1
|
Zaluski J, Bassetto M, Kiser PD, Tochtrop GP. Advances and therapeutic opportunities in visual cycle modulation. Prog Retin Eye Res 2025; 106:101360. [PMID: 40280538 DOI: 10.1016/j.preteyeres.2025.101360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2025] [Revised: 04/19/2025] [Accepted: 04/21/2025] [Indexed: 04/29/2025]
Abstract
The visual cycle is a metabolic pathway that enables continuous vision by regenerating the 11-cis-retinal chromophore for photoreceptors opsins. Although integral to normal visual function, the flux of retinoids through this cycle can contribute to a range of retinal pathologies, including Stargardt disease, age-related macular degeneration, and diabetic retinopathy. In such conditions, intermediates and byproducts of the visual cycle, such as bisretinoid components of lipofuscin, can accumulate, concomitant with cellular damage and eventual photoreceptor loss. This has inspired efforts to modulate the visual cycle, aiming to slow or prevent the formation of these toxic intermediates and thus preserve retinal structure and function. Over the past two decades, multiple strategies to modulate the visual cycle have emerged. These include both intrinsic approaches, targeting key enzymes, retinoid-binding proteins, or receptors within the pigment epithelium or photoreceptors (e.g., RPE65, CRBP1, and rhodopsin inhibitors/antagonists) and extrinsic strategies that indirectly alter retinoid availability within the retina (e.g., RBP4 antagonists). Many of these agents have shown promise in animal models of visual cycle-associated retinal diseases, reducing pathological changes, and improving retinal survival. Several have advanced into clinical studies, although none are currently FDA-approved. Challenges remain in optimizing drug specificity and duration of action while minimizing side effects such as nyctalopia. In this review, we comprehensively examine current and emerging visual cycle modulators, discuss their medicinal chemistry, mechanisms of action, efficacy in preclinical and clinical studies, and highlight future opportunities for drug discovery aimed at safely and effectively preserving vision through modulation of this biochemical pathway.
Collapse
Affiliation(s)
- Jordan Zaluski
- Department of Chemistry, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Marco Bassetto
- Department of Physiology and Biophysics, School of Medicine, University of California- Irvine, Irvine, CA, 92697, USA; Department of Ophthalmology, Gavin Herbert Eye Institute, Center for Translational Vision Research, School of Medicine, University of California- Irvine, Irvine, CA, 92697, USA; Research Service, VA Long Beach Healthcare System, Long Beach, CA, 90822, USA
| | - Philip D Kiser
- Department of Physiology and Biophysics, School of Medicine, University of California- Irvine, Irvine, CA, 92697, USA; Department of Ophthalmology, Gavin Herbert Eye Institute, Center for Translational Vision Research, School of Medicine, University of California- Irvine, Irvine, CA, 92697, USA; Research Service, VA Long Beach Healthcare System, Long Beach, CA, 90822, USA; Department of Clinical Pharmacy Practice, School of Pharmacy and Pharmaceutical Sciences, University of California - Irvine, Irvine, CA, 92697, USA.
| | - Gregory P Tochtrop
- Department of Chemistry, Case Western Reserve University, Cleveland, OH, 44106, USA.
| |
Collapse
|
2
|
Bandara S, Saadane A, Shen T, Yakovleva D, Banerjee R, Zhang Y, Brown JM, von Lintig J. Distinct pathways for the absorption and metabolism of β-carotene and zeaxanthin in the mouse intestine. J Lipid Res 2025; 66:100758. [PMID: 39971162 PMCID: PMC11957524 DOI: 10.1016/j.jlr.2025.100758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Revised: 01/31/2025] [Accepted: 02/14/2025] [Indexed: 02/21/2025] Open
Abstract
Carotenoids, essential nutrients for eye health, are absorbed in the intestine to support vitamin A homeostasis and provide cellular protection. This process involves the lipid transporters scavenger receptor class B type 1 (SR-B1, encoded by Scarb1 gene) and Niemann-Pick C1-Like 1 (NPC1L1), which load these dietary lipids into the plasma membrane of intestinal enterocytes. However, the precise contribution of these transporters to carotenoid absorption, the putative involvement of Aster proteins in their downstream movement, and the interactions with their metabolizing enzymes, β-carotene oxygenase 1 (BCO1) and β-carotene oxygenase 2 (BCO2), remain incompletely understood. Here, we investigated carotenoid metabolism in the mouse intestine using pharmacological and genetic approaches. We observed that ezetimibe, an NPC1L1 inhibitor, reduced zeaxanthin but did not affect β-carotene absorption. Aster-C, highly expressed in enterocytes, bound zeaxanthin in biochemical assays. In mice, Aster-C deficiency led to upregulation of Gramd1b (Aster-B) expression and increased zeaxanthin bioavailability. We further showed that BCO1 directly interacted with membranes to extract β-carotene for retinoid production, indicating that vitamin A production is Aster protein-independent. This observation is consistent with the finding that the intestine-specific transcription factor ISX, the master regulator of vitamin A production, controlled Scarb1 and Bco1 expression but had no effect on Gramd1a, b, or c, encoding Aster proteins in intestinal enterocytes. Together, our study revealed distinct pathways for β-carotene and zeaxanthin absorption and metabolism, offering new insights into carotenoid bioavailability and potential strategies to optimize dietary carotenoid intake for improved eye health.
Collapse
Affiliation(s)
- Sepalika Bandara
- Department of Pharmacology, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Aicha Saadane
- Department of Pharmacology, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Tong Shen
- Department of Pharmacology, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Daryna Yakovleva
- Department of Pharmacology, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Rakhee Banerjee
- Department of Cancer Biology, Lerner Research Institute of the Cleveland Clinic, Cleveland, OH, USA
| | - Yanqi Zhang
- Department of Pharmacology, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - J Mark Brown
- Department of Cancer Biology, Lerner Research Institute of the Cleveland Clinic, Cleveland, OH, USA
| | - Johannes von Lintig
- Department of Pharmacology, School of Medicine, Case Western Reserve University, Cleveland, OH, USA.
| |
Collapse
|
3
|
Zumaraga MP, Desmarchelier C, Gleize B, Nowicki M, Ould-Ali D, Landrier JF, Borel P. Identification of Genetic Polymorphisms Associated with Interindividual Variability of Vitamin A Concentration in Adipose Tissue of Healthy Male Adults. J Nutr 2024; 154:3693-3703. [PMID: 39442757 DOI: 10.1016/j.tjnut.2024.10.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 09/18/2024] [Accepted: 10/15/2024] [Indexed: 10/25/2024] Open
Abstract
BACKGROUND Adipose tissue vitamin A (VA), that is, mainly retinol (RET) and its esters, comes from preformed VA and proVA carotenoids present in our food. Adipose tissue VA acts as hormonal cue maintaining essential aspects of adipocyte biology, which includes fat mobilization and catabolism, energy balance, and glucose homeostasis, and it is thus of particular interest to study its determinants, including genetic ones. OBJECTIVES This study aimed to identify genetic variations associated with adipose tissue VA concentration. METHODS Forty-two healthy male adults received, in a randomized crossover design, 3 test meals. Periumbilical adipose tissue samples were collected on 6 occasions, that is, at fast and 8 h after consumption of each meal. RET concentration was measured in both plasma and the adipose tissue following saponification. Participants were genotyped using whole-genome microarrays. A total of 1305 single nucleotide polymorphism (SNPs) in or near 27 candidate genes were included for univariate analysis. Partial least squares (PLS) regression was carried out to find the best combination of SNPs associated with the interindividual variability in adipose tissue RET concentration. RESULTS Adipose tissue RET concentration was not associated with plasma RET concentrations (r = -0.184, P = 0.28). Interindividual variability of adipose tissue RET concentration was high (coefficient of variation = 62%). Twenty-nine SNPs were significantly (P < 0.05) associated with adipose tissue RET concentration and a PLS regression model identified 16 SNPs as explanatory variables of this concentration. The SNPs were in or near peroxisome proliferator activated receptor gamma, retinoid X receptor alpha, signaling receptor and transporter of retinol, cluster of differentiation 36, free fatty acid receptor 4, aldehyde dehydrogenase 1 family member A1, monoglyceride lipase, diacylglycerol O-acyltransferase 2, and polycystic kidney disease 1-like 2. CONCLUSIONS A combination of 16 SNPs has been associated with the interindividual of adipose tissue VA concentration in humans. This trial was registered at clinicaltrials.gov as NCT02100774.
Collapse
Affiliation(s)
- Mark Pretzel Zumaraga
- C2VN, Aix Marseille Univ, INRAE, INSERM, Marseille, France; Department of Science and Technology-Food and Nutrition Research Institute, Bicutan, Taguig City, Philippines
| | - Charles Desmarchelier
- C2VN, Aix Marseille Univ, INRAE, INSERM, Marseille, France; Direction générale de la recherche et de l'innovation, Paris, France
| | | | - Marion Nowicki
- C2VN, Aix Marseille Univ, INRAE, INSERM, Marseille, France
| | - Djaffar Ould-Ali
- Plastic & Anesthetic Surgery Department, Clinique Internationale du Parc Monceau, Paris, France
| | | | - Patrick Borel
- C2VN, Aix Marseille Univ, INRAE, INSERM, Marseille, France.
| |
Collapse
|
4
|
Xu R, Zhang L, Pan H, Zhang Y. Retinoid X receptor heterodimers in hepatic function: structural insights and therapeutic potential. Front Pharmacol 2024; 15:1464655. [PMID: 39478961 PMCID: PMC11521896 DOI: 10.3389/fphar.2024.1464655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Accepted: 09/30/2024] [Indexed: 11/02/2024] Open
Abstract
Nuclear receptors (NRs) are key regulators of multiple physiological functions and pathological changes in the liver in response to a variety of extracellular signaling changes. Retinoid X receptor (RXR) is a special member of the NRs, which not only responds to cellular signaling independently, but also regulates multiple signaling pathways by forming heterodimers with various other NR. Therefore, RXR is widely involved in hepatic glucose metabolism, lipid metabolism, cholesterol metabolism and bile acid homeostasis as well as hepatic fibrosis. Specific activation of particular dimers regulating physiological and pathological processes may serve as important pharmacological targets. So here we describe the basic information and structural features of the RXR protein and its heterodimers, focusing on the role of RXR heterodimers in a number of physiological processes and pathological imbalances in the liver, to provide a theoretical basis for RXR as a promising drug target.
Collapse
Affiliation(s)
- Renjie Xu
- Department of Hepatobiliary Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Linyue Zhang
- Department of Ultrasound, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hao Pan
- Department of Hepatobiliary Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yong Zhang
- Department of Hepatobiliary Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
5
|
von Lintig J, Bandara S. The Absorption, Storage, and Transport of Ocular Carotenoids and Retinoids. Annu Rev Vis Sci 2024; 10:323-346. [PMID: 38954771 DOI: 10.1146/annurev-vision-102122-101846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/04/2024]
Abstract
Carotenoids, yellow and red pigments found abundantly in nature, play essential roles in various aspects of human physiology. They serve as critical molecules in vision by functioning as antioxidants and as filters for blue light within the retina. Furthermore, carotenoids are the natural precursors of vitamin A, which is indispensable for the synthesis of retinaldehyde, the visual chromophore, and retinoic acid, a small molecule that regulates gene expression. Insufficient levels of carotenoids and retinoids have been linked to age-related macular degeneration and xerophthalmia, respectively. Nevertheless, the mechanisms by which the eye maintains carotenoid and retinoid homeostasis have remained a mystery. Recent breakthroughs identified the molecular players involved in this process and provided valuable biochemical insights into their functioning. Mutations in the corresponding genes disrupt the homeostasis of carotenoids and retinoids, leading to visual system pathologies. This review aims to consolidate our current understanding of these pathways, including their regulatory principles.
Collapse
Affiliation(s)
- Johannes von Lintig
- Department of Pharmacology, School of Medicine, Case Western Reserve University, Cleveland, Ohio, USA;
| | - Sepalika Bandara
- Department of Pharmacology, School of Medicine, Case Western Reserve University, Cleveland, Ohio, USA;
| |
Collapse
|
6
|
Moon J, Ramkumar S, von Lintig J. Genetic tuning of β-carotene oxygenase-1 activity rescues cone photoreceptor function in STRA6-deficient mice. Hum Mol Genet 2023; 32:798-809. [PMID: 36150025 PMCID: PMC9941828 DOI: 10.1093/hmg/ddac242] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 09/20/2022] [Accepted: 09/21/2022] [Indexed: 11/12/2022] Open
Abstract
Rod and cone photoreceptors in the retina mediate dim light and daylight vision, respectively. Despite their distinctive functions, rod and cone visual pigments utilize the same vitamin A-derived chromophore. To sustain vision, vitamin A precursors must be acquired in the gut, metabolized, and distributed to the eyes. Deficiencies in this pathway in inherited ocular disease states deplete cone photoreceptors from chromophore and eventually lead to cell death, whereas the more abundant rod photoreceptors are less affected. However, pathways that support cone function and survival under such conditions are largely unknown. Using biochemical, histological, and physiological approaches, we herein show that intervention with β-carotene in STRA6-deficient mice improved chromophore supply to cone photoreceptors. Relieving the inherent negative feedback regulation of β-carotene oxygenase-1 activity in the intestine by genetic means further bolstered cone photoreceptor functioning in the STRA6-deficient eyes. A vitamin A-rich diet, however, did not improve cone photoreceptor function in STRA6-deficiency. We provide evidence that the beneficial effect of β-carotene on cones results from favorable serum kinetics of retinyl esters in lipoproteins. The respective alterations in lipoprotein metabolism maintained a steady supply of retinoids to the STRA6-deficient eyes, which ameliorated the competition for chromophore between rod and cone photoreceptors. Together, our study elucidates a cone photoreceptor-survival pathway and unravels an unexpected metabolic connection between the gut and the retina.
Collapse
Affiliation(s)
- Jean Moon
- Department of Pharmacology, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Srinivasagan Ramkumar
- Department of Pharmacology, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Johannes von Lintig
- Department of Pharmacology, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA
| |
Collapse
|
7
|
Abstract
Vitamin A (retinol) is a critical micronutrient required for the control of stem cell functions, cell differentiation, and cell metabolism in many different cell types, both during embryogenesis and in the adult organism. However, we must obtain vitamin A from food sources. Thus, the uptake and metabolism of vitamin A by intestinal epithelial cells, the storage of vitamin A in the liver, and the metabolism of vitamin A in target cells to more biologically active metabolites, such as retinoic acid (RA) and 4-oxo-RA, must be precisely regulated. Here, I will discuss the enzymes that metabolize vitamin A to RA and the cytochrome P450 Cyp26 family of enzymes that further oxidize RA. Because much progress has been made in understanding the regulation of ALDH1a2 (RALDH2) actions in the intestine, one focus of this review is on the metabolism of vitamin A in intestinal epithelial cells and dendritic cells. Another focus is on recent data that 4-oxo-RA is a ligand required for the maintenance of hematopoietic stem cell dormancy and the important role of RARβ (RARB) in these stem cells. Despite this progress, many questions remain in this research area, which links vitamin A metabolism to nutrition, immune functions, developmental biology, and nuclear receptor pharmacology.
Collapse
Affiliation(s)
- Lorraine J Gudas
- Department of Pharmacology, and Revlon Pharmaceutical Professor of Pharmacology and Toxicology, Pharmacology Department, and the Meyer Cancer Center of Weill Cornell Medicine of Cornell University, 1300 York Ave, New York, NY 10065
| |
Collapse
|
8
|
β-carotene improves fecal dysbiosis and intestinal dysfunctions in a mouse model of vitamin A deficiency. Biochim Biophys Acta Mol Cell Biol Lipids 2022; 1867:159122. [PMID: 35158041 PMCID: PMC9940628 DOI: 10.1016/j.bbalip.2022.159122] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Revised: 01/20/2022] [Accepted: 02/01/2022] [Indexed: 02/03/2023]
Abstract
Vitamin A deficiency (VAD) results in intestinal inflammation, increased redox stress and reactive oxygen species (ROS) levels, imbalanced inflammatory and immunomodulatory cytokines, compromised barrier function, and perturbations of the gut microbiome. To combat VAD dietary interventions with β-carotene, the most abundant precursor of vitamin A, are recommended. However, the impact of β-carotene on intestinal health during VAD has not been fully clarified, especially regarding the VAD-associated intestinal dysbiosis. Here we addressed this question by using Lrat-/-Rbp-/- (vitamin A deficient) mice deprived of dietary preformed vitamin A and supplemented with β-carotene as the sole source of the vitamin, alongside with WT (vitamin A sufficient) mice. We found that dietary β-carotene impacted intestinal vitamin A status, barrier integrity and inflammation in both WT and Lrat-/-Rbp-/- (vitamin A deficient) mice on the vitamin A-free diet. However, it did so to a greater extent under overt VAD. Dietary β-carotene also modified the taxonomic profile of the fecal microbiome, but only under VAD. Given the similarity of the VAD-associated intestinal phenotypes with those of several other disorders of the gut, collectively known as Inflammatory Bowel Disease (IBD) Syndrome, these findings are broadly relevant to the effort of developing diet-based intervention strategies to ameliorate intestinal pathological conditions.
Collapse
|
9
|
Moon J, Ramkumar S, von Lintig J. Genetic dissection in mice reveals a dynamic crosstalk between the delivery pathways of vitamin A. J Lipid Res 2022; 63:100215. [PMID: 35452666 PMCID: PMC9142562 DOI: 10.1016/j.jlr.2022.100215] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 03/19/2022] [Accepted: 04/05/2022] [Indexed: 02/04/2023] Open
Abstract
Vitamin A is distributed within the body to support chromophore synthesis in the eyes and retinoid signaling in most other tissues. Two pathways exist for the delivery of vitamin A: the extrinsic pathway transports dietary vitamin A in lipoproteins from intestinal enterocytes to tissues, while the intrinsic pathway distributes vitamin A from hepatic stores bound to serum retinol-binding protein. Previously, the transcription factor ISX and the retinol binding protein receptor STRA6 were identified as gatekeepers of these pathways; however, it is not clear how mutations in the corresponding genes affect retinoid homeostasis. Here, we used a genetic dissection approach in mice to examine the contributions of these proteins in select tissues. We observed that ISX-deficiency increased utilization of both preformed and pro-vitamin A. We found that increased storage of retinoids in peripheral tissues of ISX-deficient mice was dependent on STRA6 and induced by retinoid signaling. In addition, double mutant mice exhibited a partial rescue of the Stra6 mutant ocular phenotype. This rescue came at the expense of a massive accumulation of vitamin A in other tissues, demonstrating that vitamin A is randomly distributed when present in excessive amounts. Remarkably, pro-vitamin A supplementation of mutant mice induced the expression of the retinol-binding protein receptor 2 in the liver and was accompanied by increased hepatic retinyl ester stores. Taken together, these findings indicate dynamic crosstalk between the delivery pathways for this essential nutrient and suggest that hepatic reuptake of vitamin A takes place when excessive amounts circulate in the blood.
Collapse
Affiliation(s)
- Jean Moon
- Department of Pharmacology, School of Medicine, Case Western Reserve University, Cleveland, OH
| | - Srinivasagan Ramkumar
- Department of Pharmacology, School of Medicine, Case Western Reserve University, Cleveland, OH
| | - Johannes von Lintig
- Department of Pharmacology, School of Medicine, Case Western Reserve University, Cleveland, OH.
| |
Collapse
|
10
|
Kim DH, Ahn J, Suh Y, Ziouzenkova O, Lee JW, Lee K. Retinol Binding Protein 7 Promotes Adipogenesis in vitro and Regulates Expression of Genes Involved in Retinol Metabolism. Front Cell Dev Biol 2022; 10:876031. [PMID: 35493071 PMCID: PMC9047791 DOI: 10.3389/fcell.2022.876031] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 03/30/2022] [Indexed: 11/22/2022] Open
Abstract
Retinol is an essential nutrient in animals. Its metabolites, specifically retinoic acid (RA), are crucial for cell differentiation, including adipogenesis. Retinol binding protein 7 (Rbp7) is under the control of PPARγ, the master regulator of adipogenesis. However, the role of RBP7 in adipogenesis is unclear. Our study showed that Rbp7 was abundantly expressed in white and brown mouse adipose tissues and had a higher expression in adipocytes than in stromal vascular fraction. Rbp7 overexpression promoted 3T3-L1 preadipocyte differentiation with increased triglyceride accumulation and up-regulation of Pparγ, Fabp4, C/ebpα, and AdipoQ. Rbp7 deficient adipocytes had opposite effects of the overexpression, which were rescued by RA supplementation. Indirect assessment of relative nuclear RA levels using RAR response element (RARE)-Luc reporter assay demonstrated that Rbp7 overexpression significantly increased RARE-Luc reporter activity. Rbp7 overexpression significantly increased expression of Raldh1, responsible for RA production, and up-regulation of Lrat and Cyp26a1, involved in retinol storage and RA catabolism, respectively, in 3T3-L1 adipocytes. Rbp7 deficient adipocytes had opposite effects of the overexpression of those genes involved in retinol metabolism. These data suggest that RBP7 increases transcriptional activity of RARE that may induce negative feedback responses via regulation of the gene expression for retinol homeostasis. Our data indicate critical RBP7 functions in adipocytes: regulation of transcriptional activity of RARE and adipocytes differentiation, potentially providing a new target for obesity therapy.
Collapse
Affiliation(s)
- Dong-Hwan Kim
- Biotherapeutics Translational Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, South Korea
- Department of Functional Genomics, University of Science and Technology, Daejeon, South Korea
- Department of Animal Sciences, The Ohio State University, Columbus, OH, United States
| | - Jinsoo Ahn
- Department of Animal Sciences, The Ohio State University, Columbus, OH, United States
| | - Yeunsu Suh
- Department of Animal Sciences, The Ohio State University, Columbus, OH, United States
| | - Ouliana Ziouzenkova
- Department of Human Sciences, The Ohio State University, Columbus, OH, United States
| | - Jeong-Woong Lee
- Biotherapeutics Translational Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, South Korea
- Department of Functional Genomics, University of Science and Technology, Daejeon, South Korea
- *Correspondence: Jeong-Woong Lee, ; Kichoon Lee,
| | - Kichoon Lee
- Department of Animal Sciences, The Ohio State University, Columbus, OH, United States
- The Ohio State University Interdisciplinary Human Nutrition Program, The Ohio State University, Columbus, OH, United States
- *Correspondence: Jeong-Woong Lee, ; Kichoon Lee,
| |
Collapse
|
11
|
Ferdouse A, Agrawal RR, Gao MA, Jiang H, Blaner WS, Clugston RD. Alcohol induced hepatic retinoid depletion is associated with the induction of multiple retinoid catabolizing cytochrome P450 enzymes. PLoS One 2022; 17:e0261675. [PMID: 35030193 PMCID: PMC8759667 DOI: 10.1371/journal.pone.0261675] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 12/08/2021] [Indexed: 12/12/2022] Open
Abstract
Chronic alcohol consumption leads to a spectrum of liver disease that is associated with significant global mortality and morbidity. Alcohol is known to deplete hepatic vitamin A content, which has been linked to the pathogenesis of alcoholic liver disease. It has been suggested that induction of Cytochrome P450 2E1 (CYP2E1) contributes to alcohol-induced hepatic vitamin A depletion, but the possible contributions of other retinoid-catabolizing CYPs have not been well studied. The main objective of this study was to better understand alcohol-induced hepatic vitamin A depletion and test the hypothesis that alcohol-induced depletion of hepatic vitamin A is due to CYP-mediated oxidative catabolism. This hypothesis was tested in a mouse model of chronic alcohol consumption, including wild type and Cyp2e1 -/- mice. Our results show that chronic alcohol consumption is associated with decreased levels of hepatic retinol, retinyl esters, and retinoic acid. Moreover, the depletion of hepatic retinoid is associated with the induction of multiple retinoid catabolizing CYPs, including CYP26A1, and CYP26B1 in alcohol fed wild type mice. In Cyp2e1 -/- mice, alcohol-induced retinol decline is blunted but retinyl esters undergo a change in their acyl composition and decline upon alcohol exposure like WT mice. In conclusion, the alcohol induced decline in hepatic vitamin A content is associated with increased expression of multiple retinoid-catabolizing CYPs, including the retinoic acid specific hydroxylases CYP26A1 and CYP26B1.
Collapse
Affiliation(s)
- Afroza Ferdouse
- Department of Physiology, University of Alberta, Edmonton, Alberta, Canada
| | - Rishi R. Agrawal
- Institute of Human Nutrition, Columbia University, New York, New York, United States of America
| | - Madeleine A. Gao
- Institute of Human Nutrition, Columbia University, New York, New York, United States of America
- Department of Medicine, Columbia University, New York, New York, United States of America
| | - Hongfeng Jiang
- Key Laboratory of Remodeling-Related Cardiovascular Diseases, Ministry of Education, Beijing Collaborative Innovation Center for Cardiovascular Disorders, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - William S. Blaner
- Institute of Human Nutrition, Columbia University, New York, New York, United States of America
- Department of Medicine, Columbia University, New York, New York, United States of America
| | - Robin D. Clugston
- Department of Physiology, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
12
|
Sheftel J, Tanumihardjo SA. Systematic Review and Meta-Analysis of the Relative Dose-Response Tests to Assess Vitamin A Status. Adv Nutr 2021; 12:904-941. [PMID: 33130884 PMCID: PMC8166547 DOI: 10.1093/advances/nmaa136] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 09/18/2020] [Accepted: 09/22/2020] [Indexed: 12/20/2022] Open
Abstract
Vitamin A (VA) is an essential nutrient often lacking in the diets of people in developing countries. Accurate biomarkers of VA status are vital to inform public health policy and monitor interventions. The relative dose-response (RDR) and modified-RDR (MRDR) tests are semi-quantitative screening tests for VA deficiency that have been used in Demographic and Health Surveys and VA intervention studies. A systematic review and meta-analysis of sensitivity and specificity were conducted to summarize the physiological evidence to support the RDR tests as methods to assess VA status and investigate the impact of different pathological and physiological states on the tests. A total of 190 studies were screened for inclusion, with 21 studies comparing the RDR tests with the gold-standard biomarker, liver VA concentration (68% and 80% sensitivity and 85% and 69% specificity for the RDR and MRDR, respectively). Nearly all studies with VA interventions in VA-deficient populations demonstrated a response of the tests to VA intake that would be expected to improve VA status. The impacts of chronic liver disease, protein malnutrition, age, pregnancy and lactation, infection and inflammation, and various other conditions were examined in 51 studies. The RDR and MRDR tests were reported to have been used in 39 observational studies, and the MRDR has been used in at least 6 national micronutrient surveys. The RDR and MRDR are sensitive tests for determining population VA status and assessing VA interventions. Although they are robust to most physiological and pathological states, caution may be warranted when using the tests in neonates, individuals with chronic liver disease, and those with protein or iron malnutrition. Research on further improvements to the tests to increase accessibility, such as sampling breast milk instead of blood or using intramuscular doses in subjects with malabsorption, will allow wider adoption. This review was registered with PROSPERO as CRD42019124180.
Collapse
Affiliation(s)
- Jesse Sheftel
- Interdepartmental Graduate Program in Nutritional Sciences, University of Wisconsin-Madison, Madison, WI, USA
| | - Sherry A Tanumihardjo
- Interdepartmental Graduate Program in Nutritional Sciences, University of Wisconsin-Madison, Madison, WI, USA
| |
Collapse
|
13
|
Honarbakhsh M, Ericsson A, Zhong G, Isoherranen N, Zhu C, Bromberg Y, Van Buiten C, Malta K, Joseph L, Sampath H, Lackey AI, Storch J, Vetriani C, Chikindas ML, Breslin P, Quadro L. Impact of vitamin A transport and storage on intestinal retinoid homeostasis and functions. J Lipid Res 2021; 62:100046. [PMID: 33587919 PMCID: PMC8020483 DOI: 10.1016/j.jlr.2021.100046] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 01/15/2021] [Accepted: 01/29/2021] [Indexed: 12/15/2022] Open
Abstract
Lecithin:retinol acyltransferase and retinol-binding protein enable vitamin A (VA) storage and transport, respectively, maintaining tissue homeostasis of retinoids (VA derivatives). The precarious VA status of the lecithin:retinol acyltransferase-deficient (Lrat-/-) retinol-binding protein-deficient (Rbp-/-) mice rapidly deteriorates upon dietary VA restriction, leading to signs of severe vitamin A deficiency (VAD). As retinoids impact gut morphology and functions, VAD is often linked to intestinal pathological conditions and microbial dysbiosis. Thus, we investigated the contribution of VA storage and transport to intestinal retinoid homeostasis and functionalities. We showed the occurrence of intestinal VAD in Lrat-/-Rbp-/- mice, demonstrating the critical role of both pathways in preserving gut retinoid homeostasis. Moreover, in the mutant colon, VAD resulted in a compromised intestinal barrier as manifested by reduced mucins and antimicrobial defense, leaky gut, increased inflammation and oxidative stress, and altered mucosal immunocytokine profiles. These perturbations were accompanied by fecal dysbiosis, revealing that the VA status (sufficient vs. deficient), rather than the amount of dietary VA per se, is likely a major initial discriminant of the intestinal microbiome. Our data also pointed to a specific fecal taxonomic profile and distinct microbial functionalities associated with VAD. Overall, our findings revealed the suitability of the Lrat-/-Rbp-/- mice as a model to study intestinal dysfunctions and dysbiosis promoted by changes in tissue retinoid homeostasis induced by the host VA status and/or intake.
Collapse
Affiliation(s)
| | - Aaron Ericsson
- Department of Veterinary Pathobiology, University of Missouri Metagenomics Center, University of Missouri, Columbia, MO, USA
| | - Guo Zhong
- Department of Pharmaceutics Health Sciences, University of Washington, Seattle, WA, USA
| | - Nina Isoherranen
- Department of Pharmaceutics Health Sciences, University of Washington, Seattle, WA, USA
| | - Chengsheng Zhu
- Department of Biochemistry and Microbiology, Rutgers University, New Brunswick, NJ, USA
| | - Yana Bromberg
- Department of Biochemistry and Microbiology, Rutgers University, New Brunswick, NJ, USA
| | - Charlene Van Buiten
- Department of Food Science and Human Nutrition, Colorado State University, Fort Collins, CO, USA
| | - Kiana Malta
- Department of Food Science, Rutgers University, New Brunswick, NJ, USA
| | - Laurie Joseph
- Department of Pharmacology and Toxicology, Rutgers University, Piscataway, NJ, USA
| | - Harini Sampath
- Department of Nutritional Sciences, Rutgers University, New Brunswick, NJ, USA; Rutgers Center for Lipid Research and Institute of Food Nutrition and Health, Rutgers University, New Brunswick, NJ, USA
| | - Atreju I Lackey
- Department of Nutritional Sciences, Rutgers University, New Brunswick, NJ, USA
| | - Judith Storch
- Department of Nutritional Sciences, Rutgers University, New Brunswick, NJ, USA; Rutgers Center for Lipid Research and Institute of Food Nutrition and Health, Rutgers University, New Brunswick, NJ, USA
| | - Costantino Vetriani
- Department of Biochemistry and Microbiology, Rutgers University, New Brunswick, NJ, USA
| | | | - Paul Breslin
- Department of Nutritional Sciences, Rutgers University, New Brunswick, NJ, USA
| | - Loredana Quadro
- Department of Food Science, Rutgers University, New Brunswick, NJ, USA; Rutgers Center for Lipid Research and Institute of Food Nutrition and Health, Rutgers University, New Brunswick, NJ, USA.
| |
Collapse
|
14
|
Quadro L, Giordano E, Costabile BK, Nargis T, Iqbal J, Kim Y, Wassef L, Hussain MM. Interplay between β-carotene and lipoprotein metabolism at the maternal-fetal barrier. Biochim Biophys Acta Mol Cell Biol Lipids 2020; 1865:158591. [PMID: 31863969 PMCID: PMC7302977 DOI: 10.1016/j.bbalip.2019.158591] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Revised: 12/11/2019] [Accepted: 12/13/2019] [Indexed: 01/07/2023]
Abstract
Vitamin A is an essential nutrient, critical for proper embryonic development in mammals. Both embryonic vitamin A-deficiency or -excess lead to congenital malformations or lethality in mammals, including humans. This is due to the defective transcriptional action of retinoic acid, the active form of vitamin A, that regulates in a spatial- and temporal-dependent manner the expression of genes essential for organogenesis. Thus, an adequate supply of vitamin A from the maternal circulation is vital for normal mammalian fetal development. Provitamin A carotenoids circulate in the maternal bloodstream and are available to the embryo. Of all the dietary carotenoids, β-carotene is the main vitamin A precursor, contributing at least 30% of the vitamin A intake in the industrialized countries and often constituting the sole source of retinoids (vitamin A and its derivatives) in the developing world. In humans, up to 40% of the absorbed dietary β-carotene is incorporated in its intact form in chylomicrons for distribution to other organs within the body, including the developing tissues. Here, it can serve as a source of vitamin A upon conversion into apocarotenoids by its cleavage enzymes. Given that β-carotene is carried in the bloodstream by lipoproteins, and that the placenta acquires, assembles and secretes lipoproteins, it is becoming evident that the maternal-fetal transfer of β-carotene relies on lipoprotein metabolism. Here, we will explore the current knowledge about this important biological process, the cross-talk between carotenoid and lipid metabolism in the context of the maternal-fetal transfer of this provitamin A precursor, and the mechanisms whereby β-carotene is metabolized by the developing tissues. This article is part of a Special Issue entitled Carotenoids recent advances in cell and molecular biology edited by Johannes von Lintig and Loredana Quadro.
Collapse
Affiliation(s)
- Loredana Quadro
- Food Science Department, Rutgers Center for Lipid Research and Institute of Food Nutrition and Health, Rutgers University, New Brunswick, NJ, USA.
| | - Elena Giordano
- Food Science Department, Rutgers Center for Lipid Research and Institute of Food Nutrition and Health, Rutgers University, New Brunswick, NJ, USA
| | - Brianna K Costabile
- Food Science Department, Rutgers Center for Lipid Research and Institute of Food Nutrition and Health, Rutgers University, New Brunswick, NJ, USA; Department of Physiology and Cellular Biophysics, Columbia University, New York, NY, USA
| | - Titli Nargis
- Department of Foundations of Medicine, NYU Long Island School of Medicine, Mineola, NY, USA; Diabetes and Obesity Research Center, NYU Winthrop Hospital, Mineola, NY, USA
| | - Jahangir Iqbal
- Department of Cell Biology, SUNY Downstate Medical Center, Brooklyn, NY, USA; King Abdullah International Medical Research Center, King Saud Bin Abdulaziz University for Health Sciences, Eastern Region, Ministry of National Guard Health Affairs, Al Ahsa, Saudi Arabia
| | - Younkyung Kim
- Food Science Department, Rutgers Center for Lipid Research and Institute of Food Nutrition and Health, Rutgers University, New Brunswick, NJ, USA
| | - Lesley Wassef
- Food Science Department, Rutgers Center for Lipid Research and Institute of Food Nutrition and Health, Rutgers University, New Brunswick, NJ, USA
| | - M Mahmood Hussain
- Department of Foundations of Medicine, NYU Long Island School of Medicine, Mineola, NY, USA; Diabetes and Obesity Research Center, NYU Winthrop Hospital, Mineola, NY, USA; Department of Cell Biology, SUNY Downstate Medical Center, Brooklyn, NY, USA
| |
Collapse
|
15
|
Lee SA, Yang KJZ, Brun PJ, Silvaroli JA, Yuen JJ, Shmarakov I, Jiang H, Feranil JB, Li X, Lackey AI, Krężel W, Leibel RL, Libien J, Storch J, Golczak M, Blaner WS. Retinol-binding protein 2 (RBP2) binds monoacylglycerols and modulates gut endocrine signaling and body weight. SCIENCE ADVANCES 2020; 6:eaay8937. [PMID: 32195347 PMCID: PMC7065888 DOI: 10.1126/sciadv.aay8937] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Accepted: 12/16/2019] [Indexed: 05/09/2023]
Abstract
Expressed in the small intestine, retinol-binding protein 2 (RBP2) facilitates dietary retinoid absorption. Rbp2-deficient (Rbp2-/- ) mice fed a chow diet exhibit by 6-7 months-of-age higher body weights, impaired glucose metabolism, and greater hepatic triglyceride levels compared to controls. These phenotypes are also observed when young Rbp2-/- mice are fed a high fat diet. Retinoids do not account for the phenotypes. Rather, RBP2 is a previously unidentified monoacylglycerol (MAG)-binding protein, interacting with the endocannabinoid 2-arachidonoylglycerol (2-AG) and other MAGs with affinities comparable to retinol. X-ray crystallographic studies show that MAGs bind in the retinol binding pocket. When challenged with an oil gavage, Rbp2-/- mice show elevated mucosal levels of 2-MAGs. This is accompanied by significantly elevated blood levels of the gut hormone GIP (glucose-dependent insulinotropic polypeptide). Thus, RBP2, in addition to facilitating dietary retinoid absorption, modulates MAG metabolism and likely signaling, playing a heretofore unknown role in systemic energy balance.
Collapse
Affiliation(s)
- Seung-Ah Lee
- Department of Medicine, Institute of Human Nutrition, College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Kryscilla Jian Zhang Yang
- Department of Medicine, Institute of Human Nutrition, College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Pierre-Jacques Brun
- Department of Medicine, Institute of Human Nutrition, College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Josie A. Silvaroli
- Department of Pharmacology, Case Western Reserve University, Cleveland, OH, USA
| | - Jason J. Yuen
- Department of Medicine, Institute of Human Nutrition, College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Igor Shmarakov
- Department of Medicine, Institute of Human Nutrition, College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Hongfeng Jiang
- Department of Medicine, Institute of Human Nutrition, College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Jun B. Feranil
- Department of Medicine, Institute of Human Nutrition, College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Xueting Li
- PhD Program in Nutritional and Metabolic Biology, Institute of Human Nutrition, College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Atreju I. Lackey
- Department of Nutritional Sciences and Rutgers Center for Lipid Research, Rutgers University, New Brunswick, NJ, USA
| | - Wojciech Krężel
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, U1258, CNRS, UMR 7104, Unistra, Illkirch 67404, France
| | - Rudolph L. Leibel
- Department of Pediatrics, Institute of Human Nutrition, College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Jenny Libien
- Department of Pathology, SUNY Downstate Medical Center, Brooklyn, NY, USA
| | - Judith Storch
- Department of Nutritional Sciences and Rutgers Center for Lipid Research, Rutgers University, New Brunswick, NJ, USA
| | - Marcin Golczak
- Department of Pharmacology, Case Western Reserve University, Cleveland, OH, USA
- Cleveland Center for Membrane and Structural Biology, Case Western Reserve University, Cleveland, OH, USA
| | - William S. Blaner
- Department of Medicine, Institute of Human Nutrition, College of Physicians and Surgeons, Columbia University, New York, NY, USA
| |
Collapse
|
16
|
Isoherranen N, Zhong G. Biochemical and physiological importance of the CYP26 retinoic acid hydroxylases. Pharmacol Ther 2019; 204:107400. [PMID: 31419517 PMCID: PMC6881548 DOI: 10.1016/j.pharmthera.2019.107400] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Accepted: 08/06/2019] [Indexed: 12/19/2022]
Abstract
The Cytochrome P450 (CYP) family 26 enzymes contribute to retinoic acid (RA) metabolism and homeostasis in humans, mammals and other chordates. The three CYP26 family enzymes, CYP26A1, CYP26B1 and CYP26C1 have all been shown to metabolize all-trans-retinoic acid (atRA) it's 9-cisRA and 13-cisRA isomers and primary metabolites 4-OH-RA and 4-oxo-RA with high efficiency. While no crystal structures of CYP26 enzymes are available, the binding of various ligands has been extensively explored via homology modeling. All three CYP26 enzymes are inducible by treatment with atRA in various prenatal and postnatal tissues and cell types. However, current literature shows that in addition to regulation by atRA, CYP26 enzyme expression is also regulated by other endogenous processes and inflammatory cytokines. In humans and in animal models the expression patterns of CYP26 enzymes have been shown to be tissue and cell type specific, and the expression of the CYP26 enzymes is believed to regulate the formation of critical atRA concentration gradients in various tissue types. Yet, very little data exists on direct disease associations of altered CYP26 expression or activity. Nevertheless, data is emerging describing a variety of human genetic variations in the CYP26 enzymes that are associated with different pathologies. Interestingly, some of these genetic variants result in increased activity of the CYP26 enzymes potentially leading to complex gene-environment interactions due to variability in dietary intake of retinoids. This review highlights the current knowledge of structure-function of CYP26 enzymes and focuses on their role in human retinoid metabolism in different tissues.
Collapse
Affiliation(s)
- Nina Isoherranen
- Department of Pharmaceutics, School of Pharmacy, University of Washington, Seattle, WA, USA.
| | - Guo Zhong
- Department of Pharmaceutics, School of Pharmacy, University of Washington, Seattle, WA, USA
| |
Collapse
|
17
|
Rühl R, Krezel W, de Lera AR. 9-Cis-13,14-dihydroretinoic acid, a new endogenous mammalian ligand of retinoid X receptor and the active ligand of a potential new vitamin A category: vitamin A5. Nutr Rev 2019; 76:929-941. [PMID: 30358857 DOI: 10.1093/nutrit/nuy057] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The identity of the endogenous RXR ligand has not been conclusively determined, even though several compounds of natural origin, including retinoids and fatty acids, have been postulated to fulfill this role. Filling this gap, 9-cis-13,14-dihydroretinoic acid (9CDHRA) was identified as an endogenous RXR ligand in mice. This review examines the physiological relevance of various potential endogenous RXR ligands, especially 9CDHRA. The elusive steps in the metabolic synthesis of 9CDHRA, as well as the nutritional/nutrimetabolic origin of 9CDHRA, are also explored, along with the suitability of the ligand to be the representative member of a novel vitamin A class (vitamin A5).
Collapse
Affiliation(s)
- Ralph Rühl
- Paprika Bioanalytics BT, Debrecen, Hungary
| | - Wojciech Krezel
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Inserm, Centre National Recherche Scientifique (CNRS), Université de Strasbourg, Illkirch, France.,Fédération de Médecine Translationnelle de Strasbourg, Université de Strasbourg, Strasbourg, France
| | - Angel R de Lera
- Departamento de Química Orgánica, Facultad de Química, Centro De Investigaciones Biomédicasand Instituto de Investigación Biomédica de Vigo, Universidade de Vigo, Campus Lagoas-Marcosende, Vigo, Spain
| |
Collapse
|
18
|
Lee SA, Jiang H, Feranil JB, Brun PJ, Blaner WS. Adipocyte-specific expression of a retinoic acid receptor α dominant negative form causes glucose intolerance and hepatic steatosis in mice. Biochem Biophys Res Commun 2019; 514:1231-1237. [PMID: 31109648 DOI: 10.1016/j.bbrc.2019.05.075] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Accepted: 05/09/2019] [Indexed: 11/30/2022]
Abstract
All-trans-retinoic acid (ATRA) has been well described as a positive regulator for early stage of adipocyte differentiation and lipid metabolism and also linked to an in vivo fat-lowering effect in mice. However, not all studies support this association. Our objective was to characterize the action of ATRA in mature adipocytes of mice by ablating RAR signaling through overexpression of a well-characterized dominant negative RARα mutant (RARdn) form specifically in adipocytes. Altered RAR signaling in adipocytes resulted in a significant decrease in ATRA levels in visceral and brown adipose tissues as well as liver tissue. This was linked to significant impairments in glucose clearance and elevated hepatic lipid accumulation for chow diet fed mice, indicating the development of metabolic disease, including hepatic steatosis. In addition, we found that adipose RARdn expression in mice fed a chow diet decreased thermogenesis. We conclude that altered RAR signaling and ATRA levels in adipocytes impacts glucose and lipid metabolism in mice.
Collapse
Affiliation(s)
- Seung-Ah Lee
- Department of Medicine, College of Physicians and Surgeons, Columbia University, New York, NY, United States; Present Address: Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, Republic of Korea.
| | - Hongfeng Jiang
- Department of Medicine, College of Physicians and Surgeons, Columbia University, New York, NY, United States.
| | - Jun B Feranil
- Department of Medicine, College of Physicians and Surgeons, Columbia University, New York, NY, United States.
| | - Pierre-Jacques Brun
- Department of Medicine, College of Physicians and Surgeons, Columbia University, New York, NY, United States.
| | - William S Blaner
- Department of Medicine, College of Physicians and Surgeons, Columbia University, New York, NY, United States.
| |
Collapse
|
19
|
Wang S, Moise AR. Recent insights on the role and regulation of retinoic acid signaling during epicardial development. Genesis 2019; 57:e23303. [PMID: 31066193 PMCID: PMC6682438 DOI: 10.1002/dvg.23303] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 04/23/2019] [Accepted: 04/24/2019] [Indexed: 12/18/2022]
Abstract
The vitamin A metabolite, retinoic acid, carries out essential and conserved roles in vertebrate heart development. Retinoic acid signals via retinoic acid receptors (RAR)/retinoid X receptors (RXRs) heterodimers to induce the expression of genes that control cell fate specification, proliferation, and differentiation. Alterations in retinoic acid levels are often associated with congenital heart defects. Therefore, embryonic levels of retinoic acid need to be carefully regulated through the activity of enzymes, binding proteins and transporters involved in vitamin A metabolism. Here, we review evidence of the complex mechanisms that control the fetal uptake and synthesis of retinoic acid from vitamin A precursors. Next, we highlight recent evidence of the role of retinoic acid in orchestrating myocardial compact zone growth and coronary vascular development.
Collapse
Affiliation(s)
- Suya Wang
- Department of Cardiology, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA, 02115, USA
| | - Alexander R. Moise
- Medical Sciences Division, Northern Ontario School of Medicine, Sudbury, ON P3E 2C6, Canada
- Departments of Chemistry and Biochemistry, and Biology and Biomolecular Sciences Program, Laurentian University, Sudbury, ON, P3E 2C6 Canada
- Department of Pharmacology and Toxicology, School of Pharmacy, University of Kansas, Lawrence, KS, 66045, USA
| |
Collapse
|
20
|
Krężel W, Rühl R, de Lera AR. Alternative retinoid X receptor (RXR) ligands. Mol Cell Endocrinol 2019; 491:110436. [PMID: 31026478 DOI: 10.1016/j.mce.2019.04.016] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 04/06/2019] [Accepted: 04/22/2019] [Indexed: 12/15/2022]
Abstract
Retinoid X receptors (RXRs) control a wide variety of functions by virtue of their dimerization with other nuclear hormone receptors (NRs), contributing thereby to activities of different signaling pathways. We review known RXR ligands as transcriptional modulators of specific RXR-dimers and the associated biological processes. We also discuss the physiological relevance of such ligands, which remains frequently a matter of debate and which at present is best met by member(s) of a novel family of retinoids, postulated as Vitamin A5. Through comparison with other natural, but also with synthetic ligands, we discuss high diversity in the modes of ligand binding to RXRs resulting in agonistic or antagonistic profiles and selectivity towards specific subtypes of permissive heterodimers. Despite such diversity, direct ligand binding to the ligand binding pocket resulting in agonistic activity was preferentially preserved in the course of animal evolution pointing to its functional relevance, and potential for existence of other, species-specific endogenous RXR ligands sharing the same mode of function.
Collapse
Affiliation(s)
- Wojciech Krężel
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France; Centre National de la Recherche Scientifique, UMR 7104, Illkirch, France; Institut National de la Santé et de la Recherche Médicale, U 1258, Illkirch, France; Université de Strasbourg, Illkirch, France.
| | - Ralph Rühl
- Paprika Bioanalytics BT, Debrecen, Hungary
| | - Angel R de Lera
- Departamento de Química Orgánica, Facultade de Química, Lagoas-Marcosende, 36310, Vigo, Spain
| |
Collapse
|
21
|
Serio RN, Laursen KB, Urvalek AM, Gross SS, Gudas LJ. Ethanol promotes differentiation of embryonic stem cells through retinoic acid receptor-γ. J Biol Chem 2019; 294:5536-5548. [PMID: 30737277 PMCID: PMC6462535 DOI: 10.1074/jbc.ra118.007153] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 01/31/2019] [Indexed: 01/28/2023] Open
Abstract
Ethanol (EtOH) is a teratogen, but its teratogenic mechanisms are not fully understood. The alcohol form of vitamin A (retinol/ROL) can be oxidized to all-trans-retinoic acid (RA), which plays a critical role in stem cell differentiation and development. Using an embryonic stem cell (ESC) model to analyze EtOH's effects on differentiation, we show here that EtOH and acetaldehyde, but not acetate, increase differentiation-associated mRNA levels, and that EtOH decreases pluripotency-related mRNAs. Using reporter assays, ChIP assays, and retinoic acid receptor-γ (RARγ) knockout ESC lines generated by CRISPR/Cas9 and homologous recombination, we demonstrate that EtOH signals via RARγ binding to RA response elements (RAREs) in differentiation-associated gene promoters or enhancers. We also report that EtOH-mediated increases in homeobox A1 (Hoxa1) and cytochrome P450 family 26 subfamily A member 1 (Cyp26a1) transcripts, direct RA target genes, require the expression of the RA-synthesizing enzyme, aldehyde dehydrogenase 1 family member A2 (Aldh1a2), suggesting that EtOH-mediated induction of Hoxa1 and Cyp26a1 requires ROL from the serum. As shown with CRISPR/Cas9 knockout lines, the retinol dehydrogenase gene Rdh10 and a functional RARE in the ROL transporter stimulated by retinoic acid 6 (Stra6) gene are required for EtOH induction of Hoxa1 and Cyp26a1 We conclude that EtOH stimulates stem cell differentiation by increasing the influx and metabolism of ROL for downstream RARγ-dependent transcription. In stem cells, EtOH may shift cell fate decisions to alter developmental outcomes by increasing endogenous ROL/RA signaling via increased Stra6 expression and ROL oxidation.
Collapse
Affiliation(s)
- Ryan N Serio
- From the Weill Cornell Graduate School of Medical Sciences of Cornell University, New York, New York 10065 and
| | - Kristian B Laursen
- Department of Pharmacology, Weill Cornell Medical College, New York, New York 10065
| | - Alison M Urvalek
- Department of Pharmacology, Weill Cornell Medical College, New York, New York 10065
| | - Steven S Gross
- From the Weill Cornell Graduate School of Medical Sciences of Cornell University, New York, New York 10065 and
- Department of Pharmacology, Weill Cornell Medical College, New York, New York 10065
| | - Lorraine J Gudas
- From the Weill Cornell Graduate School of Medical Sciences of Cornell University, New York, New York 10065 and
- Department of Pharmacology, Weill Cornell Medical College, New York, New York 10065
| |
Collapse
|
22
|
Wang F, Cao G, Liu Q, Li X, Song M, Zhang Z. Retinol-binding protein 4 regulates the biological functions and molecular mechanisms of JEG-3 cells. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2018; 11:5877-5884. [PMID: 31949674 PMCID: PMC6963068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 08/25/2018] [Accepted: 09/16/2018] [Indexed: 06/10/2023]
Abstract
OBJECTIVE Preeclampsia (PE) is a disorder of pregnancy that is associated with maternal and fetal mortality and morbidity. Abnormal placental Retinol-binding protein 4 (RBP4) expression has been found in cases of PE. This study aimed to further investigate the possible role of RBP4 in the pathophysiology of PE. STUDY DESIGN RBP4 serum concentration was detected using enzyme-linked immunosorbent assays in eighteen patients with severe PE and twenty-five individuals with healthy pregnancies. JEG-3 cells were transiently transfected with a plasmid construct expressing RBP4 (pCMV-RBP4), an empty plasmid (p-CMV) or siRNA, and the MMP2 and MMP9 protein levels were analysed 48 h after transfection. MTT assays and transwell assays were used to explore the functional role of RBP4 in the proliferation and invasion of JEG-3 cells. RESULTS RBP4 serum concentration in patients with severe PE was significantly lower than that in individuals with healthy pregnancies. RBP4 over-expression enhanced the invasion and proliferation of JEG-3 cells and increased MMP2 and MMP9 in JEG-3 cells. CONCLUSIONS RBP4 plays an important role in the regulation of trophoblast invasion and migration and represents a possible underlying pathological and molecular mechanism of PE.
Collapse
Affiliation(s)
- Fuchan Wang
- Department of Obstetrics and Gynecology, Beijing Chao-Yang Hospital, Capital Medical UniversityBeijing, P. R. China
- Department of Obstetrics and Gynecology, Beijing You-An Hospital, Capital Medical UniversityBeijing, P. R. China
| | - Guangming Cao
- Department of Obstetrics and Gynecology, Beijing Chao-Yang Hospital, Capital Medical UniversityBeijing, P. R. China
| | - Qing Liu
- Department of Obstetrics and Gynecology, Beijing You-An Hospital, Capital Medical UniversityBeijing, P. R. China
| | - Xiulan Li
- Department of Obstetrics and Gynecology, Beijing You-An Hospital, Capital Medical UniversityBeijing, P. R. China
| | - Meiying Song
- Department of Obstetrics and Gynecology, Beijing Fu-Xing Hospital, Capital Medical UniversityBeijing, P. R. China
| | - Zhenyu Zhang
- Department of Obstetrics and Gynecology, Beijing Chao-Yang Hospital, Capital Medical UniversityBeijing, P. R. China
| |
Collapse
|
23
|
Heying EK, Ziemer KL, Tanumihardjo JP, Palacios-Rojas N, Tanumihardjo SA. β-Cryptoxanthin-Biofortified Hen Eggs Enhance Vitamin A Status When Fed to Male Mongolian Gerbils. J Nutr 2018; 148:1236-1243. [PMID: 30137479 DOI: 10.1093/jn/nxy117] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Accepted: 05/08/2018] [Indexed: 12/14/2022] Open
Abstract
Background Consumption of provitamin A carotenoid biofortified crops, such as maize, supports vitamin A (VA) status in animals and humans. Laying hens that consume β-cryptoxanthin-biofortified maize deposit β-cryptoxanthin into egg yolk. Objective We investigated whether β-cryptoxanthin-biofortified egg consumption would affect VA status of male Mongolian gerbils (Meriones unguiculatus) compared with white-yolked eggs. Methods β-Cryptoxanthin-biofortified egg yolk, produced in hens fed biofortified orange maize or tangerine-fortified maize feeds, was freeze-dried and fed to gerbils. White-yolked eggs were produced by feeding white maize to hens. Gerbils (n = 57) were fed VA-deficient feed for 28 d. After baseline (n = 7), treatments (n = 10/group) included oil control (VA-); 16.7% orange maize-biofortified, tangerine-fortified, or white-yolk egg feeds; or retinyl acetate as positive control (VA+) matched to daily preformed retinol intake from the eggs for 30 d. Preformed retinol did not differ between the egg yolks. Gerbil liver retinol, lipid, fatty acids, and cholesterol were determined. Results Liver retinol concentration (0.13 ± 0.03 µmol/g) and total hepatic VA (0.52 ± 0.12 µmol) were higher in gerbils fed orange maize-biofortified eggs than in all other groups. The VA- group was severely VA deficient (0.018 ±0.010 µmol/g; P < 0.05). Liver retinol was similar among VA+, tangerine-egg-, and white-egg-fed gerbils, but retinol reserves were higher in tangerine-egg-fed gerbils (0.35 ± 0.11 μmol) than in VA+ or VA- gerbils or at baseline (P < 0.05). Liver fat was 3.6 times (P < 0.0001) and cholesterol was 2.1 times (P < 0.004) higher in egg-fed groups that experienced hepatosteatosis. Liver fatty acid profiles reflected feed, but retinyl ester fatty acids did not. Conclusions The preformed retinol in the eggs enhanced gerbil VA status, and the β-cryptoxanthin-biofortified eggs from hens fed orange maize prevented deficiency. Biofortified maize can enhance VA status when consumed directly or through products from livestock fed orange maize.
Collapse
Affiliation(s)
- Emily K Heying
- Interdepartmental Graduate Program in Nutritional Sciences, Department of Nutritional Sciences, University of Wisconsin-Madison, Madison, WI
| | - Kaitlin Leary Ziemer
- Interdepartmental Graduate Program in Nutritional Sciences, Department of Nutritional Sciences, University of Wisconsin-Madison, Madison, WI
| | - Jacob P Tanumihardjo
- Interdepartmental Graduate Program in Nutritional Sciences, Department of Nutritional Sciences, University of Wisconsin-Madison, Madison, WI
| | | | - Sherry A Tanumihardjo
- Interdepartmental Graduate Program in Nutritional Sciences, Department of Nutritional Sciences, University of Wisconsin-Madison, Madison, WI
| |
Collapse
|
24
|
Teigmo MSW, Gundersen TE, Emaus N, Grimnes G. Distribution and determinants of retinol in Norwegian adolescents, and its relation to bone mineral density: the Tromsø Study: Fit Futures. Eur J Clin Nutr 2018; 72:1373-1384. [DOI: 10.1038/s41430-018-0193-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 04/13/2018] [Accepted: 04/24/2018] [Indexed: 01/11/2023]
|
25
|
Saeed A, Dullaart RPF, Schreuder TCMA, Blokzijl H, Faber KN. Disturbed Vitamin A Metabolism in Non-Alcoholic Fatty Liver Disease (NAFLD). Nutrients 2017; 10:nu10010029. [PMID: 29286303 PMCID: PMC5793257 DOI: 10.3390/nu10010029] [Citation(s) in RCA: 145] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Revised: 12/13/2017] [Accepted: 12/19/2017] [Indexed: 12/22/2022] Open
Abstract
Vitamin A is required for important physiological processes, including embryogenesis, vision, cell proliferation and differentiation, immune regulation, and glucose and lipid metabolism. Many of vitamin A’s functions are executed through retinoic acids that activate transcriptional networks controlled by retinoic acid receptors (RARs) and retinoid X receptors (RXRs).The liver plays a central role in vitamin A metabolism: (1) it produces bile supporting efficient intestinal absorption of fat-soluble nutrients like vitamin A; (2) it produces retinol binding protein 4 (RBP4) that distributes vitamin A, as retinol, to peripheral tissues; and (3) it harbors the largest body supply of vitamin A, mostly as retinyl esters, in hepatic stellate cells (HSCs). In times of inadequate dietary intake, the liver maintains stable circulating retinol levels of approximately 2 μmol/L, sufficient to provide the body with this vitamin for months. Liver diseases, in particular those leading to fibrosis and cirrhosis, are associated with impaired vitamin A homeostasis and may lead to vitamin A deficiency. Liver injury triggers HSCs to transdifferentiate to myofibroblasts that produce excessive amounts of extracellular matrix, leading to fibrosis. HSCs lose the retinyl ester stores in this process, ultimately leading to vitamin A deficiency. Non-alcoholic fatty liver disease (NAFLD) is the hepatic manifestation of metabolic syndrome and is a spectrum of conditions ranging from benign hepatic steatosis to non-alcoholic steatohepatitis (NASH); it may progress to cirrhosis and liver cancer. NASH is projected to be the main cause of liver failure in the near future. Retinoic acids are key regulators of glucose and lipid metabolism in the liver and adipose tissue, but it is unknown whether impaired vitamin A homeostasis contributes to or suppresses the development of NAFLD. A genetic variant of patatin-like phospholipase domain-containing 3 (PNPLA3-I148M) is the most prominent heritable factor associated with NAFLD. Interestingly, PNPLA3 harbors retinyl ester hydrolase activity and PNPLA3-I148M is associated with low serum retinol level, but enhanced retinyl esters in the liver of NAFLD patients. Low circulating retinol in NAFLD may therefore not reflect true “vitamin A deficiency”, but rather disturbed vitamin A metabolism. Here, we summarize current knowledge about vitamin A metabolism in NAFLD and its putative role in the progression of liver disease, as well as the therapeutic potential of vitamin A metabolites.
Collapse
Affiliation(s)
- Ali Saeed
- Department of Gastroenterology and Hepatology, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands.
- Institute of Molecular Biology & Bio-Technology, Bahauddin Zakariya University, Multan 60800, Pakistan.
| | - Robin P F Dullaart
- Department of Endocrinology, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands.
| | - Tim C M A Schreuder
- Department of Gastroenterology and Hepatology, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands.
| | - Hans Blokzijl
- Department of Gastroenterology and Hepatology, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands.
| | - Klaas Nico Faber
- Department of Gastroenterology and Hepatology, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands.
- Department of Laboratory Medicine, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands.
| |
Collapse
|
26
|
Abstract
Multiple binding and transport proteins facilitate many aspects of retinoid biology through effects on retinoid transport, cellular uptake, metabolism, and nuclear delivery. These include the serum retinol binding protein sRBP (aka Rbp4), the plasma membrane sRBP receptor Stra6, and the intracellular retinoid binding-proteins such as cellular retinol-binding proteins (CRBP) and cellular retinoic acid binding-proteins (CRABP). sRBP transports the highly lipophilic retinol through an aqueous medium. The major intracellular retinol-binding protein, CRBP1, likely enhances efficient retinoid use by providing a sink to facilitate retinol uptake from sRBP through the plasma membrane or via Stra6, delivering retinol or retinal to select enzymes that generate retinyl esters or retinoic acid, and protecting retinol/retinal from excess catabolism or opportunistic metabolism. Intracellular retinoic acid binding-proteins (CRABP1 and 2, and FABP5) seem to have more diverse functions distinctive to each, such as directing retinoic acid to catabolism, delivering retinoic acid to specific nuclear receptors, and generating non-canonical actions. Gene ablation of intracellular retinoid binding-proteins does not cause embryonic lethality or gross morphological defects. Metabolic and functional defects manifested in knockouts of CRBP1, CRBP2 and CRBP3, however, illustrate their essentiality to health, and in the case of CRBP2, to survival during limited dietary vitamin A. Future studies should continue to address the specific molecular interactions that occur between retinoid binding-proteins and their targets and their precise physiologic contributions to retinoid homeostasis and function.
Collapse
Affiliation(s)
- Joseph L Napoli
- Graduate Program in Metabolic Biology, Department of Nutritional Sciences and Toxicology, University of California, 119 Morgan Hall, 94720, Berkeley, CA, USA.
| |
Collapse
|
27
|
Retinol-binding protein-4 expression marks the short-term mortality of critically ill patients with underlying liver disease: Lipid, but not glucose, matters. Sci Rep 2017; 7:2881. [PMID: 28588245 PMCID: PMC5460269 DOI: 10.1038/s41598-017-03096-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Accepted: 04/21/2017] [Indexed: 12/12/2022] Open
Abstract
The implications of retinol-binding protein-4 (RBP4) expression in critically ill patients with underlying liver diseases remain unclear. A prospective cohort study involving 200 liver intensive care unit (ICU) patients was conducted, with 274 blood donors as controls. Patient outcomes were assessed using Cox and Kaplan-Meier analyses. Of the 200 ICU patients (mean age: 56.0 yrs), 79.5% were male, 72.5% were cirrhotic, 62% were septic, 29.5% were diabetic, and 29% expired in the ICU (median admission: 7.5 days). ICU patients had lower baseline RBP4 (25.6+/−18.4 vs. 43.8+/−35.0 mg/L, p < 0.001) and total cholesterol (TC) levels than controls. The surviving ICU patients had lower baseline international normalized ratios (INRs) of prothrombin time, model for end-stage liver disease (MELD) scores and sepsis rates, but higher estimated glomerular filtration rates (eGFRs) and RBP4 levels than non-surviving patients. eGFRs, INRs and TC levels were independently associated with RBP4 levels. Only surviving patients exhibited significantly increased RBP4 levels after ICU discharge. Baseline RBP4 levels and MELD scores predicted 21-day (≤10 mg/L) and 1-year (≥25) mortality, respectively. In critically ill patients with underlying liver disease, with a link to eGFRs, INRs and TC levels, the baseline RBP4 may serve as a marker for short-term mortality.
Collapse
|
28
|
Blaner WS, Gao MA, Jiang H, Dalmer TRA, Hu XJ, Ginsberg HN, Clugston RD. Chronic alcohol consumption decreases brown adipose tissue mass and disrupts thermoregulation: a possible role for altered retinoid signaling. Sci Rep 2017; 7:43474. [PMID: 28262768 PMCID: PMC5337954 DOI: 10.1038/srep43474] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Accepted: 01/25/2017] [Indexed: 12/14/2022] Open
Abstract
Retinoic acid, an active metabolite of dietary vitamin A, acts as a ligand for nuclear receptor transcription factors with more than 500 known target genes. It is becoming increasingly clear that alcohol has a significant impact on cellular retinoic acid metabolism, with resultant effects on its function. Here, we test the hypothesis that chronic alcohol consumption impairs retinoic acid signaling in brown adipose tissue (BAT), leading to impaired BAT function and thermoregulation. All studies were conducted in age-matched, male mice consuming alcohol-containing liquid diets. Alcohol’s effect on BAT was assessed by histology, qPCR, HPLC, LC/MS and measures of core body temperature. Our data show that chronic alcohol consumption decreases BAT mass, with a resultant effect on thermoregulation. Follow-up mechanistic studies reveal a decreased triglyceride content in BAT, as well as impaired retinoic acid homeostasis, associated with decreased BAT levels of retinoic acid in alcohol-consuming mice. Our work highlights a hitherto uncharacterized effect of alcohol on BAT function, with possible implications for thermoregulation and energy metabolism in drinkers. Our data indicate that alcohol’s effects on brown adipose tissue may be mediated through altered retinoic acid signaling.
Collapse
Affiliation(s)
| | - Madeleine A Gao
- Department of Medicine, Columbia University, New York, NY, USA
| | - Hongfeng Jiang
- Department of Medicine, Columbia University, New York, NY, USA
| | - Timothy R A Dalmer
- Department of Physiology, University of Alberta, Edmonton, Alberta, Canada
| | - Xueyuan J Hu
- Department of Physiology, University of Alberta, Edmonton, Alberta, Canada
| | | | - Robin D Clugston
- Department of Medicine, Columbia University, New York, NY, USA.,Department of Physiology, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
29
|
Saeed A, Hoekstra M, Hoeke MO, Heegsma J, Faber KN. The interrelationship between bile acid and vitamin A homeostasis. Biochim Biophys Acta Mol Cell Biol Lipids 2017; 1862:496-512. [PMID: 28111285 DOI: 10.1016/j.bbalip.2017.01.007] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Revised: 01/04/2017] [Accepted: 01/18/2017] [Indexed: 12/12/2022]
Abstract
Vitamin A is a fat-soluble vitamin important for vision, reproduction, embryonic development, cell differentiation, epithelial barrier function and adequate immune responses. Efficient absorption of dietary vitamin A depends on the fat-solubilizing properties of bile acids. Bile acids are synthesized in the liver and maintained in an enterohepatic circulation. The liver is also the main storage site for vitamin A in the mammalian body, where an intimate collaboration between hepatocytes and hepatic stellate cells leads to the accumulation of retinyl esters in large cytoplasmic lipid droplet hepatic stellate cells. Chronic liver diseases are often characterized by disturbed bile acid and vitamin A homeostasis, where bile production is impaired and hepatic stellate cells lose their vitamin A in a transdifferentiation process to myofibroblasts, cells that produce excessive extracellular matrix proteins leading to fibrosis. Chronic liver diseases thus may lead to vitamin A deficiency. Recent data reveal an intricate crosstalk between vitamin A metabolites and bile acids, in part via the Retinoic Acid Receptor (RAR), Retinoid X Receptor (RXR) and the Farnesoid X Receptor (FXR), in maintaining vitamin A and bile acid homeostasis. Here, we provide an overview of the various levels of "communication" between vitamin A metabolites and bile acids and its relevance for the treatment of chronic liver diseases.
Collapse
Affiliation(s)
- Ali Saeed
- Department of Gastroenterology and Hepatology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands; Institute of Molecular biology & Bio-technology, Bahauddin Zakariya University, Multan, Pakistan.
| | - Mark Hoekstra
- Department of Gastroenterology and Hepatology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands.
| | - Martijn Oscar Hoeke
- Department of Gastroenterology and Hepatology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands.
| | - Janette Heegsma
- Department of Gastroenterology and Hepatology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands; Laboratory Medicine, Center for Liver, Digestive, and Metabolic Diseases, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands.
| | - Klaas Nico Faber
- Department of Gastroenterology and Hepatology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands.
| |
Collapse
|
30
|
Ajat M, Molenaar M, Brouwers JFHM, Vaandrager AB, Houweling M, Helms JB. Hepatic stellate cells retain the capacity to synthesize retinyl esters and to store neutral lipids in small lipid droplets in the absence of LRAT. Biochim Biophys Acta Mol Cell Biol Lipids 2016; 1862:176-187. [PMID: 27815220 DOI: 10.1016/j.bbalip.2016.10.013] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Revised: 10/07/2016] [Accepted: 10/28/2016] [Indexed: 01/20/2023]
Abstract
Hepatic stellate cells (HSCs) play an important role in liver physiology and under healthy conditions they have a quiescent and lipid-storing phenotype. Upon liver injury, HSCs are activated and rapidly lose their retinyl ester-containing lipid droplets. To investigate the role of lecithin:retinol acyltransferase (LRAT) and acyl-CoA:diacylglycerol acyltransferase 1 (DGAT1) in retinyl ester synthesis and lipid droplet dynamics, we modified LC-MS/MS procedures by including multiple reaction monitoring allowing unambiguous identification and quantification of all major retinyl ester species. Quiescent primary HSCs contain predominantly retinyl palmitate. Exogenous fatty acids are a major determinant in the retinyl ester species synthesized by activated HSCs and LX-2 cells, indicating that HSCs shift their retinyl ester synthesizing capacity from LRAT to DGAT1 during activation. Quiescent LRAT-/- HSCs retain the capacity to synthesize retinyl esters and to store neutral lipids in lipid droplets ex vivo. The median lipid droplet size in LRAT-/- HSCs (1080nm) is significantly smaller than in wild type HSCs (1618nm). This is a consequence of an altered lipid droplet size distribution with 50.5±9.0% small (≤700nm) lipid droplets in LRAT-/- HSCs and 25.6±1.4% large (1400-2100nm) lipid droplets in wild type HSC cells. Upon prolonged (24h) incubation, the amounts of small (≤700nm) lipid droplets strongly increased both in wild type and in LRAT-/- HSCs, indicating a dynamic behavior in both cell types. The absence of retinyl esters and reduced number of lipid droplets in LRAT-deficient HSCs in vivo will be discussed.
Collapse
Affiliation(s)
- Mokrish Ajat
- Department of Biochemistry & Cell Biology, Faculty of Veterinary Medicine, and Institute of Biomembranes, Utrecht University, P.O. Box 80176, 3508 TD Utrecht, The Netherlands
| | - Martijn Molenaar
- Department of Biochemistry & Cell Biology, Faculty of Veterinary Medicine, and Institute of Biomembranes, Utrecht University, P.O. Box 80176, 3508 TD Utrecht, The Netherlands
| | - Jos F H M Brouwers
- Department of Biochemistry & Cell Biology, Faculty of Veterinary Medicine, and Institute of Biomembranes, Utrecht University, P.O. Box 80176, 3508 TD Utrecht, The Netherlands
| | - Arie B Vaandrager
- Department of Biochemistry & Cell Biology, Faculty of Veterinary Medicine, and Institute of Biomembranes, Utrecht University, P.O. Box 80176, 3508 TD Utrecht, The Netherlands
| | - Martin Houweling
- Department of Biochemistry & Cell Biology, Faculty of Veterinary Medicine, and Institute of Biomembranes, Utrecht University, P.O. Box 80176, 3508 TD Utrecht, The Netherlands
| | - J Bernd Helms
- Department of Biochemistry & Cell Biology, Faculty of Veterinary Medicine, and Institute of Biomembranes, Utrecht University, P.O. Box 80176, 3508 TD Utrecht, The Netherlands.
| |
Collapse
|
31
|
Lee SA, Yuen JJ, Jiang H, Kahn BB, Blaner WS. Adipocyte-specific overexpression of retinol-binding protein 4 causes hepatic steatosis in mice. Hepatology 2016; 64:1534-1546. [PMID: 27227735 PMCID: PMC5074895 DOI: 10.1002/hep.28659] [Citation(s) in RCA: 84] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Accepted: 05/16/2016] [Indexed: 12/27/2022]
Abstract
UNLABELLED There is considerable evidence that both retinoids and retinol-binding protein 4 (RBP4) contribute to the development of liver disease. To understand the basis for this, we generated and studied transgenic mice that express human RBP4 (hRBP4) specifically in adipocytes. When fed a chow diet, these mice show an elevation in adipose total RBP4 (mouse RBP4 + hRBP4) protein levels. However, no significant differences in plasma RBP4 or retinol levels or in hepatic or adipose retinoid (retinol, retinyl ester, and all-trans-retinoic acid) levels were observed. Strikingly, male adipocyte-specific hRBP4 mice fed a standard chow diet display significantly elevated hepatic triglyceride levels at 3-4 months of age compared to matched littermate controls. When mice were fed a high-fat diet, this hepatic phenotype, as well as other metabolic phenotypes (obesity and glucose intolerance), worsened. Because adipocyte-specific hRBP4 mice have increased tumor necrosis factor-α and leptin expression and crown-like structures in adipose tissue, our data are consistent with the notion that adipose tissue is experiencing RBP4-induced inflammation that stimulates increased lipolysis within adipocytes. Our data further establish that elevated hepatic triglyceride levels result from increased hepatic uptake of adipose-derived circulating free fatty acids. We obtained no evidence that elevated hepatic triglyceride levels arise from increased hepatic de novo lipogenesis, decreased hepatic free fatty acid oxidation, or decreased very-low-density lipoprotein secretion. CONCLUSION Our investigations establish that RBP4 expressed in adipocytes induces hepatic steatosis arising from primary effects occurring in adipose tissue. (Hepatology 2016;64:1534-1546).
Collapse
Affiliation(s)
- Seung-Ah Lee
- Department of Medicine, College of Physicians and Surgeons, Columbia University, 650 W. 168th Street, New York, NY 10032
| | - Jason J. Yuen
- Department of Medicine, College of Physicians and Surgeons, Columbia University, 650 W. 168th Street, New York, NY 10032
| | - Hongfeng Jiang
- Department of Medicine, College of Physicians and Surgeons, Columbia University, 650 W. 168th Street, New York, NY 10032
| | - Barbara B. Kahn
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215
| | - William S. Blaner
- Department of Medicine, College of Physicians and Surgeons, Columbia University, 650 W. 168th Street, New York, NY 10032
| |
Collapse
|
32
|
de Lera ÁR, Krezel W, Rühl R. An Endogenous Mammalian Retinoid X Receptor Ligand, At Last! ChemMedChem 2016; 11:1027-37. [PMID: 27151148 DOI: 10.1002/cmdc.201600105] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Revised: 03/15/2016] [Indexed: 12/27/2022]
Abstract
9-cis-Retinoic acid was identified and claimed to be the endogenous ligand of the retinoid X receptors (RXRs) in 1992. Since then, the endogenous presence of this compound has never been rigorously confirmed. Instead, concerns have been raised by other groups that have reported that 9-cis-retinoic acid is undetectable or that its presence occurs at very low levels. Furthermore, these low levels could not satisfactorily explain the physiological activation of RXR. Alternative ligands, among them various lipids, have also been identified, but also did not fulfill criteria for rigorous endogenous relevance, and their consideration as bona fide endogenous mammalian RXR ligand has likewise been questioned. Recently, novel studies claim that the saturated analogue 9-cis-13,14-dihydroretinoic acid functions as an endogenous physiologically relevant mammalian RXR ligand.
Collapse
Affiliation(s)
- Ángel R de Lera
- Departamento de Química Orgánica, Facultade de Química, CINBIO and IBIV, Universidade de Vigo, Campus As Lagoas-Marcosende, 36310, Vigo, Spain.
| | - Wojciech Krezel
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Institut de la Santé et de la Recherche Médicale, U964, Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7104, Université de Strasbourg, Fédération de Médecine Translationnelle de Strasbourg, 67404, Illkirch, France
| | - Ralph Rühl
- Paprika Bioanalytics BT, Debrecen, Hungary.,MTA-DE, Public Health Research Group of the Hungarian Academy of Sciences, Faculty of Public Health, University of Debrecen, Hungary
| |
Collapse
|
33
|
Takeda K, Sriram S, Chan XHD, Ong WK, Yeo CR, Tan B, Lee SA, Kong KV, Hoon S, Jiang H, Yuen JJ, Perumal J, Agrawal M, Vaz C, So J, Shabbir A, Blaner WS, Olivo M, Han W, Tanavde V, Toh SA, Sugii S. Retinoic Acid Mediates Visceral-Specific Adipogenic Defects of Human Adipose-Derived Stem Cells. Diabetes 2016; 65:1164-78. [PMID: 26936961 PMCID: PMC5384626 DOI: 10.2337/db15-1315] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Accepted: 02/20/2016] [Indexed: 12/20/2022]
Abstract
Increased visceral fat, rather than subcutaneous fat, during the onset of obesity is associated with a higher risk of developing metabolic diseases. The inherent adipogenic properties of human adipose-derived stem cells (ASCs) from visceral depots are compromised compared with those of ASCs from subcutaneous depots, but little is known about the underlying mechanisms. Using ontological analysis of global gene expression studies, we demonstrate that many genes involved in retinoic acid (RA) synthesis or regulated by RA are differentially expressed in human tissues and ASCs from subcutaneous and visceral fat. The endogenous level of RA is higher in visceral ASCs; this is associated with upregulation of the RA synthesis gene through the visceral-specific developmental factor WT1. Excessive RA-mediated activity impedes the adipogenic capability of ASCs at early but not late stages of adipogenesis, which can be reversed by antagonism of RA receptors or knockdown of WT1. Our results reveal the developmental origin of adipocytic properties and the pathophysiological contributions of visceral fat depots.
Collapse
MESH Headings
- Active Transport, Cell Nucleus/drug effects
- Adipogenesis/drug effects
- Adult Stem Cells/cytology
- Adult Stem Cells/drug effects
- Adult Stem Cells/metabolism
- Adult Stem Cells/pathology
- Bariatric Surgery
- Benzoates/pharmacology
- Cells, Cultured
- Down-Regulation/drug effects
- Gene Expression Profiling
- Gene Expression Regulation, Developmental/drug effects
- Gene Ontology
- Humans
- Intra-Abdominal Fat/cytology
- Intra-Abdominal Fat/drug effects
- Intra-Abdominal Fat/metabolism
- Intra-Abdominal Fat/pathology
- Middle Aged
- Naphthalenes/pharmacology
- Obesity, Morbid/metabolism
- Obesity, Morbid/pathology
- Obesity, Morbid/surgery
- RNA Interference
- Receptors, Retinoic Acid/agonists
- Receptors, Retinoic Acid/antagonists & inhibitors
- Receptors, Retinoic Acid/metabolism
- Response Elements/drug effects
- Signal Transduction/drug effects
- Stilbenes/pharmacology
- Subcutaneous Fat, Abdominal/cytology
- Subcutaneous Fat, Abdominal/drug effects
- Subcutaneous Fat, Abdominal/metabolism
- Subcutaneous Fat, Abdominal/pathology
- Tretinoin/metabolism
- Up-Regulation/drug effects
- WT1 Proteins/antagonists & inhibitors
- WT1 Proteins/genetics
- WT1 Proteins/metabolism
Collapse
Affiliation(s)
- Kosuke Takeda
- Fat Metabolism and Stem Cell Group, Laboratory of Metabolic Medicine, Singapore Bioimaging Consortium, A*STAR, Singapore
| | - Sandhya Sriram
- Fat Metabolism and Stem Cell Group, Laboratory of Metabolic Medicine, Singapore Bioimaging Consortium, A*STAR, Singapore
| | - Xin Hui Derryn Chan
- Fat Metabolism and Stem Cell Group, Laboratory of Metabolic Medicine, Singapore Bioimaging Consortium, A*STAR, Singapore
| | - Wee Kiat Ong
- Fat Metabolism and Stem Cell Group, Laboratory of Metabolic Medicine, Singapore Bioimaging Consortium, A*STAR, Singapore
| | - Chia Rou Yeo
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Betty Tan
- Bioinformatics Institute, A*STAR, Singapore
| | - Seung-Ah Lee
- Department of Medicine, College of Physicians and Surgeons, Columbia University, New York, NY
| | - Kien Voon Kong
- Bio-optical Imaging Group, Laboratory of Metabolic Medicine, Singapore Bioimaging Consortium, A*STAR, Singapore
| | - Shawn Hoon
- Molecular Engineering Lab, A*STAR, Singapore
| | - Hongfeng Jiang
- Department of Medicine, College of Physicians and Surgeons, Columbia University, New York, NY
| | - Jason J Yuen
- Department of Medicine, College of Physicians and Surgeons, Columbia University, New York, NY
| | - Jayakumar Perumal
- Bio-optical Imaging Group, Laboratory of Metabolic Medicine, Singapore Bioimaging Consortium, A*STAR, Singapore
| | - Madhur Agrawal
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | | | - Jimmy So
- Department of Surgery, National University Hospital, Singapore
| | - Asim Shabbir
- Department of Surgery, National University Hospital, Singapore
| | - William S Blaner
- Department of Medicine, College of Physicians and Surgeons, Columbia University, New York, NY
| | - Malini Olivo
- Bio-optical Imaging Group, Laboratory of Metabolic Medicine, Singapore Bioimaging Consortium, A*STAR, Singapore
| | - Weiping Han
- Cardiovascular and Metabolic Disorders Program, Duke-National University of Singapore Medical School, Singapore Laboratory of Metabolic Medicine, Singapore Bioimaging Consortium, A*STAR, Singapore
| | - Vivek Tanavde
- Bioinformatics Institute, A*STAR, Singapore Institute of Medical Biology, A*STAR, Singapore
| | - Sue-Anne Toh
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Shigeki Sugii
- Fat Metabolism and Stem Cell Group, Laboratory of Metabolic Medicine, Singapore Bioimaging Consortium, A*STAR, Singapore Cardiovascular and Metabolic Disorders Program, Duke-National University of Singapore Medical School, Singapore
| |
Collapse
|
34
|
Li Q, Wu W, Lin H, Chang X, Bian H, Xia M, Yan H, Gao X. Serum retinol binding protein 4 is negatively related to estrogen in Chinese women with obesity: a cross-sectional study. Lipids Health Dis 2016; 15:52. [PMID: 26960804 PMCID: PMC4784408 DOI: 10.1186/s12944-016-0215-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2015] [Accepted: 02/25/2016] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND The association between serum Retinol Binding Protein 4 (RBP4) and obesity is still controversial. Serum RBP4 levels varies by gender, and estradiol may play a role in the difference. To investigate the participation of sex hormones in the association of RBP4 and obesity in humans, we measured serum RBP4, BMI, and sex hormones in 87 women from the outpatient. METHODS Eighty-seven subjects of Chinese women origin from the outpatient (aged 40.22 ± 15.54 years) were enrolled. Subjects with diseases affecting the metabolic state or not suitable to participate in this study were excluded. Anthropometrics and laboratory tests, including lipid profile, luteinizing hormone (LH), follicle stimulating hormone (FSH), prolactin (PRL), estradiol (E2),progesterone (PROG), testosterone (TESTO), and dehydroepiandrosterone (DHEA) were conducted. Serum RBP4 was detected by an enzyme immunoassay kit and validated by quantitative Western blotting. RESULTS Circulating RBP4 levels were positively associated with BMI, waist circumference, waist-to-hip ratio (WHR), systolic and diastolic (SBP), diastolic blood pressure (DBP), triglycerides (TG), low high-density lipoprotein cholesterol(LDL-c), and testosterone (TESTO) in the total group. While only in obese individuals, serum RBP4 levels were negatively associated with E2. The highest value was in the subjects with both obesity and the low estrogen level. Multiple linear regression analysis revealed that RBP4 correlated independently with TG, TC and insulin in all subjects, TC in non- obese individuals. However, E2 were significantly associated with serum RBP4 only in obese individuals. CONCLUSIONS RBP4 could be a marker of obesity-related factors; estrogen was negatively related to RBP4 and might be one of the influential factors.
Collapse
Affiliation(s)
- Qian Li
- Department of Endocrinology and Metabolism, Shanghai Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Weiyun Wu
- Department of Clinical Laboratory, Shanghai Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Huandong Lin
- Department of Endocrinology and Metabolism, Shanghai Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Xinxia Chang
- Department of Endocrinology and Metabolism, Shanghai Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Hua Bian
- Department of Endocrinology and Metabolism, Shanghai Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Mingfeng Xia
- Department of Endocrinology and Metabolism, Shanghai Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Hongmei Yan
- Department of Endocrinology and Metabolism, Shanghai Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
| | - Xin Gao
- Department of Endocrinology and Metabolism, Shanghai Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
35
|
Abstract
It is well established that chylomicron remnant (dietary) vitamin A is taken up from the circulation by hepatocytes, but more than 80 % of the vitamin A in the liver is stored in hepatic stellate cells (HSC). It presently is not known how vitamin A is transferred from hepatocytes to HSCs for storage. Since retinol-binding protein 4 (RBP4), a protein that is required for mobilizing stored vitamin A, is synthesized solely by hepatocytes and not HSCs, it similarly is not known how vitamin A is transferred from HSCs to hepatocytes. Although it has long been thought that RBP4 is absolutely essential for delivering vitamin A to tissues, recent research has proven that this notion is incorrect since total RBP4-deficiency is not lethal. In addition to RBP4, vitamin A is also found in the circulation bound to lipoproteins and as retinoic acid bound to albumin. It is not known how these different circulating pools of vitamin A contribute to the vitamin A needs of different tissues. In our view, better insight into these three issues is required to better understand vitamin A absorption, storage and mobilization. Here, we provide an up to date synthesis of current knowledge regarding the intestinal uptake of dietary vitamin A, the storage of vitamin A within the liver, and the mobilization of hepatic vitamin A stores, and summarize areas where our understanding of these processes is incomplete.
Collapse
|
36
|
Abstract
Early in the age of modern medicine the consequences of vitamin A deficiency drew attention to the fundamental link between retinoid-dependent homeostatic regulation and malignant hyperproliferative diseases. The term "retinoid" includes a handful of endogenous and a large group of synthetic derivatives of vitamin A. These multifunctional lipid-soluble compounds directly regulate target genes of specific biological functions and critical signaling pathways to orchestrate complex functions from vision to development, metabolism, and inflammation. Many of the retinoid activities on the cellular level have been well characterized and translated to the regulation of processes like differentiation and cell death, which play critical roles in the outcome of malignant transformation of tissues. In fact, retinoid-based differentiation therapy of acute promyelocytic leukemia was one of the first successful examples of molecularly targeted treatment strategies. The selectivity, high receptor binding affinity and the ability of retinoids to directly modulate gene expression programs present a distinct pharmacological opportunity for cancer treatment and prevention. However, to fully exploit their potential, the adverse effects of retinoids must be averted. In this review we provide an overview of the biology of retinoid (activated by nuclear retinoic acid receptors [RARs]) and rexinoid (engaged by nuclear retinoid X receptors [RXRs]) action concluded from a long line of preclinical studies, in relation to normal and transformed states of cells. We will also discuss the past and current uses of retinoids in the treatment of malignancies, the potential of rexinoids in the cancer prevention setting, both as single agents and in combinations.
Collapse
Affiliation(s)
- Iván P Uray
- Department of Clinical Cancer Prevention, The University of Texas, MD Anderson Cancer Center, Houston, TX, USA.
| | - Ethan Dmitrovsky
- Department of Clinical Cancer Prevention, The University of Texas, MD Anderson Cancer Center, Houston, TX, USA
| | - Powel H Brown
- Department of Clinical Cancer Prevention, The University of Texas, MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
37
|
Yuen JJ, Lee SA, Jiang H, Brun PJ, Blaner WS. DGAT1-deficiency affects the cellular distribution of hepatic retinoid and attenuates the progression of CCl4-induced liver fibrosis. Hepatobiliary Surg Nutr 2015; 4:184-96. [PMID: 26151058 DOI: 10.3978/j.issn.2304-3881.2014.12.02] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2014] [Accepted: 10/29/2014] [Indexed: 01/03/2023]
Abstract
BACKGROUND Diacylglycerol O-acyltransferase 1 (DGAT1) catalyzes the final step of triglyceride synthesis, transferring an acyl group from acyl-CoA to diacylglycerol. DGAT1 also catalyzes the acyl-CoA-dependent formation of retinyl esters in vitro and in mouse intestine and skin. Although DGAT1 is expressed in both hepatocytes and hepatic stellate cells (HSCs), we reported genetic and nutritional studies that established that DGAT1 does not contribute to retinyl ester formation in the liver. METHODS We now have explored in more depth the role(s) of DGAT1 in hepatic retinoid metabolism and storage. RESULTS Our data show that DGAT1 affects the cellular distribution between hepatocytes and HSCs of stored and newly absorbed dietary retinol. For livers of Dgat1-deficient mice, a greater percentage of stored retinyl ester is present in HSCs at the expense of hepatocytes. This is also true for newly absorbed oral [(3)H]retinol. These differences are associated with significantly increased expression, by 2.8-fold, of cellular retinol-binding protein, type I (RBP1) in freshly isolated HSCs from Dgat1-deficient mice, raising the possibility that RBP1, which contributes to retinol uptake into cells and retinyl ester synthesis, accounts for the differences. We further show that the retinyl ester-containing lipid droplets in HSCs are affected in Dgat1-null mice, being fewer in number but, on average, larger than in wild type (WT) HSCs. Finally, we demonstrate that DGAT1 affects experimentally induced HSC activation in vivo but that this effect is independent of altered retinoic acid availability or effects on gene expression. CONCLUSIONS Our studies establish that DGAT1 has a role in hepatic retinoid storage and metabolism, but this does not involve direct actions of DGAT1 in retinyl ester synthesis.
Collapse
Affiliation(s)
- Jason J Yuen
- Department of Medicine, Columbia University, New York, NY 10032, USA
| | - Seung-Ah Lee
- Department of Medicine, Columbia University, New York, NY 10032, USA
| | - Hongfeng Jiang
- Department of Medicine, Columbia University, New York, NY 10032, USA
| | | | - William S Blaner
- Department of Medicine, Columbia University, New York, NY 10032, USA
| |
Collapse
|
38
|
Clugston RD, Huang LS, Blaner WS. Chronic alcohol consumption has a biphasic effect on hepatic retinoid loss. FASEB J 2015; 29:3654-67. [PMID: 25985802 DOI: 10.1096/fj.14-266296] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Accepted: 05/04/2015] [Indexed: 01/06/2023]
Abstract
The alcohol-induced depletion of hepatic retinoid stores correlates with the progression of liver injury; however, the mechanisms underlying alcohol's effects have not been fully elucidated. Our goal was to gain a mechanistic understanding of alcohol-induced hepatic retinoid depletion. Wild-type and mutant mice were continuously fed alcohol through Lieber-DeCarli liquid diets, with matched control animals pair fed an isocaloric alcohol-free diet to ensure equal nutrient and calorie intake between groups. A systematic analysis of tissue retinol and retinyl ester levels was performed with HPLC, complemented by gene and protein expression analyses. Our results delineated 2 phases of alcohol-induced depletion of hepatic retinoid. Initially, ∼15% of hepatic retinoid content was mobilized from the liver, causing extrahepatic tissue retinoid levels to increase. Subsequently, there was a precipitous drop in hepatic retinoid content (>60%), without further retinoid accumulation in the periphery. Follow-up studies in mutant mice revealed roles for RBP, CRBP1, and CD36 in retinoid mobilization and extrahepatic retinoid uptake, as well as a role for CYP2E1 in the catabolism of hepatic retinoid. In summary, alcohol has a biphasic effect on hepatic retinoid stores, characterized by an initial phase of rapid mobilization to extrahepatic tissues followed by extensive catabolism within the liver.
Collapse
Affiliation(s)
- Robin D Clugston
- Department of Medicine, Columbia University, New York, New York, USA
| | - Li-Shin Huang
- Department of Medicine, Columbia University, New York, New York, USA
| | - William S Blaner
- Department of Medicine, Columbia University, New York, New York, USA
| |
Collapse
|
39
|
Zemany L, Bhanot S, Peroni OD, Murray SF, Moraes-Vieira PM, Castoldi A, Manchem P, Guo S, Monia BP, Kahn BB. Transthyretin Antisense Oligonucleotides Lower Circulating RBP4 Levels and Improve Insulin Sensitivity in Obese Mice. Diabetes 2015; 64:1603-14. [PMID: 25524914 PMCID: PMC4407860 DOI: 10.2337/db14-0970] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2014] [Accepted: 12/11/2014] [Indexed: 12/27/2022]
Abstract
Circulating transthyretin (TTR) is a critical determinant of plasma retinol-binding protein 4 (RBP4) levels. Elevated RBP4 levels cause insulin resistance, and the lowering of RBP4 levels improves glucose homeostasis. Since lowering TTR levels increases renal clearance of RBP4, we determined whether decreasing TTR levels with antisense oligonucleotides (ASOs) improves glucose metabolism and insulin sensitivity in obesity. TTR-ASO treatment of mice with genetic or diet-induced obesity resulted in an 80-95% decrease in circulating levels of TTR and RBP4. Treatment with TTR-ASOs, but not control ASOs, decreased insulin levels by 30-60% and improved insulin sensitivity in ob/ob mice and high-fat diet-fed mice as early as after 2 weeks of treatment. The reduced insulin levels were sustained for up to 9 weeks of treatment and were associated with reduced adipose tissue inflammation. Body weight was not changed. TTR-ASO treatment decreased LDL cholesterol in high-fat diet-fed mice. The glucose infusion rate during a hyperinsulinemic-euglycemic clamp was increased by 50% in high-fat diet-fed mice treated with TTR-ASOs, demonstrating improved insulin sensitivity. This was also demonstrated by 20% greater inhibition of hepatic glucose production, a 45-60% increase of glucose uptake into skeletal and cardiac muscle, and a twofold increase in insulin signaling in muscle. These data show that decreasing circulating TTR levels or altering TTR-RBP4 binding could be a potential therapeutic approach for the treatment of type 2 diabetes.
Collapse
Affiliation(s)
- Laura Zemany
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA
| | | | - Odile D Peroni
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA
| | | | - Pedro M Moraes-Vieira
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA
| | - Angela Castoldi
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA
| | | | | | | | - Barbara B Kahn
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA
| |
Collapse
|
40
|
Kraus BJ, Sartoretto JL, Polak P, Hosooka T, Shiroto T, Eskurza I, Lee SA, Jiang H, Michel T, Kahn BB. Novel role for retinol-binding protein 4 in the regulation of blood pressure. FASEB J 2015; 29:3133-40. [PMID: 25911613 DOI: 10.1096/fj.14-266064] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Accepted: 03/31/2015] [Indexed: 12/23/2022]
Abstract
Elevated levels of serum retinol-binding protein 4 (RBP4) contribute to insulin resistance and correlate with increased prevalence of hypertension and myocardial infarction. We sought to determine whether lowering RBP4 would improve blood pressure (BP) and protect against obesity- or angiotensin (Ang)-II-induced hypertension. Systolic and diastolic BP were lower in the RBP4-knockout (RBP4-KO) mice and higher in the RBP4-overexpressing (RBP4-Tg) mice compared with BP in the wild-type (WT) littermates. Carbachol-induced vasodilatation was increased in arteries from the RBP4-KO compared with the WT mice and was impaired in the RBP4-Tg mice. Aortic eNOS(Ser1177) phosphorylation was enhanced ∼50% in the RBP4-KO mice, with no change in total eNOS protein. Feeding a high-fat diet increased BP in the RBP4-KO mice only to the level in the WT mice fed chow and had no effect on aortic eNOS(Ser1177) phosphorylation. Ang-II infusion resulted in 22 mmHg lower systolic BP in the RBP4-KO than in the WT mice, although the relative BP increase over saline infusion was ∼30% in both. Ang-II treatment decreased aortic eNOS(Ser1177) phosphorylation in the WT and RBP4-KO mice, but phosphorylation remained higher in the RBP4-KO mice. Cardiac hypertrophy with Ang-II treatment was diminished by 56% in the RBP4-KO mice. Thus, elevated serum RBP4 raises BP and lack of RBP4 reduces it, with commensurate changes in aortic eNOS(Ser1177) phosphorylation. Lowering RBP4 may reduce BP through enhanced eNOS-mediated vasodilatation and may be a novel therapeutic approach for hypertension.
Collapse
Affiliation(s)
- Bettina J Kraus
- *Division of Endocrinology, Diabetes, and Metabolism, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA; Cardiovascular Medicine Division, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA, and Department of Medicine, College of Physicians and Surgeons, Columbia University, New York, New York, USA
| | - Juliano L Sartoretto
- *Division of Endocrinology, Diabetes, and Metabolism, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA; Cardiovascular Medicine Division, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA, and Department of Medicine, College of Physicians and Surgeons, Columbia University, New York, New York, USA
| | - Pazit Polak
- *Division of Endocrinology, Diabetes, and Metabolism, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA; Cardiovascular Medicine Division, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA, and Department of Medicine, College of Physicians and Surgeons, Columbia University, New York, New York, USA
| | - Tetsuya Hosooka
- *Division of Endocrinology, Diabetes, and Metabolism, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA; Cardiovascular Medicine Division, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA, and Department of Medicine, College of Physicians and Surgeons, Columbia University, New York, New York, USA
| | - Takashi Shiroto
- *Division of Endocrinology, Diabetes, and Metabolism, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA; Cardiovascular Medicine Division, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA, and Department of Medicine, College of Physicians and Surgeons, Columbia University, New York, New York, USA
| | - Iratxe Eskurza
- *Division of Endocrinology, Diabetes, and Metabolism, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA; Cardiovascular Medicine Division, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA, and Department of Medicine, College of Physicians and Surgeons, Columbia University, New York, New York, USA
| | - Seung-Ah Lee
- *Division of Endocrinology, Diabetes, and Metabolism, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA; Cardiovascular Medicine Division, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA, and Department of Medicine, College of Physicians and Surgeons, Columbia University, New York, New York, USA
| | - Hongfeng Jiang
- *Division of Endocrinology, Diabetes, and Metabolism, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA; Cardiovascular Medicine Division, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA, and Department of Medicine, College of Physicians and Surgeons, Columbia University, New York, New York, USA
| | - Thomas Michel
- *Division of Endocrinology, Diabetes, and Metabolism, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA; Cardiovascular Medicine Division, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA, and Department of Medicine, College of Physicians and Surgeons, Columbia University, New York, New York, USA
| | - Barbara B Kahn
- *Division of Endocrinology, Diabetes, and Metabolism, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA; Cardiovascular Medicine Division, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA, and Department of Medicine, College of Physicians and Surgeons, Columbia University, New York, New York, USA
| |
Collapse
|
41
|
Wang CX, Jiang H, Yuen JJ, Lee SA, Narayanasamy S, Curley RW, Harrison EH, Blaner WS. Actions of β-apo-carotenoids in differentiating cells: differential effects in P19 cells and 3T3-L1 adipocytes. Arch Biochem Biophys 2015; 572:2-10. [PMID: 25602703 DOI: 10.1016/j.abb.2015.01.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Revised: 01/02/2015] [Accepted: 01/09/2015] [Indexed: 01/28/2023]
Abstract
β-Apo-carotenoids, including β-apo-13-carotenone and β-apo-14'-carotenal, are potent retinoic acid receptor (RAR) antagonists in transactivation assays. We asked how these influence RAR-dependent processes in living cells. Initially, we explored the effects of β-apo-13-carotenone and β-apo-14'-carotenal on P19 cells, a mouse embryonal carcinoma cell line that differentiates into neurons when treated with all-trans-retinoic acid. Treatment of P19 cells with either compound failed to block all-trans-retinoic acid induced differentiation. Liquid chromatography tandem mass spectrometry studies, however, established that neither of these β-apo-carotenoids accumulates in P19 cells. All-trans-retinoic acid accumulated to high levels in P19 cells. This suggests that the uptake and metabolism of β-apo-carotenoids by some cells does not involve the same processes used for retinoids and that these may be cell type specific. We also investigated the effects of two β-apo-carotenoids on 3T3-L1 adipocyte marker gene expression during adipocyte differentiation. Treatment of 3T3-L1 adipocytes with either β-apo-13-carotenone or β-apo-10'-carotenoic acid, which lacks RAR antagonist activity, stimulated adipocyte marker gene expression. Neither blocked the inhibitory effects of a relatively large dose of exogenous all-trans-retinoic acid on adipocyte differentiation. Our data suggest that in addition to acting as transcriptional antagonists, some β-apo-carotenoids act through other mechanisms to influence 3T3-L1 adipocyte differentiation.
Collapse
Affiliation(s)
- Cynthia X Wang
- Columbia College, Columbia University, New York, NY 10032, United States
| | - Hongfeng Jiang
- College of Physicians and Surgeons, Columbia University, New York, NY 10032, United States
| | - Jason J Yuen
- College of Physicians and Surgeons, Columbia University, New York, NY 10032, United States
| | - Seung-Ah Lee
- College of Physicians and Surgeons, Columbia University, New York, NY 10032, United States
| | - Sureshbabu Narayanasamy
- College of Pharmacy, The Ohio State University, Columbus, OH 43210, United States; Department of Human Nutrition, The Ohio State University, Columbus, OH 43210, United States
| | - Robert W Curley
- College of Pharmacy, The Ohio State University, Columbus, OH 43210, United States
| | - Earl H Harrison
- Department of Human Nutrition, The Ohio State University, Columbus, OH 43210, United States
| | - William S Blaner
- College of Physicians and Surgeons, Columbia University, New York, NY 10032, United States.
| |
Collapse
|
42
|
Lee SA, Jiang H, Trent CM, Yuen JJ, Narayanasamy S, Curley RW, Harrison EH, Goldberg IJ, Maurer MS, Blaner WS. Cardiac dysfunction in β-carotene-15,15'-dioxygenase-deficient mice is associated with altered retinoid and lipid metabolism. Am J Physiol Heart Circ Physiol 2014; 307:H1675-84. [PMID: 25260612 DOI: 10.1152/ajpheart.00548.2014] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Dietary carotenoids like β-carotene are converted within the body either to retinoid, via β-carotene-15,15'-dioxygenase (BCO1), or to β-apo-carotenoids, via β-carotene-9',10'-oxygenase 2. Some β-apo-carotenoids are potent antagonists of retinoic acid receptor (RAR)-mediated transcriptional regulation, which is required to ensure normal heart development and functions. We established liquid chromatography tandem mass spectrometery methods for measuring concentrations of 10 β-apo-carotenoids in mouse plasma, liver, and heart and assessed how these are influenced by Bco1 deficiency and β-carotene intake. Surprisingly, Bco1(-/-) mice had an increase in heart levels of retinol, nonesterified fatty acids, and ceramides and a decrease in heart triglycerides. These lipid changes were accompanied by elevations in levels of genes important to retinoid metabolism, specifically retinol dehydrogenase 10 and retinol-binding protein 4, as well as genes involved in lipid metabolism, including peroxisome proliferator-activated receptor-γ, lipoprotein lipase, Cd36, stearoyl-CoA desaturase 1, and fatty acid synthase. We also obtained evidence of compromised heart function, as assessed by two-dimensional echocardiography, in Bco1(-/-) mice. However, the total absence of Bco1 did not substantially affect β-apo-carotenoid concentrations in the heart. β-Carotene administration to matched Bco1(-/-) and wild-type mice elevated total β-apo-carotenal levels in the heart, liver, and plasma and total β-apo-carotenoic acid levels in the liver. Thus, BCO1 modulates heart metabolism and function, possibly by altering levels of cofactors required for the actions of nuclear hormone receptors.
Collapse
Affiliation(s)
- Seung-Ah Lee
- Department of Medicine, College of Physicians and Surgeons, Columbia University, New York, New York
| | - Hongfeng Jiang
- Department of Medicine, College of Physicians and Surgeons, Columbia University, New York, New York
| | - Chad M Trent
- Department of Medicine, College of Physicians and Surgeons, Columbia University, New York, New York
| | - Jason J Yuen
- Department of Medicine, College of Physicians and Surgeons, Columbia University, New York, New York
| | - Sureshbabu Narayanasamy
- College of Pharmacy, The Ohio State University, Columbus, Ohio; and Department of Human Nutrition, The Ohio State University, Columbus, Ohio
| | - Robert W Curley
- College of Pharmacy, The Ohio State University, Columbus, Ohio; and
| | - Earl H Harrison
- Department of Human Nutrition, The Ohio State University, Columbus, Ohio
| | - Ira J Goldberg
- Department of Medicine, College of Physicians and Surgeons, Columbia University, New York, New York
| | - Mathew S Maurer
- Department of Medicine, College of Physicians and Surgeons, Columbia University, New York, New York
| | - William S Blaner
- Department of Medicine, College of Physicians and Surgeons, Columbia University, New York, New York;
| |
Collapse
|
43
|
Movassagh M, Mudvari P, Kokkinaki M, Edwards NJ, Golestaneh N, Horvath A. Analysis for co-occurring sequence features identifies link between common synonymous variant and an early-terminated NPC1 isoform. J Clin Bioinforma 2014. [DOI: 10.1186/2043-9113-4-14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|