1
|
Wang J, Chen J, Gao M, Ouyang Z, Li Y, Liu D, Zhu M, Sun H. Research Progress on the Mechanism of Action and Screening Methods of Probiotics for Lowering Blood Lipid Levels. Foods 2025; 14:1583. [PMID: 40361665 PMCID: PMC12071596 DOI: 10.3390/foods14091583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2025] [Revised: 04/14/2025] [Accepted: 04/18/2025] [Indexed: 05/15/2025] Open
Abstract
Hyperlipidemia is one of the most prevalent metabolic disorders worldwide. It is a significant risk factor for a range of cardiovascular diseases, including acute pancreatitis, fatty liver disease, atherosclerosis, and coronary heart disease. In clinical practice, the management of hyperlipidemia is hindered by numerous challenges. One of the critical issues is that traditional lipid-lowering drugs often require long-term or even lifelong administration, potentially inducing a range of adverse effects that compromise patient compliance and therapeutic efficacy. Therefore, there is an urgent need to develop safer and more effective strategies for the prevention and adjunctive treatment of hyperlipidemia with the aim of reducing the risk of disease and over-reliance on medication. Recent studies have revealed a close relationship between hyperlipidemia and related metabolic disorders involving gut microbiota dysbiosis, and the administration of probiotics has been shown to improve lipid metabolism homeostasis. This review summarizes the molecular mechanisms of probiotics in hyperlipidemia treatment and the latest advances in probiotic research on lipid metabolism, enumerates the experimental and clinical applications of probiotic-based therapies, introduces methods for screening and identifying probiotics with lipid-lowering functions, and, for the first time, summarizes the roles of emerging technologies such as functional genomics and in vivo zebrafish-on-a-chip models in studying the lipid-lowering efficacy of probiotics, providing insights for researchers. By facilitating a deeper understanding of the mechanisms whereby probiotics reduce blood lipid levels and furthering the development of multifaceted screening methods, we hope that we can achieve high-throughput and efficient screening of probiotics with lipid-lowering functions, thereby promoting the sustainable, high-quality, and rapid development of the probiotics industry.
Collapse
Affiliation(s)
- Jingli Wang
- School of Food and Drug, Shenzhen Polytechnic University, Shenzhen 518055, China; (J.W.); (J.C.); (M.G.); (Z.O.); (Y.L.); (D.L.)
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China
| | - Jieyu Chen
- School of Food and Drug, Shenzhen Polytechnic University, Shenzhen 518055, China; (J.W.); (J.C.); (M.G.); (Z.O.); (Y.L.); (D.L.)
| | - Mingkun Gao
- School of Food and Drug, Shenzhen Polytechnic University, Shenzhen 518055, China; (J.W.); (J.C.); (M.G.); (Z.O.); (Y.L.); (D.L.)
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China
| | - Zijun Ouyang
- School of Food and Drug, Shenzhen Polytechnic University, Shenzhen 518055, China; (J.W.); (J.C.); (M.G.); (Z.O.); (Y.L.); (D.L.)
| | - Yanhui Li
- School of Food and Drug, Shenzhen Polytechnic University, Shenzhen 518055, China; (J.W.); (J.C.); (M.G.); (Z.O.); (Y.L.); (D.L.)
| | - Dong Liu
- School of Food and Drug, Shenzhen Polytechnic University, Shenzhen 518055, China; (J.W.); (J.C.); (M.G.); (Z.O.); (Y.L.); (D.L.)
| | - Mingjun Zhu
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China
| | - Haiyan Sun
- School of Food and Drug, Shenzhen Polytechnic University, Shenzhen 518055, China; (J.W.); (J.C.); (M.G.); (Z.O.); (Y.L.); (D.L.)
| |
Collapse
|
2
|
Oczkowicz J, Piasna-Słupecka E, Drozdowska M, Koronowicz A, Kopeć A. The Combination of Resveratrol and Conjugated Linoleic Acid Dienes Enhances the Individual Effects of These Molecules on De Novo Fatty Acid Biosynthesis in 3T3-L1 Adipocytes. Int J Mol Sci 2024; 25:13429. [PMID: 39769194 PMCID: PMC11677705 DOI: 10.3390/ijms252413429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 12/01/2024] [Accepted: 12/10/2024] [Indexed: 01/11/2025] Open
Abstract
Consuming food containing ingredients with a documented impact on lipid metabolism can help fight overweight and obesity. The simplest way to reduce the level of fatty acids is to block their synthesis or increase the rate of their degradation. This study aimed to determine the effect of resveratrol, cis-9, trans-11 conjugated linoleic acid (CLA), trans-10, cis-12 CLA, and various variants of their combinations on de novo fatty acid biosynthesis in 3T3-L1 adipocytes. The influence of the above-mentioned bioactive substances on cells grown under standard conditions and after induction of oxidative stress was measured. The effect of the tested compounds on the expression of selected genes related to the de novo fatty acid biosynthesis process (Fasn, Acc1, Acly, Prkaa1, Prkaa2, Prkaca, Srebp1) was evaluated. As part of the conducted experiments, how the level of the corresponding mRNA translates into the content of selected proteins (acetyl-CoA carboxylase 1 (ACC) and fatty acid synthase (FASN) was studied. It was found that the inhibition of fatty acid biosynthesis processes was stronger in the case of the combination of the tested CLA isomers (cis-9, trans-11 CLA, trans-10, cis-12 CLA) with resveratrol than in cases of their individual action.
Collapse
Affiliation(s)
| | | | | | | | - Aneta Kopeć
- Department of Human Nutrition and Dietetics, University of Agriculture, Balicka 122, 30-149 Kraków, Poland
| |
Collapse
|
3
|
He K, Cheng H, McClements DJ, Xu Z, Meng M, Zou Y, Chen G, Chen L. Utilization of diverse probiotics to create human health promoting fatty acids: A review. Food Chem 2024; 458:140180. [PMID: 38964111 DOI: 10.1016/j.foodchem.2024.140180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 06/09/2024] [Accepted: 06/19/2024] [Indexed: 07/06/2024]
Abstract
Many probiotics produce functional lipids with health-promoting properties, such as short-chain fatty acids, linoleic acid and omega-3 fatty acids. They have been shown to maintain gut health, strengthen the intestinal barrier, and have anti-inflammatory and antioxidant effects. In this article, we provide an up-to-date review of the various functional lipids produced by probiotics. These probiotics can be incorporated into foods, supplements, or pharmaceuticals to produce these functional lipids in the human colon, or they can be used in industrial biotechnology processes to generate functional lipids, which are then isolated and used as ingredients. We then highlight the different physiological functions for which they may be beneficial to human health, in addition to discussing some of the challenges of incorporating probiotics into commercial products and some potential solutions to address these challenges. Finally, we highlight the importance of testing the efficacy and safety of the new generation of probiotic-enhanced products, as well as the great potential for the marketization of related products.
Collapse
Affiliation(s)
- Kuang He
- School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| | - Hao Cheng
- School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| | | | - Zhenlin Xu
- School of Food Science and Technology, South China Agricultural University, Guangzhou 510642, China
| | - Man Meng
- Licheng Detection & Certification Group Co., Ltd., Zhongshan 528400, China
| | - Yidong Zou
- Skystone Feed Co., Ltd., Wuxi 214258, China
| | | | - Long Chen
- School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China; State Key Lab of Food Science and Resources, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China; School of Food Science and Technology, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
4
|
Zhou Z, Wei M, Zhong J, Deng Y, Hou Y, Liu W, Deng Z, Li J. Integration of hepatic lipidomics and transcriptomics reveals the effect of butter-derived ruminant trans fatty acids on lipid metabolism in C57BL/6J mice. Food Funct 2023; 14:9825-9840. [PMID: 37850500 DOI: 10.1039/d3fo02508j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2023]
Abstract
Dysregulation of lipid metabolism results in metabolism-related diseases. Our previous research indicated that 1.3% E and 4% E ruminant trans fatty acids (R-TFA) caused dyslipidemia and promoted atherosclerotic plaques in ApoE-/- mice, presenting detrimental effects. However, the effect of R-TFA on the lipid metabolism of normal mice remains unclear. Therefore, our current research aims to explore the effects of butter-derived R-TFAs on the lipid metabolism of C57BL/6J mice through the integration of lipidomics and transcriptomics. As a result, we found that 1.3% E butter-derived R-TFA promoted dyslipidemia and impaired hepatic function in C57BL/6J mice fed a high-fat diet, which was associated with an increase in DG (18:1/22:5), TG (18:1/18:2/22:4) and FA (24:5) as determined through lipidomics analysis, but had a less significant effect on C57BL/6J mice fed a low-fat diet. Through a combination analysis and verification of gene expression, we found that the arachidonic acid pathway might be involved in the disruption of lipid metabolism by butter-derived R-TFA. In addition, butter-derived R-TFA up-regulated the expression of unigene thromboxane-A synthase 1 (Tbxas1), arachidonate lipoxygenase 3 (Aloxe3), acyl-coenzyme A thioesterase 2 (Acot2), epoxide hydrolase 2 (Ephx2) and carbonyl reductase 3 (Cbr3) in C57BL/6J mice fed a high-fat diet. Herein, our research provides a new perspective for exploring the effects of butter-derived R-TFA on lipid metabolism and speculates on the possible mechanism of lipid metabolism disorder induced by butter-derived R-TFA in C57BL/6J mice fed a high-fat diet.
Collapse
Affiliation(s)
- Zeqiang Zhou
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, Jiangxi, 330047, China.
| | - Meng Wei
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, Jiangxi, 330047, China.
| | - Jinjing Zhong
- Hyproca Nutrition Co., Ltd., Changsha, Hunan, 410000, China
| | - Yiling Deng
- Hyproca Nutrition Co., Ltd., Changsha, Hunan, 410000, China
| | - Yanmei Hou
- Hyproca Nutrition Co., Ltd., Changsha, Hunan, 410000, China
| | - Wenqun Liu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, Jiangxi, 330047, China.
| | - Zeyuan Deng
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, Jiangxi, 330047, China.
| | - Jing Li
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, Jiangxi, 330047, China.
| |
Collapse
|
5
|
den Hartigh LJ, May KS, Zhang XS, Chait A, Blaser MJ. Serum amyloid A and metabolic disease: evidence for a critical role in chronic inflammatory conditions. Front Cardiovasc Med 2023; 10:1197432. [PMID: 37396595 PMCID: PMC10311072 DOI: 10.3389/fcvm.2023.1197432] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 05/15/2023] [Indexed: 07/04/2023] Open
Abstract
Serum amyloid A (SAA) subtypes 1-3 are well-described acute phase reactants that are elevated in acute inflammatory conditions such as infection, tissue injury, and trauma, while SAA4 is constitutively expressed. SAA subtypes also have been implicated as playing roles in chronic metabolic diseases including obesity, diabetes, and cardiovascular disease, and possibly in autoimmune diseases such as systemic lupus erythematosis, rheumatoid arthritis, and inflammatory bowel disease. Distinctions between the expression kinetics of SAA in acute inflammatory responses and chronic disease states suggest the potential for differentiating SAA functions. Although circulating SAA levels can rise up to 1,000-fold during an acute inflammatory event, elevations are more modest (∼5-fold) in chronic metabolic conditions. The majority of acute-phase SAA derives from the liver, while in chronic inflammatory conditions SAA also derives from adipose tissue, the intestine, and elsewhere. In this review, roles for SAA subtypes in chronic metabolic disease states are contrasted to current knowledge about acute phase SAA. Investigations show distinct differences between SAA expression and function in human and animal models of metabolic disease, as well as sexual dimorphism of SAA subtype responses.
Collapse
Affiliation(s)
- Laura J. den Hartigh
- Department of Medicine, Division of Metabolism, Endocrinology, and Nutrition, University of Washington, Seattle, WA, United States
- Diabetes Institute, University of Washington, Seattle, WA, United States
| | - Karolline S. May
- Department of Medicine, Division of Metabolism, Endocrinology, and Nutrition, University of Washington, Seattle, WA, United States
- Diabetes Institute, University of Washington, Seattle, WA, United States
| | - Xue-Song Zhang
- Center for Advanced Biotechnology and Medicine, Rutgers University, Piscataway, NJ, United States
| | - Alan Chait
- Department of Medicine, Division of Metabolism, Endocrinology, and Nutrition, University of Washington, Seattle, WA, United States
- Diabetes Institute, University of Washington, Seattle, WA, United States
| | - Martin J. Blaser
- Center for Advanced Biotechnology and Medicine, Rutgers University, Piscataway, NJ, United States
| |
Collapse
|
6
|
Trans-10, cis-12 conjugated linoleic acid- and caloric restriction-mediated upregulation of CNDP2 expression in white adipose tissue in rodents, with implications in feeding and obesity. J Nutr Biochem 2023; 114:109269. [PMID: 36641073 DOI: 10.1016/j.jnutbio.2023.109269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 10/27/2022] [Accepted: 01/05/2023] [Indexed: 01/13/2023]
Abstract
Certain dietary supplements such as trans-10, cis-12 conjugated linoleic acid (t10-c12 CLA), and diets including caloric-restricted diets can promote weight loss in certain animal models and humans. A very recent study showed that exercise induces the biosynthesis of N-lactoyl-phenylalanine (Lac-Phe), a circulating signaling metabolite that suppresses feeding and obesity selectively in mice fed with a high-fat diet, and that cytosolic nonspecific dipeptidase 2 (CNDP2) catalyzes the synthesis of Lac-Phe from lactate (Lac) and phenylalanine (Phe). In this in silico study, we found that two anti-obesity strategies, namely treatment with t10-c12 CLA and caloric restriction, increase CNDP2 expression in adipose tissue in mice and rats, respectively. We showed that the effect of t10-c12 CLA on CNDP2 expression might be isomer-specific. We hypothesized that these t10-c12 CLA treatment- or caloric-restricted diet-mediated increases in CNDP2 expression might contribute to their anti-obesity effects, possibly due to increased Lac-Phe levels and ultimately due to Lac-Phe-mediated decreases in daily food consumption, reduced body weight and fat mass. A better understanding of the regulation of CNDP2 expression in diverse tissues in mammals might be of high importance in the treatment of obesity, considering its role in the synthesis of Lac-Phe, a metabolite that decreases body weight and fat mass selectively in mice fed with a high-fat diet. Further research is needed to find out how these two strategies lead to the upregulation of CNDP2 expression and whether this increased expression of CNDP2 might translate to reduced body weight and fat mass through higher Lac-Phe levels.
Collapse
|
7
|
10,12-conjugated linoleic acid supplementation improves HDL composition and function in mice. J Lipid Res 2022; 63:100241. [PMID: 35714730 PMCID: PMC9283942 DOI: 10.1016/j.jlr.2022.100241] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 05/12/2022] [Accepted: 06/06/2022] [Indexed: 12/31/2022] Open
Abstract
Obesity is associated with inflammation, insulin resistance, and type 2 diabetes, which are major risk factors for CVD. One dietary component of ruminant animal foods, 10,12-conjugated linoleic acid (10,12 CLA), has been shown to promote weight loss in humans. Previous work has shown that 10,12 CLA is atheroprotective in mice by a mechanism that may be distinct from its weight loss effects, but this exact mechanism is unclear. To investigate this, we evaluated HDL composition and function in obese LDL receptor (Ldlr−/−) mice that were losing weight because of 10,12 CLA supplementation or caloric restriction (CR; weight-matched control group) and in an obese control group consuming a high-fat high-sucrose diet. We show that 10,12 CLA-HDL exerted a stronger anti-inflammatory effect than CR- or high-fat high-sucrose-HDL in cultured adipocytes. Furthermore, the 10,12 CLA-HDL particle (HDL-P) concentration was higher, attributed to more medium- and large-sized HDL-Ps. Passive cholesterol efflux capacity of 10,12 CLA-HDL was elevated, as was expression of HDL receptor scavenger receptor class B type 1 in the aortic arch. Murine macrophages treated with 10,12 CLA in vitro exhibited increased expression of cholesterol transporters Abca1 and Abcg1, suggesting increased cholesterol efflux potential of these cells. Finally, proteomics analysis revealed elevated Apoa1 content in 10,12 CLA-HDL-Ps, consistent with a higher particle concentration, and particles were also enriched with alpha-1-antitrypsin, an emerging anti-inflammatory and antiatherosclerotic HDL-associated protein. We conclude that 10,12 CLA may therefore exert its atheroprotective effects by increasing HDL-P concentration, HDL anti-inflammatory potential, and promoting beneficial effects on cholesterol efflux.
Collapse
|
8
|
Ochin CC, Wilson T, Garelnabi M. Dietary Oxidized Linoleic Acids Modulate Fatty Acids in Mice. J Lipid Atheroscler 2022; 11:197-210. [PMID: 35656146 PMCID: PMC9133782 DOI: 10.12997/jla.2022.11.2.197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 03/28/2022] [Accepted: 03/30/2022] [Indexed: 11/11/2022] Open
Abstract
Objective An elevated concentration of oxidized lipids along with the abnormal accumulation of lipids has been linked to the formation of atheromatous plaque and the development of cardiovascular diseases. This study aims to investigate if consumption of different concentrations of dietary oxidized linoleic acid alters the distribution of long chain fatty acids (LCFAs) within the liver relative to plasma in mice. Methods C57BL/6 male mice (n = 40) were divided into 4 groups: Standard chow as plain control (P group, n =10), Chow supplemented with linoleic acid 9 mg/mouse/day, linoleic control (C group, n=0), oxidized linoleic acid; 9 mg/mouse/day (A group, n=10) and oxidized linoleic acid 18 mg/mouse/day diet (B group, n=10). Liver and plasma samples were extracted, trans-esterified and subsequently analyzed using gas chromatography mass spectrometry (GC-MS) for LCFAs; palmitic acid, stearic acid, oleic acid, linoleic acid and arachidonic acid. Results LCFA methyl esters were eluted and identified based on their respective physiochemical characteristics of GCMS assay with inter assay coefficient of variation percentage (CV%, 1.81–5.28%), limits of quantification and limit of detection values (2.021–11.402 mg/mL and 1.016–4.430 mg/mL) respectively. Correlation analysis of liver and plasma lipids of the mice groups yielded coefficients (r=0.96, 0.6, 0.8 and 0.33) with fatty acid percentage total of (16%, 10%, 16% and 58%) for the P, C, A and B groups respectively. Conclusion The sustained consumption of a diet rich in oxidized linoleic acid disrupted fatty acid metabolism. The intake also resulted in elevated concentration of LCFAs that are precursors of bioactive metabolite molecule.
Collapse
Affiliation(s)
- Chinedu C. Ochin
- Department of Biomedical and Nutritional Sciences, University of Massachusetts, Lowell, MA, USA
| | - Thomas Wilson
- Department of Biomedical and Nutritional Sciences, University of Massachusetts, Lowell, MA, USA
| | - Mahdi Garelnabi
- Department of Biomedical and Nutritional Sciences, University of Massachusetts, Lowell, MA, USA
| |
Collapse
|
9
|
Dietary conjugated linoleic acid and medium-chain triglycerides for obesity management. J Biosci 2021. [DOI: 10.1007/s12038-020-00133-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
10
|
Ji Y, Luo K, Zhang JM, Ni P, Xiong W, Luo X, Xu G, Liu H, Zeng Z. Obese rats intervened with Rhizoma coptidis revealed differential gene expression and microbiota by serum metabolomics. BMC Complement Med Ther 2021; 21:208. [PMID: 34380455 PMCID: PMC8359625 DOI: 10.1186/s12906-021-03382-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 07/22/2021] [Indexed: 12/04/2022] Open
Abstract
Background Integrating systems biology is an approach for investigating metabolic diseases in humans. However, few studies use this approach to investigate the mechanism by which Rhizoma coptidis (RC) reduces the effect of lipids and glucose on high-fat induced obesity in rats. Methods Twenty-four specific pathogen-free (SPF) male Sprague–Dawley rats (80 ± 10 g) were used in this study. Serum metabolomics were detected by ultra-high-performance liquid chromatography coupled with quadrupole-time-of-flight tandem mass spectrometry. Liver tissue and cecum feces were used for RNA-Seq technology and 16S rRNA gene sequencing, respectively. Results We identified nine potential biomarkers, which are differential metabolites in the Control, Model and RC groups, including linoleic acid, eicosapentaenoic acid, arachidonic acid, stearic acid, and L-Alloisoleucine (p < 0.01). The liver tissue gene expression profile indicated the circadian rhythm pathway was significantly affected by RC (Q ≤ 0.05). A total of 149 and 39 operational taxonomic units (OTUs), which were highly associated with biochemical indicators and potential biomarkers in the cecum samples (FDR ≤ 0.05), respectively, were identified. Conclusion This work provides information to better understand the mechanism of the effect of RC intervention on hyperlipidemia and hypoglycemic effects in obese rats. The present study demonstrates that integrating systems biology may be a powerful tool to reveal the complexity of metabolic diseases in rats intervened by traditional Chinese medicine. Supplementary Information The online version contains supplementary material available at 10.1186/s12906-021-03382-3.
Collapse
Affiliation(s)
- Yanhua Ji
- Jiangxi Province Key Laboratory of TCM Etiopathogenisis, Research Center for Differention and Development of TCM Basic Theory, University of Jiangxi TCM, Nanchang, Jiangxi, 330006, P. R. China.,Laboratory Animal Science and Technology Center, University of Jiangxi TCM, Nanchang, Jiangxi, 330006, P. R. China
| | - Kexin Luo
- Jiangxi Province Key Laboratory of TCM Etiopathogenisis, Research Center for Differention and Development of TCM Basic Theory, University of Jiangxi TCM, Nanchang, Jiangxi, 330006, P. R. China
| | - Jiri Mutu Zhang
- Jiangxi Province Key Laboratory of TCM Etiopathogenisis, Research Center for Differention and Development of TCM Basic Theory, University of Jiangxi TCM, Nanchang, Jiangxi, 330006, P. R. China
| | - Peng Ni
- Jiangxi Province Key Laboratory of TCM Etiopathogenisis, Research Center for Differention and Development of TCM Basic Theory, University of Jiangxi TCM, Nanchang, Jiangxi, 330006, P. R. China
| | - Wangping Xiong
- School of Computer, University of Jiangxi TCM, Nanchang, Jiangxi, 330006, P. R. China
| | - Xiaoquan Luo
- Laboratory Animal Science and Technology Center, University of Jiangxi TCM, Nanchang, Jiangxi, 330006, P. R. China
| | - Guoliang Xu
- Jiangxi Province Key Laboratory of TCM Etiopathogenisis, Research Center for Differention and Development of TCM Basic Theory, University of Jiangxi TCM, Nanchang, Jiangxi, 330006, P. R. China.,Jiangxi Key Lab of Pharmacology of TCM, University of Jiangxi TCM, Nanchang, Jiangxi, 330006, P. R. China
| | - Hongning Liu
- Jiangxi Province Key Laboratory of TCM Etiopathogenisis, Research Center for Differention and Development of TCM Basic Theory, University of Jiangxi TCM, Nanchang, Jiangxi, 330006, P. R. China
| | - Zhijun Zeng
- Jiangxi Province Key Laboratory of TCM Etiopathogenisis, Research Center for Differention and Development of TCM Basic Theory, University of Jiangxi TCM, Nanchang, Jiangxi, 330006, P. R. China.
| |
Collapse
|
11
|
de Souza DMS, Silva MC, Farias SEB, Menezes APDJ, Milanezi CM, Lúcio KDP, Paiva NCN, de Abreu PM, Costa DC, Pinto KMDC, Costa GDP, Silva JS, Talvani A. Diet Rich in Lard Promotes a Metabolic Environment Favorable to Trypanosoma cruzi Growth. Front Cardiovasc Med 2021; 8:667580. [PMID: 34113663 PMCID: PMC8185140 DOI: 10.3389/fcvm.2021.667580] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Accepted: 04/15/2021] [Indexed: 01/24/2023] Open
Abstract
Background: Trypanosoma cruzi is a protozoan parasite that causes Chagas disease and affects 6-7 million people mainly in Latin America and worldwide. Here, we investigated the effects of hyperlipidic diets, mainly composed of olive oil or lard on experimental T. cruzi infection. C57BL/6 mice were fed two different dietary types in which the main sources of fatty acids were either monounsaturated (olive oil diet) or saturated (lard diet). Methods: After 60 days on the diet, mice were infected with 50 trypomastigote forms of T. cruzi Colombian strain. We evaluated the systemic and tissue parasitism, tissue inflammation, and the redox status of mice after 30 days of infection. Results: Lipid levels in the liver of mice fed with the lard diet increased compared with that of the mice fed with olive oil or normolipidic diets. The lard diet group presented with an increased parasitic load in the heart and adipose tissues following infection as well as an increased expression of Tlr2 and Tlr9 in the heart. However, no changes were seen in the survival rates across the dietary groups. Infected mice receiving all diets presented comparable levels of recruited inflammatory cells at 30 days post-infection but, at this time, we observed lard diet inducing an overproduction of CCL2 in the cardiac tissue and its inhibition in the adipose tissue. T. cruzi infection altered liver antioxidant levels in mice, with the lard diet group demonstrating decreased catalase (CAT) activity compared with that of other dietary groups. Conclusions: Our data demonstrated that T. cruzi growth is more favorable on tissue of mice subjected to the lard diet. Our findings supported our hypothesis of a relationship between the source of dietary lipids and parasite-induced immunopathology.
Collapse
Affiliation(s)
- Débora Maria Soares de Souza
- Laboratory of Immunobiology of Inflammation, Department of Biological Sciences, Federal University of Ouro Preto, Ouro Preto, Brazil.,Biological Science Post-graduate Program, Federal University of Ouro Preto, Ouro Preto, Brazil.,Health and Nutrition Post-graduate Program, Federal University of Ouro Preto, Ouro Preto, Brazil
| | - Maria Cláudia Silva
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil
| | - Silvia Elvira Barros Farias
- Laboratory of Immunobiology of Inflammation, Department of Biological Sciences, Federal University of Ouro Preto, Ouro Preto, Brazil
| | - Ana Paula de J Menezes
- Laboratory of Immunobiology of Inflammation, Department of Biological Sciences, Federal University of Ouro Preto, Ouro Preto, Brazil
| | - Cristiane Maria Milanezi
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil
| | - Karine de P Lúcio
- Laboratory of Metabolic Biochemistry, Department of Biological Sciences, Federal University of Ouro Preto, Ouro Preto, Brazil
| | - Nívia Carolina N Paiva
- Center of Research in Biological Sciences, Federal University of Ouro Preto, Ouro Preto, Brazil
| | - Paula Melo de Abreu
- Biological Science Post-graduate Program, Federal University of Ouro Preto, Ouro Preto, Brazil
| | - Daniela Caldeira Costa
- Health and Nutrition Post-graduate Program, Federal University of Ouro Preto, Ouro Preto, Brazil.,Laboratory of Metabolic Biochemistry, Department of Biological Sciences, Federal University of Ouro Preto, Ouro Preto, Brazil
| | - Kelerson Mauro de Castro Pinto
- Laboratory of Immunobiology of Inflammation, Department of Biological Sciences, Federal University of Ouro Preto, Ouro Preto, Brazil.,School of Physical Education, Federal University of Ouro Preto, Ouro Preto, Brazil
| | - Guilherme de Paula Costa
- Laboratory of Immunobiology of Inflammation, Department of Biological Sciences, Federal University of Ouro Preto, Ouro Preto, Brazil.,Health and Nutrition Post-graduate Program, Federal University of Ouro Preto, Ouro Preto, Brazil
| | - João Santana Silva
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil.,Fiocruz-Bi-Institutional Translational Medicine Plataform, Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil
| | - André Talvani
- Laboratory of Immunobiology of Inflammation, Department of Biological Sciences, Federal University of Ouro Preto, Ouro Preto, Brazil.,Health and Nutrition Post-graduate Program, Federal University of Ouro Preto, Ouro Preto, Brazil.,Health Science, Infectology and Tropical Medicine Post-graduate Program, Federal University of Minas Gerais, Belo Horizonte, Brazil
| |
Collapse
|
12
|
Watanabe M, Risi R, Masi D, Caputi A, Balena A, Rossini G, Tuccinardi D, Mariani S, Basciani S, Manfrini S, Gnessi L, Lubrano C. Current Evidence to Propose Different Food Supplements for Weight Loss: A Comprehensive Review. Nutrients 2020; 12:E2873. [PMID: 32962190 PMCID: PMC7551574 DOI: 10.3390/nu12092873] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 09/14/2020] [Accepted: 09/18/2020] [Indexed: 02/06/2023] Open
Abstract
The use of food supplements for weight loss purposes has rapidly gained popularity as the prevalence of obesity increases. Navigating through the vast, often low quality, literature available is challenging, as is providing informed advice to those asking for it. Herein, we provide a comprehensive literature revision focusing on most currently marketed dietary supplements claimed to favor weight loss, classifying them by their purported mechanism of action. We conclude by proposing a combination of supplements most supported by current evidence, that leverages all mechanisms of action possibly leading to a synergistic effect and greater weight loss in the foreseen absence of adverse events. Further studies will be needed to confirm the weight loss and metabolic improvement that may be obtained through the use of the proposed combination.
Collapse
Affiliation(s)
- Mikiko Watanabe
- Department of Experimental Medicine, Section of Medical Pathophysiology, Food Science and Endocrinology, Sapienza University of Rome, 00161 Rome, Italy; (M.W.); (D.M.); (A.C.); (A.B.); (S.M.); (S.B.); (L.G.); (C.L.)
| | - Renata Risi
- Department of Experimental Medicine, Section of Medical Pathophysiology, Food Science and Endocrinology, Sapienza University of Rome, 00161 Rome, Italy; (M.W.); (D.M.); (A.C.); (A.B.); (S.M.); (S.B.); (L.G.); (C.L.)
| | - Davide Masi
- Department of Experimental Medicine, Section of Medical Pathophysiology, Food Science and Endocrinology, Sapienza University of Rome, 00161 Rome, Italy; (M.W.); (D.M.); (A.C.); (A.B.); (S.M.); (S.B.); (L.G.); (C.L.)
| | - Alessandra Caputi
- Department of Experimental Medicine, Section of Medical Pathophysiology, Food Science and Endocrinology, Sapienza University of Rome, 00161 Rome, Italy; (M.W.); (D.M.); (A.C.); (A.B.); (S.M.); (S.B.); (L.G.); (C.L.)
| | - Angela Balena
- Department of Experimental Medicine, Section of Medical Pathophysiology, Food Science and Endocrinology, Sapienza University of Rome, 00161 Rome, Italy; (M.W.); (D.M.); (A.C.); (A.B.); (S.M.); (S.B.); (L.G.); (C.L.)
| | - Giovanni Rossini
- Department of Endocrinology and Diabetes, University Campus Bio-Medico of Rome, 00128 Rome, Italy; (G.R.); (D.T.); (S.M.)
| | - Dario Tuccinardi
- Department of Endocrinology and Diabetes, University Campus Bio-Medico of Rome, 00128 Rome, Italy; (G.R.); (D.T.); (S.M.)
| | - Stefania Mariani
- Department of Experimental Medicine, Section of Medical Pathophysiology, Food Science and Endocrinology, Sapienza University of Rome, 00161 Rome, Italy; (M.W.); (D.M.); (A.C.); (A.B.); (S.M.); (S.B.); (L.G.); (C.L.)
| | - Sabrina Basciani
- Department of Experimental Medicine, Section of Medical Pathophysiology, Food Science and Endocrinology, Sapienza University of Rome, 00161 Rome, Italy; (M.W.); (D.M.); (A.C.); (A.B.); (S.M.); (S.B.); (L.G.); (C.L.)
| | - Silvia Manfrini
- Department of Endocrinology and Diabetes, University Campus Bio-Medico of Rome, 00128 Rome, Italy; (G.R.); (D.T.); (S.M.)
| | - Lucio Gnessi
- Department of Experimental Medicine, Section of Medical Pathophysiology, Food Science and Endocrinology, Sapienza University of Rome, 00161 Rome, Italy; (M.W.); (D.M.); (A.C.); (A.B.); (S.M.); (S.B.); (L.G.); (C.L.)
| | - Carla Lubrano
- Department of Experimental Medicine, Section of Medical Pathophysiology, Food Science and Endocrinology, Sapienza University of Rome, 00161 Rome, Italy; (M.W.); (D.M.); (A.C.); (A.B.); (S.M.); (S.B.); (L.G.); (C.L.)
| |
Collapse
|
13
|
Oteng AB, Kersten S. Mechanisms of Action of trans Fatty Acids. Adv Nutr 2020; 11:697-708. [PMID: 31782488 PMCID: PMC7231579 DOI: 10.1093/advances/nmz125] [Citation(s) in RCA: 136] [Impact Index Per Article: 27.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 09/03/2019] [Accepted: 10/31/2019] [Indexed: 12/11/2022] Open
Abstract
Human studies have established a positive association between the intake of industrial trans fatty acids and the development of cardiovascular diseases, leading several countries to enact laws that restrict the presence of industrial trans fatty acids in food products. However, trans fatty acids cannot be completely eliminated from the human diet since they are also naturally present in meat and dairy products of ruminant animals. Moreover, bans on industrial trans fatty acids have not yet been instituted in all countries. The epidemiological evidence against trans fatty acids by far overshadows mechanistic insights that may explain how trans fatty acids achieve their damaging effects. This review focuses on the mechanisms that underlie the deleterious effects of trans fatty acids by juxtaposing effects of trans fatty acids against those of cis-unsaturated fatty acids and saturated fatty acids (SFAs). This review also carefully explores the argument that ruminant trans fatty acids have differential effects from industrial trans fatty acids. Overall, in vivo and in vitro studies demonstrate that industrial trans fatty acids promote inflammation and endoplasmic reticulum (ER) stress, although to a lesser degree than SFAs, whereas cis-unsaturated fatty acids are protective against ER stress and inflammation. Additionally, industrial trans fatty acids promote fat storage in the liver at the expense of adipose tissue compared with cis-unsaturated fatty acids and SFAs. In cultured hepatocytes and adipocytes, industrial trans fatty acids, but not cis-unsaturated fatty acids or SFAs, stimulate the cholesterol synthesis pathway by activating sterol regulatory element binding protein (SREBP) 2-mediated gene regulation. Interestingly, although industrial and ruminant trans fatty acids show similar effects on human plasma lipoproteins, in preclinical models, only industrial trans fatty acids promote inflammation, ER stress, and cholesterol synthesis. Overall, clearer insight into the molecular mechanisms of action of trans fatty acids may create new therapeutic windows for the treatment of diseases characterized by disrupted lipid metabolism.
Collapse
Affiliation(s)
- Antwi-Boasiako Oteng
- Nutrition, Metabolism and Genomics Group, Division of Human Nutrition and Health, Wageningen University, Wageningen, The Netherlands
| | - Sander Kersten
- Nutrition, Metabolism and Genomics Group, Division of Human Nutrition and Health, Wageningen University, Wageningen, The Netherlands
| |
Collapse
|
14
|
Oteng A, Loregger A, van Weeghel M, Zelcer N, Kersten S. Industrial Trans Fatty Acids Stimulate SREBP2-Mediated Cholesterogenesis and Promote Non-Alcoholic Fatty Liver Disease. Mol Nutr Food Res 2019; 63:e1900385. [PMID: 31327168 PMCID: PMC6790681 DOI: 10.1002/mnfr.201900385] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 07/01/2019] [Indexed: 12/24/2022]
Abstract
SCOPE The mechanisms underlying the deleterious effects of trans fatty acids on plasma cholesterol and non-alcoholic fatty liver disease (NAFLD) are unclear. Here, the aim is to investigate the molecular mechanisms of action of industrial trans fatty acids. METHODS AND RESULTS Hepa1-6 hepatoma cells were incubated with elaidate, oleate, or palmitate. C57Bl/6 mice were fed diets rich in trans-unsaturated, cis-unsaturated, or saturated fatty acids. Transcriptomics analysis of Hepa1-6 cells shows that elaidate but not oleate or palmitate induces expression of genes involved in cholesterol biosynthesis. Induction of cholesterogenesis by elaidate is mediated by increased sterol regulatory element-binding protein 2 (SREBP2) activity and is dependent on SREBP cleavage-activating protein (SCAP), yet independent of liver-X receptor and ubiquitin regulatory X domain-containing protein 8. Elaidate decreases intracellular free cholesterol levels and represses the anticholesterogenic effect of exogenous cholesterol. In mice, the trans-unsaturated diet increases the ratio of liver to gonadal fat mass, steatosis, hepatic cholesterol levels, alanine aminotransferase activity, and fibrosis markers, suggesting enhanced NAFLD, compared to the cis-unsaturated and saturated diets. CONCLUSION Elaidate induces cholesterogenesis in vitro by activating the SCAP-SREBP2 axis, likely by lowering intracellular free cholesterol and attenuating cholesterol-dependent repression of SCAP. This pathway potentially underlies the increase in liver cholesterol and NAFLD by industrial trans fatty acids.
Collapse
Affiliation(s)
- Antwi‐Boasiako Oteng
- Nutrition, Metabolism and Genomics GroupDivision of Human Nutrition and HealthWageningen University6708 WEWageningenThe Netherlands
| | - Anke Loregger
- Department of Medical BiochemistryAcademic Medical CenterUniversity of Amsterdam1105 AZAmsterdamThe Netherlands
| | - Michel van Weeghel
- Laboratory Genetic Metabolic DiseasesAmsterdam UMC, University of Amsterdam, Amsterdam Gastroenterology and Metabolism, Amsterdam Cardiovascular Sciences1105 AZAmsterdamThe Netherlands
| | - Noam Zelcer
- Department of Medical BiochemistryAcademic Medical CenterUniversity of Amsterdam1105 AZAmsterdamThe Netherlands
| | - Sander Kersten
- Nutrition, Metabolism and Genomics GroupDivision of Human Nutrition and HealthWageningen University6708 WEWageningenThe Netherlands
| |
Collapse
|
15
|
Conjugated Linoleic Acid Effects on Cancer, Obesity, and Atherosclerosis: A Review of Pre-Clinical and Human Trials with Current Perspectives. Nutrients 2019; 11:nu11020370. [PMID: 30754681 PMCID: PMC6413010 DOI: 10.3390/nu11020370] [Citation(s) in RCA: 200] [Impact Index Per Article: 33.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Revised: 02/03/2019] [Accepted: 02/08/2019] [Indexed: 02/07/2023] Open
Abstract
Obesity and its comorbidities, including type 2 diabetes and cardiovascular disease, are straining our healthcare system, necessitating the development of novel strategies for weight loss. Lifestyle modifications, such as exercise and caloric restriction, have proven effective against obesity in the short term, yet obesity persists because of the high predilection for weight regain. Therefore, alternative approaches to achieve long term sustainable weight loss are urgently needed. Conjugated linoleic acid (CLA), a fatty acid found naturally in ruminant animal food products, has been identified as a potential anti-obesogenic agent, with substantial efficacy in mice, and modest efficacy in obese human populations. Originally described as an anti-carcinogenic fatty acid, in addition to its anti-obesogenic effects, CLA has now been shown to possess anti-atherosclerotic properties. This review summarizes the pre-clinical and human studies conducted using CLA to date, which collectively suggest that CLA has efficacy against cancer, obesity, and atherosclerosis. In addition, the potential mechanisms for the many integrative physiological effects of CLA supplementation will be discussed in detail, including an introduction to the gut microbiota as a potential mediator of CLA effects on obesity and atherosclerosis.
Collapse
|
16
|
Kanter JE, Goodspeed L, Wang S, Kramer F, Wietecha T, Gomes-Kjerulf D, Subramanian S, O'Brien KD, den Hartigh LJ. 10,12 Conjugated Linoleic Acid-Driven Weight Loss Is Protective against Atherosclerosis in Mice and Is Associated with Alternative Macrophage Enrichment in Perivascular Adipose Tissue. Nutrients 2018; 10:nu10101416. [PMID: 30282904 PMCID: PMC6213611 DOI: 10.3390/nu10101416] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 09/26/2018] [Accepted: 09/27/2018] [Indexed: 02/05/2023] Open
Abstract
The dietary fatty acid 10,12 conjugated linoleic acid (10,12 CLA) promotes weight loss by increasing fat oxidation, but its effects on atherosclerosis are less clear. We recently showed that weight loss induced by 10,12 CLA in an atherosclerosis-susceptible mouse model with characteristics similar to human metabolic syndrome is accompanied by accumulation of alternatively activated macrophages within subcutaneous adipose tissue. The objective of this study was to evaluate whether 10,12 CLA-mediated weight loss was associated with an atheroprotective phenotype. Male low-density lipoprotein receptor deficient (Ldlr−/−) mice were made obese with 12 weeks of a high-fat, high-sucrose diet feeding (HFHS: 36% fat, 36% sucrose, 0.15% added cholesterol), then either continued on the HFHS diet with or without caloric restriction (CR), or switched to a diet with 1% of the lard replaced by either 9,11 CLA or 10,12 CLA for 8 weeks. Atherosclerosis and lipid levels were quantified at sacrifice. Weight loss in mice following 10,12 CLA supplementation or CR as a weight-matched control group had improved cholesterol and triglyceride levels, yet only the 10,12 CLA-treated mice had improved en face and aortic sinus atherosclerosis. 10,12 CLA-supplemented mice had increased lesion macrophage content, with enrichment of surrounding perivascular adipose tissue (PVAT) alternative macrophages, which may contribute to the anti-atherosclerotic effect of 10,12 CLA.
Collapse
Affiliation(s)
- Jenny E Kanter
- Department of Medicine, Division of Metabolism, Endocrinology and Nutrition, University of Washington Medicine Diabetes Institute, University of Washington, Box 358062, 750 Republican Street, Seattle, WA 98109, USA.
| | - Leela Goodspeed
- Department of Medicine, Division of Metabolism, Endocrinology and Nutrition, University of Washington Medicine Diabetes Institute, University of Washington, Box 358062, 750 Republican Street, Seattle, WA 98109, USA.
| | - Shari Wang
- Department of Medicine, Division of Metabolism, Endocrinology and Nutrition, University of Washington Medicine Diabetes Institute, University of Washington, Box 358062, 750 Republican Street, Seattle, WA 98109, USA.
| | - Farah Kramer
- Department of Medicine, Division of Metabolism, Endocrinology and Nutrition, University of Washington Medicine Diabetes Institute, University of Washington, Box 358062, 750 Republican Street, Seattle, WA 98109, USA.
| | - Tomasz Wietecha
- Department of Medicine, Division of Metabolism, Endocrinology and Nutrition, University of Washington Medicine Diabetes Institute, University of Washington, Box 358062, 750 Republican Street, Seattle, WA 98109, USA.
- Department of Medicine, Cardiology, University of Washington, Box 356422, 1959 Pacific Ave NE, Seattle, WA 98195, USA.
| | - Diego Gomes-Kjerulf
- Department of Medicine, Division of Metabolism, Endocrinology and Nutrition, University of Washington Medicine Diabetes Institute, University of Washington, Box 358062, 750 Republican Street, Seattle, WA 98109, USA.
| | - Savitha Subramanian
- Department of Medicine, Division of Metabolism, Endocrinology and Nutrition, University of Washington Medicine Diabetes Institute, University of Washington, Box 358062, 750 Republican Street, Seattle, WA 98109, USA.
| | - Kevin D O'Brien
- Department of Medicine, Division of Metabolism, Endocrinology and Nutrition, University of Washington Medicine Diabetes Institute, University of Washington, Box 358062, 750 Republican Street, Seattle, WA 98109, USA.
- Department of Medicine, Cardiology, University of Washington, Box 356422, 1959 Pacific Ave NE, Seattle, WA 98195, USA.
| | - Laura J den Hartigh
- Department of Medicine, Division of Metabolism, Endocrinology and Nutrition, University of Washington Medicine Diabetes Institute, University of Washington, Box 358062, 750 Republican Street, Seattle, WA 98109, USA.
| |
Collapse
|
17
|
Choi EM, Suh KS, Jung WW, Park SY, Chin SO, Rhee SY, Kim Pak Y, Chon S. Glabridin attenuates antiadipogenic activity induced by 2,3,7,8-tetrachlorodibenzo-p-dioxin in murine 3T3-L1 adipocytes. J Appl Toxicol 2018; 38:1426-1436. [DOI: 10.1002/jat.3664] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 06/03/2018] [Accepted: 06/06/2018] [Indexed: 01/14/2023]
Affiliation(s)
- Eun Mi Choi
- Department of Endocrinology & Metabolism, School of Medicine; Kyung Hee University; Seoul 02447 Republic of Korea
| | - Kwang Sik Suh
- Department of Endocrinology & Metabolism, School of Medicine; Kyung Hee University; Seoul 02447 Republic of Korea
| | - Woon-Won Jung
- Department of Biomedical Laboratory Science, College of Health Sciences; Cheongju University; Cheongju Chungbuk 28503 Republic of Korea
| | - So Young Park
- Department of Medicine, Graduate School; Kyung Hee University; Seoul 02447 Republic of Korea
- Department of Endocrinology & Metabolism; Kyung Hee University Hospital; Seoul 02447 Republic of Korea
| | - Sang Ouk Chin
- Department of Endocrinology & Metabolism, School of Medicine; Kyung Hee University; Seoul 02447 Republic of Korea
- Department of Endocrinology & Metabolism; Kyung Hee University Hospital; Seoul 02447 Republic of Korea
| | - Sang Youl Rhee
- Department of Endocrinology & Metabolism, School of Medicine; Kyung Hee University; Seoul 02447 Republic of Korea
- Department of Endocrinology & Metabolism; Kyung Hee University Hospital; Seoul 02447 Republic of Korea
| | - Youngmi Kim Pak
- Department of Physiology; Kyung Hee University; College of Medicine Seoul 02447 Republic of Korea
| | - Suk Chon
- Department of Endocrinology & Metabolism, School of Medicine; Kyung Hee University; Seoul 02447 Republic of Korea
- Department of Endocrinology & Metabolism; Kyung Hee University Hospital; Seoul 02447 Republic of Korea
| |
Collapse
|
18
|
Zhang T, Huang J, Tian H, Ma Y, Chen Z, Wang J, Shi H, Luo J. trans-10,cis-12 conjugated linoleic acid alters lipid metabolism of goat mammary epithelial cells by regulation of de novo synthesis and the AMPK signaling pathway. J Dairy Sci 2018. [DOI: 10.3168/jds.2017-12822] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
19
|
den Hartigh LJ, Gao Z, Goodspeed L, Wang S, Das AK, Burant CF, Chait A, Blaser MJ. Obese Mice Losing Weight Due to trans-10,cis-12 Conjugated Linoleic Acid Supplementation or Food Restriction Harbor Distinct Gut Microbiota. J Nutr 2018; 148:562-572. [PMID: 29659960 PMCID: PMC6251681 DOI: 10.1093/jn/nxy011] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Revised: 11/28/2017] [Accepted: 01/09/2018] [Indexed: 12/28/2022] Open
Abstract
Background trans-10,cis-12 Conjugated linoleic acid (t10,c12-CLA) is a dietary supplement that promotes weight loss by increasing fat oxidation and energy expenditure. We previously reported that in the absence of t10,c12-CLA, mice forced to lose equivalent body weight by food restriction (FR) do not exhibit increases in fat oxidation or energy expenditure but have improved glucose metabolism, consistent with FR as a metabolically healthy weight-loss method. Objective Because diet is a primary determinant of gut bacterial populations, we hypothesized that the disparate metabolic effects accompanying weight loss from t10,c12-CLA or FR could be related to altered intestinal microbiota. Methods Ten-week-old male LDL receptor-deficient (Ldlr-/-) mice were fed a high-fat, high-sucrose diet (HFHS; 36% lard fat, 36.2% sucrose + 0.15% cholesterol) for 12 wk (baseline), then switched to the HFHS diet alone (obese control), HFHS + 1% c9,t11-CLA (obese fatty acid control), HFHS + 1% t10,c12-CLA (weight-loss-inducing fatty acid), or HFHS + FR (weight-loss control group with 75-85% ad libitum HFHS food intake) for a further 8 wk. Fecal microbial content, short-chain fatty acids (butyrate, acetate), tissue CLA concentrations, and intestinal nutrient transporter expression were quantified. Results Mice fed t10,c12-CLA or assigned to FR lost 14.5% of baseline body weight. t10,c12-CLA-fed mice had elevated concentrations of fecal butyrate (2-fold) and plasma acetate (1.5-fold) compared with HFHS-fed controls. Fecal α diversity decreased by 7.6-14% in all groups. Butyrivibrio and Roseburia, butyrate-producing microbes, were enriched over time by t10,c12-CLA. By comparing with each control group, we also identified bacterial genera significantly enriched in the t10,c12-CLA recipients, including Lactobacillus, Actinobacteria, and the newly identified Ileibacterium valens of the Allobaculum genus, whereas other taxa were enriched by FR, including Clostridiales and Bacteroides. Conclusion Modalities resulting in equivalent weight loss but with divergent metabolic effects are associated with compositional differences in the mouse intestinal microbiota.
Collapse
Affiliation(s)
- Laura J den Hartigh
- Division of Metabolism, Endocrinology, and Nutrition, Department of Medicine, University of Washington School of Medicine, Seattle, WA
| | - Zhan Gao
- Department of Medicine, New York University School of Medicine, New York, NY
| | - Leela Goodspeed
- Division of Metabolism, Endocrinology, and Nutrition, Department of Medicine, University of Washington School of Medicine, Seattle, WA
| | - Shari Wang
- Division of Metabolism, Endocrinology, and Nutrition, Department of Medicine, University of Washington School of Medicine, Seattle, WA
| | - Arun K Das
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI
| | - Charles F Burant
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI
| | - Alan Chait
- Division of Metabolism, Endocrinology, and Nutrition, Department of Medicine, University of Washington School of Medicine, Seattle, WA
| | - Martin J Blaser
- Department of Medicine, New York University School of Medicine, New York, NY
| |
Collapse
|
20
|
Cruz MM, Lopes AB, Crisma AR, de Sá RCC, Kuwabara WMT, Curi R, de Andrade PBM, Alonso-Vale MIC. Palmitoleic acid (16:1n7) increases oxygen consumption, fatty acid oxidation and ATP content in white adipocytes. Lipids Health Dis 2018; 17:55. [PMID: 29554895 PMCID: PMC5859716 DOI: 10.1186/s12944-018-0710-z] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Accepted: 03/13/2018] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND We have recently demonstrated that palmitoleic acid (16:1n7) increases lipolysis, glucose uptake and glucose utilization for energy production in white adipose cells. In the present study, we tested the hypothesis that palmitoleic acid modulates bioenergetic activity in white adipocytes. METHODS For this, 3 T3-L1 pre-adipocytes were differentiated into mature adipocytes in the presence (or absence) of palmitic (16:0) or palmitoleic (16:1n7) acid at 100 or 200 μM. The following parameters were evaluated: lipolysis, lipogenesis, fatty acid (FA) oxidation, ATP content, oxygen consumption, mitochondrial mass, citrate synthase activity and protein content of mitochondrial oxidative phosphorylation (OXPHOS) complexes. RESULTS Treatment with 16:1n7 during 9 days raised basal and isoproterenol-stimulated lipolysis, FA incorporation into triacylglycerol (TAG), FA oxidation, oxygen consumption, protein expression of subunits representing OXPHOS complex II, III, and V and intracellular ATP content. These effects were not observed in adipocytes treated with 16:0. CONCLUSIONS Palmitoleic acid, by concerted action on lipolysis, FA esterification, mitochondrial FA oxidation, oxygen consumption and ATP content, does enhance white adipocyte energy expenditure and may act as local hormone.
Collapse
Affiliation(s)
- Maysa M Cruz
- Department of Biological Sciences, Institute of Environmental Sciences, Chemical and Pharmaceutical, Federal University of São Paulo, 210, Sao Nicolau St, Diadema, 09913-030, Brazil
| | - Andressa B Lopes
- Department of Nursing , Health Sciences Center, Federal University of Espírito Santo, Vitória, Brazil
| | - Amanda R Crisma
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Roberta C C de Sá
- Department of Biological Sciences, Institute of Environmental Sciences, Chemical and Pharmaceutical, Federal University of São Paulo, 210, Sao Nicolau St, Diadema, 09913-030, Brazil
| | - Wilson M T Kuwabara
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Rui Curi
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
- Interdisciplinary Postgraduate Program in Health Sciences, Institute of Physical Activity Sciences and Sports, Cruzeiro do Sul University, São Paulo, Brazil
| | - Paula B M de Andrade
- Interdisciplinary Postgraduate Program in Health Sciences, Institute of Physical Activity Sciences and Sports, Cruzeiro do Sul University, São Paulo, Brazil
| | - Maria I C Alonso-Vale
- Department of Biological Sciences, Institute of Environmental Sciences, Chemical and Pharmaceutical, Federal University of São Paulo, 210, Sao Nicolau St, Diadema, 09913-030, Brazil.
| |
Collapse
|
21
|
Grace MH, Esposito D, Timmers MA, Xiong J, Yousef G, Komarnytsky S, Lila MA. In vitro lipolytic, antioxidant and anti-inflammatory activities of roasted pistachio kernel and skin constituents. Food Funct 2018; 7:4285-4298. [PMID: 27604963 DOI: 10.1039/c6fo00867d] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
A comprehensive phytochemical analysis was conducted on pistachios to identify the differential contributions of skin and kernel phytochemicals to in vitro bioactivity. Qualitative and quantitative analyses of skin and kernel non-polar extracts (SNP and KNP, respectively) indicated that the major components are fatty acids (696.36 and 879.70 mg g-1), phytosterols (16.08 and 4.28 mg g-1), and γ-tocopherol (304.17 and 397.10 μg g-1). Analysis of the skin and kernel polar extracts (SP and KP, respectively) showed that skin accumulated higher levels of phenolic compounds, especially flavan-3-ols, compared to the kernel. An (epi)catechin hexoside was the major component in SP and KP (9.8 mg g-1 and 3.3 mg g-1, respectively). Flavan-3-ols with different degrees of polymerization were detected in SP, but only the monomers were identified in the KP. Quercetin glycosides were the major flavonols present in both SP and KP. Bioassays with 3T3L1 mouse adipocytes demonstrated that all extracts decreased lipid accumulation, with SNP demonstrating the highest activity (17% inhibition). Bioassay guided fractionation of SNP indicated that the lipolytic activity was highest in the fraction consisting of linoleic acid (20%), linolenic acid (10%), and β-sitosterol (50%). Radical scavenging assays indicated that all pistachio extracts significantly inhibited ROS, while SP was the most inhibiting to NO production in LPS-stimulated RAW 264.7 macrophages. Gene expression profiles associated with inflammation (IL6, iNOS, and COX2) were characterized in the LPS-stimulated RAW264.7 macrophages after treatment with pistachio extracts. SP and KP were the most potent to inhibit the expression of COX2. The SNP had the strongest effect in decreasing non-mitochondrial oxidative burst associated with inflammatory response in macrophages.
Collapse
Affiliation(s)
- Mary H Grace
- Plants for Human Health Institute, Food Bioprocessing and Nutrition Sciences Department, North Carolina State University, North Carolina Research Campus, 600 Laureate Way, Kannapolis, North Carolina 28081, USA.
| | - Debora Esposito
- Plants for Human Health Institute, Food Bioprocessing and Nutrition Sciences Department, North Carolina State University, North Carolina Research Campus, 600 Laureate Way, Kannapolis, North Carolina 28081, USA.
| | - Michael A Timmers
- Plants for Human Health Institute, Food Bioprocessing and Nutrition Sciences Department, North Carolina State University, North Carolina Research Campus, 600 Laureate Way, Kannapolis, North Carolina 28081, USA.
| | - Jia Xiong
- Plants for Human Health Institute, Food Bioprocessing and Nutrition Sciences Department, North Carolina State University, North Carolina Research Campus, 600 Laureate Way, Kannapolis, North Carolina 28081, USA.
| | - Gad Yousef
- Plants for Human Health Institute, Food Bioprocessing and Nutrition Sciences Department, North Carolina State University, North Carolina Research Campus, 600 Laureate Way, Kannapolis, North Carolina 28081, USA.
| | - Slavko Komarnytsky
- Plants for Human Health Institute, Food Bioprocessing and Nutrition Sciences Department, North Carolina State University, North Carolina Research Campus, 600 Laureate Way, Kannapolis, North Carolina 28081, USA.
| | - Mary Ann Lila
- Plants for Human Health Institute, Food Bioprocessing and Nutrition Sciences Department, North Carolina State University, North Carolina Research Campus, 600 Laureate Way, Kannapolis, North Carolina 28081, USA.
| |
Collapse
|
22
|
Li J, Hu SB, He YM, Zhuo CF, Zhou RL, Chen F, Li HY, Deng ZY. 9c11tCLA modulates 11t18:1 and 9t18:1 induced inflammations differently in human umbilical vein endothelial cells. Sci Rep 2018; 8:1535. [PMID: 29367652 PMCID: PMC5784167 DOI: 10.1038/s41598-018-19729-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Accepted: 01/04/2018] [Indexed: 02/02/2023] Open
Abstract
Endothelial inflammation is recognized as the initial stage of a multistep process leading to coronary heart disease (CHD). Recently, the different effects of industrial trans fatty acids (elaidic acid, 9t18:1) and ruminant trans fatty acids (vaccenic acid, 11t18:1) on CHD have been reported in epidemiological and animal studies, however, the mechanism was not fully studied. Therefore, the objective of this study was to explore the underlying mechanism by which 9t18:1 and 11t18:1 affect human umbilical vein endothelial cells (HUVECs) inflammation. We found that 9c11t-CLA modulated the inflammation of HUVECs induced by 9t18:1 and 11t18:1. Fatty acid composition, pro-inflammatory factors, phosphorylation of MAPKs, and the TLR4 level in HUVECs altered by 11t18:1 induction, collectively suggest that the bio-conversion of 11t18:1 to 9c11tCLA might be the cause why 11t18:1 and 9t18:1 have distinct influences on endothelial injuries. It was concluded that it is biosynthesis of 9c11t CLA from11t18:1, and the modulation of TLR4-MAPK pathway by 9c11t CLA, which at least partially account for the slight effect of 11t18:1 on endothelial inflammation.
Collapse
Affiliation(s)
- Jing Li
- State Key Lab of Food Science and Technology, Nanchang University, Nanchang, 330047, China
| | - Sheng-Ben Hu
- State Key Lab of Food Science and Technology, Nanchang University, Nanchang, 330047, China
| | - Yue-Ming He
- State Key Lab of Food Science and Technology, Nanchang University, Nanchang, 330047, China
| | - Cheng-Fei Zhuo
- State Key Lab of Food Science and Technology, Nanchang University, Nanchang, 330047, China
| | - Ruo-Lin Zhou
- State Key Lab of Food Science and Technology, Nanchang University, Nanchang, 330047, China
| | - Fang Chen
- State Key Lab of Food Science and Technology, Nanchang University, Nanchang, 330047, China
| | - Hong-Yan Li
- State Key Lab of Food Science and Technology, Nanchang University, Nanchang, 330047, China
| | - Ze-Yuan Deng
- State Key Lab of Food Science and Technology, Nanchang University, Nanchang, 330047, China. .,Institute for Advanced Study, Nanchang University, Nanchang, 330031, China.
| |
Collapse
|
23
|
Shen P, Kershaw JC, Yue Y, Wang O, Kim KH, McClements DJ, Park Y. Effects of conjugated linoleic acid (CLA) on fat accumulation, activity, and proteomics analysis in Caenorhabditis elegans. Food Chem 2018; 249:193-201. [PMID: 29407924 DOI: 10.1016/j.foodchem.2018.01.017] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Revised: 12/27/2017] [Accepted: 01/02/2018] [Indexed: 12/14/2022]
Abstract
Conjugated linoleic acid (CLA) has been reported to reduce fat storage in cell culture and animal models. In the current study, the effects of CLA on the fat accumulation, activities, and proteomics were investigated using Caenorhabditis elegans. 100 µM CLA-TG nanoemulsion significantly reduced fat accumulation by 29% compared to linoleic acid (LA)-TG treatment via sir-2.1 (the ortholog of Sirtuin 1), without altering the worm size, growth rate, and pumping rate of C. elegans. CLA significantly increased moving speed and amplitude (the average centroid displacement over the entire track) of wild type worms compared to the LA group and these effects were dependent on aak-2 (AMPKα ortholog) and sir-2.1. Proteomics analysis showed CLA treatment influences various proteins associated in reproduction and development, translation, metabolic processes, and catabolism and proteolysis, in C. elegans. We have also confirmed the proteomics data that CLA reduced the fat accumulation via abs-1 (ATP Synthase B homolog). However, there were no significant effects of CLA on brood size, progeny numbers, and hatchability compared to LA treatment.
Collapse
Affiliation(s)
- Peiyi Shen
- Department of Food Science, University of Massachusetts, Amherst, USA
| | - Jonathan C Kershaw
- Department of Food Science, Purdue University, West Lafayette, IN 47907, USA
| | - Yiren Yue
- Department of Food Science, University of Massachusetts, Amherst, USA
| | - Ou Wang
- Department of Food Science, University of Massachusetts, Amherst, USA; National Institute for Nutrition and Health, Chinese Centre for Disease Control and Prevention, Beijing 10050, China
| | - Kee-Hong Kim
- Department of Food Science, Purdue University, West Lafayette, IN 47907, USA; Purdue University Center for Cancer Research, West Lafayette, IN 47907, USA
| | | | - Yeonhwa Park
- Department of Food Science, University of Massachusetts, Amherst, USA.
| |
Collapse
|
24
|
Zhang T, Ma Y, Wang H, Loor JJ, Xu H, Shi H, Luo J. Trans10, cis12 conjugated linoleic acid increases triacylglycerol accumulation in goat mammary epithelial cells in vitro. Anim Sci J 2017; 89:432-440. [DOI: 10.1111/asj.12935] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2017] [Accepted: 08/25/2017] [Indexed: 12/23/2022]
Affiliation(s)
- Tianying Zhang
- Shaanxi Key Laboratory of Molecular Biology for Agriculture; College of Animal Science and Technology; Northwest A&F University; Yangling Shaanxi China
| | - Yue Ma
- Shaanxi Key Laboratory of Molecular Biology for Agriculture; College of Animal Science and Technology; Northwest A&F University; Yangling Shaanxi China
| | - Hui Wang
- Shaanxi Key Laboratory of Molecular Biology for Agriculture; College of Animal Science and Technology; Northwest A&F University; Yangling Shaanxi China
| | - Juan J Loor
- Mammalian NutriPhysioGenomics; Department of Animal Sciences and Division of Nutritional Sciences; University of Illinois; Urbana IL USA
| | - Huifen Xu
- Shaanxi Key Laboratory of Molecular Biology for Agriculture; College of Animal Science and Technology; Northwest A&F University; Yangling Shaanxi China
| | - Huaiping Shi
- Shaanxi Key Laboratory of Molecular Biology for Agriculture; College of Animal Science and Technology; Northwest A&F University; Yangling Shaanxi China
| | - Jun Luo
- Shaanxi Key Laboratory of Molecular Biology for Agriculture; College of Animal Science and Technology; Northwest A&F University; Yangling Shaanxi China
| |
Collapse
|
25
|
Wang S, Goodspeed L, Turk KE, Houston B, den Hartigh LJ. Rosiglitazone Improves Insulin Resistance Mediated by 10,12 Conjugated Linoleic Acid in a Male Mouse Model of Metabolic Syndrome. Endocrinology 2017; 158. [PMID: 28651330 PMCID: PMC5659669 DOI: 10.1210/en.2017-00213] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Trans-10, cis-12 conjugated linoleic acid (10,12 CLA) is a dietary fatty acid that promotes weight loss and disproportionate fat loss. Obese mice fed a high-fat, high-sucrose (HFHS) diet containing 10,12 CLA are resistant to weight gain and contain markedly reduced subcutaneous fat and adiponectin, with a concurrent lack of improvement in insulin sensitivity despite significant weight loss. Taken together, 10,12 CLA promotes a phenotype resembling peroxisome proliferator-activated receptor (PPAR)γ antagonism. Because thiazolidinediones such as rosiglitazone (Rosi) are used clinically to improve insulin sensitivity by activating PPARγ, with particular efficacy in subcutaneous white adipose tissue, we hypothesized that Rosi would improve glucose metabolism in mice losing weight with 10,12 CLA. Obese low-density lipoprotein receptor-deficient mice were fed a HFHS control diet, or supplemented with 1% 10,12 CLA with or without Rosi (10 mg/kg) for 8 weeks. Body composition, glucose and insulin tolerance tests, tissue gene expression, and plasma lipid analyses were performed. Mice consuming 10,12 CLA with Rosi lost weight and body fat compared with control groups, but with a healthier redistribution of body fat toward more subcutaneous adipose tissue than with 10,12 CLA alone. Further, Rosi improved 10,12 CLA-mediated insulin resistance parameters and increased plasma and subcutaneous adipose tissue adiponectin levels without adverse effects on plasma or hepatic lipids. We conclude that cotreatment of mice with 10,12 CLA and Rosi promotes fat loss with a healthier fat distribution that leads to improved insulin sensitivity, suggesting that the combination treatment strategy of 10,12 CLA with Rosi could have therapeutic potential for obesity treatment.
Collapse
Affiliation(s)
- Shari Wang
- Department of Medicine, Division of Metabolism, Endocrinology, and Nutrition, University of Washington, Seattle, Washington 98109
| | - Leela Goodspeed
- Department of Medicine, Division of Metabolism, Endocrinology, and Nutrition, University of Washington, Seattle, Washington 98109
| | - Katherine E. Turk
- Department of Medicine, Division of Metabolism, Endocrinology, and Nutrition, University of Washington, Seattle, Washington 98109
| | - Barbara Houston
- Department of Medicine, Division of Metabolism, Endocrinology, and Nutrition, University of Washington, Seattle, Washington 98109
| | - Laura J. den Hartigh
- Department of Medicine, Division of Metabolism, Endocrinology, and Nutrition, University of Washington, Seattle, Washington 98109
| |
Collapse
|
26
|
Shen W, McIntosh MK. Nutrient Regulation: Conjugated Linoleic Acid's Inflammatory and Browning Properties in Adipose Tissue. Annu Rev Nutr 2017; 36:183-210. [PMID: 27431366 DOI: 10.1146/annurev-nutr-071715-050924] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Obesity is the most widespread nutritional disease in the United States. Developing effective and safe strategies to manage excess body weight is therefore of paramount importance. One potential strategy to reduce obesity is to consume conjugated linoleic acid (CLA) supplements containing isomers cis-9, trans-11 and trans-10, cis-12, or trans-10, cis-12 alone. Proposed antiobesity mechanisms of CLA include regulation of (a) adipogenesis, (b) lipid metabolism, (c) inflammation, (d) adipocyte apoptosis, (e) browning or beiging of adipose tissue, and (f) energy metabolism. However, causality of CLA-mediated responses to body fat loss, particularly the linkage between inflammation, thermogenesis, and energy metabolism, is unclear. This review examines whether CLA's antiobesity properties are due to inflammatory signaling and considers CLA's linkage with lipogenesis, lipolysis, thermogenesis, and browning of white and brown adipose tissue. We propose a series of questions and studies to interrogate the role of the sympathetic nervous system in mediating CLA's antiobesity properties.
Collapse
Affiliation(s)
- Wan Shen
- Department of Nutrition, The University of North Carolina at Greensboro, Greensboro, North Carolina 27402; ,
| | - Michael K McIntosh
- Department of Nutrition, The University of North Carolina at Greensboro, Greensboro, North Carolina 27402; ,
| |
Collapse
|
27
|
Ayyappan JP, Nagajyothi JF. Diet Modulates Adipose Tissue Oxidative Stress in a Murine Acute Chagas Model. JSM ATHEROSCLEROSIS 2017; 2:1030. [PMID: 30221258 PMCID: PMC6135525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Chagas disease, also known as American trypanosomiasis, is a tropical parasitic disease caused by the protozoan Trypanosoma cruzi. T. cruzi targets adipose tissue, which serves as a reservoir of this parasite. T. cruzi infection of adipose tissue is characterized by increased lipolysis, oxidative stress, and parasitemia. High fat diet (HFD) decreases lipolysis and increases the survival rate in the mice infected with T. cruzi during acute infection. However, the effect of HFD on oxidative stress in adipose tissue has not been examined in detail. In the present study we evaluated the effect of HFD on oxidative stress markers in both white and brown adipose tissues (WAT and BAT) during acute infection. We used qPCR to examine the mRNA expression levels of genes involved in several antioxidant defence systems, such as those acting in ROS metabolism, peroxidases, and relevant oxygen transporter genes. The result of our study showed that HFD regulates the expression levels of oxidative stress genes in adipose tissues and that these effects are often different in WAT and BAT. For instance, while HFD down-regulated the levels of most antioxidant genes in both WAT and BAT, it differentially affected the expression pattern of genes involved in ROS metabolism (e.g. peroxidases) in WAT and BAT tissues of infected mice. Together with our previous studies, these findings show that infection and diet both regulate antioxidant enzymes and other oxidative stress defenses in mouse adipose tissues during acute T. cruzi infection.
Collapse
Affiliation(s)
| | - Jyothi F Nagajyothi
- Corresponding author: Jyothi F Nagajyothi, Department of Microbiology, Rutgers State University of New Jersey, 225, Warren Street, Newark, NJ- 07103, USA, Tel: 973-854-3450; Fax: 973-854-3101;
| |
Collapse
|
28
|
den Hartigh LJ, Wang S, Goodspeed L, Wietecha T, Houston B, Omer M, Ogimoto K, Subramanian S, Gowda GAN, O’Brien KD, Kaiyala KJ, Morton GJ, Chait A. Metabolically distinct weight loss by 10,12 CLA and caloric restriction highlight the importance of subcutaneous white adipose tissue for glucose homeostasis in mice. PLoS One 2017; 12:e0172912. [PMID: 28245284 PMCID: PMC5330530 DOI: 10.1371/journal.pone.0172912] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Accepted: 02/10/2017] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Widely used as a weight loss supplement, trans-10,cis-12 conjugated linoleic acid (10,12 CLA) promotes fat loss in obese mice and humans, but has also been associated with insulin resistance. OBJECTIVE We therefore sought to directly compare weight loss by 10,12 CLA versus caloric restriction (CR, 15-25%), an acceptable healthy method of weight loss, to determine how 10,12 CLA-mediated weight loss fails to improve glucose metabolism. METHODS Obese mice with characteristics of human metabolic syndrome were either supplemented with 10,12 CLA or subjected to CR to promote weight loss. Metabolic endpoints such as energy expenditure, glucose and insulin tolerance testing, and trunk fat distribution were measured. RESULTS By design, 10,12 CLA and CR caused equivalent weight loss, with greater fat loss by 10,12 CLA accompanied by increased energy expenditure, reduced respiratory quotient, increased fat oxidation, accumulation of alternatively activated macrophages, and browning of subcutaneous white adipose tissue (WAT). Moreover, 10,12 CLA-supplemented mice better defended their body temperature against a cold challenge. However, 10,12 CLA concurrently induced the detrimental loss of subcutaneous WAT without reducing visceral WAT, promoted reduced plasma and WAT adipokine levels, worsened hepatic steatosis, and failed to improve glucose metabolism. Obese mice undergoing CR were protected from subcutaneous-specific fat loss, had improved hepatic steatosis, and subsequently showed the expected improvements in WAT adipokines, glucose metabolism and WAT inflammation. CONCLUSIONS These results suggest that 10,12 CLA mediates the preferential loss of subcutaneous fat that likely contributes to hepatic steatosis and maintained insulin resistance, despite significant weight loss and WAT browning in mice. Collectively, we have shown that weight loss due to 10,12 CLA supplementation or CR results in dramatically different metabolic phenotypes, with the latter promoting a healthier form of weight loss.
Collapse
Affiliation(s)
- Laura J. den Hartigh
- Department of Medicine, Metabolism, University of Washington, Seattle, Washington, United States of America
| | - Shari Wang
- Department of Medicine, Metabolism, University of Washington, Seattle, Washington, United States of America
| | - Leela Goodspeed
- Department of Medicine, Metabolism, University of Washington, Seattle, Washington, United States of America
| | - Tomasz Wietecha
- Department of Medicine, Cardiology, University of Washington, Seattle, Washington, United States of America
| | - Barbara Houston
- Department of Medicine, Metabolism, University of Washington, Seattle, Washington, United States of America
| | - Mohamed Omer
- Department of Medicine, Metabolism, University of Washington, Seattle, Washington, United States of America
| | - Kayoko Ogimoto
- Department of Medicine, Metabolism, University of Washington, Seattle, Washington, United States of America
| | - Savitha Subramanian
- Department of Medicine, Metabolism, University of Washington, Seattle, Washington, United States of America
| | - G. A. Nagana Gowda
- Northwest Metabolomics Research Center, Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, Washington, United States of America
| | - Kevin D. O’Brien
- Department of Medicine, Cardiology, University of Washington, Seattle, Washington, United States of America
| | - Karl J. Kaiyala
- Department of Oral Health Sciences, University of Washington, Seattle, Washington, United States of America
| | - Gregory J. Morton
- Department of Medicine, Metabolism, University of Washington, Seattle, Washington, United States of America
| | - Alan Chait
- Department of Medicine, Metabolism, University of Washington, Seattle, Washington, United States of America
| |
Collapse
|
29
|
Vahmani P, Meadus WJ, Rolland DC, Duff P, Dugan MER. Trans10,cis15 18:2 Isolated from Beef Fat Does Not Have the Same Anti-Adipogenic Properties as Trans10,cis12–18:2 in 3T3-L1 Adipocytes. Lipids 2016; 51:1231-1239. [DOI: 10.1007/s11745-016-4192-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Accepted: 08/22/2016] [Indexed: 10/21/2022]
|
30
|
Martins SV, Pires VMR, Madeira AP, Nascimento M, Alfaia CM, Castro MF, Soveral G, Prates JA, Lopes PA. Novel anti-adipogenic properties of the individualtrans8,cis10 conjugated linoleic acid (CLA) isomer in 3T3-L1 adipocytes. EUR J LIPID SCI TECH 2016. [DOI: 10.1002/ejlt.201600042] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Susana V. Martins
- Faculdade de Medicina Veterinária; CIISA; Universidade de Lisboa; Av. da Universidade Técnica; Pólo Universitário do Alto da Ajuda; Lisboa Portugal
| | - Virgínia M. R. Pires
- Faculdade de Medicina Veterinária; CIISA; Universidade de Lisboa; Av. da Universidade Técnica; Pólo Universitário do Alto da Ajuda; Lisboa Portugal
| | - Ana P. Madeira
- Faculdade de Farmácia; Research Institute for Medicines (iMed.UL); Universidade de Lisboa; Lisboa Portugal
| | - Mafalda Nascimento
- Faculdade de Medicina Veterinária; CIISA; Universidade de Lisboa; Av. da Universidade Técnica; Pólo Universitário do Alto da Ajuda; Lisboa Portugal
| | - Cristina M. Alfaia
- Faculdade de Medicina Veterinária; CIISA; Universidade de Lisboa; Av. da Universidade Técnica; Pólo Universitário do Alto da Ajuda; Lisboa Portugal
| | - Matilde F. Castro
- Faculdade de Farmácia; Research Institute for Medicines (iMed.UL); Universidade de Lisboa; Lisboa Portugal
| | - Graça Soveral
- Faculdade de Farmácia; Research Institute for Medicines (iMed.UL); Universidade de Lisboa; Lisboa Portugal
- Faculdade de Farmácia; Dep. Bioquímica e Biologia Humana; Universidade de Lisboa; Lisboa Portugal
| | - José A.M. Prates
- Faculdade de Medicina Veterinária; CIISA; Universidade de Lisboa; Av. da Universidade Técnica; Pólo Universitário do Alto da Ajuda; Lisboa Portugal
| | - Paula A. Lopes
- Faculdade de Medicina Veterinária; CIISA; Universidade de Lisboa; Av. da Universidade Técnica; Pólo Universitário do Alto da Ajuda; Lisboa Portugal
| |
Collapse
|
31
|
Yeganeh A, Taylor CG, Tworek L, Poole J, Zahradka P. Trans-10,cis-12 conjugated linoleic acid (CLA) interferes with lipid droplet accumulation during 3T3-L1 preadipocyte differentiation. Int J Biochem Cell Biol 2016; 76:39-50. [PMID: 27131602 DOI: 10.1016/j.biocel.2016.04.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Revised: 04/14/2016] [Accepted: 04/25/2016] [Indexed: 12/22/2022]
Abstract
In this study, we hypothesize that the biologically active isomers of conjugated linoleic acid (CLA), cis-9,trans-11 (c9,t11) and trans-10,cis-12 (t10,c12) CLA, have different effects on early and late stages 3T3-L1 preadipocyte differentiation. Both c9-t11 and t10-c12CLA stimulated early stage pre-adipocyte differentiation (day 2), while t10-c12CLA inhibited late differentiation (day 8) as determined by lipid droplet numbers and both perilipin-1 levels and phosphorylation state. At day 8, the adipokines adiponectin, chemerin and adipsin were all reduced in t10-c12CLA treated cells versus control cells. Immunofluorescence microscopy showed perilipin-1 was present solely on lipid droplets on day 8 in t10-c12 treated 3T3-L1 cells, whereas preilipin-1 was also located in the perinuclear region in control and c9-t11 treated cells. The t10-c12CLA isomer also decreased levels of hormone-sensitive lipase and inhibited lipolysis. These findings indicate that the decrease in lipid droplets caused by t10-c12CLA is the result of an inhibition of lipid droplet production during adipogenesis rather than a stimulation of lipolysis. Additionally, treatment with Gö6976 blocked the effect of t10-c12CLA on perilipin-1 phosphorylation, implicating PKCα in perilipin-1 phosphorylation, and thus a regulator of triglyceride catabolism. These data are supported by evidence that t10-c12CLA activated PKCα. These are the first data to show that CLA isomers can affect lipid droplet dynamics in adipocytes through PKCα.
Collapse
Affiliation(s)
- Azadeh Yeganeh
- Department of Physiology and Pathophysiology, University of Manitoba, Winnipeg, Canada; Canadian Centre for Agri-Food Research in Health and Medicine, St. Boniface Hospital Research Centre, Winnipeg, Canada
| | - Carla G Taylor
- Department of Physiology and Pathophysiology, University of Manitoba, Winnipeg, Canada; Department of Human Nutritional Sciences, University of Manitoba, Winnipeg, Canada; Canadian Centre for Agri-Food Research in Health and Medicine, St. Boniface Hospital Research Centre, Winnipeg, Canada
| | - Leslee Tworek
- Canadian Centre for Agri-Food Research in Health and Medicine, St. Boniface Hospital Research Centre, Winnipeg, Canada
| | - Jenna Poole
- Canadian Centre for Agri-Food Research in Health and Medicine, St. Boniface Hospital Research Centre, Winnipeg, Canada
| | - Peter Zahradka
- Department of Physiology and Pathophysiology, University of Manitoba, Winnipeg, Canada; Department of Human Nutritional Sciences, University of Manitoba, Winnipeg, Canada; Canadian Centre for Agri-Food Research in Health and Medicine, St. Boniface Hospital Research Centre, Winnipeg, Canada.
| |
Collapse
|
32
|
Dietary docosahexaenoic acid reverses nonalcoholic steatohepatitis and fibrosis caused by conjugated linoleic acid supplementation in mice. J Funct Foods 2016. [DOI: 10.1016/j.jff.2015.11.028] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
|
33
|
Basiricò L, Morera P, Dipasquale D, Tröscher A, Serra A, Mele M, Bernabucci U. Conjugated linoleic acid isomers strongly improve the redox status of bovine mammary epithelial cells (BME-UV1). J Dairy Sci 2015; 98:7071-82. [PMID: 26277317 DOI: 10.3168/jds.2015-9787] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Accepted: 06/18/2015] [Indexed: 12/31/2022]
Abstract
Some studies have shown the protective effects of conjugated linoleic acid (CLA) isomers against oxidative stress and lipid peroxidation in animal models, but no information is available about CLA and changes in oxidative status of the bovine mammary gland. The objectives of the study were to assess in vitro the effect of CLA on the cellular antioxidant response of bovine mammary cells, to examine whether CLA isomers could play a role in cell protection against the oxidative stress, and to study the molecular mechanism involved. For the study, BME-UV1 cells, a bovine mammary epithelial cell line, were used as the experimental model. The BME-UV1 cells were treated with complete medium containing 50 µM cis-9,trans-11 CLA (c9,t11 CLA), trans-10,cis-12 CLA (t10,c12 CLA), and CLA mixture (1:1, cis-9,trans-11: trans-10,cis-12 CLA). To monitor cellular uptake of CLA isomers, cells and culture medium were collected at 0, 3, and 48 h from CLA addition for lipid extraction and fatty acid analyses. To assess the cellular antioxidant response, glutathione (GSH/GSSH), NADPH, and γ-glutamyl-cysteine ligase activity was measured after 48 h from addition of CLA. Cytoplasmic superoxide dismutase, glutathione peroxidase, glutathione S-transferase, and glutathione reductase activities and mRNA were also determined. Intracellular reactive oxygen species and thiobarbituric acid reactive substance production were assessed in cells supplemented with CLA isomers. Cell viability after 3h to H2O2 exposure was assessed to evaluate and to compare the potential protection of different CLA isomers against H2O2-induced oxidative stress. Mammary cells readily picked up all CLA isomers, their accumulation was time dependent, and main metabolites at 48 h are two 18:3 isomers. The CLA treatment induced an intracellular GSH increase, matched by high concentration of NADPH, and an increase of γ-glutamyl-cysteine ligase activity mainly in cells treated with the t10,c12 CLA isomer. The CLA isomer treatment of bovine mammary cells increased superoxide dismutase, glutathione peroxidase, and glutathione S-transferase activity and decreased glutathione reductase activity, but no changes in gene expression of these antioxidant enzymes were observed. Cells supplemented with CLA isomers showed a reduction in intracellular reactive oxygen species and thiobarbituric acid reactive substance levels. All CLA isomers were able to enhance cell resistance against H2O2-induced oxidative stress. These suggest an antioxidant role of CLA, in particular of t10,c12 CLA, by developing a significantly high redox status in cells.
Collapse
Affiliation(s)
- L Basiricò
- Dipartimento di scienze e tecnologie per l'Agricoltura, le Foreste, la Natura e l'Energia, Università degli Studi della Tuscia, 01100, Viterbo, Italy
| | - P Morera
- Dipartimento di scienze e tecnologie per l'Agricoltura, le Foreste, la Natura e l'Energia, Università degli Studi della Tuscia, 01100, Viterbo, Italy
| | - D Dipasquale
- Dipartimento di scienze e tecnologie per l'Agricoltura, le Foreste, la Natura e l'Energia, Università degli Studi della Tuscia, 01100, Viterbo, Italy
| | | | - A Serra
- Dipartimento di Scienze Agrarie, Alimentari e Agro-ambientali, Università di Pisa, 56126, Pisa, Italy
| | - M Mele
- Dipartimento di Scienze Agrarie, Alimentari e Agro-ambientali, Università di Pisa, 56126, Pisa, Italy
| | - U Bernabucci
- Dipartimento di scienze e tecnologie per l'Agricoltura, le Foreste, la Natura e l'Energia, Università degli Studi della Tuscia, 01100, Viterbo, Italy.
| |
Collapse
|
34
|
Hafizi Abu Bakar M, Kian Kai C, Wan Hassan WN, Sarmidi MR, Yaakob H, Zaman Huri H. Mitochondrial dysfunction as a central event for mechanisms underlying insulin resistance: the roles of long chain fatty acids. Diabetes Metab Res Rev 2015; 31:453-75. [PMID: 25139820 DOI: 10.1002/dmrr.2601] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2013] [Revised: 04/19/2014] [Accepted: 07/23/2014] [Indexed: 12/25/2022]
Abstract
Insulin resistance is characterized by hyperglycaemia, dyslipidaemia and oxidative stress prior to the development of type 2 diabetes mellitus. To date, a number of mechanisms have been proposed to link these syndromes together, but it remains unclear what the unifying condition that triggered these events in the progression of this metabolic disease. There have been a steady accumulation of data in numerous experimental studies showing the strong correlations between mitochondrial dysfunction, oxidative stress and insulin resistance. In addition, a growing number of studies suggest that the raised plasma free fatty acid level induced insulin resistance with the significant alteration of oxidative metabolism in various target tissues such as skeletal muscle, liver and adipose tissue. In this review, we herein propose the idea of long chain fatty acid-induced mitochondrial dysfunctions as one of the key events in the pathophysiological development of insulin resistance and type 2 diabetes. The accumulation of reactive oxygen species, lipotoxicity, inflammation-induced endoplasmic reticulum stress and alterations of mitochondrial gene subset expressions are the most detrimental that lead to the developments of aberrant intracellular insulin signalling activity in a number of peripheral tissues, thereby leading to insulin resistance and type 2 diabetes.
Collapse
Affiliation(s)
- Mohamad Hafizi Abu Bakar
- Department of Bioprocess Engineering, Faculty of Chemical Engineering, Universiti Teknologi Malaysia, Skudai, Johor, Malaysia
| | - Cheng Kian Kai
- Department of Bioprocess Engineering, Faculty of Chemical Engineering, Universiti Teknologi Malaysia, Skudai, Johor, Malaysia
| | - Wan Najihah Wan Hassan
- Department of Bioprocess Engineering, Faculty of Chemical Engineering, Universiti Teknologi Malaysia, Skudai, Johor, Malaysia
| | - Mohamad Roji Sarmidi
- Institute of Bioproduct Development, Universiti Teknologi Malaysia, Skudai, Johor, Malaysia
| | - Harisun Yaakob
- Institute of Bioproduct Development, Universiti Teknologi Malaysia, Skudai, Johor, Malaysia
| | - Hasniza Zaman Huri
- Department of Pharmacy, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
- Clinical Investigation Centre, 13th Floor Main Tower, University Malaya Medical Centre, Lembah Pantai, Kuala Lumpur, Malaysia
| |
Collapse
|
35
|
Yang B, Chen H, Stanton C, Ross RP, Zhang H, Chen YQ, Chen W. Review of the roles of conjugated linoleic acid in health and disease. J Funct Foods 2015. [DOI: 10.1016/j.jff.2015.03.050] [Citation(s) in RCA: 148] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
|
36
|
Trans-10,cis-12-conjugated linoleic acid worsens renal pathology and alters cyclooxygenase derived oxylipins in obesity-associated nephropathy. J Nutr Biochem 2015; 26:130-7. [DOI: 10.1016/j.jnutbio.2014.09.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2014] [Revised: 08/05/2014] [Accepted: 09/16/2014] [Indexed: 11/19/2022]
|
37
|
Schooneman MG, Achterkamp N, Argmann CA, Soeters MR, Houten SM. Plasma acylcarnitines inadequately reflect tissue acylcarnitine metabolism. Biochim Biophys Acta Mol Cell Biol Lipids 2014; 1841:987-94. [DOI: 10.1016/j.bbalip.2014.04.001] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2014] [Revised: 03/12/2014] [Accepted: 04/09/2014] [Indexed: 12/22/2022]
|
38
|
Niezgoda N, Wawrzeńczyk C. An efficient method for enzymatic purification of cis-9,trans-11 isomer of conjugated linoleic acid. ACTA ACUST UNITED AC 2014. [DOI: 10.1016/j.molcatb.2013.11.019] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|