1
|
Iyer S, Montmayeur JP, Zolotukhin S, Dotson CD. Exogenous oral application of PYY and exendin-4 impacts upon taste-related behavior and taste perception in wild-type mice. Neuropharmacology 2025; 272:110408. [PMID: 40086622 PMCID: PMC12042652 DOI: 10.1016/j.neuropharm.2025.110408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2024] [Revised: 02/26/2025] [Accepted: 03/09/2025] [Indexed: 03/16/2025]
Abstract
Several gut peptides have been implicated in feeding and body mass accumulation. Glucagon-like peptide 1 (GLP-1) and peptide tyrosine-tyrosine (PYY) have been shown to mediate satiety and reduce food intake. While systemic administration of such peptides has been explored as a therapy for metabolic disease, the effects of these hormones on taste signaling should also be considered given the importance of taste to feeding decisions and considering the fact that components of these signaling systems are expressed in cells of the peripheral gustatory system. We previously demonstrated that genetic disruption of PYY signaling in mice can impact on taste responsiveness and feeding and that viral expression of PYY in the salivary glands of PYY knockout mice can rescue responsiveness. The present work uses adeno-associated virus-mediated salivary gland treatment with both GLP-1 receptor agonist exendin-4 and/or PYY encoding vectors to explore the effect of stimulating these orally present signaling systems on taste-related behavioral responsiveness in male wild-type mice with intact peptide signaling systems. Results showed a significant effect of salivary gland treatment on responsiveness to multiple taste qualities. Data gathered from taste bud cells in vitro suggest that these peptides directly influence the responsiveness of these primary sensory cells. Collectively, these findings show that taste perception can be modulated by the exogenous application of satiety peptides in wild-type mice and suggest that the taste bud is a promising substrate for food intake modulation.
Collapse
Affiliation(s)
- Satya Iyer
- Neuroscience Institute, Georgia State University, Atlanta, GA, 30303, USA
| | | | - Sergei Zolotukhin
- Department of Pediatrics, University of Florida College of Medicine, Gainesville, FL, 32610, USA
| | - Cedrick D Dotson
- Neuroscience Institute, Georgia State University, Atlanta, GA, 30303, USA.
| |
Collapse
|
2
|
Schöneberg T. Modulating vertebrate physiology by genomic fine-tuning of GPCR functions. Physiol Rev 2025; 105:383-439. [PMID: 39052017 DOI: 10.1152/physrev.00017.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 07/08/2024] [Accepted: 07/20/2024] [Indexed: 07/27/2024] Open
Abstract
G protein-coupled receptors (GPCRs) play a crucial role as membrane receptors, facilitating the communication of eukaryotic species with their environment and regulating cellular and organ interactions. Consequently, GPCRs hold immense potential in contributing to adaptation to ecological niches and responding to environmental shifts. Comparative analyses of vertebrate genomes reveal patterns of GPCR gene loss, expansion, and signatures of selection. Integrating these genomic data with insights from functional analyses of gene variants enables the interpretation of genotype-phenotype correlations. This review underscores the involvement of GPCRs in adaptive processes, presenting numerous examples of how alterations in GPCR functionality influence vertebrate physiology or, conversely, how environmental changes impact GPCR functions. The findings demonstrate that modifications in GPCR function contribute to adapting to aquatic, arid, and nocturnal habitats, influencing camouflage strategies, and specializing in particular dietary preferences. Furthermore, the adaptability of GPCR functions provides an effective mechanism in facilitating past, recent, or ongoing adaptations in animal domestication and human evolution and should be considered in therapeutic strategies and drug development.
Collapse
Affiliation(s)
- Torsten Schöneberg
- Rudolf Schönheimer Institute of Biochemistry, Molecular Biochemistry, Medical Faculty, University of Leipzig, Leipzig, Germany
- School of Medicine, University of Global Health Equity, Kigali, Rwanda
| |
Collapse
|
3
|
Tu K, Zhou M, Tan JJ, Markos L, Cloud C, Zhou M, Hayashi N, Rawson NE, Margolskee RF, Wang H. Chronic social defeat stress broadly inhibits gene expression in the peripheral taste system and alters taste responses in mice. Physiol Behav 2024; 275:114446. [PMID: 38128683 PMCID: PMC10843841 DOI: 10.1016/j.physbeh.2023.114446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 12/16/2023] [Accepted: 12/18/2023] [Indexed: 12/23/2023]
Abstract
Human studies have linked stress exposure to unhealthy eating behavior. However, the mechanisms that drive stress-associated changes in eating behavior remain incompletely understood. The sense of taste plays important roles in food preference and intake. In this study, we use a chronic social defeat stress (CSDS) model in mice to address whether chronic stress impacts taste sensation and gene expression in taste buds and the gut. Our results showed that CSDS significantly elevated circulating levels of corticosterone and acylated ghrelin while lowering levels of leptin, suggesting a change in metabolic hormones that promotes food consumption. Stressed mice substantially increased their intake of food and water 3-5 days after the stress onset and gradually gained more body weight than that of controls. Moreover, CSDS significantly decreased the expression of multiple taste receptors and signaling molecules in taste buds and reduced mRNA levels of several taste progenitor/stem cell markers and regulators. Stressed mice showed significantly reduced sensitivity and response to umami and sweet taste compounds in behavioral tests. In the small intestine, the mRNA levels of Gnat3 and Tas1r2 were elevated in CSDS mice. The increased Gnat3 was mostly localized in a type of Gnat3+ and CD45+ immune cells, suggesting changes of immune cell distribution in the gut of stressed mice. Together, our study revealed broad effects of CSDS on the peripheral taste system and the gut, which may contribute to stress-associated changes in eating behavior.
Collapse
Affiliation(s)
- Katelyn Tu
- The Monell Chemical Senses Center, 3500 Market St., Philadelphia, PA 19104, USA; Haverford College, 370 Lancaster Ave., Haverford, PA 19041, USA
| | - Mary Zhou
- The Monell Chemical Senses Center, 3500 Market St., Philadelphia, PA 19104, USA; Haverford College, 370 Lancaster Ave., Haverford, PA 19041, USA
| | - Jidong J Tan
- The Monell Chemical Senses Center, 3500 Market St., Philadelphia, PA 19104, USA; Department of Chemistry, the University of Pennsylvania, 231 S. 34 St., Philadelphia, PA 19104, USA
| | - Loza Markos
- The Monell Chemical Senses Center, 3500 Market St., Philadelphia, PA 19104, USA
| | - Cameron Cloud
- The Monell Chemical Senses Center, 3500 Market St., Philadelphia, PA 19104, USA; Lafayette College, 730 High St., Easton, PA 18042, USA
| | - Minliang Zhou
- The Monell Chemical Senses Center, 3500 Market St., Philadelphia, PA 19104, USA
| | - Naoki Hayashi
- Department of Applied Biological Chemistry, Graduate School of Agriculture and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Nancy E Rawson
- The Monell Chemical Senses Center, 3500 Market St., Philadelphia, PA 19104, USA
| | - Robert F Margolskee
- The Monell Chemical Senses Center, 3500 Market St., Philadelphia, PA 19104, USA
| | - Hong Wang
- The Monell Chemical Senses Center, 3500 Market St., Philadelphia, PA 19104, USA.
| |
Collapse
|
4
|
Khan AS, Hichami A, Murtaza B, Louillat-Habermeyer ML, Ramseyer C, Azadi M, Yesylevskyy S, Mangin F, Lirussi F, Leemput J, Merlin JF, Schmitt A, Suliman M, Bayardon J, Semnanian S, Jugé S, Khan NA. Novel Fat Taste Receptor Agonists Curtail Progressive Weight Gain in Obese Male Mice. Cell Mol Gastroenterol Hepatol 2023; 15:633-663. [PMID: 36410709 PMCID: PMC9871744 DOI: 10.1016/j.jcmgh.2022.11.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 11/10/2022] [Accepted: 11/10/2022] [Indexed: 11/20/2022]
Abstract
BACKGROUND & AIMS The spontaneous preference for dietary lipids is principally regulated by 2 lingual fat taste receptors, CD36 and GPR120. Obese animals and most of human subjects exhibit low orosensory perception of dietary fat because of malfunctioning of these taste receptors. Our aim was to target the 2 fat taste receptors by newly synthesized high affinity fatty acid agonists to decrease fat-rich food intake and obesity. METHODS We synthesized 2 fat taste receptor agonists (FTA), NKS-3 (CD36 agonist) and NKS-5 (CD36 and GPR120 agonist). We determined their molecular dynamic interactions with fat taste receptors and the effect on Ca2+ signaling in mouse and human taste bud cells (TBC). In C57Bl/6 male mice, we assessed their gustatory perception and effects of their lingual application on activation of tongue-gut loop. We elucidated their effects on obesity and its related parameters in male mice fed a high-fat diet. RESULTS The two FTA, NKS-3 and NKS-5, triggered higher Ca2+ signaling than a dietary long-chain fatty acid in human and mouse TBC. Mice exhibited a gustatory attraction for these compounds. In conscious mice, the application of FTA onto the tongue papillae induced activation of tongue-gut loop, marked by the release of pancreato-bile juice into collecting duct and cholecystokinin and peptide YY into blood stream. Daily intake of NKS-3 or NKS-5 via feeding bottles decreased food intake and progressive weight gain in obese mice but not in control mice. CONCLUSIONS Our results show that targeting fat sensors in the tongue by novel chemical fat taste agonists might represent a new strategy to reduce obesity.
Collapse
Affiliation(s)
- Amira Sayed Khan
- NUTox, UMR UB/AgroSup/INSERM U1231, Lipides, Nutrition & Cancer, LABEX-LipStick, Université de Bourgogne-Franche Comté (UBFC), Dijon, France
| | - Aziz Hichami
- NUTox, UMR UB/AgroSup/INSERM U1231, Lipides, Nutrition & Cancer, LABEX-LipStick, Université de Bourgogne-Franche Comté (UBFC), Dijon, France
| | - Babar Murtaza
- NUTox, UMR UB/AgroSup/INSERM U1231, Lipides, Nutrition & Cancer, LABEX-LipStick, Université de Bourgogne-Franche Comté (UBFC), Dijon, France
| | | | - Christophe Ramseyer
- Laboratoire ChronoEnvironnement, UMR CNRS6249, Université de Bourgogne Franche-Comté (UBFC), Besançon, France
| | - Maryam Azadi
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Semen Yesylevskyy
- Laboratoire ChronoEnvironnement, UMR CNRS6249, Université de Bourgogne Franche-Comté (UBFC), Besançon, France; Department of Physics of Biological Systems, Institute of Physics of the National Academy of Sciences of Ukraine, Kyiv, Ukraine
| | - Floriane Mangin
- ICMUB-OCS, UMR CNRS 6302, Université de Bourgogne-Franche Comté (UBFC), Dijon, France
| | - Frederic Lirussi
- HSP-pathies, UMR UB/AgroSup/INSERM U1231, Lipides, Nutrition & Cancer, Université de Bourgogne-Franche Comté (UBFC), Dijon, France
| | - Julia Leemput
- NUTox, UMR UB/AgroSup/INSERM U1231, Lipides, Nutrition & Cancer, LABEX-LipStick, Université de Bourgogne-Franche Comté (UBFC), Dijon, France
| | - Jean-Francois Merlin
- NUTox, UMR UB/AgroSup/INSERM U1231, Lipides, Nutrition & Cancer, LABEX-LipStick, Université de Bourgogne-Franche Comté (UBFC), Dijon, France
| | - Antonin Schmitt
- HSP-pathies, UMR UB/AgroSup/INSERM U1231, Lipides, Nutrition & Cancer, Université de Bourgogne-Franche Comté (UBFC), Dijon, France
| | - Muhtadi Suliman
- NUTox, UMR UB/AgroSup/INSERM U1231, Lipides, Nutrition & Cancer, LABEX-LipStick, Université de Bourgogne-Franche Comté (UBFC), Dijon, France
| | - Jérôme Bayardon
- ICMUB-OCS, UMR CNRS 6302, Université de Bourgogne-Franche Comté (UBFC), Dijon, France
| | - Saeed Semnanian
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Sylvain Jugé
- ICMUB-OCS, UMR CNRS 6302, Université de Bourgogne-Franche Comté (UBFC), Dijon, France
| | - Naim Akhtar Khan
- NUTox, UMR UB/AgroSup/INSERM U1231, Lipides, Nutrition & Cancer, LABEX-LipStick, Université de Bourgogne-Franche Comté (UBFC), Dijon, France.
| |
Collapse
|
5
|
Jaime-Lara RB, Brooks BE, Vizioli C, Chiles M, Nawal N, Ortiz-Figueroa RSE, Livinski AA, Agarwal K, Colina-Prisco C, Iannarino N, Hilmi A, Tejeda HA, Joseph PV. A systematic review of the biological mediators of fat taste and smell. Physiol Rev 2023; 103:855-918. [PMID: 36409650 PMCID: PMC9678415 DOI: 10.1152/physrev.00061.2021] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Taste and smell play a key role in our ability to perceive foods. Overconsumption of highly palatable energy-dense foods can lead to increased caloric intake and obesity. Thus there is growing interest in the study of the biological mediators of fat taste and associated olfaction as potential targets for pharmacologic and nutritional interventions in the context of obesity and health. The number of studies examining mechanisms underlying fat taste and smell has grown rapidly in the last 5 years. Therefore, the purpose of this systematic review is to summarize emerging evidence examining the biological mechanisms of fat taste and smell. A literature search was conducted of studies published in English between 2014 and 2021 in adult humans and animal models. Database searches were conducted using PubMed, EMBASE, Scopus, and Web of Science for key terms including fat/lipid, taste, and olfaction. Initially, 4,062 articles were identified through database searches, and a total of 84 relevant articles met inclusion and exclusion criteria and are included in this review. Existing literature suggests that there are several proteins integral to fat chemosensation, including cluster of differentiation 36 (CD36) and G protein-coupled receptor 120 (GPR120). This systematic review will discuss these proteins and the signal transduction pathways involved in fat detection. We also review neural circuits, key brain regions, ingestive cues, postingestive signals, and genetic polymorphism that play a role in fat perception and consumption. Finally, we discuss the role of fat taste and smell in the context of eating behavior and obesity.
Collapse
Affiliation(s)
- Rosario B. Jaime-Lara
- 1Section of Sensory Science and Metabolism Unit, Division of Intramural Research, National Institutes of Health, National Institute of Alcohol Abuse and Alcoholism, U.S. Department of Health and Human Services, Bethesda, Maryland
| | - Brianna E. Brooks
- 1Section of Sensory Science and Metabolism Unit, Division of Intramural Research, National Institutes of Health, National Institute of Alcohol Abuse and Alcoholism, U.S. Department of Health and Human Services, Bethesda, Maryland
| | - Carlotta Vizioli
- 1Section of Sensory Science and Metabolism Unit, Division of Intramural Research, National Institutes of Health, National Institute of Alcohol Abuse and Alcoholism, U.S. Department of Health and Human Services, Bethesda, Maryland
| | - Mari Chiles
- 1Section of Sensory Science and Metabolism Unit, Division of Intramural Research, National Institutes of Health, National Institute of Alcohol Abuse and Alcoholism, U.S. Department of Health and Human Services, Bethesda, Maryland,4Section of Neuromodulation and Synaptic Integration, Division of Intramural Research, National Institute of Mental Health, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, Maryland
| | - Nafisa Nawal
- 1Section of Sensory Science and Metabolism Unit, Division of Intramural Research, National Institutes of Health, National Institute of Alcohol Abuse and Alcoholism, U.S. Department of Health and Human Services, Bethesda, Maryland
| | - Rodrigo S. E. Ortiz-Figueroa
- 1Section of Sensory Science and Metabolism Unit, Division of Intramural Research, National Institutes of Health, National Institute of Alcohol Abuse and Alcoholism, U.S. Department of Health and Human Services, Bethesda, Maryland
| | - Alicia A. Livinski
- 3NIH Library, Office of Research Services, Office of the Director, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, Maryland
| | - Khushbu Agarwal
- 1Section of Sensory Science and Metabolism Unit, Division of Intramural Research, National Institutes of Health, National Institute of Alcohol Abuse and Alcoholism, U.S. Department of Health and Human Services, Bethesda, Maryland
| | - Claudia Colina-Prisco
- 1Section of Sensory Science and Metabolism Unit, Division of Intramural Research, National Institutes of Health, National Institute of Alcohol Abuse and Alcoholism, U.S. Department of Health and Human Services, Bethesda, Maryland
| | - Natalia Iannarino
- 1Section of Sensory Science and Metabolism Unit, Division of Intramural Research, National Institutes of Health, National Institute of Alcohol Abuse and Alcoholism, U.S. Department of Health and Human Services, Bethesda, Maryland
| | - Aliya Hilmi
- 1Section of Sensory Science and Metabolism Unit, Division of Intramural Research, National Institutes of Health, National Institute of Alcohol Abuse and Alcoholism, U.S. Department of Health and Human Services, Bethesda, Maryland
| | - Hugo A. Tejeda
- 1Section of Sensory Science and Metabolism Unit, Division of Intramural Research, National Institutes of Health, National Institute of Alcohol Abuse and Alcoholism, U.S. Department of Health and Human Services, Bethesda, Maryland
| | - Paule V. Joseph
- 1Section of Sensory Science and Metabolism Unit, Division of Intramural Research, National Institutes of Health, National Institute of Alcohol Abuse and Alcoholism, U.S. Department of Health and Human Services, Bethesda, Maryland,2Section of Sensory Science and Metabolism, Division of Intramural Research, National Institute of Nursing Research, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, Maryland
| |
Collapse
|
6
|
Sclafani A, Ackroff K. Fat preference deficits and experience-induced recovery in global taste-deficient Trpm5 and Calhm1 knockout mice. Physiol Behav 2022; 246:113695. [PMID: 34998826 PMCID: PMC8826513 DOI: 10.1016/j.physbeh.2022.113695] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 12/31/2021] [Accepted: 01/04/2022] [Indexed: 10/19/2022]
Abstract
There is much evidence that gustation mediates the preference for dietary fat in rodents. Several studies indicate that mice have fat taste receptors that activate downstream signaling elements, including TRPM5 and CALHM1 ion channels and P2×2/P2×3 purinergic gustatory nerve receptors. Experiment 1 further documented the involvement of TRPM5 in fat appetite by giving Trpm5 knockout (KO) mice, which show global taste deficits, 24-h two-bottle choice tests with ascending concentrations of soybean oil (0.1 - 10% Intralipid) vs. water. Unlike wildtype (WT) mice, naive Trpm5 KO mice were indifferent to 0.5 - 2.5% fat. They preferred 5-10% fat but consumed much less than WT mice. The same KO mice preferred all fat concentrations in a second test series, which is attributed to a postoral fat conditioned attraction to the non-taste flavor qualities of the Intralipid, although they consumed less fat than the WT mice. The fat preference deficits of the Trpm5 KO mice were as great or greater than those observed in Calhm1 KO mice, another KO line with global taste deficits. Experiment 2 examined experience-enhanced fat preferences in Trpm5 KO and Calhm1 KO mice by giving them one-bottle training with 1%, 2.5%, and 5% fat prior to two-bottle fat vs. water tests. The KO mice displayed increased two-bottle preferences for all concentrations, although they still consumed less 1% and 2.5% fat than WT mice. Thus, the postoral actions of fat induce robust preferences for fat in taste-deficient mice, but do not stimulate the high fat intakes observed in WT mice with normal fat taste signaling.
Collapse
Affiliation(s)
- Anthony Sclafani
- Department of Psychology, Brooklyn College of the City University of New York, Brooklyn, NY 11210, United States of America.
| | - Karen Ackroff
- Department of Psychology, Brooklyn College of the City University of New York, Brooklyn, NY 11210, United States of America
| |
Collapse
|
7
|
Berland C, Small DM, Luquet S, Gangarossa G. Dietary lipids as regulators of reward processes: multimodal integration matters. Trends Endocrinol Metab 2021; 32:693-705. [PMID: 34148784 DOI: 10.1016/j.tem.2021.05.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Revised: 05/08/2021] [Accepted: 05/24/2021] [Indexed: 02/03/2023]
Abstract
The abundance of energy-dense and palatable diets in the modern food environment tightly contributes to the obesity pandemic. The reward circuit participates to the regulation of body homeostasis by integrating energy-related signals with neural substrates encoding cognitive and motivational components of feeding behaviors. Obesity and lipid-rich diets alter dopamine (DA) transmission leading to reward dysfunctions and food overconsumption. Recent reports indicate that dietary lipids can act, directly and indirectly, as functional modulators of the DA circuit. This raises the possibility that nutritional or genetic conditions affecting 'lipid sensing' mechanisms might lead to maladaptations of the DA system. Here, we discuss the most recent findings connecting dietary lipid sensing with DA signaling and its multimodal influence on circuits regulating food-reward processes.
Collapse
Affiliation(s)
- Chloé Berland
- Université de Paris, BFA, UMR 8251, CNRS, F-75013 Paris, France; Department of Medicine, The Naomi Berrie Diabetes Center, Columbia University, New York, NY 10032, USA
| | - Dana M Small
- Department of Psychiatry, and the Modern Diet and Physiology Research Center, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Serge Luquet
- Université de Paris, BFA, UMR 8251, CNRS, F-75013 Paris, France.
| | | |
Collapse
|
8
|
Mogi K, Kamiya I, Makino A, Hirao A, Abe R, Doi Y, Shimizu T, Ando H, Morito K, Takayama K, Ishida T, Nagasawa K. Liposomalization of Oxaliplatin Exacerbates the Non-Liposomal Formulation-Induced Decrease of Sweet Taste Sensitivity in Rats. J Pharm Sci 2021; 110:3937-3945. [PMID: 34246630 DOI: 10.1016/j.xphs.2021.07.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 07/04/2021] [Accepted: 07/06/2021] [Indexed: 11/15/2022]
Abstract
Here, we investigated whether or not the characteristics of the oxaliplatin-induced sweet taste sensitivity were altered by PEGylated liposomalization of oxaliplatin (liposomal oxaliplatin), which enhances its anticancer efficacy. Liposomal oxaliplatin and oxaliplatin were intravenously and intraperitoneally, respectively, administered to male Sprague-Dawley rats at the total dose of 8 mg/kg. A brief-access test for evaluation of sweet taste sensitivity on day 7 revealed that both liposomal oxaliplatin and oxaliplatin decreased the sensitivity of rats, the degree with the former being greater than in the case of the latter. Liposomalization of oxaliplatin increased the accumulation of platinum in lingual non-epithelial tissues, through which taste nerves passed. The lingual platinum accumulation induced by not only liposomal oxaliplatin but also oxaliplatin was decreased on cooling of the tongue during the administration. In the current study, we revealed that liposomalization of oxaliplatin exacerbated the oxaliplatin-induced decrease of sweet taste sensitivity by increasing the accumulation of platinum/oxaliplatin in lingual non-epithelial tissues. These findings may suggest that reduction of liposomal oxaliplatin distribution to the tongue on cooling during the administration prevents exacerbation of the decrease of sweet taste sensitivity, maintaining the quality of life and chemotherapeutic outcome in patients.
Collapse
Affiliation(s)
- Keisuke Mogi
- Department of Environmental Biochemistry, Division of Biological Sciences, Kyoto Pharmaceutical University, 5 Nakauchi-cho, Misasagi, Yamashina-ku, Kyoto 607-8414, JAPAN
| | - Ikumi Kamiya
- Department of Environmental Biochemistry, Division of Biological Sciences, Kyoto Pharmaceutical University, 5 Nakauchi-cho, Misasagi, Yamashina-ku, Kyoto 607-8414, JAPAN
| | - Aimi Makino
- Department of Environmental Biochemistry, Division of Biological Sciences, Kyoto Pharmaceutical University, 5 Nakauchi-cho, Misasagi, Yamashina-ku, Kyoto 607-8414, JAPAN
| | - Ayaka Hirao
- Department of Environmental Biochemistry, Division of Biological Sciences, Kyoto Pharmaceutical University, 5 Nakauchi-cho, Misasagi, Yamashina-ku, Kyoto 607-8414, JAPAN
| | - Reina Abe
- Department of Environmental Biochemistry, Division of Biological Sciences, Kyoto Pharmaceutical University, 5 Nakauchi-cho, Misasagi, Yamashina-ku, Kyoto 607-8414, JAPAN
| | - Yusuke Doi
- Department of Pharmacokinetics and Biopharmaceutics, Institute of Biomedical Sciences, Tokushima University, 1-78-1, Sho-machi, Tokushima 770-8505, JAPAN
| | - Taro Shimizu
- Department of Pharmacokinetics and Biopharmaceutics, Institute of Biomedical Sciences, Tokushima University, 1-78-1, Sho-machi, Tokushima 770-8505, JAPAN
| | - Hidenori Ando
- Department of Pharmacokinetics and Biopharmaceutics, Institute of Biomedical Sciences, Tokushima University, 1-78-1, Sho-machi, Tokushima 770-8505, JAPAN
| | - Katsuya Morito
- Department of Environmental Biochemistry, Division of Biological Sciences, Kyoto Pharmaceutical University, 5 Nakauchi-cho, Misasagi, Yamashina-ku, Kyoto 607-8414, JAPAN
| | - Kentaro Takayama
- Department of Environmental Biochemistry, Division of Biological Sciences, Kyoto Pharmaceutical University, 5 Nakauchi-cho, Misasagi, Yamashina-ku, Kyoto 607-8414, JAPAN
| | - Tatsuhiro Ishida
- Department of Pharmacokinetics and Biopharmaceutics, Institute of Biomedical Sciences, Tokushima University, 1-78-1, Sho-machi, Tokushima 770-8505, JAPAN
| | - Kazuki Nagasawa
- Department of Environmental Biochemistry, Division of Biological Sciences, Kyoto Pharmaceutical University, 5 Nakauchi-cho, Misasagi, Yamashina-ku, Kyoto 607-8414, JAPAN.
| |
Collapse
|
9
|
Single nucleotide polymorphism in CD36: Correlation to peptide YY levels in obese and non-obese adults. Clin Nutr 2021; 40:2707-2715. [PMID: 33933736 DOI: 10.1016/j.clnu.2021.02.044] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Revised: 02/18/2021] [Accepted: 02/28/2021] [Indexed: 11/20/2022]
Abstract
BACKGROUND & AIMS Human beings are often driven to exhibit dietary preference according to their hedonic characteristics. Though previous studies proposed that the fat taste preference of an obese individual was associated with BMI, the perception of fat taste differs for every individual. The genetic variation among populations in taste receptor genes such as CD36 may be a contributing factor for this difference. Satiety peptides can also play a role in the regulation of fat taste perception. Generally, this hormone helps us to feel the sense of satiety. METHODS We have analysed the relationship among oro-gustatory perception of dietary lipids, salivary peptide-YY and genetic polymorphism in CD36. Oral fatty acid sensitivity analysis was performed by alternative forced choice method. Salivary peptide-YY concentration was analysed by ELISA and single nucleotide polymorphism (SNP) in CD36 gene was determined by Real-Time PCR experiments. RESULTS We observed that the SNP at rs1761667 of CD36 and oral detection threshold for linoleic acid (LA) are associated with choice of food, lipid profiles, peptide-YY as well as adiposity parameters in obese population. Obese peoples had significantly low levels of peptide YY than people with BMI less than 25. These factors possibly play a role in preference for energy rich diets, development of obesity and associated complications. CONCLUSION This study provides a solid foundation for understanding the alterations in the dietary fat intake and levels of peptide-YY, which are associated with polymorphism in fat taste receptor. This is the first report that shows a significant relationship between the satiety hormone level, SNP in CD36 gene and oral fat detection threshold in human subjects.
Collapse
|
10
|
Fat taste signal transduction and its possible negative modulator components. Prog Lipid Res 2020; 79:101035. [DOI: 10.1016/j.plipres.2020.101035] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 04/26/2020] [Accepted: 04/29/2020] [Indexed: 02/07/2023]
|
11
|
Murtaza B, Hichami A, Khan AS, Shimpukade B, Ulven T, Ozdener MH, Khan NA. Novel GPR120 agonist TUG891 modulates fat taste perception and preference and activates tongue-brain-gut axis in mice. J Lipid Res 2019; 61:133-142. [PMID: 31806728 DOI: 10.1194/jlr.ra119000142] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 11/21/2019] [Indexed: 12/21/2022] Open
Abstract
GPR120 is implicated as a lipid receptor in the oro-sensory detection of dietary fatty acids. However, the effects of GPR120 activation on dietary fat intake or obesity are not clearly understood. We investigated to determine whether the binding of TUG891, a novel GPR120 agonist, to lingual GPR120 modulates fat preference in mice. We explored the effects of TUG891 on obesity-related hormones and conducted behavioral choice tests on mice to better understand the physiologic relevance of the action of TUG891. In cultured mouse and human taste bud cells (TBCs), TUG891 induced a rapid increase in Ca2+ by acting on GPR120. A long-chain dietary fatty acid, linoleic acid (LA), also recruited Ca2+ via GPR120 in human and mouse TBCs. Both TUG891 and LA induced ERK1/2 phosphorylation and enhanced in vitro release of glucagon-like peptide-1 from cultured human and mouse TBCs. In situ application of TUG891 onto the tongue of anesthetized mice triggered the secretion of pancreatobiliary juice, probably via the tongue-brain-gut axis. Furthermore, lingual application of TUG891 altered circulating concentrations of cholecystokinin and adipokines, associated with decreased circulating LDL, in conscious mice. In behavioral tests, mice exhibited a spontaneous preference for solutions containing either TUG891 or LA instead of a control. However, addition of TUG891 to a solution containing LA significantly curtailed fatty acid preference. Our study demonstrates that TUG891 binds to lingual GPR120 receptors, activates the tongue-brain-gut axis, and modulates fat preference. These findings may support the development of new fat taste analogs that can change the approach to obesity prevention and treatment.
Collapse
Affiliation(s)
- Babar Murtaza
- Physiologie de la Nutrition & Toxicologie, U1231 INSERM/Université de Bourgogne-Franche Comté (UBFC)/Agro-Sup, Dijon, France
| | - Aziz Hichami
- Physiologie de la Nutrition & Toxicologie, U1231 INSERM/Université de Bourgogne-Franche Comté (UBFC)/Agro-Sup, Dijon, France
| | - Amira S Khan
- Physiologie de la Nutrition & Toxicologie, U1231 INSERM/Université de Bourgogne-Franche Comté (UBFC)/Agro-Sup, Dijon, France
| | - Bharat Shimpukade
- Departments of Physics, Chemistry, and Pharmacy, University of Southern Denmark, Odense, Denmark
| | - Trond Ulven
- Departments of Physics, Chemistry, and Pharmacy, University of Southern Denmark, Odense, Denmark.,Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| | | | - Naim A Khan
- Physiologie de la Nutrition & Toxicologie, U1231 INSERM/Université de Bourgogne-Franche Comté (UBFC)/Agro-Sup, Dijon, France
| |
Collapse
|
12
|
Smutzer G, Alvarado JJ, Haggard DZ, Solomon MT, Czapp D. An improved method for examining fat taste. Eur Arch Otorhinolaryngol 2019; 277:151-160. [DOI: 10.1007/s00405-019-05685-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2019] [Accepted: 10/03/2019] [Indexed: 01/17/2023]
|
13
|
Kimura I, Ichimura A, Ohue-Kitano R, Igarashi M. Free Fatty Acid Receptors in Health and Disease. Physiol Rev 2019; 100:171-210. [PMID: 31487233 DOI: 10.1152/physrev.00041.2018] [Citation(s) in RCA: 594] [Impact Index Per Article: 99.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Fatty acids are metabolized and synthesized as energy substrates during biological responses. Long- and medium-chain fatty acids derived mainly from dietary triglycerides, and short-chain fatty acids (SCFAs) produced by gut microbial fermentation of the otherwise indigestible dietary fiber, constitute the major sources of free fatty acids (FFAs) in the metabolic network. Recently, increasing evidence indicates that FFAs serve not only as energy sources but also as natural ligands for a group of orphan G protein-coupled receptors (GPCRs) termed free fatty acid receptors (FFARs), essentially intertwining metabolism and immunity in multiple ways, such as via inflammation regulation and secretion of peptide hormones. To date, several FFARs that are activated by the FFAs of various chain lengths have been identified and characterized. In particular, FFAR1 (GPR40) and FFAR4 (GPR120) are activated by long-chain saturated and unsaturated fatty acids, while FFAR3 (GPR41) and FFAR2 (GPR43) are activated by SCFAs, mainly acetate, butyrate, and propionate. In this review, we discuss the recent reports on the key physiological functions of the FFAR-mediated signaling transduction pathways in the regulation of metabolism and immune responses. We also attempt to reveal future research opportunities for developing therapeutics for metabolic and immune disorders.
Collapse
Affiliation(s)
- Ikuo Kimura
- Department of Applied Biological Science, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, Fuchu-shi, Tokyo, Japan; AMED-CREST, Japan Agency for Medical Research and Development, Chiyoda-ku, Tokyo, Japan; and Department of Biochemistry, Kyoto University Graduate School of Pharmaceutical Science, Sakyo, Kyoto, Japan
| | - Atsuhiko Ichimura
- Department of Applied Biological Science, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, Fuchu-shi, Tokyo, Japan; AMED-CREST, Japan Agency for Medical Research and Development, Chiyoda-ku, Tokyo, Japan; and Department of Biochemistry, Kyoto University Graduate School of Pharmaceutical Science, Sakyo, Kyoto, Japan
| | - Ryuji Ohue-Kitano
- Department of Applied Biological Science, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, Fuchu-shi, Tokyo, Japan; AMED-CREST, Japan Agency for Medical Research and Development, Chiyoda-ku, Tokyo, Japan; and Department of Biochemistry, Kyoto University Graduate School of Pharmaceutical Science, Sakyo, Kyoto, Japan
| | - Miki Igarashi
- Department of Applied Biological Science, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, Fuchu-shi, Tokyo, Japan; AMED-CREST, Japan Agency for Medical Research and Development, Chiyoda-ku, Tokyo, Japan; and Department of Biochemistry, Kyoto University Graduate School of Pharmaceutical Science, Sakyo, Kyoto, Japan
| |
Collapse
|
14
|
Gaillard D, Kinnamon SC. New evidence for fat as a primary taste quality. Acta Physiol (Oxf) 2019; 226:e13246. [PMID: 30588748 DOI: 10.1111/apha.13246] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 12/22/2018] [Indexed: 12/11/2022]
Affiliation(s)
- Dany Gaillard
- Department of Cell & Developmental Biology, and the Rocky Mountain Taste & Smell Center University of Colorado Anschutz Medical Campus Aurora Colorado
| | - Sue C. Kinnamon
- Department of Otolaryngology, and the Rocky Mountain Taste & Smell CenterUniversity of Colorado Anschutz Medical Campus Aurora Colorado
| |
Collapse
|
15
|
Yasumatsu K, Iwata S, Inoue M, Ninomiya Y. Fatty acid taste quality information via GPR120 in the anterior tongue of mice. Acta Physiol (Oxf) 2019; 226:e13215. [PMID: 30375738 DOI: 10.1111/apha.13215] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 10/11/2018] [Accepted: 10/24/2018] [Indexed: 12/31/2022]
Abstract
AIM To elucidate whether fatty acid taste has a quality that does not overlap with other primary qualities, we investigated potential neuron types coding fatty acid information and how GPR120 is involved. METHODS Single fibre recordings in the chorda tympani (CT) nerve and behavioural response measurements using a conditioned taste aversion paradigm were performed in GPR120-knockout (KO) and wild-type (WT) mice. RESULTS Single fibres can be classified into fatty acid (F)-, S-, M-, electrolyte (E)-, Q-, and N-type groups according to the maximal response among oleic acid, sucrose, monopotassium glutamate (MPG), HCl, quinine hydrochloride, and NaCl respectively. Among fibres, 4.0% in GPR120-KO and 17.9% in WT mice showed a maximal response to oleic acid (F-type). Furthermore, half or more of S- and M-type fibres showed responses to fatty acids in both mouse strains, although the thresholds in KO mice were significantly higher and impulse frequencies lower than those in WT mice. GPR120-KO mice conditioned to avoid linoleic acid showed generalized stimulus avoidances for MPG, indicating qualitative similarity between linoleic acid and MPG. The KO mice showed a higher generalization threshold for linoleic acid than that of WT mice. CONCLUSION Fatty acid taste is suggested to have a unique quality owing to the discovery of F-type fibres, with GPR120 involved in neural information pathways for a unique quality and palatable taste qualities in the mouse CT nerve. GPR120 plays roles in distinguishing fatty acid taste from other primary tastes and the detection of low linoleic acid concentrations.
Collapse
Affiliation(s)
- Keiko Yasumatsu
- Division of Sensory Physiology, Research and Development Center for Taste and Odor Sensing Kyushu University Fukuoka Japan
| | - Shusuke Iwata
- Division of Sensory Physiology, Research and Development Center for Taste and Odor Sensing Kyushu University Fukuoka Japan
| | - Mayuko Inoue
- Division of Sensory Physiology, Research and Development Center for Taste and Odor Sensing Kyushu University Fukuoka Japan
| | - Yuzo Ninomiya
- Division of Sensory Physiology, Research and Development Center for Taste and Odor Sensing Kyushu University Fukuoka Japan
- Monell Chemical Senses Center Philadelphia Pennsylvania
| |
Collapse
|
16
|
The role of fatty acids and their endocannabinoid-like derivatives in the molecular regulation of appetite. Mol Aspects Med 2018; 64:45-67. [DOI: 10.1016/j.mam.2018.01.002] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Revised: 01/05/2018] [Accepted: 01/07/2018] [Indexed: 02/07/2023]
|
17
|
Orosensory Detection of Dietary Fatty Acids Is Altered in CB₁R -/- Mice. Nutrients 2018; 10:nu10101347. [PMID: 30241419 PMCID: PMC6213063 DOI: 10.3390/nu10101347] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2018] [Revised: 09/14/2018] [Accepted: 09/18/2018] [Indexed: 12/25/2022] Open
Abstract
Obesity is one of the major public health issues, and its prevalence is steadily increasing all the world over. The endocannabinoid system (ECS) has been shown to be involved in the intake of palatable food via activation of cannabinoid 1 receptor (CB1R). However, the involvement of lingual CB1R in the orosensory perception of dietary fatty acids has never been investigated. In the present study, behavioral tests on CB1R−/− and wild type (WT) mice showed that the invalidation of Cb1r gene was associated with low preference for solutions containing rapeseed oil or a long-chain fatty acid (LCFA), such as linoleic acid (LA). Administration of rimonabant, a CB1R inverse agonist, in mice also brought about a low preference for dietary fat. No difference in CD36 and GPR120 protein expressions were observed in taste bud cells (TBC) from WT and CB1R−/− mice. However, LCFA induced a higher increase in [Ca2+]i in TBC from WT mice than that in TBC from CB1R−/− mice. TBC from CB1R−/− mice also exhibited decreased Proglucagon and Glp-1r mRNA and a low GLP-1 basal level. We report that CB1R is involved in fat taste perception via calcium signaling and GLP-1 secretion.
Collapse
|
18
|
Sclafani A, Ackroff K. Greater reductions in fat preferences in CALHM1 than CD36 knockout mice. Am J Physiol Regul Integr Comp Physiol 2018; 315:R576-R585. [PMID: 29768036 PMCID: PMC6172629 DOI: 10.1152/ajpregu.00015.2018] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Revised: 05/11/2018] [Accepted: 05/11/2018] [Indexed: 01/24/2023]
Abstract
Several studies indicate an important role of gustation in intake and preference for dietary fat. The present study compared fat preference deficits produced by deletion of CD36, a putative fatty acid taste receptor, and CALHM1, an ion channel responsible for release of the ATP neurotransmitter used by taste cells. Naïve CD36 knockout (KO) mice displayed reduced preferences for soybean oil emulsions (Intralipid) at low concentrations (0.1-1%) compared with wild-type (WT) mice in 24 h/day two-bottle tests. CALHM1 KO mice displayed even greater Intralipid preference deficits compared with WT and CD36 KO mice. These findings indicate that there may be another taste receptor besides CD36 that contributes to fat detection and preference. After experience with concentrated fat (2.5-5%), CD36 KO and CALHM1 KO mice displayed normal preferences for 0.1-5% fat, although they still consumed less fat than WT mice. The experience-induced rescue of fat preferences in KO mice can be attributed to postoral fat conditioning. Short-term (3-min) two-bottle tests further documented the fat preference deficits in CALHM1 KO mice but also revealed residual preferences for concentrated fat (5-10%), which may be mediated by odor and/or texture cues.
Collapse
Affiliation(s)
- Anthony Sclafani
- Brooklyn College and the Graduate School, City University of New York , Brooklyn, New York
| | - Karen Ackroff
- Brooklyn College and the Graduate School, City University of New York , Brooklyn, New York
| |
Collapse
|
19
|
Sclafani A. From appetite setpoint to appetition: 50years of ingestive behavior research. Physiol Behav 2018; 192:210-217. [PMID: 29305256 PMCID: PMC6019132 DOI: 10.1016/j.physbeh.2018.01.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Revised: 12/06/2017] [Accepted: 01/01/2018] [Indexed: 12/17/2022]
Abstract
I review the main themes of my 50-year research career in ingestive behavior as a graduate student at the University of Chicago and a professor at the City University of New York. A seminar course with my Ph.D. mentor, S. P. Grossman, sparked my interest in the hypothalamic obesity syndrome. I developed a wire knife to dissect the neuropathways and the functional disorder responsible for the syndrome. An elevated appetite setpoint that permitted the overconsumption of palatable foods appeared central to the hypothalamic syndrome. In brain-intact rats, providing an assortment of highly palatable foods (the cafeteria diet) stimulated diet-induced obesity that mimicked elements of hypothalamic obesity. Studies of the determinants of food palatability led to the discovery of a "new" carbohydrate taste (maltodextrin taste) and the confirmation of a fatty taste. In addition to oral taste receptors, gut nutrient sensors stimulated the intake/preference for carbohydrate- and fat-rich foods via an appetition process that stimulates brain reward systems. My research career greatly benefited from many diligent and creative students, collaborators and technicians and research support from my university and the National Institutes of Health.
Collapse
Affiliation(s)
- Anthony Sclafani
- Department of Psychology, Brooklyn College and the Graduate Center of the City University of New York, 2900 Bedford Ave, Brooklyn, NY 11210, USA.
| |
Collapse
|
20
|
Im DS. FFA4 (GPR120) as a fatty acid sensor involved in appetite control, insulin sensitivity and inflammation regulation. Mol Aspects Med 2017; 64:92-108. [PMID: 28887275 DOI: 10.1016/j.mam.2017.09.001] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Revised: 09/03/2017] [Accepted: 09/03/2017] [Indexed: 12/19/2022]
Abstract
Unsaturated long-chain fatty acids have been suggested to be beneficial in the context of cardiovascular disorders based in epidemiologic studies conducted in Greenland and Mediterranean. DHA and EPA are omega-3 polyunsaturated fatty acids that are plentiful in fish oil, and oleic acid is an omega-9 monounsaturated fatty acid, rich in olive oil. Dietary intake of these unsaturated long-chain fatty acids have been associated with insulin sensitivity and weight loss, which contrasts with the impairment of insulin sensitivity and weight gain associated with high intakes of saturated long-chain fatty acids. The recent discovery that free fatty acid receptor 4 (FFA4, also known as GPR120) acts as a sensor for unsaturated long-chain fatty acids started to unveil the molecular mechanisms underlying the beneficial functions played by these unsaturated long-chain fatty acids in various physiological processes, which include the secretions of gastrointestinal peptide hormones and glucose homeostasis. In this review, the physiological roles and therapeutic significance of FFA4 in appetite control, insulin sensitization, and inflammation reduction are discussed in relation to obesity and type 2 diabetes from pharmacological viewpoints.
Collapse
Affiliation(s)
- Dong-Soon Im
- Molecular Inflammation Research Center for Aging Intervention (MRCA), College of Pharmacy, Pusan National University, Busan 46241, Republic of Korea.
| |
Collapse
|
21
|
Abstract
Overfeeding of fat can cause various metabolic disorders including obesity and type 2 diabetes (T2D). Diet provided free fatty acids (FFAs) are not only essential nutrients, but they are also recognized as signaling molecules, which stimulate various important biological functions. Recently, several G protein-coupled receptors (GPCRs), including FFA1-4, have been identified as receptors of FFAs by various physiological and pharmacological studies. FFAs exert physiological functions through these FFA receptors (FFARs) depending on carbon chain length and degree of unsaturation. Functional analyses have revealed that several important metabolic processes, such as peptide hormone secretion, cell maturation and nerve activities, are regulated by FFARs and thereby FFARs contribute to the energy homeostasis through these physiological functions. Hence, FFARs are expected to be promising pharmacological targets for metabolic disorders since imbalances in energy homeostasis lead to metabolic disorders. In human, it is established that different responses of individuals to endogenous ligands and chemical drugs may be due to differences in the ability of such ligands to activate nucleotide polymorphic variants of receptors. However, the clear links between genetic variations that are involved in metabolic disorders and polymorphisms receptors have been relatively difficult to assess. In this review, I summarize current literature describing physiological functions of FFARs and genetic variations of those receptors to discuss the potential of FFARs as drug targets for metabolic disorders.
Collapse
Affiliation(s)
- Atsuhiko Ichimura
- Department of Biological Chemistry, Graduate School of Pharmaceutical Sciences, Kyoto University, 46-29, Sakyo-ku, yoshidashimoadachi-cho, Kyoto, 606-8501, Japan.
| |
Collapse
|
22
|
Paradis J, Boureau P, Moyon T, Nicklaus S, Parnet P, Paillé V. Perinatal Western Diet Consumption Leads to Profound Plasticity and GABAergic Phenotype Changes within Hypothalamus and Reward Pathway from Birth to Sexual Maturity in Rat. Front Endocrinol (Lausanne) 2017; 8:216. [PMID: 28900415 PMCID: PMC5581815 DOI: 10.3389/fendo.2017.00216] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Accepted: 08/11/2017] [Indexed: 12/24/2022] Open
Abstract
Perinatal maternal consumption of energy dense food increases the risk of obesity in children. This is associated with an overconsumption of palatable food that is consumed for its hedonic property. The underlying mechanism that links perinatal maternal diet and offspring preference for fat is still poorly understood. In this study, we aim at studying the influence of maternal high-fat/high-sugar diet feeding [western diet (WD)] during gestation and lactation on the reward pathways controlling feeding in the rat offspring from birth to sexual maturity. We performed a longitudinal follow-up of WD and Control offspring at three critical time periods (childhood, adolescence, and adulthood) and focus on investigating the influence of perinatal exposure to palatable diet on (i) fat preference, (ii) gene expression profile, and (iii) neuroanatomical/architectural changes of the mesolimbic dopaminergic networks. We showed that WD feeding restricted to the perinatal period has a clear long-lasting influence on the organization of homeostatic and hedonic brain circuits but not on fat preference. We demonstrated a period specific evolution of the preference for fat that we correlated with specific brain molecular signatures. In offspring from WD fed dams, we observed during childhood the existence of fat preference associated with a higher expression of key gene involved in the dopamine (DA) systems; at adolescence, a high-fat preference for both groups, progressively reduced during the 3 days test for the WD group and associated with a reduced expression of key gene involved in the DA systems for the WD group that could suggest a compensatory mechanism to protect them from further high-fat exposure; and finally at adulthood, a preference for fat that was identical to control rats but associated with profound modification in key genes involved in the γ-aminobutyric acid network, serotonin receptors, and polysialic acid-NCAM-dependent remodeling of the hypothalamus. Altogether, these data reveal that maternal WD, restricted to the perinatal period, has no sustained impact on energy homeostasis and fat preference later in life even though a strong remodeling of the hypothalamic homeostatic and reward pathway involved in eating behavior occurred. Further functional experiments would be needed to understand the relevance of these circuits remodeling.
Collapse
Affiliation(s)
- Julie Paradis
- UMR 1280 Physiologie des Adaptations Nutritionnelles (PhAN), INRA, Université de Nantes, Institut des Maladies de l’Appareil Digestif (IMAD), Nantes, France
| | - Pierre Boureau
- UMR 1280 Physiologie des Adaptations Nutritionnelles (PhAN), INRA, Université de Nantes, Institut des Maladies de l’Appareil Digestif (IMAD), Nantes, France
| | - Thomas Moyon
- UMR 1280 Physiologie des Adaptations Nutritionnelles (PhAN), INRA, Université de Nantes, Institut des Maladies de l’Appareil Digestif (IMAD), Nantes, France
| | - Sophie Nicklaus
- UMR 1324 Centre des Sciences du Goût et de l’Alimentation (CSGA), INRA, CNRS, Université de Bourgogne, Dijon, France
| | - Patricia Parnet
- UMR 1280 Physiologie des Adaptations Nutritionnelles (PhAN), INRA, Université de Nantes, Institut des Maladies de l’Appareil Digestif (IMAD), Nantes, France
- *Correspondence: Patricia Parnet, ; Vincent Paillé,
| | - Vincent Paillé
- UMR 1280 Physiologie des Adaptations Nutritionnelles (PhAN), INRA, Université de Nantes, Institut des Maladies de l’Appareil Digestif (IMAD), Nantes, France
- *Correspondence: Patricia Parnet, ; Vincent Paillé,
| |
Collapse
|
23
|
Milligan G, Shimpukade B, Ulven T, Hudson BD. Complex Pharmacology of Free Fatty Acid Receptors. Chem Rev 2016; 117:67-110. [PMID: 27299848 DOI: 10.1021/acs.chemrev.6b00056] [Citation(s) in RCA: 210] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
G protein-coupled receptors (GPCRs) are historically the most successful family of drug targets. In recent times it has become clear that the pharmacology of these receptors is far more complex than previously imagined. Understanding of the pharmacological regulation of GPCRs now extends beyond simple competitive agonism or antagonism by ligands interacting with the orthosteric binding site of the receptor to incorporate concepts of allosteric agonism, allosteric modulation, signaling bias, constitutive activity, and inverse agonism. Herein, we consider how evolving concepts of GPCR pharmacology have shaped understanding of the complex pharmacology of receptors that recognize and are activated by nonesterified or "free" fatty acids (FFAs). The FFA family of receptors is a recently deorphanized set of GPCRs, the members of which are now receiving substantial interest as novel targets for the treatment of metabolic and inflammatory diseases. Further understanding of the complex pharmacology of these receptors will be critical to unlocking their ultimate therapeutic potential.
Collapse
Affiliation(s)
- Graeme Milligan
- Centre for Translational Pharmacology, Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow , Glasgow G12 8QQ, Scotland, United Kingdom
| | - Bharat Shimpukade
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark , Campusvej 55, DK-5230 Odense M, Denmark
| | - Trond Ulven
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark , Campusvej 55, DK-5230 Odense M, Denmark
| | - Brian D Hudson
- Centre for Translational Pharmacology, Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow , Glasgow G12 8QQ, Scotland, United Kingdom
| |
Collapse
|
24
|
Abstract
Obesity is undoubtedly one of the major public health challenges worldwide because of its rapid progression and deleterious effects of associated diseases. The easier access to tasty and energy-dense foods is thought to greatly contribute to this epidemic. Studies also report that obese subjects and animals (rats and mice) preferentially consume foods rich in fat when they can choose. The origin of this eating behavior remains elusive. Over the last decade, the existence of a taste of fat, besides textural and olfactory cues, was supported by a growing number of studies. The existence of a sixth taste modality devoted to the detection/perception of dietary lipids might offer additive information on the quality of food. While the sense of taste is recognized to be a driving-force guiding food choice, interest in the putative relationships between lipids, gustation and obesity is only now emerging. This mini-review will attempt to summarize our current knowledge on this new field of research.
Collapse
Affiliation(s)
- Philippe Besnard
- UMR 866 Lipides/Nutrition/Cancer, AgroSup Dijon/INSERM/Univ Bourgogne-Franche Comté, Dijon, France.
- Physiologie de la Nutrition & Toxicologie (NUTox), 1 Esplanade Erasme, 21000, Dijon, France.
| |
Collapse
|
25
|
Hirasawa A, Takeuchi M, Shirai R, Chen Z, Ishii S, Iida K. [Free fatty acid receptors as therapeutic targets for metabolic disorders]. Nihon Yakurigaku Zasshi 2015; 146:296-301. [PMID: 26657119 DOI: 10.1254/fpj.146.296] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
|
26
|
Oral Fat Sensing and CD36 Gene Polymorphism in Algerian Lean and Obese Teenagers. Nutrients 2015; 7:9096-104. [PMID: 26556365 PMCID: PMC4663583 DOI: 10.3390/nu7115455] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Revised: 10/18/2015] [Accepted: 10/29/2015] [Indexed: 02/07/2023] Open
Abstract
Growing number of evidences have suggested that oral fat sensing, mediated by a glycoprotein CD36 (cluster of differentiation 36), plays a significant role in the development of obesity. Indeed, a decreased expression of CD36 in some obese subjects is associated with high dietary fat intake. In the present study, we examined whether an increase in body mass index (BMI) is associated with altered oleic acid lingual detection thresholds and blood lipid profile in young Algerian teenagers (n = 165). The obese teenagers (n = 83; 14.01 ± 0.19 years; BMI z-score 2.67 ± 0.29) exhibited higher lingual detection threshold for oleic acid than lean participants (n = 82, 13.92 ± 0.23 years; BMI z-score 0.03 ± 0.0001). We also studied the association between rs1761667 polymorphism of CD36 gene and obesity. The AA and AG genotypes were more frequent in obese teenagers, whereas GG genotype was more common in lean participants. The A-allele frequency was higher in obese teenagers than that in lean children. We report that rs1761667 polymorphism of CD36 gene and oro-gustatory thresholds for fat might play a significant role in the development of obesity in young teenagers.
Collapse
|
27
|
Sundaresan S, Abumrad NA. Dietary Lipids Inform the Gut and Brain about Meal Arrival via CD36-Mediated Signal Transduction. J Nutr 2015; 145:2195-200. [PMID: 26269236 PMCID: PMC4580959 DOI: 10.3945/jn.115.215483] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Sensing mechanisms for nutrients, in particular dietary fat, operate in the mouth, brain, and gastrointestinal tract and play a key role in regulating feeding behavior and energy balance. Critical to these regulatory mechanisms are the specialized receptors present on taste buds on the tongue, on neurons in specialized centers in the brain, and on epithelial and enteroendocrine cells in the intestinal mucosa. These receptors recognize nutrients and respond by inducing intracellular signals that trigger release of bioactive compounds that influence other organs and help coordinate the response to the meal. Components of dietary fat that are recognized by these receptors are the long-chain fatty acids that act as ligands for 2 G protein-coupled receptors, GPR40 and GPR120, and the fatty acid (FA) translocase/CD36. Recent evidence that emphasizes the important role of CD36 in orosensory, intestinal, and neuronal sensing of FAs under physiologic conditions is highlighted in the review. How this role intersects with that of GPR120 and GPR40 in the regulation of food preference and energy balance is briefly discussed.
Collapse
Affiliation(s)
- Sinju Sundaresan
- Department of Medicine, Center for Human Nutrition, Washington University School of Medicine, St. Louis, MO; and Department of Internal Medicine, Gastroenterology Division, University of Michigan, Ann Arbor, MI
| | - Nada A Abumrad
- Department of Medicine, Center for Human Nutrition, Washington University School of Medicine, St. Louis, MO; and
| |
Collapse
|
28
|
FFA4 receptor (GPR120): A hot target for the development of anti-diabetic therapies. Eur J Pharmacol 2015; 763:160-8. [DOI: 10.1016/j.ejphar.2015.06.028] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Revised: 05/14/2015] [Accepted: 06/15/2015] [Indexed: 12/12/2022]
|
29
|
Sclafani A, Touzani K, Ackroff K. Intragastric fat self-administration is impaired in GPR40/120 double knockout mice. Physiol Behav 2015; 147:141-8. [PMID: 25911263 DOI: 10.1016/j.physbeh.2015.04.031] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Revised: 03/18/2015] [Accepted: 04/14/2015] [Indexed: 11/15/2022]
Abstract
Mice acquire strong preferences for flavors paired with intragastric (IG) fat infusions. This IG fat conditioning is attenuated in double knockout (DoKO) mice missing GPR40 and GPR120 fatty acid receptors. Here we determined if GPR40/120 DoKO mice are also impaired in IG fat self-administration in an operant lick task. In daily 1-h sessions the mice were trained with a sipper spout that contained dry food pellets; licks on the spout triggered infusions of IG fat (Intralipid). The training sessions were followed by test sessions with an empty spout. GPR40/120 DoKO mice self-infused more 20% fat than wild type (WT) C57BL/6 mice in training with a food-baited spout (2.4 vs. 2.0kcal/h) but self-infused less 20% fat than WT mice in empty spout tests (1.2 vs. 1.7kcal/h). The DoKO mice also self-infused less 5% fat than WT mice (0.6 vs. 1.3kcal/h) although both groups emitted more licks for 5% fat than 20% fat. The DoKO and WT mice did not differ, however, in their self-infusion of 12.5% glucose (1.5 vs. 1.6kcal/h), which is isocaloric to 5% fat. A second 5% IL test showed that the DoKO mice reverted to a reduced self-infusion compared to WT mice. When the infusion was shifted to water, WT mice reduced licking in the first extinction session, whereas DoKO mice were less sensitive to the absence of infused fat. Our results indicate that post-oral GPR40/120 signaling is not required to process IG fat infusions in food-baited spout training sessions but contributes to post-oral fat reinforcement in empty spout tests and flavor conditioning tests.
Collapse
|
30
|
Aly R, Maibach HI, Bagatell FK, Dittmar W, Hänel H, Falanga V, Leyden JJ, Roth HL, Stoughton RB, Willis I. Ciclopirox olamine lotion 1%: bioequivalence to ciclopirox olamine cream 1% and clinical efficacy in tinea pedis. Clin Ther 1989; 96:151-76. [PMID: 2663159 DOI: 10.1152/physrev.00002.2015] [Citation(s) in RCA: 148] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Studies were conducted to assess the bioequivalence of a new antimycotic formulation, ciclopirox olamine lotion 1%, to an established compound, ciclopirox olamine cream 1%. Results of in vitro studies, using skin samples from human cadavers and domestic pigs, demonstrated that the two formulations equally penetrate all layers of the stratum corneum and inhibit the growth of Trichophyton mentagrophytes and Candida albicans. In vivo studies in guinea pigs and in human volunteers demonstrated the comparable therapeutic efficacy of the lotion and the cream in experimental trichophytosis. In addition, a multicenter, double-blind clinical trial was undertaken to compare ciclopirox olamine lotion 1% with the vehicle alone in the treatment of patients with tinea pedis. Patients with plantar, interdigital, or vesicular tinea pedis were enrolled in the studies. Patients were treated for 28 days. Clinical and mycological responses were determined during treatment and two weeks posttreatment. Ciclopirox olamine lotion 1% was found to be significantly more effective than its vehicle in the treatment of patients with common tinea pedis. Minor localized side effects (pruritus, burning sensation) were reported in 2% of 89 patients treated with ciclopirox olamine lotion 1%. The results demonstrate the bioequivalence of ciclopirox olamine lotion 1% and ciclopirox olamine cream 1% and confirm the clinical effectiveness and safety of the lotion in the treatment of tinea pedis, a generally recalcitrant fungal infection. It is concluded that ciclopirox olamine lotion 1% can be used as an alternative to ciclopirox olamine cream 1% for treatment of tinea pedis, tinea versicolor, tinea cruris, tinea corporis, and cutaneous candidiasis when the convenience and/or cosmetic elegance of a lotion is desired.
Collapse
Affiliation(s)
- R Aly
- Department of Dermatology, University of California School of Medicine, San Francisco
| | | | | | | | | | | | | | | | | | | |
Collapse
|