1
|
Delk SC, Gurgis FW, Reddy ST. Mechanisms and applications of apolipoproteins and apolipoprotein mimetic peptides: Common pathways in cardiovascular disease and cancer. Semin Cancer Biol 2025; 113:74-84. [PMID: 40345461 DOI: 10.1016/j.semcancer.2025.05.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2025] [Revised: 04/29/2025] [Accepted: 05/05/2025] [Indexed: 05/11/2025]
Abstract
Apolipoproteins are the defining functional component of lipoproteins and play critical roles in lipid transport and metabolism. High-density lipoprotein (HDL) and its primary functional constituent, apolipoprotein A-I, are of particular importance because of anti-inflammatory and antioxidant properties. Apolipoprotein mimetic peptides are short-chain amino acids designed to mimic the functions and alpha-helical structure of endogenous apolipoproteins and have demonstrated efficacy in ameliorating animal models of cardiovascular disease (CVD) and cancer. The mechanisms underlying the mimetics are yet to be fully elucidated, but a comprehensive review of the literature suggests that the peptides attack pathways shared in the pathophysiology of both diseases. This review also discusses the many pre-clinical studies on the mimetic peptides, highlighting possible mechanisms at work in each. Proposed mechanisms of protection against CVD and cancer include binding and removal of pro-inflammatory oxidized lipids, reduction in reactive oxygen species, and modulation of immune cell populations. Additionally, nanoparticles (NP) formulations incorporating apolipoprotein mimetic peptides or recombinant apolipoproteins have exhibited anti-atherogenic and anti-cancer activity. To date, clinical trials to assess the effect of reconstituted HDL NPs on CVD outcomes have not shown significant improvement. The large body of successful animal studies on apolipoproteins and apolipoprotein mimetic peptides presents a disconnect between pre-clinical and clinical efficacy, highlighting the need for a more complete understanding of the underlying pathways and mechanisms.
Collapse
Affiliation(s)
- Samuel C Delk
- Environmental and Molecular Toxicology Interdepartmental Degree Program, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - Faheem W Gurgis
- Department of Emergency Medicine, University of Florida College of Medicine, Gainesville, Florida, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - Srinivasa T Reddy
- Environmental and Molecular Toxicology Interdepartmental Degree Program, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA; Division of Cardiology, Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA.
| |
Collapse
|
2
|
Yun CC, Han Y, McConnell B. Lysophosphatidic Acid Signaling in the Gastrointestinal System. Cell Mol Gastroenterol Hepatol 2024; 18:101398. [PMID: 39233124 PMCID: PMC11532463 DOI: 10.1016/j.jcmgh.2024.101398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 08/09/2024] [Accepted: 08/13/2024] [Indexed: 09/06/2024]
Abstract
The intestinal epithelium undergoes continuous homeostatic renewal to conduct the digestion and absorption of nutrients. At the same time, the intestinal epithelial barrier separates the host from the intestinal lumen, preventing systemic infection from enteric pathogens. To maintain homeostasis and epithelial functionality, stem cells, which reside in the base of intestinal crypts, generate progenitor cells that ultimately differentiate to produce an array of secretory and absorptive cells. Intestinal regeneration is regulated by niche signaling pathways, specifically, Wnt, bone morphogenetic protein, Notch, and epidermal growth factor. In addition, growth factors and other peptides have emerged as potential modulators of intestinal repair and inflammation through their roles in cellular proliferation, differentiation, migration, and survival. Lysophosphatidic acid (LPA) is such a factor that modulates the proliferation, survival, and migration of epithelial cells while also regulating trafficking of immune cells, both of which are important for tissue homeostasis. Perturbation of LPA signaling, however, has been shown to promote cancer and inflammation. This review focuses on the recent advances in LPA-mediated signaling that contribute to physiological and pathophysiological regulation of the gastrointestinal system.
Collapse
Affiliation(s)
- C Chris Yun
- Division of Digestive Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia; Gastroenterology Research, Atlanta Veterans Administration Medical Center, Decatur, Georgia.
| | - Yiran Han
- Division of Digestive Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia
| | - Beth McConnell
- Division of Digestive Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia
| |
Collapse
|
3
|
Chattopadhyay A, Reddy ST, Fogelman AM. The multiple roles of lysophosphatidic acid in vascular disease and atherosclerosis. Curr Opin Lipidol 2023; 34:196-200. [PMID: 37497844 DOI: 10.1097/mol.0000000000000890] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 07/28/2023]
Abstract
PURPOSE OF REVIEW To explore the multiple roles that lysophosphatidic acid (LPA) plays in vascular disease and atherosclerosis. RECENT FINDINGS A high-fat high-cholesterol diet decreases antimicrobial activity in the small intestine, which leads to increased levels of bacterial lipopolysaccharide in the mucus of the small intestine and in plasma that increase systemic inflammation, and enhance dyslipidemia and aortic atherosclerosis. Decreasing LPA production in enterocytes reduces the impact of the diet. LPA signaling inhibits glucagon-like peptide 1 secretion, promotes atherosclerosis, increases vessel permeability and infarct volume in stroke, but protects against abdominal aortic aneurysm formation and rupture. Acting through the calpain system in lymphatic endothelial cells, LPA reduces the trafficking of anti-inflammatory Treg lymphocytes, which enhances atherosclerosis. Acting through LPA receptor 1 in cardiac lymphatic endothelial cells and fibroblasts, LPA enhances hypertrophic cardiomyopathy. SUMMARY LPA plays multiple roles in vascular disease and atherosclerosis that is cell and context dependent. In some settings LPA promotes these disease processes and in others it inhibits the disease process. Because LPA is so ubiquitous, therapeutic approaches targeting LPA must be as specific as possible for the cells and the context in which the disease process occurs.
Collapse
Affiliation(s)
| | - Srinivasa T Reddy
- Division of Cardiology, Department of Medicine
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | | |
Collapse
|
4
|
Chattopadhyay A, Mukherjee P, Sulaiman D, Wang H, Girjalva V, Dorreh N, Jacobs JP, Delk S, Moolenaar WH, Navab M, Reddy ST, Fogelman AM. Role of enterocyte Enpp2 and autotaxin in regulating lipopolysaccharide levels, systemic inflammation, and atherosclerosis. J Lipid Res 2023; 64:100370. [PMID: 37059333 PMCID: PMC10200992 DOI: 10.1016/j.jlr.2023.100370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 04/03/2023] [Accepted: 04/07/2023] [Indexed: 04/16/2023] Open
Abstract
Conversion of lysophosphatidylcholine to lysophosphatidic acid (LPA) by autotaxin, a secreted phospholipase D, is a major pathway for producing LPA. We previously reported that feeding Ldlr-/- mice standard mouse chow supplemented with unsaturated LPA or lysophosphatidylcholine qualitatively mimicked the dyslipidemia and atherosclerosis induced by feeding a Western diet (WD). Here, we report that adding unsaturated LPA to standard mouse chow also increased the content of reactive oxygen species and oxidized phospholipids (OxPLs) in jejunum mucus. To determine the role of intestinal autotaxin, enterocyte-specific Ldlr-/-/Enpp2 KO (intestinal KO) mice were generated. In control mice, the WD increased enterocyte Enpp2 expression and raised autotaxin levels. Ex vivo, addition of OxPL to jejunum from Ldlr-/- mice on a chow diet induced expression of Enpp2. In control mice, the WD raised OxPL levels in jejunum mucus and decreased gene expression in enterocytes for a number of peptides and proteins that affect antimicrobial activity. On the WD, the control mice developed elevated levels of lipopolysaccharide in jejunum mucus and plasma, with increased dyslipidemia and increased atherosclerosis. All these changes were reduced in the intestinal KO mice. We conclude that the WD increases the formation of intestinal OxPL, which i) induce enterocyte Enpp2 and autotaxin resulting in higher enterocyte LPA levels; that ii) contribute to the formation of reactive oxygen species that help to maintain the high OxPL levels; iii) decrease intestinal antimicrobial activity; and iv) raise plasma lipopolysaccharide levels that promote systemic inflammation and enhance atherosclerosis.
Collapse
Affiliation(s)
- Arnab Chattopadhyay
- Division of Cardiology, Department of Medicine, Fielding School of Public Health, University of California, Los Angeles, CA, USA
| | - Pallavi Mukherjee
- Division of Cardiology, Department of Medicine, Fielding School of Public Health, University of California, Los Angeles, CA, USA
| | - Dawoud Sulaiman
- Division of Cardiology, Department of Medicine, Fielding School of Public Health, University of California, Los Angeles, CA, USA
| | - Huan Wang
- Division of Cardiology, Department of Medicine, Fielding School of Public Health, University of California, Los Angeles, CA, USA
| | - Victor Girjalva
- Division of Cardiology, Department of Medicine, Fielding School of Public Health, University of California, Los Angeles, CA, USA
| | - Nasrin Dorreh
- Division of Cardiology, Department of Medicine, Fielding School of Public Health, University of California, Los Angeles, CA, USA
| | - Jonathan P Jacobs
- The Vatche and Tamar Manoukian Division of Digestive Diseases, Fielding School of Public Health, University of California, Los Angeles, CA, USA; UCLA Microbiome Center, Fielding School of Public Health, University of California, Los Angeles, CA, USA; David Geffen School of Medicine at UCLA and the Division of Gastroenterology, Hepatology and Parenteral Nutrition, Veterans Administration Greater Los Angeles Healthcare System Los Angeles, Fielding School of Public Health, University of California, Los Angeles, CA, USA
| | - Samuel Delk
- Division of Cardiology, Department of Medicine, Fielding School of Public Health, University of California, Los Angeles, CA, USA; Molecular Toxicology Interdepartmental Degree Program, Fielding School of Public Health, University of California, Los Angeles, CA, USA
| | - Wouter H Moolenaar
- Division of Biochemistry, Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Mohamad Navab
- Division of Cardiology, Department of Medicine, Fielding School of Public Health, University of California, Los Angeles, CA, USA
| | - Srinivasa T Reddy
- Division of Cardiology, Department of Medicine, Fielding School of Public Health, University of California, Los Angeles, CA, USA; Molecular Toxicology Interdepartmental Degree Program, Fielding School of Public Health, University of California, Los Angeles, CA, USA; Department of Molecular and Medical Pharmacology, Fielding School of Public Health, University of California, Los Angeles, CA, USA.
| | - Alan M Fogelman
- Division of Cardiology, Department of Medicine, Fielding School of Public Health, University of California, Los Angeles, CA, USA
| |
Collapse
|
5
|
Du Z, Wang Y, Li F, Sun X, Du Y, Li L, Yu H, Hu C, Sun H, Gao X, Han L, Zhang Z, Xing J, Wang L, Li J, Qin Y. Targeting Lysophosphatidic Acid Ameliorates Dyslipidemia in Familial Hypercholesterolemia. RESEARCH (WASHINGTON, D.C.) 2023; 8:0629. [PMID: 40018730 PMCID: PMC11865365 DOI: 10.34133/research.0629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 02/07/2025] [Accepted: 02/08/2025] [Indexed: 03/01/2025]
Abstract
Familial hypercholesterolemia (FH) is a lipoprotein disorder characterized by elevated plasma levels of low-density lipoprotein cholesterol (LDL-C) and an increased risk of premature atherosclerotic cardiovascular disease. Recent evidences have shown that several glycerophospholipid species were markedly altered in experimental FH animals and exhibited diverse bioactivities. Nevertheless, the glycerophospholipid profiles and their associated biological implications in human FH remain largely unknown. In this study, we sought to comprehensively delineate the glycerophospholipid phenotypes in human FH and to investigate the functional roles of key FH-altered glycerophospholipid molecules on cholesterol metabolism. Targeted analysis of 328 glycerophospholipid metabolites was used to profile the differentiated alterations in patients with homozygous FH (HoFH; n = 181), heterozygous FH (HeFH; n = 452), and non-FH hypercholesterolemia (n = 382). Our findings revealed that the glycerophospholipid phenotypes of FH and non-FH hypercholesterolemia were dominated by a spectrum of metabolites involved in the lysophosphatidic acid (LPA) metabolism. Among the LPA features, palmitoyl-LPA (16:0) showed significant association with the clinical levels of LDL-C and total cholesterol in HoFH and HeFH populations. Using functional metabolomic strategy and murine FH model, we demonstrated that supplementation with LPA 16:0 elevated the plasma levels of LDL and free/esterified cholesterol and exacerbated the atherosclerotic lesions. Conversely, inhibition of autotaxin-mediated LPA 16:0 production significantly ameliorated dyslipidemia. Mechanistically, we uncovered that LPA 16:0 could disrupt hepatic cholesterol homeostasis by impairing cholesterol excretion and inhibiting primary bile acid synthesis. In summary, our study offers novel insights into lipid metabolism in human FH and posits that targeting LPA metabolism may represent a promising therapeutic strategy for reducing cholesterol levels in the FH population.
Collapse
Affiliation(s)
- Zhiyong Du
- Beijing Anzhen Hospital,
Capital Medical University, National Clinical Research Center for Cardiovascular Diseases, Beijing 100029, China
- Beijing Institute of Heart Lung and Blood Vessel Disease, Key Laboratory of Remodeling-Related Cardiovascular Diseases, Ministry of Education, Beijing 100029, China
| | - Yu Wang
- Beijing Anzhen Hospital,
Capital Medical University, National Clinical Research Center for Cardiovascular Diseases, Beijing 100029, China
- Beijing Institute of Heart Lung and Blood Vessel Disease, Key Laboratory of Remodeling-Related Cardiovascular Diseases, Ministry of Education, Beijing 100029, China
| | - Fan Li
- Beijing Anzhen Hospital,
Capital Medical University, National Clinical Research Center for Cardiovascular Diseases, Beijing 100029, China
- Beijing Institute of Heart Lung and Blood Vessel Disease, Key Laboratory of Remodeling-Related Cardiovascular Diseases, Ministry of Education, Beijing 100029, China
| | - Xuechun Sun
- Beijing Anzhen Hospital,
Capital Medical University, National Clinical Research Center for Cardiovascular Diseases, Beijing 100029, China
- Beijing Institute of Heart Lung and Blood Vessel Disease, Key Laboratory of Remodeling-Related Cardiovascular Diseases, Ministry of Education, Beijing 100029, China
| | - Yunhui Du
- Beijing Anzhen Hospital,
Capital Medical University, National Clinical Research Center for Cardiovascular Diseases, Beijing 100029, China
- Beijing Institute of Heart Lung and Blood Vessel Disease, Key Laboratory of Remodeling-Related Cardiovascular Diseases, Ministry of Education, Beijing 100029, China
| | - Linyi Li
- Beijing Anzhen Hospital,
Capital Medical University, National Clinical Research Center for Cardiovascular Diseases, Beijing 100029, China
- Beijing Institute of Heart Lung and Blood Vessel Disease, Key Laboratory of Remodeling-Related Cardiovascular Diseases, Ministry of Education, Beijing 100029, China
| | - Huahui Yu
- Beijing Anzhen Hospital,
Capital Medical University, National Clinical Research Center for Cardiovascular Diseases, Beijing 100029, China
- Beijing Institute of Heart Lung and Blood Vessel Disease, Key Laboratory of Remodeling-Related Cardiovascular Diseases, Ministry of Education, Beijing 100029, China
| | - Chaowei Hu
- Beijing Anzhen Hospital,
Capital Medical University, National Clinical Research Center for Cardiovascular Diseases, Beijing 100029, China
- Beijing Institute of Heart Lung and Blood Vessel Disease, Key Laboratory of Remodeling-Related Cardiovascular Diseases, Ministry of Education, Beijing 100029, China
| | - Haili Sun
- Beijing Anzhen Hospital,
Capital Medical University, National Clinical Research Center for Cardiovascular Diseases, Beijing 100029, China
- Beijing Institute of Heart Lung and Blood Vessel Disease, Key Laboratory of Remodeling-Related Cardiovascular Diseases, Ministry of Education, Beijing 100029, China
| | - Xiaoqian Gao
- Beijing Anzhen Hospital,
Capital Medical University, National Clinical Research Center for Cardiovascular Diseases, Beijing 100029, China
- Beijing Institute of Heart Lung and Blood Vessel Disease, Key Laboratory of Remodeling-Related Cardiovascular Diseases, Ministry of Education, Beijing 100029, China
| | - Lijie Han
- Beijing Anzhen Hospital,
Capital Medical University, National Clinical Research Center for Cardiovascular Diseases, Beijing 100029, China
- Beijing Institute of Heart Lung and Blood Vessel Disease, Key Laboratory of Remodeling-Related Cardiovascular Diseases, Ministry of Education, Beijing 100029, China
| | - Zihan Zhang
- Beijing Anzhen Hospital,
Capital Medical University, National Clinical Research Center for Cardiovascular Diseases, Beijing 100029, China
- Beijing Institute of Heart Lung and Blood Vessel Disease, Key Laboratory of Remodeling-Related Cardiovascular Diseases, Ministry of Education, Beijing 100029, China
| | - Jingci Xing
- Beijing Anzhen Hospital,
Capital Medical University, National Clinical Research Center for Cardiovascular Diseases, Beijing 100029, China
- Beijing Institute of Heart Lung and Blood Vessel Disease, Key Laboratory of Remodeling-Related Cardiovascular Diseases, Ministry of Education, Beijing 100029, China
| | - Luya Wang
- Beijing Anzhen Hospital,
Capital Medical University, National Clinical Research Center for Cardiovascular Diseases, Beijing 100029, China
- Beijing Institute of Heart Lung and Blood Vessel Disease, Key Laboratory of Remodeling-Related Cardiovascular Diseases, Ministry of Education, Beijing 100029, China
| | - Jianping Li
- Department of Cardiology,
Peking University First Hospital, Beijing 100034, China
| | - Yanwen Qin
- Beijing Anzhen Hospital,
Capital Medical University, National Clinical Research Center for Cardiovascular Diseases, Beijing 100029, China
- Beijing Institute of Heart Lung and Blood Vessel Disease, Key Laboratory of Remodeling-Related Cardiovascular Diseases, Ministry of Education, Beijing 100029, China
| |
Collapse
|
6
|
Karshovska E, Mohibullah R, Zhu M, Zahedi F, Thomas D, Magkrioti C, Geissler C, Megens RTA, Bianchini M, Nazari-Jahantigh M, Ferreirós N, Aidinis V, Schober A. ENPP2 (Endothelial Ectonucleotide Pyrophosphatase/Phosphodiesterase 2) Increases Atherosclerosis in Female and Male Mice. Arterioscler Thromb Vasc Biol 2022; 42:1023-1036. [PMID: 35708027 DOI: 10.1161/atvbaha.122.317682] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Maladapted endothelial cells (ECs) secrete ENPP2 (ectonucleotide pyrophosphatase/phosphodiesterase 2; autotaxin)-a lysophospholipase D that generates lysophosphatidic acids (LPAs). ENPP2 derived from the arterial wall promotes atherogenic monocyte adhesion induced by generating LPAs, such as arachidonoyl-LPA (LPA20:4), from oxidized lipoproteins. Here, we aimed to determine the role of endothelial ENPP2 in the production of LPAs and atherosclerosis. METHODS We quantified atherosclerosis in mice harboring loxP-flanked Enpp2 alleles crossed with Apoe-/- mice expressing tamoxifen-inducible Cre recombinase under the control of the EC-specific bone marrow X kinase promoter after 12 weeks of high-fat diet feeding. RESULTS A tamoxifen-induced EC-specific Enpp2 knockout decreased atherosclerosis, accumulation of lesional macrophages, monocyte adhesion, and expression of endothelial CXCL (C-X-C motif chemokine ligand) 1 in male and female Apoe-/- mice. In vitro, ENPP2 mediated the mildly oxidized LDL (low-density lipoprotein)-induced expression of CXCL1 in aortic ECs by generating LPA20:4, palmitoyl-LPA (LPA16:0), and oleoyl-LPA (LPA18:1). ENPP2 and its activity were detected on the endothelial surface by confocal imaging. The expression of endothelial Enpp2 established a strong correlation between the plasma levels of LPA16:0, stearoyl-LPA (LPA18:0), and LPA18:1 and plaque size and a strong negative correlation between the LPA levels and ENPP2 activity in the plasma. Moreover, endothelial Enpp2 knockout increased the weight of high-fat diet-fed male Apoe-/- mice. CONCLUSIONS We demonstrated that the expression of ENPP2 in ECs promotes atherosclerosis and endothelial inflammation in a sex-independent manner. This might be due to the generation of LPA20:4, LPA16:0, and LPA18:1 from mildly oxidized lipoproteins on the endothelial surface.
Collapse
Affiliation(s)
- Ela Karshovska
- Institute for Cardiovascular Prevention, Ludwig-Maximilians-University, Munich, Germany (E.K., R.M., M.Z., F.Z., C.G., R.T.A.M., M.B., M.N.-J., A.S.)
| | - Rokia Mohibullah
- Institute for Cardiovascular Prevention, Ludwig-Maximilians-University, Munich, Germany (E.K., R.M., M.Z., F.Z., C.G., R.T.A.M., M.B., M.N.-J., A.S.)
| | - Mengyu Zhu
- Institute for Cardiovascular Prevention, Ludwig-Maximilians-University, Munich, Germany (E.K., R.M., M.Z., F.Z., C.G., R.T.A.M., M.B., M.N.-J., A.S.).,Cardiovascular Research Institute Maastricht, Maastricht University, the Netherlands (M.Z., R.T.A.M.)
| | - Farima Zahedi
- Institute for Cardiovascular Prevention, Ludwig-Maximilians-University, Munich, Germany (E.K., R.M., M.Z., F.Z., C.G., R.T.A.M., M.B., M.N.-J., A.S.).,Now with Department of Biomedical Science and Mari Lowe Center for Comparative Oncology, University of Pennsylvania, Philadelphia (F.Z.)
| | - Dominique Thomas
- Institute of Clinical Pharmacology, Johann Wolfgang Goethe-University, Frankfurt, Germany (D.T., N.F.).,Fraunhofer Institute for Translational Medicine and Pharmacology, Frankfurt, Germany (D.T.)
| | - Christiana Magkrioti
- Division of Immunology, Biomedical Science Research, Center Alexander Fleming, Athens, Greece (C.M., V.A.)
| | - Claudia Geissler
- Institute for Cardiovascular Prevention, Ludwig-Maximilians-University, Munich, Germany (E.K., R.M., M.Z., F.Z., C.G., R.T.A.M., M.B., M.N.-J., A.S.)
| | - Remco T A Megens
- Institute for Cardiovascular Prevention, Ludwig-Maximilians-University, Munich, Germany (E.K., R.M., M.Z., F.Z., C.G., R.T.A.M., M.B., M.N.-J., A.S.).,Cardiovascular Research Institute Maastricht, Maastricht University, the Netherlands (M.Z., R.T.A.M.)
| | - Mariaelvy Bianchini
- Institute for Cardiovascular Prevention, Ludwig-Maximilians-University, Munich, Germany (E.K., R.M., M.Z., F.Z., C.G., R.T.A.M., M.B., M.N.-J., A.S.)
| | - Maliheh Nazari-Jahantigh
- Institute for Cardiovascular Prevention, Ludwig-Maximilians-University, Munich, Germany (E.K., R.M., M.Z., F.Z., C.G., R.T.A.M., M.B., M.N.-J., A.S.).,German Centre for Cardiovascular Research, Partner Site Munich Heart Alliance, Germany (M.N.-J., A.S.)
| | - Nerea Ferreirós
- Institute of Clinical Pharmacology, Johann Wolfgang Goethe-University, Frankfurt, Germany (D.T., N.F.)
| | - Vassilis Aidinis
- Division of Immunology, Biomedical Science Research, Center Alexander Fleming, Athens, Greece (C.M., V.A.)
| | - Andreas Schober
- Institute for Cardiovascular Prevention, Ludwig-Maximilians-University, Munich, Germany (E.K., R.M., M.Z., F.Z., C.G., R.T.A.M., M.B., M.N.-J., A.S.).,German Centre for Cardiovascular Research, Partner Site Munich Heart Alliance, Germany (M.N.-J., A.S.)
| |
Collapse
|
7
|
HDL Mimetic Peptides. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1377:141-151. [DOI: 10.1007/978-981-19-1592-5_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
8
|
Thakur R, Suri CR, Kaur IP, Rishi P. Review. Crit Rev Ther Drug Carrier Syst 2022; 40:49-100. [DOI: 10.1615/critrevtherdrugcarriersyst.2022040322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
9
|
Mukherjee P, Chattopadhyay A, Grijalva V, Dorreh N, Lagishetty V, Jacobs JP, Clifford BL, Vallim T, Mack JJ, Navab M, Reddy ST, Fogelman AM. Oxidized phospholipids cause changes in jejunum mucus that induce dysbiosis and systemic inflammation. J Lipid Res 2022; 63:100153. [PMID: 34808192 PMCID: PMC8953663 DOI: 10.1016/j.jlr.2021.100153] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 10/26/2021] [Accepted: 11/16/2021] [Indexed: 12/18/2022] Open
Abstract
We previously reported that adding a concentrate of transgenic tomatoes expressing the apoA-I mimetic peptide 6F (Tg6F) to a Western diet (WD) ameliorated systemic inflammation. To determine the mechanism(s) responsible for these observations, Ldlr-/- mice were fed chow, a WD, or WD plus Tg6F. We found that a WD altered the taxonomic composition of bacteria in jejunum mucus. For example, Akkermansia muciniphila virtually disappeared, while overall bacteria numbers and lipopolysaccharide (LPS) levels increased. In addition, gut permeability increased, as did the content of reactive oxygen species and oxidized phospholipids in jejunum mucus in WD-fed mice. Moreover, gene expression in the jejunum decreased for multiple peptides and proteins that are secreted into the mucous layer of the jejunum that act to limit bacteria numbers and their interaction with enterocytes including regenerating islet-derived proteins, defensins, mucin 2, surfactant A, and apoA-I. Following WD, gene expression also decreased for Il36γ, Il23, and Il22, cytokines critical for antimicrobial activity. WD decreased expression of both Atoh1 and Gfi1, genes required for the formation of goblet and Paneth cells, and immunohistochemistry revealed decreased numbers of goblet and Paneth cells. Adding Tg6F ameliorated these WD-mediated changes. Adding oxidized phospholipids ex vivo to the jejunum from mice fed a chow diet reproduced the changes in gene expression in vivo that occurred when the mice were fed WD and were prevented with addition of 6F peptide. We conclude that Tg6F ameliorates the WD-mediated increase in oxidized phospholipids that cause changes in jejunum mucus, which induce dysbiosis and systemic inflammation.
Collapse
Affiliation(s)
- Pallavi Mukherjee
- Division of Cardiology, Department of Medicine, Los Angeles, CA, USA
| | | | - Victor Grijalva
- Division of Cardiology, Department of Medicine, Los Angeles, CA, USA
| | - Nasrin Dorreh
- Division of Cardiology, Department of Medicine, Los Angeles, CA, USA
| | - Venu Lagishetty
- The Vatche and Tamar Manoukian Division of Digestive Diseases, Los Angeles, CA, USA; UCLA Microbiome Center, Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Jonathan P Jacobs
- The Vatche and Tamar Manoukian Division of Digestive Diseases, Los Angeles, CA, USA; UCLA Microbiome Center, Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA; The Division of Gastroenterology, Hepatology and Parenteral Nutrition, Veterans Administration Greater Los Angeles Healthcare System Los Angeles, Los Angeles, CA, USA
| | | | - Thomas Vallim
- Division of Cardiology, Department of Medicine, Los Angeles, CA, USA; Department of Biological Chemistry, Los Angeles, CA, USA
| | - Julia J Mack
- Division of Cardiology, Department of Medicine, Los Angeles, CA, USA
| | - Mohamad Navab
- Division of Cardiology, Department of Medicine, Los Angeles, CA, USA
| | - Srinivasa T Reddy
- Division of Cardiology, Department of Medicine, Los Angeles, CA, USA; Department of Molecular and Medical Pharmacology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA.
| | - Alan M Fogelman
- Division of Cardiology, Department of Medicine, Los Angeles, CA, USA
| |
Collapse
|
10
|
Autotaxin-LPA-LPP3 Axis in Energy Metabolism and Metabolic Disease. Int J Mol Sci 2021; 22:ijms22179575. [PMID: 34502491 PMCID: PMC8431043 DOI: 10.3390/ijms22179575] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 08/31/2021] [Accepted: 09/01/2021] [Indexed: 01/12/2023] Open
Abstract
Besides serving as a structural membrane component and intermediate of the glycerolipid metabolism, lysophosphatidic acid (LPA) has a prominent role as a signaling molecule through its binding to LPA receptors at the cell surface. Extracellular LPA is primarily produced from lysophosphatidylcholine (LPC) through the activity of secreted lysophospholipase D, autotaxin (ATX). The degradation of extracellular LPA to monoacylglycerol is mediated by lipid phosphate phosphatases (LPPs) at the cell membrane. This review summarizes and interprets current literature on the role of the ATX-LPA-LPP3 axis in the regulation of energy homeostasis, insulin function, and adiposity at baseline and under conditions of obesity. We also discuss how the ATX-LPA-LPP3 axis influences obesity-related metabolic complications, including insulin resistance, fatty liver disease, and cardiomyopathy.
Collapse
|
11
|
Delk SC, Chattopadhyay A, Escola-Gil JC, Fogelman AM, Reddy ST. Apolipoprotein mimetics in cancer. Semin Cancer Biol 2020; 73:158-168. [PMID: 33188891 DOI: 10.1016/j.semcancer.2020.11.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 10/10/2020] [Accepted: 11/04/2020] [Indexed: 12/11/2022]
Abstract
Peptides have many advantages over traditional therapeutics, including small molecules and other biologics, because of their low toxicity and immunogenicity, while still exhibiting efficacy. This review discusses the benefits and mechanism of action of apolipoprotein mimetic peptides in tumor biology and their potential utility in treating various cancers. Among lipoproteins in the circulation, high-density lipoprotein (HDL) and its constituents including apolipoprotein A-I (apoA-I; the predominant protein in HDL), apoJ, and apoE, harbor anti-tumorigenic activities. Peptides that mimic apoA-I function have been developed through molecular mimicry of the amphipathic α-helices of apoA-I. Oral apoA-I mimetic peptides remodel HDL, promote cholesterol efflux, sequester oxidized lipids, and activate anti-inflammatory processes. ApoA-I and apoJ mimetic peptides ameliorate various metrics of cancer progression and have demonstrated efficacy in preclinical models in the inhibition of ovarian, colon, breast, and metastatic lung cancers. Apolipoprotein mimetic peptides are poorly absorbed when administered orally and rapidly degraded when injected into the circulation. The small intestine is the major site of action for apoA-I mimetic peptides and recent studies suggest that modulation of immune cells in the lamina propria of the small intestine is, in part, a potential mechanism of action. Finally, several recent studies underscore the use of reconstituted HDL as target-specific nanoparticles carrying poorly soluble or unstable therapeutics to tumors even across the blood-brain barrier. Preclinical studies suggest that these versatile recombinant lipoprotein based nanoparticles and apolipoprotein mimetics can serve as safe, novel drug delivery, and therapeutic agents for the treatment of a number of cancers.
Collapse
Affiliation(s)
- Samuel C Delk
- Molecular Toxicology Interdepartmental Degree Program, Fielding School of Public Health, University of California, Los Angeles, CA, 90095, USA; Department of Medicine, Division of Cardiology, David Geffen School of Medicine at UCLA, Los Angeles, CA, 90095, USA
| | - Arnab Chattopadhyay
- Department of Medicine, Division of Cardiology, David Geffen School of Medicine at UCLA, Los Angeles, CA, 90095, USA
| | - Joan Carles Escola-Gil
- Institut d'Investigacions Biomèdiques (IIB) Sant Pau, Sant Quintí 77, 08041, Barcelona, Spain; CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Monforte de Lemos 3-5, 28029, Madrid, Spain; Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Antoni M. Claret 167, 08025, Barcelona, Spain
| | - Alan M Fogelman
- Department of Medicine, Division of Cardiology, David Geffen School of Medicine at UCLA, Los Angeles, CA, 90095, USA
| | - Srinivasa T Reddy
- Molecular Toxicology Interdepartmental Degree Program, Fielding School of Public Health, University of California, Los Angeles, CA, 90095, USA; Department of Medicine, Division of Cardiology, David Geffen School of Medicine at UCLA, Los Angeles, CA, 90095, USA; Molecular and Medical Pharmacology, David Geffen School of Medicine at UCLA, Los Angeles, CA, 90095, USA; Jonsson Comprehensive Cancer Center, David Geffen School of Medicine at UCLA, Los Angeles, CA, 90095, USA.
| |
Collapse
|
12
|
Roles for lysophosphatidic acid signaling in vascular development and disease. Biochim Biophys Acta Mol Cell Biol Lipids 2020; 1865:158734. [PMID: 32376340 DOI: 10.1016/j.bbalip.2020.158734] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 04/27/2020] [Accepted: 04/29/2020] [Indexed: 01/28/2023]
Abstract
The bioactive lipid lysophosphatidic acid (LPA) is emerging as an important mediator of inflammation in cardiovascular diseases. Produced in large part by the secreted lysophospholipase D autotaxin (ATX), LPA acts on a series of G protein-coupled receptors and may have action on atypical receptors such as RAGE to exert potent effects on vascular cells, including the promotion of foam cell formation and phenotypic modulation of smooth muscle cells. The signaling effects of LPA can be terminated by integral membrane lipid phosphate phosphatases (LPP) that hydrolyze the lipid to receptor inactive products. Human genetic variants in PLPP3, that predict lower levels of LPP3, associate with risk for premature coronary artery disease, and reductions of LPP3 expression in mice promote the development of experimental atherosclerosis and enhance inflammation in the atherosclerotic lesions. Recent evidence also supports a role for ATX, and potentially LPP3, in calcific aortic stenosis. In summary, LPA may be a relevant inflammatory mediator in atherosclerotic cardiovascular disease and heightened LPA signaling may explain the cardiovascular disease risk effect of PLPP3 variants.
Collapse
|
13
|
Apolipoprotein-AI mimetic peptides D-4F and L-5F decrease hepatic inflammation and increase insulin sensitivity in C57BL/6 mice. PLoS One 2020; 15:e0226931. [PMID: 31914125 PMCID: PMC6948736 DOI: 10.1371/journal.pone.0226931] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Accepted: 12/06/2019] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Apolipoprotein-AI (apo-AI) is the major apolipoprotein found in high density lipoprotein particles (HDLs). We previously demonstrated that apo-AI injected directly into high-fat diet fed mice improved insulin sensitivity associated with decreased hepatic inflammation. While our data provides compelling proof of concept, apoA-I mimetic peptides are more clinically feasible. The aim of this study was to test whether apo-AI mimetic peptide (D-4F and L-5F) treatment will emulate the effects of full-length apo-AI to improve insulin sensitivity. METHODS Male C57BL/6 mice were fed a high-fat diet for 16 weeks before receiving D4F mimetic peptide administered via drinking water or L5F mimetic peptide administered by intraperitoneal injection bi-weekly for a total of five weeks. Glucose tolerance and insulin tolerance tests were conducted to assess the effects of the peptides on insulin resistance. Effects of the peptides on inflammation, gluconeogenic enzymes and lipid synthesis were assessed by real-time PCR of key markers involved in the respective pathways. RESULTS Treatment with apo-AI mimetic peptides D-4F and L-5F showed: (i) improved blood glucose clearance (D-4F 1.40-fold AUC decrease compared to HFD, P<0.05; L-4F 1.17-fold AUC decrease compared to HFD, ns) in the glucose tolerance test; (ii) improved insulin tolerance (D-4F 1.63-fold AUC decrease compared to HFD, P<0.05; L-5F 1.39-fold AUC compared to HFD, P<0.05) in the insulin tolerance test. The metabolic test results were associated with (i) decreased hepatic inflammation of SAA1, IL-1β IFN-γ and TNFα (2.61-5.97-fold decrease compared to HFD, P<0.05) for both mimetics; (ii) suppression of hepatic mRNA expression of gluconeogenesis-associated genes (PEPCK and G6Pase; 1.66-3.01-fold decrease compared to HFD, P<0.001) for both mimetics; (iii) lipogenic-associated genes, (SREBP1c and ChREBP; 2.15-3.31-fold decrease compared to HFD, P<0.001) for both mimetics and; (iv) reduced hepatic macrophage infiltration (F4/80 and CD68; 1.77-2.15-fold compared to HFD, P<0.001) for both mimetics. CONCLUSION Apo-AI mimetic peptides treatment led to improved glucose homeostasis. This effect is associated with reduced expression of inflammatory markers in the liver and reduced infiltration of macrophages, suggesting an overall suppression of hepatic inflammation. We also showed altered expression of genes associated with gluconeogenesis and lipid synthesis, suggesting that glucose and lipid synthesis is suppressed. These findings suggest that apoA-I mimetic peptides could be a new therapeutic option to reduce hepatic inflammation that contributes to the development of overnutrition-induced insulin resistance.
Collapse
|
14
|
Mukherjee P, Chattopadhyay A, Fogelman AM. The role of the small intestine in modulating metabolism and inflammation in atherosclerosis and cancer. Curr Opin Lipidol 2019; 30:383-387. [PMID: 31356236 PMCID: PMC6953609 DOI: 10.1097/mol.0000000000000629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE OF REVIEW To discuss recent findings on the importance of the small intestine in modulating metabolism and inflammation in atherosclerosis and cancer. RECENT FINDINGS Integrin β7 natural gut intraepithelial T cells modulated metabolism and accelerated atherosclerosis in mice. Reducing the generation of lysophospholipids in the small intestine mimicked bariatric surgery and improved diabetes. Enterocyte-specific knockdown of stearoyl-CoA desaturase-1 significantly improved dyslipidemia in LDL receptor null (Ldlr) mice fed a Western diet. Adding a concentrate of tomatoes transgenic for the apolipoprotein A-I mimetic peptide 6F to the chow of wild-type mice altered lipid metabolism in the small intestine, preserved Notch signaling and reduced tumor burden in mouse models. The phospholipid-remodeling enzyme Lpcat3 regulated intestinal stem cells and progenitor cells by stimulating cholesterol biosynthesis; increasing cholesterol in the diet or through genetic manipulation promoted tumorigenesis in Apc mice. SUMMARY The small intestine is important for regulating metabolism and inflammation in animal models of both atherosclerosis and cancer.
Collapse
Affiliation(s)
- Pallavi Mukherjee
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California, USA
| | | | | |
Collapse
|
15
|
Su F, Spee C, Araujo E, Barron E, Wang M, Ghione C, Hinton DR, Nusinowitz S, Kannan R, Reddy ST, Farias-Eisner R. A Novel HDL-Mimetic Peptide HM-10/10 Protects RPE and Photoreceptors in Murine Models of Retinal Degeneration. Int J Mol Sci 2019; 20:ijms20194807. [PMID: 31569695 PMCID: PMC6801888 DOI: 10.3390/ijms20194807] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2019] [Accepted: 09/17/2019] [Indexed: 01/30/2023] Open
Abstract
Age-related macular degeneration (AMD) is a leading cause of blindness in the developed world. The retinal pigment epithelium (RPE) is a critical site of pathology in AMD. Oxidative stress plays a key role in the development of AMD. We generated a chimeric high-density lipoprotein (HDL), mimetic peptide named HM-10/10, with anti-oxidant properties and investigated its potential for the treatment of retinal disease using cell culture and animal models of RPE and photoreceptor (PR) degeneration. Treatment with HM-10/10 peptide prevented human fetal RPE cell death caused by tert-Butyl hydroperoxide (tBH)-induced oxidative stress and sodium iodate (NaIO3), which causes RPE atrophy and is a model of geographic atrophy in mice. We also show that HM-10/10 peptide ameliorated photoreceptor cell death and significantly improved retinal function in a mouse model of N-methyl-N-nitrosourea (MNU)-induced PR degeneration. Our results demonstrate that HM-10/10 protects RPE and retina from oxidant injury and can serve as a potential therapeutic agent for the treatment of retinal degeneration.
Collapse
Affiliation(s)
- Feng Su
- Department of Obstetrics and Gynecology, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA 90095, USA.
| | - Christine Spee
- Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA.
| | - Eduardo Araujo
- Jules Stein Eye Institute, University of California at Los Angeles, Los Angeles, CA 90095, USA.
| | - Eric Barron
- The Stephen J. Ryan Initiative for Macular Research, Doheny Eye Institute, Los Angeles, CA 90033, USA.
| | - Mo Wang
- The Stephen J. Ryan Initiative for Macular Research, Doheny Eye Institute, Los Angeles, CA 90033, USA.
| | - Caleb Ghione
- Jules Stein Eye Institute, University of California at Los Angeles, Los Angeles, CA 90095, USA.
| | - David R Hinton
- Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA.
- Department of Ophthalmology, University of Southern California, Los Angeles, CA 90033, USA.
| | - Steven Nusinowitz
- Jules Stein Eye Institute, University of California at Los Angeles, Los Angeles, CA 90095, USA.
| | - Ram Kannan
- Jules Stein Eye Institute, University of California at Los Angeles, Los Angeles, CA 90095, USA.
- The Stephen J. Ryan Initiative for Macular Research, Doheny Eye Institute, Los Angeles, CA 90033, USA.
| | - Srinivasa T Reddy
- Department of Obstetrics and Gynecology, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA 90095, USA.
- Department of Medicine, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA 90095, USA.
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA 90095, USA.
| | - Robin Farias-Eisner
- Department of Obstetrics and Gynecology, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA 90095, USA.
- Department of Obstetrics and Gynecology, School of Medicine, Creighton University, Omaha, NE 68178, USA.
| |
Collapse
|
16
|
Kraemer MP, Mao G, Hammill C, Yan B, Li Y, Onono F, Smyth SS, Morris AJ. Effects of diet and hyperlipidemia on levels and distribution of circulating lysophosphatidic acid. J Lipid Res 2019; 60:1818-1828. [PMID: 31484695 DOI: 10.1194/jlr.m093096] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 08/19/2019] [Indexed: 12/12/2022] Open
Abstract
Lysophosphatidic acids (LPAs) are bioactive radyl hydrocarbon-substituted derivatives of glycerol 3-phosphate. LPA metabolism and signaling are implicated in heritable risk of coronary artery disease. Genetic and pharmacological inhibition of these processes attenuate experimental atherosclerosis. LPA accumulates in atheromas, which may be a consequence of association with LDLs. The source, regulation, and biological activity of LDL-associated LPA are unknown. We examined the effects of experimental hyperlipidemia on the levels and distribution of circulating LPA in mice. The majority of plasma LPA was associated with albumin in plasma from wild-type mice fed normal chow. LDL-associated LPA was increased in plasma from high-fat Western diet-fed mice that are genetically prone to hyperlipidemia (LDL receptor knockout or activated proprotein convertase subtilisin/kexin type 9-overexpressing C57Bl6). Adipose-specific deficiency of the ENPP2 gene encoding the LPA-generating secreted lysophospholipase D, autotaxin (ATX), attenuated these Western diet-dependent increases in LPA. ATX-dependent increases in LDL-associated LPA were observed in isolated incubated plasma. ATX acted directly on LDL-associated lysophospholipid substrates in vitro. LDL from all human subjects examined contained LPA and was decreased by lipid-lowering drug therapies. Human and mouse plasma therefore contains a diet-sensitive LDL-associated LPA pool that might contribute to the cardiovascular disease-promoting effects of LPA.
Collapse
Affiliation(s)
- Maria P Kraemer
- Division of Cardiovascular Medicine, Gill Heart and Vascular Institute, University of Kentucky, Lexington, KY.,Lexington Veterans Affairs Medical Center, Lexington, KY
| | - Guogen Mao
- Division of Cardiovascular Medicine, Gill Heart and Vascular Institute, University of Kentucky, Lexington, KY.,Lexington Veterans Affairs Medical Center, Lexington, KY
| | - Courtney Hammill
- Division of Cardiovascular Medicine, Gill Heart and Vascular Institute, University of Kentucky, Lexington, KY.,Lexington Veterans Affairs Medical Center, Lexington, KY
| | - Baoxiang Yan
- Division of Cardiovascular Medicine, Gill Heart and Vascular Institute, University of Kentucky, Lexington, KY
| | - Yu Li
- Division of Cardiovascular Medicine, Gill Heart and Vascular Institute, University of Kentucky, Lexington, KY
| | - Fredrick Onono
- Division of Cardiovascular Medicine, Gill Heart and Vascular Institute, University of Kentucky, Lexington, KY
| | - Susan S Smyth
- Division of Cardiovascular Medicine, Gill Heart and Vascular Institute, University of Kentucky, Lexington, KY.,Lexington Veterans Affairs Medical Center, Lexington, KY
| | - Andrew J Morris
- Division of Cardiovascular Medicine, Gill Heart and Vascular Institute, University of Kentucky, Lexington, KY .,Lexington Veterans Affairs Medical Center, Lexington, KY
| |
Collapse
|
17
|
Kornmueller K, Vidakovic I, Prassl R. Artificial High Density Lipoprotein Nanoparticles in Cardiovascular Research. Molecules 2019; 24:E2829. [PMID: 31382521 PMCID: PMC6695986 DOI: 10.3390/molecules24152829] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 07/31/2019] [Accepted: 08/01/2019] [Indexed: 02/07/2023] Open
Abstract
Lipoproteins are endogenous nanoparticles which are the major transporter of fats and cholesterol in the human body. They play a key role in the regulatory mechanisms of cardiovascular events. Lipoproteins can be modified and manipulated to act as drug delivery systems or nanocarriers for contrast agents. In particular, high density lipoproteins (HDL), which are the smallest class of lipoproteins, can be synthetically engineered either as nascent HDL nanodiscs or spherical HDL nanoparticles. Reconstituted HDL (rHDL) particles are formed by self-assembly of various lipids and apolipoprotein AI (apo-AI). A variety of substances including drugs, nucleic acids, signal emitting molecules, or dyes can be loaded, making them efficient nanocarriers for therapeutic applications or medical diagnostics. This review provides an overview about synthesis techniques, physicochemical properties of rHDL nanoparticles, and structural determinants for rHDL function. We discuss recent developments utilizing either apo-AI or apo-AI mimetic peptides for the design of pharmaceutical rHDL formulations. Advantages, limitations, challenges, and prospects for clinical translation are evaluated with a special focus on promising strategies for the treatment and diagnosis of atherosclerosis and cardiovascular diseases.
Collapse
Affiliation(s)
- Karin Kornmueller
- Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Biophysics, Medical University of Graz, Neue Stiftingtalstraße 6/IV, 8010 Graz, Austria
| | - Ivan Vidakovic
- Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Biophysics, Medical University of Graz, Neue Stiftingtalstraße 6/IV, 8010 Graz, Austria
| | - Ruth Prassl
- Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Biophysics, Medical University of Graz, Neue Stiftingtalstraße 6/IV, 8010 Graz, Austria.
| |
Collapse
|
18
|
Lysophosphatidic Acid and Autotaxin-associated Effects on the Initiation and Progression of Colorectal Cancer. Cancers (Basel) 2019; 11:cancers11070958. [PMID: 31323936 PMCID: PMC6678549 DOI: 10.3390/cancers11070958] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 07/04/2019] [Accepted: 07/08/2019] [Indexed: 02/07/2023] Open
Abstract
The intestinal epithelium interacts dynamically with the immune system to maintain its barrier function to protect the host, while performing the physiological roles in absorption of nutrients, electrolytes, water and minerals. The importance of lysophosphatidic acid (LPA) and its receptors in the gut has been progressively appreciated. LPA signaling modulates cell proliferation, invasion, adhesion, angiogenesis, and survival that can promote cancer growth and metastasis. These effects are equally important for the maintenance of the epithelial barrier in the gut, which forms the first line of defense against the milieu of potentially pathogenic stimuli. This review focuses on the LPA-mediated signaling that potentially contributes to inflammation and tumor formation in the gastrointestinal tract.
Collapse
|
19
|
Yang L, Kraemer M, Fang XF, Angel PM, Drake RR, Morris AJ, Smyth SS. LPA receptor 4 deficiency attenuates experimental atherosclerosis. J Lipid Res 2019; 60:972-980. [PMID: 30796085 PMCID: PMC6495174 DOI: 10.1194/jlr.m091066] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Revised: 02/14/2019] [Indexed: 12/13/2022] Open
Abstract
The widely expressed lysophosphatidic acid (LPA) selective receptor 4 (LPAR4) contributes to vascular development in mice and zebrafish. LPAR4 regulates endothelial permeability, lymphocyte migration, and hematopoiesis, which could contribute to atherosclerosis. We investigated the role of LPAR4 in experimental atherosclerosis elicited by adeno-associated virus expressing PCSK9 to lower LDL receptor levels. After 20 weeks on a Western diet, cholesterol levels and lipoprotein distribution were similar in WT male and Lpar4Y/- mice (P = 0.94). The atherosclerotic lesion area in the proximal aorta and arch was ∼25% smaller in Lpar4Y/- mice (P = 0.009), and less atherosclerosis was detected in Lpar4Y/- mice at any given plasma cholesterol. Neutral lipid accumulation in aortic root sections occupied ∼40% less area in Lpar4Y/- mice (P = 0.001), and CD68 expression was ∼25% lower (P = 0.045). No difference in α-smooth muscle actin staining was observed. Bone marrow-derived macrophages isolated from Lpar4Y/- mice displayed significantly increased upregulation of the M2 marker Arg1 in response to LPA compared with WT cells. In aortic root sections from Lpar4Y/- mice, heightened M2 "repair" macrophage marker expression was detected by CD206 staining (P = 0.03). These results suggest that LPAR4 may regulate the recruitment of specific sets of macrophages or their phenotypic switching in a manner that could influence the development of atherosclerosis.
Collapse
Affiliation(s)
- Liping Yang
- Division of Cardiovascular Medicine, Gill Heart and Vascular Institute, University of Kentucky, Lexington, KY 40536
| | - Maria Kraemer
- Division of Cardiovascular Medicine, Gill Heart and Vascular Institute, University of Kentucky, Lexington, KY 40536
| | - Xianjun Frank Fang
- Department of Biochemistry and Molecular Biology VCU Massey Cancer Center, Virginia Commonwealth University, Richmond, VA 23298-0614
| | - Peggi M Angel
- Department of Cell and Molecular Pharmacology MUSC Proteomics Center, Medical University of South Carolina, Charleston, SC 29425
| | - Richard R Drake
- Department of Cell and Molecular Pharmacology MUSC Proteomics Center, Medical University of South Carolina, Charleston, SC 29425
| | - Andrew J Morris
- Division of Cardiovascular Medicine, Gill Heart and Vascular Institute, University of Kentucky, Lexington, KY 40536; Veterans Affairs Medical Center, Lexington, KY 40511
| | - Susan S Smyth
- Division of Cardiovascular Medicine, Gill Heart and Vascular Institute, University of Kentucky, Lexington, KY 40536; Veterans Affairs Medical Center, Lexington, KY 40511.
| |
Collapse
|
20
|
Zhao Y, Hasse S, Zhao C, Bourgoin SG. Targeting the autotaxin - Lysophosphatidic acid receptor axis in cardiovascular diseases. Biochem Pharmacol 2019; 164:74-81. [PMID: 30928673 DOI: 10.1016/j.bcp.2019.03.035] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Accepted: 03/26/2019] [Indexed: 02/06/2023]
Abstract
Lysophosphatidic acid (LPA) is a well-characterized bioactive lipid mediator, which is involved in development, physiology, and pathological processes of the cardiovascular system. LPA can be produced both inside cells and in biological fluids. The majority of extracellularLPAis produced locally by the secreted lysophospholipase D, autotaxin (ATX), through its binding to various β integrins or heparin sulfate on cell surface and hydrolyzing various lysophospholipids. LPA initiates cellular signalling pathways upon binding to and activation of its G protein-coupled receptors (LPA1-6). LPA has potent effects on various blood cells and vascular cells involved in the development of cardiovascular diseases such as atherosclerosis and aortic valve sclerosis. LPA signalling drives cell migration and proliferation, cytokine production, thrombosis, fibrosis, as well as angiogenesis. For instance, LPA promotes activation and aggregation of platelets through LPA5, increases expression of adhesion molecules in endothelial cells, and enhances expression of tissue factor in vascular smooth muscle cells. Furthermore, LPA induces differentiation of monocytes into macrophages and stimulates oxidized low-density lipoproteins (oxLDLs) uptake by macrophages to form foam cells during formation of atherosclerotic lesions through LPA1-3. This review summarizes recent findings of the roles played by ATX, LPA and LPA receptors (LPARs) in atherosclerosis and calcific aortic valve disease. Targeting the ATX-LPAR axis may have potential applications for treatment of patients suffering from various cardiovascular diseases.
Collapse
Affiliation(s)
- Yang Zhao
- Centre de Recherche du Centre Hospitalier Universitaire de Québec - Université Laval, Canada; Département de microbiologie, infectiologie et immunologie, Faculté de Médecine, Université Laval, Québec, QC G1V4G2, Canada
| | - Stephan Hasse
- Centre de Recherche du Centre Hospitalier Universitaire de Québec - Université Laval, Canada; Département de microbiologie, infectiologie et immunologie, Faculté de Médecine, Université Laval, Québec, QC G1V4G2, Canada
| | - Chenqi Zhao
- Centre de Recherche du Centre Hospitalier Universitaire de Québec - Université Laval, Canada
| | - Sylvain G Bourgoin
- Centre de Recherche du Centre Hospitalier Universitaire de Québec - Université Laval, Canada; Département de microbiologie, infectiologie et immunologie, Faculté de Médecine, Université Laval, Québec, QC G1V4G2, Canada.
| |
Collapse
|
21
|
Rudolf M, Curcio CA, Schlötzer-Schrehardt U, Sefat AMM, Tura A, Aherrahrou Z, Brinkmann M, Grisanti S, Miura Y, Ranjbar M. Apolipoprotein A-I Mimetic Peptide L-4F Removes Bruch's Membrane Lipids in Aged Nonhuman Primates. ACTA ACUST UNITED AC 2019; 60:461-472. [DOI: 10.1167/iovs.18-25786] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Affiliation(s)
- Martin Rudolf
- Department of Ophthalmology, University of Lübeck, Lübeck, Germany
- Translational AMD Research Group Lübeck, University of Lübeck, Lübeck, Germany
| | - Christine A. Curcio
- Department of Ophthalmology and Visual Sciences, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | | | - Armin Mir Mohi Sefat
- Department of Ophthalmology, University of Lübeck, Lübeck, Germany
- Translational AMD Research Group Lübeck, University of Lübeck, Lübeck, Germany
| | - Aysegül Tura
- Department of Ophthalmology, University of Lübeck, Lübeck, Germany
| | - Zouhair Aherrahrou
- Institute for Cardiogenetics, University of Lübeck, Lübeck, Germany
- German Centre for Cardiovascular Research, Partner Site Hamburg/Kiel/Lübeck, Germany
- University Heart Centre Lübeck, Lübeck, Germany
| | - Max Brinkmann
- Department of Ophthalmology, University of Lübeck, Lübeck, Germany
- Laboratory for Angiogenesis & Ocular Cell Transplantation, University of Lübeck, Lübeck, Germany
| | | | - Yoko Miura
- Department of Ophthalmology, University of Lübeck, Lübeck, Germany
- Translational AMD Research Group Lübeck, University of Lübeck, Lübeck, Germany
- Institute of Biomedical Optics, University of Lübeck, Lübeck, Germany
| | - Mahdy Ranjbar
- Department of Ophthalmology, University of Lübeck, Lübeck, Germany
- Laboratory for Angiogenesis & Ocular Cell Transplantation, University of Lübeck, Lübeck, Germany
| |
Collapse
|
22
|
Yu XH, Zhang DW, Zheng XL, Tang CK. Cholesterol transport system: An integrated cholesterol transport model involved in atherosclerosis. Prog Lipid Res 2018; 73:65-91. [PMID: 30528667 DOI: 10.1016/j.plipres.2018.12.002] [Citation(s) in RCA: 150] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 10/30/2018] [Accepted: 12/01/2018] [Indexed: 02/07/2023]
Abstract
Atherosclerosis, the pathological basis of most cardiovascular disease (CVD), is closely associated with cholesterol accumulation in the arterial intima. Excessive cholesterol is removed by the reverse cholesterol transport (RCT) pathway, representing a major antiatherogenic mechanism. In addition to the RCT, other pathways are required for maintaining the whole-body cholesterol homeostasis. Thus, we propose a working model of integrated cholesterol transport, termed the cholesterol transport system (CTS), to describe body cholesterol metabolism. The novel model not only involves the classical view of RCT but also contains other steps, such as cholesterol absorption in the small intestine, low-density lipoprotein uptake by the liver, and transintestinal cholesterol excretion. Extensive studies have shown that dysfunctional CTS is one of the major causes for hypercholesterolemia and atherosclerosis. Currently, several drugs are available to improve the CTS efficiently. There are also several therapeutic approaches that have entered into clinical trials and shown considerable promise for decreasing the risk of CVD. In recent years, a variety of novel findings reveal the molecular mechanisms for the CTS and its role in the development of atherosclerosis, thereby providing novel insights into the understanding of whole-body cholesterol transport and metabolism. In this review, we summarize the latest advances in this area with an emphasis on the therapeutic potential of targeting the CTS in CVD patients.
Collapse
Affiliation(s)
- Xiao-Hua Yu
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Medical Research Experiment Center, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, Hunan 421001, China
| | - Da-Wei Zhang
- Department of Pediatrics and Group on the Molecular and Cell Biology of Lipids, University of Alberta, Alberta, Canada
| | - Xi-Long Zheng
- Department of Biochemistry and Molecular Biology, Libin Cardiovascular Institute of Alberta, Cumming School of Medicine, University of Calgary, Health Sciences Center, 3330 Hospital Dr NW, Calgary, Alberta T2N 4N1, Canada
| | - Chao-Ke Tang
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Medical Research Experiment Center, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, Hunan 421001, China.
| |
Collapse
|
23
|
Romano G, Reggi S, Kutryb-Zajac B, Facoetti A, Chisci E, Pettinato M, Giuffrè MR, Vecchio F, Leoni S, De Giorgi M, Avezza F, Cadamuro M, Crippa L, Leone BE, Lavitrano M, Rivolta I, Barisani D, Smolenski RT, Giovannoni R. APOA-1Milano muteins, orally delivered via genetically modified rice, show anti-atherogenic and anti-inflammatory properties in vitro and in Apoe -/- atherosclerotic mice. Int J Cardiol 2018; 271:233-239. [PMID: 29907443 DOI: 10.1016/j.ijcard.2018.04.029] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Revised: 11/30/2017] [Accepted: 04/05/2018] [Indexed: 12/31/2022]
Abstract
BACKGROUND Atherosclerosis is a slowly progressing, chronic multifactorial disease characterized by the accumulation of lipids, inflammatory cells, and fibrous tissue that drives to the formation of asymmetric focal thickenings in the tunica intima of large and mid-sized arteries. Despite the high therapeutic potential of ApoA-1 proteins, the purification and delivery into the disordered organisms of these drugs is still limited by low efficiency in these processes. METHODS AND RESULTS We report here a novel production and delivery system of anti-atherogenic APOA-1Milano muteins (APOA-1M) by means of genetically modified rice plants. APOA-1M, delivered as protein extracts from transgenic rice seeds, significantly reduced macrophage activation and foam cell formation in vitro in oxLDL-loaded THP-1 model. The APOA-1M delivery method and therapeutic efficacy was tested in healthy mice and in Apoe-/- mice fed with high cholesterol diet (Western Diet, WD). APOA-1M rice milk significantly reduced atherosclerotic plaque size and lipids composition in aortic sinus and aortic arch of WD-fed Apoe-/- mice as compared to wild type rice milk-treated, WD-fed Apoe-/- mice. APOA-1M rice milk also significantly reduced macrophage number in liver of WD-fed Apoe-/- mice as compared to WT rice milk treated mice. TRANSLATIONAL IMPACT The delivery of therapeutic APOA-1M full length proteins via oral administration of rice seeds protein extracts (the 'rice milk') to the disordered organism, without any need of purification, might overcome the main APOA1-based therapies' limitations and improve the use of this molecules as therapeutic agents for cardiovascular patients.
Collapse
Affiliation(s)
- Gabriele Romano
- School of Medicine and Surgery, University of Milano-Bicocca, via Cadore 48, 20900 Monza, Italy
| | - Serena Reggi
- Plantechno srl, Via Staffolo 60, Vicomoscano 26040, Cremona, Italy
| | - Barbara Kutryb-Zajac
- Department of Biochemistry, Medical University of Gdansk, Debinki 1, 80-211 Gdansk, Poland
| | - Amanda Facoetti
- School of Medicine and Surgery, University of Milano-Bicocca, via Cadore 48, 20900 Monza, Italy
| | - Elisa Chisci
- School of Medicine and Surgery, University of Milano-Bicocca, via Cadore 48, 20900 Monza, Italy
| | - Mariateresa Pettinato
- School of Medicine and Surgery, University of Milano-Bicocca, via Cadore 48, 20900 Monza, Italy
| | - Maria Rita Giuffrè
- School of Medicine and Surgery, University of Milano-Bicocca, via Cadore 48, 20900 Monza, Italy
| | | | - Silvia Leoni
- School of Medicine and Surgery, University of Milano-Bicocca, via Cadore 48, 20900 Monza, Italy; Azienda Socio Sanitaria Territoriale Monza, Monza, Italy
| | - Marco De Giorgi
- School of Medicine and Surgery, University of Milano-Bicocca, via Cadore 48, 20900 Monza, Italy
| | - Federica Avezza
- School of Medicine and Surgery, University of Milano-Bicocca, via Cadore 48, 20900 Monza, Italy
| | - Massimiliano Cadamuro
- International Center for Digestive Health (ICDH), University of Milano-Bicocca, via Cadore 48, 20900 Monza, Italy
| | - Luca Crippa
- School of Medicine and Surgery, University of Milano-Bicocca, via Cadore 48, 20900 Monza, Italy
| | - Biagio Eugenio Leone
- School of Medicine and Surgery, University of Milano-Bicocca, via Cadore 48, 20900 Monza, Italy; Azienda Socio Sanitaria Territoriale Monza, Monza, Italy
| | - Marialuisa Lavitrano
- School of Medicine and Surgery, University of Milano-Bicocca, via Cadore 48, 20900 Monza, Italy
| | - Ilaria Rivolta
- School of Medicine and Surgery, University of Milano-Bicocca, via Cadore 48, 20900 Monza, Italy
| | - Donatella Barisani
- School of Medicine and Surgery, University of Milano-Bicocca, via Cadore 48, 20900 Monza, Italy
| | | | - Roberto Giovannoni
- School of Medicine and Surgery, University of Milano-Bicocca, via Cadore 48, 20900 Monza, Italy; International Center for Digestive Health (ICDH), University of Milano-Bicocca, via Cadore 48, 20900 Monza, Italy.
| |
Collapse
|
24
|
Inoue M, Okamoto Y, Atsumi Y, Shiojiri M, Hidaka M, Tanaka T, Tsutsumi T, Shirasaka N, Tokumura A. Addition of high load of lysophosphatidic acid to standard and high-fat chows causes no significant changes of its circulating and peripheral tissue levels but affects body weight and visceral fat mass of mice. Biofactors 2018; 44:548-557. [PMID: 30368958 DOI: 10.1002/biof.1451] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Revised: 08/08/2018] [Accepted: 08/09/2018] [Indexed: 01/17/2023]
Abstract
Oral administration of lysophosphatidic acid (LPA), a critical intercellular lipid mediator, exerts wound healing and antiulcer effects on gastrointestinal system. To evaluate effects of food-derived LPA on body homeostasis, we measured LPA levels by liquid chromatography-tandem mass spectrometry in chows, feces, plasma, liver, and visceral fat of mice fed a normal or high-fat chow supplemented with or without LPA-rich soybean phospholipids for 30 days. Reductions in daily body weight gains and visceral fat mass were mainly related to lower chow intake by mice fed the LPA-rich high-fat chow, whereas reduced body weight gains and fat mass were mainly related to decreased intestinal triacylglycerol absorption in mice fed LPA-rich chow. Our results showed no significant increase in plasma, liver, or adipose LPA levels, even if a quite high LPA concentration (2.0%) in chows was ingested daily, suggesting limited effects of food-derived LPA on the lumen side of the digestive tract. © 2018 BioFactors, 44(6):548-557, 2018.
Collapse
Affiliation(s)
- Manami Inoue
- Department of Pharmaceutical Health Chemistry, Institute of Biomedical Sciences, Tokushima University, Tokushima, Japan
| | - Yoko Okamoto
- Department of Pharmaceutical Health Chemistry, Institute of Biomedical Sciences, Tokushima University, Tokushima, Japan
| | - Yuta Atsumi
- Bio Chemicals Department, Enzymes Division, Product Development Section, Nagase ChemteX Corporation, Fukuchiyama, Kyoto, Japan
| | - Masatoshi Shiojiri
- Bio Chemicals Department, Enzymes Division, Product Development Section, Nagase ChemteX Corporation, Fukuchiyama, Kyoto, Japan
| | - Mayumi Hidaka
- Department of Life Sciences, Faculty of Pharmacy, Yasuda Women's University, Asaminamiku, Hiroshima, Japan
| | - Tamotsu Tanaka
- Department of Pharmaceutical Health Chemistry, Institute of Biomedical Sciences, Tokushima University, Tokushima, Japan
| | - Toshihiko Tsutsumi
- Department of Pharmaceutics, Graduate School of Clinical Pharmacy, Kyushu University of Health and Welfare, Nobeoka, Japan
| | - Naoki Shirasaka
- Bio Chemicals Department, Enzymes Division, Product Development Section, Nagase ChemteX Corporation, Fukuchiyama, Kyoto, Japan
| | - Akira Tokumura
- Department of Pharmaceutical Health Chemistry, Institute of Biomedical Sciences, Tokushima University, Tokushima, Japan
- Department of Life Sciences, Faculty of Pharmacy, Yasuda Women's University, Asaminamiku, Hiroshima, Japan
| |
Collapse
|
25
|
Mukherjee P, Hough G, Chattopadhyay A, Grijalva V, O'Connor EI, Meriwether D, Wagner A, Ntambi JM, Navab M, Reddy ST, Fogelman AM. Role of enterocyte stearoyl-Co-A desaturase-1 in LDLR-null mice. J Lipid Res 2018; 59:1818-1840. [PMID: 30139760 DOI: 10.1194/jlr.m083527] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2018] [Revised: 07/30/2018] [Indexed: 11/20/2022] Open
Abstract
After crossing floxed stearoyl-CoA desaturase-1 (Scd1 fl/fl) mice with LDL receptor-null (ldlr -/-) mice, and then Villin Cre (VilCre) mice, enterocyte Scd1 expression in Scd1 fl/fl/ldlr -/-/VilCre mice was reduced 70%. On Western diet (WD), Scd1 fl/fl/ldlr -/- mice gained more weight than Scd1 fl/fl/ldlr -/-/VilCre mice (P < 0.0023). On WD, jejunum levels of lysophosphatidylcholine (LysoPC) 18:1 and lysophosphatidic acid (LPA) 18:1 were significantly less in Scd1 fl/fl/ldlr -/-/VilCre compared with Scd1 fl/fl/ldlr -/- mice (P < 0.0004 and P < 0.026, respectively). On WD, Scd1 fl/fl/ldlr -/-/VilCre mice compared with Scd1 fl/fl/ldlr -/- mice had lower protein levels of lipopolysaccharide-binding protein (LBP), cluster of differentiation 14 (CD14), toll-like receptor 4 (TLR4), and myeloid differentiation factor-88 (MyD88) in enterocytes and plasma, and less dyslipidemia and systemic inflammation. Adding a concentrate of tomatoes transgenic for the apoA-I mimetic peptide 6F (Tg6F) to WD resulted in reduced enterocyte protein levels of LBP, CD14, TLR4, and MyD88 in Scd1 fl/fl/ldlr -/- mice similar to that seen in Scd1 fl/fl/ldlr -/-/VilCre mice. Adding LysoPC 18:1 to WD did not reverse the effects of enterocyte Scd1 knockdown. Adding LysoPC 18:1 (but not LysoPC 18:0) to chow induced jejunum Scd1 expression and increased dyslipidemia and plasma serum amyloid A and interleukin 6 levels in Scd1 fl/fl/ldlr -/- mice, but not in Scd1 fl/fl/ldlr -/-/VilCre mice. We conclude that enterocyte Scd1 is partially responsible for LysoPC 18:1- and WD-induced dyslipidemia and inflammation in ldlr -/- mice.
Collapse
Affiliation(s)
- Pallavi Mukherjee
- Departments of Medicine, University of California-Los Angeles, Los Angeles, CA 90095
| | - Greg Hough
- Departments of Medicine, University of California-Los Angeles, Los Angeles, CA 90095
| | - Arnab Chattopadhyay
- Departments of Medicine, University of California-Los Angeles, Los Angeles, CA 90095
| | - Victor Grijalva
- Departments of Medicine, University of California-Los Angeles, Los Angeles, CA 90095
| | - Ellen Ines O'Connor
- Molecular Toxicology Interdepartmental Program, David Geffen School of Medicine, University of California-Los Angeles, Los Angeles, CA 90095
| | - David Meriwether
- Departments of Molecular and Medical Pharmacology, University of California-Los Angeles, Los Angeles, CA 90095
| | - Alan Wagner
- Departments of Medicine, University of California-Los Angeles, Los Angeles, CA 90095
| | - James M Ntambi
- Departments of Biochemistry and Nutritional Sciences, University of Wisconsin-Madison, Madison, WI 53706
| | - Mohamad Navab
- Departments of Medicine, University of California-Los Angeles, Los Angeles, CA 90095
| | - Srinivasa T Reddy
- Departments of Medicine, University of California-Los Angeles, Los Angeles, CA 90095 .,Departments of Molecular and Medical Pharmacology, University of California-Los Angeles, Los Angeles, CA 90095.,Departments of Obstetrics and Gynecology, University of California-Los Angeles, Los Angeles, CA 90095
| | - Alan M Fogelman
- Departments of Medicine, University of California-Los Angeles, Los Angeles, CA 90095
| |
Collapse
|
26
|
Cash JG, Konaniah E, Hegde N, Kuhel DG, Watanabe M, Romick-Rosendale L, Hui DY. Therapeutic reduction of lysophospholipids in the digestive tract recapitulates the metabolic benefits of bariatric surgery and promotes diabetes remission. Mol Metab 2018; 16:55-64. [PMID: 30087032 PMCID: PMC6158127 DOI: 10.1016/j.molmet.2018.07.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 07/10/2018] [Accepted: 07/23/2018] [Indexed: 01/07/2023] Open
Abstract
OBJECTIVE Obesity and obesity-related metabolic disorders are major health problems worldwide. The most effective obesity intervention is bariatric surgery. This study tested the hypothesis that bariatric surgery alters phospholipid metabolism in the gastrointestinal tract to favor a metabolically healthy gut microbiota profile and therapeutic intervention of phospholipid metabolism in the gastrointestinal may have similar metabolic benefits. METHODS The first study compared plasma levels of the bioactive lipid metabolites lysophospholipid and trimethylamine N-oxide (TMAO) as well as gut microbiota profile in high fat/carbohydrate (HFHC) diet-fed C57BL/6 mice with or without vertical sleeve gastrectomy (VSG) and in Pla2g1b-/- mice with group 1B phospholipase A2 gene inactivation. The second study examined the effectiveness of the non-absorbable secretory phospholipase A2 inhibitor methyl indoxam to reverse hyperglycemia and hyperlipidemia in HFHC diet-fed C57BL/6 mice after diabetes onset. RESULTS Both bariatric surgery and PLA2G1B inactivation were shown to reduce lysophospholipid content in the gastrointestinal tract, resulting in resistance to HFHC diet-induced alterations of the gut microbiota, reduction of the cardiovascular risk factors hyperlipidemia and TMAO, decreased adiposity, and prevention of HFHC diet-induced diabetes. Importantly, treatment of wild type mice with methyl indoxam after HFHC diet-induced onset of hyperlipidemia and hyperglycemia effectively restored normal plasma lipid and glucose levels and replicated the metabolic benefits of VSG surgery with diabetes remission and TMAO reduction. CONCLUSION These results provided pre-clinical evidence that PLA2G1B inhibition in the digestive tract may be a viable alternative option to bariatric surgery for obesity and obesity-related cardiometabolic disorder intervention.
Collapse
Affiliation(s)
- James G Cash
- Department of Pathology and Laboratory Medicine, Metabolic Diseases Research Center, University of Cincinnati College of Medicine, Cincinnati, OH, 45237, USA
| | - Eddy Konaniah
- Department of Pathology and Laboratory Medicine, Metabolic Diseases Research Center, University of Cincinnati College of Medicine, Cincinnati, OH, 45237, USA
| | - Narasimha Hegde
- Department of Pathology and Laboratory Medicine, Metabolic Diseases Research Center, University of Cincinnati College of Medicine, Cincinnati, OH, 45237, USA
| | - David G Kuhel
- Department of Pathology and Laboratory Medicine, Metabolic Diseases Research Center, University of Cincinnati College of Medicine, Cincinnati, OH, 45237, USA
| | - Miki Watanabe
- Department of Pathology and Laboratory Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Lindsey Romick-Rosendale
- Department of Pathology and Laboratory Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - David Y Hui
- Department of Pathology and Laboratory Medicine, Metabolic Diseases Research Center, University of Cincinnati College of Medicine, Cincinnati, OH, 45237, USA.
| |
Collapse
|
27
|
Chattopadhyay A, Yang X, Mukherjee P, Sulaiman D, Fogelman HR, Grijalva V, Dubinett S, Wasler TC, Paul MK, Salehi-Rad R, Mack JJ, Iruela-Arispe ML, Navab M, Fogelman AM, Reddy ST. Treating the Intestine with Oral ApoA-I Mimetic Tg6F Reduces Tumor Burden in Mouse Models of Metastatic Lung Cancer. Sci Rep 2018; 8:9032. [PMID: 29899427 PMCID: PMC5998131 DOI: 10.1038/s41598-018-26755-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Accepted: 05/16/2018] [Indexed: 12/16/2022] Open
Abstract
Having demonstrated that apolipoprotein A-I (apoA-I) mimetic peptides ameliorate cancer in mouse models, we sought to determine the mechanism for the anti-tumorigenic function of these peptides. CT-26 cells (colon cancer cells that implant and grow into tumors in the lungs) were injected into wild-type BALB/c mice. The day after injection, mice were either continued on chow or switched to chow containing 0.06% of a concentrate of transgenic tomatoes expressing the apoA-I mimetic peptide 6F (Tg6F). After four weeks, the number of lung tumors was significantly lower in Tg6F-fed mice. Gene expression array analyses of jejunum and lung identified Notch pathway genes significantly upregulated, whereas osteopontin (Spp1) was significantly downregulated by Tg6F in both jejunum and lung. In jejunum, Tg6F increased protein levels for Notch1, Notch2, Dll1, and Dll4. In lung, Tg6F increased protein levels for Notch1 and Dll4 and decreased Spp1. Tg6F reduced oxidized phospholipid levels (E06 immunoreactivity) and reduced 25-hydroxycholesterol (25-OHC) levels, which are known to inhibit Notch1 and induce Spp1, respectively. Notch pathway promotes anti-tumorigenic patrolling monocytes, while Spp1 facilitates pro-tumorigenic myeloid derived suppressor cells (MDSCs) formation. Tg6F-fed mice had higher numbers of patrolling monocytes in jejunum and in lung (p < 0.02), and lower plasma levels of Spp1 with reduced numbers of MDSCs in jejunum and in lung (p < 0.03). We conclude that Tg6F alters levels of specific oxidized lipids and 25-OHC to modulate Notch pathways and Spp1, which alter small intestine immune cells, leading to similar changes in lung that reduce tumor burden.
Collapse
Affiliation(s)
- Arnab Chattopadhyay
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA, 90095-1736, USA
| | - Xinying Yang
- Department of Obstetrics and Gynecology, David Geffen School of Medicine, University of California, Los Angeles, CA, 90095-1736, USA
| | - Pallavi Mukherjee
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA, 90095-1736, USA
| | - Dawoud Sulaiman
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA, 90095-1736, USA
- Molecular Toxicology Interdepartmental Degree Program, Fielding School of Public Health, University of California, Los Angeles, CA, 90095-1736, USA
| | - Hannah R Fogelman
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA, 90095-1736, USA
| | - Victor Grijalva
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA, 90095-1736, USA
| | - Steven Dubinett
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA, 90095-1736, USA
| | - Tonya C Wasler
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA, 90095-1736, USA
| | - Manash K Paul
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA, 90095-1736, USA
| | - Ramin Salehi-Rad
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA, 90095-1736, USA
| | - Julia J Mack
- Department of Molecular, Cell and Developmental Biology, College of Letters and Science, University of California, Los Angeles, CA, 90095-1736, USA
| | - M Luisa Iruela-Arispe
- Department of Molecular, Cell and Developmental Biology, College of Letters and Science, University of California, Los Angeles, CA, 90095-1736, USA
| | - Mohamad Navab
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA, 90095-1736, USA
| | - Alan M Fogelman
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA, 90095-1736, USA
| | - Srinivasa T Reddy
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA, 90095-1736, USA.
- Department of Obstetrics and Gynecology, David Geffen School of Medicine, University of California, Los Angeles, CA, 90095-1736, USA.
- Molecular Toxicology Interdepartmental Degree Program, Fielding School of Public Health, University of California, Los Angeles, CA, 90095-1736, USA.
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, CA, 90095-1736, USA.
| |
Collapse
|
28
|
D'Souza K, Paramel GV, Kienesberger PC. Lysophosphatidic Acid Signaling in Obesity and Insulin Resistance. Nutrients 2018; 10:nu10040399. [PMID: 29570618 PMCID: PMC5946184 DOI: 10.3390/nu10040399] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 03/13/2018] [Accepted: 03/20/2018] [Indexed: 12/21/2022] Open
Abstract
Although simple in structure, lysophosphatidic acid (LPA) is a potent bioactive lipid that profoundly influences cellular signaling and function upon binding to G protein-coupled receptors (LPA1-6). The majority of circulating LPA is produced by the secreted enzyme autotaxin (ATX). Alterations in LPA signaling, in conjunction with changes in autotaxin (ATX) expression and activity, have been implicated in metabolic and inflammatory disorders including obesity, insulin resistance, and cardiovascular disease. This review summarizes our current understanding of the sources and metabolism of LPA with focus on the influence of diet on circulating LPA. Furthermore, we explore how the ATX-LPA pathway impacts obesity and obesity-associated disorders, including impaired glucose homeostasis, insulin resistance, and cardiovascular disease.
Collapse
Affiliation(s)
- Kenneth D'Souza
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, Dalhousie University, Dalhousie Medicine New Brunswick, Saint John, NB, E2L 4L5 Canada.
| | - Geena V Paramel
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, Dalhousie University, Dalhousie Medicine New Brunswick, Saint John, NB, E2L 4L5 Canada.
| | - Petra C Kienesberger
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, Dalhousie University, Dalhousie Medicine New Brunswick, Saint John, NB, E2L 4L5 Canada.
| |
Collapse
|
29
|
Kudinov VA, Zakharova TS, Torkhovskaya TI, Ipatova OM, Archakov AI. [Pharmacological targets for dislipidemies correction. Opportunities and prospects of therapeutic usage]. BIOMEDITSINSKAIA KHIMIIA 2018; 64:66-83. [PMID: 29460837 DOI: 10.18097/pbmc20186401066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Literature data on influence of existing and new groups of drug preparations for dyslipidemias correction are systemized, and molecular mechanisms of their effects are reviewed. The results of experimental and clinical investigations aimed at revealing of new pharmacological targets of dyslipidemias correction were analyzed. The approaches for activation of high density lipoproteins functionality are described. The implementation of alternative preparations with new alternative mechanisms of action may be suggested to improve the effectiveness of traditional treatment in the future.
Collapse
Affiliation(s)
- V A Kudinov
- Institute of Biomedical Chemistry, Moscow, Russia
| | | | | | - O M Ipatova
- Institute of Biomedical Chemistry, Moscow, Russia
| | - A I Archakov
- Institute of Biomedical Chemistry, Moscow, Russia
| |
Collapse
|
30
|
Antioxidative activity of high-density lipoprotein (HDL): Mechanistic insights into potential clinical benefit. BBA CLINICAL 2017; 8:66-77. [PMID: 28936395 PMCID: PMC5597817 DOI: 10.1016/j.bbacli.2017.07.002] [Citation(s) in RCA: 157] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Revised: 07/21/2017] [Accepted: 07/24/2017] [Indexed: 12/29/2022]
Abstract
Uptake of low-density lipoprotein (LDL) particles by macrophages represents a key step in the development of atherosclerotic plaques, leading to the foam cell formation. Chemical modification of LDL is however necessary to induce this process. Proatherogenic LDL modifications include aggregation, enzymatic digestion and oxidation. LDL oxidation by one-electron (free radicals) and two-electron oxidants dramatically increases LDL affinity to macrophage scavenger receptors, leading to rapid LDL uptake and fatty streak formation. Circulating high-density lipoprotein (HDL) particles, primarily small, dense, protein-rich HDL3, provide potent protection of LDL from oxidative damage by free radicals, resulting in the inhibition of the generation of pro-inflammatory oxidized lipids. HDL-mediated inactivation of lipid hydroperoxides involves their initial transfer from LDL to HDL and subsequent reduction to inactive hydroxides by redox-active Met residues of apolipoprotein A-I. Several HDL-associated enzymes are present at elevated concentrations in HDL3 relative to large, light HDL2 and can be involved in the inactivation of short-chain oxidized phospholipids. Therefore, HDL represents a multimolecular complex capable of acquiring and inactivating proatherogenic lipids. Antioxidative function of HDL can be impaired in several metabolic and inflammatory diseases. Structural and compositional anomalies in the HDL proteome and lipidome underlie such functional deficiency. Concomitant normalization of the metabolism, circulating levels, composition and biological activities of HDL particles, primarily those of small, dense HDL3, can constitute future therapeutic target.
Collapse
|
31
|
Mukherjee P, Hough G, Chattopadhyay A, Navab M, Fogelman HR, Meriwether D, Williams K, Bensinger S, Moller T, Faull KF, Lusis AJ, Iruela-Arispe ML, Bostrom KI, Tontonoz P, Reddy ST, Fogelman AM. Transgenic tomatoes expressing the 6F peptide and ezetimibe prevent diet-induced increases of IFN-β and cholesterol 25-hydroxylase in jejunum. J Lipid Res 2017; 58:1636-1647. [PMID: 28592401 PMCID: PMC5538285 DOI: 10.1194/jlr.m076554] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Revised: 06/02/2017] [Indexed: 12/20/2022] Open
Abstract
Feeding LDL receptor (LDLR)-null mice a Western diet (WD) increased the expression of IFN-β in jejunum as determined by quantitative RT-PCR (RT-qPCR), immunohistochemistry (IHC), and ELISA (all P < 0.0001). WD also increased the expression of cholesterol 25-hydroxylase (CH25H) as measured by RT-qPCR (P < 0.0001), IHC (P = 0.0019), and ELISA (P < 0.0001), resulting in increased levels of 25-hydroxycholesterol (25-OHC) in jejunum as determined by LC-MS/MS (P < 0.0001). Adding ezetimibe at 10 mg/kg/day or adding a concentrate of transgenic tomatoes expressing the 6F peptide (Tg6F) at 0.06% by weight of diet substantially ameliorated these changes. Adding either ezetimibe or Tg6F to WD also ameliorated WD-induced changes in plasma lipids, serum amyloid A, and HDL cholesterol. Adding the same doses of ezetimibe and Tg6F together to WD (combined formulation) was generally more efficacious compared with adding either agent alone. Surprisingly, adding ezetimibe during the preparation of Tg6F, but before addition to WD, was more effective than the combined formulation for all parameters measured in jejunum (P = 0.0329 to P < 0.0001). We conclude the following: i) WD induces IFN-β, CH25H, and 25-OHC in jejunum; and ii) Tg6F and ezetimibe partially ameliorate WD-induced inflammation by preventing WD-induced increases in IFN-β, CH25H, and 25-OHC.
Collapse
Affiliation(s)
- Pallavi Mukherjee
- Departments of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA
| | - Greg Hough
- Departments of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA
| | - Arnab Chattopadhyay
- Departments of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA
| | - Mohamad Navab
- Departments of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA
| | - Hannah R Fogelman
- Departments of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA
| | - David Meriwether
- Molecular and Medical Pharmacology, David Geffen School of Medicine at UCLA, Los Angeles, CA
| | - Kevin Williams
- Molecular and Medical Pharmacology, David Geffen School of Medicine at UCLA, Los Angeles, CA
| | - Steven Bensinger
- Molecular and Medical Pharmacology, David Geffen School of Medicine at UCLA, Los Angeles, CA
| | - Travis Moller
- Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine at UCLA, Los Angeles, CA
| | - Kym F Faull
- Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine at UCLA, Los Angeles, CA
| | - Aldons J Lusis
- Departments of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA; Human Genetics, David Geffen School of Medicine at UCLA, Los Angeles, CA; Microbiology, Immunology, and Molecular Genetics, David Geffen School of Medicine at UCLA, Los Angeles, CA
| | - M Luisa Iruela-Arispe
- Department of Molecular, Cell, and Developmental Biology, College of Letters and Sciences, University of California, Los Angeles, CA
| | - Kristina I Bostrom
- Departments of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA
| | - Peter Tontonoz
- Howard Hughes Medical Institute, Los Angeles, CA; Pathology and Laboratory Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA
| | - Srinivasa T Reddy
- Departments of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA; Molecular and Medical Pharmacology, David Geffen School of Medicine at UCLA, Los Angeles, CA; Obstetrics and Gynecology, David Geffen School of Medicine at UCLA, Los Angeles, CA.
| | - Alan M Fogelman
- Departments of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA
| |
Collapse
|
32
|
Li R, Yang J, Saffari A, Jacobs J, Baek KI, Hough G, Larauche MH, Ma J, Jen N, Moussaoui N, Zhou B, Kang H, Reddy S, Henning SM, Campen MJ, Pisegna J, Li Z, Fogelman AM, Sioutas C, Navab M, Hsiai TK. Ambient Ultrafine Particle Ingestion Alters Gut Microbiota in Association with Increased Atherogenic Lipid Metabolites. Sci Rep 2017; 7:42906. [PMID: 28211537 PMCID: PMC5314329 DOI: 10.1038/srep42906] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Accepted: 01/17/2017] [Indexed: 12/22/2022] Open
Abstract
Ambient particulate matter (PM) exposure is associated with atherosclerosis and inflammatory bowel disease. Ultrafine particles (UFP, dp < 0.1-0.2 μm) are redox active components of PM. We hypothesized that orally ingested UFP promoted atherogenic lipid metabolites in both the intestine and plasma via altered gut microbiota composition. Low density lipoprotein receptor-null (Ldlr-/-) mice on a high-fat diet were orally administered with vehicle control or UFP (40 μg/mouse/day) for 3 days a week. After 10 weeks, UFP ingested mice developed macrophage and neutrophil infiltration in the intestinal villi, accompanied by elevated cholesterol but reduced coprostanol levels in the cecum, as well as elevated atherogenic lysophosphatidylcholine (LPC 18:1) and lysophosphatidic acids (LPAs) in the intestine and plasma. At the phylum level, Principle Component Analysis revealed significant segregation of microbiota compositions which was validated by Beta diversity analysis. UFP-exposed mice developed increased abundance in Verrocomicrobia but decreased Actinobacteria, Cyanobacteria, and Firmicutes as well as a reduced diversity in microbiome. Spearman's analysis negatively correlated Actinobacteria with cecal cholesterol, intestinal and plasma LPC18:1, and Firmicutes and Cyanobacteria with plasma LPC 18:1. Thus, ultrafine particles ingestion alters gut microbiota composition, accompanied by increased atherogenic lipid metabolites. These findings implicate the gut-vascular axis in a atherosclerosis model.
Collapse
Affiliation(s)
- Rongsong Li
- Division of Cardiology, Department of Medicine, School of Medicine, University of California, Los Angeles, CA 90095, USA
| | - Jieping Yang
- Division of Clinical Nutrition, Department of Medicine, School of Medicine, University of California, Los Angeles, CA 90095, USA
| | - Arian Saffari
- Civil and Environmental Engineering, University of Southern California, Los Angeles, CA 90089, USA
| | - Jonathan Jacobs
- Division of Gastroenterology and Hepatology, Department of Medicine, School of Medicine, University of California, Los Angeles, CA 90095, USA
| | - Kyung In Baek
- Department of Bioengineering, School of Engineering & Applied Science, University of California, Los Angeles, CA 90095, USA
| | - Greg Hough
- Division of Cardiology, Department of Medicine, School of Medicine, University of California, Los Angeles, CA 90095, USA
| | - Muriel H. Larauche
- Division of Gastroenterology and Hepatology, Department of Medicine, School of Medicine, University of California, Los Angeles, CA 90095, USA
| | - Jianguo Ma
- Division of Cardiology, Department of Medicine, School of Medicine, University of California, Los Angeles, CA 90095, USA
- Department of Bioengineering, School of Engineering & Applied Science, University of California, Los Angeles, CA 90095, USA
| | - Nelson Jen
- Division of Cardiology, Department of Medicine, School of Medicine, University of California, Los Angeles, CA 90095, USA
- Department of Bioengineering, School of Engineering & Applied Science, University of California, Los Angeles, CA 90095, USA
| | - Nabila Moussaoui
- Division of Gastroenterology and Hepatology, Department of Medicine, School of Medicine, University of California, Los Angeles, CA 90095, USA
| | - Bill Zhou
- Division of Cardiology, Department of Medicine, School of Medicine, University of California, Los Angeles, CA 90095, USA
| | - Hanul Kang
- Division of Cardiology, Department of Medicine, School of Medicine, University of California, Los Angeles, CA 90095, USA
| | - Srinivasa Reddy
- Division of Cardiology, Department of Medicine, School of Medicine, University of California, Los Angeles, CA 90095, USA
| | - Susanne M. Henning
- Division of Clinical Nutrition, Department of Medicine, School of Medicine, University of California, Los Angeles, CA 90095, USA
| | - Matthew J. Campen
- Department of Pharmaceutical Sciences, School of Pharmacy, University of New Mexico, Albuquerque, NM 87131, USA
| | - Joseph Pisegna
- Division of Gastroenterology and Hepatology, Department of Medicine, School of Medicine, University of California, Los Angeles, CA 90095, USA
| | - Zhaoping Li
- Division of Clinical Nutrition, Department of Medicine, School of Medicine, University of California, Los Angeles, CA 90095, USA
| | - Alan M. Fogelman
- Division of Cardiology, Department of Medicine, School of Medicine, University of California, Los Angeles, CA 90095, USA
| | - Constantinos Sioutas
- Civil and Environmental Engineering, University of Southern California, Los Angeles, CA 90089, USA
| | - Mohamad Navab
- Division of Cardiology, Department of Medicine, School of Medicine, University of California, Los Angeles, CA 90095, USA
| | - Tzung K. Hsiai
- Division of Cardiology, Department of Medicine, School of Medicine, University of California, Los Angeles, CA 90095, USA
- Department of Bioengineering, School of Engineering & Applied Science, University of California, Los Angeles, CA 90095, USA
| |
Collapse
|
33
|
Recio C, Maione F, Iqbal AJ, Mascolo N, De Feo V. The Potential Therapeutic Application of Peptides and Peptidomimetics in Cardiovascular Disease. Front Pharmacol 2017; 7:526. [PMID: 28111551 PMCID: PMC5216031 DOI: 10.3389/fphar.2016.00526] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Accepted: 12/19/2016] [Indexed: 12/11/2022] Open
Abstract
Cardiovascular disease (CVD) remains a leading cause of mortality and morbidity worldwide. Numerous therapies are currently under investigation to improve pathological cardiovascular complications, but yet, there have been very few new medications approved for intervention/treatment. Therefore, new approaches to treat CVD are urgently required. Attempts to prevent vascular complications usually involve amelioration of contributing risk factors and underlying processes such as inflammation, obesity, hyperglycaemia, or hypercholesterolemia. Historically, the development of peptides as therapeutic agents has been avoided by the Pharmaceutical industry due to their low stability, size, rate of degradation, and poor delivery. However, more recently, resurgence has taken place in developing peptides and their mimetics for therapeutic intervention. As a result, increased attention has been placed upon using peptides that mimic the function of mediators involved in pathologic processes during vascular damage. This review will provide an overview on novel targets and experimental therapeutic approaches based on peptidomimetics for modulation in CVD. We aim to specifically examine apolipoprotein A-I (apoA-I) and apoE mimetic peptides and their role in cholesterol transport during atherosclerosis, suppressors of cytokine signaling (SOCS)1-derived peptides and annexin-A1 as potent inhibitors of inflammation, incretin mimetics and their function in glucose-insulin tolerance, among others. With improvements in technology and synthesis platforms the future looks promising for the development of novel peptides and mimetics for therapeutic use. However, within the area of CVD much more work is required to identify and improve our understanding of peptide structure, interaction, and function in order to select the best targets to take forward for treatment.
Collapse
Affiliation(s)
- Carlota Recio
- Sir William Dunn School of Pathology, University of Oxford Oxford, UK
| | - Francesco Maione
- Department of Pharmacy, University of Naples Federico II Naples, Italy
| | - Asif J Iqbal
- Sir William Dunn School of Pathology, University of Oxford Oxford, UK
| | - Nicola Mascolo
- Department of Pharmacy, University of Naples Federico II Naples, Italy
| | - Vincenzo De Feo
- Department of Pharmacy, University of Salerno Salerno, Italy
| |
Collapse
|
34
|
Mo ZC, Ren K, Liu X, Tang ZL, Yi GH. A high-density lipoprotein-mediated drug delivery system. Adv Drug Deliv Rev 2016; 106:132-147. [PMID: 27208399 DOI: 10.1016/j.addr.2016.04.030] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2015] [Revised: 04/13/2016] [Accepted: 04/27/2016] [Indexed: 01/08/2023]
Abstract
High-density lipoprotein (HDL) is a comparatively dense and small lipoprotein that can carry lipids as a multifunctional aggregate in plasma. Several studies have shown that increasing the levels or improving the functionality of HDL is a promising target for treating a wide variety of diseases. Among lipoproteins, HDL particles possess unique physicochemical properties, including naturally synthesized physiological components, amphipathic apolipoproteins, lipid-loading and hydrophobic agent-incorporating characteristics, specific protein-protein interactions, heterogeneity, nanoparticles, and smaller size. Recently, the feasibility and superiority of using HDL particles as drug delivery vehicles have been of great interest. In this review, we summarize the structure, constituents, biogenesis, remodeling, and reconstitution of HDL drug delivery systems, focusing on their delivery capability, characteristics, applications, manufacturing, and drug-loading and drug-targeting characteristics. Finally, the future prospects are presented regarding the clinical application and challenges of using HDL as a pharmacodelivery carrier.
Collapse
Affiliation(s)
- Zhong-Cheng Mo
- Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan Province, University of South China, Hengyang City 421001, Hunan Province, China; Department of Histology and Embryology, University of South China, Hengyang, Hunan 421001, China
| | - Kun Ren
- Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan Province, University of South China, Hengyang City 421001, Hunan Province, China
| | - Xing Liu
- National Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, 100005 Beijing, China
| | - Zhen-Li Tang
- Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan Province, University of South China, Hengyang City 421001, Hunan Province, China
| | - Guang-Hui Yi
- Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan Province, University of South China, Hengyang City 421001, Hunan Province, China.
| |
Collapse
|
35
|
Abstract
PURPOSE OF REVIEW Phospholipids are major constituents in the intestinal lumen after meal consumption. This article highlights current literature suggesting the contributory role of intestinal phospholipid metabolism toward cardiometabolic disease manifestation. RECENT FINDINGS Group 1b phospholipase A2 (PLA2g1b) catalyzes phospholipid hydrolysis in the intestinal lumen. The digestive product lysophospholipid, particularly lysophosphatidylcholine (LPC), has a direct role in mediating chylomicron assembly and secretion. The LPC in the digestive tract is further catabolized into lysophosphatidic acid and choline via autotaxin-mediated and autotaxin-independent mechanisms. The LPC and lysophosphatidic acid absorbed through the digestive tract and transported to the plasma directly promote systemic inflammation and cell dysfunction, leading to increased risk of cardiovascular disease and obesity/diabetes. The choline moiety generated in the digestive tract can also be used by gut bacteria to generate trimethylamine, which is subsequently transported to the liver and oxidized into trimethylamine-N-oxide that also enhances atherosclerosis and cardiovascular abnormalities. SUMMARY Products of phospholipid metabolism in the intestine through PLA2g1b and autotaxin-mediated pathways directly contribute to cardiometabolic diseases through multiple mechanisms. The implication of these studies is that therapeutic inhibition of PLA2g1b and autotaxin in the digestive tract may be a viable approach for cardiovascular and metabolic disease intervention.
Collapse
Affiliation(s)
- David Y Hui
- Department of Pathology, Metabolic Disease Research Center, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| |
Collapse
|
36
|
Meriwether D, Sulaiman D, Wagner A, Grijalva V, Kaji I, Williams KJ, Yu L, Fogelman S, Volpe C, Bensinger SJ, Anantharamaiah GM, Shechter I, Fogelman AM, Reddy ST. Transintestinal transport of the anti-inflammatory drug 4F and the modulation of transintestinal cholesterol efflux. J Lipid Res 2016; 57:1175-93. [PMID: 27199144 DOI: 10.1194/jlr.m067025] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Indexed: 01/28/2023] Open
Abstract
The site and mechanism of action of the apoA-I mimetic peptide 4F are incompletely understood. Transintestinal cholesterol efflux (TICE) is a process involved in the clearance of excess cholesterol from the body. While TICE is responsible for at least 30% of the clearance of neutral sterols from the circulation into the intestinal lumen, few pharmacological agents have been identified that modulate this pathway. We show first that circulating 4F selectively targets the small intestine (SI) and that it is predominantly transported into the intestinal lumen. This transport of 4F into the SI lumen is transintestinal in nature, and it is modulated by TICE. We also show that circulating 4F increases reverse cholesterol transport from macrophages and cholesterol efflux from lipoproteins via the TICE pathway. We identify the cause of this modulation of TICE either as 4F being a cholesterol acceptor with respect to enterocytes, from which 4F enhances cholesterol efflux, or as 4F being an intestinal chaperone with respect to TICE. Our results assign a novel role for 4F as a modulator of the TICE pathway and suggest that the anti-inflammatory functions of 4F may be a partial consequence of the codependent intestinal transport of both 4F and cholesterol.
Collapse
Affiliation(s)
- David Meriwether
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA Department of Medical and Molecular Pharmacology, University of California Los Angeles, Los Angeles, CA
| | - Dawoud Sulaiman
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA Molecular Toxicology Interdepartmental Degree Program, University of California Los Angeles, Los Angeles, CA
| | - Alan Wagner
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA
| | - Victor Grijalva
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA
| | - Izumi Kaji
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA
| | - Kevin J Williams
- Department of Medical and Molecular Pharmacology, University of California Los Angeles, Los Angeles, CA
| | - Liqing Yu
- Department of Animal and Avian Sciences, University of Maryland, College Park, MD
| | - Spencer Fogelman
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA
| | - Carmen Volpe
- Division of Laboratory Animal Medicine, University of California Los Angeles, Los Angeles, CA
| | - Steven J Bensinger
- Department of Medical and Molecular Pharmacology, University of California Los Angeles, Los Angeles, CA Department of Microbiology, Immunology and Molecular Genetics, University of California Los Angeles, Los Angeles, CA
| | - G M Anantharamaiah
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL
| | - Ishaiahu Shechter
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA
| | - Alan M Fogelman
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA
| | - Srinivasa T Reddy
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA Department of Medical and Molecular Pharmacology, University of California Los Angeles, Los Angeles, CA Department of Obstetrics and Gynecology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA
| |
Collapse
|
37
|
Chattopadhyay A, Navab M, Hough G, Grijalva V, Mukherjee P, Fogelman HR, Hwang LH, Faull KF, Lusis AJ, Reddy ST, Fogelman AM. Tg6F ameliorates the increase in oxidized phospholipids in the jejunum of mice fed unsaturated LysoPC or WD. J Lipid Res 2016; 57:832-47. [PMID: 26965826 DOI: 10.1194/jlr.m064352] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Indexed: 12/13/2022] Open
Abstract
Mouse chow supplemented with lysophosphatidylcholine with oleic acid at sn-1 and a hydroxyl group at sn-2 (LysoPC 18:1) increased LysoPC 18:1 in tissue of the jejunum of LDL receptor (LDLR)-null mice by 8.9 ± 1.7-fold compared with chow alone. Western diet (WD) contained dramatically less phosphatidylcholine 18:1 or LysoPC 18:1 compared with chow, but feeding WD increased LysoPC 18:1 in the jejunum by 7.5 ± 1.4-fold compared with chow. Feeding LysoPC 18:1 or feeding WD increased oxidized phospholipids in the jejunum by 5.2 ± 3.0-fold or 8.6 ± 2.2-fold, respectively, in LDLR-null mice (P < 0.0004), and 2.6 ± 1.5-fold or 2.4 ± 0.92-fold, respectively, in WT C57BL/6J mice (P < 0.0001). Adding 0.06% by weight of a concentrate of transgenic tomatoes expressing the 6F peptide (Tg6F) decreased LysoPC 18:1 in the jejunum of LDLR-null mice on both diets (P < 0.0001), and prevented the increase in oxidized phospholipids in the jejunum in LDLR-null and WT mice on both diets (P < 0.008). Tg6F decreased inflammatory cells in the villi of the jejunum, decreased dyslipidemia, and decreased systemic inflammation in LDLR-null and WT mice on both diets. We conclude that Tg6F reduces diet-induced inflammation by reducing the content of unsaturated LysoPC and oxidized phospholipids in the jejunum of mice.
Collapse
Affiliation(s)
- Arnab Chattopadhyay
- Departments of Medicine, David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, CA 90095-1736
| | - Mohamad Navab
- Departments of Medicine, David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, CA 90095-1736
| | - Greg Hough
- Departments of Medicine, David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, CA 90095-1736
| | - Victor Grijalva
- Departments of Medicine, David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, CA 90095-1736
| | - Pallavi Mukherjee
- Departments of Medicine, David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, CA 90095-1736
| | - Hannah R Fogelman
- Departments of Medicine, David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, CA 90095-1736
| | - Lin H Hwang
- Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, CA 90095-1736
| | - Kym F Faull
- Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, CA 90095-1736
| | - Aldons J Lusis
- Departments of Medicine, David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, CA 90095-1736 Human Genetics, David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, CA 90095-1736 Microbiology, Immunology, and Molecular Genetics, David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, CA 90095-1736
| | - Srinivasa T Reddy
- Departments of Medicine, David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, CA 90095-1736 Molecular and Medical Pharmacology, David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, CA 90095-1736 Obstetrics and Gynecology, David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, CA 90095-1736
| | - Alan M Fogelman
- Departments of Medicine, David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, CA 90095-1736
| |
Collapse
|
38
|
Abstract
PURPOSE OF REVIEW The bioactive lysophospholipids, lysophosphatidic acid (LPA) and sphingosine 1 phosphate (S1P), have potent effects on blood and vascular cells. This review focuses their potential contributions to the development of atherosclerosis, acute complications such as acute myocardial infarction, and chronic ischemic cardiac damage. RECENT FINDINGS Exciting recent developments have provided insight into the molecular underpinnings of LPA and S1P receptor signaling. New lines of evidence suggest roles for these pathways in the development of atherosclerosis. In experimental animal models, the production, signaling, and metabolism of LPA may be influenced by environmental factors in the diet that synergize to promote the progression of atherosclerotic vascular disease. This is supported by observations of human polymorphisms in the lysophospholipid-metabolizing enzyme PPAP2B, which are associated with risk of coronary artery disease and myocardial infarction. S1P signaling protects from myocardial damage that follows acute and chronic ischemia, both by direct effects on cardiomyocytes and through stem cell recruitment to ischemic tissue. SUMMARY This review will suggest novel strategies to prevent the complications of coronary artery disease by targeting LPA production and signaling. Additionally, ways in which S1P signaling pathways may be harnessed to attenuate ischemia-induced cardiac dysfunction will be explored.
Collapse
Affiliation(s)
- Ahmed Abdel-Latif
- aDepartment of Veterans Affairs Medical Center bDivision of Cardiovascular Medicine, The Gill Heart Institute cUniversity of Kentucky, Lexington, Kentucky, USA
| | | | | | | |
Collapse
|
39
|
Chattopadhyay A, Grijalva V, Hough G, Su F, Mukherjee P, Farias-Eisner R, Anantharamaiah GM, Faull KF, Hwang LH, Navab M, Fogelman AM, Reddy ST. Efficacy of tomato concentrates in mouse models of dyslipidemia and cancer. Pharmacol Res Perspect 2015; 3:e00154. [PMID: 26171234 PMCID: PMC4492730 DOI: 10.1002/prp2.154] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Revised: 05/08/2015] [Accepted: 05/13/2015] [Indexed: 12/14/2022] Open
Abstract
We previously reported that adding freeze-dried tomato powder from transgenic plants expressing the apolipoprotein A-I mimetic peptide 6F at 2.2% by weight to a Western diet (WD) ameliorated dyslipidemia and atherosclerosis in mice. The same dose in a human would require three cups of tomato powder three times daily. To reduce the volume, we sought a method to concentrate 6F. Remarkably, extracting the transgenic freeze-dried tomato overnight in ethyl acetate with 5% acetic acid resulted in a 37-fold reduction in the amount of transgenic tomato needed for biologic activity. In a mouse model of dyslipidemia, adding 0.06% by weight of the tomato concentrate expressing the 6F peptide (Tg6F) to a WD significantly reduced plasma total cholesterol and triglycerides (P < 0.0065). In a mouse model of colon cancer metastatic to the lungs, adding 0.06% of Tg6F, but not a control tomato concentrate (EV), to standard mouse chow reduced tumor-associated neutrophils by 94 ± 1.1% (P = 0.0052), and reduced tumor burden by two-thirds (P = 0.0371). Adding 0.06% of either EV or Tg6F by weight to standard mouse chow significantly reduced tumor burden in a mouse model of ovarian cancer; however, Tg6F was significantly more effective (35% reduction for EV vs. 53% reduction for Tg6F; P = 0.0069). Providing the same dose of tomato concentrate to humans would require only two tablespoons three times daily making this a practical approach for testing oral apoA-I mimetic therapy in the treatment of dyslipidemia and cancer.
Collapse
Affiliation(s)
- Arnab Chattopadhyay
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine at UCLA Los Angeles, California, 90095-1736
| | - Victor Grijalva
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine at UCLA Los Angeles, California, 90095-1736
| | - Greg Hough
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine at UCLA Los Angeles, California, 90095-1736
| | - Feng Su
- Department of Obstetrics and Gynecology, David Geffen School of Medicine at UCLA Los Angeles, California, 90095-1736
| | - Pallavi Mukherjee
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine at UCLA Los Angeles, California, 90095-1736
| | - Robin Farias-Eisner
- Department of Obstetrics and Gynecology, David Geffen School of Medicine at UCLA Los Angeles, California, 90095-1736
| | - G M Anantharamaiah
- Department of Medicine, University of Alabama at Birmingham Birmingham, Alabama, 35294
| | - Kym F Faull
- Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine at UCLA Los Angeles, California, 90095-1736
| | - Lin H Hwang
- Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine at UCLA Los Angeles, California, 90095-1736
| | - Mohamad Navab
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine at UCLA Los Angeles, California, 90095-1736
| | - Alan M Fogelman
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine at UCLA Los Angeles, California, 90095-1736
| | - Srinivasa T Reddy
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine at UCLA Los Angeles, California, 90095-1736 ; Department of Obstetrics and Gynecology, David Geffen School of Medicine at UCLA Los Angeles, California, 90095-1736 ; Department of Molecular and Medical Pharmacology, David Geffen School of Medicine at UCLA Los Angeles, California, 90095-1736
| |
Collapse
|
40
|
Mueller P, Ye S, Morris A, Smyth SS. Lysophospholipid mediators in the vasculature. Exp Cell Res 2015; 333:190-194. [PMID: 25825155 DOI: 10.1016/j.yexcr.2015.03.016] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Accepted: 03/19/2015] [Indexed: 01/14/2023]
Affiliation(s)
- Paul Mueller
- Division of Cardiovascular Medicine, The Gill Heart Institute, United States
| | - Shaojing Ye
- Division of Cardiovascular Medicine, The Gill Heart Institute, United States
| | - Andrew Morris
- Division of Cardiovascular Medicine, The Gill Heart Institute, United States; Department of Veterans Affairs Medical Center Lexington, KY 40511, United States
| | - Susan S Smyth
- Division of Cardiovascular Medicine, The Gill Heart Institute, United States; Department of Veterans Affairs Medical Center Lexington, KY 40511, United States.
| |
Collapse
|
41
|
Navab M, Chattopadhyay A, Hough G, Meriwether D, Fogelman SI, Wagner AC, Grijalva V, Su F, Anantharamaiah GM, Hwang LH, Faull KF, Reddy ST, Fogelman AM. Source and role of intestinally derived lysophosphatidic acid in dyslipidemia and atherosclerosis. J Lipid Res 2015; 56:871-87. [PMID: 25646365 DOI: 10.1194/jlr.m056614] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
We previously reported that i) a Western diet increased levels of unsaturated lysophosphatidic acid (LPA) in small intestine and plasma of LDL receptor null (LDLR(-/-)) mice, and ii) supplementing standard mouse chow with unsaturated (but not saturated) LPA produced dyslipidemia and inflammation. Here we report that supplementing chow with unsaturated (but not saturated) LPA resulted in aortic atherosclerosis, which was ameliorated by adding transgenic 6F tomatoes. Supplementing chow with lysophosphatidylcholine (LysoPC) 18:1 (but not LysoPC 18:0) resulted in dyslipidemia similar to that seen on adding LPA 18:1 to chow. PF8380 (a specific inhibitor of autotaxin) significantly ameliorated the LysoPC 18:1-induced dyslipidemia. Supplementing chow with LysoPC 18:1 dramatically increased the levels of unsaturated LPA species in small intestine, liver, and plasma, and the increase was significantly ameliorated by PF8380 indicating that the conversion of LysoPC 18:1 to LPA 18:1 was autotaxin dependent. Adding LysoPC 18:0 to chow increased levels of LPA 18:0 in small intestine, liver, and plasma but was not altered by PF8380 indicating that conversion of LysoPC 18:0 to LPA 18:0 was autotaxin independent. We conclude that i) intestinally derived unsaturated (but not saturated) LPA can cause atherosclerosis in LDLR(-/-) mice, and ii) autotaxin mediates the conversion of unsaturated (but not saturated) LysoPC to LPA.
Collapse
Affiliation(s)
- Mohamad Navab
- Department of Medicine, David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, CA 90095-1736
| | - Arnab Chattopadhyay
- Department of Medicine, David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, CA 90095-1736
| | - Greg Hough
- Department of Medicine, David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, CA 90095-1736
| | - David Meriwether
- Department of Medicine, David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, CA 90095-1736 Department of Molecular and Medical Pharmacology, David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, CA 90095-1736
| | - Spencer I Fogelman
- Department of Medicine, David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, CA 90095-1736
| | - Alan C Wagner
- Department of Medicine, David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, CA 90095-1736
| | - Victor Grijalva
- Department of Medicine, David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, CA 90095-1736
| | - Feng Su
- Department of Obstetrics and Gynecology, David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, CA 90095-1736
| | - G M Anantharamaiah
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294
| | - Lin H Hwang
- Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, CA 90095-1736
| | - Kym F Faull
- Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, CA 90095-1736
| | - Srinivasa T Reddy
- Department of Medicine, David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, CA 90095-1736 Department of Molecular and Medical Pharmacology, David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, CA 90095-1736 Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, CA 90095-1736
| | - Alan M Fogelman
- Department of Medicine, David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, CA 90095-1736
| |
Collapse
|
42
|
Abstract
A wealth of evidence indicates that plasma levels of high-density lipoprotein cholesterol (HDL-C) are inversely related to the risk of cardiovascular disease (CVD). Consequently, HDL-C has been considered a target for therapy in order to reduce the residual CVD burden that remains significant, even after application of current state-of-the-art medical interventions. In recent years, however, a number of clinical trials of therapeutic strategies that increase HDL-C levels failed to show the anticipated beneficial effect on CVD outcomes. As a result, attention has begun to shift toward strategies to improve HDL functionality, rather than levels of HDL-C per se. ApoA-I, the major protein component of HDL, is considered to play an important role in many of the antiatherogenic functions of HDL, most notably reverse cholesterol transport (RCT), and several therapies have been developed to mimic apoA-I function, including administration of apoA-I, mutated variants of apoA-I, and apoA-I mimetic peptides. Based on the potential anti-inflammatory effects, apoA-I mimetics hold promise not only as anti-atherosclerotic therapy but also in other therapeutic areas.
Collapse
Affiliation(s)
- R M Stoekenbroek
- Department of Vascular Medicine, Academic Medical Center, 22660, 1100 DD, Amsterdam, The Netherlands
| | | | | |
Collapse
|
43
|
Yun CC, Kumar A. Diverse roles of LPA signaling in the intestinal epithelium. Exp Cell Res 2014; 333:201-207. [PMID: 25433271 DOI: 10.1016/j.yexcr.2014.11.013] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Accepted: 11/05/2014] [Indexed: 12/19/2022]
Abstract
Lysophosphatidic acid (LPA) is a lipid mediator that modulates a wide variety of cellular functions. Elevated LPA signaling has been reported in patients with colorectal cancer or inflammatory bowel diseases, and the tumorigenic role of LPA has been demonstrated in experimental models of colon cancer. However, emerging evidence indicates the importance of LPA signaling in epithelial wound healing and regulation of intestinal electrolyte transport. Here, we briefly review current knowledge of the biological roles of LPA signaling in the intestinal tract.
Collapse
Affiliation(s)
- C Chris Yun
- Division of Digestive Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, GA, USA; Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA, USA; Atlanta VA Medical Center, Decatur, GA, USA.
| | - Ajay Kumar
- Division of Digestive Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, GA, USA
| |
Collapse
|
44
|
Averill MM, Kim EJ, Goodspeed L, Wang S, Subramanian S, Den Hartigh LJ, Tang C, Ding Y, Reardon CA, Getz GS, Chait A. The apolipoprotein-AI mimetic peptide L4F at a modest dose does not attenuate weight gain, inflammation, or atherosclerosis in LDLR-null mice. PLoS One 2014; 9:e109252. [PMID: 25286043 PMCID: PMC4186861 DOI: 10.1371/journal.pone.0109252] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2014] [Accepted: 09/08/2014] [Indexed: 12/17/2022] Open
Abstract
OBJECTIVE High density lipoprotein (HDL) cholesterol levels are inversely related to cardiovascular disease risk and associated with a reduced risk of type 2 diabetes. Apolipoprotein A-I (apoA-I; major HDL protein) mimetics have been reported to reduce atherosclerosis and decrease adiposity. This study investigated the effect of L4F mimetic peptide and apoA-I overexpression on weight gain, insulin resistance, and atherosclerosis in an LDL receptor deficient (Ldlr-/-) model fed a high fat high sucrose with cholesterol (HFHSC) diet. METHODS Studies in differentiated 3T3-L1 adipocytes tested whether L4F could inhibit palmitate-induced adipocyte inflammation. In vivo studies used male Ldlr-/- mice fed a HFHSC diet for 12 weeks and were injected daily with L4F (100 µg/mouse) subcutaneously during the last 8 weeks. Wild-type and apoA-I overexpressing Ldlr-/- mice were fed HFHSC diet for 16 weeks. RESULTS Neither L4F administration nor apoA-I overexpression affected weight gain, total plasma cholesterol or triglycerides in our studies. While pre-treatment of 3T3-L1 adipocytes with either L4F or HDL abolished palmitate-induced cytokine expression in vitro, L4F treatment did not affect circulating or adipose tissue inflammatory markers in vivo. Neither L4F administration nor apoA-I overexpression affected glucose tolerance. ApoA-I overexpression significantly reduced atherosclerotic lesion size, yet L4F treatment did not affect atherosclerosis. CONCLUSION Our results suggest that neither L4F (100 µg/day/mouse) nor apoA-I overexpression affects adiposity or insulin resistance in this model. We also were unable to confirm a reduction in atherosclerosis with L4F in our particular model. Further studies on the effect of apoA-I mimetics on atherosclerosis and insulin resistance in a variety of dietary contexts are warranted.
Collapse
Affiliation(s)
- Michelle M. Averill
- Department of Environmental and Occupational Health, University of Washington, Seattle, Washington, United States of America
| | - Eung Ju Kim
- Department of Medicine, University of Washington, Seattle, Washington, United States of America
| | - Leela Goodspeed
- Department of Medicine, University of Washington, Seattle, Washington, United States of America
| | - Shari Wang
- Department of Medicine, University of Washington, Seattle, Washington, United States of America
| | - Savitha Subramanian
- Department of Medicine, University of Washington, Seattle, Washington, United States of America
| | - Laura J. Den Hartigh
- Department of Medicine, University of Washington, Seattle, Washington, United States of America
| | - Chongren Tang
- Department of Medicine, University of Washington, Seattle, Washington, United States of America
| | - Yilei Ding
- Department of Medicine, University of Washington, Seattle, Washington, United States of America
| | - Catherine A. Reardon
- Department of Pathology, University of Chicago, Chicago, Illinois, United States of America
| | - Godfrey S. Getz
- Department of Pathology, University of Chicago, Chicago, Illinois, United States of America
| | - Alan Chait
- Department of Medicine, University of Washington, Seattle, Washington, United States of America
| |
Collapse
|
45
|
White CR, Garber DW, Anantharamaiah GM. Anti-inflammatory and cholesterol-reducing properties of apolipoprotein mimetics: a review. J Lipid Res 2014; 55:2007-21. [PMID: 25157031 DOI: 10.1194/jlr.r051367] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Reduced levels of HDL cholesterol (HDL-C) are a strong independent predictor of coronary artery disease (CAD) risk. The major anti-atherogenic function of HDL is to mediate reverse cholesterol transport. This response is highly dependent on apoA-I and apoE, protein components of HDL. Randomized clinical trials have assessed effects of several classes of drugs on plasma cholesterol levels in CAD patients. Agents including cholestyramine, fibrates, niacin, and statins significantly lower LDL cholesterol (LDL-C) and induce modest increases in HDL-C, but tolerance issues and undesirable side effects are common. Additionally, residual risk may be present in patients with persistently low HDL-C and other complications despite a reduction in LDL-C. These observations have fueled interest in the development of new pharmacotherapies that positively impact circulating lipoproteins. The goal of this review is to discuss the therapeutic potential of synthetic apolipoprotein mimetic peptides. These include apoA-I mimetic peptides that have undergone initial clinical assessment. We also discuss newer apoE mimetics that mediate the clearance of atherogenic lipids from the circulation and possess anti-inflammatory properties. One of these (AEM-28) has recently been given orphan drug status and is undergoing clinical trials.
Collapse
Affiliation(s)
- C Roger White
- Department of Medicine, Divisions of Cardiovascular Disease, Gerontology, Geriatric Medicine University of Alabama at Birmingham, Birmingham, AL
| | - David W Garber
- Palliative Care, University of Alabama at Birmingham, Birmingham, AL
| | - G M Anantharamaiah
- Palliative Care, University of Alabama at Birmingham, Birmingham, AL Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, AL
| |
Collapse
|
46
|
Wool GD, Reardon CA, Getz GS. Mimetic peptides of human apoA-I helix 10 get together to lower lipids and ameliorate atherosclerosis: is the action in the gut? J Lipid Res 2014; 55:1983-5. [PMID: 25085258 DOI: 10.1194/jlr.e053538] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Affiliation(s)
| | | | - Godfrey S Getz
- Department of Pathology, University of Chicago, Chicago, IL
| |
Collapse
|
47
|
Abstract
PURPOSE OF REVIEW To summarize recent publications in the field of apolipoprotein mimetics. RECENT FINDINGS Apolipoprotein mimetic peptides continue to show efficacy in a number of animal models of disease and demonstrate properties that make them attractive as potential therapeutic agents. A number of new apolipoprotein mimetics have been described recently. A major site of action of apolipoprotein mimetic peptides was found to be in the small intestine in which they decrease the levels of proinflammatory bioactive lipids. A major problem related to the use of apolipoprotein mimetic peptides is their cost, particularly those that need to be generated by solid phase synthesis with chemical addition of end-blocking groups. Novel approaches to apolipoprotein mimetic therapy have emerged recently that show promise in overcoming these barriers. SUMMARY Despite the recent failure of therapies designed to raise HDL-cholesterol in humans, an approach to therapy using mimetics of HDL and its components continues to show promise.
Collapse
Affiliation(s)
- Srinivasa T. Reddy
- Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles CA 90095
- Department of Obstetrics and Gynecology, David Geffen School of Medicine at UCLA, Los Angeles CA 90095
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095
| | - Mohamad Navab
- Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles CA 90095
| | | | - Alan M. Fogelman
- Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles CA 90095
- Corresponding Author: Department of Medicine, 10833 Le Conte Avenue, Box 951736, Los Angele, CA 90095-1736, Telephone: 310-825-6058, Fax: 310-206-3489,
| |
Collapse
|
48
|
Zhao Y, Black AS, Bonnet DJ, Maryanoff BE, Curtiss LK, Leman LJ, Ghadiri MR. In vivo efficacy of HDL-like nanolipid particles containing multivalent peptide mimetics of apolipoprotein A-I. J Lipid Res 2014; 55:2053-63. [PMID: 24975585 DOI: 10.1194/jlr.m049262] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
We have observed that molecular constructs based on multiple apoA-I mimetic peptides attached to a branched scaffold display promising anti-atherosclerosis functions in vitro. Building on these promising results, we now describe chronic in vivo studies to assess anti-atherosclerotic efficacy of HDL-like nanoparticles assembled from a trimeric construct, administered over 10 weeks either ip or orally to LDL receptor-null mice. When dosed ip, the trimer-based nanolipids markedly reduced plasma LDL-cholesterol levels by 40%, unlike many other apoA-I mimetic peptides, and were substantially atheroprotective. Surprisingly, these nanoparticles were also effective when administered orally at a dose of 75 mg/kg, despite the peptide construct being composed of l-amino acids and being undetectable in the plasma. The orally administered nanoparticles reduced whole aorta lesion areas by 55% and aortic sinus lesion volumes by 71%. Reductions in plasma cholesterol were due to the loss of non-HDL lipoproteins, while plasma HDL-cholesterol levels were increased. At a 10-fold lower oral dose, the nanoparticles were marginally effective in reducing atherosclerotic lesions. Intriguingly, analogous results were obtained with nanolipids of the corresponding monomeric peptide. These nanolipid formulations provide an avenue for developing orally efficacious therapeutic agents to manage atherosclerosis.
Collapse
Affiliation(s)
- Yannan Zhao
- Departments of Chemistry and Immunology and Microbial Science, Scripps Research Institute, La Jolla, CA 92037
| | - Audrey S Black
- Departments of Chemistry and Immunology and Microbial Science, Scripps Research Institute, La Jolla, CA 92037
| | - David J Bonnet
- Departments of Chemistry and Immunology and Microbial Science, Scripps Research Institute, La Jolla, CA 92037
| | - Bruce E Maryanoff
- Departments of Chemistry and Immunology and Microbial Science, Scripps Research Institute, La Jolla, CA 92037
| | - Linda K Curtiss
- Departments of Chemistry and Immunology and Microbial Science, Scripps Research Institute, La Jolla, CA 92037
| | - Luke J Leman
- Departments of Chemistry and Immunology and Microbial Science, Scripps Research Institute, La Jolla, CA 92037
| | - M Reza Ghadiri
- Departments of Chemistry and Immunology and Microbial Science, Scripps Research Institute, La Jolla, CA 92037
| |
Collapse
|
49
|
Abstract
High-density lipoproteins (HDL) are a target for drug development because of their proposed anti-atherogenic properties. In this review, we will briefly discuss the currently established drugs for increasing HDL-C, namely niacin and fibrates, and some of their limitations. Next, we will focus on novel alternative therapies that are currently being developed for raising HDL-C, such as CETP inhibitors. Finally, we will conclude with a review of novel drugs that are being developed for modulating the function of HDL based on HDL mimetics. Gaps in our knowledge and the challenges that will have to be overcome for these new HDL based therapies will also be discussed.
Collapse
Affiliation(s)
- Alan T Remaley
- National Heart, Lung and Blood Institute, NIH, 10 Center Drive, Bldg. 10, Rm. 2C-433, Bethesda, MD, USA
| | - Giuseppe D Norata
- Department of Pharmacological Sciences, Università degli Studi di Milano, Milano, Italy Center for the Study of Atherosclerosis, Società Italiana Studio Aterosclerosi, Ospedale Bassini, Cinisello Balsamo, Italy The Blizard Institute, Centre for Diabetes, Barts and The London School of Medicine & Dentistry, Queen Mary University, London, UK
| | - Alberico L Catapano
- Department of Pharmacological Sciences, Università degli Studi di Milano, Milano, Italy IRCCS Multimedica, Milan, Italy
| |
Collapse
|
50
|
|