1
|
Abu Mohsen Y, Twitto-Greenberg R, Cohen A, Leichner GS, Mahler L, Cohen H, Kamari Y, Shaish A, Harari A, Leikin-Frenkel A, Glick Saar E, Geiger T, Malitsky S, Itkin M, Harats D, Keshet R. Proteomic and lipidomic analysis of low-density lipoprotein identifies potential biomarkers of early estrogen receptor-positive breast cancer. Cancer Metab 2025; 13:20. [PMID: 40312746 PMCID: PMC12046955 DOI: 10.1186/s40170-025-00390-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Accepted: 04/21/2025] [Indexed: 05/03/2025] Open
Abstract
Estrogen receptor (ER)-positive breast cancer (BC) is a prevalent and fatal cancer among women, and there is a need to identify molecules involved in the disease pathophysiology which could also serve as biomarkers for early detection. Detection of cancer markers in whole plasma produces excessive information, and identifying important markers involved in cancer progression is challenging. We identified a BC-specific low-density lipoprotein (LDL) particle isolated by ultracentrifugation from the plasma of ER-positive BC patients. This LDL has an aberrant proteome and lipidome, significantly different from that of LDL from healthy women, including a high association with the pro-tumor chemokines CXCL4 and CXCL7, and an enrichment with the lipid subclasses phosphatidylethanolamine, ceramide, triglycerides, lysophosphatidylcholine, phosphatidylserine, phosphatidic acid, and sphingomyelin. In contrast, phosphatidylinositol species were significantly less abundant in LDL from tumor patients than in control. Moreover, BC-associated LDL has a distinct effect on macrophage phenotype, inducing an increased gene expression of IL1β, IL8 and CD206 and decreased gene expression of TNFα, a gene signature characteristic of tumor-associated macrophages (TAMs). This suggests that this formerly unrecognized form of LDL may represent LDL particles that are recruited by the tumor microenvironment to support tumor progression by inducing discrete subsets of TAMs. In conclusion, these data offer BC-associated LDL as an early biomarker detection platform for ER-positive BC. Furthermore, LDL-associated proteins and lipids that promote BC progression may also serve in the future as novel targets for BC therapies.
Collapse
Affiliation(s)
- Yamama Abu Mohsen
- The Bert W. Strassburger Metabolic Center for Preventive Medicine, Sheba Medical Center, Ramat Gan, Israel
- School of Medicine, The Faculty of Medical and Health Sciences, Tel-Aviv University, Tel-Aviv, Israel
| | - Rachel Twitto-Greenberg
- The Bert W. Strassburger Metabolic Center for Preventive Medicine, Sheba Medical Center, Ramat Gan, Israel
| | - Anna Cohen
- The Bert W. Strassburger Metabolic Center for Preventive Medicine, Sheba Medical Center, Ramat Gan, Israel
| | - Gil S Leichner
- The Bert W. Strassburger Metabolic Center for Preventive Medicine, Sheba Medical Center, Ramat Gan, Israel
| | - Lidor Mahler
- The Bert W. Strassburger Metabolic Center for Preventive Medicine, Sheba Medical Center, Ramat Gan, Israel
- School of Medicine, The Faculty of Medical and Health Sciences, Tel-Aviv University, Tel-Aviv, Israel
| | - Hofit Cohen
- The Bert W. Strassburger Metabolic Center for Preventive Medicine, Sheba Medical Center, Ramat Gan, Israel
- School of Medicine, The Faculty of Medical and Health Sciences, Tel-Aviv University, Tel-Aviv, Israel
| | - Yehuda Kamari
- The Bert W. Strassburger Metabolic Center for Preventive Medicine, Sheba Medical Center, Ramat Gan, Israel
- School of Medicine, The Faculty of Medical and Health Sciences, Tel-Aviv University, Tel-Aviv, Israel
| | - Aviv Shaish
- The Bert W. Strassburger Metabolic Center for Preventive Medicine, Sheba Medical Center, Ramat Gan, Israel
- Achva Academic College, Beer-Tuvia Regional Council, Israel
| | - Ayelet Harari
- The Bert W. Strassburger Metabolic Center for Preventive Medicine, Sheba Medical Center, Ramat Gan, Israel
| | - Alicia Leikin-Frenkel
- The Bert W. Strassburger Metabolic Center for Preventive Medicine, Sheba Medical Center, Ramat Gan, Israel
- School of Medicine, The Faculty of Medical and Health Sciences, Tel-Aviv University, Tel-Aviv, Israel
| | - Efrat Glick Saar
- The Wohl Institute for Translational Research, Sheba Medical Center, Ramat Gan, Israel
| | | | | | - Maxim Itkin
- Weizmann Institute of Science, Rehovot, Israel
| | - Dror Harats
- The Bert W. Strassburger Metabolic Center for Preventive Medicine, Sheba Medical Center, Ramat Gan, Israel
- School of Medicine, The Faculty of Medical and Health Sciences, Tel-Aviv University, Tel-Aviv, Israel
| | - Rom Keshet
- The Bert W. Strassburger Metabolic Center for Preventive Medicine, Sheba Medical Center, Ramat Gan, Israel.
- School of Medicine, The Faculty of Medical and Health Sciences, Tel-Aviv University, Tel-Aviv, Israel.
| |
Collapse
|
2
|
Yu P, Yuan Q, Huang L, Tao L, Peng Z, Pu J. The prognostic value of remnant cholesterol to adverse renal outcomes in patients with type 2 diabetes. Diabetol Metab Syndr 2025; 17:52. [PMID: 39940009 PMCID: PMC11823253 DOI: 10.1186/s13098-025-01617-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Accepted: 01/29/2025] [Indexed: 02/14/2025] Open
Abstract
BACKGROUND Type 2 diabetes (T2DM) is known to have detrimental effects on renal health. Our study aimed to investigate the relationship between remnant cholesterol (remnant-C) and adverse renal outcomes in patients with T2DM. METHODS We utilized data from the Action to Control Cardiovascular Risk in Diabetes (ACCORD) trial, which included 10,196 participants with T2DM to investigate the relationship between remnant-C and adverse renal outcomes by performing Kaplan-Meier survival analysis, Cox proportional regression and Restricted cubic spline (RCS) analysis. Finally, several sensitivity analyses were conducted to assess the robustness of our findings. RESULTS Over a 7-year follow-up period, 2039 patients (23.2%) developed albuminuria, 5824 patients (57.1%) experienced worsening renal function, and 280 patients (2.7%) progressed to renal failure. After adjusting for multiple confounding factors, we found that remnant-C was significantly associated with the development of albuminuria (P = 0.007) and worsening renal function (P = 0.002). However, there was no discernible connection between remnant-C and renal faiure (P = 0.621). In sensitivity analyses, the association between remnant-C and the risk of adverse renal outcomes remained robust. CONCLUSION Our findings highlight the association between remnant-C and the risk of adverse renal outcomes in patients with T2DM. This easily calculable index can provide valuable information to physicians for predicting the risk of adverse renal outcomes in patients with T2DM.
Collapse
Affiliation(s)
- Pan Yu
- Department of Nephrology, Xiangya Hospital, Central South University, No. 87 Xiangya Road, Kaifu District, Changsha, Hunan Province, China
| | - Qiongjing Yuan
- Department of Nephrology, Xiangya Hospital, Central South University, No. 87 Xiangya Road, Kaifu District, Changsha, Hunan Province, China
- Hunan Key Lab of Organ Fibrosis, Changsha, China
- Xiangya Hospital, National International Collaborative Research Center for Medical Metabolomics, Central South University, Changsha, China
| | - Ling Huang
- Department of Nephrology, Xiangya Hospital, Central South University, No. 87 Xiangya Road, Kaifu District, Changsha, Hunan Province, China
- Hunan Key Lab of Organ Fibrosis, Changsha, China
- Xiangya Hospital, National International Collaborative Research Center for Medical Metabolomics, Central South University, Changsha, China
| | - Lijian Tao
- Department of Nephrology, Xiangya Hospital, Central South University, No. 87 Xiangya Road, Kaifu District, Changsha, Hunan Province, China
- Hunan Key Lab of Organ Fibrosis, Changsha, China
- Xiangya Hospital, National International Collaborative Research Center for Medical Metabolomics, Central South University, Changsha, China
| | - Zhangzhe Peng
- Department of Nephrology, Xiangya Hospital, Central South University, No. 87 Xiangya Road, Kaifu District, Changsha, Hunan Province, China
- Hunan Key Lab of Organ Fibrosis, Changsha, China
- Xiangya Hospital, National International Collaborative Research Center for Medical Metabolomics, Central South University, Changsha, China
| | - Jiaxi Pu
- Department of Nephrology, Xiangya Hospital, Central South University, No. 87 Xiangya Road, Kaifu District, Changsha, Hunan Province, China.
- Hunan Key Lab of Organ Fibrosis, Changsha, China.
- Xiangya Hospital, National International Collaborative Research Center for Medical Metabolomics, Central South University, Changsha, China.
| |
Collapse
|
3
|
Zhang R, Wang J, Wu C, Wang L, Liu P, Li P. Lipidomics-based natural products for chronic kidney disease treatment. Heliyon 2025; 11:e41620. [PMID: 39866478 PMCID: PMC11758422 DOI: 10.1016/j.heliyon.2024.e41620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 12/17/2024] [Accepted: 12/31/2024] [Indexed: 01/28/2025] Open
Abstract
Chronic kidney disease (CKD) is by far the most prevalent disease in the world and is now a major global public health problem because of the increase in diabetes, hypertension and obesity. Traditional biomarkers of kidney function lack sensitivity and specificity for early detection and monitoring of CKD progression, necessitating more sensitive biomarkers for early diagnostic intervention. Dyslipidemia is a hallmark of CKD. Advancements in mass spectrometry (MS)-based lipidomics platforms have facilitated comprehensive analysis of lipids in biological samples and have revealed changes in the lipidome that are associated with metabolic disorders, which can be used as new biomarkers for kidney diseases. It is also critical for the discovery of new therapeutic targets and drugs. In this article, we focus on lipids in CKD, lipidomics methodologies and their applications in CKD. Additionally, we introduce novel biomarkers identified through lipidomics approaches and natural products derived from lipidomics for the treatment of CKD. We believe that our study makes a significant contribution to literature by demonstrating that natural products can improve CKD from a lipidomic perspective.
Collapse
Affiliation(s)
- Rui Zhang
- Renal Division, Department of Medicine, Heilongjiang Academy of Chinese Medicine Sciences, Harbin, China
| | - Jingjing Wang
- Renal Division, Department of Medicine, Heilongjiang Academy of Chinese Medicine Sciences, Harbin, China
| | - Chenguang Wu
- Renal Division, Department of Medicine, Heilongjiang Academy of Chinese Medicine Sciences, Harbin, China
| | - Lifan Wang
- Renal Division, Department of Medicine, Heilongjiang Academy of Chinese Medicine Sciences, Harbin, China
| | - Peng Liu
- Shunyi Hospital, Beijing Hospital of Traditional Chinese Medicine, Beijing, China
| | - Ping Li
- Beijing Key Lab for Immune-Mediated Inflammatory Diseases, China-Japan Friendship Hospital, Beijing, China
| |
Collapse
|
4
|
Xu L, Li D, Song Z, Liu J, Zhou Y, Yang J, Wen P. The association between monocyte to high-density lipoprotein cholesterol ratio and chronic kidney disease in a Chinese adult population: a cross-sectional study. Ren Fail 2024; 46:2331614. [PMID: 38522954 PMCID: PMC10962299 DOI: 10.1080/0886022x.2024.2331614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 03/12/2024] [Indexed: 03/26/2024] Open
Abstract
BACKGROUND Monocyte to high-density lipoprotein cholesterol ratio (MHR) was confirmed as a novel inflammatory marker and strongly associated with the risk of several diseases. This study aimed to investigate the relationship between MHR and chronic kidney disease (CKD) in a Chinese adult population. METHODS In this cross-sectional study, 232,775 community-dwelling adults in Binhai who completed health checkups in 2021 were enrolled. Participants were categorized based on the MHR quartiles. Clinical characteristics of participants across different groups were compared using one-way ANOVA, Kruskal-Wallis h-test, and Chi-squared test as appropriate. Univariate and multivariable logistic regression analyses were taken to assess the relationship between MHR and the presence of CKD, as well as its association with low estimated glomerular filtration rate (eGFR) and proteinuria. Subgroup analyses were further executed to confirm the reliability of this relationship. RESULTS A total of 21,014 (9.0%) individuals were diagnosed with CKD. Characteristic indicators including waist circumference, body mass index (BMI), blood pressure (BP), serum uric acid (SUA), triglyceride, and fasting blood glucose (FBG) showed a gradual increase with higher MHR quartiles, whereas parameters such as age, total cholesterol, high-density lipoprotein cholesterol (HDL-C), and eGFR decreased (p < .001). In the multivariable logistic regression analysis, we observed independent associations between MHR (per 1 SD increase) and CKD, as well as low eGFR and proteinuria, with odds ratio (ORs) and 95% confidence intervals (95%CIs) of 1.206 (1.186-1.225), 1.289 (1.260-1.319), and 1.150 (1.129-1.171), respectively (p < .001). Similar conclusions were confirmed in subgroup analysis stratified by gender, age, BMI, central obesity, hypertension, and diabetes mellitus, after justification for confounding factors. CONCLUSION Elevated MHR level was independently associated with the presence of CKD, suggesting that it might serve as a useful clinical tool for risk stratification, offering valuable insights to inform preventive and therapeutic approaches for clinicians in their routine medical practice.
Collapse
Affiliation(s)
- Lingling Xu
- Center for Kidney Disease, Second Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Dongling Li
- Department of Nephrology, People’s Hospital of Binhai County, Yancheng, Jiangsu, China
| | - Zongwei Song
- Center for Kidney Disease, Second Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Jin Liu
- Center for Kidney Disease, Second Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yang Zhou
- Center for Kidney Disease, Second Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Junwei Yang
- Center for Kidney Disease, Second Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Ping Wen
- Center for Kidney Disease, Second Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| |
Collapse
|
5
|
Gorman BL, Lukowski JK. Spatial Metabolomics and Lipidomics in Kidney Disease. Semin Nephrol 2024; 44:151582. [PMID: 40234137 DOI: 10.1016/j.semnephrol.2025.151582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/17/2025]
Abstract
Kidney disease is a global health issue that affects over 850 million people, and early detection is key to preventing severe disease and complications. Kidney diseases are associated with complex and dysregulation of lipid metabolism. Spatial metabolomics through mass spectrometry imaging (MSI) enables spatial mapping of the lipids in tissue and includes a variety of techniques that can be used to image lipids. In the kidney, MSI studies often seek to resolve individual functional tissue units such as glomeruli and proximal tubules. Several different MSI techniques, such as matrix-assisted laser desorption/ionization (MALDI) and desorption electrospray ionization (DESI), have been used to characterize lipids and small molecules in chronic kidney disease, acute kidney injury, genetic kidney disease, and cancer. In this review we provide several examples of how spatial metabolomics data can provide critical information concerning the localization of changes in various disease states. Additionally, when combined with pathology, transcriptomics, or proteomics, the metabolomic changes can illuminate underlying mechanisms and provide new clinical insights into disease mechanisms.
Collapse
Affiliation(s)
| | - Jessica K Lukowski
- Mass Spectrometry Imaging Lead, Mass Spectrometry Technology Access Center at the McDonnell Genome Institute, Washington University in St. Louis School of Medicine, St. Louis, MO
| |
Collapse
|
6
|
Saeed Z, Sirolli V, Bonomini M, Gallina S, Renda G. Hallmarks for Thrombotic and Hemorrhagic Risks in Chronic Kidney Disease Patients. Int J Mol Sci 2024; 25:8705. [PMID: 39201390 PMCID: PMC11354877 DOI: 10.3390/ijms25168705] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 07/31/2024] [Accepted: 08/06/2024] [Indexed: 09/02/2024] Open
Abstract
Chronic kidney disease (CKD) is a global health issue causing a significant health burden. CKD patients develop thrombotic and hemorrhagic complications, and cardiovascular diseases are associated with increased hospitalization and mortality in this population. The hemostatic alterations are multifactorial in these patients; therefore, the results of different studies are varying and controversial. Endothelial and platelet dysfunction, coagulation abnormalities, comorbidities, and hemoincompatibility of the dialysis membranes are major contributors of hypo- and hypercoagulability in CKD patients. Due to the tendency of CKD patients to exhibit a prothrombotic state and bleeding risk, they require personalized clinical assessment to understand the impact of antithrombotic therapy. The evidence of efficacy and safety of antiplatelet and anticoagulant treatments is limited for end-stage renal disease patients due to their exclusion from major randomized clinical trials. Moreover, designing hemocompatible dialyzer membranes could be a suitable approach to reduce platelet activation, coagulopathy, and thrombus formation. This review discusses the molecular mechanisms underlying thrombotic and hemorrhagic risk in patients with CKD, leading to cardiovascular complications in these patients, as well as the evidence and guidance for promising approaches to optimal therapeutic management.
Collapse
Affiliation(s)
- Zeeba Saeed
- Center for Advanced Studies and Technology, G. d’Annunzio University of Chieti-Pescara, 66100 Chieti, Italy;
| | - Vittorio Sirolli
- Nephrology and Dialysis Unit, Department of Medicine, G. d’Annunzio University of Chieti-Pescara, SS. Annunziata Hospital, Via dei Vestini, 66100 Chieti, Italy; (V.S.); (M.B.)
| | - Mario Bonomini
- Nephrology and Dialysis Unit, Department of Medicine, G. d’Annunzio University of Chieti-Pescara, SS. Annunziata Hospital, Via dei Vestini, 66100 Chieti, Italy; (V.S.); (M.B.)
| | - Sabina Gallina
- Department of Neuroscience, Imaging and Clinical Sciences, G. d’Annunzio University of Chieti-Pescara, 66100 Chieti, Italy;
| | - Giulia Renda
- Center for Advanced Studies and Technology, G. d’Annunzio University of Chieti-Pescara, 66100 Chieti, Italy;
- Department of Neuroscience, Imaging and Clinical Sciences, G. d’Annunzio University of Chieti-Pescara, 66100 Chieti, Italy;
| |
Collapse
|
7
|
Chen J, Zhang Y, Wu R, Li Z, Zhang T, Yang X, Lu M. Inflammatory biomarkers mediate the association between polycyclic aromatic hydrocarbon exposure and dyslipidemia: A national population-based study. CHEMOSPHERE 2024; 362:142626. [PMID: 38908446 DOI: 10.1016/j.chemosphere.2024.142626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 06/04/2024] [Accepted: 06/14/2024] [Indexed: 06/24/2024]
Abstract
Exploring the association between exposure to polycyclic aromatic hydrocarbons (PAHs) and the risk of dyslipidemia and possible mediating effects is essential for conducting epidemiological health studies on related lipid disorders. Therefore, our study aimed to elucidate the potential association between PAH exposure and dyslipidemia risk and further identify the mediating effects based on blood cell-based inflammatory biomarkers. This cross-sectional study was conducted on 8380 individuals with complete survey data from the National Health and Nutrition Examination Survey (2001-2016). Multiple models (generalized linear regression model, restricted cubic spline model, Bayesian kernel machine regression, weighted quantiles sum regression) were used to assess the relationship between PAH co-exposure and the dyslipidemia risk and further identify potential mediating effects. Among the 8380 subjects, 2886 (34.44 %) had dyslipidemia. After adjusting for the confounding factors, the adjusted OR and 95% CI for dyslipidemia in the highest quartile of subjects were 1.30 (1.11, 1.51), 1. 22 (1.04, 1.43), 1.21 (1.03, 1.42), 1.29 (1.10, 1.52), 1.18 (1.01, 1.37), and 1.04 (0.89, 1.23) for 1-hydroxynaphthalene, 2-hydroxynaphthalene, 3-hydroxyfluorene, 2-hydroxyfluorene (2-FLU), 1-hydroxyphenanthrene, and 1-hydroxypyrene. The Bayesian kernel machine regression model also showed a positive correlation between PAH mixtures and dyslipidemia, and 2-FLU has the highest contribution. Mediation effect analyses showed that white blood cells and neutrophils were statistically significant in the association between PAHs and dyslipidemia. The present study suggests that individual and mixed PAH exposures may increase the risk of dyslipidemia in adults. Inflammatory biomarkers significantly mediated the relationship between PAH exposure and dyslipidemia. Environmental pollutants and their mechanisms should be more intensively monitored and studied.
Collapse
Affiliation(s)
- Jiaqi Chen
- Clinical Epidemiology Unit, Qilu Hospital of Shandong University, Jinan, Shandong, China; Department of Epidemiology, School of Public Health, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China.
| | - Yurong Zhang
- Department of Epidemiology, School of Public Health, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Ruijie Wu
- Department of Epidemiology, School of Public Health, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Zilin Li
- Department of Epidemiology, School of Public Health, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Tongchao Zhang
- Clinical Epidemiology Unit, Qilu Hospital of Shandong University, Jinan, Shandong, China; Clinical Research Center of Shandong University, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Xiaorong Yang
- Clinical Epidemiology Unit, Qilu Hospital of Shandong University, Jinan, Shandong, China; Clinical Research Center of Shandong University, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China.
| | - Ming Lu
- Clinical Epidemiology Unit, Qilu Hospital of Shandong University, Jinan, Shandong, China; Department of Epidemiology, School of Public Health, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China; Clinical Research Center of Shandong University, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China.
| |
Collapse
|
8
|
Couch CA, Ament Z, Patki A, Kijpaisalratana N, Bhave V, Jones AC, Armstrong ND, Cushman M, Kimberly WT, Irvin MR. Sex-Associated Metabolites and Incident Stroke, Incident Coronary Heart Disease, Hypertension, and Chronic Kidney Disease in the REGARDS Cohort. J Am Heart Assoc 2024; 13:e032643. [PMID: 38686877 PMCID: PMC11179891 DOI: 10.1161/jaha.123.032643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 03/25/2024] [Indexed: 05/02/2024]
Abstract
BACKGROUND Sex disparities exist in cardiometabolic diseases. Metabolomic profiling offers insight into disease mechanisms, as the metabolome is influenced by environmental and genetic factors. We identified metabolites associated with sex and determined if sex-associated metabolites are associated with incident stoke, incident coronary heart disease, prevalent hypertension, and prevalent chronic kidney disease. METHODS AND RESULTS Targeted metabolomics was conducted for 357 metabolites in the REGARDS (Reasons for Geographic and Racial Differences in Stroke) case-cohort substudy for incident stroke. Weighted logistic regression models were used to identify metabolites associated with sex in REGARDS. Sex-associated metabolites were replicated in the HyperGEN (Hypertension Genetic Epidemiology Network) and using the literature. Weighted Cox proportional hazard models were used to evaluate associations between metabolites and incident stroke. Cox proportional hazard models were used to evaluate associations between metabolites and incident coronary heart disease. Weighted logistic regression models were used to evaluate associations between metabolites and hypertension and chronic kidney disease. Fifty-one replicated metabolites were associated with sex. Higher levels of 6 phosphatidylethanolamines were associated with incident stroke. No metabolites were associated with incident coronary heart disease. Higher levels of uric acid and leucine and lower levels of a lysophosphatidylcholine were associated with hypertension. Higher levels of indole-3-lactic acid, 7 phosphatidylethanolamines, and uric acid, and lower levels of betaine and bilirubin were associated with chronic kidney disease. CONCLUSIONS These findings suggest that the sexual dimorphism of the metabolome may contribute to sex differences in stroke, hypertension, and chronic kidney disease.
Collapse
Affiliation(s)
- Catharine A. Couch
- Department of Epidemiology, School of Public HealthUniversity of Alabama at BirminghamBirminghamALUSA
| | - Zsuzsanna Ament
- Department of NeurologyMassachusetts General HospitalBostonMAUSA
- Center for Genomic MedicineMassachusetts General HospitalBostonMAUSA
| | - Amit Patki
- Department of Biostatistics, School of Public HealthUniversity of Alabama at BirminghamBirminghamALUSA
| | - Naruchorn Kijpaisalratana
- Department of NeurologyMassachusetts General HospitalBostonMAUSA
- Center for Genomic MedicineMassachusetts General HospitalBostonMAUSA
- Division of Neurology, Department of Medicine and Division of Academic Affairs, Faculty of MedicineChulalongkorn UniversityBangkokThailand
| | | | - Alana C. Jones
- Department of Epidemiology, School of Public HealthUniversity of Alabama at BirminghamBirminghamALUSA
| | - Nicole D. Armstrong
- Department of Epidemiology, School of Public HealthUniversity of Alabama at BirminghamBirminghamALUSA
| | - Mary Cushman
- Department of MedicineLarner College of Medicine at the University of VermontBurlingtonVTUSA
| | - W. Taylor Kimberly
- Department of NeurologyMassachusetts General HospitalBostonMAUSA
- Center for Genomic MedicineMassachusetts General HospitalBostonMAUSA
- Harvard Medical SchoolBostonMAUSA
| | - M. Ryan Irvin
- Department of Epidemiology, School of Public HealthUniversity of Alabama at BirminghamBirminghamALUSA
| |
Collapse
|
9
|
Kratky V, Valerianova A, Hruskova Z, Tesar V, Malik J. Increased Cardiovascular Risk in Young Patients with CKD and the Role of Lipid-Lowering Therapy. Curr Atheroscler Rep 2024; 26:103-109. [PMID: 38289577 DOI: 10.1007/s11883-024-01191-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/18/2024] [Indexed: 04/04/2024]
Abstract
PURPOSE OF REVIEW Chronic kidney disease (CKD) is associated with a significantly increased risk of cardiovascular disease (CVD). This review summarizes known risk factors, pathophysiological mechanisms, and current therapeutic possibilities, focusing on lipid-lowering therapy in CKD. RECENT FINDINGS Novel data on lipid-lowering therapy in CKD mainly stem from clinical trials and clinical studies. In addition to traditional CVD risk factors, patients with CKD often present with non-traditional risk factors that include, e.g., anemia, proteinuria, or calcium-phosphate imbalance. Dyslipidemia remains an important contributing CVD risk factor in CKD, although the mechanisms involved differ from the general population. While statins are the most commonly used lipid-lowering therapy in CKD patients, some statins may require dose reduction. Importantly, statins showed diminished beneficial effect on cardiovascular events in patients with severe CKD and hypercholesterolemia despite high CVD risk and effective reduction of LDL cholesterol. Ezetimibe enables the reduction of the dose of statins and their putative toxicity and, in combination with statins, reduces CVD endpoints in CKD patients. The use of novel drugs such as PCSK9 inhibitors is safe in CKD, but their potential to reduce cardiovascular events in CKD needs to be elucidated in future studies.
Collapse
Affiliation(s)
- Vojtech Kratky
- Department of Nephrology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Anna Valerianova
- 3rd Department of Internal Medicine, First Faculty of Medicine, Charles University and General University Hospital in Prague, U Nemocnice 499/2, 128 08, Prague, Czech Republic
| | - Zdenka Hruskova
- Department of Nephrology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic.
| | - Vladimir Tesar
- Department of Nephrology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Jan Malik
- 3rd Department of Internal Medicine, First Faculty of Medicine, Charles University and General University Hospital in Prague, U Nemocnice 499/2, 128 08, Prague, Czech Republic
| |
Collapse
|
10
|
Lopes-Virella MF, Hammad SM, Baker NL, Klein RL, Hunt KJ. Circulating Lipoprotein Sphingolipids in Chronic Kidney Disease with and without Diabetes. Biomedicines 2024; 12:190. [PMID: 38255295 PMCID: PMC10813484 DOI: 10.3390/biomedicines12010190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 12/25/2023] [Accepted: 01/08/2024] [Indexed: 01/24/2024] Open
Abstract
Abnormalities of sphingolipid metabolism play an important role in diabetes. We compared sphingolipid levels in plasma and in isolated lipoproteins between healthy control subjects and two groups of patients, one with chronic kidney disease without diabetes (ND-CKD), and the other with type 2 diabetes and macroalbuminuria (D-MA). Ceramides, sphingomyelins, and sphingoid bases and their phosphates in LDL were higher in ND-CKD and in D-MA patients compared to controls. However, ceramides and sphingoid bases in HDL2 and HDL3 were lower in ND-CKD and in D-MA patients than in controls. Sphingomyelins in HDL2 and HDL3 were lower in D-MA patients than in controls but were normal in ND-CKD patients. Compared to controls, lactosylceramides in LDL and VLDL were higher in ND-CKD patients but not in D-MA patients. However, lactosylceramides in HDL2 and HDL3 were lower in both ND-CKD and D-MA patients than in controls. Plasma hexosylceramides in ND-CKD patients were increased and sphingoid bases decreased in both ND-CKD and D-MA patients. However, hexosylceramides in LDL, HDL2, and HDL3 were higher in ND-CKD patients than in controls. In D-MA patients, only C16:0 hexosylceramide in LDL was higher than in controls. The data suggest that sphingolipid measurement in lipoproteins, rather than in whole plasma, is crucial to decipher the role of sphingolipids in kidney disease.
Collapse
Affiliation(s)
- Maria F. Lopes-Virella
- Department of Medicine, Division of Diabetes, Endocrinology and Medical Genetics, Medical University of South Carolina, Charleston, SC 29425, USA
- Ralph H. Johnson VA Medical Center, Charleston, SC 29401, USA;
| | - Samar M. Hammad
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Nathaniel L. Baker
- Department of Public Health Sciences, Medical University of South Carolina, Charleston, SC 29425, USA;
| | - Richard L. Klein
- Department of Medicine, Division of Diabetes, Endocrinology and Medical Genetics, Medical University of South Carolina, Charleston, SC 29425, USA
- Ralph H. Johnson VA Medical Center, Charleston, SC 29401, USA;
| | - Kelly J. Hunt
- Ralph H. Johnson VA Medical Center, Charleston, SC 29401, USA;
- Department of Public Health Sciences, Medical University of South Carolina, Charleston, SC 29425, USA;
| |
Collapse
|
11
|
Lin W, Mousavi F, Blum BC, Heckendorf CF, Moore J, Lampl N, McComb M, Kotelnikov S, Yin W, Rabhi N, Layne MD, Kozakov D, Chitalia VC, Emili A. Integrated metabolomics and proteomics reveal biomarkers associated with hemodialysis in end-stage kidney disease. Front Pharmacol 2023; 14:1243505. [PMID: 38089059 PMCID: PMC10715419 DOI: 10.3389/fphar.2023.1243505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 11/13/2023] [Indexed: 02/25/2024] Open
Abstract
Background: We hypothesize that the poor survival outcomes of end-stage kidney disease (ESKD) patients undergoing hemodialysis are associated with a low filtering efficiency and selectivity. The current gold standard criteria using single or several markers show an inability to predict or disclose the treatment effect and disease progression accurately. Methods: We performed an integrated mass spectrometry-based metabolomic and proteomic workflow capable of detecting and quantifying circulating small molecules and proteins in the serum of ESKD patients. Markers linked to cardiovascular disease (CVD) were validated on human induced pluripotent stem cell (iPSC)-derived cardiomyocytes. Results: We identified dozens of elevated molecules in the serum of patients compared with healthy controls. Surprisingly, many metabolites, including lipids, remained at an elevated blood concentration despite dialysis. These molecules and their associated physical interaction networks are correlated with clinical complications in chronic kidney disease. This study confirmed two uremic toxins associated with CVD, a major risk for patients with ESKD. Conclusion: The retained molecules and metabolite-protein interaction network address a knowledge gap of candidate uremic toxins associated with clinical complications in patients undergoing dialysis, providing mechanistic insights and potential drug discovery strategies for ESKD.
Collapse
Affiliation(s)
- Weiwei Lin
- Center for Network Systems Biology, Boston University, Boston, MA, United States
- Department of Biochemistry, Boston University School of Medicine, Boston, MA, United States
| | - Fatemeh Mousavi
- Center for Network Systems Biology, Boston University, Boston, MA, United States
| | - Benjamin C. Blum
- Center for Network Systems Biology, Boston University, Boston, MA, United States
- Department of Biochemistry, Boston University School of Medicine, Boston, MA, United States
| | - Christian F. Heckendorf
- Center for Network Systems Biology, Boston University, Boston, MA, United States
- Department of Biochemistry, Boston University School of Medicine, Boston, MA, United States
| | - Jarrod Moore
- Center for Network Systems Biology, Boston University, Boston, MA, United States
- Department of Biochemistry, Boston University School of Medicine, Boston, MA, United States
| | - Noah Lampl
- Center for Network Systems Biology, Boston University, Boston, MA, United States
- Department of Biochemistry, Boston University School of Medicine, Boston, MA, United States
| | - Mark McComb
- Center for Network Systems Biology, Boston University, Boston, MA, United States
- Department of Biochemistry, Boston University School of Medicine, Boston, MA, United States
| | - Sergei Kotelnikov
- Department of Applied Mathematics and Statistics, Stony Brook University, Stony Brook, NY, United States
| | - Wenqing Yin
- Renal Section, Department of Medicine, Boston University School of Medicine, Boston, MA, United States
| | - Nabil Rabhi
- Department of Biochemistry, Boston University School of Medicine, Boston, MA, United States
| | - Matthew D. Layne
- Department of Biochemistry, Boston University School of Medicine, Boston, MA, United States
| | - Dima Kozakov
- Department of Applied Mathematics and Statistics, Stony Brook University, Stony Brook, NY, United States
| | - Vipul C. Chitalia
- Renal Section, Department of Medicine, Boston University School of Medicine, Boston, MA, United States
- Veterans Affairs Boston Healthcare System, Boston, MA, United States
- Institute of Medical Engineering and Sciences, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Andrew Emili
- Center for Network Systems Biology, Boston University, Boston, MA, United States
- Department of Biochemistry, Boston University School of Medicine, Boston, MA, United States
- Department of Biology, Boston University, Boston, MA, United States
| |
Collapse
|
12
|
Wang YN, Zhang ZH, Liu HJ, Guo ZY, Zou L, Zhang YM, Zhao YY. Integrative phosphatidylcholine metabolism through phospholipase A 2 in rats with chronic kidney disease. Acta Pharmacol Sin 2023; 44:393-405. [PMID: 35922553 PMCID: PMC9889763 DOI: 10.1038/s41401-022-00947-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 06/22/2022] [Indexed: 02/04/2023]
Abstract
Dysregulation in lipid metabolism is the leading cause of chronic kidney disease (CKD) and also the important risk factors for high morbidity and mortality. Although lipid abnormalities were identified in CKD, integral metabolic pathways for specific individual lipid species remain to be clarified. We conducted ultra-high-performance liquid chromatography-high-definition mass spectrometry-based lipidomics and identified plasma lipid species and therapeutic effects of Rheum officinale in CKD rats. Adenine-induced CKD rats were administered Rheum officinale. Urine, blood and kidney tissues were collected for analyses. We showed that exogenous adenine consumption led to declining kidney function in rats. Compared with control rats, a panel of differential plasma lipid species in CKD rats was identified in both positive and negative ion modes. Among the 50 lipid species, phosphatidylcholine (PC), lysophosphatidylcholine (LysoPC) and lysophosphatidic acid (LysoPA) accounted for the largest number of identified metabolites. We revealed that six PCs had integral metabolic pathways, in which PC was hydrolysed into LysoPC, and then converted to LysoPA, which was associated with increased cytosolic phospholipase A2 protein expression in CKD rats. The lower levels of six PCs and their corresponding metabolites could discriminate CKD rats from control rats. Receiver operating characteristic curves showed that each individual lipid species had high values of area under curve, sensitivity and specificity. Administration of Rheum officinale significantly improved impaired kidney function and aberrant PC metabolism in CKD rats. Taken together, this study demonstrates that CKD leads to PC metabolism disorders and that the dysregulation of PC metabolism is involved in CKD pathology.
Collapse
Affiliation(s)
- Yan-Ni Wang
- School of Pharmacy, Zhejiang Chinese Medical University, No. 548 Binwen Road, Hangzhou, 310053, China
- Faculty of Life Science & Medicine, Northwest University, No. 229 Taibai North Road, Xi'an, 710069, China
| | - Zhi-Hao Zhang
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Hong-Jiao Liu
- Faculty of Life Science & Medicine, Northwest University, No. 229 Taibai North Road, Xi'an, 710069, China
| | - Zhi-Yuan Guo
- Faculty of Life Science & Medicine, Northwest University, No. 229 Taibai North Road, Xi'an, 710069, China
| | - Liang Zou
- School of Food and Bioengineering, Chengdu University, Chengdu, 610106, China
| | - Ya-Mei Zhang
- Clinical Genetics Laboratory, Affiliated Hospital & Clinical Medical College of Chengdu University, Chengdu, 610081, China
| | - Ying-Yong Zhao
- School of Pharmacy, Zhejiang Chinese Medical University, No. 548 Binwen Road, Hangzhou, 310053, China.
- Faculty of Life Science & Medicine, Northwest University, No. 229 Taibai North Road, Xi'an, 710069, China.
- Clinical Genetics Laboratory, Affiliated Hospital & Clinical Medical College of Chengdu University, Chengdu, 610081, China.
| |
Collapse
|
13
|
Zeng W, Beyene HB, Kuokkanen M, Miao G, Magliano DJ, Umans JG, Franceschini N, Cole SA, Michailidis G, Lee ET, Howard BV, Fiehn O, Curran JE, Blangero J, Meikle PJ, Zhao J. Lipidomic profiling in the Strong Heart Study identified American Indians at risk of chronic kidney disease. Kidney Int 2022; 102:1154-1166. [PMID: 35853479 PMCID: PMC10753995 DOI: 10.1016/j.kint.2022.06.023] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 06/09/2022] [Accepted: 06/16/2022] [Indexed: 12/14/2022]
Abstract
Dyslipidemia associates with and usually precedes the onset of chronic kidney disease (CKD), but a comprehensive assessment of molecular lipid species associated with risk of CKD is lacking. Here, we sought to identify fasting plasma lipids associated with risk of CKD among American Indians in the Strong Heart Family Study, a large-scale community-dwelling of individuals, followed by replication in Mexican Americans from the San Antonio Family Heart Study and Caucasians from the Australian Diabetes, Obesity and Lifestyle Study. We also performed repeated measurement analysis to examine the temporal relationship between the change in the lipidome and change in kidney function between baseline and follow-up of about five years apart. Network analysis was conducted to identify differential lipid classes associated with risk of CKD. In the discovery cohort, we found that higher baseline level of multiple lipid species, including glycerophospholipids, glycerolipids and sphingolipids, was significantly associated with increased risk of CKD, independent of age, sex, body mass index, diabetes and hypertension. Many lipid species were replicated in at least one external cohort at the individual lipid species and/or the class level. Longitudinal change in the plasma lipidome was significantly associated with change in the estimated glomerular filtration rate after adjusting for covariates, baseline lipids and the baseline rate. Network analysis identified distinct lipidomic signatures differentiating high from low-risk groups. Thus, our results demonstrated that disturbed lipid metabolism precedes the onset of CKD. These findings shed light on the mechanisms linking dyslipidemia to CKD and provide potential novel biomarkers for identifying individuals with early impaired kidney function at preclinical stages.
Collapse
Affiliation(s)
- Wenjie Zeng
- Department of Epidemiology, College of Public Health and Health Professions and College of Medicine, University of Florida, Gainesville, Florida, USA
| | - Habtamu B Beyene
- Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
| | - Mikko Kuokkanen
- Department of Human Genetics and South Texas Diabetes and Obesity Institute, University of Texas Rio Grande Valley School of Medicine, Brownsville, Texas, USA
| | - Guanhong Miao
- Department of Epidemiology, College of Public Health and Health Professions and College of Medicine, University of Florida, Gainesville, Florida, USA
| | | | - Jason G Umans
- MedStar Health Research Institute, Hyattsville, Maryland, USA; Georgetown-Howard Universities Center for Clinical and Translational Science, Washington, District of Columbia, USA
| | - Nora Franceschini
- Department of Epidemiology, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Shelley A Cole
- Population Health Program, Texas Biomedical Research Institute, San Antonio, Texas, USA
| | - George Michailidis
- Department of Statistics, University of Florida, Gainesville, Florida, USA
| | - Elisa T Lee
- Department of Biostatistics and Epidemiology, College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Barbara V Howard
- MedStar Health Research Institute, Hyattsville, Maryland, USA; Georgetown-Howard Universities Center for Clinical and Translational Science, Washington, District of Columbia, USA
| | - Oliver Fiehn
- West Coast Metabolomics Center, University of California-Davis, Davis, California, USA
| | - Joanne E Curran
- Department of Human Genetics and South Texas Diabetes and Obesity Institute, University of Texas Rio Grande Valley School of Medicine, Brownsville, Texas, USA
| | - John Blangero
- Department of Human Genetics and South Texas Diabetes and Obesity Institute, University of Texas Rio Grande Valley School of Medicine, Brownsville, Texas, USA
| | - Peter J Meikle
- Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
| | - Jinying Zhao
- Department of Epidemiology, College of Public Health and Health Professions and College of Medicine, University of Florida, Gainesville, Florida, USA.
| |
Collapse
|
14
|
Lipidic profiles of patients starting peritoneal dialysis suggest an increased cardiovascular risk beyond classical dyslipidemia biomarkers. Sci Rep 2022; 12:16394. [PMID: 36180468 PMCID: PMC9525574 DOI: 10.1038/s41598-022-20757-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 09/19/2022] [Indexed: 11/15/2022] Open
Abstract
Patients on peritoneal dialysis (PD) have an increased risk of cardiovascular disease (CVD) and an atherogenic lipid profile generated by exposure to high glucose dialysis solutions. In the general population, the reduction of classic lipids biomarkers is associated with improved clinical outcomes; however, the same results have not been seen in PD population, a lack of data this study aims to fulfill. Single-center prospective observational study of a cohort of CKD patients who started renal replacement therapy with continuous ambulatory peritoneal dialysis. The differences in the lipid profile and analytical variables before and 6 months after the start of peritoneal dialysis were analyzed. Samples were analyzed on an Ultra-Performance Liquid Chromatography system. Thirty-nine patients were enrolled in this study. Their mean age was 57.9 ± 16.3 years. A total of 157 endogenous lipid species of 11 lipid subclasses were identified. There were significant increases in total free fatty acids (p < 0.05), diacylglycerides (p < 0.01), triacylglycerides, (p < 0.01), phosphatidylcholines (p < 0.01), phosphatidylethanolamines (p < 0.01), ceramides (p < 0.01), sphingomyelins (p < 0.01), and cholesterol esters (p < 0.01) from baseline to 6 months. However, there were no differences in the classical lipid markers, neither lysophosphatidylcholines, monoacylglycerides, and sphingosine levels. 6 months after the start of the technique, PD patients present changes in the lipidomic profile beyond the classic markers of dyslipidemia.
Collapse
|
15
|
Pan X. The Roles of Fatty Acids and Apolipoproteins in the Kidneys. Metabolites 2022; 12:metabo12050462. [PMID: 35629966 PMCID: PMC9145954 DOI: 10.3390/metabo12050462] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 05/15/2022] [Accepted: 05/17/2022] [Indexed: 12/10/2022] Open
Abstract
The kidneys are organs that require energy from the metabolism of fatty acids and glucose; several studies have shown that the kidneys are metabolically active tissues with an estimated energy requirement similar to that of the heart. The kidneys may regulate the normal and pathological function of circulating lipids in the body, and their glomerular filtration barrier prevents large molecules or large lipoprotein particles from being filtered into pre-urine. Given the permeable nature of the kidneys, renal lipid metabolism plays an important role in affecting the rest of the body and the kidneys. Lipid metabolism in the kidneys is important because of the exchange of free fatty acids and apolipoproteins from the peripheral circulation. Apolipoproteins have important roles in the transport and metabolism of lipids within the glomeruli and renal tubules. Indeed, evidence indicates that apolipoproteins have multiple functions in regulating lipid import, transport, synthesis, storage, oxidation and export, and they are important for normal physiological function. Apolipoproteins are also risk factors for several renal diseases; for example, apolipoprotein L polymorphisms induce kidney diseases. Furthermore, renal apolipoprotein gene expression is substantially regulated under various physiological and disease conditions. This review is aimed at describing recent clinical and basic studies on the major roles and functions of apolipoproteins in the kidneys.
Collapse
Affiliation(s)
- Xiaoyue Pan
- Department of Foundations of Medicine, New York University Long Island School of Medicine, Mineola, New York, NY 11501, USA;
- Diabetes and Obesity Research Center, NYU Langone Hospital—Long Island, Mineola, New York, NY 11501, USA
| |
Collapse
|
16
|
Chen CHS, Kuo TC, Kuo HC, Tseng YJ, Kuo CH, Yuan TH, Chan CC. Lipidomics of children and adolescents exposed to multiple industrial pollutants. ENVIRONMENTAL RESEARCH 2021; 201:111448. [PMID: 34119529 DOI: 10.1016/j.envres.2021.111448] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 05/21/2021] [Accepted: 05/28/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND There are limited studies on the lipidomics of children and adolescents exposed to multiple industrial pollutants. OBJECTIVES In this study, we aimed to investigate lipid profile perturbations in 99 children and adolescents (aged 9-15) who lived in a polluted area surrounding the largest petrochemical complex in Taiwan. Previous studies have reported increased risks of acute and chronic diseases including liver dysfunctions and chronic kidney disease (CKD) in residents living in this area. METHODS We measured urinary concentrations of 11 metals and metalloids and polycyclic aromatic hydrocarbons (PAHs) metabolite 1-hydroxypyrene (1-OHP) as exposure biomarkers, and urinary oxidative stress biomarkers and serum acylcarnitines as early health effect biomarkers. The association between individual exposure biomarkers and early health effect biomarkers were analyzed using linear regression, while association of combined exposure biomarkers with four oxidative stress biomarkers and acylcarnitines were analyzed using weighted quantile sum (WQS) regression. Lipid profiles were analyzed using an untargeted liquid chromatography mass spectrometry-based technique. "Meet-in-the-middle" approach was applied to identify potential lipid features that linked multiple industrial pollutants exposure with early health effects. RESULTS We identified 15 potential lipid features that linked elevated multiple industrial pollutants exposure with three increased oxidative stress biomarkers and eight deregulated serum acylcarnitines, including one lysophosphatidylcholines (LPCs), four phosphatidylcholines (PCs), and two sphingomyelins (SMs) that were up-regulated in high exposure group compared to low exposure group, and two LPCs, four PCs, and two phosphatidylinositols (PIs) down-regulated in high exposure group compared to low exposure group. CONCLUSION Our findings could provide information for understanding the health effects, including early indicators and biological mechanism identification, of children and adolescents exposed to multiple industrial pollutants during critical stages of development.
Collapse
Affiliation(s)
- Chi-Hsin S Chen
- Master of Public Health Program, College of Public Health, National Taiwan University. No. 17, Xu-Zhou Road, Taipei, 10055, Taiwan
| | - Tien-Chueh Kuo
- The Metabolomics Core Laboratory, Center of Genomic Medicine, National Taiwan University. No. 1, Sec. 4, Roosevelt Road, Taipei, 10617, Taiwan; Graduate Institute of Biomedical Electronics and Bioinformatics, College of Electrical Engineering and Computer Science, National Taiwan University. No. 1, Sec. 4, Roosevelt Road, Taipei, 10617, Taiwan
| | - Han-Chun Kuo
- The Metabolomics Core Laboratory, Center of Genomic Medicine, National Taiwan University. No. 1, Sec. 4, Roosevelt Road, Taipei, 10617, Taiwan
| | - Yufeng J Tseng
- Graduate Institute of Biomedical Electronics and Bioinformatics, College of Electrical Engineering and Computer Science, National Taiwan University. No. 1, Sec. 4, Roosevelt Road, Taipei, 10617, Taiwan; Department of Computer Science and Information Engineering, College of Electrical Engineering and Computer Science, National Taiwan University. No. 1, Sec. 4, Roosevelt Road, Taipei, 10617, Taiwan
| | - Ching-Hua Kuo
- School of Pharmacy, College of Medicine, National Taiwan University. No. 33, Linsen S. Road, Taipei, 10055, Taiwan
| | - Tzu-Hsuen Yuan
- Department of Health and Welfare, College of City Management, University of Taipei, Taipei, Taiwan. No.101, Sec. 2, Zhongcheng Rd., Shilin Dist., Taipei City, 11153, Taiwan
| | - Chang-Chuan Chan
- Institute of Environmental and Occupational Health Sciences, College of Public Health, National Taiwan University. No. 17, Xu-Zhou Road, Taipei, 10055, Taiwan.
| |
Collapse
|
17
|
Function and therapeutic potential of N-acyl amino acids. Chem Phys Lipids 2021; 239:105114. [PMID: 34217720 DOI: 10.1016/j.chemphyslip.2021.105114] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 06/06/2021] [Accepted: 06/29/2021] [Indexed: 12/11/2022]
Abstract
N-acyl amino acids (NAAs) are amphiphilic molecules, with different potential fatty acid and head group moieties. NAAs are the largest family of anandamide congener lipids discovered to date. In recent years, several NAAs have been identified as potential ligands, engaging novel binding sites and mechanisms for modulation of membrane proteins such as G-protein coupled receptors (GPRs), nuclear receptors, ion channels, and transporters. NAAs play a key role in a variety of physiological functions as lipid signaling molecules. Understanding the structure, function roles, and pharmacological potential of these NAAs is still in its infancy, and the biochemical roles are also mostly unknown. This review will provide a summary of the literature on NAAs and emphasize their therapeutic potential.
Collapse
|
18
|
Speer T, Ridker PM, von Eckardstein A, Schunk SJ, Fliser D. Lipoproteins in chronic kidney disease: from bench to bedside. Eur Heart J 2021; 42:2170-2185. [PMID: 33393990 DOI: 10.1093/eurheartj/ehaa1050] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 10/16/2020] [Accepted: 12/08/2020] [Indexed: 12/24/2022] Open
Abstract
Chronic kidney disease (CKD) is associated with high cardiovascular risk. CKD patients exhibit a specific lipoprotein pattern termed 'uraemic dyslipidaemia', which is characterized by rather normal low-density lipoprotein cholesterol, low high-density lipoprotein cholesterol, and high triglyceride plasma levels. All three lipoprotein classes are involved in the pathogenesis of CKD-associated cardiovascular diseases (CVDs). Uraemia leads to several modifications of the structure of lipoproteins such as changes of the proteome and the lipidome, post-translational protein modifications (e.g. carbamylation) and accumulation of small-molecular substances within the lipoprotein moieties, which affect their functionality. Lipoproteins from CKD patients interfere with lipid transport and promote inflammation, oxidative stress, endothelial dysfunction as well as other features of atherogenesis, thus contributing to the development of CKD-associated CVD. While, lipid-modifying therapies play an important role in the management of CKD patients, their efficacy is modulated by kidney function. Novel therapeutic agents to prevent the adverse remodelling of lipoproteins in CKD and to improve their functional properties are highly desirable and partially under development.
Collapse
Affiliation(s)
- Thimoteus Speer
- Translational Cardio-Renal Medicine, Saarland University, Kirrberger Strasse, Building 41, D-66421 Homburg/Saar, Germany.,Department of Internal Medicine IV, Saarland University Hospital, Nephrology and Hypertension, Kirrberger Strasse, Building 41, D-66421 Homburg/Saar, Germany
| | - Paul M Ridker
- Center for Cardiovascular Disease Prevention, Brigham and Women's Hospital, Harvard Medical School, 900 Commonwealth Avenue, Boston, MA 02215, USA
| | - Arnold von Eckardstein
- Institute of Clinical Chemistry, University Hospital Zurich, Rämistrasse 100, CH-8091 Zurich, Switzerland
| | - Stefan J Schunk
- Translational Cardio-Renal Medicine, Saarland University, Kirrberger Strasse, Building 41, D-66421 Homburg/Saar, Germany
| | - Danilo Fliser
- Translational Cardio-Renal Medicine, Saarland University, Kirrberger Strasse, Building 41, D-66421 Homburg/Saar, Germany
| |
Collapse
|
19
|
Takahashi N, Kikuchi H, Usui A, Furusho T, Fujimaru T, Fujiki T, Yanagi T, Matsuura Y, Asano K, Yamamoto K, Ando F, Susa K, Mandai S, Mori T, Rai T, Uchida S, Arita M, Sohara E. Deletion of Alox15 improves kidney dysfunction and inhibits fibrosis by increased PGD 2 in the kidney. Clin Exp Nephrol 2021; 25:445-455. [PMID: 33595729 PMCID: PMC8038997 DOI: 10.1007/s10157-021-02021-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 01/06/2021] [Indexed: 12/13/2022]
Abstract
BACKGROUND Lipid-metabolizing enzymes and their metabolites affect inflammation and fibrosis, but their roles in chronic kidney disease (CKD) have not been completely understood. METHODS To clarify their role in CKD, we measured the mRNA levels of major lipid-metabolizing enzymes in 5/6 nephrectomized (Nx) kidneys of C57BL/6 J mice. Mediator lipidomics was performed to reveal lipid profiles of CKD kidneys. RESULTS In 5/6 Nx kidneys, both mRNA and protein levels of Alox15 were higher when compared with those in sham kidneys. With respect to in situ hybridization, the mRNA level of Alox15 was higher in renal tubules of 5/6 Nx kidneys. To examine the role of Alox15 in CKD pathogenesis, we performed 5/6 Nx on Alox15-/- mice. Alox15-/- CKD mice exhibited better renal functions than wild-type mice. Interstitial fibrosis was also inhibited in Alox15-/- CKD mice. Mediator lipidomics revealed that Alox15-/- CKD mouse kidneys had significantly higher levels of PGD2 than the control. To investigate the effects of PGD2 on renal fibrosis, we administered PGD2 to TGF-β1-stimulated NRK-52E cells and HK-2 cells, which lead to a dose-dependent suppression of type I collagen and αSMA in both cell lines. CONCLUSION Increased PGD2 in Alox15-/- CKD mouse kidneys could inhibit fibrosis, thereby resulting in CKD improvement. Thus, Alox15 inhibition and PGD2 administration may be novel therapeutic targets for CKD.
Collapse
Affiliation(s)
- Naohiro Takahashi
- Department of Nephrology, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan
| | - Hiroaki Kikuchi
- Department of Nephrology, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan
| | - Ayaka Usui
- Department of Nephrology, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan
| | - Taisuke Furusho
- Department of Nephrology, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan
| | - Takuya Fujimaru
- Department of Nephrology, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan
| | - Tamami Fujiki
- Department of Nephrology, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan
| | - Tomoki Yanagi
- Department of Nephrology, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan
| | - Yoshiaki Matsuura
- Department of Nephrology, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan
| | - Kenichi Asano
- Laboratory of Immune Regulation, The School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Tokyo, Japan
| | - Kouhei Yamamoto
- Department of Comprehensive Pathology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Fumiaki Ando
- Department of Nephrology, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan
| | - Koichiro Susa
- Department of Nephrology, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan
| | - Shintaro Mandai
- Department of Nephrology, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan
| | - Takayasu Mori
- Department of Nephrology, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan
| | - Tatemitsu Rai
- Department of Nephrology, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan
| | - Shinichi Uchida
- Department of Nephrology, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan
| | - Makoto Arita
- Laboratory for Metabolomics, RIKEN Center for Integrative Medical Sciences (IMS), 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama City, Kanagawa, 230-0045, Japan.
- Division of Physiological Chemistry and Metabolism, Graduate School of Pharmaceutical Sciences, Keio University, Tokyo, Japan.
| | - Eisei Sohara
- Department of Nephrology, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan.
| |
Collapse
|
20
|
Marczak L, Idkowiak J, Tracz J, Stobiecki M, Perek B, Kostka-Jeziorny K, Tykarski A, Wanic-Kossowska M, Borowski M, Osuch M, Formanowicz D, Luczak M. Mass Spectrometry-Based Lipidomics Reveals Differential Changes in the Accumulated Lipid Classes in Chronic Kidney Disease. Metabolites 2021; 11:275. [PMID: 33925471 PMCID: PMC8146808 DOI: 10.3390/metabo11050275] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 04/23/2021] [Indexed: 11/16/2022] Open
Abstract
Chronic kidney disease (CKD) is characterized by the progressive loss of functional nephrons. Although cardiovascular disease (CVD) complications and atherosclerosis are the leading causes of morbidity and mortality in CKD, the mechanism by which the progression of CVD accelerates remains unclear. To reveal the molecular mechanisms associated with atherosclerosis linked to CKD, we applied a shotgun lipidomics approach fortified with standard laboratory analytical methods and gas chromatography-mass spectrometry technique on selected lipid components and precursors to analyze the plasma lipidome in CKD and classical CVD patients. The MS-based lipidome profiling revealed the upregulation of triacylglycerols in CKD and downregulation of cholesterol/cholesteryl esters, sphingomyelins, phosphatidylcholines, phosphatidylethanolamines and ceramides as compared to CVD group and controls. We have further observed a decreased abundance of seven fatty acids in CKD with strong inter-correlation. In contrast, the level of glycerol was elevated in CKD in comparison to all analyzed groups. Our results revealed the putative existence of a functional causative link-the low cholesterol level correlated with lower estimated glomerular filtration rate and kidney dysfunction that supports the postulated "reverse epidemiology" theory and suggest that the lipidomic background of atherosclerosis-related to CKD is unique and might be associated with other cellular factors, i.e., inflammation.
Collapse
Affiliation(s)
- Lukasz Marczak
- Department of Natural Products Biochemistry, Institute of Bioorganic Chemistry Polish Academy of Sciences, 61-704 Poznan, Poland; (J.I.); (M.S.)
| | - Jakub Idkowiak
- Department of Natural Products Biochemistry, Institute of Bioorganic Chemistry Polish Academy of Sciences, 61-704 Poznan, Poland; (J.I.); (M.S.)
- Department of Analytical Chemistry, Faculty of Chemical Technology, University of Pardubice, 532 10 Pardubice, Czech Republic
| | - Joanna Tracz
- Department of Biomedical Proteomics, Institute of Bioorganic Chemistry Polish Academy of Sciences, 61-704 Poznan, Poland;
| | - Maciej Stobiecki
- Department of Natural Products Biochemistry, Institute of Bioorganic Chemistry Polish Academy of Sciences, 61-704 Poznan, Poland; (J.I.); (M.S.)
| | - Bartłomiej Perek
- Department of Cardiac Surgery and Transplantology, Poznan University of Medical Sciences, 61-001 Poznan, Poland;
| | - Katarzyna Kostka-Jeziorny
- Department of Hypertension, Angiology and Internal Disease, Poznan University of Medical Sciences, 61-001 Poznan, Poland; (K.K.-J.); (A.T.)
| | - Andrzej Tykarski
- Department of Hypertension, Angiology and Internal Disease, Poznan University of Medical Sciences, 61-001 Poznan, Poland; (K.K.-J.); (A.T.)
| | - Maria Wanic-Kossowska
- Department of Nephrology, Transplantology and Internal Medicine, Poznan University of Medical Sciences, 60-355 Poznan, Poland;
| | - Marcin Borowski
- Institute of Computing Science, Poznan University of Technology, 60-965 Poznan, Poland;
| | - Marcin Osuch
- Department of Molecular and Systems Biology, Institute of Bioorganic Chemistry Polish Academy of Sciences, 61-704 Poznan, Poland;
| | - Dorota Formanowicz
- Chair and Department of Medical Chemistry and Laboratory Medicine, Poznan University of Medical Sciences, 60-806 Poznan, Poland;
| | - Magdalena Luczak
- Department of Biomedical Proteomics, Institute of Bioorganic Chemistry Polish Academy of Sciences, 61-704 Poznan, Poland;
| |
Collapse
|
21
|
Gui T, Li Y, Zhang S, Alecu I, Chen Q, Zhao Y, Hornemann T, Kullak-Ublick GA, Gai Z. Oxidative stress increases 1-deoxysphingolipid levels in chronic kidney disease. Free Radic Biol Med 2021; 164:139-148. [PMID: 33450378 DOI: 10.1016/j.freeradbiomed.2021.01.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Revised: 12/22/2020] [Accepted: 01/06/2021] [Indexed: 12/16/2022]
Abstract
Chronic kidney disease (CKD) leads to deep changes in lipid metabolism and obvious dyslipidemia. The dysregulation of lipid metabolism in turn results in CKD progression and the complications of cardiovascular diseases. To obtain a profound insight into the associated dyslipidemia in CKD, we performed lipidomic analysis to measure lipid metabolites in the serum from a rat 5/6 nephrectomy (5/6 Nx) model of CKD as well as in the serum from CKD patients. HK-2 cells were also used to examine oxidative stress-induced sphingolipid changes. Totally 182 lipid species were identified in 5/6 Nx rats. We found glycerolipids, total free fatty acids, and sphingolipids levels were significantly upregulated in 5/6 Nx rats. The atypical sphingolipids, 1-deoxysphingolipids, were significantly altered in both CKD animals and human CKD patients. The levels of 1-deoxysphingolipids directly relevant to the level of oxidative stress in vivo and in vitro. These results demonstrate that 1-deoxysphingolipid levels are increased in CKD and this increase directly correlates with increased kidney oxidative stress.
Collapse
Affiliation(s)
- Ting Gui
- Key Laboratory of Traditional Chinese Medicine Classical Theory, Ministry of Education, Shandong University of Traditional Chinese Medicine, Jinan, 250355, PR China
| | - Yunlun Li
- Innovation Research Institute of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250355, PR China; The Third Department of Cardiovascular Diseases, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250000, PR China
| | - Shijun Zhang
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, 250355, PR China; Department of Clinical Pharmacology and Toxicology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Irina Alecu
- Neural Regeneration Laboratory, Department of Biochemistry, Microbiology and Immunology, Ottawa Institute of Systems Biology, Ottawa, ON, Canada; Department of Cellular and Molecular Medicine, UOttawa Brain and Mind Research Institute, Ottawa, ON, Canada; Department of Chemistry and Biomolecular Sciences, Centre for Catalysis and Research Innovation, University of Ottawa, Ottawa, ON, Canada
| | - Qingfa Chen
- Institute for Tissue Engineering and Regenerative Medicine, Liaocheng University/Liaocheng People's Hospital, Liaocheng, Shandong, PR China
| | - Ying Zhao
- Department of Basic Biology, Institute of Biological Sciences, Jining Medical University, Jining, PR China
| | - Thorsten Hornemann
- Department of Clinical Chemistry, University Hospital Zurich, University of Zurich, Switzerland
| | - Gerd A Kullak-Ublick
- Department of Clinical Pharmacology and Toxicology, University Hospital Zurich, University of Zurich, Zurich, Switzerland; Mechanistic Safety, CMO & Patient Safety, Global Drug Development, Novartis Pharma, Basel, Switzerland.
| | - Zhibo Gai
- Key Laboratory of Traditional Chinese Medicine Classical Theory, Ministry of Education, Shandong University of Traditional Chinese Medicine, Jinan, 250355, PR China; Innovation Research Institute of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250355, PR China; Department of Clinical Pharmacology and Toxicology, University Hospital Zurich, University of Zurich, Zurich, Switzerland.
| |
Collapse
|
22
|
Ding WY, Protty MB, Davies IG, Lip GYH. Relationship between lipoproteins, thrombosis and atrial fibrillation. Cardiovasc Res 2021; 118:716-731. [PMID: 33483737 PMCID: PMC8859639 DOI: 10.1093/cvr/cvab017] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 12/14/2020] [Accepted: 01/12/2021] [Indexed: 12/19/2022] Open
Abstract
The prothrombotic state in atrial fibrillation (AF) occurs as a result of multifaceted interactions, known as Virchow’s triad of hypercoagulability, structural abnormalities, and blood stasis. More recently, there is emerging evidence that lipoproteins are implicated in this process, beyond their traditional role in atherosclerosis. In this review, we provide an overview of the various lipoproteins and explore the association between lipoproteins and AF, the effects of lipoproteins on haemostasis, and the potential contribution of lipoproteins to thrombogenesis in AF. There are several types of lipoproteins based on size, lipid composition, and apolipoprotein category, namely: chylomicrons, very low-density lipoprotein, low-density lipoprotein (LDL), intermediate-density lipoprotein, and high-density lipoprotein. Each of these lipoproteins may contain numerous lipid species and proteins with a variety of different functions. Furthermore, the lipoprotein particles may be oxidized causing an alteration in their structure and content. Of note, there is a paradoxical inverse relationship between total cholesterol and LDL cholesterol (LDL-C) levels, and incident AF. The mechanism by which this occurs may be related to the stabilizing effect of cholesterol on myocardial membranes, along with its role in inflammation. Overall, specific lipoproteins may interact with haemostatic pathways to promote excess platelet activation and thrombin generation, as well as inhibiting fibrinolysis. In this regard, LDL-C has been shown to be an independent risk factor for thromboembolic events in AF. The complex relationship between lipoproteins, thrombosis and AF warrants further research with an aim to improve our knowledge base and contribute to our overall understanding of lipoprotein-mediated thrombosis.
Collapse
Affiliation(s)
- Wern Yew Ding
- Liverpool Centre for Cardiovascular Science, University of Liverpool and Liverpool Heart & Chest Hospital, Liverpool, United Kingdom
| | - Majd B Protty
- Systems Immunity University Research Institute, Cardiff University, Cardiff, United Kingdom
| | - Ian G Davies
- Research Institute of Sport and Exercise Science, Liverpool John Moores University, Liverpool, United Kingdom
| | - Gregory Y H Lip
- Liverpool Centre for Cardiovascular Science, University of Liverpool and Liverpool Heart & Chest Hospital, Liverpool, United Kingdom.,Aalborg Thrombosis Research Unit, Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
| |
Collapse
|
23
|
Harzandi A, Lee S, Bidkhori G, Saha S, Hendry BM, Mardinoglu A, Shoaie S, Sharpe CC. Acute kidney injury leading to CKD is associated with a persistence of metabolic dysfunction and hypertriglyceridemia. iScience 2021; 24:102046. [PMID: 33554059 PMCID: PMC7843454 DOI: 10.1016/j.isci.2021.102046] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 12/12/2020] [Accepted: 01/06/2021] [Indexed: 12/14/2022] Open
Abstract
Fibrosis is the pathophysiological hallmark of progressive chronic kidney disease (CKD). The kidney is a highly metabolically active organ, and it has been suggested that disruption in its metabolism leads to renal fibrosis. We developed a longitudinal mouse model of acute kidney injury leading to CKD and an in vitro model of epithelial to mesenchymal transition to study changes in metabolism, inflammation, and fibrosis. Using transcriptomics, metabolic modeling, and serum metabolomics, we observed sustained fatty acid metabolic dysfunction in the mouse model from early to late stages of CKD. Increased fatty acid biosynthesis and downregulation of catabolic pathways for triglycerides and diacylglycerides were associated with a marked increase in these lipids in the serum. We therefore suggest that the kidney may be the source of the abnormal lipid profile seen in patients with CKD, which may provide insights into the association between CKD and cardiovascular disease. Following AKI, markers of fibrosis and inflammation go up simultaneously AKI is associated with reduced fatty acid oxidation and oxidative phosphorylation Changes in metabolism persist as chronic kidney disease develops Changes in metabolism are associated with increased serum levels of triglycerides
Collapse
Affiliation(s)
- Azadeh Harzandi
- Renal Sciences, Department of Inflammation Biology, School of Immunology & Microbial Sciences, Faculty of Life Sciences and Medicine, King's College London, SE5 9NU London, UK
| | - Sunjae Lee
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, Republic of Korea, 61005
- Centre for Host–Microbiome Interactions, Faculty of Dentistry, Oral & Craniofacial Sciences, King's College London, SE1 9RT London, UK
| | - Gholamreza Bidkhori
- Centre for Host–Microbiome Interactions, Faculty of Dentistry, Oral & Craniofacial Sciences, King's College London, SE1 9RT London, UK
| | - Sujit Saha
- Renal Sciences, Department of Inflammation Biology, School of Immunology & Microbial Sciences, Faculty of Life Sciences and Medicine, King's College London, SE5 9NU London, UK
| | - Bruce M. Hendry
- Renal Sciences, Department of Inflammation Biology, School of Immunology & Microbial Sciences, Faculty of Life Sciences and Medicine, King's College London, SE5 9NU London, UK
| | - Adil Mardinoglu
- Centre for Host–Microbiome Interactions, Faculty of Dentistry, Oral & Craniofacial Sciences, King's College London, SE1 9RT London, UK
- Science for Life Laboratory (SciLifeLab), KTH - Royal Institute of Technology, Tomtebodavägen 23, Solna, Stockholm 171 65, Sweden
- Corresponding author
| | - Saeed Shoaie
- Centre for Host–Microbiome Interactions, Faculty of Dentistry, Oral & Craniofacial Sciences, King's College London, SE1 9RT London, UK
- Science for Life Laboratory (SciLifeLab), KTH - Royal Institute of Technology, Tomtebodavägen 23, Solna, Stockholm 171 65, Sweden
- Corresponding author
| | - Claire C. Sharpe
- Renal Sciences, Department of Inflammation Biology, School of Immunology & Microbial Sciences, Faculty of Life Sciences and Medicine, King's College London, SE5 9NU London, UK
- Corresponding author
| |
Collapse
|
24
|
Liu Y, Wang Y, Wang J, Chen K, Jin L, Wang W, Gao Z, Tang X, Yan L, Wan Q, Luo Z, Qin G, Chen L, Mu Y. Lipid Accumulation Product is Associated with Urinary Albumin-creatinine Ratio in Chinese Prediabitic Population: A Report from the REACTION Study. Diabetes Metab Syndr Obes 2021; 14:2415-2425. [PMID: 34093028 PMCID: PMC8168967 DOI: 10.2147/dmso.s310751] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 04/30/2021] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Lipid accumulation product (LAP) as a powerful marker of visceral obesity is an independent risk factor of chronic kidney disease. The present study attempted to explore the association between LAP and albuminuria in prediabetic individuals. METHODS We conducted a cross-sectional study and enrolled 26,529 participants with prediabetes over 40 years old with prediabetes from seven provinces in China. LAP was calculated from waist circumference and fasting triglycerides. Elevated albuminuria was defined by urinary albumin-creatinine ratio (uACR) ≥30 mg/g. Propensity score matching was applied to reduce bias, comparison between LAP and other traditional visceral obesity indices was performed and multiple logistic regression models were conducted to assess the association between LAP and albuminuria in the prediabetic population. RESULTS Individuals with uACR ≥30 mg/g were older and had higher BP, BMI, WC, TG, fasting insulin, glycohemoglobin and LAP, as well as lower eGFR and HDL level. Multiple logistic regression analysis showed elevated LAP was associated with increased odds of albuminuria (OR [95%CI]Q2 vs Q1 1.09 [0.94, 1.27], OR [95%CI]Q3 vs Q1 1.13 [0.97, 1.31], OR [95%CI]Q4 vs Q1 1.42 [1.21, 1.67], P for trend=0.018), and superior over waist-to-hip ratio or waist-to-height ratio. Stratification indicated that the prediabetic population with higher LAP level and characterized by female gender, middle age, being overweight, and rise in blood pressure were more likely to have increased uACR. CONCLUSION Elevated level of LAP was associated with increased albuminuria in the prediabetic population in China.
Collapse
Affiliation(s)
- Yang Liu
- Graduate School, Chinese PLA General Hospital, Beijing, People’s Republic of China
- Department of Endocrinology, The First Medical Center of Chinese PLA General Hospital, Beijing, People’s Republic of China
| | - Yun Wang
- Graduate School, Chinese PLA General Hospital, Beijing, People’s Republic of China
- Department of Endocrinology, The First Medical Center of Chinese PLA General Hospital, Beijing, People’s Republic of China
| | - Jie Wang
- Department of Endocrinology, The First Medical Center of Chinese PLA General Hospital, Beijing, People’s Republic of China
| | - Kang Chen
- Department of Endocrinology, The First Medical Center of Chinese PLA General Hospital, Beijing, People’s Republic of China
| | - Lingzi Jin
- Department of International Medical Services, Peking Union Medical College Hospital (Xidan Campus), Beijing, People’s Republic of China
| | - Weiqing Wang
- Shanghai National Research Centre for Endocrine and Metabolic Diseases, State Key Laboratory of Medical Genomics, Shanghai Institute for Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, People’s Republic of China
| | - Zhengnan Gao
- Department of Endocrinology, Dalian Central Hospital, Dalian, Liaoning, People’s Republic of China
| | - Xulei Tang
- Department of Endocrinology, First Hospital of Lanzhou University, Lanzhou, Gansu, People’s Republic of China
| | - Li Yan
- Department of Endocrinology, Zhongshan University Sun Yat-Sen Memorial Hospital, Guangzhou, Guangdong, People’s Republic of China
| | - Qin Wan
- Department of Endocrinology, Southwest Medical University Affiliated Hospital, Luzhou, Sichuan, People’s Republic of China
| | - Zuojie Luo
- Department of Endocrinology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, People’s Republic of China
| | - Guijun Qin
- Department of Endocrinology, First Affiliated Hospital of Zhengzhou University, Zhenzhou, Henan, People’s Republic of China
| | - Lulu Chen
- Department of Endocrinology, Wuhan Union Hospital, Huazhong University of Science and Technology, Wuhan, Hubei, People’s Republic of China
| | - Yiming Mu
- Department of Endocrinology, The First Medical Center of Chinese PLA General Hospital, Beijing, People’s Republic of China
- Correspondence: Yiming Mu Department of Endocrinology, The First Medical Center of Chinese PLA General Hospital, No. 28 Fuxing Road, Beijing, 100853, People’s Republic of ChinaTel +86-10-5549 9001 Email
| |
Collapse
|
25
|
Reis A, de Freitas V, Sanchez-Quesada JL, Barros AS, Diaz SO, Leite-Moreira A. Lipidomics in Cardiovascular Diseases. SYSTEMS MEDICINE 2021. [DOI: 10.1016/b978-0-12-801238-3.11598-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
|
26
|
Exploratory analysis of large-scale lipidome in large cohorts: are we any closer of finding lipid-based markers suitable for CVD risk stratification and management? Anal Chim Acta 2020; 1142:189-200. [PMID: 33280696 DOI: 10.1016/j.aca.2020.10.037] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 10/07/2020] [Accepted: 10/19/2020] [Indexed: 02/01/2023]
Abstract
Cardiovascular diseases (CVD) remain the biggest cause of deaths worldwide and a major socio-economic impact to society. In this work, we conducted an unbiased exploratory analysis of the large-scale lipidome in human plasma samples from patients with fatal and non-fatal CVD from large cohorts. The exploratory analysis included data from 10,349 individuals from 20 countries in Asia, Australasia, Europe and North America (ADVANCE cohort), and thus representative of the worldwide population. Through the analysis of hazard ratios (HR), we found 306 lipids relevant in CV Death and 294 lipids relevant in CV Events of which 262 lipids were common to fatal and non-fatal events followed over time (3, 5 and 8 years). Our exploratory analysis reveals that, over time, the plasma lipid signature found in non-fatal CVD events is similar to that preceding CVD death. Among the common lipid signature, we found that sphingolipids (HexCer, SM, Cer and other glycosphingolipids) and phospholipids (PC and PE) were strongly associated with CVD events outcome, while polyunsaturated plasmenyl PC and PE lipids were inversely associated with CV outcome. The restricted panel of specific lipids has the potential to improve CVD risk stratification and management, and significantly reduce the time involved in the analysis and data treatment in low-resolution MS instruments making plasma lipidomics a cost-efficient approach for clinical scenario. In our view, once standardized clinical, analytical and data reporting guidelines are implemented worldwide, lipid-based discriminators can be routinely applied in the CVD risk stratification and improve the performance of current clinical, biochemical and imaging diagnostic tools assisting the decision-making process particularly in patients with multiple co-morbidities.
Collapse
|
27
|
Chen X, Zhu Y, Jijiwa M, Nasu M, Ai J, Dai S, Jiang B, Zhang J, Huang G, Deng Y. Identification of plasma lipid species as promising diagnostic markers for prostate cancer. BMC Med Inform Decis Mak 2020; 20:223. [PMID: 32967667 PMCID: PMC7513490 DOI: 10.1186/s12911-020-01242-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 09/02/2020] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Prostate cancer is a very common and highly fatal in men. Current non-invasive detection methods like serum biomarker are unsatisfactory. Biomarkers with high accuracy for diagnostic of prostate cancer are urgently needed. Many lipid species have been found related to various cancers. The purpose of our study is to explore the diagnostic value of lipids for prostate cancer. RESULTS Using triple quadruple liquid chromatography electrospray ionization tandem mass spectrometry, we performed lipidomics profiling of 367 lipids on a total 114 plasma samples from 30 patients with prostate cancer, 38 patients with benign prostatic hyperplasia (BPH), and 46 male healthy controls to evaluate the lipids as potential biomarkers in the diagnosis of prostate cancer. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway database was used to construct the potential mechanism pathway. After statistical analysis, five lipids were identified as a panel of potential biomarkers for the detection of prostate cancer between prostate cancer group and the BPH group; the sensitivity, specificity, and area under curve (AUC) of the combination of these five lipids were 73.3, 81.6%, and 0.800, respectively. We also identified another panel of five lipids in distinguishing between prostate cancer group and the control group with predictive values of sensitivity at 76.7%, specificity at 80.4%, and AUC at 0.836, respectively. The glycerophospholipid metabolism pathway of the selected lipids was considered as the target pathway. CONCLUSIONS Our study indicated that the identified plasma lipid biomarkers have potential in the diagnosis of prostate cancer.
Collapse
Affiliation(s)
- Xiaoli Chen
- Medical Science Laboratory, the Fourth Affiliated Hospital of Guangxi Medical University, Liuzhou, Guangxi China
- Department of Medicine, Rush University Medical Center, Chicago, IL USA
| | - Yong Zhu
- Department of Medicine, Rush University Medical Center, Chicago, IL USA
- National Medical Centre of Colorectal Disease, The Third Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, P. R. China
| | - Mayumi Jijiwa
- Bioinformatics Core, Department of Quantitative Health Sciences, University of Hawaii John A. Burns School of Medicine, Honolulu, HI USA
| | - Masaki Nasu
- Bioinformatics Core, Department of Quantitative Health Sciences, University of Hawaii John A. Burns School of Medicine, Honolulu, HI USA
| | - Junmei Ai
- Department of Medicine, Rush University Medical Center, Chicago, IL USA
| | - Shengming Dai
- Medical Science Laboratory, the Fourth Affiliated Hospital of Guangxi Medical University, Liuzhou, Guangxi China
- Bioinformatics Core, Department of Quantitative Health Sciences, University of Hawaii John A. Burns School of Medicine, Honolulu, HI USA
| | - Bin Jiang
- National Medical Centre of Colorectal Disease, The Third Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, P. R. China
| | - Jicai Zhang
- Department of Laboratory Medicine, Shiyan Taihe Hospital, College of Biomedical Engineering, Hubei University of Medicine, Shiyan, Hubei 442000 P. R. China
| | - Gang Huang
- Shanghai Key Laboratory for Molecular Imaging, Shanghai University of Medicine and Health Sciences, Shanghai, 201318 P. R. China
| | - Youping Deng
- Bioinformatics Core, Department of Quantitative Health Sciences, University of Hawaii John A. Burns School of Medicine, Honolulu, HI USA
| |
Collapse
|
28
|
Reis A, Perez-Gregorio R, Mateus N, de Freitas V. Interactions of dietary polyphenols with epithelial lipids: advances from membrane and cell models in the study of polyphenol absorption, transport and delivery to the epithelium. Crit Rev Food Sci Nutr 2020; 61:3007-3030. [PMID: 32654502 DOI: 10.1080/10408398.2020.1791794] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Currently, diet-related diseases such as diabetes, obesity, hypertension, and cardiovascular diseases account for 70% of all global deaths. To counteract the rising prevalence of non-communicable diseases governments are investing in persuasive educational campaigns toward the ingestion of fresh fruits and vegetables. The intake of dietary polyphenols abundant in Mediterranean and Nordic-type diets holds great potential as nutritional strategies in the management of diet-related diseases. However, the successful implementation of healthy nutritional strategies relies on a pleasant sensory perception in the mouth able to persuade consumers to adopt polyphenol-rich diets and on a deeper understanding on the chemical modifications, that affect not only their chemical properties but also their physical interaction with epithelial lipids and in turn their permeability, location within the lipid bilayer, toxicity and biological activity, and fate during absorption at the gastro-intestinal epithelium, transport in circulation and delivery to the endothelium. In this paper, we review the current knowledge on the interactions between polyphenols and their metabolites with membrane lipids in artificial membranes and epithelial cell models (oral, stomach, gut and endothelium) and the findings from polyphenol-lipid interactions to physiological processes such as oral taste perception, gastrointestinal absorption and endothelial health. Finally, we discuss the limitations and challenges associated with the current experimental approaches in membrane and cell model studies and the potential of polyphenol-rich diets in the quest for personalized nutritional strategies ("personalized nutrition") to assist in the prevention, treatment, and management of non-communicable diseases in an increasingly aged population.
Collapse
Affiliation(s)
- Ana Reis
- Department Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Porto, Portugal
| | - Rosa Perez-Gregorio
- Department Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Porto, Portugal
| | - Nuno Mateus
- REQUIMTE/LAQV, Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Portugal
| | - Victor de Freitas
- REQUIMTE/LAQV, Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Portugal
| |
Collapse
|
29
|
Ademowo OS, Sharma P, Cockwell P, Reis A, Chapple IL, Griffiths HR, Dias IHK. Distribution of plasma oxidised phosphatidylcholines in chronic kidney disease and periodontitis as a co-morbidity. Free Radic Biol Med 2020; 146:130-138. [PMID: 31644951 DOI: 10.1016/j.freeradbiomed.2019.10.012] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 10/08/2019] [Accepted: 10/16/2019] [Indexed: 10/25/2022]
Abstract
Individuals with chronic kidney disease (CKD) and periodontitis as a co-morbidity have a higher mortality rate than individuals with CKD and no periodontitis. The inflammatory burden associated with both diseases contributes to an increased risk of cardiovascular and all-cause mortality. We previously demonstrated that periodontitis is associated with increasing circulating markers of inflammation and oxidative stress. We propose that inflammatory oxidised phosphocholines may contribute to the increased risk of cardiovascular disease in patients with CKD. However, the analysis of oxidised phospholipids has been limited by a lack of authentic standards for absolute quantification. Here, we have developed a comprehensive quantification liquid chromatography-mass spectrometry-based multiple reaction monitoring method for oxidised phospholipids (including some without available authentic species) that enables us to simultaneously measure twelve oxidised phosphatidylcholine species with high levels of sensitivity and specificity. The standard curves for commercial standards 1-palmitoyl-2-glutaroyl-sn-glycero-3-phosphatidylcholine (PGPC); 1-palmitoyl-2-(9'-oxo-nonanoyl)-sn-glycero-3-phosphatidylcholine (PONPC), 1-palmitoyl-2-azelaoyl-sn-glycero-3-phosphatidylcholine (PAzPC) and 1-palmitoyl-2-(5'-oxo-valeroyl)-sn-glycero-3-phosphatidylcholine (POVPC), were linear with a correlation coefficient greater than 0.99 for all analytes. The method is reproducible, with intra- and inter-day precision <15%, and accuracy within ±5% of nominal values for all analytes. This method has been successfully applied to investigate oxidised phosphatidylcholine in plasma from CKD patients with and without chronic periodontitis and the data that was obtained has been compared to plasma from healthy controls. Comparative analysis demonstrates altered chain fragmented phosphatidylcholine profiles in the plasma samples of patients with CKD and periodontitis as a co-morbidity compared to healthy controls.
Collapse
Affiliation(s)
| | - Praveen Sharma
- Periodontal Research Group, University of Birmingham and Birmingham Community Healthcare Trust, Birmingham, England, UK
| | - Paul Cockwell
- Renal Medicine, University Hospital Birmingham Foundation Trust, Birmingham, England, UK
| | - Ana Reis
- LAQV/REQUIMTE, Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, 4169-007, Porto, Portugal
| | - Iain L Chapple
- Periodontal Research Group, University of Birmingham and Birmingham Community Healthcare Trust, Birmingham, England, UK
| | - Helen R Griffiths
- Faculty of Health and Medical Sciences, University of Surrey, Priestley Road, Guildford, GU2 7YH, UK; Aston Medical Research Institute, Aston Medical School, Aston University, Birmingham, B4 7ET, UK
| | - Irundika H K Dias
- Aston Medical Research Institute, Aston Medical School, Aston University, Birmingham, B4 7ET, UK.
| |
Collapse
|
30
|
Development of classification models for identification of important structural features of isoform-selective histone deacetylase inhibitors (class I). Mol Divers 2019; 24:1077-1094. [DOI: 10.1007/s11030-019-10013-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Accepted: 11/02/2019] [Indexed: 10/25/2022]
|
31
|
Gluba-Brzozka A, Franczyk B, Rysz J. Cholesterol Disturbances and the Role of Proper Nutrition in CKD Patients. Nutrients 2019; 11:E2820. [PMID: 31752189 PMCID: PMC6893650 DOI: 10.3390/nu11112820] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Accepted: 11/10/2019] [Indexed: 12/21/2022] Open
Abstract
Chronic kidney disease (CKD) is a widespread disease with increasing prevalence in the modern society. Lipid disturbances are common in this group of patients. In most patients with CKD atherogenic dyslipidemia is observed. Dyslipidemia in patients with renal diseases increases the risk of cardiovascular diseases and it accelerates the progression of chronic kidney disease to its end stage. The amelioration of dyslipidemia and the lowering of oxidative stress, inflammatory processes, insulin sensitivity and remnant lipoproteins levels may lead to the reduction in cardiovascular burden. Nutritional interventions can strengthen the beneficial effect of treatment and they play an important role in the preservation of overall well-being of the patients with CKD since the aim of appropriate diet is to reduce the risk of cardiovascular events, prevent malnutrition, and hamper the progression of kidney disease. The management of dyslipidemia, regardless of the presence of chronic kidney disease, should be initiated by the introduction of therapeutic lifestyle changes. The introduction of diet change was shown to exert beneficial effect on the lipid level lowering that reaches beyond pharmacological therapy. Currently available evidence give the impression that data on dietary interventions in CKD patients is not sufficient to make any clinical practice guidelines and is of low quality.
Collapse
Affiliation(s)
- Anna Gluba-Brzozka
- Department of Nephrology, Hypertension and Family Medicine, Medical University of Lodz, 90-549 Lodz, Poland; (B.F.); (J.R.)
| | | | | |
Collapse
|
32
|
Afshinnia F, Nair V, Lin J, Rajendiran TM, Soni T, Byun J, Sharma K, Fort PE, Gardner TW, Looker HC, Nelson RG, Brosius FC, Feldman EL, Michailidis G, Kretzler M, Pennathur S. Increased lipogenesis and impaired β-oxidation predict type 2 diabetic kidney disease progression in American Indians. JCI Insight 2019; 4:130317. [PMID: 31573977 PMCID: PMC6948762 DOI: 10.1172/jci.insight.130317] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Accepted: 09/25/2019] [Indexed: 12/14/2022] Open
Abstract
BACKGROUNDIn this study, we identified the lipidomic predictors of early type 2 diabetic kidney disease (DKD) progression, which are currently undefined.METHODSThis longitudinal study included 92 American Indians with type 2 diabetes. Serum lipids (406 from 18 classes) were quantified using mass spectrometry from baseline samples when iothalamate-based glomerular filtration rate (GFR) was at least 90 mL/min. Affymetrix GeneChip Array was used to measure renal transcript expression. DKD progression was defined as at least 40% decline in GFR during follow-up.RESULTSParticipants had a mean age of 45 ± 9 years and median urine albumin/creatinine ratio of 43 (interquartile range 11-144). The 32 progressors had significantly higher relative abundance of polyunsaturated triacylglycerols (TAGs) and a lower abundance of C16-C20 acylcarnitines (ACs) (P < 0.001). In a Cox regression model, the main effect terms of unsaturated free fatty acids and phosphatidylethanolamines and the interaction terms of C16-C20 ACs and short-low-double-bond TAGs by categories of albuminuria independently predicted DKD progression. Renal expression of acetyl-CoA carboxylase-encoding gene (ACACA) correlated with serum diacylglycerols in the glomerular compartment (r = 0.36, and P = 0.006) and with low-double-bond TAGs in the tubulointerstitial compartment (r = 0.52, and P < 0.001).CONCLUSIONCollectively, the findings reveal a previously unrecognized link between lipid markers of impaired mitochondrial β-oxidation and enhanced lipogenesis and DKD progression in individuals with preserved GFR. Renal acetyl-CoA carboxylase activation accompanies these lipidomic changes and suggests that it may be the underlying mechanism linking lipid abnormalities to DKD progression.TRIAL REGISTRATIONClinicalTrials.gov, NCT00340678.FUNDINGNIH R24DK082841, K08DK106523, R03DK121941, P30DK089503, P30DK081943, and P30DK020572.
Collapse
Affiliation(s)
- Farsad Afshinnia
- Division of Nephrology, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Viji Nair
- Division of Nephrology, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Jiahe Lin
- Department of Statistics, University of Michigan, Ann Arbor, Michigan, USA
| | - Thekkelnaycke M. Rajendiran
- Michigan Regional Comprehensive Metabolomics Resource Core and
- Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Tanu Soni
- Michigan Regional Comprehensive Metabolomics Resource Core and
| | - Jaeman Byun
- Division of Nephrology, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Kumar Sharma
- Division of Nephrology, Department of Internal Medicine, University of Texas Health at San Antonio, San Antonio, Texas, USA
| | - Patrice E. Fort
- Department of Ophthalmology and Visual Sciences, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Thomas W. Gardner
- Department of Ophthalmology and Visual Sciences, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Helen C. Looker
- Chronic Kidney Disease Section, National Institute of Diabetes and Digestive and Kidney Diseases, Phoenix, Arizona, USA
| | - Robert G. Nelson
- Chronic Kidney Disease Section, National Institute of Diabetes and Digestive and Kidney Diseases, Phoenix, Arizona, USA
| | - Frank C. Brosius
- Division of Nephrology, Department of Medicine, University of Arizona College of Medicine, Tuscan, Arizona, USA
| | - Eva L. Feldman
- Department of Neurology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - George Michailidis
- Department of Statistics and
- Informatics Institute, University of Florida, Gainesville, Florida, USA
| | - Matthias Kretzler
- Division of Nephrology, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Subramaniam Pennathur
- Division of Nephrology, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan, USA
- Michigan Regional Comprehensive Metabolomics Resource Core and
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| |
Collapse
|
33
|
The impact of dyslipidemia and oxidative stress on vasoactive mediators in patients with renal dysfunction. Int Urol Nephrol 2019; 51:2235-2242. [DOI: 10.1007/s11255-019-02319-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2019] [Accepted: 10/11/2019] [Indexed: 12/27/2022]
|
34
|
Rodriguez‐Romero V, Bergstrom RF, Decker BS, Lahu G, Vakilynejad M, Bies RR. Prediction of Nephropathy in Type 2 Diabetes: An Analysis of the ACCORD Trial Applying Machine Learning Techniques. Clin Transl Sci 2019; 12:519-528. [PMID: 31112000 PMCID: PMC6742939 DOI: 10.1111/cts.12647] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Accepted: 04/21/2019] [Indexed: 12/17/2022] Open
Abstract
Applying data mining and machine learning (ML) techniques to clinical data might identify predictive biomarkers for diabetic nephropathy (DN), a common complication of type 2 diabetes mellitus (T2DM). A retrospective analysis of the Action to Control Cardiovascular Risk in Diabetes (ACCORD) trial was intended to identify such factors using ML. The longitudinal data were stratified by time after patient enrollment to differentiate early and late predictors. Our results showed that Random Forest and Simple Logistic Regression methods exhibited the best performance among the evaluated algorithms. Baseline values for glomerular filtration rate (GFR), urinary creatinine, urinary albumin, potassium, cholesterol, low-density lipoprotein, and urinary albumin to creatinine ratio were identified as DN predictors. Early predictors were the baseline values of GFR, systolic blood pressure, as well as fasting plasma glucose (FPG) and potassium at month 4. Changes per year in GFR, FPG, and triglycerides were recognized as predictors of late development. In conclusion, ML-based methods successfully identified predictive factors for DN among patients with T2DM.
Collapse
Affiliation(s)
- Violeta Rodriguez‐Romero
- Division of Clinical PharmacologyDepartment of MedicineIndiana University School of MedicineIndianapolisIndianaUSA
- Indiana Clinical and Translational Sciences Institute (CTSI)IndianapolisIndianaUSA
| | - Richard F. Bergstrom
- Division of Clinical PharmacologyDepartment of MedicineIndiana University School of MedicineIndianapolisIndianaUSA
- Indiana Clinical and Translational Sciences Institute (CTSI)IndianapolisIndianaUSA
| | - Brian S. Decker
- Division of Clinical PharmacologyDepartment of MedicineIndiana University School of MedicineIndianapolisIndianaUSA
| | - Gezim Lahu
- Translational Research and Early ClinicalTakeda Pharmaceutical International Co.CambridgeMassachusettsUSA
| | - Majid Vakilynejad
- Translational Research and Early ClinicalTakeda Pharmaceutical International Co.CambridgeMassachusettsUSA
| | - Robert R. Bies
- Indiana Clinical and Translational Sciences Institute (CTSI)IndianapolisIndianaUSA
- Department of Pharmaceutical SciencesSchool of Pharmacy and Pharmaceutical SciencesState University of New York at BuffaloBuffaloNew YorkUSA
| |
Collapse
|
35
|
Abstract
An increased risk of cardiovascular disease, independent of conventional risk factors, is present even at minor levels of renal impairment and is highest in patients with end-stage renal disease (ESRD) requiring dialysis. Renal dysfunction changes the level, composition and quality of blood lipids in favour of a more atherogenic profile. Patients with advanced chronic kidney disease (CKD) or ESRD have a characteristic lipid pattern of hypertriglyceridaemia and low HDL cholesterol levels but normal LDL cholesterol levels. In the general population, a clear relationship exists between LDL cholesterol and major atherosclerotic events. However, in patients with ESRD, LDL cholesterol shows a negative association with these outcomes at below average LDL cholesterol levels and a flat or weakly positive association with mortality at higher LDL cholesterol levels. Overall, the available data suggest that lowering of LDL cholesterol is beneficial for prevention of major atherosclerotic events in patients with CKD and in kidney transplant recipients but is not beneficial in patients requiring dialysis. The 2013 Kidney Disease: Improving Global Outcomes (KDIGO) Clinical Practice Guideline for Lipid Management in CKD provides simple recommendations for the management of dyslipidaemia in patients with CKD and ESRD. However, emerging data and novel lipid-lowering therapies warrant some reappraisal of these recommendations.
Collapse
|
36
|
Hosseini ES, Kashani HH, Nikzad H, Soleimani A, Mirzaei H, Tamadon MR, Asemi Z. Diabetic Hemodialysis: Vitamin D Supplementation and its Related Signaling Pathways Involved in Insulin and Lipid Metabolism. Curr Mol Med 2019; 19:570-578. [PMID: 31210105 DOI: 10.2174/1566524019666190618144712] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 05/17/2019] [Accepted: 05/28/2019] [Indexed: 12/27/2022]
Abstract
BACKGROUND This study was conducted to determine the effects of vitamin D supplementation on some of the gene expressions related to insulin and lipid metabolism in diabetic hemodialysis (HD) patients. METHODS A double-blind, randomized, placebo-controlled clinical trial was carried out in 55 patients with diabetic HD. The current project used two groups in which each subject received vitamin D supplements (50,000 IU, n=28) or placebo (50,000 IU, n=27) every 2 weeks for 12 weeks. Gene expression analyses (RT-PCR) were included to obtain the rate of gene expression of the related insulin and lipid metabolism genes in peripheral blood mononuclear cells (PBMCs) of patients with diabetic HD. RESULTS Our data revealed that consumption of vitamin D supplementation enables to overexpress the peroxisome proliferation-activated receptor gamma (PPAR-γ) (P=0.001), AKT (P=0.04), PI3K (P=0.02), insulin receptor substrate-1 (IRS1) (P0.008) and glucose transporter type 4 (GLUT-4) (P=0.01) and downregulate the expression of protein kinase C (PKC) (P=0.001) in patients with diabetic HD than control group following the 12-week intervention. In addition, vitamin D supplementation downregulated low-density lipoprotein receptor (LDLR) (P=0.03) expression in the subjects with diabetic HD than the control group. Vitamin D supplementation did not show any effects on the expression of pyruvate dehydrogenase kinase 1 (PDK1) (P=0.37), IRS2 (P=0.90) and lipoprotein (a) [Lp(a)] (P=0.05). CONCLUSION Our findings confirmed that diabetic HD subjects who received the vitamin D supplementation (for 12 weeks), showed a significant overexpression in the PPAR-γ, AKT, PI3K, IRS1 and GLUT4 genes, and also showed a significant downregulation in the PKC and LDLR genes. Moreover, no effects on PDK1, IRS2 and Lp(a) expression were observed.
Collapse
Affiliation(s)
- Elahe S Hosseini
- Anatomical Sciences Research Center, Kashan University of Medical Sciences, Kashan, Iran
| | - Hamed H Kashani
- Anatomical Sciences Research Center, Kashan University of Medical Sciences, Kashan, Iran
| | - Hossein Nikzad
- Anatomical Sciences Research Center, Kashan University of Medical Sciences, Kashan, Iran
| | - Alireza Soleimani
- Department of Internal Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, Iran
| | - Mohammd R Tamadon
- Department of Internal Medicine, School of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| | - Zatollah Asemi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, Iran
| |
Collapse
|
37
|
Brooks ER, Lin DC, Langman CB, Thompson JW, St John-Williams L, Furth SL, Warady B, Haymond S. Metabolomic Patterns in Adolescents With Mild to Moderate CKD. Kidney Int Rep 2019; 4:720-723. [PMID: 31080927 PMCID: PMC6506724 DOI: 10.1016/j.ekir.2019.01.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2018] [Revised: 12/26/2018] [Accepted: 01/14/2019] [Indexed: 11/21/2022] Open
Affiliation(s)
- Ellen R Brooks
- Division of Kidney Diseases, Ann and Robert H. Lurie Children's Hospital of Chicago, Chicago, Illinois, USA.,Department of Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - David C Lin
- Department of Pathology and Laboratory Medicine, Ann and Robert H. Lurie Children's Hospital of Chicago, Chicago, Illinois, USA.,Department of Pathology, Northwestern University Feinberg School of Medicine Chicago, Illinois, USA
| | - Craig B Langman
- Division of Kidney Diseases, Ann and Robert H. Lurie Children's Hospital of Chicago, Chicago, Illinois, USA.,Department of Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - J Will Thompson
- Proteomics and Metabolomics Shared Resource, Center for Genomics and Computational Biology, Duke University Medical Center, Durham, North Carolina, USA
| | - Lisa St John-Williams
- Proteomics and Metabolomics Shared Resource, Center for Genomics and Computational Biology, Duke University Medical Center, Durham, North Carolina, USA
| | - Susan L Furth
- Division of Nephrology, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Bradley Warady
- Division of Pediatric Nephrology, The Children's Mercy Hospital, Kansas City, Missouri, USA
| | - Shannon Haymond
- Department of Pathology and Laboratory Medicine, Ann and Robert H. Lurie Children's Hospital of Chicago, Chicago, Illinois, USA.,Department of Pathology, Northwestern University Feinberg School of Medicine Chicago, Illinois, USA
| |
Collapse
|
38
|
Dias IHK, Ferreira R, Gruber F, Vitorino R, Rivas-Urbina A, Sanchez-Quesada JL, Vieira Silva J, Fardilha M, de Freitas V, Reis A. Sulfate-based lipids: Analysis of healthy human fluids and cell extracts. Chem Phys Lipids 2019; 221:53-64. [PMID: 30910732 DOI: 10.1016/j.chemphyslip.2019.03.009] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 03/15/2019] [Accepted: 03/15/2019] [Indexed: 12/12/2022]
Abstract
Sulfate-based lipids (SL) have been proposed as players in inflammation, immunity and infection. In spite of the many biochemical processes linked to SL, analysis on this class of lipids has only focused on specific SL sub-classes in individual fluids or cells leaving a range of additional SL in other biological samples unaccounted for. This study describes the mass spectrometry screening of SL in lipid extracts of human fluids (saliva, plasma, urine, seminal fluid) and primary human cells (RBC, neutrophils, fibroblasts and skin epidermal) using targeted precursor ion scanning (PIS) approach. The PIS 97 mass spectra reveal a wide diversity of SL including steroid sulfates, sulfoglycolipids and other unidentified SL, as well as metabolites such as taurines, sulfated polyphenols and hypurate conjugates. Semi-quantification of SL revealed that plasma exhibited the highest content of SL whereas seminal fluid and epithelial cells contained the highest sulphur to phosphorous (S/P) ratio. The complexity of biofluids and cells sulfateome presented in this study highlight the importance of expanding the panel of synthetic sulfate-based lipid standards. Also, the heterogenous distribution of SL provides evidence for the interplay of sulfotransferases/sulfatases, opening new avenues for biomarker discovery in oral health, cardiovascular, fertility and dermatology research areas.
Collapse
Affiliation(s)
| | - Rita Ferreira
- Departamento de Quimica, Research Unit of Química Orgânica, Produtos Naturais e Agro-alimentares (QOPNA), Universidade de Aveiro, 3810-193, Aveiro, Portugal
| | - Florian Gruber
- Medical University of Vienna, Department of Dermatology, Vienna, Austria; Christian Doppler Laboratory for Biotechnology of Skin Aging, Vienna, Austria
| | - Rui Vitorino
- Unidade de Investigação Cardiovascular, Departamento de Cirurgia e Fisiologia, Faculdade de Medicina, Universidade do Porto, 4200-319, Porto, Portugal; Department of Medical Sciences, Institute of Biomedicine - iBiMED, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Andrea Rivas-Urbina
- Cardiovascular Biochemistry, Biomedical Research Institute IIB Sant Pau, Sant Antoni Ma Claret, 167, Barcelona, Spain
| | - José Luis Sanchez-Quesada
- Cardiovascular Biochemistry, Biomedical Research Institute IIB Sant Pau, Sant Antoni Ma Claret, 167, Barcelona, Spain
| | - Joana Vieira Silva
- Department of Medical Sciences, Institute of Biomedicine - iBiMED, University of Aveiro, 3810-193, Aveiro, Portugal; Reproductive Genetics & Embryo-fetal Development Group, Institute for Innovation and Health Research (I3S), University of Porto, Porto, Portugal; Unit for Multidisciplinary Research in Biomedicine (UMIB), Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Porto, Portugal
| | - Margarida Fardilha
- Department of Medical Sciences, Institute of Biomedicine - iBiMED, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Victor de Freitas
- LAQV/REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre 687, 4169-007, Porto, Portugal
| | - Ana Reis
- LAQV/REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre 687, 4169-007, Porto, Portugal.
| |
Collapse
|
39
|
Rivera-Velez SM, Broughton-Neiswanger LE, Suarez M, Piñeyro P, Navas J, Chen S, Hwang J, Villarino NF. Repeated administration of the NSAID meloxicam alters the plasma and urine lipidome. Sci Rep 2019; 9:4303. [PMID: 30867479 PMCID: PMC6416286 DOI: 10.1038/s41598-019-40686-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Accepted: 02/21/2019] [Indexed: 12/31/2022] Open
Abstract
Non-steroidal anti-inflammatories (NSAIDs), such as meloxicam, are the mainstay for treating painful and inflammatory conditions in animals and humans; however, the repeated administration of NSAIDs can cause adverse effects, limiting the long-term administration of these drugs to some patients. The primary aim of this study was to determine the effects of repeated meloxicam administration on the feline plasma and urine lipidome. Cats (n = 12) were treated subcutaneously with either saline solution or 0.3 mg/kg body weight of meloxicam daily for up to 31 days. Plasma and urine lipidome were determined by LC-MS before the first treatment and at 4, 9 and 13 and 17 days after the first administration of meloxicam. The repeated administration of meloxicam altered the feline plasma and urine lipidome as demonstrated by multivariate statistical analysis. The intensities of 94 out of 195 plasma lipids were altered by the repeated administration of meloxicam to cats (p < 0.05). Furthermore, we identified 12 lipids in plasma and 10 lipids in urine that could serve as biomarker candidates for discriminating animals receiving NSAIDs from healthy controls. Expanding our understanding about the effects of NSAIDs in the body could lead to the discovery of mechanism(s) associated with intolerance to NSAIDs.
Collapse
Affiliation(s)
- Sol M Rivera-Velez
- Program in Individualized Medicine, Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Washington State University, Pullman, 99164, WA, United States
| | - Liam E Broughton-Neiswanger
- Program in Individualized Medicine, Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Washington State University, Pullman, 99164, WA, United States
| | - Martin Suarez
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Washington State University, Pullman, 99164, WA, United States
| | - Pablo Piñeyro
- Veterinary Diagnostic Laboratory, College of Veterinary Medicine, Iowa State University, Ames, 1134, IA, United States
| | - Jinna Navas
- Program in Individualized Medicine, Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Washington State University, Pullman, 99164, WA, United States
| | - Sandy Chen
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Washington State University, Pullman, 99164, WA, United States
| | - Julianne Hwang
- Program in Individualized Medicine, Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Washington State University, Pullman, 99164, WA, United States
| | - Nicolas F Villarino
- Program in Individualized Medicine, Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Washington State University, Pullman, 99164, WA, United States.
| |
Collapse
|
40
|
Abstract
Technological advances in mass spectrometry-based lipidomic platforms have provided the opportunity for comprehensive profiling of lipids in biological samples and shown alterations in the lipidome that occur in metabolic disorders. A lipidomic approach serves as a powerful tool for biomarker discovery and gaining insight to molecular mechanisms of disease, especially when integrated with other -omics platforms (ie, transcriptomics, proteomics, and metabolomics) in the context of systems biology. In this review, we describe the workflow commonly applied to the conduct of lipidomic studies including important aspects of study design, sample preparation, biomarker identification and quantification, and data processing and analysis, as well as crucial considerations in clinical applications. We also review some recent studies of the application of lipidomic platforms that highlight the potential of lipid biomarkers and add to our understanding of the molecular basis of kidney disease.
Collapse
|
41
|
Bakhshayeshkaram M, Roozbeh J, Heydari ST, Honarvar B, Dabbaghmanesh MH, Ghoreyshi M, Bagheri Lankarani K. A Population-Based Study on the Prevalence and Risk Factors of Chronic Kidney Disease in the Adult Population of Shiraz, Southern Iran. Galen Med J 2019; 8:e935. [PMID: 34466454 PMCID: PMC8343655 DOI: 10.31661/gmj.v0i0.935] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Revised: 08/06/2017] [Accepted: 09/08/2017] [Indexed: 01/15/2023] Open
Abstract
Background: Currently, we are facing a significant increase in the new cases of the end-stage renal disease in developing countries. Hence, it seems vital to work on strategies aimed at reducing its development and progression. Determining the related risk factors can provide an insight into achieving these policymaking goals. Therefore, this study was conducted to identify risk factors associated with chronic kidney disease (CKD) in the Iranian adult population. Materials and Methods: This cross-sectional study was performed in Shiraz, Southern Iran, through a cluster random sampling technique that involved 819 subjects, including 340 male and 479 female adult participants. Factors such as the body mass index, waist circumference, blood pressure, and biochemical profile were determined. We evaluated the prevalence of CKD according to the glomerular filtration rate (GFR), as well as possible risk factors associated with it. GFR was calculated on the basis of the "Chronic Kidney Disease Epidemiology Collaboration" creatinine equation. Results: The cluster comprised 58.5% females and 41.5% males. The mean age of our participants was 43.0 ± 14.0 years. Our results showed that 16.6% of adult urban inhabitants in Iran had CKD (stages 3 to 5, eGFR ≤60), that is, GFR less than 60 mL/min/1.73 m2. The proportion of participants having hypertension, obesity, high waist circumference, diabetes mellitus, and history of cardiovascular disease was 17.3%, 19.3%, 35%, 9.4%, and 5.3%, respectively. Multiple regression analysis indicated an independent correlation between age, sex, dyslipidemia, and hypertension with CKD. Conclusion: This study indicates that CKD is a substantial health burden in Iranian adult population. Additionally, the results of this study addressed the importance of integrated strategies that aimed to identify, prevent, and treat noncommunicable diseases fueling the development of CKD.
Collapse
Affiliation(s)
- Marzieh Bakhshayeshkaram
- Health Policy Research Center, Institute of Health, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Jamshid Roozbeh
- Shiraz Nephro-Urology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Sayed Taghi Heydari
- Health Policy Research Center, Institute of Health, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Behnam Honarvar
- Health Policy Research Center, Institute of Health, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Maryam Ghoreyshi
- Health Policy Research Center, Institute of Health, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Kamran Bagheri Lankarani
- Health Policy Research Center, Institute of Health, Shiraz University of Medical Sciences, Shiraz, Iran
- Correspondence to: Kamran Bagheri Lankarani. Professor of Internal Medicine, Gastroenterologist, Health Policy Research Center, Institute of Health, Shiraz University of Medical Sciences, Shiraz, Iran. Telephone Number:+98-71-32309615 Email Address:
| |
Collapse
|
42
|
Aristizabal Henao JJ, Bradley RM, Duncan RE, Stark KD. Categorizing and qualifying nutritional lipidomic data: defining brutto, medio, genio, and infinio lipid species within macrolipidomics and microlipidomics. Curr Opin Clin Nutr Metab Care 2018; 21:352-359. [PMID: 29912810 DOI: 10.1097/mco.0000000000000495] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
PURPOSE OF REVIEW Lipidomic profiling of biological samples is increasing in nutritional research applications. 'Lipidomic analyses' however can be quite variable in specific methods and the type of information about the specific lipids that is revealed. The lack of defined and simple terminology to describe aspects of lipidomics presents a challenge in the use of lipidomics across interdisciplinary research groups. RECENT FINDINGS We propose the use of macrolipidomics and microlipidomics to define lipidomic strategies based on analytical outcomes. Macrolipidomics involves the global characterization of the most abundant lipids in a system, whereas microlipidomics examines low abundant lipids with potent bioactivity that typically require specialized analyses. We also propose that in addition to the term 'brutto', the terms 'medio, genio, and infinio' be used to indicate when information about the lipid molecule increases from isobars/isomers to regio-isomers with carbon-carbon double bond information. SUMMARY The use of these terms will help establish a common language around the field of lipidomics and improve communication and uptake in the field of clinical nutrition. Macrolipidomic and microlipidomic terms quickly convey the general purpose of the approach. Brutto, medio, genio, and infino quickly convey the nature of the lipid identification.
Collapse
|
43
|
The CKD plasma lipidome varies with disease severity and outcome. J Clin Lipidol 2018; 13:176-185.e8. [PMID: 30177483 DOI: 10.1016/j.jacl.2018.07.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Revised: 06/29/2018] [Accepted: 07/24/2018] [Indexed: 11/21/2022]
Abstract
BACKGROUND Various alterations in lipid metabolism have been observed in patients with chronic kidney disease (CKD). OBJECTIVES To determine the levels of lipid species in plasma from CKD and hemodialysis (HD) patients and test their association with CKD severity and patient outcome. METHODS Seventy-seven patients with CKD stage 2 to HD were grouped into classes of CKD severity at baseline and followed-up for 3.5 years for the occurrence of transition to HD or death (combined outcome). Plasma levels of phosphatidylcholines (PCs), lysophosphatidylcholines (LPCs), sphingomyelins (SMs), and fatty acids were analyzed by flow-injection analysis coupled to tandem mass spectrometry or gas chromatography coupled with mass spectrometry. Kruskal Wallis rank tests and Cox regressions were used to analyze the association of lipids with CKD severity and the risk of combined outcome, respectively. RESULTS The plasma level of PCs, LPCs, and SMs was decreased in HD patients compared with nondialyzed CKD patients (all P < .05), whereas esterified and/or nonesterified fatty acids level did not change. Thirty-four lipids displayed significantly lower abundance in plasma of HD patients, whereas elaidic acid (C18:1ω9t) level was increased (P < .001). The total amount of LPCs and individual LPCs were associated with better outcome (P < .05). In particular, LPC 18:2 and LPC 20:3 were statistically associated with outcome in adjusted models (P < .05). DISCUSSION In HD patients, a reduction in plasma lipids is observed. Some of the alterations, namely reduced LPCs, were associated with the risk of adverse outcome. These changes could be related to metabolic dysfunctions.
Collapse
|
44
|
Identification of molecular features necessary for selective inhibition of B cell lymphoma proteins using machine learning techniques. Mol Divers 2018; 23:55-73. [DOI: 10.1007/s11030-018-9856-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Accepted: 06/30/2018] [Indexed: 11/30/2022]
|
45
|
Bulbul M, Dagel T, Afsar B, Ulusu N, Kuwabara M, Covic A, Kanbay M. Disorders of Lipid Metabolism in Chronic Kidney Disease. Blood Purif 2018; 46:144-152. [DOI: 10.1159/000488816] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Accepted: 03/25/2018] [Indexed: 01/09/2023]
Abstract
Cardiovascular disease (CVD) is the leading cause of death in chronic kidney disease (CKD). One of the most important pathophysiological mechanisms for CVD in patients with CKD is the widespread and possibly accelerated formation of atherosclerotic plaques due to hyperlipidemia, uremic toxins, inflammation, oxidative stress, and endothelial dysfunction. Recent studies showed that the level of oxidized low-density lipoprotein cholesterol increases, and that high-density lipoprotein cholesterol dysfunction occurs as kidney function declines and inflammation becomes more prevalent. In this review, we aimed to discuss the effect of kidney dysfunction, oxidative stress, and inflammation on lipid profile.
Collapse
|
46
|
Busnelli M, Manzini S, Parolini C, Escalante-Alcalde D, Chiesa G. Lipid phosphate phosphatase 3 in vascular pathophysiology. Atherosclerosis 2018. [DOI: 10.1016/j.atherosclerosis.2018.02.025] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
47
|
Dou F, Miao H, Wang JW, Chen L, Wang M, Chen H, Wen AD, Zhao YY. An Integrated Lipidomics and Phenotype Study Reveals Protective Effect and Biochemical Mechanism of Traditionally Used Alisma orientale Juzepzuk in Chronic Kidney Disease. Front Pharmacol 2018; 9:53. [PMID: 29472858 PMCID: PMC5809464 DOI: 10.3389/fphar.2018.00053] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Accepted: 01/15/2018] [Indexed: 01/02/2023] Open
Abstract
Alisma orientale Juzepzuk (AO) is widely used for various diuretic and nephropathic treatments in traditional Chinese medicines (TCM). In a clinical setting, AO is used as both a lipid-lowering and tubular interstitial fibrosis agent. However, the mechanisms of AO for the treatment of renal interstitial fibrosis and abnormal lipid metabolism are not well-understood. In this study, pharmacological and UPLC-HDMS-based lipidomic approaches were employed to investigate the lipid-lowering and tubular interstitial fibrosis effect of AO on rats with adenine-induced chronic kidney disease (CKD). Rats with CKD showed increased serum levels of creatinine and urea, tubular damage, and tubular interstitial fibrosis. Moreover, multiple lipid species were identified in CKD rats. Among these lipids, polyunsaturated fatty acid, eicosapentaenoic acid, 8,9-epoxyeicosatrienoic acid, and docosahexaenoic acid levels were significantly decreased in CKD rats compared to control rats. In CKD rats, up-regulation of the NF-κB pathway may impair polyunsaturated fatty acid metabolism, causing renal fibrosis. In addition, CKD rats showed significantly decreased diglyceride levels and increased triglyceride levels compared to the control group. Pathway over-representation analysis demonstrated that 30 metabolic pathways were associated with lipid species. AO treatment suppressed up-regulation of inflammation, and partly restored the deregulation of polyunsaturated fatty acids and glycerolipids metabolism. Our results indicated that AO treatment attenuated renal fibrosis by down-regulating inflammation, and mitigating lipid metabolism in CKD rats. In conclusion, this study has identified the therapeutic lipid-lowering and anti-fibrosis effects of AO on CKD.
Collapse
Affiliation(s)
- Fang Dou
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Hua Miao
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Northwest University, Xi'an, China
| | - Jing-Wen Wang
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Lin Chen
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Northwest University, Xi'an, China
| | - Ming Wang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Northwest University, Xi'an, China
| | - Hua Chen
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Northwest University, Xi'an, China
| | - Ai-Dong Wen
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Ying-Yong Zhao
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Northwest University, Xi'an, China
| |
Collapse
|
48
|
Masana L, Girona J, Ibarretxe D, Rodríguez-Calvo R, Rosales R, Vallvé JC, Rodríguez-Borjabad C, Guardiola M, Rodríguez M, Guaita-Esteruelas S, Oliva I, Martínez-Micaelo N, Heras M, Ferré R, Ribalta J, Plana N. Clinical and pathophysiological evidence supporting the safety of extremely low LDL levels-The zero-LDL hypothesis. J Clin Lipidol 2018; 12:292-299.e3. [PMID: 29398429 DOI: 10.1016/j.jacl.2017.12.018] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Revised: 12/18/2017] [Accepted: 12/20/2017] [Indexed: 11/30/2022]
Abstract
While the impact of very low concentrations of low-density lipoprotein cholesterol (LDL-C) on cardiovascular prevention is very reassuring, it is intriguing to know what effect these extremely low LDL-C concentrations have on lipid homoeostasis. The evidence supporting the safety of extremely low LDL levels comes from genetic studies and clinical drug trials. Individuals with lifelong low LDL levels due to mutations in genes associated with increased LDL-LDL receptor (LDLR) activity reveal no safety issues. Patients achieving extremely low LDL levels in the IMPROVE-IT and FOURIER, and the PROFICIO and ODYSSEY programs seem not to have an increased prevalence of adverse effects. The main concern regarding extremely low LDL-C plasma concentrations is the adequacy of the supply of cholesterol, and other molecules, to peripheral tissues. However, LDL proteomic and kinetic studies reaffirm that LDL is the final product of endogenous lipoprotein metabolism. Four of 5 LDL particles are cleared through the LDL-LDLR pathway in the liver. Given that mammalian cells have no enzymatic systems to degrade cholesterol, the LDL-LDLR pathway is the main mechanism for removal of cholesterol from the body. Our focus, therefore, is to review, from a physiological perspective, why such extremely low LDL-C concentrations do not appear to be detrimental. We suggest that extremely low LDL-C levels due to increased LDLR activity may be a surrogate of adequate LDL-LDLR pathway function.
Collapse
Affiliation(s)
- Luis Masana
- Unitat de Medicina Vascular i Metabolisme, Unitat de Recerca en Lipids i Arteriosclerosis, Sant Joan University Hospital, IISPV, CIBERDEM, Universitat Rovira I Virgili, Reus, Spain.
| | - Josefa Girona
- Unitat de Medicina Vascular i Metabolisme, Unitat de Recerca en Lipids i Arteriosclerosis, Sant Joan University Hospital, IISPV, CIBERDEM, Universitat Rovira I Virgili, Reus, Spain
| | - Daiana Ibarretxe
- Unitat de Medicina Vascular i Metabolisme, Unitat de Recerca en Lipids i Arteriosclerosis, Sant Joan University Hospital, IISPV, CIBERDEM, Universitat Rovira I Virgili, Reus, Spain
| | - Ricardo Rodríguez-Calvo
- Unitat de Medicina Vascular i Metabolisme, Unitat de Recerca en Lipids i Arteriosclerosis, Sant Joan University Hospital, IISPV, CIBERDEM, Universitat Rovira I Virgili, Reus, Spain
| | - Roser Rosales
- Unitat de Medicina Vascular i Metabolisme, Unitat de Recerca en Lipids i Arteriosclerosis, Sant Joan University Hospital, IISPV, CIBERDEM, Universitat Rovira I Virgili, Reus, Spain
| | - Joan-Carles Vallvé
- Unitat de Medicina Vascular i Metabolisme, Unitat de Recerca en Lipids i Arteriosclerosis, Sant Joan University Hospital, IISPV, CIBERDEM, Universitat Rovira I Virgili, Reus, Spain
| | - Cèlia Rodríguez-Borjabad
- Unitat de Medicina Vascular i Metabolisme, Unitat de Recerca en Lipids i Arteriosclerosis, Sant Joan University Hospital, IISPV, CIBERDEM, Universitat Rovira I Virgili, Reus, Spain
| | - Montserrat Guardiola
- Unitat de Medicina Vascular i Metabolisme, Unitat de Recerca en Lipids i Arteriosclerosis, Sant Joan University Hospital, IISPV, CIBERDEM, Universitat Rovira I Virgili, Reus, Spain
| | - Marina Rodríguez
- Unitat de Medicina Vascular i Metabolisme, Unitat de Recerca en Lipids i Arteriosclerosis, Sant Joan University Hospital, IISPV, CIBERDEM, Universitat Rovira I Virgili, Reus, Spain
| | - Sandra Guaita-Esteruelas
- Unitat de Medicina Vascular i Metabolisme, Unitat de Recerca en Lipids i Arteriosclerosis, Sant Joan University Hospital, IISPV, CIBERDEM, Universitat Rovira I Virgili, Reus, Spain
| | - Iris Oliva
- Unitat de Medicina Vascular i Metabolisme, Unitat de Recerca en Lipids i Arteriosclerosis, Sant Joan University Hospital, IISPV, CIBERDEM, Universitat Rovira I Virgili, Reus, Spain
| | - Neus Martínez-Micaelo
- Unitat de Medicina Vascular i Metabolisme, Unitat de Recerca en Lipids i Arteriosclerosis, Sant Joan University Hospital, IISPV, CIBERDEM, Universitat Rovira I Virgili, Reus, Spain
| | - Mercedes Heras
- Unitat de Medicina Vascular i Metabolisme, Unitat de Recerca en Lipids i Arteriosclerosis, Sant Joan University Hospital, IISPV, CIBERDEM, Universitat Rovira I Virgili, Reus, Spain
| | - Raimon Ferré
- Unitat de Medicina Vascular i Metabolisme, Unitat de Recerca en Lipids i Arteriosclerosis, Sant Joan University Hospital, IISPV, CIBERDEM, Universitat Rovira I Virgili, Reus, Spain
| | - Josep Ribalta
- Unitat de Medicina Vascular i Metabolisme, Unitat de Recerca en Lipids i Arteriosclerosis, Sant Joan University Hospital, IISPV, CIBERDEM, Universitat Rovira I Virgili, Reus, Spain
| | - Núria Plana
- Unitat de Medicina Vascular i Metabolisme, Unitat de Recerca en Lipids i Arteriosclerosis, Sant Joan University Hospital, IISPV, CIBERDEM, Universitat Rovira I Virgili, Reus, Spain
| |
Collapse
|
49
|
Afshinnia F, Rajendiran TM, Soni T, Byun J, Wernisch S, Sas KM, Hawkins J, Bellovich K, Gipson D, Michailidis G, Pennathur S. Impaired β-Oxidation and Altered Complex Lipid Fatty Acid Partitioning with Advancing CKD. J Am Soc Nephrol 2018; 29:295-306. [PMID: 29021384 PMCID: PMC5748913 DOI: 10.1681/asn.2017030350] [Citation(s) in RCA: 136] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Accepted: 08/28/2017] [Indexed: 12/16/2022] Open
Abstract
Studies of lipids in CKD, including ESRD, have been limited to measures of conventional lipid profiles. We aimed to systematically identify 17 different lipid classes and associate the abundance thereof with alterations in acylcarnitines, a metric of β-oxidation, across stages of CKD. From the Clinical Phenotyping Resource and Biobank Core (CPROBE) cohort of 1235 adults, we selected a panel of 214 participants: 36 with stage 1 or 2 CKD, 99 with stage 3 CKD, 61 with stage 4 CKD, and 18 with stage 5 CKD. Among participants, 110 were men (51.4%), 64 were black (29.9%), and 150 were white (70.1%), and the mean (SD) age was 60 (16) years old. We measured plasma lipids and acylcarnitines using liquid chromatography-mass spectrometry. Overall, we identified 330 different lipids across 17 different classes. Compared with earlier stages, stage 5 CKD associated with a higher abundance of saturated C16-C20 free fatty acids (FFAs) and long polyunsaturated complex lipids. Long-chain-to-intermediate-chain acylcarnitine ratio, a marker of efficiency of β-oxidation, exhibited a graded decrease from stage 2 to 5 CKD (P<0.001). Additionally, multiple linear regression revealed that the long-chain-to-intermediate-chain acylcarnitine ratio inversely associated with polyunsaturated long complex lipid subclasses and the C16-C20 FFAs but directly associated with short complex lipids with fewer double bonds. We conclude that increased abundance of saturated C16-C20 FFAs coupled with impaired β-oxidation of FFAs and inverse partitioning into complex lipids may be mechanisms underpinning lipid metabolism changes that typify advancing CKD.
Collapse
Affiliation(s)
| | - Thekkelnaycke M Rajendiran
- Bioinformatics and Molecular Phenotyping, Michigan Regional Comprehensive Metabolomics Resource Core, University of Michigan, Ann Arbor, Michigan
- Pathology
| | - Tanu Soni
- Bioinformatics and Molecular Phenotyping, Michigan Regional Comprehensive Metabolomics Resource Core, University of Michigan, Ann Arbor, Michigan
| | | | | | | | | | - Keith Bellovich
- Division of Nephrology, St. Clair Nephrology Research, Detroit, Michigan; and
| | | | - George Michailidis
- Bioinformatics and Molecular Phenotyping, Michigan Regional Comprehensive Metabolomics Resource Core, University of Michigan, Ann Arbor, Michigan
- Department of Statistics, University of Florida, Gainesville, Florida
| | - Subramaniam Pennathur
- Departments of Internal Medicine-Nephrology,
- Bioinformatics and Molecular Phenotyping, Michigan Regional Comprehensive Metabolomics Resource Core, University of Michigan, Ann Arbor, Michigan
- Molecular and Integrative Physiology and
| |
Collapse
|
50
|
Harmon ME, Lewis J, Miller C, Hoover J, Ali AMS, Shuey C, Cajero M, Lucas S, Pacheco B, Erdei E, Ramone S, Nez T, Campen MJ, Gonzales M. Arsenic association with circulating oxidized low-density lipoprotein in a Native American community. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2018; 81:535-548. [PMID: 29641933 PMCID: PMC6042213 DOI: 10.1080/15287394.2018.1443860] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Accepted: 02/19/2018] [Indexed: 05/21/2023]
Abstract
More than 500 abandoned uranium (U) mines within the Navajo Nation contribute U, arsenic (As) and other metals to groundwater, soil and potentially air through airborne transport. The adverse cardiovascular health effects attributed to cumulative exposure to these metals remains uncertain. The aim of this study was to examine whether environmental exposure to these metals may promote or exacerbate the oxidation of low-density lipoprotein (LDL) cholesterol in this Native American population. The correlation of cardiovascular biomarkers (oxidized LDL (oxLDL) and C-reactive protein (CRP)) from a Navajo cohort (n = 252) with mean annual As and U intakes from water and urine metals was estimated using linear regression. Proof-of-concept assays were performed to investigate whether As and U directly oxidize human LDL. Mean annual As intake from water was positively and significantly associated with oxLDL, but not CRP in this study population, while U intake estimates were negatively associated with oxLDL. In an acellular system, As, but not U, directly oxidized the apolipoprotein B-100 component of purified human LDL. Neither metal promoted lipid peroxidation of the LDL particle. Both the population and lab results are consistent with the hypothesis that As promotes oxidation of LDL, a crucial step in vascular inflammation and chronic vascular disease. Conversely, for outcomes related to U, negative associations were observed between U intake and oxLDL, and U only minimally altered human LDL in direct exposure experiments. Only urine U was correlated with CRP, whereas no other metals in water or urine were apparently reliable predictors of this inflammatory marker.
Collapse
Affiliation(s)
- Molly E. Harmon
- Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico, Albuquerque, NM, USA
| | - Johnnye Lewis
- Community Environmental Health Program, College of Pharmacy, University of New Mexico, Albuquerque, NM, USA
| | - Curtis Miller
- Community Environmental Health Program, College of Pharmacy, University of New Mexico, Albuquerque, NM, USA
| | - Joseph Hoover
- Community Environmental Health Program, College of Pharmacy, University of New Mexico, Albuquerque, NM, USA
| | - Abdul-Mehdi S. Ali
- Department of Earth and Planetary Sciences, University of New Mexico, Albuquerque, NM, USA
| | - Chris Shuey
- Southwest Research and Information Center, Albuquerque, NM, USA
| | - Miranda Cajero
- Community Environmental Health Program, College of Pharmacy, University of New Mexico, Albuquerque, NM, USA
| | - Selita Lucas
- Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico, Albuquerque, NM, USA
| | - Bernadette Pacheco
- Community Environmental Health Program, College of Pharmacy, University of New Mexico, Albuquerque, NM, USA
| | - Esther Erdei
- Community Environmental Health Program, College of Pharmacy, University of New Mexico, Albuquerque, NM, USA
| | - Sandy Ramone
- Southwest Research and Information Center, Albuquerque, NM, USA
| | - Teddy Nez
- Southwest Research and Information Center, Albuquerque, NM, USA
| | - Matthew J. Campen
- Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico, Albuquerque, NM, USA
| | - Melissa Gonzales
- Department of Internal Medicine, Division of Epidemiology, Biostatistics and Preventive Medicine, School of Medicine, University of New Mexico, Albuquerque, NM, USA
| |
Collapse
|