (VE)-cadherin undergoes internalization in response to inflammatory stimuli and is recycled at cell adhesion junctions during endothelial barrier re-establishment. Here, we hypothesized that phospholipase D (PLD)-generated phosphatidic acid (PA) signaling regulates VE-cadherin recycling and promotes endothelial barrier recovery by dephosphorylating VE-cadherin. Genetic deletion of PLD2 impaired recovery from protease-activated receptor-1-activating peptide (PAR-1-AP)-induced lung vascular permeability and potentiated inflammation in vivo In human lung microvascular endothelial cells (HLMVECs), inhibition or deletion of PLD2, but not of PLD1, delayed endothelial barrier recovery after thrombin stimulation. Thrombin stimulation of HLMVECs increased co-localization of PLD2-generated PA and VE-cadherin at cell-cell adhesion junctions. Inhibition of PLD2 activity resulted in prolonged phosphorylation of Tyr-658 in VE-cadherin during the recovery phase 3 h post-thrombin challenge. Immunoprecipitation experiments revealed that after HLMVECs are thrombin stimulated, PLD2, VE-cadherin, and protein-tyrosine phosphatase nonreceptor type 14 (PTPN14), a PLD2-dependent protein-tyrosine phosphatase, strongly associate with each other. PTPN14 depletion delayed VE-cadherin dephosphorylation, reannealing of adherens junctions, and barrier function recovery. PLD2 inhibition attenuated PTPN14 activity and reversed PTPN14-dependent VE-cadherin dephosphorylation after thrombin stimulation. Our findings indicate that PLD2 promotes PTPN14-mediated dephosphorylation of VE-cadherin and that redistribution of VE-cadherin at adherens junctions is essential for recovery of endothelial barrier function after an edemagenic insult.
Collapse
Affiliation(s)
- Panfeng Fu
- Department of Pharmacology, University of Illinois, Chicago, Illinois.,The Affiliated Hospital of Medical School, Ningbo University, Ningbo, China
| | | | - Mark Shaaya
- Department of Pharmacology, University of Illinois, Chicago, Illinois
| | - Longshuang Huang
- Department of Pharmacology, University of Illinois, Chicago, Illinois
| | - David L Ebenezer
- Department of Pharmacology, University of Illinois, Chicago, Illinois
| | - Ying Jiang
- Department of Anesthesiology, University of Illinois, Chicago, Illinois
| | - Yulia Komarova
- Department of Pharmacology, University of Illinois, Chicago, Illinois
| | - Stephen M Vogel
- Department of Pharmacology, University of Illinois, Chicago, Illinois
| | - Asrar B Malik
- Department of Pharmacology, University of Illinois, Chicago, Illinois
| | - Richard D Minshall
- Department of Pharmacology, University of Illinois, Chicago, Illinois.,Department of Anesthesiology, University of Illinois, Chicago, Illinois
| | - Guangwei Du
- Department of Integrative Biology and Pharmacology, University of Texas Health Science Center at Houston, Houston, Texas
| | | | - Viswanathan Natarajan
- Department of Pharmacology, University of Illinois, Chicago, Illinois .,Department of Medicine, University of Illinois, Chicago, Illinois
| |
Collapse
|
8
|
Merino-Cortés SV, Gardeta SR, Roman-Garcia S, Martínez-Riaño A, Pineau J, Liebana R, Merida I, Dumenil AML, Pierobon P, Husson J, Alarcon B, Carrasco YR. Diacylglycerol kinase ζ promotes actin cytoskeleton remodeling and mechanical forces at the B cell immune synapse. Sci Signal 2020; 13:13/627/eaaw8214. [PMID: 32291315 DOI: 10.1126/scisignal.aaw8214] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Diacylglycerol kinases (DGKs) limit antigen receptor signaling in immune cells by consuming the second messenger diacylglycerol (DAG) to generate phosphatidic acid (PA). Here, we showed that DGKζ promotes lymphocyte function-associated antigen 1 (LFA-1)-mediated adhesion and F-actin generation at the immune synapse of B cells with antigen-presenting cells (APCs), mostly in a PA-dependent manner. Measurement of single-cell mechanical force generation indicated that DGKζ-deficient B cells exerted lower forces at the immune synapse than did wild-type B cells. Nonmuscle myosin activation and translocation of the microtubule-organizing center (MTOC) to the immune synapse were also impaired in DGKζ-deficient B cells. These functional defects correlated with the decreased ability of B cells to present antigen and activate T cells in vitro. The in vivo germinal center response of DGKζ-deficient B cells was also reduced compared with that of wild-type B cells, indicating that loss of DGKζ in B cells impaired T cell help. Together, our data suggest that DGKζ shapes B cell responses by regulating actin remodeling, force generation, and antigen uptake-related events at the immune synapse. Hence, an appropriate balance in the amounts of DAG and PA is required for optimal B cell function.
Collapse
Affiliation(s)
- Sara V Merino-Cortés
- Department of Immunology and Oncology, Centro Nacional de Biotecnología (CNB)-CSIC, Madrid, Spain
| | - Sofia R Gardeta
- Department of Immunology and Oncology, Centro Nacional de Biotecnología (CNB)-CSIC, Madrid, Spain
| | - Sara Roman-Garcia
- Department of Immunology and Oncology, Centro Nacional de Biotecnología (CNB)-CSIC, Madrid, Spain
| | - Ana Martínez-Riaño
- Department of Cell Biology and Immunology, Centro de Biología Molecular Severo Ochoa (CBMSO), CSIC-UAM, Madrid, Spain
| | - Judith Pineau
- Institut Curie, PSL Research University, INSERM U932, Paris, France.,Université de Paris, 75006, Paris, France
| | - Rosa Liebana
- Department of Immunology and Oncology, Centro Nacional de Biotecnología (CNB)-CSIC, Madrid, Spain
| | - Isabel Merida
- Department of Immunology and Oncology, Centro Nacional de Biotecnología (CNB)-CSIC, Madrid, Spain
| | | | - Paolo Pierobon
- Institut Curie, PSL Research University, INSERM U932, Paris, France
| | - Julien Husson
- Laboratoire d'Hydrodynamique (LadHyx), Ecole polytechnique, CNRS, Institut Polytechnique de Paris, Paris, France
| | - Balbino Alarcon
- Department of Cell Biology and Immunology, Centro de Biología Molecular Severo Ochoa (CBMSO), CSIC-UAM, Madrid, Spain
| | - Yolanda R Carrasco
- Department of Immunology and Oncology, Centro Nacional de Biotecnología (CNB)-CSIC, Madrid, Spain.
| |
Collapse
|
9
|
Xu C, Wan Z, Shaheen S, Wang J, Yang Z, Liu W. A PI(4,5)P2-derived "gasoline engine model" for the sustained B cell receptor activation. Immunol Rev 2020; 291:75-90. [PMID: 31402506 DOI: 10.1111/imr.12775] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Revised: 05/08/2019] [Accepted: 05/09/2019] [Indexed: 12/14/2022]
Abstract
To efficiently initiate activation responses against rare ligands in the microenvironment, lymphocytes employ sophisticated mechanisms involving signaling amplification. Recently, a signaling amplification mechanism initiated from phosphatidylinositol (PI) 4, 5-biphosphate [PI(4,5)P2] hydrolysis and synthesis for sustained B cell activation has been reported. Antigen and B cell receptor (BCR) recognition triggered the prompt reduction of PI(4,5)P2 density within the BCR microclusters, which led to the positive feedback for the synthesis of PI(4,5)P2 outside of the BCR microclusters. At single molecule level, the diffusion of PI(4,5)P2 was slow, allowing for the maintenance of a PI(4,5)P2 density gradient between the inside and outside of the BCR microclusters and the persistent supply of PI(4,5)P2 from outside to inside of the BCR microclusters. Here, we review studies that have contributed to uncovering the molecular mechanisms of PI(4,5)P2-derived signaling amplification model. Based on these studies, we proposed a "gasoline engine model" in which the activation of B cell signaling inside the microclusters is similar to the working principle of burning gasoline within the engine chamber of a gasoline engine. We also discuss the evidences showing the potential universality of this model and future prospects.
Collapse
Affiliation(s)
- Chenguang Xu
- Center for Life Sciences, MOE Key Laboratory of Protein Sciences, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Beijing Key Lab for Immunological Research on Chronic Diseases, School of Life Sciences, Institute for Immunology, Tsinghua University, Beijing, China
| | - Zhengpeng Wan
- Center for Life Sciences, MOE Key Laboratory of Protein Sciences, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Beijing Key Lab for Immunological Research on Chronic Diseases, School of Life Sciences, Institute for Immunology, Tsinghua University, Beijing, China
| | - Samina Shaheen
- Center for Life Sciences, MOE Key Laboratory of Protein Sciences, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Beijing Key Lab for Immunological Research on Chronic Diseases, School of Life Sciences, Institute for Immunology, Tsinghua University, Beijing, China
| | - Jing Wang
- Center for Life Sciences, MOE Key Laboratory of Protein Sciences, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Beijing Key Lab for Immunological Research on Chronic Diseases, School of Life Sciences, Institute for Immunology, Tsinghua University, Beijing, China
| | - Zhiyong Yang
- Cardiovascular Research Institute, University of California San Francisco, San Francisco, California
| | - Wanli Liu
- Center for Life Sciences, MOE Key Laboratory of Protein Sciences, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Beijing Key Lab for Immunological Research on Chronic Diseases, School of Life Sciences, Institute for Immunology, Tsinghua University, Beijing, China
| |
Collapse
|
10
|
Momoi Y, Nishikimi A, Du G, Kataoka T, Katagiri K. Phosphatidic acid regulates subcellular distribution of RA-GEFs critical for chemokine-dependent migration. Biochem Biophys Res Commun 2020; 524:325-331. [PMID: 31996307 DOI: 10.1016/j.bbrc.2020.01.080] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2019] [Accepted: 01/15/2020] [Indexed: 01/05/2023]
Abstract
Integrin activation by Rap1-GTP is pivotal for lymphocyte trafficking. In this study, we show the phosphatidic acid (PA)-dependent membrane distribution of RA-GEF-1 and -2 (also known as Rapgef2 and 6), which are guanine nucleotide exchange factors for Rap1, plays important roles in lymphocyte migration. RA-GEF-1 associates with PA through 919-967 aa within CDC25 homology domain, and the deletion of this region of RA-GEF-1 inhibits chemokine-dependent migration. Chemokine stimulation induces temporal production of PA on the plasma membrane, which is not necessary for Rap1 activation, but the translocation of RA-GEFs. Thus, chemokine-dependent generation of PA is critical for lymphocyte migration through membrane localization of RA-GEFs.
Collapse
Affiliation(s)
- Yasuyuki Momoi
- Department of Biosciences, School of Science, Kitasato University, 1-15-1 Kitasato, Minamiku, Sagamihara, Kanagawa, 252-0337, Japan
| | - Akihiko Nishikimi
- Department of Biosciences, School of Science, Kitasato University, 1-15-1 Kitasato, Minamiku, Sagamihara, Kanagawa, 252-0337, Japan
| | - Guangwei Du
- Department of Integrative Biology & Pharmacology, University of Texas Health Science at Houston 6431 Fannin St, Houston, TX, 77030, USA
| | - Tohru Kataoka
- Division of Molecular Biology, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe, 650-0017, Japan
| | - Koko Katagiri
- Department of Biosciences, School of Science, Kitasato University, 1-15-1 Kitasato, Minamiku, Sagamihara, Kanagawa, 252-0337, Japan.
| |
Collapse
|
11
|
Ni W, Li Y, Cai L, Dong C, Fang H, Chen Y, Li H, Yao M, Xiao N. SUMOylation is required for PIPK1γ-driven keratinocyte migration and growth. FEBS J 2019; 286:4709-4720. [PMID: 31276292 DOI: 10.1111/febs.14978] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Revised: 04/11/2019] [Accepted: 07/02/2019] [Indexed: 12/13/2022]
Abstract
PIPKIγ, a key member of the type I phosphatidylinositol 4-phosphate kinase (PIPKI) family that regulates the spatial-temporal generation of PIP2, has been implicated in diverse biological processes including cell survival, cell polarity, and cell migration. An essential role of PIPKIγ in tumor cells and nerve cells has been established in previous studies. However, the function and regulatory mechanism of PIPKIγ remains incompletely understood. Here, we showed that PIPKIγ can specifically associate with the SUMO-conjugating (E2) enzyme UBC9 and can be SUMOylated both in vivo and in vitro. We further identified that Lys-591 is the critical SUMO-acceptor site of PIPKIγ and that SUMO conjugation at this site is required for PIPKIγ-driven keratinocyte migration and growth. Mechanistically, SUMOylation deficiency significantly disrupts PIPKIγ-mediated generation of intracellular PIP2, rather than the subcellular translocation and protein stability of PIPKIγ. Our findings reveal that PIPKIγ is a novel SUMOylation target and highlight the essential role of PIPKIγ SUMOylation in human keratinocyte function, providing an important orientation for in-depth study of wound repair.
Collapse
Affiliation(s)
- Wei Ni
- Cancer Institute of Traditional Chinese Medicine, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, China
- Department of Burns and Plastic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, China
- Bengbu Medical College, Anhui, China
| | - Ying Li
- Department of Emergency, Qingdao Municipal Hospital, Shandong, China
| | - Lili Cai
- Cancer Institute of Traditional Chinese Medicine, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, China
| | - Changsheng Dong
- Cancer Institute of Traditional Chinese Medicine, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, China
| | - Houshun Fang
- Key Laboratory of Pediatric Hematology and Oncology, Ministry of Health and Pediatric Translational Medicine Institute, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, China
| | - Yao Chen
- Key Laboratory of Pediatric Hematology and Oncology, Ministry of Health and Pediatric Translational Medicine Institute, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, China
| | - Hui Li
- Key Laboratory of Pediatric Hematology and Oncology, Ministry of Health and Pediatric Translational Medicine Institute, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, China
| | - Min Yao
- Department of Burns and Plastic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, China
| | - Ning Xiao
- Cancer Institute of Traditional Chinese Medicine, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, China
| |
Collapse
|
12
|
Zhukovsky MA, Filograna A, Luini A, Corda D, Valente C. Phosphatidic acid in membrane rearrangements. FEBS Lett 2019; 593:2428-2451. [PMID: 31365767 DOI: 10.1002/1873-3468.13563] [Citation(s) in RCA: 124] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 07/25/2019] [Accepted: 07/26/2019] [Indexed: 12/16/2022]
Abstract
Phosphatidic acid (PA) is the simplest cellular glycerophospholipid characterized by unique biophysical properties: a small headgroup; negative charge; and a phosphomonoester group. Upon interaction with lysine or arginine, PA charge increases from -1 to -2 and this change stabilizes protein-lipid interactions. The biochemical properties of PA also allow interactions with lipids in several subcellular compartments. Based on this feature, PA is involved in the regulation and amplification of many cellular signalling pathways and functions, as well as in membrane rearrangements. Thereby, PA can influence membrane fusion and fission through four main mechanisms: it is a substrate for enzymes producing lipids (lysophosphatidic acid and diacylglycerol) that are involved in fission or fusion; it contributes to membrane rearrangements by generating negative membrane curvature; it interacts with proteins required for membrane fusion and fission; and it activates enzymes whose products are involved in membrane rearrangements. Here, we discuss the biophysical properties of PA in the context of the above four roles of PA in membrane fusion and fission.
Collapse
Affiliation(s)
- Mikhail A Zhukovsky
- Institute of Protein Biochemistry and Institute of Biochemistry and Cell Biology, National Research Council, Naples, Italy
| | - Angela Filograna
- Institute of Protein Biochemistry and Institute of Biochemistry and Cell Biology, National Research Council, Naples, Italy
| | - Alberto Luini
- Institute of Protein Biochemistry and Institute of Biochemistry and Cell Biology, National Research Council, Naples, Italy
| | - Daniela Corda
- Institute of Protein Biochemistry and Institute of Biochemistry and Cell Biology, National Research Council, Naples, Italy
| | - Carmen Valente
- Institute of Protein Biochemistry and Institute of Biochemistry and Cell Biology, National Research Council, Naples, Italy
| |
Collapse
|
13
|
Horn A, Jaiswal JK. Structural and signaling role of lipids in plasma membrane repair. CURRENT TOPICS IN MEMBRANES 2019; 84:67-98. [PMID: 31610866 PMCID: PMC7182362 DOI: 10.1016/bs.ctm.2019.07.001] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The plasma membrane forms the physical barrier between the cytoplasm and extracellular space, allowing for biochemical reactions necessary for life to occur. Plasma membrane damage needs to be rapidly repaired to avoid cell death. This relies upon the coordinated action of the machinery that polarizes the repair response to the site of injury, resulting in resealing of the damaged membrane and subsequent remodeling to return the injured plasma membrane to its pre-injury state. As lipids comprise the bulk of the plasma membrane, the acts of injury, resealing, and remodeling all directly impinge upon the plasma membrane lipids. In addition to their structural role in shaping the physical properties of the plasma membrane, lipids also play an important signaling role in maintaining plasma membrane integrity. While much attention has been paid to the involvement of proteins in the membrane repair pathway, the role of lipids in facilitating plasma membrane repair remains poorly studied. Here we will discuss the current knowledge of how lipids facilitate plasma membrane repair by regulating membrane structure and signaling to coordinate the repair response, and will briefly note how lipid involvement extends beyond plasma membrane repair to the tissue repair response.
Collapse
Affiliation(s)
- Adam Horn
- Children's National Health System, Center for Genetic Medicine Research, Washington, DC, United States
| | - Jyoti K Jaiswal
- Children's National Health System, Center for Genetic Medicine Research, Washington, DC, United States; Department of Genomics and Precision Medicine, George Washington University School of Medicine and Health Sciences, Washington, DC, United States.
| |
Collapse
|
14
|
Thakur R, Naik A, Panda A, Raghu P. Regulation of Membrane Turnover by Phosphatidic Acid: Cellular Functions and Disease Implications. Front Cell Dev Biol 2019; 7:83. [PMID: 31231646 PMCID: PMC6559011 DOI: 10.3389/fcell.2019.00083] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Accepted: 05/03/2019] [Indexed: 01/23/2023] Open
Abstract
Phosphatidic acid (PA) is a simple glycerophospholipid with a well-established role as an intermediate in phospholipid biosynthesis. In addition to its role in lipid biosynthesis, PA has been proposed to act as a signaling molecule that modulates several aspects of cell biology including membrane transport. PA can be generated in eukaryotic cells by several enzymes whose activity is regulated in the context of signal transduction and enzymes that can metabolize PA thus terminating its signaling activity have also been described. Further, several studies have identified PA binding proteins and changes in their activity are proposed to be mediators of the signaling activity of this lipid. Together these enzymes and proteins constitute a PA signaling toolkit that mediates the signaling functions of PA in cells. Recently, a number of novel genetic models for the analysis of PA function in vivo and analytical methods to quantify PA levels in cells have been developed and promise to enhance our understanding of PA functions. Studies of several elements of the PA signaling toolkit in a single cell type have been performed and are presented to provide a perspective on our understanding of the biochemical and functional organization of pools of PA in a eukaryotic cell. Finally, we also provide a perspective on the potential role of PA in human disease, synthesizing studies from model organisms, human disease genetics and analysis using recently developed PLD inhibitors.
Collapse
Affiliation(s)
- Rajan Thakur
- National Centre for Biological Sciences-TIFR, Bengaluru, India
| | - Amruta Naik
- National Centre for Biological Sciences-TIFR, Bengaluru, India
| | - Aniruddha Panda
- National Centre for Biological Sciences-TIFR, Bengaluru, India
| | - Padinjat Raghu
- National Centre for Biological Sciences-TIFR, Bengaluru, India
| |
Collapse
|
15
|
Functional link between plasma membrane spatiotemporal dynamics, cancer biology, and dietary membrane-altering agents. Cancer Metastasis Rev 2019; 37:519-544. [PMID: 29860560 DOI: 10.1007/s10555-018-9733-1] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The cell plasma membrane serves as a nexus integrating extra- and intracellular components, which together enable many of the fundamental cellular signaling processes that sustain life. In order to perform this key function, plasma membrane components assemble into well-defined domains exhibiting distinct biochemical and biophysical properties that modulate various signaling events. Dysregulation of these highly dynamic membrane domains can promote oncogenic signaling. Recently, it has been demonstrated that select membrane-targeted dietary bioactives (MTDBs) have the ability to remodel plasma membrane domains and subsequently reduce cancer risk. In this review, we focus on the importance of plasma membrane domain structural and signaling functionalities as well as how loss of membrane homeostasis can drive aberrant signaling. Additionally, we discuss the intricacies associated with the investigation of these membrane domain features and their associations with cancer biology. Lastly, we describe the current literature focusing on MTDBs, including mechanisms of chemoprevention and therapeutics in order to establish a functional link between these membrane-altering biomolecules, tuning of plasma membrane hierarchal organization, and their implications in cancer prevention.
Collapse
|
16
|
Bolomini-Vittori M, Mennens SFB, Joosten B, Fransen J, Du G, van den Dries K, Cambi A. PLD-dependent phosphatidic acid microdomains are signaling platforms for podosome formation. Sci Rep 2019; 9:3556. [PMID: 30837487 PMCID: PMC6401089 DOI: 10.1038/s41598-019-39358-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Accepted: 01/22/2019] [Indexed: 01/07/2023] Open
Abstract
Local membrane phospholipid enrichment serves as docking platform for signaling proteins involved in many processes including cell adhesion and migration. Tissue-resident dendritic cells (DCs) assemble actomyosin-based structures called podosomes, which mediate adhesion and degradation of extracellular matrix for migration and antigen sampling. Recent evidence suggested the involvement of phospholipase D (PLD) and its product phosphatidic acid (PA) in podosome formation, but the spatiotemporal control of this process is poorly characterized. Here we determined the role of PLD1 and PLD2 isoforms in regulating podosome formation and dynamics in human primary DCs by combining PLD pharmacological inhibition with a fluorescent PA sensor and fluorescence microscopy. We found that ongoing PLD2 activity is required for the maintenance of podosomes, whereas both PLD1 and PLD2 control the early stages of podosome assembly. Furthermore, we captured the formation of PA microdomains accumulating at the membrane cytoplasmic leaflet of living DCs, in dynamic coordination with nascent podosome actin cores. Finally, we show that both PLD1 and PLD2 activity are important for podosome-mediated matrix degradation. Our results provide novel insight into the isoform-specific spatiotemporal regulation of PLD activity and further our understanding of the role of cell membrane phospholipids in controlling localized actin polymerization and cell protrusion.
Collapse
Affiliation(s)
- Matteo Bolomini-Vittori
- Department of Cell Biology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Svenja F B Mennens
- Department of Cell Biology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Ben Joosten
- Department of Cell Biology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands.,Microscopic Imaging Center, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Jack Fransen
- Department of Cell Biology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands.,Microscopic Imaging Center, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Guangwei Du
- Department of Integrative Biology and Pharmacology, University of Texas Health Science Center, Houston, Texas, USA
| | - Koen van den Dries
- Department of Cell Biology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Alessandra Cambi
- Department of Cell Biology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands.
| |
Collapse
|
17
|
Wang Z, Cai M, Tay LWR, Zhang F, Wu P, Huynh A, Cao X, Di Paolo G, Peng J, Milewicz DM, Du G. Phosphatidic acid generated by PLD2 promotes the plasma membrane recruitment of IQGAP1 and neointima formation. FASEB J 2019; 33:6713-6725. [PMID: 30811216 DOI: 10.1096/fj.201800390rr] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Very little is known about how lipid signaling regulates intima hyperplasia after vascular injury. Herein, we report that deletion and pharmacological inhibition of phospholipase D (PLD)2, which generates the signaling lipid phosphatidic acid (PA), reduced neointimal formation in the mouse carotid artery ligation model. PLD2 deficiency inhibits migration of vascular smooth muscle cells (VSMCs) into the intima in mice as well as migration and formation of membrane ruffles in primary VSMCs. PA specifically binds to the IQ motif-containing guanosine triphosphatase-activating protein 1 (IQGAP1) scaffold protein. The binding between PA and IQGAP is required for the plasma membrane recruitment of IQGAP1. Similar to PLD2 inhibition, knockdown of IQGAP1 blocks ruffle formation and migration in VSMCs, which are rescued by expression of the exogenous IQGAP1 but not the PA binding-deficient mutant. These data reveal that the PLD2-PA-IQGAP1 pathway plays an important role in VSMC migration and injury-induced vascular remodeling, and implicate PLD2 as a candidate target for therapeutic interventions.-Wang, Z., Cai, M., Tay, L. W. R., Zhang, F., Wu, P., Huynh, A., Cao, X., Di Paolo, G., Peng, J., Milewicz, D. M., Du, G. Phosphatidic acid generated by PLD2 promotes the plasma membrane recruitment of IQGAP1 and neointima formation.
Collapse
Affiliation(s)
- Ziqing Wang
- Department of Integrative Biology and Pharmacology, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Ming Cai
- Department of Integrative Biology and Pharmacology, The University of Texas Health Science Center at Houston, Houston, Texas, USA.,Department of Gastrointestinal Surgery, Union Hospital-Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Li Wei Rachel Tay
- Department of Integrative Biology and Pharmacology, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Feng Zhang
- Department of Integrative Biology and Pharmacology, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Ping Wu
- Department of Integrative Biology and Pharmacology, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Anh Huynh
- Department of Integrative Biology and Pharmacology, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Xiumei Cao
- Department of Integrative Biology and Pharmacology, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Gilbert Di Paolo
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, New York, USA
| | - Junmin Peng
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA.,Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA.,Center for Proteomics and Metabolomics, St. Jude Children's Research Hospital, Memphis, Tennessee, USA; and
| | - Dianna M Milewicz
- Department of Internal Medicine, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Guangwei Du
- Department of Integrative Biology and Pharmacology, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| |
Collapse
|
18
|
Tanguy E, Wang Q, Moine H, Vitale N. Phosphatidic Acid: From Pleiotropic Functions to Neuronal Pathology. Front Cell Neurosci 2019; 13:2. [PMID: 30728767 PMCID: PMC6351798 DOI: 10.3389/fncel.2019.00002] [Citation(s) in RCA: 82] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Accepted: 01/07/2019] [Indexed: 11/17/2022] Open
Abstract
Among the cellular lipids, phosphatidic acid (PA) is a peculiar one as it is at the same time a key building block of phospholipid synthesis and a major lipid second messenger conveying signaling information. The latter is thought to largely occur through the ability of PA to recruit and/or activate specific proteins in restricted compartments and within those only at defined submembrane areas. Furthermore, with its cone-shaped geometry PA locally changes membrane topology and may thus be a key player in membrane trafficking events, especially in membrane fusion and fission steps, where lipid remodeling is believed to be crucial. These pleiotropic cellular functions of PA, including phospholipid synthesis and homeostasis together with important signaling activity, imply that perturbations of PA metabolism could lead to serious pathological conditions. In this mini-review article, after outlining the main cellular functions of PA, we highlight the different neurological diseases that could, at least in part, be attributed to an alteration in PA synthesis and/or catabolism.
Collapse
Affiliation(s)
- Emeline Tanguy
- Institut des Neurosciences Cellulaires et Intégratives (INCI), UPR-3212 Centre National de la Recherche Scientifique & Université de Strasbourg, Strasbourg, France
| | - Qili Wang
- Institut des Neurosciences Cellulaires et Intégratives (INCI), UPR-3212 Centre National de la Recherche Scientifique & Université de Strasbourg, Strasbourg, France
| | - Hervé Moine
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), CNRS UMR 7104, INSERM U964, Université de Strasbourg, Illkirch-Graffenstaden, France
| | - Nicolas Vitale
- Institut des Neurosciences Cellulaires et Intégratives (INCI), UPR-3212 Centre National de la Recherche Scientifique & Université de Strasbourg, Strasbourg, France
| |
Collapse
|
19
|
Canton J. Macropinocytosis: New Insights Into Its Underappreciated Role in Innate Immune Cell Surveillance. Front Immunol 2018; 9:2286. [PMID: 30333835 PMCID: PMC6176211 DOI: 10.3389/fimmu.2018.02286] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Accepted: 09/14/2018] [Indexed: 12/25/2022] Open
Abstract
Macropinocytosis has received increasing attention in recent years for its various roles in nutrient acquisition, immune surveillance, and virus and cancer pathologies. In most cases macropinocytosis is initiated by the sudden increase in an external stimulus such as a growth factor. This "induced" form of macropinocytosis has been the subject of much of the work addressing its mechanism and function over the years. An alternative, "constitutive" form of macropinocytosis restricted to primary innate immune cells also exists, although its mechanism has remained severely understudied. This mini-review focuses on the very recent advances that have shed new light on the initiation, formation and functional relevance of constitutive macropinocytosis in primary innate immune cells. An emphasis is placed on how this new understanding of constitutive macropinocytosis is helping to define the sentinel function of innate immune cells including polarized macrophages and dendritic cells.
Collapse
Affiliation(s)
- Johnathan Canton
- Immunobiology Laboratory, The Francis Crick Institute, London, United Kingdom
| |
Collapse
|
20
|
Xu C, Xie H, Guo X, Gong H, Liu L, Qi H, Xu C, Liu W. A PIP 2-derived amplification loop fuels the sustained initiation of B cell activation. Sci Immunol 2018; 2:2/17/eaan0787. [PMID: 29150438 DOI: 10.1126/sciimmunol.aan0787] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Accepted: 10/04/2017] [Indexed: 12/28/2022]
Abstract
Lymphocytes have evolved sophisticated signaling amplification mechanisms to efficiently activate downstream signaling after detection of rare ligands in their microenvironment. B cell receptor microscopic clusters (BCR microclusters) are assembled on the plasma membrane and recruit signaling molecules for the initiation of lymphocyte signaling after antigen binding. We identified a signaling amplification loop derived from phosphatidylinositol 4,5-biphosphate (PIP2) for the sustained B cell activation. Upon antigen recognition, PIP2 was depleted by phospholipase C-γ2 (PLC-γ2) within the BCR microclusters and was regenerated by phosphatidic acid-dependent type I phosphatidylinositol 4-phosphate 5-kinase outside the BCR microclusters. The hydrolysis of PIP2 inside the BCR microclusters induced a positive feedback mechanism for its synthesis outside the BCR microclusters. The falling gradient of PIP2 across the boundary of BCR microclusters was important for the efficient formation of BCR microclusters. Our results identified a PIP2-derived amplification loop that fuels the sustained initiation of B cell activation.
Collapse
Affiliation(s)
- Chenguang Xu
- Ministry of Education (MOE) Key Laboratory of Protein Sciences, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, School of Life Sciences, Institute for Immunology, Tsinghua University, Beijing 100084, China
| | - Hengyi Xie
- Ministry of Education (MOE) Key Laboratory of Protein Sciences, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, School of Life Sciences, Institute for Immunology, Tsinghua University, Beijing 100084, China
| | - Xingdong Guo
- National Center for Protein Science Shanghai, State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Haipeng Gong
- MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Lei Liu
- Tsinghua-Peking Center for Life Sciences, Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (MOE), Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Hai Qi
- Tsinghua-Peking Center for Life Sciences, Laboratory of Dynamic Immunobiology, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Chenqi Xu
- National Center for Protein Science Shanghai, State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China.,School of Life Science, ShanghaiTech University, Shanghai 201210, China
| | - Wanli Liu
- Ministry of Education (MOE) Key Laboratory of Protein Sciences, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, School of Life Sciences, Institute for Immunology, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
21
|
Wang Z, Zhang F, He J, Wu P, Tay LWR, Cai M, Nian W, Weng Y, Qin L, Chang JT, McIntire LB, Di Paolo G, Xu J, Peng J, Du G. Binding of PLD2-Generated Phosphatidic Acid to KIF5B Promotes MT1-MMP Surface Trafficking and Lung Metastasis of Mouse Breast Cancer Cells. Dev Cell 2017; 43:186-197.e7. [PMID: 29033361 DOI: 10.1016/j.devcel.2017.09.012] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Revised: 07/19/2017] [Accepted: 09/14/2017] [Indexed: 12/22/2022]
Abstract
Little is known about the cellular events promoting metastasis. We show that knockout of phospholipase D2 (PLD2), which generates the signaling lipid phosphatidic acid (PA), inhibits lung metastases in the mammary tumor virus (MMTV)-Neu transgenic mouse breast cancer model. PLD2 promotes local invasion through the regulation of the plasma membrane targeting of MT1-MMP and its associated invadopodia. A liposome pull-down screen identifies KIF5B, the heavy chain of the motor protein kinesin-1, as a new PA-binding protein. In vitro assays reveal that PA specifically and directly binds to the C terminus of KIF5B. The binding between PLD2-generated PA and KIF5B is required for the vesicular association of KIF5B, surface localization of MT1-MMP, invadopodia, and invasion in cancer cells. Taken together, these results identify a role of PLD2-generated PA in the regulation of kinesin-1 motor functions and breast cancer metastasis and suggest PLD2 as a potential therapeutic target for metastatic breast cancer.
Collapse
Affiliation(s)
- Ziqing Wang
- Department of Integrative Biology and Pharmacology, University of Texas Health Science Center at Houston, 6431 Fannin St., Houston, TX 77030, USA
| | - Feng Zhang
- Department of Integrative Biology and Pharmacology, University of Texas Health Science Center at Houston, 6431 Fannin St., Houston, TX 77030, USA; Core Facility, Department of Clinical Laboratory, Quzhou People's Hospital, Quzhou, Zhejiang, China
| | - Jingquan He
- Department of Integrative Biology and Pharmacology, University of Texas Health Science Center at Houston, 6431 Fannin St., Houston, TX 77030, USA
| | - Ping Wu
- Department of Integrative Biology and Pharmacology, University of Texas Health Science Center at Houston, 6431 Fannin St., Houston, TX 77030, USA
| | - Li Wei Rachel Tay
- Department of Integrative Biology and Pharmacology, University of Texas Health Science Center at Houston, 6431 Fannin St., Houston, TX 77030, USA
| | - Ming Cai
- Department of Integrative Biology and Pharmacology, University of Texas Health Science Center at Houston, 6431 Fannin St., Houston, TX 77030, USA; Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province 430022, China
| | - Weiqi Nian
- Department of Integrative Biology and Pharmacology, University of Texas Health Science Center at Houston, 6431 Fannin St., Houston, TX 77030, USA; Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing Cancer Hospital & Institute & Cancer Center, Chongqing 400030, China
| | - Yuanyuan Weng
- Core Facility, Department of Clinical Laboratory, Quzhou People's Hospital, Quzhou, Zhejiang, China
| | - Li Qin
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Jeffrey T Chang
- Department of Integrative Biology and Pharmacology, University of Texas Health Science Center at Houston, 6431 Fannin St., Houston, TX 77030, USA
| | - Laura B McIntire
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, NY 10032, USA
| | - Gilbert Di Paolo
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, NY 10032, USA
| | - Jianming Xu
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Junmin Peng
- Departments of Structural Biology and Developmental Neurobiology, St. Jude Proteomics Facility, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Guangwei Du
- Department of Integrative Biology and Pharmacology, University of Texas Health Science Center at Houston, 6431 Fannin St., Houston, TX 77030, USA.
| |
Collapse
|
22
|
Law F, Seo JH, Wang Z, DeLeon JL, Bolis Y, Brown A, Zong WX, Du G, Rocheleau CE. The VPS34 PI3K negatively regulates RAB-5 during endosome maturation. J Cell Sci 2017; 130:2007-2017. [PMID: 28455411 DOI: 10.1242/jcs.194746] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Accepted: 04/25/2017] [Indexed: 12/20/2022] Open
Abstract
The GTPase Rab5 and phosphatidylinositol-3 phosphate [PI(3)P] coordinately regulate endosome trafficking. Rab5 recruits Vps34, the class III phosphoinositide 3-kinase (PI3K), to generate PI(3)P and recruit PI(3)P-binding proteins. Loss of Rab5 and loss of Vps34 have opposite effects on endosome size, suggesting that our understanding of how Rab5 and PI(3)P cooperate is incomplete. Here, we report a novel regulatory loop whereby Caenorhabditis elegans VPS-34 inactivates RAB-5 via recruitment of the TBC-2 Rab GTPase-activating protein. We found that loss of VPS-34 caused a phenotype with large late endosomes, as with loss of TBC-2, and that Rab5 activity (mice have two Rab5 isoforms, Rab5a and Rab5b) is increased in Vps34-knockout mouse embryonic fibroblasts (Vps34 is also known as PIK3C3 in mammals). We found that VPS-34 is required for TBC-2 endosome localization and that the pleckstrin homology (PH) domain of TBC-2 bound PI(3)P. Deletion of the PH domain enhanced TBC-2 localization to endosomes in a VPS-34-dependent manner. Thus, PI(3)P binding of the PH domain might be permissive for another PI(3)P-regulated interaction that recruits TBC-2 to endosomes. Therefore, VPS-34 recruits TBC-2 to endosomes to inactivate RAB-5 to ensure the directionality of endosome maturation.
Collapse
Affiliation(s)
- Fiona Law
- Division of Endocrinology and Metabolism, Departments of Medicine, and Anatomy and Cell Biology, McGill University, and the Program in Metabolic Disorders and Complications, Centre for Translational Biology, Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada H4A 3J1
| | - Jung Hwa Seo
- Division of Endocrinology and Metabolism, Departments of Medicine, and Anatomy and Cell Biology, McGill University, and the Program in Metabolic Disorders and Complications, Centre for Translational Biology, Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada H4A 3J1
| | - Ziqing Wang
- Department of Integrative Biology and Pharmacology, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Jennifer L DeLeon
- Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, NY 11794, USA
| | - Yousstina Bolis
- Division of Endocrinology and Metabolism, Departments of Medicine, and Anatomy and Cell Biology, McGill University, and the Program in Metabolic Disorders and Complications, Centre for Translational Biology, Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada H4A 3J1
| | - Ashley Brown
- Division of Endocrinology and Metabolism, Departments of Medicine, and Anatomy and Cell Biology, McGill University, and the Program in Metabolic Disorders and Complications, Centre for Translational Biology, Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada H4A 3J1
| | - Wei-Xing Zong
- Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, NY 11794, USA.,Department of Chemical Biology, Rutgers University, Piscataway, NJ 08854, USA
| | - Guangwei Du
- Department of Integrative Biology and Pharmacology, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Christian E Rocheleau
- Division of Endocrinology and Metabolism, Departments of Medicine, and Anatomy and Cell Biology, McGill University, and the Program in Metabolic Disorders and Complications, Centre for Translational Biology, Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada H4A 3J1
| |
Collapse
|
23
|
Jaber N, Mohd-Naim N, Wang Z, DeLeon JL, Kim S, Zhong H, Sheshadri N, Dou Z, Edinger AL, Du G, Braga VMM, Zong WX. Vps34 regulates Rab7 and late endocytic trafficking through recruitment of the GTPase-activating protein Armus. J Cell Sci 2016; 129:4424-4435. [PMID: 27793976 DOI: 10.1242/jcs.192260] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Accepted: 10/21/2016] [Indexed: 01/03/2023] Open
Abstract
The class III phosphoinositide 3-kinase (PI3K) Vps34 (also known as PIK3C3 in mammals) produces phosphatidylinositol 3-phosphate [PI(3)P] on both early and late endosome membranes to control membrane dynamics. We used Vps34-deficient cells to delineate whether Vps34 has additional roles in endocytic trafficking. In Vps34-/- mouse embryonic fibroblasts (MEFs), transferrin recycling and EEA1 membrane localization were unaffected despite elevated Rab5-GTP levels. Strikingly, a large increase in Rab7-GTP levels, an accumulation of enlarged late endosomes, and decreased EGFR degradation were observed in Vps34-deficient cells. The hyperactivation of Rab7 in Vps34-deficient cells stemmed from the failure to recruit the Rab7 GTPase-activating protein (GAP) Armus (also known as TBC1D2), which binds to PI(3)P, to late endosomes. Protein-lipid overlay and liposome-binding assays reveal that the putative pleckstrin homology (PH) domain in Armus can directly bind to PI(3)P. Elevated Rab7-GTP led to the failure of intraluminal vesicle (ILV) formation and lysosomal maturation. Rab7 silencing and Armus overexpression alleviated the vacuolization seen in Vps34-deficient cells. Taken together, these results demonstrate that Vps34 has a previously unknown role in regulating Rab7 activity and late endosomal trafficking.
Collapse
Affiliation(s)
- Nadia Jaber
- Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook NY11794, USA
| | - Noor Mohd-Naim
- Molecular Medicine, NHLI, Faculty of Medicine, Imperial College London, London SW7 2AZ, UK
| | - Ziqing Wang
- Department of Integrative Biology and Pharmacology, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Jennifer L DeLeon
- Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook NY11794, USA
| | - Seong Kim
- Department of Developmental and Cell Biology, University of California, Irvine, CA 92697, USA
| | - Hua Zhong
- Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers University, 164 Frelinghuysen Road, Piscataway NJ08854, USA
| | - Namratha Sheshadri
- Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook NY11794, USA
| | - Zhixun Dou
- Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook NY11794, USA
| | - Aimee L Edinger
- Department of Developmental and Cell Biology, University of California, Irvine, CA 92697, USA
| | - Guangwei Du
- Department of Integrative Biology and Pharmacology, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Vania M M Braga
- Molecular Medicine, NHLI, Faculty of Medicine, Imperial College London, London SW7 2AZ, UK
| | - Wei-Xing Zong
- Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook NY11794, USA .,Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers University, 164 Frelinghuysen Road, Piscataway NJ08854, USA.,Rutgers Cancer Institute of New Jersey, 195 Little Albany Street, New Brunswick NJ08903, USA
| |
Collapse
|
24
|
Abstract
Phosphatidylinositol 4,5-bisphosphate [PI(4,5)P2] is a lipid second messenger that regulates a wide array of essential cellular events, such as signal transduction, vesicle trafficking, actin cytoskeleton dynamics, adhesion, and motility. To control the spatiotemporal production of PI(4,5)P2, the activity of type 1 phosphotidylinositol-4-phosphate-5-kinases (PIPKIs) is tightly regulated by small GTPases and another signaling lipid, phosphatidic acid (PA). It is of interest that PI(4,5)P2 is also a critical cofactor for the activation of the PA-generating enzyme, phospholipase D (PLD). It has been proposed that the reciprocal stimulation of PLD and PIPKI enzymes enables a rapid feedforward stimulation loop for the localized and acute generation of signaling lipids that are critical for the regulation of actin cytoskeletal reorganization and membrane trafficking. Here, we outline the methods for the expression and purification of PIPKIγ from bacteria, determination of direct PA binding, and activation of PIPKIγ using in vitro liposomes assays, and examination of actin cytoskeletal reorganization promoted by the PA-PIPKIγ signaling in intact cells using fluorescent microscopy.
Collapse
|
25
|
Jiang Y, Sverdlov MS, Toth PT, Huang LS, Du G, Liu Y, Natarajan V, Minshall RD. Phosphatidic Acid Produced by RalA-activated PLD2 Stimulates Caveolae-mediated Endocytosis and Trafficking in Endothelial Cells. J Biol Chem 2016; 291:20729-38. [PMID: 27510034 DOI: 10.1074/jbc.m116.752485] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Indexed: 11/06/2022] Open
Abstract
Caveolae are the primary route for internalization and transendothelial transport of macromolecules, such as insulin and albumin. Caveolae-mediated endocytosis is activated by Src-dependent caveolin-1 (Cav-1) phosphorylation and subsequent recruitment of dynamin-2 and filamin A (FilA), which facilitate vesicle fission and trafficking, respectively. Here, we tested the role of RalA and phospholipase D (PLD) signaling in the regulation of caveolae-mediated endocytosis and trafficking. The addition of albumin to human lung microvascular endothelial cells induced the activation of RalA within minutes, and siRNA-mediated down-regulation of RalA abolished fluorescent BSA uptake. Co-immunoprecipitation studies revealed that albumin induced the association between RalA, Cav-1, and FilA; however, RalA knockdown with siRNA did not affect FilA recruitment to Cav-1, suggesting that RalA was not required for FilA and Cav-1 complex formation. Rather, RalA probably facilitates caveolae-mediated endocytosis by activating downstream effectors. PLD2 was shown to be activated by RalA, and inhibition of PLD2 abolished Alexa-488-BSA uptake, indicating that phosphatidic acid (PA) generated by PLD2 may facilitate caveolae-mediated endocytosis. Furthermore, using a PA biosensor, GFP-PASS, we observed that BSA induced an increase in PA co-localization with Cav-1-RFP, which could be blocked by a dominant negative PLD2 mutant. Total internal reflection fluorescence microscopy studies of Cav-1-RFP also showed that fusion of caveolae with the basal plasma membrane was dependent on PLD2 activity. Thus, our results suggest that the small GTPase RalA plays an important role in promoting invagination and trafficking of caveolae, not by potentiating the association between Cav-1 and FilA but by stimulating PLD2-mediated generation of phosphatidic acid.
Collapse
Affiliation(s)
- Ying Jiang
- From the School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, Sichuan 610054, China, the Departments of Anesthesiology
| | | | | | - Long Shuang Huang
- Pharmacology, and Medicine, College of Medicine, University of Illinois at Chicago, Chicago, Illinois 60612, and
| | - Guangwei Du
- the Departments of Integrative Biology and Pharmacology, University of Texas Health Science Center, Houston, Texas 77030
| | - Yiyao Liu
- From the School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, Sichuan 610054, China
| | - Viswanathan Natarajan
- Pharmacology, and Medicine, College of Medicine, University of Illinois at Chicago, Chicago, Illinois 60612, and
| | | |
Collapse
|
26
|
Schlam D, Canton J. Every day I'm rufflin': Calcium sensing and actin dynamics in the growth factor-independent membrane ruffling of professional phagocytes. Small GTPases 2016; 8:65-70. [PMID: 27267709 DOI: 10.1080/21541248.2016.1197873] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Professional phagocytes continuously extend dynamic, actin-driven membrane protrusions. These protrusions, often referred to as membrane ruffles, serve a critical role in the essential phagocyte processes of macropinocytosis and phagocytosis. Small GTPases, such as RAC1/2, spatially and temporally regulate membrane ruffle formation. We have recently shown that extracellular calcium regulates the elaboration of membrane ruffles primarily through the synthesis of phosphatidic acid (PtdOH) at the plasma membrane. RAC1/2 guanine nucleotide exchange factors harbouring polybasic stretches are recruited by PtdOH to sites of ruffle formation. Here we discuss our findings and offer perspectives on how the regulation of dynamic actin structures at the plasma membrane by small GTPases is a critical component of phagocyte function.
Collapse
Affiliation(s)
- Daniel Schlam
- a Division of Cell Biology , Hospital for Sick Children , Toronto , ON , Canada
| | - Johnathan Canton
- a Division of Cell Biology , Hospital for Sick Children , Toronto , ON , Canada
| |
Collapse
|
27
|
Hou Q, Ufer G, Bartels D. Lipid signalling in plant responses to abiotic stress. PLANT, CELL & ENVIRONMENT 2016; 39:1029-48. [PMID: 26510494 DOI: 10.1111/pce.12666] [Citation(s) in RCA: 351] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Revised: 10/16/2015] [Accepted: 10/19/2015] [Indexed: 05/18/2023]
Abstract
Lipids are one of the major components of biological membranes including the plasma membrane, which is the interface between the cell and the environment. It has become clear that membrane lipids also serve as substrates for the generation of numerous signalling lipids such as phosphatidic acid, phosphoinositides, sphingolipids, lysophospholipids, oxylipins, N-acylethanolamines, free fatty acids and others. The enzymatic production and metabolism of these signalling molecules are tightly regulated and can rapidly be activated upon abiotic stress signals. Abiotic stress like water deficit and temperature stress triggers lipid-dependent signalling cascades, which control the expression of gene clusters and activate plant adaptation processes. Signalling lipids are able to recruit protein targets transiently to the membrane and thus affect conformation and activity of intracellular proteins and metabolites. In plants, knowledge is still scarce of lipid signalling targets and their physiological consequences. This review focuses on the generation of signalling lipids and their involvement in response to abiotic stress. We describe lipid-binding proteins in the context of changing environmental conditions and compare different approaches to determine lipid-protein interactions, crucial for deciphering the signalling cascades.
Collapse
Affiliation(s)
- Quancan Hou
- University of Bonn IMBIO Bonn Germany, Kirschallee 1, Bonn, D-53115, Germany
| | - Guido Ufer
- University of Bonn IMBIO Bonn Germany, Kirschallee 1, Bonn, D-53115, Germany
| | - Dorothea Bartels
- University of Bonn IMBIO Bonn Germany, Kirschallee 1, Bonn, D-53115, Germany
| |
Collapse
|
28
|
Hong Y, Zhao J, Guo L, Kim SC, Deng X, Wang G, Zhang G, Li M, Wang X. Plant phospholipases D and C and their diverse functions in stress responses. Prog Lipid Res 2016; 62:55-74. [DOI: 10.1016/j.plipres.2016.01.002] [Citation(s) in RCA: 214] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Revised: 12/23/2015] [Accepted: 01/01/2016] [Indexed: 12/25/2022]
|
29
|
Zhao J. Phospholipase D and phosphatidic acid in plant defence response: from protein-protein and lipid-protein interactions to hormone signalling. JOURNAL OF EXPERIMENTAL BOTANY 2015; 66:1721-36. [PMID: 25680793 PMCID: PMC4669553 DOI: 10.1093/jxb/eru540] [Citation(s) in RCA: 114] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2014] [Revised: 12/08/2014] [Accepted: 12/15/2014] [Indexed: 05/05/2023]
Abstract
Phospholipase Ds (PLDs) and PLD-derived phosphatidic acids (PAs) play vital roles in plant hormonal and environmental responses and various cellular dynamics. Recent studies have further expanded the functions of PLDs and PAs into plant-microbe interaction. The molecular diversities and redundant functions make PLD-PA an important signalling complex regulating lipid metabolism, cytoskeleton dynamics, vesicle trafficking, and hormonal signalling in plant defence through protein-protein and protein-lipid interactions or hormone signalling. Different PLD-PA signalling complexes and their targets have emerged as fast-growing research topics for understanding their numerous but not yet established roles in modifying pathogen perception, signal transduction, and downstream defence responses. Meanwhile, advanced lipidomics tools have allowed researchers to reveal further the mechanisms of PLD-PA signalling complexes in regulating lipid metabolism and signalling, and their impacts on jasmonic acid/oxylipins, salicylic acid, and other hormone signalling pathways that essentially mediate plant defence responses. This review attempts to summarize the progress made in spatial and temporal PLD/PA signalling as well as PLD/PA-mediated modification of plant defence. It presents an in-depth discussion on the functions and potential mechanisms of PLD-PA complexes in regulating actin filament/microtubule cytoskeleton, vesicle trafficking, and hormonal signalling, and in influencing lipid metabolism-derived metabolites as critical signalling components in plant defence responses. The discussion puts PLD-PA in a broader context in order to guide future research.
Collapse
Affiliation(s)
- Jian Zhao
- National Key Laboratory for Crop Genetic Improvement, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan 430070, PR China
| |
Collapse
|
30
|
Stith BJ. Phospholipase C and D regulation of Src, calcium release and membrane fusion during Xenopus laevis development. Dev Biol 2015; 401:188-205. [PMID: 25748412 DOI: 10.1016/j.ydbio.2015.02.020] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Revised: 02/15/2015] [Accepted: 02/24/2015] [Indexed: 11/28/2022]
Abstract
This review emphasizes how lipids regulate membrane fusion and the proteins involved in three developmental stages: oocyte maturation to the fertilizable egg, fertilization and during first cleavage. Decades of work show that phosphatidic acid (PA) releases intracellular calcium, and recent work shows that the lipid can activate Src tyrosine kinase or phospholipase C during Xenopus fertilization. Numerous reports are summarized to show three levels of increase in lipid second messengers inositol 1,4,5-trisphosphate and sn 1,2-diacylglycerol (DAG) during the three different developmental stages. In addition, possible roles for PA, ceramide, lysophosphatidylcholine, plasmalogens, phosphatidylinositol 4-phosphate, phosphatidylinositol 5-phosphate, phosphatidylinositol 4,5-bisphosphate, membrane microdomains (rafts) and phosphatidylinositol 3,4,5-trisphosphate in regulation of membrane fusion (acrosome reaction, sperm-egg fusion, cortical granule exocytosis), inositol 1,4,5-trisphosphate receptors, and calcium release are discussed. The role of six lipases involved in generating putative lipid second messengers during fertilization is also discussed: phospholipase D, autotaxin, lipin1, sphingomyelinase, phospholipase C, and phospholipase A2. More specifically, proteins involved in developmental events and their regulation through lipid binding to SH3, SH4, PH, PX, or C2 protein domains is emphasized. New models are presented for PA activation of Src (through SH3, SH4 and a unique domain), that this may be why the SH2 domain of PLCγ is not required for Xenopus fertilization, PA activation of phospholipase C, a role for PA during the calcium wave after fertilization, and that calcium/calmodulin may be responsible for the loss of Src from rafts after fertilization. Also discussed is that the large DAG increase during fertilization derives from phospholipase D production of PA and lipin dephosphorylation to DAG.
Collapse
Affiliation(s)
- Bradley J Stith
- University of Colorado Denver, Department of Integrative Biology, Campus Box 171, PO Box 173364, Denver, CO 80217-3364, United States.
| |
Collapse
|
31
|
Lacalle RA, de Karam JC, Martínez-Muñoz L, Artetxe I, Peregil RM, Sot J, Rojas AM, Goñi FM, Mellado M, Mañes S. Type I phosphatidylinositol 4-phosphate 5-kinase homo- and heterodimerization determines its membrane localization and activity. FASEB J 2015; 29:2371-85. [PMID: 25713054 DOI: 10.1096/fj.14-264606] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Accepted: 02/03/2015] [Indexed: 11/11/2022]
Abstract
Type I phosphatidylinositol 4-phosphate 5-kinases (PIP5KIs; α, β, and γ) are a family of isoenzymes that produce phosphatidylinositol 4,5-bisphosphate [PI(4,5)P2] using phosphatidylinositol 4-phosphate as substrate. Their structural homology with the class II lipid kinases [type II phosphatidylinositol 5-phosphate 4-kinase (PIP4KII)] suggests that PIP5KI dimerizes, although this has not been formally demonstrated. Neither the hypothetical structural dimerization determinants nor the functional consequences of dimerization have been studied. Here, we used Förster resonance energy transfer, coprecipitation, and ELISA to show that PIP5KIβ forms homo- and heterodimers with PIP5KIγ_i2 in vitro and in live human cells. Dimerization appears to be a general phenomenon for PIP5KI isoenzymes because PIP5KIβ/PIP5KIα heterodimers were also detected by mass spectrometry. Dimerization was independent of actin cytoskeleton remodeling and was also observed using purified proteins. Mutagenesis studies of PIP5KIβ located the dimerization motif at the N terminus, in a region homologous to that implicated in PIP4KII dimerization. PIP5KIβ mutants whose dimerization was impaired showed a severe decrease in PI(4,5)P2 production and plasma membrane delocalization, although their association to lipid monolayers was unaltered. Our results identify dimerization as an integral feature of PIP5K proteins and a central determinant of their enzyme activity.
Collapse
Affiliation(s)
- Rosa Ana Lacalle
- *Department of Immunology and Oncology, Centro Nacional de Biotecnología/Consejo Superior de Investigaciones Científicas, Darwin 3, Campus de Cantoblanco, Madrid, Spain; Unidad de Biofísica Consejo Superior de Investigaciones Científicas, Universidad del País Vasco/Euskal Herriko Unibertsitatea, Campus de Leioa, Barrio Sarriena s/n, Leioa, Bizkaia, Spain; and Computational Biology and Bioinformatics Group, Instituto de Biomedicina de Sevilla-Hospital Universitario Virgen del Rocío-Consejo Superior de Investigaciones Científicas, Manuel Siurot s/n, Seville, Spain
| | - Juan C de Karam
- *Department of Immunology and Oncology, Centro Nacional de Biotecnología/Consejo Superior de Investigaciones Científicas, Darwin 3, Campus de Cantoblanco, Madrid, Spain; Unidad de Biofísica Consejo Superior de Investigaciones Científicas, Universidad del País Vasco/Euskal Herriko Unibertsitatea, Campus de Leioa, Barrio Sarriena s/n, Leioa, Bizkaia, Spain; and Computational Biology and Bioinformatics Group, Instituto de Biomedicina de Sevilla-Hospital Universitario Virgen del Rocío-Consejo Superior de Investigaciones Científicas, Manuel Siurot s/n, Seville, Spain
| | - Laura Martínez-Muñoz
- *Department of Immunology and Oncology, Centro Nacional de Biotecnología/Consejo Superior de Investigaciones Científicas, Darwin 3, Campus de Cantoblanco, Madrid, Spain; Unidad de Biofísica Consejo Superior de Investigaciones Científicas, Universidad del País Vasco/Euskal Herriko Unibertsitatea, Campus de Leioa, Barrio Sarriena s/n, Leioa, Bizkaia, Spain; and Computational Biology and Bioinformatics Group, Instituto de Biomedicina de Sevilla-Hospital Universitario Virgen del Rocío-Consejo Superior de Investigaciones Científicas, Manuel Siurot s/n, Seville, Spain
| | - Ibai Artetxe
- *Department of Immunology and Oncology, Centro Nacional de Biotecnología/Consejo Superior de Investigaciones Científicas, Darwin 3, Campus de Cantoblanco, Madrid, Spain; Unidad de Biofísica Consejo Superior de Investigaciones Científicas, Universidad del País Vasco/Euskal Herriko Unibertsitatea, Campus de Leioa, Barrio Sarriena s/n, Leioa, Bizkaia, Spain; and Computational Biology and Bioinformatics Group, Instituto de Biomedicina de Sevilla-Hospital Universitario Virgen del Rocío-Consejo Superior de Investigaciones Científicas, Manuel Siurot s/n, Seville, Spain
| | - Rosa M Peregil
- *Department of Immunology and Oncology, Centro Nacional de Biotecnología/Consejo Superior de Investigaciones Científicas, Darwin 3, Campus de Cantoblanco, Madrid, Spain; Unidad de Biofísica Consejo Superior de Investigaciones Científicas, Universidad del País Vasco/Euskal Herriko Unibertsitatea, Campus de Leioa, Barrio Sarriena s/n, Leioa, Bizkaia, Spain; and Computational Biology and Bioinformatics Group, Instituto de Biomedicina de Sevilla-Hospital Universitario Virgen del Rocío-Consejo Superior de Investigaciones Científicas, Manuel Siurot s/n, Seville, Spain
| | - Jesús Sot
- *Department of Immunology and Oncology, Centro Nacional de Biotecnología/Consejo Superior de Investigaciones Científicas, Darwin 3, Campus de Cantoblanco, Madrid, Spain; Unidad de Biofísica Consejo Superior de Investigaciones Científicas, Universidad del País Vasco/Euskal Herriko Unibertsitatea, Campus de Leioa, Barrio Sarriena s/n, Leioa, Bizkaia, Spain; and Computational Biology and Bioinformatics Group, Instituto de Biomedicina de Sevilla-Hospital Universitario Virgen del Rocío-Consejo Superior de Investigaciones Científicas, Manuel Siurot s/n, Seville, Spain
| | - Ana M Rojas
- *Department of Immunology and Oncology, Centro Nacional de Biotecnología/Consejo Superior de Investigaciones Científicas, Darwin 3, Campus de Cantoblanco, Madrid, Spain; Unidad de Biofísica Consejo Superior de Investigaciones Científicas, Universidad del País Vasco/Euskal Herriko Unibertsitatea, Campus de Leioa, Barrio Sarriena s/n, Leioa, Bizkaia, Spain; and Computational Biology and Bioinformatics Group, Instituto de Biomedicina de Sevilla-Hospital Universitario Virgen del Rocío-Consejo Superior de Investigaciones Científicas, Manuel Siurot s/n, Seville, Spain
| | - Félix M Goñi
- *Department of Immunology and Oncology, Centro Nacional de Biotecnología/Consejo Superior de Investigaciones Científicas, Darwin 3, Campus de Cantoblanco, Madrid, Spain; Unidad de Biofísica Consejo Superior de Investigaciones Científicas, Universidad del País Vasco/Euskal Herriko Unibertsitatea, Campus de Leioa, Barrio Sarriena s/n, Leioa, Bizkaia, Spain; and Computational Biology and Bioinformatics Group, Instituto de Biomedicina de Sevilla-Hospital Universitario Virgen del Rocío-Consejo Superior de Investigaciones Científicas, Manuel Siurot s/n, Seville, Spain
| | - Mario Mellado
- *Department of Immunology and Oncology, Centro Nacional de Biotecnología/Consejo Superior de Investigaciones Científicas, Darwin 3, Campus de Cantoblanco, Madrid, Spain; Unidad de Biofísica Consejo Superior de Investigaciones Científicas, Universidad del País Vasco/Euskal Herriko Unibertsitatea, Campus de Leioa, Barrio Sarriena s/n, Leioa, Bizkaia, Spain; and Computational Biology and Bioinformatics Group, Instituto de Biomedicina de Sevilla-Hospital Universitario Virgen del Rocío-Consejo Superior de Investigaciones Científicas, Manuel Siurot s/n, Seville, Spain
| | - Santos Mañes
- *Department of Immunology and Oncology, Centro Nacional de Biotecnología/Consejo Superior de Investigaciones Científicas, Darwin 3, Campus de Cantoblanco, Madrid, Spain; Unidad de Biofísica Consejo Superior de Investigaciones Científicas, Universidad del País Vasco/Euskal Herriko Unibertsitatea, Campus de Leioa, Barrio Sarriena s/n, Leioa, Bizkaia, Spain; and Computational Biology and Bioinformatics Group, Instituto de Biomedicina de Sevilla-Hospital Universitario Virgen del Rocío-Consejo Superior de Investigaciones Científicas, Manuel Siurot s/n, Seville, Spain
| |
Collapse
|
32
|
Ammar MR, Kassas N, Bader MF, Vitale N. Phosphatidic acid in neuronal development: A node for membrane and cytoskeleton rearrangements. Biochimie 2014; 107 Pt A:51-7. [DOI: 10.1016/j.biochi.2014.07.026] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2014] [Accepted: 07/30/2014] [Indexed: 12/22/2022]
|
33
|
Bruntz RC, Lindsley CW, Brown HA. Phospholipase D signaling pathways and phosphatidic acid as therapeutic targets in cancer. Pharmacol Rev 2014; 66:1033-79. [PMID: 25244928 PMCID: PMC4180337 DOI: 10.1124/pr.114.009217] [Citation(s) in RCA: 183] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Phospholipase D is a ubiquitous class of enzymes that generates phosphatidic acid as an intracellular signaling species. The phospholipase D superfamily plays a central role in a variety of functions in prokaryotes, viruses, yeast, fungi, plants, and eukaryotic species. In mammalian cells, the pathways modulating catalytic activity involve a variety of cellular signaling components, including G protein-coupled receptors, receptor tyrosine kinases, polyphosphatidylinositol lipids, Ras/Rho/ADP-ribosylation factor GTPases, and conventional isoforms of protein kinase C, among others. Recent findings have shown that phosphatidic acid generated by phospholipase D plays roles in numerous essential cellular functions, such as vesicular trafficking, exocytosis, autophagy, regulation of cellular metabolism, and tumorigenesis. Many of these cellular events are modulated by the actions of phosphatidic acid, and identification of two targets (mammalian target of rapamycin and Akt kinase) has especially highlighted a role for phospholipase D in the regulation of cellular metabolism. Phospholipase D is a regulator of intercellular signaling and metabolic pathways, particularly in cells that are under stress conditions. This review provides a comprehensive overview of the regulation of phospholipase D activity and its modulation of cellular signaling pathways and functions.
Collapse
Affiliation(s)
- Ronald C Bruntz
- Department of Pharmacology (R.C.B., C.W.L., H.A.B.) and Vanderbilt Center for Neuroscience Drug Discovery (C.W.L.), Vanderbilt University Medical Center; Department of Chemistry, Vanderbilt Institute of Chemical Biology (C.W.L., H.A.B.); Vanderbilt Specialized Chemistry for Accelerated Probe Development (C.W.L.); and Department of Biochemistry, Vanderbilt-Ingram Cancer Center (H.A.B.), Vanderbilt University, Nashville, Tennessee
| | - Craig W Lindsley
- Department of Pharmacology (R.C.B., C.W.L., H.A.B.) and Vanderbilt Center for Neuroscience Drug Discovery (C.W.L.), Vanderbilt University Medical Center; Department of Chemistry, Vanderbilt Institute of Chemical Biology (C.W.L., H.A.B.); Vanderbilt Specialized Chemistry for Accelerated Probe Development (C.W.L.); and Department of Biochemistry, Vanderbilt-Ingram Cancer Center (H.A.B.), Vanderbilt University, Nashville, Tennessee
| | - H Alex Brown
- Department of Pharmacology (R.C.B., C.W.L., H.A.B.) and Vanderbilt Center for Neuroscience Drug Discovery (C.W.L.), Vanderbilt University Medical Center; Department of Chemistry, Vanderbilt Institute of Chemical Biology (C.W.L., H.A.B.); Vanderbilt Specialized Chemistry for Accelerated Probe Development (C.W.L.); and Department of Biochemistry, Vanderbilt-Ingram Cancer Center (H.A.B.), Vanderbilt University, Nashville, Tennessee
| |
Collapse
|
34
|
Rossy J, Ma Y, Gaus K. The organisation of the cell membrane: do proteins rule lipids? Curr Opin Chem Biol 2014; 20:54-9. [PMID: 24815858 DOI: 10.1016/j.cbpa.2014.04.009] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2014] [Revised: 04/17/2014] [Accepted: 04/17/2014] [Indexed: 11/16/2022]
Abstract
Cell membranes are a complex adaptive system: they are constantly re-organised in response to extra- and intracellular inputs and their local and global structure ultimately determines how, where and when these inputs are processed. This requires a tight coupling of signalling and membranes in localised and specialised compartments. While lipids are essential components of cell membranes, they mostly lack a direct link to the input signals. Here we review how proteins can deform locally membranes, modify and reorganise lipids to form membrane domains and regulate properties like membrane charges and diffusion. From this point-of-view, it appears that proteins play a central role in regulating membrane organisation.
Collapse
Affiliation(s)
- Jérémie Rossy
- Centre for Vascular Research and Australian Centre for Nanomedicine, University of New South Wales, Sydney, Australia.
| | - Yuanqing Ma
- Centre for Vascular Research and Australian Centre for Nanomedicine, University of New South Wales, Sydney, Australia
| | - Katharina Gaus
- Centre for Vascular Research and Australian Centre for Nanomedicine, University of New South Wales, Sydney, Australia.
| |
Collapse
|
35
|
Phospholipase D is involved in the formation of Golgi associated clathrin coated vesicles in human parotid duct cells. PLoS One 2014; 9:e91868. [PMID: 24618697 PMCID: PMC3950291 DOI: 10.1371/journal.pone.0091868] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2013] [Accepted: 02/17/2014] [Indexed: 11/19/2022] Open
Abstract
Phospholipase D (PLD) has been implicated in many cellular functions, such as vesicle trafficking, exocytosis, differentiation, and proliferation. The aim of this study was to characterize the role of PLD in HSY cells, a human cell line originating from the intercalated duct of the parotid gland. As the function and intracellular localization of PLD varies according to cell type, initially, the intracellular localization of PLD1 and PLD2 was determined. By immunofluorescence, PLD1 and PLD2 both showed a punctate cytoplasmic distribution with extensive co-localization with TGN-46. PLD1 was also found in the nucleus, while PLD2 was associated with the plasma membrane. Treatment of cells with the primary alcohol 1-butanol inhibits the hydrolysis of phosphatidylcoline by PLD thereby suppressing phosphatidic acid (PA) production. In untreated HSY cells, there was only a slight co-localization of PLD with the clathrin coated vesicles. When HSY cells were incubated with 1-butanol the total number of clathrin coated vesicles increased, especially in the juxtanuclear region and the co-localization of PLD with the clathrin coated vesicles was augmented. Transmission electron microscopy confirmed that the number of Golgi-associated coated vesicles was greater. Treatment with 1-butanol also affected the Golgi apparatus, increasing the volume of the Golgi saccules. The decrease in PA levels after treatment with 1-butanol likewise resulted in an accumulation of enlarged lysosomes in the perinuclear region. Therefore, in HSY cells PLD appears to be involved in the formation of Golgi associated clathrin coated vesicles as well as in the structural maintenance of the Golgi apparatus.
Collapse
|
36
|
Pleskot R, Pejchar P, Staiger CJ, Potocký M. When fat is not bad: the regulation of actin dynamics by phospholipid signaling molecules. FRONTIERS IN PLANT SCIENCE 2014; 5:5. [PMID: 24478785 PMCID: PMC3899574 DOI: 10.3389/fpls.2014.00005] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2013] [Accepted: 01/04/2014] [Indexed: 05/21/2023]
Abstract
The actin cytoskeleton plays a key role in the plant morphogenesis and is involved in polar cell growth, movement of subcellular organelles, cell division, and plant defense. Organization of actin cytoskeleton undergoes dynamic remodeling in response to internal developmental cues and diverse environmental signals. This dynamic behavior is regulated by numerous actin-binding proteins (ABPs) that integrate various signaling pathways. Production of the signaling lipids phosphatidylinositol 4,5-bisphosphate and phosphatidic acid affects the activity and subcellular distribution of several ABPs, and typically correlates with increased actin polymerization. Here we review current knowledge of the inter-regulatory dynamics between signaling phospholipids and the actin cytoskeleton in plant cells.
Collapse
Affiliation(s)
- Roman Pleskot
- Institute of Experimental Botany, v. v. i., Academy of Sciences of the Czech RepublicPrague, Czech Republic
| | - Přemysl Pejchar
- Institute of Experimental Botany, v. v. i., Academy of Sciences of the Czech RepublicPrague, Czech Republic
| | | | - Martin Potocký
- Institute of Experimental Botany, v. v. i., Academy of Sciences of the Czech RepublicPrague, Czech Republic
| |
Collapse
|
37
|
Wang X, Su Y, Liu Y, Kim SC, Fanella B. Phosphatidic Acid as Lipid Messenger and Growth Regulators in Plants. SIGNALING AND COMMUNICATION IN PLANTS 2014. [DOI: 10.1007/978-3-642-42011-5_4] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
38
|
Zhang F, Wang Z, Lu M, Yonekubo Y, Liang X, Zhang Y, Wu P, Zhou Y, Grinstein S, Hancock JF, Du G. Temporal production of the signaling lipid phosphatidic acid by phospholipase D2 determines the output of extracellular signal-regulated kinase signaling in cancer cells. Mol Cell Biol 2014; 34:84-95. [PMID: 24164897 PMCID: PMC3911278 DOI: 10.1128/mcb.00987-13] [Citation(s) in RCA: 93] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2013] [Revised: 08/22/2013] [Accepted: 10/21/2013] [Indexed: 01/14/2023] Open
Abstract
The Ras-extracellular signal-regulated kinase (ERK) cascade is an important signaling module in cells. One regulator of the Ras-ERK cascade is phosphatidic acid (PA) generated by phospholipase D (PLD) and diacylglycerol kinase (DGK). Using a newly developed PA biosensor, PASS (phosphatidic acid biosensor with superior sensitivity), we found that PA was generated sequentially by PLD and DGK in epidermal growth factor (EGF)-stimulated HCC1806 breast cancer cells. Inhibition of PLD2, one of the two PLD members, was sufficient to eliminate most of the PA production, whereas inhibition of DGK decreased PA production only at the later stages of EGF stimulation, suggesting that PLD2 precedes DGK activation. The temporal production of PA by PLD2 is important for the nuclear activation of ERK. While inhibition of both PLD and DGK had no effect on the overall ERK activity, inhibition of PLD2 but not PLD1 or DGK blocked the nuclear ERK activity in several cancer cell lines. The decrease of active ERK in the nucleus inhibited the activation of Elk1, c-fos, and Fra1, the ERK nuclear targets, leading to decreased proliferation of HCC1806 cells. Together, these findings reveal that PA production by PLD2 determines the output of ERK in cancer cell growth factor signaling.
Collapse
Affiliation(s)
- Feng Zhang
- Department of Integrative Biology and Pharmacology, University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Ziqing Wang
- Department of Integrative Biology and Pharmacology, University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Maryia Lu
- Department of Integrative Biology and Pharmacology, University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Yoshiya Yonekubo
- Department of Integrative Biology and Pharmacology, University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Xiao Liang
- Department of Integrative Biology and Pharmacology, University of Texas Health Science Center at Houston, Houston, Texas, USA
- Shanghai Institute of Digestive Disease, Shanghai Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yueqiang Zhang
- Department of Integrative Biology and Pharmacology, University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Ping Wu
- Department of Integrative Biology and Pharmacology, University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Yong Zhou
- Department of Integrative Biology and Pharmacology, University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Sergio Grinstein
- Division of Cell Biology, Hospital for Sick Children, Toronto, Canada
| | - John F. Hancock
- Department of Integrative Biology and Pharmacology, University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Guangwei Du
- Department of Integrative Biology and Pharmacology, University of Texas Health Science Center at Houston, Houston, Texas, USA
| |
Collapse
|
39
|
Abstract
Phosphatidic acid (PA) is recognized as an important class of lipid messengers. The cellular PA levels are dynamic; PA is produced and metabolized by several enzymatic reactions, including different phospholipases, lipid kinases, and phosphatases. PA interacts with various proteins and the interactions may modulate enzyme catalytic activities and/or tether proteins to membranes. The PA-protein interactions are impacted by changes in cellular pH and other effectors, such as cations. PA is involved in a wide range of cellular processes, including vesicular trafficking, cytoskeletal organization, secretion, cell proliferation, and survival. Manipulations of different PA production reactions alter cellular and organismal response to a wide range of abiotic and biotic stresses. Further investigations of PA's function and mechanisms of action will advance not only the understanding of cell signaling networks but also may lead to biotechnological and pharmacological applications.
Collapse
|
40
|
Bohdanowicz M, Schlam D, Hermansson M, Rizzuti D, Fairn GD, Ueyama T, Somerharju P, Du G, Grinstein S. Phosphatidic acid is required for the constitutive ruffling and macropinocytosis of phagocytes. Mol Biol Cell 2013; 24:1700-12, S1-7. [PMID: 23576545 PMCID: PMC3667723 DOI: 10.1091/mbc.e12-11-0789] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Phagocytes spontaneously ruffle as they probe their environment and take up antigens. These cells are uniquely enriched in phosphatidic acid, which is necessary for ruffling and macropinocytosis. Macrophages and dendritic cells continuously survey their environment in search of foreign particles and soluble antigens. Such surveillance involves the ongoing extension of actin-rich protrusions and the consequent formation of phagosomes and macropinosomes. The signals inducing this constitutive cytoskeletal remodeling have not been defined. We report that, unlike nonphagocytic cells, macrophages and immature dendritic cells have elevated levels of phosphatidic acid (PA) in their plasma membrane. The plasmalemmal PA is synthesized by phosphorylation of diacylglycerol, which is in turn generated by a G protein–stimulated phospholipase C. Inhibition of diacylglycerol kinase activity results in the detachment of T-cell lymphoma invasion and metastasis–inducing protein 1 (TIAM1)—a Rac guanine exchange factor—from the plasma membrane, thereby depressing Rac activity and abolishing the constitutive ruffling and macropinocytosis that characterize macrophages and immature dendritic cells. Accumulation of PA and binding of TIAM1 to the membrane require the activity of phosphatidylinositol-4,5-bisphosphate 3-kinase. Thus a distinctive, constitutive pathway of PA biosynthesis promotes the actin remodeling required for immune surveillance.
Collapse
Affiliation(s)
- Michal Bohdanowicz
- Division of Cell Biology, Hospital for Sick Children, Toronto, ON M5G 1X8, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Trerotola M, Jernigan DL, Liu Q, Siddiqui J, Fatatis A, Languino LR. Trop-2 promotes prostate cancer metastasis by modulating β(1) integrin functions. Cancer Res 2013; 73:3155-67. [PMID: 23536555 DOI: 10.1158/0008-5472.can-12-3266] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The molecular mechanisms underlying metastatic dissemination are still not completely understood. We have recently shown that β(1) integrin-dependent cell adhesion to fibronectin and signaling is affected by a transmembrane molecule, Trop-2, which is frequently upregulated in human carcinomas. Here, we report that Trop-2 promotes metastatic dissemination of prostate cancer cells in vivo and is abundantly expressed in metastasis from human prostate cancer. We also show here that Trop-2 promotes prostate cancer cell migration on fibronectin, a phenomenon dependent on β(1) integrins. Mechanistically, we demonstrate that Trop-2 and the α(5)β(1) integrin associate through their extracellular domains, causing relocalization of α(5)β(1) and the β(1)-associated molecule talin from focal adhesions to the leading edges. Trop-2 effect is specific as this molecule does not modulate migration on vitronectin, does not associate with the major vitronectin receptor, α(v)β(3) integrin, and does not affect localization of α(v)β(3) integrin as well as vinculin in focal adhesions. We show that Trop-2 enhances directional prostate cancer cell migration, through modulation of Rac1 GTPase activity. Finally, we show that Trop-2 induces activation of PAK4, a kinase that has been reported to mediate cancer cell migration. In conclusion, we provide the first evidence that β(1) integrin-dependent migratory and metastatic competence of prostate cancer cells is enhanced by Trop-2.
Collapse
Affiliation(s)
- Marco Trerotola
- Prostate Cancer Discovery and Development Program, Department of Cancer Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | | | | | | | | | | |
Collapse
|