1
|
Huang XL, Sun Y, Wen P, Pan JC, He WY. The potential mechanism of ursolic acid in the treatment of bladder cancer based on network pharmacology and molecular docking. J Int Med Res 2024; 52:3000605241234006. [PMID: 38443785 PMCID: PMC10916484 DOI: 10.1177/03000605241234006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 01/29/2024] [Indexed: 03/07/2024] Open
Abstract
OBJECTIVE This study explored the potential molecular mechanisms of ursolic acid (UA) in bladder cancer treatment using network pharmacology and molecular docking. METHODS The Traditional Chinese Medicine Systems Pharmacology and UniProt databases were used to screen potential targets of UA. Relevant bladder cancer target genes were extracted using the GeneCards database. All data were pooled and intercrossed to obtain common target genes of UA and bladder cancer. Gene Ontology functional annotation and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analyses were performed. Molecular docking was conducted to verify the possible binding conformation between UA and bladder cancer cells. Then, in vitro experiments were performed to further validate the predicted results. RESULTS UA exerts anti-tumor effects on bladder cancer through multiple targets and pathways. Molecular docking indicated that UA undergoes stable binding with the proteins encoded by the top six core genes (STAT3, VEGFA, CASP3, TP53, IL1B, and CCND1). The in vitro experiments verified that UA can induce bladder cancer cell apoptosis by regulating the PI3K/Akt signaling pathway. CONCLUSIONS Our study illustrated the potential mechanism of UA in bladder cancer based on network pharmacology and molecular docking. The results will provide scientific references for follow-up studies and clinical treatment.
Collapse
Affiliation(s)
- Xiao-Long Huang
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Department of Urology, People’s Hospital of Hechuan, Chongqing, China
| | - Yan Sun
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Peng Wen
- Department of Urology, People’s Hospital of Hechuan, Chongqing, China
| | - Jun-Cheng Pan
- Department of Urology, People’s Hospital of Hechuan, Chongqing, China
| | - Wei-Yang He
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
2
|
Pan W, Zhang J, Zhang L, Zhang Y, Song Y, Han L, Tan M, Yin Y, Yang T, Jiang T, Li H. Comprehensive view of macrophage autophagy and its application in cardiovascular diseases. Cell Prolif 2024; 57:e13525. [PMID: 37434325 PMCID: PMC10771119 DOI: 10.1111/cpr.13525] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 06/17/2023] [Accepted: 06/22/2023] [Indexed: 07/13/2023] Open
Abstract
Cardiovascular diseases (CVDs) are the primary drivers of the growing public health epidemic and the leading cause of premature mortality and economic burden worldwide. With decades of research, CVDs have been proven to be associated with the dysregulation of the inflammatory response, with macrophages playing imperative roles in influencing the prognosis of CVDs. Autophagy is a conserved pathway that maintains cellular functions. Emerging evidence has revealed an intrinsic connection between autophagy and macrophage functions. This review focuses on the role and underlying mechanisms of autophagy-mediated regulation of macrophage plasticity in polarization, inflammasome activation, cytokine secretion, metabolism, phagocytosis, and the number of macrophages. In addition, autophagy has been shown to connect macrophages and heart cells. It is attributed to specific substrate degradation or signalling pathway activation by autophagy-related proteins. Referring to the latest reports, applications targeting macrophage autophagy have been discussed in CVDs, such as atherosclerosis, myocardial infarction, heart failure, and myocarditis. This review describes a novel approach for future CVD therapies.
Collapse
Affiliation(s)
- Wanqian Pan
- Department of CardiologyThe First Affiliated Hospital of Soochow UniversitySuzhouChina
| | - Jun Zhang
- Department of CardiologyThe First Affiliated Hospital of Soochow UniversitySuzhouChina
| | - Lei Zhang
- Department of CardiologyThe First Affiliated Hospital of Soochow UniversitySuzhouChina
| | - Yue Zhang
- Department of CardiologyThe First Affiliated Hospital of Soochow UniversitySuzhouChina
| | - Yiyi Song
- Suzhou Medical College of Soochow UniversitySuzhouChina
| | - Lianhua Han
- Department of CardiologyThe First Affiliated Hospital of Soochow UniversitySuzhouChina
| | - Mingyue Tan
- Department of CardiologyThe First Affiliated Hospital of Soochow UniversitySuzhouChina
| | - Yunfei Yin
- Department of CardiologyThe First Affiliated Hospital of Soochow UniversitySuzhouChina
| | - Tianke Yang
- Department of Ophthalmology, Eye Institute, Eye & ENT HospitalFudan UniversityShanghaiChina
- Department of OphthalmologyThe First Affiliated Hospital of USTC, University of Science and Technology of ChinaHefeiChina
| | - Tingbo Jiang
- Department of CardiologyThe First Affiliated Hospital of Soochow UniversitySuzhouChina
| | - Hongxia Li
- Department of CardiologyThe First Affiliated Hospital of Soochow UniversitySuzhouChina
| |
Collapse
|
3
|
Dai Y, Sun L, Tan Y, Xu W, Liu S, Zhou J, Hu Y, Lin J, Yao X, Mi P, Zheng X. Recent progress in the development of ursolic acid derivatives as anti-diabetes and anti-cardiovascular agents. Chem Biol Drug Des 2023; 102:1643-1657. [PMID: 37705131 DOI: 10.1111/cbdd.14347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 08/20/2023] [Accepted: 08/30/2023] [Indexed: 09/15/2023]
Abstract
Ursolic acid (UA) is a pentacyclic triterpenoid, which exhibits many biological activities, particularly in anti-cardiovascular and anti-diabetes. The further application of UA is greatly limited due to its low bioavailability and poor water solubility. Up to date, various UA derivatives have been designed to overcome these shortcomings. In this paper, the authors reviewed the development of UA derivatives as the anti-diabetes anti-cardiovascular reagents.
Collapse
Affiliation(s)
- Yili Dai
- Institute of Pharmacy and Pharmacology, Hengyang Medicinal School, University of South China, Hengyang, China
| | - Linjun Sun
- Department of Pharmacy, Hunan Vocational College of Science and Technology, Changsha, China
| | - Yan Tan
- Institute of Pharmacy and Pharmacology, Hengyang Medicinal School, University of South China, Hengyang, China
| | - Wenyu Xu
- Institute of Pharmacy and Pharmacology, Hengyang Medicinal School, University of South China, Hengyang, China
| | - Shu Liu
- Institute of Pharmacy and Pharmacology, Hengyang Medicinal School, University of South China, Hengyang, China
| | - Jing Zhou
- Institute of Pharmacy and Pharmacology, Hengyang Medicinal School, University of South China, Hengyang, China
| | - Yalin Hu
- Institute of Pharmacy and Pharmacology, Hengyang Medicinal School, University of South China, Hengyang, China
| | - Jieying Lin
- Institute of Pharmacy and Pharmacology, Hengyang Medicinal School, University of South China, Hengyang, China
| | - Xu Yao
- Institute of Pharmacy and Pharmacology, Hengyang Medicinal School, University of South China, Hengyang, China
| | - Pengbing Mi
- Institute of Pharmacy and Pharmacology, Hengyang Medicinal School, University of South China, Hengyang, China
| | - Xing Zheng
- Institute of Pharmacy and Pharmacology, Hengyang Medicinal School, University of South China, Hengyang, China
- Department of Pharmacy, Hunan Vocational College of Science and Technology, Changsha, China
| |
Collapse
|
4
|
Shen J, Fu Y, Liu F, Ning B, Jiang X. Ursolic Acid Promotes Autophagy by Inhibiting Akt/mTOR and TNF-α/TNFR1 Signaling Pathways to Alleviate Pyroptosis and Necroptosis in Mycobacterium tuberculosis-Infected Macrophages. Inflammation 2023; 46:1749-1763. [PMID: 37212951 DOI: 10.1007/s10753-023-01839-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 05/02/2023] [Accepted: 05/14/2023] [Indexed: 05/23/2023]
Abstract
As a lethal infectious disease, tuberculosis (TB) is caused by Mycobacterium tuberculosis (Mtb). Its complex pathophysiological process limits the effectiveness of many clinical treatments. By regulating host cell death, Mtb manipulates macrophages, the first line of defense against invading pathogens, to evade host immunity and promote the spread of bacteria and intracellular inflammatory substances to neighboring cells, resulting in widespread chronic inflammation and persistent lung damage. Autophagy, a metabolic pathway by which cells protect themselves, has been shown to fight intracellular microorganisms, such as Mtb, and they also play a crucial role in regulating cell survival and death. Therefore, host-directed therapy (HDT) based on antimicrobial and anti-inflammatory interventions is a pivotal adjunct to current TB treatment, enhancing anti-TB efficacy. In the present study, we showed that a secondary plant metabolite, ursolic acid (UA), inhibited Mtb-induced pyroptosis and necroptosis of macrophages. In addition, UA induced macrophage autophagy and enhanced intracellular killing of Mtb. To investigate the underlying molecular mechanisms, we explored the signaling pathways associated with autophagy as well as cell death. The results showed that UA could synergistically inhibit the Akt/mTOR and TNF-α/TNFR1 signaling pathways and promote autophagy, thus achieving its regulatory effects on pyroptosis and necroptosis of macrophages. Collectively, UA could be a potential adjuvant drug for host-targeted anti-TB therapy, as it could effectively inhibit pyroptosis and necroptosis of macrophages and counteract the excessive inflammatory response caused by Mtb-infected macrophages via modulating the host immune response, potentially improving clinical outcomes.
Collapse
Affiliation(s)
- Jingjing Shen
- Department of Immunology and Microbiology, Center for Traditional Chinese Medicine and Immunology Research, School of Basic Medical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Yan Fu
- Department of Immunology and Microbiology, Center for Traditional Chinese Medicine and Immunology Research, School of Basic Medical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Fanglin Liu
- Department of Immunology and Microbiology, Center for Traditional Chinese Medicine and Immunology Research, School of Basic Medical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Bangzuo Ning
- Department of Immunology and Microbiology, Center for Traditional Chinese Medicine and Immunology Research, School of Basic Medical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Xin Jiang
- Department of Immunology and Microbiology, Center for Traditional Chinese Medicine and Immunology Research, School of Basic Medical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| |
Collapse
|
5
|
Huang N, Xing Q, Li W, Yan Q, Liu R, Liu X, Liu Z. Explore the mechanism of ursolic acid acting on atherosclerosis through network pharmacological and bioinformatics methods. Medicine (Baltimore) 2023; 102:e34362. [PMID: 37505165 PMCID: PMC10378903 DOI: 10.1097/md.0000000000034362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 06/07/2023] [Accepted: 06/26/2023] [Indexed: 07/29/2023] Open
Abstract
To explore the deep mechanisms of ursolic acid (UA) for treating atherosclerosis based on network pharmacology and bioinformatics. UA target genes were derived from traditional Chinese medicine system pharmacology, BATMAN-TCM, and SwissTargetPrediction databases. Atherosclerosis-related genes were derived from genecards, NCBI genes, and OMIM databases. The protein interaction network was constructed through the STRING database, and the hub network was extracted by using the Cytoscape software MCODE app. The enrichment analysis of gene ontology and Kyoto encyclopedia of genes and genomes was performed by the R software clusterProfiler package, and the expression and prognostic value of the hub genes were verified on the data set. Screen the genes for expression and prognosis conclusions, conduct methylation analysis, and ceRNA construction. UA had 145 targets in the treatment of atherosclerosis. The top 7 gene ontology (biological process, molecular function, and cellular component) and pathways related to atherosclerosis were screened out. It is principally involved in biological processes, including response to lipopolysaccharide and regulation of inflammatory response. The main signaling pathways incorporated the TNF signaling pathway and the AGE-RAGE signaling pathway. Androgen receptor (AR) and interleukin-1 beta gene (IL1B) were further screened as core target genes. Methylation analysis demonstrated that the AR methylation level was elevated in the atherosclerotic group. On the contrary, the IL1B methylation level was lower in the atherosclerotic group. The results of the ceRNA analysis indicated that there were 43 targeted miRNAs in AR and 3 miRNAs in IL1B. We speculate that the target genes of UA regulating atherosclerosis are AR and IL1B. The mechanism may be that UA regulates the expression of target genes by regulating the methylation of target genes.
Collapse
Affiliation(s)
- Nan Huang
- Clinical Pharmacy, Xiangtan Center Hospital, Xiangtan, China
| | - Qichang Xing
- Clinical Pharmacy, Xiangtan Center Hospital, Xiangtan, China
| | - Wencan Li
- Clinical Pharmacy, Xiangtan Center Hospital, Xiangtan, China
| | - Qingzi Yan
- Clinical Pharmacy, Xiangtan Center Hospital, Xiangtan, China
| | - Renzhu Liu
- Clinical Pharmacy, Xiangtan Center Hospital, Xiangtan, China
| | - Xiang Liu
- Clinical Pharmacy, Xiangtan Center Hospital, Xiangtan, China
| | - Zheng Liu
- Clinical Pharmacy, Xiangtan Center Hospital, Xiangtan, China
| |
Collapse
|
6
|
Galindo CL, Khan S, Zhang X, Yeh YS, Liu Z, Razani B. Lipid-laden foam cells in the pathology of atherosclerosis: shedding light on new therapeutic targets. Expert Opin Ther Targets 2023; 27:1231-1245. [PMID: 38009300 PMCID: PMC10843715 DOI: 10.1080/14728222.2023.2288272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 11/22/2023] [Indexed: 11/28/2023]
Abstract
INTRODUCTION Lipid-laden foam cells within atherosclerotic plaques are key players in all phases of lesion development including its progression, necrotic core formation, fibrous cap thinning, and eventually plaque rupture. Manipulating foam cell biology is thus an attractive therapeutic strategy at early, middle, and even late stages of atherosclerosis. Traditional therapies have focused on prevention, especially lowering plasma lipid levels. Despite these interventions, atherosclerosis remains a major cause of cardiovascular disease, responsible for the largest numbers of death worldwide. AREAS COVERED Foam cells within atherosclerotic plaques are comprised of macrophages, vascular smooth muscle cells, and other cell types which are exposed to high concentrations of lipoproteins accumulating within the subendothelial intimal layer. Macrophage-derived foam cells are particularly well studied and have provided important insights into lipid metabolism and atherogenesis. The contributions of foam cell-based processes are discussed with an emphasis on areas of therapeutic potential and directions for drug development. EXERT OPINION As key players in atherosclerosis, foam cells are attractive targets for developing more specific, targeted therapies aimed at resolving atherosclerotic plaques. Recent advances in our understanding of lipid handling within these cells provide insights into how they might be manipulated and clinically translated to better treat atherosclerosis.
Collapse
Affiliation(s)
- Cristi L. Galindo
- Vascular Medicine Institute, Department of Medicine, University of Pittsburgh School of Medicine and UPMC, Pittsburgh, PA
| | - Saifur Khan
- Vascular Medicine Institute, Department of Medicine, University of Pittsburgh School of Medicine and UPMC, Pittsburgh, PA
| | - Xiangyu Zhang
- Vascular Medicine Institute, Department of Medicine, University of Pittsburgh School of Medicine and UPMC, Pittsburgh, PA
| | - Yu-Sheng Yeh
- Vascular Medicine Institute, Department of Medicine, University of Pittsburgh School of Medicine and UPMC, Pittsburgh, PA
| | - Ziyang Liu
- Vascular Medicine Institute, Department of Medicine, University of Pittsburgh School of Medicine and UPMC, Pittsburgh, PA
| | - Babak Razani
- Vascular Medicine Institute, Department of Medicine, University of Pittsburgh School of Medicine and UPMC, Pittsburgh, PA
- Pittsburgh VA Medical Center, Pittsburgh, PA
| |
Collapse
|
7
|
Tao W, Ouyang Z, Liao Z, Li L, Zhang Y, Gao J, Ma L, Yu S. Ursolic Acid Alleviates Cancer Cachexia and Prevents Muscle Wasting via Activating SIRT1. Cancers (Basel) 2023; 15:cancers15082378. [PMID: 37190306 DOI: 10.3390/cancers15082378] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 04/10/2023] [Accepted: 04/18/2023] [Indexed: 05/17/2023] Open
Abstract
Skeletal muscle wasting is the most remarkable phenotypic feature of cancer cachexia that increases the risk of morbidity and mortality. However, there are currently no effective drugs against cancer cachexia. Ursolic acid (UA) is a lipophilic pentacyclic triterpene that has been reported to alleviate muscle atrophy and reduce muscle decomposition in some disease models. This study aimed to explore the role and mechanisms of UA treatment in cancer cachexia. We found that UA attenuated Lewis lung carcinoma (LLC)-conditioned medium-induced C2C12 myotube atrophy and muscle wasting of LLC tumor-bearing mice. Moreover, UA dose-dependently activated SIRT1 and downregulated MuRF1 and Atrogin-1. Molecular docking results revealed a good binding effect on UA and SIRT1 protein. UA rescued vital features wasting without impacting tumor growth, suppressed the elevated spleen weight, and downregulated serum concentrations of inflammatory cytokines in vivo. The above phenomena can be attenuated by Ex-527, an inhibitor of SIRT1. Furthermore, UA remained protective against cancer cachexia in the advanced stage of tumor growth. The results revealed that UA exerts an anti-cachexia effect via activating SIRT1, thereby downregulating the phosphorylation levels of NF-κB and STAT3. UA might be a potential drug against cancer cachexia.
Collapse
Affiliation(s)
- Weili Tao
- Department of Oncology, Tongji Medical College, Tongji Hospital, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Ze Ouyang
- Department of Oncology, Tongji Medical College, Tongji Hospital, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Zhiqi Liao
- Reproductive Medicine Center, Tongji Medical College, Tongji Hospital, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Lu Li
- Department of Oncology, Tongji Medical College, Tongji Hospital, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yujie Zhang
- Department of Oncology, Tongji Medical College, Tongji Hospital, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Jiali Gao
- Division of Respiratory and Critical Care Medicine, Department of Internal Medicine, Tongji Medical College, Tongji Hospital, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Li Ma
- Department of Oncology, Tongji Medical College, Tongji Hospital, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Shiying Yu
- Department of Oncology, Tongji Medical College, Tongji Hospital, Huazhong University of Science and Technology, Wuhan 430030, China
| |
Collapse
|
8
|
Bang Y, Kwon Y, Kim M, Moon SH, Jung K, Choi HJ. Ursolic acid enhances autophagic clearance and ameliorates motor and non-motor symptoms in Parkinson's disease mice model. Acta Pharmacol Sin 2023; 44:752-765. [PMID: 36138143 PMCID: PMC10042858 DOI: 10.1038/s41401-022-00988-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 08/22/2022] [Indexed: 11/08/2022]
Abstract
Protein aggregation and the abnormal accumulation of aggregates are considered as common mechanisms of neurodegeneration such as Parkinson's disease (PD). Ursolic acid (UA), a natural pentacyclic triterpenoid compound, has shown a protective activity in several experimental models of brain dysfunction through inhibiting oxidative stress and inflammatory responses and suppressing apoptotic signaling in the brain. In this study, we investigated whether UA promoted autophagic clearance of protein aggregates and attenuated the pathology and characteristic symptoms in PD mouse model. Mice were injected with rotenone (1 mg · kg-1 · d-1, i.p.) five times per week for 1 or 2 weeks. We showed that rotenone injection induced significant motor deficit and prodromal non-motor symptoms accompanied by a significant dopaminergic neuronal loss and the deposition of aggregated proteins such as p62 and ubiquitin in the substantia nigra and striatum. Co-injection of UA (10 mg · kg-1 · d-1, i.p.) ameliorated all the rotenone-induced pathological alterations. In differentiated human neuroblastoma SH-SY5Y cells, two-step treatment with a proteasome inhibitor MG132 (0.25, 2.5 μM) induced marked accumulation of ubiquitin and p62 with clear and larger aggresome formation, while UA (5 μM) significantly attenuated the MG132-induced protein accumulation. Furthermore, we demonstrated that UA (5 μM) significantly increased autophagic clearance by promoting autophagic flux in primary neuronal cells and SH-SY5Y cells; UA affected autophagy regulation by increasing the phosphorylation of JNK, which triggered the dissociation of Bcl-2 from Beclin 1. These results suggest that UA could be a promising therapeutic candidate for reducing PD progression from the prodromal stage by regulating abnormal protein accumulation in the brain.
Collapse
Affiliation(s)
- Yeojin Bang
- College of Pharmacy and Institute of Pharmaceutical Sciences, CHA University, Pocheon, Gyeonggi-do, 11160, South Korea
| | - Yoonjung Kwon
- College of Pharmacy and Institute of Pharmaceutical Sciences, CHA University, Pocheon, Gyeonggi-do, 11160, South Korea
| | - Mihyang Kim
- College of Pharmacy and Institute of Pharmaceutical Sciences, CHA University, Pocheon, Gyeonggi-do, 11160, South Korea
| | - Soung Hee Moon
- College of Pharmacy and Institute of Pharmaceutical Sciences, CHA University, Pocheon, Gyeonggi-do, 11160, South Korea
| | - Kiwon Jung
- College of Pharmacy and Institute of Pharmaceutical Sciences, CHA University, Pocheon, Gyeonggi-do, 11160, South Korea
| | - Hyun Jin Choi
- College of Pharmacy and Institute of Pharmaceutical Sciences, CHA University, Pocheon, Gyeonggi-do, 11160, South Korea.
| |
Collapse
|
9
|
Zhi W, Liu Y, Wang X, Zhang H. Recent advances of traditional Chinese medicine for the prevention and treatment of atherosclerosis. JOURNAL OF ETHNOPHARMACOLOGY 2023; 301:115749. [PMID: 36181983 DOI: 10.1016/j.jep.2022.115749] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 09/13/2022] [Accepted: 09/19/2022] [Indexed: 06/16/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Atherosclerosis (AS) is a common systemic disease with increasing morbidity and mortality worldwide. Traditional Chinese medicine (TCM) with characteristics of multiple pathways and targets, presents advantages in the diagnosis and treatment of atherosclerosis. AIM OF THE STUDY With the modernization of TCM, the active ingredients and molecular mechanisms of TCM for AS treatment have been gradually revealed. Therefore, it is necessary to examine the existing studies on TCM therapies aimed at regulating AS over the past two decades. MATERIALS AND METHODS Using "atherosclerosis" and "Traditional Chinese medicine" as keywords, all relevant TCM literature published in the last 10 years was collected from electronic databases (such as Elsevier, Springer, PubMed, CNKI, and Web of Science), books and papers until March 2022, and the critical information was statistically analyzed. RESULTS In this review, we highlighted extracts of 8 single herbs, a total of 41 single active ingredients, 20 TCM formulae, and 25 patented drugs, which were described with chemical structure, source, model, efficacy and potential mechanism. CONCLUSION We summarized the cytopathological basis for the development of atherosclerosis involving vascular endothelial cells, macrophages and vascular smooth muscle cells, and categorically elaborated the medicinal TCM used for AS, all of which provide the current evidence on the better management of atherosclerosis by TCM.
Collapse
Affiliation(s)
- Wenbing Zhi
- Shaanxi Academy of Traditional Chinese Medicine (Shaanxi Traditional Chinese Medicine Hospital), Xi'an, 710003, PR China.
| | - Yang Liu
- Shaanxi Academy of Traditional Chinese Medicine (Shaanxi Traditional Chinese Medicine Hospital), Xi'an, 710003, PR China
| | - Xiumei Wang
- The Second Affiliated Hospital of Xi'an Medical University, Xi'an, Shaanxi, China.
| | - Hong Zhang
- Shaanxi Academy of Traditional Chinese Medicine (Shaanxi Traditional Chinese Medicine Hospital), Xi'an, 710003, PR China.
| |
Collapse
|
10
|
Ma Y, Ding Q, Qian Q, Feng L, Zhu Q, Si C, Dou X, Li S. AMPK-Regulated Autophagy Contributes to Ursolic Acid Supplementation-Alleviated Hepatic Steatosis and Liver Injury in Chronic Alcohol-Fed Mice. ACS OMEGA 2023; 8:907-914. [PMID: 36643445 PMCID: PMC9835778 DOI: 10.1021/acsomega.2c06252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 12/08/2022] [Indexed: 06/17/2023]
Abstract
Alcoholic liver disease (ALD) is a chronic liver disease caused by long-term heavy consumption of alcohol. The pathogenesis of ALD is complex, and there is no effective clinical treatment at present. Ursolic acid (UA), a general triterpenoid with multiple biological roles, is widely distributed in plants. This study aims to explore the therapeutic effect and potential mechanisms of UA that protect against liver injury and hepatic steatosis in an ALD mouse model. In this study, we analyzed the lipid accumulation and the effect of UA treatment in a mouse model of ALD; AML12 and HepG2 cells were used to study the biological effect and potential mechanisms of UA on ethanol-induced hepatotoxicity. The morphologic and histological detections showed that UA significantly reduced alcohol-induced liver injury and hepatic steatosis. In addition, UA dramatically ameliorated alcohol-induced metabolic disorders, oxidative stress, and inflammation. Furthermore, UA treatment activated autophagy via the AMPK-ACC pathway to protect hepatocytes from lipotoxicity. Thus, these findings demonstrate that UA treatment alleviates alcoholic-induced liver injury by activating autophagy through the AMPK-ACC pathway. Therefore, UA may represent a promising candidate for the treatment of ALD.
Collapse
Affiliation(s)
- Yue Ma
- Zhejiang
Provincial Laboratory of Experimental Animal’s & Nonclinical
Laboratory Studies, Hangzhou Medical College, Hangzhou, Zhejiang 310053, PR China
| | - Qinchao Ding
- School
of Public Health, Zhejiang Chinese Medical
University, Hangzhou, Zhejiang 310053, PR China
- Institute
of Dairy Science, College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, PR China
| | - Qianyu Qian
- School
of Life Science, Zhejiang Chinese Medical
University, Hangzhou, Zhejiang 310053, PR China
| | - Luyan Feng
- School
of Life Science, Zhejiang Chinese Medical
University, Hangzhou, Zhejiang 310053, PR China
| | - Qin Zhu
- Department
of Clinical Nutrition, Zhejiang Hospital, Hangzhou, Zhejiang 310013, PR China
| | - Caijuan Si
- Department
of Clinical Nutrition, Zhejiang Hospital, Hangzhou, Zhejiang 310013, PR China
| | - Xiaobing Dou
- School
of Life Science, Zhejiang Chinese Medical
University, Hangzhou, Zhejiang 310053, PR China
| | - Songtao Li
- School
of Public Health, Zhejiang Chinese Medical
University, Hangzhou, Zhejiang 310053, PR China
- Department
of Clinical Nutrition, Zhejiang Hospital, Hangzhou, Zhejiang 310013, PR China
| |
Collapse
|
11
|
Wang J, Liu YM, Hu J, Chen C. Trained immunity in monocyte/macrophage: Novel mechanism of phytochemicals in the treatment of atherosclerotic cardiovascular disease. Front Pharmacol 2023; 14:1109576. [PMID: 36895942 PMCID: PMC9989041 DOI: 10.3389/fphar.2023.1109576] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 01/27/2023] [Indexed: 02/23/2023] Open
Abstract
Atherosclerosis (AS) is the pathology of atherosclerotic cardiovascular diseases (ASCVD), characterized by persistent chronic inflammation in the vessel wall, in which monocytes/macrophages play a key role. It has been reported that innate immune system cells can assume a persistent proinflammatory state after short stimulation with endogenous atherogenic stimuli. The pathogenesis of AS can be influenced by this persistent hyperactivation of the innate immune system, which is termed trained immunity. Trained immunity has also been implicated as a key pathological mechanism, leading to persistent chronic inflammation in AS. Trained immunity is mediated via epigenetic and metabolic reprogramming and occurs in mature innate immune cells and their bone marrow progenitors. Natural products are promising candidates for novel pharmacological agents that can be used to prevent or treat cardiovascular diseases (CVD). A variety of natural products and agents exhibiting antiatherosclerotic abilities have been reported to potentially interfere with the pharmacological targets of trained immunity. This review describes in as much detail as possible the mechanisms involved in trained immunity and how phytochemicals of this process inhibit AS by affecting trained monocytes/macrophages.
Collapse
Affiliation(s)
- Jie Wang
- Guang'anmen Hospital, China Academy of Chinese Medicine Sciences, Beijing, China
| | - Yong-Mei Liu
- Guang'anmen Hospital, China Academy of Chinese Medicine Sciences, Beijing, China
| | - Jun Hu
- Guang'anmen Hospital, China Academy of Chinese Medicine Sciences, Beijing, China
| | - Cong Chen
- Guang'anmen Hospital, China Academy of Chinese Medicine Sciences, Beijing, China
| |
Collapse
|
12
|
Fang F, Xiao C, Li C, Liu X, Li S. Tuning macrophages for atherosclerosis treatment. Regen Biomater 2022; 10:rbac103. [PMID: 36683743 PMCID: PMC9845526 DOI: 10.1093/rb/rbac103] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 11/18/2022] [Accepted: 12/02/2022] [Indexed: 12/15/2022] Open
Abstract
Atherosclerosis is a chronic inflammatory vascular disease and a leading cause of death worldwide. Macrophages play an important role in inflammatory responses, cell-cell communications, plaque growth and plaque rupture in atherosclerotic lesions. Here, we review the sources, functions and complex phenotypes of macrophages in the progression of atherosclerosis, and discuss the recent approaches in modulating macrophage phenotype and autophagy for atherosclerosis treatment. We then focus on the drug delivery strategies that target macrophages or use macrophage membrane-coated particles to deliver therapeutics to the lesion sites. These biomaterial-based approaches that target, modulate or engineer macrophages have broad applications for disease therapies and tissue regeneration.
Collapse
Affiliation(s)
- Fei Fang
- Institute of Biomedical Engineering, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, China
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, California 90095, USA
- Department of Medicine, University of California, Los Angeles, Los Angeles, California 90095, USA
| | - Crystal Xiao
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, California 90095, USA
- Department of Medicine, University of California, Los Angeles, Los Angeles, California 90095, USA
| | - Chunli Li
- Institute of Biomedical Engineering, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, China
| | - Xiaoheng Liu
- Institute of Biomedical Engineering, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, China
| | - Song Li
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, California 90095, USA
- Department of Medicine, University of California, Los Angeles, Los Angeles, California 90095, USA
| |
Collapse
|
13
|
Wang X, Sun Z, Yuan R, Zhang W, Shen Y, Yin A, Li Y, Ji Q, Wang X, Li Y, Zhang M, Pan X, Shen L, He B. K-80003 Inhibition of Macrophage Apoptosis and Necrotic Core Development in Atherosclerotic Vulnerable Plaques. Cardiovasc Drugs Ther 2022; 36:1061-1073. [PMID: 34410548 PMCID: PMC9652240 DOI: 10.1007/s10557-021-07237-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/06/2021] [Indexed: 12/19/2022]
Abstract
PURPOSE Macrophage apoptosis coupled with a defective phagocytic clearance of the apoptotic cells promotes plaque necrosis in advanced atherosclerosis, which causes acute atherothrombotic vascular disease. Nonsteroidal anti-inflammatory drug sulindac derivative K-80003 treatment was previously reported to dramatically attenuate atherosclerotic plaque progression and destabilization. However, the underlying mechanisms are not fully understood. This study aimed to determine the role of K-80003 on macrophage apoptosis and elucidate the underlying mechanism. METHODS The mouse model of vulnerable carotid plaque in ApoE-/- mice was developed in vivo. Consequently, mice were randomly grouped into two study groups: the control group and the K-80003 group (30 mg/kg/day). Samples of carotid arteries were collected to determine atherosclerotic necrotic core area, cellular apoptosis, and oxidative stress. The effects of K-80003 on RAW264.7 macrophage apoptosis, oxidative stress, and autophagic flux were also examined in vitro. RESULTS K-80003 significantly suppressed necrotic core formation and inhibited cellular apoptosis of vulnerable plaques. K-80003 can also inhibit 7-ketocholesterol-induced macrophage apoptosis in vitro. Furthermore, K-80003 inhibited intraplaque cellular apoptosis mainly through the suppression of oxidative stress, which is a key cause of advanced lesional macrophage apoptosis. Mechanistically, K-80003 prevented 7-ketocholesterol-induced impairment of autophagic flux in macrophages, evidenced by the decreased LC3II and SQSTM1/p62 expression, GFP-RFP-LC3 cancellation upon K-80003 treatment. CONCLUSION Inhibition of macrophage apoptosis and necrotic core formation by autophagy-mediated reduction of oxidative stress is one mechanism of the suppression of plaque progression and destabilization by K-80003.
Collapse
Affiliation(s)
- Xiaolei Wang
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Xuhui Distinct, 241 West Huaihai Road, Shanghai, China
| | - Zhe Sun
- School of Life Science and Technology, Shanghai Tech University, Shanghai, China
| | - Ruosen Yuan
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Xuhui Distinct, 241 West Huaihai Road, Shanghai, China
| | - Weifeng Zhang
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Xuhui Distinct, 241 West Huaihai Road, Shanghai, China
| | - Yejiao Shen
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Xuhui Distinct, 241 West Huaihai Road, Shanghai, China
| | - Anwen Yin
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Xuhui Distinct, 241 West Huaihai Road, Shanghai, China
| | - Yanjie Li
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Xuhui Distinct, 241 West Huaihai Road, Shanghai, China
| | - Qingqi Ji
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Xuhui Distinct, 241 West Huaihai Road, Shanghai, China
| | - Xia Wang
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Xuhui Distinct, 241 West Huaihai Road, Shanghai, China
| | - Yi Li
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Xuhui Distinct, 241 West Huaihai Road, Shanghai, China
| | - Min Zhang
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Xuhui Distinct, 241 West Huaihai Road, Shanghai, China
| | - Xin Pan
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Xuhui Distinct, 241 West Huaihai Road, Shanghai, China.
| | - Linghong Shen
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Xuhui Distinct, 241 West Huaihai Road, Shanghai, China.
| | - Ben He
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Xuhui Distinct, 241 West Huaihai Road, Shanghai, China
| |
Collapse
|
14
|
Wang S, Yuan R, Liu M, Zhang Y, Jia B, Ruan J, Shen J, Zhang Y, Liu M, Wang T. Targeting autophagy in atherosclerosis: Advances and therapeutic potential of natural bioactive compounds from herbal medicines and natural products. Biomed Pharmacother 2022; 155:113712. [PMID: 36130420 DOI: 10.1016/j.biopha.2022.113712] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 09/12/2022] [Accepted: 09/15/2022] [Indexed: 11/29/2022] Open
Abstract
Atherosclerosis (AS) is the most common causes of cardiovascular disease characterized by the formation of atherosclerotic plaques in the arterial wall, and it has become a dominant public health problem that seriously threaten people worldwide. Autophagy is a cellular self-catabolism process, which is critical to protect cellular homeostasis against harmful conditions. Emerging evidence suggest that dysregulated autophagy is involved in the development of AS. Therefore, pharmacological interventions have been developed to inhibit the AS via autophagy induction. Among various AS treating methods, herbal medicines and natural products have been applied as effective complementary and alternative medicines to ameliorate AS and its associated cardiovascular disease. Recently, mounting evidence revealed that natural bioactive compounds from herbs and natural products could induce autophagy to suppress the occurrence and development of AS, by promoting cholesterol efflux, reducing plaque inflammation, and inhibiting apoptosis or senescence. In the present review, we highlight recent findings regarding possible effects and molecular mechanism of natural compounds in autophagy-targeted mitigation of atherosclerosis, aiming to provide new potential therapeutic strategies for the atherosclerosis treatment preclinically and clinically.
Collapse
Affiliation(s)
- Sijian Wang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Ruolan Yuan
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Miao Liu
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yiwen Zhang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Bona Jia
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Jingya Ruan
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Jiayan Shen
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yi Zhang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Mengyang Liu
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China; Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.
| | - Tao Wang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China; Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.
| |
Collapse
|
15
|
Vanrell MC, Martinez SJ, Muñoz LI, Salassa BN, Gambarte Tudela J, Romano PS. Induction of Autophagy by Ursolic Acid Promotes the Elimination of Trypanosoma cruzi Amastigotes From Macrophages and Cardiac Cells. Front Cell Infect Microbiol 2022; 12:919096. [PMID: 36004334 PMCID: PMC9394444 DOI: 10.3389/fcimb.2022.919096] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 06/14/2022] [Indexed: 11/13/2022] Open
Abstract
Chagas disease, caused by the parasite Trypanosoma cruzi, is an infectious illness endemic to Latin America and still lacks an effective treatment for the chronic stage. In a previous study in our laboratory, we established the protective role of host autophagy in vivo during T. cruzi infection in mice and proposed this process as one of the mechanisms involved in the innate immune response against this parasite. In the search for an autophagy inducer that increases the anti-T. cruzi response in the host, we found ursolic acid (UA), a natural pentacyclic triterpene with many biological actions including autophagy induction. The aim of this work was to study the effect of UA on T. cruzi infection in vitro in the late infection stage, when the nests of intracellular parasites are forming, in both macrophages and cardiac cells. To test this effect, the cells were infected with T. cruzi for 24 h and then treated with UA (5–10 µM). The data showed that UA significantly decreased the number of amastigotes found in infected cells in comparison with non-treated cells. UA also induced the autophagy response in both macrophages and cardiac cells under the studied conditions, and the inhibition of this pathway during UA treatment restored the level of infection. Interestingly, LC3 protein, the main marker of autophagy, was recruited around amastigotes and the acidic probe LysoTracker localized with them, two key features of xenophagy. A direct cytotoxic effect of UA was also found on trypomastigotes of T. cruzi, whereas epimastigotes and amastigotes displayed more resistance to this drug at the studied concentrations. Taken together, these data showed that this natural compound reduces T. cruzi infection in the later stages by promoting parasite damage through the induction of autophagy. This action, in addition to the effect of this compound on trypomastigotes, points to UA as an interesting lead for Chagas disease treatment in the future.
Collapse
Affiliation(s)
- María Cristina Vanrell
- Laboratorio de biología de Trypanosoma cruzi y la célula hospedadora, Instituto de Histología y Embriología de Mendoza, Instituto de Histología y Embriología de Mendoza-Consejo Nacional de Investigaciones Científicas y Técnicas (IHEM-CONICET)-Universidad Nacional de Cuyo, Mendoza, Argentina
- Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Mendoza, Argentina
- *Correspondence: María Cristina Vanrell, ; Patricia Silvia Romano,
| | - Santiago José Martinez
- Laboratorio de biología de Trypanosoma cruzi y la célula hospedadora, Instituto de Histología y Embriología de Mendoza, Instituto de Histología y Embriología de Mendoza-Consejo Nacional de Investigaciones Científicas y Técnicas (IHEM-CONICET)-Universidad Nacional de Cuyo, Mendoza, Argentina
| | - Lucila Ibel Muñoz
- Facultad de Farmacia y Bioquímica, Universidad Juan Agustín Maza, Mendoza, Argentina
| | - Betiana Nebaí Salassa
- Laboratorio de biología de Trypanosoma cruzi y la célula hospedadora, Instituto de Histología y Embriología de Mendoza, Instituto de Histología y Embriología de Mendoza-Consejo Nacional de Investigaciones Científicas y Técnicas (IHEM-CONICET)-Universidad Nacional de Cuyo, Mendoza, Argentina
- Facultad de Odontología, Universidad Nacional de Cuyo, Mendoza, Argentina
| | | | - Patricia Silvia Romano
- Laboratorio de biología de Trypanosoma cruzi y la célula hospedadora, Instituto de Histología y Embriología de Mendoza, Instituto de Histología y Embriología de Mendoza-Consejo Nacional de Investigaciones Científicas y Técnicas (IHEM-CONICET)-Universidad Nacional de Cuyo, Mendoza, Argentina
- Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Mendoza, Argentina
- *Correspondence: María Cristina Vanrell, ; Patricia Silvia Romano,
| |
Collapse
|
16
|
Sottero B, Testa G, Gamba P, Staurenghi E, Giannelli S, Leonarduzzi G. Macrophage polarization by potential nutraceutical compounds: A strategic approach to counteract inflammation in atherosclerosis. Free Radic Biol Med 2022; 181:251-269. [PMID: 35158030 DOI: 10.1016/j.freeradbiomed.2022.02.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 01/27/2022] [Accepted: 02/09/2022] [Indexed: 12/13/2022]
Abstract
Chronic inflammation represents a main event in the onset and progression of atherosclerosis and is closely associated with oxidative stress in a sort of vicious circle that amplifies and sustains all stages of the disease. Key players of atherosclerosis are monocytes/macrophages. According to their pro- or anti-inflammatory phenotype and biological functions, lesional macrophages can release various mediators and enzymes, which in turn contribute to plaque progression and destabilization or, alternatively, lead to its resolution. Among the factors connected to atherosclerotic disease, lipid species carried by low density lipoproteins and pro-oxidant stimuli strongly promote inflammatory events in the vasculature, also by modulating the macrophage phenotyping. Therapies specifically aimed to balance macrophage inflammatory state are increasingly considered as powerful tools to counteract plaque formation and destabilization. In this connection, several molecules of natural origin have been recognized to be active mediators of diverse metabolic and signaling pathways regulating lipid homeostasis, redox state, and inflammation; they are, thus, considered as promising candidates to modulate macrophage responsiveness to pro-atherogenic stimuli. The current knowledge of the capability of nutraceuticals to target macrophage polarization and to counteract atherosclerotic lesion progression, based mainly on in vitro investigation, is summarized in the present review.
Collapse
Affiliation(s)
- Barbara Sottero
- Department of Clinical and Biological Sciences, School of Medicine, University of Turin, Orbassano, Torino, Italy
| | - Gabriella Testa
- Department of Clinical and Biological Sciences, School of Medicine, University of Turin, Orbassano, Torino, Italy
| | - Paola Gamba
- Department of Clinical and Biological Sciences, School of Medicine, University of Turin, Orbassano, Torino, Italy
| | - Erica Staurenghi
- Department of Clinical and Biological Sciences, School of Medicine, University of Turin, Orbassano, Torino, Italy
| | - Serena Giannelli
- Department of Clinical and Biological Sciences, School of Medicine, University of Turin, Orbassano, Torino, Italy
| | - Gabriella Leonarduzzi
- Department of Clinical and Biological Sciences, School of Medicine, University of Turin, Orbassano, Torino, Italy.
| |
Collapse
|
17
|
Liu C, Jiang Z, Pan Z, Yang L. The Function, Regulation and Mechanism of Programmed Cell Death of Macrophages in Atherosclerosis. Front Cell Dev Biol 2022; 9:809516. [PMID: 35087837 PMCID: PMC8789260 DOI: 10.3389/fcell.2021.809516] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 12/16/2021] [Indexed: 11/30/2022] Open
Abstract
Atherosclerosis is a chronic progressive inflammatory vascular disease, which is an important pathological basis for inducing a variety of cardio-cerebrovascular diseases. As a kind of inflammatory cells, macrophages are the most abundant immune cells in atherosclerotic plaques and participate in the whole process of atherosclerosis and are the most abundant immune cells in atherosclerotic plaques. Recent studies have shown that programmed cell death plays a critical role in the progression of many diseases. At present, it is generally believed that the programmed death of macrophages can affect the development and stability of atherosclerotic vulnerable plaques, and the intervention of macrophage death may become the target of atherosclerotic therapy. This article reviews the role of macrophage programmed cell death in the progression of atherosclerosis and the latest therapeutic strategies targeting macrophage death within plaques.
Collapse
Affiliation(s)
- Chang Liu
- Department of Pharmacology, School of Medicine, Nankai University, Tianjin, China
| | - Zecheng Jiang
- Department of Pharmacology, School of Medicine, Nankai University, Tianjin, China
| | | | - Liang Yang
- Department of Pharmacology, School of Medicine, Nankai University, Tianjin, China
| |
Collapse
|
18
|
A novel therapeutic strategy for atherosclerosis: autophagy-dependent cholesterol efflux. J Physiol Biochem 2022; 78:557-572. [DOI: 10.1007/s13105-021-00870-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 12/25/2021] [Indexed: 10/19/2022]
|
19
|
Luan M, Wang H, Wang J, Zhang X, Zhao F, Liu Z, Meng Q. Advances in Anti-inflammatory Activity, Mechanism and Therapeutic Application of Ursolic Acid. Mini Rev Med Chem 2022; 22:422-436. [PMID: 34517797 DOI: 10.2174/1389557521666210913113522] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 06/08/2021] [Accepted: 06/29/2021] [Indexed: 11/22/2022]
Abstract
In vivo and in vitro studies reveal that Ursolic Acid (UA) is able to counteract endogenous and exogenous inflammatory stimuli and has favorable anti-inflammatory effects. The antiinflammatory mechanisms mainly include decreasing the release of histamine in mast cells, suppressing the activities of lipoxygenase, cyclooxygenase and phospholipase, and reducing the production of nitric oxide and reactive oxygen species, blocking the activation of the signal pathway, downregulating the expression of inflammatory factors, and inhibiting the activities of elastase and complement. These mechanisms can open up new avenues for the scientific community to develop or improve novel therapeutic approaches to tackle inflammatory diseases, such as arthritis, atherosclerosis, neuroinflammation, liver diseases, kidney diseases, diabetes, dermatitis, bowel diseases, cancer. The anti-inflammatory activity, the anti-inflammatory mechanism of ursolic acid and its therapeutic applications are reviewed in this paper.
Collapse
Affiliation(s)
- Mingzhu Luan
- School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Yantai University, Yantai, 264005, P.R. China
| | - Huiyun Wang
- College of Pharmacy, Jining Medical University, Shandong Province, 276826, P.R. China
| | - Jiazhen Wang
- The Second Hospital of Anhui Medical University, Anhui Province, 230601, P.R. China
| | - Xiaofan Zhang
- School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Yantai University, Yantai, 264005, P.R. China
| | - Fenglan Zhao
- School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Yantai University, Yantai, 264005, P.R. China
| | - Zongliang Liu
- School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Yantai University, Yantai, 264005, P.R. China
| | - Qingguo Meng
- School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Yantai University, Yantai, 264005, P.R. China
| |
Collapse
|
20
|
Erdmann J, Kujaciński M, Wiciński M. Beneficial Effects of Ursolic Acid and Its Derivatives-Focus on Potential Biochemical Mechanisms in Cardiovascular Conditions. Nutrients 2021; 13:3900. [PMID: 34836155 PMCID: PMC8622438 DOI: 10.3390/nu13113900] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 10/26/2021] [Accepted: 10/29/2021] [Indexed: 12/13/2022] Open
Abstract
Ursolic acid (UA) is a natural pentacyclic triterpenoid found in a number of plants such as apples, thyme, oregano, hawthorn and others. Several in vitro and in vivo studies have presented its anti-inflammatory and anti-apoptotic properties. The inhibition of NF-κB-mediated inflammatory pathways and the increased scavenging of reactive oxygen species (ROS) in numerous ways seem to be the most beneficial effects of UA. In mice and rats, administration of UA appears to slow down the development of cardiovascular diseases (CVDs), especially atherosclerosis and cardiac fibrosis. Upregulation of endothelial-type nitric oxide synthase (eNOS) and cystathionine-λ-lyase (CSE) by UA may suggest its vasorelaxant property. Inhibition of metalloproteinases activity by UA may contribute to better outcomes in aneurysms management. UA influence on lipid and glucose metabolism remains inconsistent, and additional studies are essential to verify its efficacy. Furthermore, UA derivatives appear to have a beneficial impact on the cardiovascular system. This review aims to summarize recent findings on beneficial effects of UA that may make it a promising candidate for clinical trials for the management of CVDs.
Collapse
Affiliation(s)
- Jakub Erdmann
- Department of Pharmacology and Therapeutics, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, M. Curie 9, 85-090 Bydgoszcz, Poland; (M.K.); (M.W.)
| | | | | |
Collapse
|
21
|
Han F, Pang S, Sun Z, Cui Y, Yan B. Genetic Variants and Functional Analyses of the ATG16L1 Gene Promoter in Acute Myocardial Infarction. Front Genet 2021; 12:591954. [PMID: 34220924 PMCID: PMC8248370 DOI: 10.3389/fgene.2021.591954] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 04/23/2021] [Indexed: 01/01/2023] Open
Abstract
Background Acute myocardial infarction (AMI), a common complex disease caused by an interaction between genetic and environmental factors, is a serious type of coronary artery disease and is also a leading cause of death worldwide. Autophagy-related 16-like 1 (ATG16L1) is a key regulatory factor of autophagy and plays an important role in induced autophagy. In the cardiovascular system, autophagy is essential to preserve the homeostasis and function of the heart and blood vessels. No studies have hitherto examined the association between AMI and ATG16L1 gene promoter. Methods We conducted a case-control study, using polymerase chain reaction and sequencing techniques, dual luciferase reporter assay, and electrophoretic mobility shift assay, to analyze genetic and functional variation in the ATG16L1 gene promoter between AMI and controls. A variety of statistical analyses were used to analyze the allele and genotype frequencies and the relationship between single-nucleotide polymorphisms (SNPs) and AMI. Results In all, 10 SNPs and two DNA-sequence variants (DSVs) were identified in 688 subjects, and three ATG16L1 gene promoter mutations [g.233250693 T > C (rs185213911), g.233250946 G > A (rs568956599), g.233251133 C > G (rs1301744254)] that were identified in AMI patients significantly altered the transcriptional activity of ATG16L1 gene promoter in HEH2, HEK-293, and H9c2 cells (P < 0.05). Further electrophoretic mobility shift assays indicated that the SNPs affected the binding of transcription factors (P < 0.01). Conclusion ATG16L1 gene promoter mutations in AMI patients may affect the binding of transcription factors and change the transcriptional activity of the ATG16L1 gene, changing the level of autophagy and contributing to the occurrence and development of AMI as rare and low-frequency risk factors.
Collapse
Affiliation(s)
- Falan Han
- Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Shuchao Pang
- Shandong Provincial Key Laboratory of Cardiac Disease Diagnosis and Treatment, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, China
| | - Zhaoqing Sun
- Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Yinghua Cui
- Division of Cardiology, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, China
| | - Bo Yan
- Shandong Provincial Key Laboratory of Cardiac Disease Diagnosis and Treatment, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, China.,The Center for Molecular Genetics of Cardiovascular Diseases, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, China.,Shandong Provincial Sino-US Cooperation Research Center for Translational Medicine, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, China
| |
Collapse
|
22
|
Role of macrophage autophagy in atherosclerosis: modulation by bioactive compounds. Biochem J 2021; 478:1359-1375. [PMID: 33861844 DOI: 10.1042/bcj20200894] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 03/16/2021] [Accepted: 03/17/2021] [Indexed: 12/28/2022]
Abstract
Atherosclerosis is a chronic inflammatory disease associated with lipid metabolism disorder. Autophagy is a catabolic process and contributes to maintaining cellular homeostasis. Substantial evidence suggests that defective autophagy is implicated in several diseases, including atherosclerosis, while increased autophagy mitigates atherosclerosis development. Thus, understanding the mechanisms of autophagy regulation and its association with atherosclerosis is vital to develop new therapies against atherosclerosis. Dietary bioactive compounds are non-nutrient natural compounds that include phenolics, flavonoids, and carotenoids. Importantly, these bioactive compounds possess anti-inflammatory, antioxidant, and antibacterial properties that may alleviate various chronic diseases. Recently, examining the effects of bioactive compounds on autophagy activity in atherogenesis has drawn considerable attention. The current review discusses the role of macrophage autophagy in the development and progression of atherosclerosis. We also summarize our current knowledge of the therapeutic potential of bioactive compounds on atherosclerosis and autophagy.
Collapse
|
23
|
Enayati A, Johnston TP, Sahebkar A. Anti-atherosclerotic Effects of Spice-Derived Phytochemicals. Curr Med Chem 2021; 28:1197-1223. [PMID: 32368966 DOI: 10.2174/0929867327666200505084620] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 03/29/2020] [Accepted: 04/02/2020] [Indexed: 11/22/2022]
Abstract
Cardiovascular diseases are the leading cause of death in the world. Atherosclerosis is characterized by oxidized lipid deposition and inflammation in the arterial wall and represents a significant problem in public health and medicine. Some dietary spices have been widely used in many countries; however, the mechanism of their action as it relates to the prevention and treatment of atherosclerosis is still poorly understood. In this review, we focus on the properties of various spice-derived active ingredients used in the prevention and treatment of atherosclerosis, as well as associated atherosclerotic risk factors. We provide a summary of the mechanisms of action, epidemiological analyses, and studies of various components of spice used in the clinic, animal models, and cell lines related to atherosclerosis. Most notably, we focused on mechanisms of action by which these spice-derived compounds elicit their lipid-lowering, anti-inflammatory, antioxidant, and immunomodulatory properties, as well as their involvement in selected biochemical and signal transduction pathways. It is suggested that future research should aim to design well-controlled clinical trials and more thoroughly investigate the role of spices and their active components in the prevention/treatment of atherosclerosis. Based on this literature review, it appears that spices and their active components are well tolerated and have few adverse side effects and, therefore, provide a promising adjunctive treatment strategy for patients with atherosclerosis.
Collapse
Affiliation(s)
- Ayesheh Enayati
- Ischemic Disorders Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Thomas P Johnston
- Division of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Missouri-Kansas City, Kansas City, Missouri, United States
| | | |
Collapse
|
24
|
Lipophagy in atherosclerosis. Clin Chim Acta 2020; 511:208-214. [DOI: 10.1016/j.cca.2020.10.025] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 10/09/2020] [Accepted: 10/15/2020] [Indexed: 12/12/2022]
|
25
|
Park HJ, Jo DS, Choi DS, Bae JE, Park NY, Kim JB, Chang JH, Shin JJ, Cho DH. Ursolic acid inhibits pigmentation by increasing melanosomal autophagy in B16F1 cells. Biochem Biophys Res Commun 2020; 531:209-214. [PMID: 32792197 DOI: 10.1016/j.bbrc.2020.07.125] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 07/26/2020] [Indexed: 02/08/2023]
Abstract
Melanosomes are specialized membrane-bound organelles that are involved in melanin synthesis. Unlike melanosome biogenesis, the melanosome degradation pathway is poorly understood. Among the cellular processes, autophagy controls degradation of intracellular components by cooperating with lysosomes. In this study, we showed that ursolic acid inhibits skin pigmentation by promoting melanosomal autophagy, or melanophagy, in melanocytes. We found that B16F1 cells treated with ursolic acid suppressed alpha-melanocyte stimulating hormone (α-MSH) stimulated increase in melanin content and activated autophagy. In addition, we found that treatment with ursolic acid promotes melanosomal degradation, and bafilomycin A1 inhibition of autophagosome-lysosome fusion blocked the removal of melanosomes in α-MSH-stimulated B16F1 cells. Furthermore, depletion of the autophagy-related gene 5 (ATG5) resulted in significant suppression of ursolic acid-mediated anti-pigmentation activity and autophagy in α-MSH-treated B16F1 cells. Taken together, our results suggest that ursolic acid inhibits skin pigmentation by increasing melanosomal degradation in melanocytes.
Collapse
Affiliation(s)
- Hyun Jun Park
- School of Life Sciences, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Doo Sin Jo
- Brain Science and Engineering Institute, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Dong Sig Choi
- T.E.N. Co., Ltd., Yongin, Gyeonggi-do, 17015, Republic of Korea
| | - Ji-Eun Bae
- Brain Science and Engineering Institute, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Na Yeon Park
- School of Life Sciences, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Jun-Bum Kim
- School of Life Sciences, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Jeong Ho Chang
- Department of Biology Education, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Joong Jin Shin
- T.E.N. Co., Ltd., Yongin, Gyeonggi-do, 17015, Republic of Korea.
| | - Dong-Hyung Cho
- School of Life Sciences, Kyungpook National University, Daegu, 41566, Republic of Korea.
| |
Collapse
|
26
|
Zhang CP, Ding XX, Tian T, Li BJ, Wang CY, Jiang SS, Shao JQ, Yuan YL, Tian Y, Zhang M, Long SY. Impaired lipophagy in endothelial cells with prolonged exposure to oxidized low‑density lipoprotein. Mol Med Rep 2020; 22:2665-2672. [PMID: 32945384 PMCID: PMC7453646 DOI: 10.3892/mmr.2020.11345] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 05/27/2020] [Indexed: 12/15/2022] Open
Abstract
Oxidative stress induces the formation of oxidized low-density lipoprotein (ox-LDL), which accelerates the development of atherosclerosis and the rupture of atherosclerotic plaques by promoting lipid accumulation and inhibiting autophagy in vascular cells. Lipophagy is known to be involved in maintaining the balance of neutral lipid metabolism; however, the phenomenon of lipophagy deficiency in ox-LDL-treated endothelial cells (ECs) remains to be elucidated. It has been demonstrated that lipid accumulation caused by ox-LDL inhibits autophagy, which promotes apoptosis in ECs. The aim of the present study was to investigate the association between decreased autophagy and lipid accumulation in ECs treated with ox-LDL. Electron microscopy demonstrated that the formation of autolipophagosomes was decreased in ox-LDL-treated human umbilical vein ECs compared with that in the LDL-treated group and was accompanied by a decrease in the autophagy-associated proteins via western blotting analysis. Using laser focal colocalization detection, decreased lipid processing was observed in the lysosomes of ox-LDL-treated ECs, which indicated that lipophagy may be attenuated and subsequently result in lipid accumulation in ox-LDL-treated ECs.
Collapse
Affiliation(s)
- Cai-Ping Zhang
- Department of Biochemistry and Molecular Biology, Medical College, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Xin-Xin Ding
- Department of Biochemistry and Molecular Biology, Medical College, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Tian Tian
- Department of Clinical Laboratory, The First Hospital of Changsha, Changsha, Hunan 410005, P.R. China
| | - Bo-Jie Li
- Department of Biochemistry and Molecular Biology, Medical College, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Chu-Yao Wang
- Department of Biochemistry and Molecular Biology, Medical College, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Su-Su Jiang
- Department of Biochemistry and Molecular Biology, Medical College, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Jin-Qi Shao
- Department of Biochemistry and Molecular Biology, Medical College, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Yu-Lin Yuan
- Department of Biochemistry and Molecular Biology, Medical College, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Ying Tian
- Department of Biochemistry and Molecular Biology, Medical College, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Min Zhang
- Department of Biochemistry and Molecular Biology, Medical College, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Shi-Yin Long
- Department of Biochemistry and Molecular Biology, Medical College, University of South China, Hengyang, Hunan 421001, P.R. China
| |
Collapse
|
27
|
Zahid MDK, Rogowski M, Ponce C, Choudhury M, Moustaid-Moussa N, Rahman SM. CCAAT/enhancer-binding protein beta (C/EBPβ) knockdown reduces inflammation, ER stress, and apoptosis, and promotes autophagy in oxLDL-treated RAW264.7 macrophage cells. Mol Cell Biochem 2019; 463:211-223. [PMID: 31686316 DOI: 10.1007/s11010-019-03642-4] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Accepted: 10/21/2019] [Indexed: 12/31/2022]
Abstract
Atherosclerosis is associated with deregulated cholesterol metabolism and formation of macrophage foam cells. CCAAT/enhancer-binding protein beta (C/EBPβ) is a transcription factor, and its inhibition has recently been shown to prevent atherosclerosis development and foam cell formation. However, whether C/EBPβ regulates inflammation, endoplasmic reticulum (ER) stress, and apoptosis, in macrophage foam cells and its underlying molecular mechanism remains unknown. Here, we investigated the effect of C/EBPβ knockdown on proteins and genes implicated in inflammation, ER stress, apoptosis, and autophagy in macrophage foam cells. RAW264.7 macrophage cells were transfected with control and C/EBPβ-siRNA and then treated with nLDL and oxLDL. Key proteins and genes involved in inflammation, ER stress, apoptosis, and autophagy were analyzed by western blot and qPCR. We found that short interfering RNA (siRNA)-mediated knockdown of C/EBPβ attenuated atherogenic lipid-mediated induction of proteins and genes implicated in inflammation (P-NFkB-p65, NFkB-p65, and TNFα), ER stress (ATF4 and ATF6), and apoptosis (CHOP, caspase 1, 3, and 12). Interestingly, C/EBPβ knockdown upregulated the expression of autophagy proteins (LC3A/B-II, ATG5) and genes (LC3B, ATG5) but decreased the mammalian target of rapamycin (mTOR) protein phosphorylation and mTORC1 gene expression in oxLDL-loaded RAW264.7 macrophage cells. More importantly, treatment with rapamycin (inhibitor of mTOR) increased expression of proteins implicated in autophagy and cholesterol efflux in oxLDL-loaded RAW 264.7 macrophage cells. The present results suggest that C/EBPβ inactivation regulates macrophage foam cell formation in atherogenesis by reducing inflammation, ER stress, and apoptosis and by promoting autophagy and inactivating mTOR.
Collapse
Affiliation(s)
- M D Khurshidul Zahid
- Department of Nutritional Sciences & Obesity Research Institute, Texas Tech University, Lubbock, TX, 79409-1270, USA
| | - Michael Rogowski
- Department of Nutritional Sciences & Obesity Research Institute, Texas Tech University, Lubbock, TX, 79409-1270, USA
| | - Christopher Ponce
- Department of Mathematics, Texas Tech University, Lubbock, TX, 79409-1270, USA
| | - Mahua Choudhury
- Department of Pharmaceutical Sciences, Irma Lerma Rangel College of Pharmacy, Texas A&M, Health Sciences Center, College Station, TX, 78363, USA
| | - Naima Moustaid-Moussa
- Department of Nutritional Sciences & Obesity Research Institute, Texas Tech University, Lubbock, TX, 79409-1270, USA
| | - Shaikh M Rahman
- Department of Nutritional Sciences & Obesity Research Institute, Texas Tech University, Lubbock, TX, 79409-1270, USA.
| |
Collapse
|
28
|
Wang D, Yang Y, Lei Y, Tzvetkov NT, Liu X, Yeung AWK, Xu S, Atanasov AG. Targeting Foam Cell Formation in Atherosclerosis: Therapeutic Potential of Natural Products. Pharmacol Rev 2019; 71:596-670. [PMID: 31554644 DOI: 10.1124/pr.118.017178] [Citation(s) in RCA: 146] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Foam cell formation and further accumulation in the subendothelial space of the vascular wall is a hallmark of atherosclerotic lesions. Targeting foam cell formation in the atherosclerotic lesions can be a promising approach to treat and prevent atherosclerosis. The formation of foam cells is determined by the balanced effects of three major interrelated biologic processes, including lipid uptake, cholesterol esterification, and cholesterol efflux. Natural products are a promising source for new lead structures. Multiple natural products and pharmaceutical agents can inhibit foam cell formation and thus exhibit antiatherosclerotic capacity by suppressing lipid uptake, cholesterol esterification, and/or promoting cholesterol ester hydrolysis and cholesterol efflux. This review summarizes recent findings on these three biologic processes and natural products with demonstrated potential to target such processes. Discussed also are potential future directions for studying the mechanisms of foam cell formation and the development of foam cell-targeted therapeutic strategies.
Collapse
Affiliation(s)
- Dongdong Wang
- The Second Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, China (D.W., X.L.); Department of Molecular Biology, Institute of Genetics and Animal Breeding of the Polish Academy of Sciences, Jastrzębiec, Poland (D.W., Y.Y., Y.L., A.G.A.); Department of Pharmacognosy, University of Vienna, Vienna, Austria (A.G.A.); Institute of Clinical Chemistry, University Hospital Zurich, Schlieren, Switzerland (D.W.); Institute of Molecular Biology "Roumen Tsanev," Department of Biochemical Pharmacology and Drug Design, Bulgarian Academy of Sciences, Sofia, Bulgaria (N.T.T.); Pharmaceutical Institute, University of Bonn, Bonn, Germany (N.T.T.); Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester, Rochester, New York (S.X.); Oral and Maxillofacial Radiology, Applied Oral Sciences and Community Dental Care, Faculty of Dentistry, The University of Hong Kong, Hong Kong, China (A.W.K.Y.); and Institute of Neurobiology, Bulgarian Academy of Sciences, Sofia, Bulgaria (A.G.A.)
| | - Yang Yang
- The Second Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, China (D.W., X.L.); Department of Molecular Biology, Institute of Genetics and Animal Breeding of the Polish Academy of Sciences, Jastrzębiec, Poland (D.W., Y.Y., Y.L., A.G.A.); Department of Pharmacognosy, University of Vienna, Vienna, Austria (A.G.A.); Institute of Clinical Chemistry, University Hospital Zurich, Schlieren, Switzerland (D.W.); Institute of Molecular Biology "Roumen Tsanev," Department of Biochemical Pharmacology and Drug Design, Bulgarian Academy of Sciences, Sofia, Bulgaria (N.T.T.); Pharmaceutical Institute, University of Bonn, Bonn, Germany (N.T.T.); Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester, Rochester, New York (S.X.); Oral and Maxillofacial Radiology, Applied Oral Sciences and Community Dental Care, Faculty of Dentistry, The University of Hong Kong, Hong Kong, China (A.W.K.Y.); and Institute of Neurobiology, Bulgarian Academy of Sciences, Sofia, Bulgaria (A.G.A.)
| | - Yingnan Lei
- The Second Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, China (D.W., X.L.); Department of Molecular Biology, Institute of Genetics and Animal Breeding of the Polish Academy of Sciences, Jastrzębiec, Poland (D.W., Y.Y., Y.L., A.G.A.); Department of Pharmacognosy, University of Vienna, Vienna, Austria (A.G.A.); Institute of Clinical Chemistry, University Hospital Zurich, Schlieren, Switzerland (D.W.); Institute of Molecular Biology "Roumen Tsanev," Department of Biochemical Pharmacology and Drug Design, Bulgarian Academy of Sciences, Sofia, Bulgaria (N.T.T.); Pharmaceutical Institute, University of Bonn, Bonn, Germany (N.T.T.); Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester, Rochester, New York (S.X.); Oral and Maxillofacial Radiology, Applied Oral Sciences and Community Dental Care, Faculty of Dentistry, The University of Hong Kong, Hong Kong, China (A.W.K.Y.); and Institute of Neurobiology, Bulgarian Academy of Sciences, Sofia, Bulgaria (A.G.A.)
| | - Nikolay T Tzvetkov
- The Second Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, China (D.W., X.L.); Department of Molecular Biology, Institute of Genetics and Animal Breeding of the Polish Academy of Sciences, Jastrzębiec, Poland (D.W., Y.Y., Y.L., A.G.A.); Department of Pharmacognosy, University of Vienna, Vienna, Austria (A.G.A.); Institute of Clinical Chemistry, University Hospital Zurich, Schlieren, Switzerland (D.W.); Institute of Molecular Biology "Roumen Tsanev," Department of Biochemical Pharmacology and Drug Design, Bulgarian Academy of Sciences, Sofia, Bulgaria (N.T.T.); Pharmaceutical Institute, University of Bonn, Bonn, Germany (N.T.T.); Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester, Rochester, New York (S.X.); Oral and Maxillofacial Radiology, Applied Oral Sciences and Community Dental Care, Faculty of Dentistry, The University of Hong Kong, Hong Kong, China (A.W.K.Y.); and Institute of Neurobiology, Bulgarian Academy of Sciences, Sofia, Bulgaria (A.G.A.)
| | - Xingde Liu
- The Second Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, China (D.W., X.L.); Department of Molecular Biology, Institute of Genetics and Animal Breeding of the Polish Academy of Sciences, Jastrzębiec, Poland (D.W., Y.Y., Y.L., A.G.A.); Department of Pharmacognosy, University of Vienna, Vienna, Austria (A.G.A.); Institute of Clinical Chemistry, University Hospital Zurich, Schlieren, Switzerland (D.W.); Institute of Molecular Biology "Roumen Tsanev," Department of Biochemical Pharmacology and Drug Design, Bulgarian Academy of Sciences, Sofia, Bulgaria (N.T.T.); Pharmaceutical Institute, University of Bonn, Bonn, Germany (N.T.T.); Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester, Rochester, New York (S.X.); Oral and Maxillofacial Radiology, Applied Oral Sciences and Community Dental Care, Faculty of Dentistry, The University of Hong Kong, Hong Kong, China (A.W.K.Y.); and Institute of Neurobiology, Bulgarian Academy of Sciences, Sofia, Bulgaria (A.G.A.)
| | - Andy Wai Kan Yeung
- The Second Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, China (D.W., X.L.); Department of Molecular Biology, Institute of Genetics and Animal Breeding of the Polish Academy of Sciences, Jastrzębiec, Poland (D.W., Y.Y., Y.L., A.G.A.); Department of Pharmacognosy, University of Vienna, Vienna, Austria (A.G.A.); Institute of Clinical Chemistry, University Hospital Zurich, Schlieren, Switzerland (D.W.); Institute of Molecular Biology "Roumen Tsanev," Department of Biochemical Pharmacology and Drug Design, Bulgarian Academy of Sciences, Sofia, Bulgaria (N.T.T.); Pharmaceutical Institute, University of Bonn, Bonn, Germany (N.T.T.); Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester, Rochester, New York (S.X.); Oral and Maxillofacial Radiology, Applied Oral Sciences and Community Dental Care, Faculty of Dentistry, The University of Hong Kong, Hong Kong, China (A.W.K.Y.); and Institute of Neurobiology, Bulgarian Academy of Sciences, Sofia, Bulgaria (A.G.A.)
| | - Suowen Xu
- The Second Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, China (D.W., X.L.); Department of Molecular Biology, Institute of Genetics and Animal Breeding of the Polish Academy of Sciences, Jastrzębiec, Poland (D.W., Y.Y., Y.L., A.G.A.); Department of Pharmacognosy, University of Vienna, Vienna, Austria (A.G.A.); Institute of Clinical Chemistry, University Hospital Zurich, Schlieren, Switzerland (D.W.); Institute of Molecular Biology "Roumen Tsanev," Department of Biochemical Pharmacology and Drug Design, Bulgarian Academy of Sciences, Sofia, Bulgaria (N.T.T.); Pharmaceutical Institute, University of Bonn, Bonn, Germany (N.T.T.); Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester, Rochester, New York (S.X.); Oral and Maxillofacial Radiology, Applied Oral Sciences and Community Dental Care, Faculty of Dentistry, The University of Hong Kong, Hong Kong, China (A.W.K.Y.); and Institute of Neurobiology, Bulgarian Academy of Sciences, Sofia, Bulgaria (A.G.A.)
| | - Atanas G Atanasov
- The Second Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, China (D.W., X.L.); Department of Molecular Biology, Institute of Genetics and Animal Breeding of the Polish Academy of Sciences, Jastrzębiec, Poland (D.W., Y.Y., Y.L., A.G.A.); Department of Pharmacognosy, University of Vienna, Vienna, Austria (A.G.A.); Institute of Clinical Chemistry, University Hospital Zurich, Schlieren, Switzerland (D.W.); Institute of Molecular Biology "Roumen Tsanev," Department of Biochemical Pharmacology and Drug Design, Bulgarian Academy of Sciences, Sofia, Bulgaria (N.T.T.); Pharmaceutical Institute, University of Bonn, Bonn, Germany (N.T.T.); Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester, Rochester, New York (S.X.); Oral and Maxillofacial Radiology, Applied Oral Sciences and Community Dental Care, Faculty of Dentistry, The University of Hong Kong, Hong Kong, China (A.W.K.Y.); and Institute of Neurobiology, Bulgarian Academy of Sciences, Sofia, Bulgaria (A.G.A.)
| |
Collapse
|
29
|
Wu BW, Liu Y, Wu MS, Meng YH, Lu M, Guo JD, Zhou YH. Downregulation of microRNA-135b promotes atherosclerotic plaque stabilization in atherosclerotic mice by upregulating erythropoietin receptor. IUBMB Life 2019; 72:198-213. [PMID: 31444954 DOI: 10.1002/iub.2155] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Accepted: 08/06/2019] [Indexed: 01/23/2023]
Abstract
Atherosclerotic plaque rupture is an important pathophysiologic mechanism of acute coronary syndrome. Emerging microRNAs (miRNAs) have been implicated in the atherosclerotic plaque formation and macrophage autophagy during the development of atherosclerosis (AS). Hence, this study was conducted to explore the role microRNA-135b (miR-135b) in macrophages and atherosclerotic plaque in mouse models of AS. The expression of miR-135b and erythropoietin receptor (EPOR) was altered in atherosclerotic mice to clarify their effect on inflammation, cell activities of aortic tissues, and macrophage autophagy. The obtained findings unraveled that miR-135b was upregulated and EPOR was downregulated in atherosclerotic mice. Upregulated miR-135b expression promoted cell apoptosis and inflammation, along with inhibited cell proliferation and decreased macrophage autophagy. Notably, miR-135 was validated to target EPOR and activate the PI3K/Akt signaling pathway. Moreover, miR-135b inhibition attenuated inflammation, atherosclerotic plaque development, and promoted macrophage autophagy. Besides, the effect of miR-135b inhibition was reversed in response to EPOR silencing. Taken conjointly, the study revealed that inhibition of miR-135b promoted macrophage autophagy and atherosclerotic plaque stabilization in atherosclerotic mice by inactivating the PI3K/Akt signaling pathway and upregulating EPOR.
Collapse
Affiliation(s)
- Bo-Wen Wu
- Department of Biochemistry, Basic Medicine College, Hebei University of Chinese Medicine, Shijiazhuang, Hebei Province, People's Republic of China.,Hebei Key Laboratory of Chinese Medicine Research on Cardio-Cerebrovascular Disease, Shijiazhuang, Hebei Province, People's Republic of China
| | - Yu Liu
- Department of Biochemistry, Basic Medicine College, Hebei University of Chinese Medicine, Shijiazhuang, Hebei Province, People's Republic of China.,Hebei Key Laboratory of Chinese Medicine Research on Cardio-Cerebrovascular Disease, Shijiazhuang, Hebei Province, People's Republic of China
| | - Mi-Shan Wu
- Hebei Key Laboratory of Chinese Medicine Research on Cardio-Cerebrovascular Disease, Shijiazhuang, Hebei Province, People's Republic of China.,Department of Formulaology, Basic Medicine College, Hebei University of Chinese Medicine, Shijiazhuang, Hebei Province, People's Republic of China
| | - Yun-Hui Meng
- Hebei Key Laboratory of Chinese Medicine Research on Cardio-Cerebrovascular Disease, Shijiazhuang, Hebei Province, People's Republic of China.,Department of Formulaology, Basic Medicine College, Hebei University of Chinese Medicine, Shijiazhuang, Hebei Province, People's Republic of China
| | - Meng Lu
- Hebei Key Laboratory of Chinese Medicine Research on Cardio-Cerebrovascular Disease, Shijiazhuang, Hebei Province, People's Republic of China.,Department of Formulaology, Basic Medicine College, Hebei University of Chinese Medicine, Shijiazhuang, Hebei Province, People's Republic of China
| | - Jin-Dong Guo
- Hebei Key Laboratory of Chinese Medicine Research on Cardio-Cerebrovascular Disease, Shijiazhuang, Hebei Province, People's Republic of China.,Department of Formulaology, Basic Medicine College, Hebei University of Chinese Medicine, Shijiazhuang, Hebei Province, People's Republic of China
| | - Yu-Hui Zhou
- Hebei Key Laboratory of Chinese Medicine Research on Cardio-Cerebrovascular Disease, Shijiazhuang, Hebei Province, People's Republic of China.,Department of Formulaology, Basic Medicine College, Hebei University of Chinese Medicine, Shijiazhuang, Hebei Province, People's Republic of China
| |
Collapse
|
30
|
Habtemariam S. Antioxidant and Anti-inflammatory Mechanisms of Neuroprotection by Ursolic Acid: Addressing Brain Injury, Cerebral Ischemia, Cognition Deficit, Anxiety, and Depression. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:8512048. [PMID: 31223427 PMCID: PMC6541953 DOI: 10.1155/2019/8512048] [Citation(s) in RCA: 89] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 04/27/2019] [Accepted: 05/08/2019] [Indexed: 12/19/2022]
Abstract
Ursolic acid (UA) is a pentacyclic triterpene which is found in common herbs and medicinal plants that are reputed for a variety of pharmacological effects. Both as an active principle of these plants and as a nutraceutical ingredient, the pharmacology of UA in the CNS and other organs and systems has been extensively reported in recent years. In this communication, the antioxidant and anti-inflammatory axis of UA's pharmacology is appraised for its therapeutic potential in some common CNS disorders. Classic examples include the traumatic brain injury (TBI), cerebral ischemia, cognition deficit, anxiety, and depression. The pharmacological efficacy for UA is demonstrated through the therapeutic principle of one drug → multitargets → one/many disease(s). Both specific enzymes and receptor targets along with diverse pharmacological effects associated with oxidative stress and inflammatory signalling are scrutinised.
Collapse
Affiliation(s)
- Solomon Habtemariam
- Pharmacognosy Research Laboratories & Herbal Analysis Services, University of Greenwich, Central Avenue, Chatham-Maritime, Kent ME4 4TB, UK
| |
Collapse
|
31
|
Liang X, Wang C, Sun Y, Song W, Lin J, Li J, Guan X. p62/mTOR/LXRα pathway inhibits cholesterol efflux mediated by ABCA1 and ABCG1 during autophagy blockage. Biochem Biophys Res Commun 2019; 514:1093-1100. [PMID: 31101336 DOI: 10.1016/j.bbrc.2019.04.134] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Accepted: 04/18/2019] [Indexed: 12/20/2022]
Abstract
OBJECTIVE Atherosclerosis is a disease characterized by abnormal lipid metabolism, and the formation of foam cells is considered an early event of atherosclerosis. Intracellular cholesterol efflux mediated by ABCA1 and ABCG1 helps to reduce lipid accumulation in foam cells. Related studies have shown that autophagy and mTOR are involved in cholesterol efflux, but the role of p62, an autophagy substrate protein, has not been evaluated. METHODS THP-1 derived macrophages were incubated with ox-LDL to establish a foam cell model and treated with different autophagy inducers. The effects of p62 on cholesterol efflux were investigated using overexpression vectors, gene silencing and western blotting. RESULTS This study showed a blockage of autophagy and decreased expression of ABCA1 and ABCG1 under the stress of excess ox-LDL in a concentration-dependent manner in THP-1 cells. Furthermore, the activation of autophagy led to increased expression of ABCA1 and ABCG1, as well as their upstream transcription factor LXRα, thereby promoting cholesterol efflux from foam cells. We also demonstrated that accumulated p62 played an important role during autophagy blockage, which was achieved by activating mTOR and then inhibited the expression of LXRα and its downstream target proteins ABCA1 and ABCG1. CONCLUSION In conclusion, our experiments demonstrated that a p62/mTOR/LXRα signaling pathway was involved in cholesterol efflux mediated by ABCA1 and ABCG1 when autophagy blockage occurred. Our study offers a rationale for the development of autophagy and p62 as a new target for the treatment of atherosclerosis.
Collapse
Affiliation(s)
- Xiaofei Liang
- First Affiliated Hospital of Harbin Medical University, Harbin, 150001, China.
| | - Chao Wang
- First Affiliated Hospital of Harbin Medical University, Harbin, 150001, China.
| | - Yan Sun
- First Affiliated Hospital of Harbin Medical University, Harbin, 150001, China.
| | - Wei Song
- First Affiliated Hospital of Harbin Medical University, Harbin, 150001, China.
| | - Jing Lin
- First Affiliated Hospital of Harbin Medical University, Harbin, 150001, China.
| | - Jiashan Li
- First Affiliated Hospital of Harbin Medical University, Harbin, 150001, China.
| | - Xiuru Guan
- First Affiliated Hospital of Harbin Medical University, Harbin, 150001, China.
| |
Collapse
|
32
|
Martinet W, Coornaert I, Puylaert P, De Meyer GRY. Macrophage Death as a Pharmacological Target in Atherosclerosis. Front Pharmacol 2019; 10:306. [PMID: 31019462 PMCID: PMC6458279 DOI: 10.3389/fphar.2019.00306] [Citation(s) in RCA: 159] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2019] [Accepted: 03/12/2019] [Indexed: 12/20/2022] Open
Abstract
Atherosclerosis is a chronic inflammatory disorder characterized by the gradual build-up of plaques within the vessel wall of middle-sized and large arteries. Over the past decades, treatment of atherosclerosis mainly focused on lowering lipid levels, which can be accomplished by the use of statins. However, some patients do not respond sufficiently to statin therapy and therefore still have a residual cardiovascular risk. This issue highlights the need for novel therapeutic strategies. As macrophages are implicated in all stages of atherosclerotic lesion development, they represent an important alternative drug target. A variety of anti-inflammatory strategies have recently emerged to treat or prevent atherosclerosis. Here, we review the canonical mechanisms of macrophage death and their impact on atherogenesis and plaque stability. Macrophage death is a prominent feature of advanced plaques and is a major contributor to necrotic core formation and plaque destabilization. Mechanisms of macrophage death in atherosclerosis include apoptosis, passive or accidental necrosis as well as secondary necrosis, a type of death that typically occurs when apoptotic cells are insufficiently cleared by neighboring cells via a phagocytic process termed efferocytosis. In addition, less-well characterized types of regulated necrosis in macrophages such as necroptosis, pyroptosis, ferroptosis, and parthanatos may occur in advanced plaques and are also discussed. Autophagy in plaque macrophages is an important survival pathway that protects against cell death, yet massive stimulation of autophagy promotes another type of death, usually referred to as autosis. Multiple lines of evidence indicate that a better insight into the different mechanisms of macrophage death, and how they mutually interact, will provide novel pharmacological strategies to resolve atherosclerosis and stabilize vulnerable, rupture-prone plaques.
Collapse
Affiliation(s)
- Wim Martinet
- Laboratory of Physiopharmacology, University of Antwerp, Antwerp, Belgium
| | - Isabelle Coornaert
- Laboratory of Physiopharmacology, University of Antwerp, Antwerp, Belgium
| | - Pauline Puylaert
- Laboratory of Physiopharmacology, University of Antwerp, Antwerp, Belgium
| | - Guido R Y De Meyer
- Laboratory of Physiopharmacology, University of Antwerp, Antwerp, Belgium
| |
Collapse
|
33
|
Yu XH, Zhang DW, Zheng XL, Tang CK. Cholesterol transport system: An integrated cholesterol transport model involved in atherosclerosis. Prog Lipid Res 2018; 73:65-91. [PMID: 30528667 DOI: 10.1016/j.plipres.2018.12.002] [Citation(s) in RCA: 150] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 10/30/2018] [Accepted: 12/01/2018] [Indexed: 02/07/2023]
Abstract
Atherosclerosis, the pathological basis of most cardiovascular disease (CVD), is closely associated with cholesterol accumulation in the arterial intima. Excessive cholesterol is removed by the reverse cholesterol transport (RCT) pathway, representing a major antiatherogenic mechanism. In addition to the RCT, other pathways are required for maintaining the whole-body cholesterol homeostasis. Thus, we propose a working model of integrated cholesterol transport, termed the cholesterol transport system (CTS), to describe body cholesterol metabolism. The novel model not only involves the classical view of RCT but also contains other steps, such as cholesterol absorption in the small intestine, low-density lipoprotein uptake by the liver, and transintestinal cholesterol excretion. Extensive studies have shown that dysfunctional CTS is one of the major causes for hypercholesterolemia and atherosclerosis. Currently, several drugs are available to improve the CTS efficiently. There are also several therapeutic approaches that have entered into clinical trials and shown considerable promise for decreasing the risk of CVD. In recent years, a variety of novel findings reveal the molecular mechanisms for the CTS and its role in the development of atherosclerosis, thereby providing novel insights into the understanding of whole-body cholesterol transport and metabolism. In this review, we summarize the latest advances in this area with an emphasis on the therapeutic potential of targeting the CTS in CVD patients.
Collapse
Affiliation(s)
- Xiao-Hua Yu
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Medical Research Experiment Center, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, Hunan 421001, China
| | - Da-Wei Zhang
- Department of Pediatrics and Group on the Molecular and Cell Biology of Lipids, University of Alberta, Alberta, Canada
| | - Xi-Long Zheng
- Department of Biochemistry and Molecular Biology, Libin Cardiovascular Institute of Alberta, Cumming School of Medicine, University of Calgary, Health Sciences Center, 3330 Hospital Dr NW, Calgary, Alberta T2N 4N1, Canada
| | - Chao-Ke Tang
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Medical Research Experiment Center, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, Hunan 421001, China.
| |
Collapse
|
34
|
Ceballos S, Guillén A, Muñoz DL, Castaño A, Echeverri LF, Acín S, Balcázar N. Immunometabolic regulation by triterpenes of Eucalyptus tereticornis in adipose tissue cell line models. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2018; 50:109-117. [PMID: 30466969 DOI: 10.1016/j.phymed.2018.03.059] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Revised: 02/19/2018] [Accepted: 03/21/2018] [Indexed: 06/09/2023]
Abstract
BACKGROUND Eucalyptus tereticornis Sm (Myrtaceae) is a plant used in traditional medicine to control obesity, insulin resistance and diabetes. Chronic adipose tissue inflammation is involved in generating insulin resistance, the greatest risk factor in developing type 2 diabetes mellitus and cardiovascular disease. In the present study, a mixture of triterpenes, as obtained from the starting plant material, was evaluated in inflamed adipose tissue cells models. AIM Our goal is to advance into the understanding, at the cellular level, of the immunometabolic effects of the triterpene mixes from Eucalyptus tereticornis in in vitro models of mouse and human adipose tissues. METHODS Triterpene mixes were obtained from Eucalyptus tereticornis leaves by organic extraction. The major compounds of these mixes were identified by 1H NMR and 13C NMR in addition to HPLC using primary and secondary standards of ursolic acid, oleanolic acid and ursolic acid lactone. To provide an approach for evaluating the cellular and molecular mechanisms through which triterpene mixes act to modify the metabolic processes associated with obesity, mouse macrophage and adipocyte cell lines, human macrophage cell line and primary culture of human adipocytes were used as models. RESULTS Adipocytes treated with the two natural chemically characterized triterpene mixes partially reduce lipogenesis and leptin expression. Additionally, an increase in the transcriptional expression of PPARγ, and C/EBPα is observed. In macrophages, these triterpene mixes, decrease the transcriptional and translational expression of pro-inflammatory cytokines, such as interleukin-6 (IL-6), interleukin 1β (IL-1β) and tumoral necrosis factor α (TNFα). Conditioned medium of 3T3-L1 adipocytes treated with the triterpene mix shows a stronger anti-inflammatory response on activated J774A.1 macrophages. CONCLUSION The mixtures of the three triterpenes in the proportions obtained from the plant material may act on different components of the cell, generating a different response, which, in some cases, is more powerful than that seen when exposure to only two triterpenes. It makes this three triterpenes mix a good phytotherapeutic prototype for pathologies as complex as those associated with obesity.
Collapse
Affiliation(s)
- Susana Ceballos
- Molecular Genetics Group, Universidad de Antioquia, Calle 70, N° 52-21, A.A. 1226, Medellin, Colombia
| | - Alis Guillén
- Molecular Genetics Group, Universidad de Antioquia, Calle 70, N° 52-21, A.A. 1226, Medellin, Colombia
| | - Diana Lorena Muñoz
- Department of Physiology and Biochemistry, School of Medicine, Universidad de Antioquia, Calle 70, N° 52-21, A.A. 1226, Medellin, Colombia
| | - Adriana Castaño
- Group of Organic Natural Product Chemistry, Faculty of Natural and Exact Sciences, Universidad de Antioquia, Calle 70, N° 52-21, A.A. 1226, Medellin, Colombia
| | - Luis Fernando Echeverri
- Group of Organic Natural Product Chemistry, Faculty of Natural and Exact Sciences, Universidad de Antioquia, Calle 70, N° 52-21, A.A. 1226, Medellin, Colombia
| | - Sergio Acín
- Molecular Genetics Group, Universidad de Antioquia, Calle 70, N° 52-21, A.A. 1226, Medellin, Colombia; Department of Physiology and Biochemistry, School of Medicine, Universidad de Antioquia, Calle 70, N° 52-21, A.A. 1226, Medellin, Colombia
| | - Norman Balcázar
- Molecular Genetics Group, Universidad de Antioquia, Calle 70, N° 52-21, A.A. 1226, Medellin, Colombia; Department of Physiology and Biochemistry, School of Medicine, Universidad de Antioquia, Calle 70, N° 52-21, A.A. 1226, Medellin, Colombia.
| |
Collapse
|
35
|
Zhang X, Teng G, Zhang J. Deep eutectic solvents aqueous two-phase system based ultrasonically assisted extraction of ursolic acid (UA) from Cynomorium songaricum Rupr. CHEM ENG COMMUN 2018. [DOI: 10.1080/00986445.2018.1494583] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Affiliation(s)
- Xifeng Zhang
- School of Life Science, Northwest Normal University, Lanzhou, Gansu, People’s Republic of China
- The College of Agriculture and Biotechnology (CAB), Hexi University, Zhangye, Gansu, People’s Republic of China
| | - Guixiang Teng
- School of Life Science, Northwest Normal University, Lanzhou, Gansu, People’s Republic of China
| | - Ji Zhang
- School of Life Science, Northwest Normal University, Lanzhou, Gansu, People’s Republic of China
| |
Collapse
|
36
|
Qiao L, Chen W. Atheroprotective effects and molecular targets of bioactive compounds from traditional Chinese medicine. Pharmacol Res 2018; 135:212-229. [PMID: 30107203 DOI: 10.1016/j.phrs.2018.07.012] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Revised: 06/12/2018] [Accepted: 07/12/2018] [Indexed: 01/16/2023]
Abstract
Traditional Chinese medicine (TCM) has served the Chinese people since antiquity, and is playing an important role in today's healthcare. However, there has been controversy in the use of these traditional herbs due to unclear components and absence of scientific proof. As China plans to modernize traditional medicine, successful attempts to better understand the molecular mechanisms of TCM have been made by focusing on isolating active ingredients from these remedies. In this review, we critically examined the current evidence on atheroprotective effects of bioactive compounds from TCM using in vitro or in vivo models in the past two decades. A total of 47 active compounds were included in our review, which were introduced in the order of chemical structures, source, model, efficacy and mechanism. Notablely, this review highlighted the cellular and molecular mechanisms of these active compounds in prevention and treatment of atherosclerosis. Two compounds were also involved in double-blind, randomized, placebo-controlled clinical trials (RCTs). Besides, we introduced the legislations of the People's Republic of China ensuring quality and safety of products used in TCM. In summary, studies on bioactive compounds from TCM will provide a new approach for better management of atherosclerosis.
Collapse
Affiliation(s)
- Lei Qiao
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Wenqiang Chen
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, Shandong, China.
| |
Collapse
|
37
|
Kim KA, Shin D, Kim JH, Shin YJ, Rajanikant GK, Majid A, Baek SH, Bae ON. Role of Autophagy in Endothelial Damage and Blood-Brain Barrier Disruption in Ischemic Stroke. Stroke 2018; 49:1571-1579. [PMID: 29724893 DOI: 10.1161/strokeaha.117.017287] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Kyeong-A Kim
- From the College of Pharmacy Institute of Pharmaceutical Science and Technology, Hanyang University, Ansan, Republic of Korea (K.-A.K., D.S., J.-H.K., Y.-J.S., O.-N.B.)
| | - Donggeun Shin
- From the College of Pharmacy Institute of Pharmaceutical Science and Technology, Hanyang University, Ansan, Republic of Korea (K.-A.K., D.S., J.-H.K., Y.-J.S., O.-N.B.)
| | - Jeong-Hyeon Kim
- From the College of Pharmacy Institute of Pharmaceutical Science and Technology, Hanyang University, Ansan, Republic of Korea (K.-A.K., D.S., J.-H.K., Y.-J.S., O.-N.B.)
| | - Young-Jun Shin
- From the College of Pharmacy Institute of Pharmaceutical Science and Technology, Hanyang University, Ansan, Republic of Korea (K.-A.K., D.S., J.-H.K., Y.-J.S., O.-N.B.)
| | - G K Rajanikant
- School of Biotechnology, National Institute of Technology Calicut, Kerala, India (G.K.R.)
| | - Arshad Majid
- Sheffield Institute for Translational Neuroscience, University of Sheffield, England (A.M.)
| | - Seung-Hoon Baek
- College of Pharmacy and Research Institute of Pharmaceutical Science and Technology, Ajou University, Suwon, Republic of Korea (S.-H.B.)
| | - Ok-Nam Bae
- From the College of Pharmacy Institute of Pharmaceutical Science and Technology, Hanyang University, Ansan, Republic of Korea (K.-A.K., D.S., J.-H.K., Y.-J.S., O.-N.B.)
| |
Collapse
|
38
|
Peng S, Xu LW, Che XY, Xiao QQ, Pu J, Shao Q, He B. Atorvastatin Inhibits Inflammatory Response, Attenuates Lipid Deposition, and Improves the Stability of Vulnerable Atherosclerotic Plaques by Modulating Autophagy. Front Pharmacol 2018; 9:438. [PMID: 29773990 PMCID: PMC5943597 DOI: 10.3389/fphar.2018.00438] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Accepted: 04/13/2018] [Indexed: 02/04/2023] Open
Abstract
Atherosclerosis is a chronic disease comprising intima malfunction and arterial inflammation. Recent studies have demonstrated that autophagy could inhibit inflammatory response in atherosclerosis and exert subsequent atheroprotective effects. Our previous study also demonstrated the role of autophagy in the inhibition of inflammation by atorvastatin in vitro. Therefore, in the present study, we aimed to determine whether atorvastatin could upregulate autophagy to inhibit inflammatory cytokines secretion, lipid accumulation, and improve vulnerable plaque stability, both in vitro and in vivo. First, we established a vulnerable atherosclerotic plaque mouse model through partial ligation of left common carotid artery and left renal artery to explore the effect of atorvastatin on vulnerable plaques. The results showed that atorvastatin could enhance the stability of vulnerable atherosclerotic plaques and reduce the lesion area in the aorta. Atorvastatin could also inhibit NLRP3 inflammasome activation and inflammatory cytokines, such as IL-1β, TNF-α, and IL-18 secretion in vivo. Atorvastatin treatment upregulated the expression of autophagy-related protein microtubule-associated protein light chain (LC3B) and downregulated the expression of SQSTM1/p62, which suggested that autophagy was activated in vulnerable plaques. Transmission electron microscopy further demonstrated the atorvastatin-induced increase in autophagy activity in vulnerable atherosclerotic plaques. We employed oxidized low-density lipoprotein (ox-LDL) to stimulate RAW264.7 cells with atorvastatin, which showed that atorvastatin could attenuate lipid deposition, ameliorate inflammation, inhibit NLRP3 inflammasome activation, and enhance autophagy in vitro. All these beneficial effects were abolished by 3-methyladenine treatment, an autophagy inhibitor. Atorvastatin also significantly inhibited the phosphorylation of mTOR, which strongly suggested the involvement of the mTOR pathway. Our study proposed a new role for atorvastatin as an autophagy inducer to exert anti-inflammatory and atheroprotective effects, to stabilize vulnerable atherosclerotic plaques.
Collapse
Affiliation(s)
- Shi Peng
- Department of Cardiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Long-Wei Xu
- Department of Cardiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xin-Yu Che
- Department of Cardiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Qing-Qing Xiao
- Department of Cardiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jun Pu
- Department of Cardiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Qin Shao
- Department of Cardiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Ben He
- Department of Cardiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
39
|
Huang C, Yu XH, Zheng XL, Ou X, Tang CK. Interferon-stimulated gene 15 promotes cholesterol efflux by activating autophagy via the miR-17-5p/Beclin-1 pathway in THP-1 macrophage-derived foam cells. Eur J Pharmacol 2018. [PMID: 29518394 DOI: 10.1016/j.ejphar.2018.02.042] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Macrophage autophagy contributes to the hydrolysis of cholesteryl ester into free cholesterol mainly for ATP-binding cassette transporter A1 (ABCA1)-dependent efflux. Interferon-stimulated gene 15 (ISG15) has been shown to regulate autophagy in multiple types of cells. The present study aimed to examine the effects of ISG15 on autophagy and cholesterol efflux in THP-1 macrophage-derived foam cells and to explore the underlying molecular mechanisms. Our results showed that overexpression of ISG15 promoted autophagy and cholesterol efflux and inhibited lipid accumulation without impact on ABCA1 expression. Inhibition of autophagy by 3-methyladenine (3-MA) abrogated the enhancing effects of ISG15 on cholesterol efflux. Both bioinformatics analysis and dual luciferase reporter assay identified Beclin-1 as a direct target of miR-17-5p. Moreover, ISG15 overexpression markedly decreased miR-17-5p levels and upregulated Beclin-1 expression. ISG15-induced enhancement of autophagy and cholesterol efflux was reversed by pretreatment with either miR-17-5p mimic or Beclin-1 siRNA. In conclusion, these findings suggest that ISG15 reduces miR-17-5p levels and thereby promotes Beclin-1-mediated autophagy, resulting in increased cholesterol efflux from THP-1 macrophage-derived foam cells.
Collapse
Affiliation(s)
- Chong Huang
- Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan Province, Medical Research Experiment Center, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, Hunan 421001, China
| | - Xiao-Hua Yu
- Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan Province, Medical Research Experiment Center, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, Hunan 421001, China
| | - Xi-Long Zheng
- Department of Biochemistry and Molecular Biology, Libin Cardiovascular Institute of Alberta, Cumming School of Medicine, University of Calgary, Health Sciences Center, 3330 Hospital Dr NW, Calgary, Alberta, Canada T2N 4N1
| | - Xiang Ou
- Department of Endocrinology, The First Hospital of Changsha, Changsha, Hunan 410005, China.
| | - Chao-Ke Tang
- Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan Province, Medical Research Experiment Center, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, Hunan 421001, China.
| |
Collapse
|
40
|
Cao C, Wang W, Lu L, Wang L, Chen X, Guo R, Li S, Jiang J. Inactivation of Beclin-1-dependent autophagy promotes ursolic acid-induced apoptosis in hypertrophic scar fibroblasts. Exp Dermatol 2018; 27:58-63. [PMID: 28767174 DOI: 10.1111/exd.13410] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/03/2017] [Indexed: 02/06/2023]
Abstract
A hypertrophic scar (HS) is caused by abnormal proliferation of dermal fibroblasts. Thus, promoting hypertrophic scar fibroblast (HSFB) apoptosis is an effective strategy for HS therapy. Ursolic acid (UA) has been widely used as an inducer of apoptosis in diverse cancers. However, whether UA plays an inhibitory role in HS formation is still unknown. In our study, UA was used to treat HSFBs and the cell viability, apoptosis, and collagen synthesis were determined by a Cell Counting Kit 8 assay, flow cytometry, and an H3 -proline incorporation assay, respectively. Autophagy activity was detected by LC3 immunoblotting and electron microscopy, and siRNAs targeting Beclin-1 were used to inhibit autophagy. Western blotting was performed to investigate the molecular changes in HSFBs after various treatments. We found that UA inhibited collagen synthesis and induced cell apoptosis in HSFBs, evidenced by the deregulated expression of Bim, Bcl-2 and Cyto C. Furthermore, we demonstrated that UA induced autophagy and inactivation of autophagy promoted UA-induced apoptosis and collagen synthesis inhibition in HSFBs. Molecular investigation indicated that UA-induced autophagy through upregulation of Beclin-1 and knockdown of Beclin-1 prevent UA-induced autophagy. Overexpression of Bcl-2 prevents UA-induced autophagy, Beclin-1 upregulation, apoptosis and collagen synthesis inhibition in HSFBs. Collectively, our study demonstrated that UA is a novel agent for inhibiting HS formation by promoting apoptosis, especially in combination with an autophagy inhibitor. Our results provide strong evidence of the application of UA in clinical HS treatment.
Collapse
Affiliation(s)
- Chuan Cao
- Plastic Surgery Department of Southwest Hospital, Chongqing, China
| | - Wenping Wang
- Plastic Surgery Department of Southwest Hospital, Chongqing, China
| | - Lele Lu
- Plastic Surgery Department of Southwest Hospital, Chongqing, China
| | - Liang Wang
- Plastic Surgery Department of Southwest Hospital, Chongqing, China
| | - XiaoSong Chen
- Plastic Surgery Department of Concord Hospital of the Fujian Medical University, Fuzhou, China
| | - Rui Guo
- Plastic Surgery Department of Southwest Hospital, Chongqing, China
| | - Shirong Li
- Plastic Surgery Department of Southwest Hospital, Chongqing, China
| | - Junzi Jiang
- Plastic Surgery Department of Southwest Hospital, Chongqing, China
| |
Collapse
|
41
|
Zhu X, Huang L, Gong J, Shi C, Wang Z, Ye B, Xuan A, He X, Long D, Zhu X, Ma N, Leng S. NF- κB pathway link with ER stress-induced autophagy and apoptosis in cervical tumor cells. Cell Death Discov 2017; 3:17059. [PMID: 28904818 PMCID: PMC5592653 DOI: 10.1038/cddiscovery.2017.59] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Revised: 06/25/2017] [Accepted: 06/30/2017] [Indexed: 12/11/2022] Open
Abstract
Targeting endoplasmic reticulum (ER) stress is being investigated for its anticancer effect in various cancers, including cervical cancer. However, the molecular pathways whereby ER stress mediates cell death remain to be fully elucidated. In this study, we confirmed that ER stress triggered by compounds such as brefeldin A (BFA), tunicamycin (TM), and thapsigargin (TG) leads to the induction of the unfolded protein response (UPR) in cervical cancer cell lines, which is characterized by elevated levels of inositol-requiring kinase 1α, glucose-regulated protein-78, and C/EBP homologous protein, and swelling of the ER observed by transmission electron microscope (TEM). We found that BFA significantly increased autophagy in tumor cells and induced TC-1 tumor cell death in a dose-dependent manner. BFA increased punctate staining of LC3 and the number of autophagosomes observed by TEM in TC-1 and HeLa cells. The autophagic flux was also assessed. Bafilomycin, which blocked degradation of LC3 in lysosomes, caused both LC3I and LC3II accumulation. BFA initiated apoptosis of TC-1 tumor cells through activation of the caspase-12/caspase-3 pathway. At the same time, BFA enhanced the phosphorylation of IκBα protein and translocation into the nucleus of NF-κB p65. Quinazolinediamine, an NF-κB inhibitor, attenuated both autophagy and apoptosis induced by BFA; meanwhile, it partly enhances survival of cervical cancer cells following BFA treatment. In conclusion, our results indicate that the cross-talk between ER stress, autophagy, apoptosis, and the NF-κB pathways controls the fate of cervical cancer cells. Careful evaluation should be given to the addition of an NF-κB pathway inhibitor to treat cervical cancer in combination with drugs that induce ER stress-mediated cell death.
Collapse
Affiliation(s)
- Xiaolan Zhu
- Department of Human Anatomy, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, Guangdong 511436, People's Republic of China
| | - Li Huang
- Department of Human Anatomy, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, Guangdong 511436, People's Republic of China
| | - Jie Gong
- Department of Human Anatomy, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, Guangdong 511436, People's Republic of China
| | - Chun Shi
- Department of Human Anatomy, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, Guangdong 511436, People's Republic of China
| | - Zhiming Wang
- Department of Human Anatomy, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, Guangdong 511436, People's Republic of China
| | - Bingkun Ye
- Department of Human Anatomy, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, Guangdong 511436, People's Republic of China
| | - Aiguo Xuan
- Department of Human Anatomy, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, Guangdong 511436, People's Republic of China
| | - Xiaosong He
- Department of Human Anatomy, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, Guangdong 511436, People's Republic of China
| | - Dahong Long
- Department of Human Anatomy, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, Guangdong 511436, People's Republic of China
| | - Xiao Zhu
- Guangdong Province Key Laboratory of Medical Molecular Diagnosis, Guangdong Medical College, Zhanjiang/Dongguan, People's Republic of China
| | - Ningfang Ma
- Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou 511436, People's Republic of China
| | - Shuilong Leng
- Department of Human Anatomy, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, Guangdong 511436, People's Republic of China
| |
Collapse
|
42
|
Guo FX, Hu YW, Zheng L, Wang Q. Shear Stress in Autophagy and Its Possible Mechanisms in the Process of Atherosclerosis. DNA Cell Biol 2017; 36:335-346. [PMID: 28287831 DOI: 10.1089/dna.2017.3649] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Autophagy can eliminate harmful components and maintain cellular homeostasis in response to a series of extracellular insults in eukaryotes. More and more studies show that autophagy plays vital roles in the development of atherosclerosis. Atherosclerosis is a multifactorial disease and shear stress acts as a key role in its process. Understanding the role of shear stress in autophagy may offer insight into atherosclerosis therapies, especially emerging targeted therapy. In this article, we retrospect related studies to summarize the present comprehension of the association between autophagy and atherosclerosis onset and progression.
Collapse
Affiliation(s)
- Feng-Xia Guo
- Laboratory Medicine Center, Nanfang Hospital, Southern Medical University , Guangzhou, China
| | - Yan-Wei Hu
- Laboratory Medicine Center, Nanfang Hospital, Southern Medical University , Guangzhou, China
| | - Lei Zheng
- Laboratory Medicine Center, Nanfang Hospital, Southern Medical University , Guangzhou, China
| | - Qian Wang
- Laboratory Medicine Center, Nanfang Hospital, Southern Medical University , Guangzhou, China
| |
Collapse
|