1
|
Kimura T, Miyashita K, Fukamachi I, Fukamachi K, Ogura K, Yokoyama E, Tsunekawa K, Nagasawa T, Ploug M, Yang Y, Song W, Young SG, Beigneux AP, Nakajima K, Murakami M. Quantification of lipoprotein lipase in mouse plasma with a sandwich enzyme-linked immunosorbent assay. J Lipid Res 2024; 65:100532. [PMID: 38608546 PMCID: PMC11017283 DOI: 10.1016/j.jlr.2024.100532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 03/03/2024] [Accepted: 03/06/2024] [Indexed: 04/14/2024] Open
Abstract
To support in vivo and in vitro studies of intravascular triglyceride metabolism in mice, we created rat monoclonal antibodies (mAbs) against mouse LPL. Two mAbs, mAbs 23A1 and 31A5, were used to develop a sandwich ELISA for mouse LPL. The detection of mouse LPL by the ELISA was linear in concentrations ranging from 0.31 ng/ml to 20 ng/ml. The sensitivity of the ELISA made it possible to quantify LPL in serum and in both pre-heparin and post-heparin plasma samples (including in grossly lipemic samples). LPL mass and activity levels in the post-heparin plasma were lower in Gpihbp1-/- mice than in wild-type mice. In both groups of mice, LPL mass and activity levels were positively correlated. Our mAb-based sandwich ELISA for mouse LPL will be useful for any investigator who uses mouse models to study LPL-mediated intravascular lipolysis.
Collapse
Affiliation(s)
- Takao Kimura
- Department of Clinical Laboratory Medicine, Gunma University Graduate School of Medicine, Maebashi, Gunma, Japan; Clinical Laboratory Center, Gunma University Hospital, Maebashi, Gunma, Japan.
| | | | | | | | - Kazumi Ogura
- Immuno-Biological Laboratories, Fujioka, Gunma, Japan
| | | | - Katsuhiko Tsunekawa
- Department of Clinical Laboratory Medicine, Gunma University Graduate School of Medicine, Maebashi, Gunma, Japan; Clinical Laboratory Center, Gunma University Hospital, Maebashi, Gunma, Japan
| | - Takumi Nagasawa
- Department of Clinical Laboratory Medicine, Gunma University Graduate School of Medicine, Maebashi, Gunma, Japan; Clinical Laboratory Center, Gunma University Hospital, Maebashi, Gunma, Japan
| | - Michael Ploug
- Finsen Laboratory, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark; Biotech Research and Innovation Centre, University of Copenhagen, Copenhagen, Denmark
| | - Ye Yang
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Wenxin Song
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Stephen G Young
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA, USA; Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Anne P Beigneux
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Katsuyuki Nakajima
- Department of Clinical Laboratory Medicine, Gunma University Graduate School of Medicine, Maebashi, Gunma, Japan
| | - Masami Murakami
- Department of Clinical Laboratory Medicine, Gunma University Graduate School of Medicine, Maebashi, Gunma, Japan; Clinical Laboratory Center, Gunma University Hospital, Maebashi, Gunma, Japan
| |
Collapse
|
2
|
Jiang S, Ren Z, Yang Y, Liu Q, Zhou S, Xiao Y. The GPIHBP1-LPL complex and its role in plasma triglyceride metabolism: Insights into chylomicronemia. Biomed Pharmacother 2023; 169:115874. [PMID: 37951027 DOI: 10.1016/j.biopha.2023.115874] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 11/06/2023] [Accepted: 11/07/2023] [Indexed: 11/13/2023] Open
Abstract
GPIHBP1 is a protein found in the endothelial cells of capillaries that is anchored by glycosylphosphatidylinositol and binds to high-density lipoproteins. GPIHBP1 attaches to lipoprotein lipase (LPL), subsequently carrying the enzyme and anchoring it to the capillary lumen. Enabling lipid metabolism is essential for the marginalization of lipoproteins alongside capillaries. Studies underscore the significance of GPIHBP1 in transporting, stabilizing, and aiding in the marginalization of LPL. The intricate interplay between GPIHBP1 and LPL has provided novel insights into chylomicronemia in recent years. Mutations hindering the formation or reducing the efficiency of the GPIHBP1-LPL complex are central to the onset of chylomicronemia. This review delves into the structural nuances of the GPIHBP1-LPL interaction, the consequences of mutations in the complex leading to chylomicronemia, and cutting-edge advancements in chylomicronemia treatment.
Collapse
Affiliation(s)
- Shali Jiang
- Department of Cardiovascular Medicine, Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, PR China; Xiangya School of Medicine, Central South University, Changsha, Hunan 410013, PR China
| | - Zhuoqun Ren
- Department of Cardiovascular Medicine, Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, PR China; Xiangya School of Medicine, Central South University, Changsha, Hunan 410013, PR China
| | - Yutao Yang
- Department of Cardiovascular Medicine, Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, PR China; Xiangya School of Medicine, Central South University, Changsha, Hunan 410013, PR China
| | - Qiming Liu
- Department of Cardiovascular Medicine, Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, PR China
| | - Shenghua Zhou
- Department of Cardiovascular Medicine, Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, PR China
| | - Yichao Xiao
- Department of Cardiovascular Medicine, Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, PR China.
| |
Collapse
|
3
|
Song W, Beigneux AP, Weston TA, Chen K, Yang Y, Nguyen LP, Guagliardo P, Jung H, Tran AP, Tu Y, Tran C, Birrane G, Miyashita K, Nakajima K, Murakami M, Tontonoz P, Jiang H, Ploug M, Fong LG, Young SG. The lipoprotein lipase that is shuttled into capillaries by GPIHBP1 enters the glycocalyx where it mediates lipoprotein processing. Proc Natl Acad Sci U S A 2023; 120:e2313825120. [PMID: 37871217 PMCID: PMC10623010 DOI: 10.1073/pnas.2313825120] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Accepted: 09/19/2023] [Indexed: 10/25/2023] Open
Abstract
Lipoprotein lipase (LPL), the enzyme that carries out the lipolytic processing of triglyceride-rich lipoproteins (TRLs), is synthesized by adipocytes and myocytes and secreted into the interstitial spaces. The LPL is then bound by GPIHBP1, a GPI-anchored protein of endothelial cells (ECs), and transported across ECs to the capillary lumen. The assumption has been that the LPL that is moved into capillaries remains attached to GPIHBP1 and that GPIHBP1 serves as a platform for TRL processing. In the current studies, we examined the validity of that assumption. We found that an LPL-specific monoclonal antibody (mAb), 88B8, which lacks the ability to detect GPIHBP1-bound LPL, binds avidly to LPL within capillaries. We further demonstrated, by confocal microscopy, immunogold electron microscopy, and nanoscale secondary ion mass spectrometry analyses, that the LPL detected by mAb 88B8 is located within the EC glycocalyx, distant from the GPIHBP1 on the EC plasma membrane. The LPL within the glycocalyx mediates the margination of TRLs along capillaries and is active in TRL processing, resulting in the delivery of lipoprotein-derived lipids to immediately adjacent parenchymal cells. Thus, the LPL that GPIHBP1 transports into capillaries can detach and move into the EC glycocalyx, where it functions in the intravascular processing of TRLs.
Collapse
Affiliation(s)
- Wenxin Song
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA90095
| | - Anne P. Beigneux
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA90095
| | - Thomas A. Weston
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA90095
| | - Kai Chen
- Department of Chemistry, The University of Hong Kong, Hong Kong, China
- School of Molecular Sciences, The University of Western Australia, Perth6009, Australia
| | - Ye Yang
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA90095
| | - Le Phuong Nguyen
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA90095
| | - Paul Guagliardo
- Centre for Microscopy Characterisation and Analysis, The University of Western Australia, Perth6009, Australia
| | - Hyesoo Jung
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA90095
| | - Anh P. Tran
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA90095
| | - Yiping Tu
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA90095
| | - Caitlyn Tran
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA90095
| | - Gabriel Birrane
- Division of Experimental Medicine, Beth Israel Deaconess Medical Center, Boston, MA02215
| | - Kazuya Miyashita
- Department of Clinical Laboratory Medicine, Gunma University School of Medicine, Maebashi371-8511, Japan
| | - Katsuyuki Nakajima
- Department of Clinical Laboratory Medicine, Gunma University School of Medicine, Maebashi371-8511, Japan
| | - Masami Murakami
- Department of Clinical Laboratory Medicine, Gunma University School of Medicine, Maebashi371-8511, Japan
| | - Peter Tontonoz
- Department of Pathology and Laboratory Medicine, University of California, Los Angeles, CA90095
| | - Haibo Jiang
- Department of Chemistry, The University of Hong Kong, Hong Kong, China
| | - Michael Ploug
- Finsen Laboratory, Copenhagen University Hospital-Rigshospitalet, Copenhagen NDK–2200, Denmark
- Biotech Research and Innovation Centre, University of Copenhagen, Copenhagen NDK-2200, Denmark
| | - Loren G. Fong
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA90095
| | - Stephen G. Young
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA90095
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, CA90095
| |
Collapse
|
4
|
Young SG, Song W, Yang Y, Birrane G, Jiang H, Beigneux AP, Ploug M, Fong LG. A protein of capillary endothelial cells, GPIHBP1, is crucial for plasma triglyceride metabolism. Proc Natl Acad Sci U S A 2022; 119:e2211136119. [PMID: 36037340 PMCID: PMC9457329 DOI: 10.1073/pnas.2211136119] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 07/18/2022] [Indexed: 11/18/2022] Open
Abstract
GPIHBP1, a protein of capillary endothelial cells (ECs), is a crucial partner for lipoprotein lipase (LPL) in the lipolytic processing of triglyceride-rich lipoproteins. GPIHBP1, which contains a three-fingered cysteine-rich LU (Ly6/uPAR) domain and an intrinsically disordered acidic domain (AD), captures LPL from within the interstitial spaces (where it is secreted by parenchymal cells) and shuttles it across ECs to the capillary lumen. Without GPIHBP1, LPL remains stranded within the interstitial spaces, causing severe hypertriglyceridemia (chylomicronemia). Biophysical studies revealed that GPIHBP1 stabilizes LPL structure and preserves LPL activity. That discovery was the key to crystallizing the GPIHBP1-LPL complex. The crystal structure revealed that GPIHBP1's LU domain binds, largely by hydrophobic contacts, to LPL's C-terminal lipid-binding domain and that the AD is positioned to project across and interact, by electrostatic forces, with a large basic patch spanning LPL's lipid-binding and catalytic domains. We uncovered three functions for GPIHBP1's AD. First, it accelerates the kinetics of LPL binding. Second, it preserves LPL activity by inhibiting unfolding of LPL's catalytic domain. Third, by sheathing LPL's basic patch, the AD makes it possible for LPL to move across ECs to the capillary lumen. Without the AD, GPIHBP1-bound LPL is trapped by persistent interactions between LPL and negatively charged heparan sulfate proteoglycans (HSPGs) on the abluminal surface of ECs. The AD interrupts the HSPG interactions, freeing LPL-GPIHBP1 complexes to move across ECs to the capillary lumen. GPIHBP1 is medically important; GPIHBP1 mutations cause lifelong chylomicronemia, and GPIHBP1 autoantibodies cause some acquired cases of chylomicronemia.
Collapse
Affiliation(s)
- Stephen G. Young
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA 90095
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, CA 90095
| | - Wenxin Song
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA 90095
| | - Ye Yang
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA 90095
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, CA 90095
| | - Gabriel Birrane
- Division of Experimental Medicine, Beth Israel Deaconess Medical Center, Boston, MA 02215
| | - Haibo Jiang
- Department of Chemistry, The University of Hong Kong, Hong Kong, China
| | - Anne P. Beigneux
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA 90095
| | - Michael Ploug
- Finsen Laboratory, Rigshospitalet, Copenhagen 2200N, Denmark
- Biotech Research and Innovation Centre, University of Copenhagen, Copenhagen, Denmark
| | - Loren G. Fong
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA 90095
| |
Collapse
|
5
|
Deng M, Kutrolli E, Sadewasser A, Michel S, Joibari MM, Jaschinski F, Olivecrona G, Nilsson SK, Kersten S. ANGPTL4 silencing via antisense oligonucleotides reduces plasma triglycerides and glucose in mice without causing lymphadenopathy. J Lipid Res 2022; 63:100237. [PMID: 35667416 PMCID: PMC9270256 DOI: 10.1016/j.jlr.2022.100237] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 04/30/2022] [Accepted: 05/31/2022] [Indexed: 11/17/2022] Open
Abstract
Angiopoietin-like 4 (ANGPTL4) is an important regulator of plasma triglyceride (TG) levels and an attractive pharmacological target for lowering plasma lipids and reducing cardiovascular risk. Here, we aimed to study the efficacy and safety of silencing ANGPTL4 in the livers of mice using hepatocyte-targeting GalNAc-conjugated antisense oligonucleotides (ASOs). Compared with injections with negative control ASO, four injections of two different doses of ANGPTL4 ASO over 2 weeks markedly downregulated ANGPTL4 levels in liver and adipose tissue, which was associated with significantly higher adipose LPL activity and lower plasma TGs in fed and fasted mice, as well as lower plasma glucose levels in fed mice. In separate experiments, injection of two different doses of ANGPTL4 ASO over 20 weeks of high-fat feeding reduced hepatic and adipose ANGPTL4 levels but did not trigger mesenteric lymphadenopathy, an acute phase response, chylous ascites, or any other pathological phenotypes. Compared with mice injected with negative control ASO, mice injected with ANGPTL4 ASO showed reduced food intake, reduced weight gain, and improved glucose tolerance. In addition, they exhibited lower plasma TGs, total cholesterol, LDL-C, glucose, serum amyloid A, and liver TG levels. By contrast, no significant difference in plasma alanine aminotransferase activity was observed. Overall, these data suggest that ASOs targeting ANGPTL4 effectively reduce plasma TG levels in mice without raising major safety concerns.
Collapse
Affiliation(s)
- Mingjuan Deng
- Nutrition, Metabolism and Genomics Group, Division of Human Nutrition and Health, Wageningen University, the Netherlands
| | - Elda Kutrolli
- Lipigon Pharmaceuticals AB, Tvistevägen 48C, 907 36, Umeå, Sweden
| | - Anne Sadewasser
- Secarna Pharmaceuticals GmbH & Co. KG, Am Klopferspitz 19, 82152 Planegg, Germany
| | - Sven Michel
- Secarna Pharmaceuticals GmbH & Co. KG, Am Klopferspitz 19, 82152 Planegg, Germany
| | | | - Frank Jaschinski
- Secarna Pharmaceuticals GmbH & Co. KG, Am Klopferspitz 19, 82152 Planegg, Germany
| | - Gunilla Olivecrona
- Lipigon Pharmaceuticals AB, Tvistevägen 48C, 907 36, Umeå, Sweden; Department of Medical Biosciences, Umeå University, SE-901 87, Umeå, Sweden
| | - Stefan K Nilsson
- Lipigon Pharmaceuticals AB, Tvistevägen 48C, 907 36, Umeå, Sweden
| | - Sander Kersten
- Nutrition, Metabolism and Genomics Group, Division of Human Nutrition and Health, Wageningen University, the Netherlands.
| |
Collapse
|
6
|
Song W, Beigneux AP, Winther AML, Kristensen KK, Grønnemose AL, Yang Y, Tu Y, Munguia P, Morales J, Jung H, de Jong PJ, Jung CJ, Miyashita K, Kimura T, Nakajima K, Murakami M, Birrane G, Jiang H, Tontonoz P, Ploug M, Fong LG, Young SG. Electrostatic sheathing of lipoprotein lipase is essential for its movement across capillary endothelial cells. J Clin Invest 2022; 132:157500. [PMID: 35229724 PMCID: PMC8884915 DOI: 10.1172/jci157500] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 01/19/2022] [Indexed: 12/18/2022] Open
Abstract
GPIHBP1, an endothelial cell (EC) protein, captures lipoprotein lipase (LPL) within the interstitial spaces (where it is secreted by myocytes and adipocytes) and transports it across ECs to its site of action in the capillary lumen. GPIHBP1’s 3-fingered LU domain is required for LPL binding, but the function of its acidic domain (AD) has remained unclear. We created mutant mice lacking the AD and found severe hypertriglyceridemia. As expected, the mutant GPIHBP1 retained the capacity to bind LPL. Unexpectedly, however, most of the GPIHBP1 and LPL in the mutant mice was located on the abluminal surface of ECs (explaining the hypertriglyceridemia). The GPIHBP1-bound LPL was trapped on the abluminal surface of ECs by electrostatic interactions between the large basic patch on the surface of LPL and negatively charged heparan sulfate proteoglycans (HSPGs) on the surface of ECs. GPIHBP1 trafficking across ECs in the mutant mice was normalized by disrupting LPL-HSPG electrostatic interactions with either heparin or an AD peptide. Thus, GPIHBP1’s AD plays a crucial function in plasma triglyceride metabolism; it sheathes LPL’s basic patch on the abluminal surface of ECs, thereby preventing LPL-HSPG interactions and freeing GPIHBP1-LPL complexes to move across ECs to the capillary lumen.
Collapse
Affiliation(s)
- Wenxin Song
- Department of Medicine, David Geffen School of Medicine, UCLA, Los Angeles, California, USA
| | - Anne P Beigneux
- Department of Medicine, David Geffen School of Medicine, UCLA, Los Angeles, California, USA
| | - Anne-Marie L Winther
- Finsen Laboratory, Rigshospitalet, Copenhagen, Denmark.,Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Copenhagen, Denmark
| | - Kristian K Kristensen
- Finsen Laboratory, Rigshospitalet, Copenhagen, Denmark.,Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Copenhagen, Denmark
| | - Anne L Grønnemose
- Finsen Laboratory, Rigshospitalet, Copenhagen, Denmark.,Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Copenhagen, Denmark
| | - Ye Yang
- Department of Medicine, David Geffen School of Medicine, UCLA, Los Angeles, California, USA
| | - Yiping Tu
- Department of Medicine, David Geffen School of Medicine, UCLA, Los Angeles, California, USA
| | - Priscilla Munguia
- Department of Medicine, David Geffen School of Medicine, UCLA, Los Angeles, California, USA
| | - Jazmin Morales
- Department of Medicine, David Geffen School of Medicine, UCLA, Los Angeles, California, USA
| | - Hyesoo Jung
- Department of Medicine, David Geffen School of Medicine, UCLA, Los Angeles, California, USA
| | - Pieter J de Jong
- Children's Hospital Oakland Research Institute, Oakland, California, USA
| | - Cris J Jung
- Children's Hospital Oakland Research Institute, Oakland, California, USA
| | - Kazuya Miyashita
- Department of Clinical Laboratory Medicine, Gunma University, Graduate School of Medicine, Maebashi, Gunma, Japan.,Immuno-Biological Laboratories (IBL), Fujioka, Gunma, Japan
| | - Takao Kimura
- Department of Clinical Laboratory Medicine, Gunma University, Graduate School of Medicine, Maebashi, Gunma, Japan
| | - Katsuyuki Nakajima
- Department of Clinical Laboratory Medicine, Gunma University, Graduate School of Medicine, Maebashi, Gunma, Japan
| | - Masami Murakami
- Department of Clinical Laboratory Medicine, Gunma University, Graduate School of Medicine, Maebashi, Gunma, Japan
| | - Gabriel Birrane
- Division of Experimental Medicine, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
| | - Haibo Jiang
- Department of Chemistry, The University of Hong Kong, Hong Kong
| | - Peter Tontonoz
- Department of Pathology and Laboratory Medicine, UCLA, Los Angeles, California, USA
| | - Michael Ploug
- Finsen Laboratory, Rigshospitalet, Copenhagen, Denmark.,Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Copenhagen, Denmark
| | - Loren G Fong
- Department of Medicine, David Geffen School of Medicine, UCLA, Los Angeles, California, USA
| | - Stephen G Young
- Department of Medicine, David Geffen School of Medicine, UCLA, Los Angeles, California, USA.,Department of Human Genetics, David Geffen School of Medicine, UCLA, Los Angeles, California, USA
| |
Collapse
|
7
|
Luz JG, Beigneux AP, Asamoto DK, He C, Song W, Allan CM, Morales J, Tu Y, Kwok A, Cottle T, Meiyappan M, Fong LG, Kim JE, Ploug M, Young SG, Birrane G. The structural basis for monoclonal antibody 5D2 binding to the tryptophan-rich loop of lipoprotein lipase. J Lipid Res 2020; 61:1347-1359. [PMID: 32690595 PMCID: PMC7529051 DOI: 10.1194/jlr.ra120000993] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
For three decades, the LPL-specific monoclonal antibody 5D2 has been used to investigate LPL structure/function and intravascular lipolysis. 5D2 has been used to measure LPL levels, block the triglyceride hydrolase activity of LPL, and prevent the propensity of concentrated LPL preparations to form homodimers. Two early studies on the location of the 5D2 epitope reached conflicting conclusions, but the more convincing report suggested that 5D2 binds to a tryptophan (Trp)-rich loop in the carboxyl terminus of LPL. The same loop had been implicated in lipoprotein binding. Using surface plasmon resonance, we showed that 5D2 binds with high affinity to a synthetic LPL peptide containing the Trp-rich loop of human (but not mouse) LPL. We also showed, by both fluorescence and UV resonance Raman spectroscopy, that the Trp-rich loop binds lipids. Finally, we used X-ray crystallography to solve the structure of the Trp-rich peptide bound to a 5D2 Fab fragment. The Trp-rich peptide contains a short α-helix, with two Trps projecting into the antigen recognition site. A proline substitution in the α-helix, found in mouse LPL, is expected to interfere with several hydrogen bonds, explaining why 5D2 cannot bind to mouse LPL.
Collapse
Affiliation(s)
- John G Luz
- Division of Experimental Medicine, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Anne P Beigneux
- Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - DeeAnn K Asamoto
- Department of Chemistry and Biochemistry, University of California San Diego, San Diego, CA, USA
| | - Cuiwen He
- Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Wenxin Song
- Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Christopher M Allan
- Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Jazmin Morales
- Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Yiping Tu
- Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Adam Kwok
- Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Thomas Cottle
- Division of Experimental Medicine, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Muthuraman Meiyappan
- Analytical Development, Pharmaceutical Sciences, Takeda Pharmaceutical Company, Lexington, MA, USA
| | - Loren G Fong
- Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Judy E Kim
- Department of Chemistry and Biochemistry, University of California San Diego, San Diego, CA, USA
| | - Michael Ploug
- Finsen Laboratory, Rigshospitalet, Copenhagen, Denmark
- Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Copenhagen, Denmark
| | - Stephen G Young
- Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
- Department of Human Genetics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Gabriel Birrane
- Division of Experimental Medicine, Beth Israel Deaconess Medical Center, Boston, MA, USA
| |
Collapse
|
8
|
Young SG, Fong LG, Beigneux AP, Allan CM, He C, Jiang H, Nakajima K, Meiyappan M, Birrane G, Ploug M. GPIHBP1 and Lipoprotein Lipase, Partners in Plasma Triglyceride Metabolism. Cell Metab 2019; 30:51-65. [PMID: 31269429 PMCID: PMC6662658 DOI: 10.1016/j.cmet.2019.05.023] [Citation(s) in RCA: 98] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Lipoprotein lipase (LPL), identified in the 1950s, has been studied intensively by biochemists, physiologists, and clinical investigators. These efforts uncovered a central role for LPL in plasma triglyceride metabolism and identified LPL mutations as a cause of hypertriglyceridemia. By the 1990s, with an outline for plasma triglyceride metabolism established, interest in triglyceride metabolism waned. In recent years, however, interest in plasma triglyceride metabolism has awakened, in part because of the discovery of new molecules governing triglyceride metabolism. One such protein-and the focus of this review-is GPIHBP1, a protein of capillary endothelial cells. GPIHBP1 is LPL's essential partner: it binds LPL and transports it to the capillary lumen; it is essential for lipoprotein margination along capillaries, allowing lipolysis to proceed; and it preserves LPL's structure and activity. Recently, GPIHBP1 was the key to solving the structure of LPL. These developments have transformed the models for intravascular triglyceride metabolism.
Collapse
Affiliation(s)
- Stephen G Young
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA; Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA.
| | - Loren G Fong
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA.
| | - Anne P Beigneux
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Christopher M Allan
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Cuiwen He
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Haibo Jiang
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA; School of Molecular Sciences, University of Western Australia, Crawley 6009, Australia
| | - Katsuyuki Nakajima
- Department of Clinical Laboratory Medicine, Gunma University Graduate School of Department of Medicine, Maebashi, Gunma 371-0805, Japan
| | - Muthuraman Meiyappan
- Discovery Therapeutics, Takeda Pharmaceutical Company Ltd., Cambridge, MA 02142, USA
| | - Gabriel Birrane
- Division of Experimental Medicine, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA
| | - Michael Ploug
- Finsen Laboratory, Rigshospitalet, Copenhagen DK-2200, Denmark; Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Copenhagen DK-2200, Denmark.
| |
Collapse
|
9
|
Hu X, Matsumoto K, Jung RS, Weston TA, Heizer PJ, He C, Sandoval NP, Allan CM, Tu Y, Vinters HV, Liau LM, Ellison RM, Morales JE, Baufeld LJ, Bayley NA, He L, Betsholtz C, Beigneux AP, Nathanson DA, Gerhardt H, Young SG, Fong LG, Jiang H. GPIHBP1 expression in gliomas promotes utilization of lipoprotein-derived nutrients. eLife 2019; 8:e47178. [PMID: 31169500 PMCID: PMC6594755 DOI: 10.7554/elife.47178] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Accepted: 06/05/2019] [Indexed: 12/25/2022] Open
Abstract
GPIHBP1, a GPI-anchored protein of capillary endothelial cells, binds lipoprotein lipase (LPL) within the subendothelial spaces and shuttles it to the capillary lumen. GPIHBP1-bound LPL is essential for the margination of triglyceride-rich lipoproteins (TRLs) along capillaries, allowing the lipolytic processing of TRLs to proceed. In peripheral tissues, the intravascular processing of TRLs by the GPIHBP1-LPL complex is crucial for the generation of lipid nutrients for adjacent parenchymal cells. GPIHBP1 is absent from the capillaries of the brain, which uses glucose for fuel; however, GPIHBP1 is expressed in the capillaries of mouse and human gliomas. Importantly, the GPIHBP1 in glioma capillaries captures locally produced LPL. We use NanoSIMS imaging to show that TRLs marginate along glioma capillaries and that there is uptake of TRL-derived lipid nutrients by surrounding glioma cells. Thus, GPIHBP1 expression in gliomas facilitates TRL processing and provides a source of lipid nutrients for glioma cells.
Collapse
Affiliation(s)
- Xuchen Hu
- Department of Medicine, David Geffen School of MedicineUniversity of California, Los AngelesLos AngelesUnited States
| | - Ken Matsumoto
- VIB-KU Leuven Center for Cancer Biology (CCB)LeuvenBelgium
| | - Rachel S Jung
- Department of Medicine, David Geffen School of MedicineUniversity of California, Los AngelesLos AngelesUnited States
| | - Thomas A Weston
- Department of Medicine, David Geffen School of MedicineUniversity of California, Los AngelesLos AngelesUnited States
| | - Patrick J Heizer
- Department of Medicine, David Geffen School of MedicineUniversity of California, Los AngelesLos AngelesUnited States
| | - Cuiwen He
- Department of Medicine, David Geffen School of MedicineUniversity of California, Los AngelesLos AngelesUnited States
| | - Norma P Sandoval
- Department of Medicine, David Geffen School of MedicineUniversity of California, Los AngelesLos AngelesUnited States
| | - Christopher M Allan
- Department of Medicine, David Geffen School of MedicineUniversity of California, Los AngelesLos AngelesUnited States
| | - Yiping Tu
- Department of Medicine, David Geffen School of MedicineUniversity of California, Los AngelesLos AngelesUnited States
| | - Harry V Vinters
- Department of Pathology and Laboratory Medicine, David Geffen School of MedicineUniversity of California, Los AngelesLos AngelesUnited States
| | - Linda M Liau
- Department of Neurosurgery, David Geffen School of MedicineUniversity of California, Los AngelesLos AngelesUnited States
- Jonsson Comprehensive Cancer Center (JCCC), David Geffen School of MedicineUniversity of California, Los AngelesLos AngelesUnited States
| | - Rochelle M Ellison
- Department of Medicine, David Geffen School of MedicineUniversity of California, Los AngelesLos AngelesUnited States
| | - Jazmin E Morales
- Department of Medicine, David Geffen School of MedicineUniversity of California, Los AngelesLos AngelesUnited States
| | - Lynn J Baufeld
- Department of Molecular and Medical Pharmacology, David Geffen School of MedicineUniversity of California, Los AngelesLos AngelesUnited States
- Ahmanson Translational Imaging Division, David Geffen School of MedicineUniversity of California, Los AngelesLos AngelesUnited States
| | - Nicholas A Bayley
- Department of Molecular and Medical Pharmacology, David Geffen School of MedicineUniversity of California, Los AngelesLos AngelesUnited States
- Ahmanson Translational Imaging Division, David Geffen School of MedicineUniversity of California, Los AngelesLos AngelesUnited States
| | - Liqun He
- Department of Immunology, Genetics and Pathology, Rudbeck LaboratoryUppsala UniversityUppsalaSweden
| | - Christer Betsholtz
- Department of Immunology, Genetics and Pathology, Rudbeck LaboratoryUppsala UniversityUppsalaSweden
- Integrated Cardio Metabolic Centre (ICMC)Karolinska InstitutetHuddingeSweden
| | - Anne P Beigneux
- Department of Medicine, David Geffen School of MedicineUniversity of California, Los AngelesLos AngelesUnited States
| | - David A Nathanson
- Department of Molecular and Medical Pharmacology, David Geffen School of MedicineUniversity of California, Los AngelesLos AngelesUnited States
- Ahmanson Translational Imaging Division, David Geffen School of MedicineUniversity of California, Los AngelesLos AngelesUnited States
| | - Holger Gerhardt
- VIB-KU Leuven Center for Cancer Biology (CCB)LeuvenBelgium
- Max Delbrück Center for Molecular MedicineBerlinGermany
| | - Stephen G Young
- Department of Medicine, David Geffen School of MedicineUniversity of California, Los AngelesLos AngelesUnited States
- Department of Human Genetics, David Geffen School of MedicineUniversity of California, Los AngelesLos AngelesUnited States
| | - Loren G Fong
- Department of Medicine, David Geffen School of MedicineUniversity of California, Los AngelesLos AngelesUnited States
| | - Haibo Jiang
- Department of Medicine, David Geffen School of MedicineUniversity of California, Los AngelesLos AngelesUnited States
- School of Molecular SciencesUniversity of Western AustraliaPerthAustralia
| |
Collapse
|
10
|
Dijk W, Ruppert PMM, Oost LJ, Kersten S. Angiopoietin-like 4 promotes the intracellular cleavage of lipoprotein lipase by PCSK3/furin in adipocytes. J Biol Chem 2018; 293:14134-14145. [PMID: 30021841 DOI: 10.1074/jbc.ra118.002426] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Revised: 07/02/2018] [Indexed: 01/09/2023] Open
Abstract
Lipoprotein lipase (LPL) catalyzes the breakdown of circulating triglycerides in muscle and fat. LPL is inhibited by several proteins, including angiopoietin-like 4 (ANGPTL4), and may be cleaved by members of the proprotein convertase subtilisin/kexin (PCSK) family. Here, we aimed to investigate the cleavage of LPL in adipocytes by PCSKs and study the potential involvement of ANGPTL4. A substantial portion of LPL in mouse and human adipose tissue was cleaved into N- and C-terminal fragments. Treatment of different adipocytes with the PCSK inhibitor decanoyl-RVKR-chloromethyl ketone markedly decreased LPL cleavage, indicating that LPL is cleaved by PCSKs. Silencing of Pcsk3/furin significantly decreased LPL cleavage in cell culture medium and lysates of 3T3-L1 adipocytes. Remarkably, PCSK-mediated cleavage of LPL in adipocytes was diminished by Angptl4 silencing and was decreased in adipocytes and adipose tissue of Angptl4-/- mice. Differences in LPL cleavage between Angptl4-/- and WT mice were abrogated by treatment with decanoyl-RVKR-chloromethyl ketone. Induction of ANGPTL4 in adipose tissue during fasting enhanced PCSK-mediated LPL cleavage, concurrent with decreased LPL activity, in WT but not Angptl4-/- mice. In adipocytes, after removal of cell surface LPL by heparin, levels of N-terminal LPL were still markedly higher in WT compared with Angptl4-/- adipocytes, suggesting that stimulation of PCSK-mediated LPL cleavage by ANGPTL4 occurs intracellularly. Finally, treating adipocytes with insulin increased full-length LPL and decreased N-terminal LPL in an ANGPTL4-dependent manner. In conclusion, ANGPTL4 promotes PCSK-mediated intracellular cleavage of LPL in adipocytes, likely contributing to regulation of LPL in adipose tissue. Our data provide further support for an intracellular action of ANGPTL4 in adipocytes.
Collapse
Affiliation(s)
- Wieneke Dijk
- From the Nutrition, Metabolism, and Genomics Group, Division of Human Nutrition and Health, Wageningen University, 6708 WE Wageningen, The Netherlands
| | - Philip M M Ruppert
- From the Nutrition, Metabolism, and Genomics Group, Division of Human Nutrition and Health, Wageningen University, 6708 WE Wageningen, The Netherlands
| | - Lynette J Oost
- From the Nutrition, Metabolism, and Genomics Group, Division of Human Nutrition and Health, Wageningen University, 6708 WE Wageningen, The Netherlands
| | - Sander Kersten
- From the Nutrition, Metabolism, and Genomics Group, Division of Human Nutrition and Health, Wageningen University, 6708 WE Wageningen, The Netherlands
| |
Collapse
|
11
|
Dijk W, Schutte S, Aarts EO, Janssen IMC, Afman L, Kersten S. Regulation of angiopoietin-like 4 and lipoprotein lipase in human adipose tissue. J Clin Lipidol 2018; 12:773-783. [PMID: 29555209 DOI: 10.1016/j.jacl.2018.02.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Revised: 01/22/2018] [Accepted: 02/13/2018] [Indexed: 01/21/2023]
Abstract
BACKGROUND Elevated plasma triglycerides are increasingly viewed as a causal risk factor for coronary artery disease. One protein that raises plasma triglyceride levels and that has emerged as a modulator of coronary artery disease risk is angiopoietin-like 4 (ANGPTL4). ANGPTL4 raises plasma triglyceride levels by inhibiting lipoprotein lipase (LPL), the enzyme that catalyzes the hydrolysis of circulating triglycerides on the capillary endothelium. OBJECTIVE The objective of the present study was to assess the association between ANGPTL4 and LPL in human adipose tissue, and to examine the influence of nutritional status on ANGPTL4 expression. METHODS We determined ANGPTL4 and LPL mRNA and protein levels in different adipose tissue depots in a large number of severely obese patients who underwent bariatric surgery. Furthermore, in 72 abdominally obese subjects, we measured ANGPTL4 and LPL mRNA levels in subcutaneous adipose tissue in the fasted and postprandial state. RESULTS ANGPTL4 mRNA levels were highest in subcutaneous adipose tissue, whereas LPL mRNA levels were highest in mesenteric adipose tissue. ANGPTL4 and LPL mRNA levels were strongly positively correlated in the omental and subcutaneous adipose tissue depots. In contrast, ANGPTL4 and LPL protein levels were negatively correlated in subcutaneous adipose tissue, suggesting a suppressive effect of ANGPTL4 on LPL protein abundance in subcutaneous adipose tissue. ANGPTL4 mRNA levels were 38% higher in the fasted compared to the postprandial state. CONCLUSION Our data provide valuable insights into the relationship between ANGPTL4 and LPL in human adipose tissue, as well as the physiological function and regulation of ANGPTL4 in humans.
Collapse
Affiliation(s)
- Wieneke Dijk
- Nutrition, Metabolism and Genomics group, Division of Human Nutrition and Health, Wageningen University, Wageningen, The Netherlands
| | - Sophie Schutte
- Nutrition, Metabolism and Genomics group, Division of Human Nutrition and Health, Wageningen University, Wageningen, The Netherlands
| | - Edo O Aarts
- Rijnstate Hospital and Vitalys Clinics, Arnhem, The Netherlands
| | | | - Lydia Afman
- Nutrition, Metabolism and Genomics group, Division of Human Nutrition and Health, Wageningen University, Wageningen, The Netherlands
| | - Sander Kersten
- Nutrition, Metabolism and Genomics group, Division of Human Nutrition and Health, Wageningen University, Wageningen, The Netherlands.
| |
Collapse
|