1
|
Gan Q, Cui X, Zhang L, Zhou W, Lu Y. Control Phytophagous Nematodes By Engineering Phytosterol Dealkylation Caenorhabditis elegans as a Model. Mol Biotechnol 2024; 66:2769-2777. [PMID: 37843756 DOI: 10.1007/s12033-023-00869-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 08/25/2023] [Indexed: 10/17/2023]
Abstract
Plant-parasitic nematodes ingest and convert host phytosterols via dealkylation to cholesterol for both structural and hormonal requirements. The insect 24-dehydrocholesterol reductase (DHCR24) was shown in vitro as a committed enzyme in the dealkylation via chemical blocking. However, an increased brood size and ovulation rate, instead compromised development, were observed in the engineered nematode Caenorhabditis elegans where the DHCR24 gene was knocked down, indicating the relationship between DHCR24 and dealkylation and their function in nematodes remains illusive. In this study, a defect in C. elegans DHCR24 causes impaired growth of the nematode with sitosterol (a major component of phytosterols) as a sole sterol source. Plant sterols with rationally designed structure (null substrates for dealkylation) can't be converted to cholesterol in wild-type worms, and their development was completely halted. This study underpins the essential function of DHCR24 in nematodes and would be beneficial for the development of novel nematocidal strategies.
Collapse
Affiliation(s)
- Qinhua Gan
- State Key Laboratory of Marine Resource Utilization in South China Sea, School of Marine Biology and Fisheries, Hainan University, Hainan Province, 570228, Hainan, China
- School of Tropical Agriculture and Forestry, Hainan University, Haikou Province, 570228, Hainan, China
| | - Xinyu Cui
- State Key Laboratory of Marine Resource Utilization in South China Sea, School of Marine Biology and Fisheries, Hainan University, Hainan Province, 570228, Hainan, China
| | - Lin Zhang
- Shandong Rongchen Pharmaceuticals Inc, Qingdao, 266061, China
| | - Wenxu Zhou
- State Key Laboratory of Marine Resource Utilization in South China Sea, School of Marine Biology and Fisheries, Hainan University, Hainan Province, 570228, Hainan, China.
| | - Yandu Lu
- State Key Laboratory of Marine Resource Utilization in South China Sea, School of Marine Biology and Fisheries, Hainan University, Hainan Province, 570228, Hainan, China.
- Key Laboratory of Tropical Hydrobiotechnology of Hainan Province, Hainan University, Haikou, 570228, China.
- Haikou Innovation Center for Research and Utilization of Algal Bioresources, Hainan University, Haikou, 570228, China.
- Hainan Engineering and Research Center of Marine Bioactives & Bioproducts, Hainan University, Haikou, 570228, China.
| |
Collapse
|
2
|
Hargrove T, Lamb DC, Wawrzak Z, Hull M, Kelly SL, Guengerich FP, Lepesheva GI. Identification of Potent and Selective Inhibitors of Acanthamoeba: Structural Insights into Sterol 14α-Demethylase as a Key Drug Target. J Med Chem 2024; 67:7443-7457. [PMID: 38683753 PMCID: PMC11089504 DOI: 10.1021/acs.jmedchem.4c00303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 03/27/2024] [Accepted: 04/22/2024] [Indexed: 05/02/2024]
Abstract
Acanthamoeba are free-living pathogenic protozoa that cause blinding keratitis, disseminated infection, and granulomatous amebic encephalitis, which is generally fatal. The development of efficient and safe drugs is a critical unmet need. Acanthamoeba sterol 14α-demethylase (CYP51) is an essential enzyme of the sterol biosynthetic pathway. Repurposing antifungal azoles for amoebic infections has been reported, but their inhibitory effects on Acanthamoeba CYP51 enzymatic activity have not been studied. Here, we report catalytic properties, inhibition, and structural characterization of CYP51 from Acanthamoeba castellanii. The enzyme displays a 100-fold substrate preference for obtusifoliol over lanosterol, supporting the plant-like cycloartenol-based pathway in the pathogen. The strongest inhibition was observed with voriconazole (1 h IC50 0.45 μM), VT1598 (0.25 μM), and VT1161 (0.20 μM). The crystal structures of A. castellanii CYP51 with bound VT1161 (2.24 Å) and without an inhibitor (1.95 Å), presented here, can be used in the development of azole-based scaffolds to achieve optimal amoebicidal effectiveness.
Collapse
Affiliation(s)
- Tatiana
Y. Hargrove
- Department
of Biochemistry, Vanderbilt University School
of Medicine, Nashville, Tennessee 37232, United States
| | - David C. Lamb
- Faculty
of Medicine, Health and Life Science, Swansea
University, Swansea SA2 8PP, U.K.
| | - Zdzislaw Wawrzak
- Synchrotron
Research Center, Life Science Collaborative Access Team, Northwestern University, Argonne, Illinois 60439, United States
| | - Marcus Hull
- Faculty
of Medicine, Health and Life Science, Swansea
University, Swansea SA2 8PP, U.K.
| | - Steven L. Kelly
- Faculty
of Medicine, Health and Life Science, Swansea
University, Swansea SA2 8PP, U.K.
| | - F. Peter Guengerich
- Department
of Biochemistry, Vanderbilt University School
of Medicine, Nashville, Tennessee 37232, United States
| | - Galina I. Lepesheva
- Department
of Biochemistry, Vanderbilt University School
of Medicine, Nashville, Tennessee 37232, United States
- Vanderbilt
Institute of Chemical Biology, Nashville, Tennessee 37232, United States
- Center
for Structural Biology, Vanderbilt University, Nashville, Tennessee 37232, United States
| |
Collapse
|
3
|
Aberle B, Kowalczyk D, Massini S, Egler-Kemmerer AN, Gergel S, Hammer SC, Hauer B. Methylation of Unactivated Alkenes with Engineered Methyltransferases To Generate Non-natural Terpenoids. Angew Chem Int Ed Engl 2023; 62:e202301601. [PMID: 36997338 DOI: 10.1002/anie.202301601] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 03/30/2023] [Accepted: 03/30/2023] [Indexed: 04/01/2023]
Abstract
Terpenoids are built from isoprene building blocks and have numerous biological functions. Selective late-stage modification of their carbon scaffold has the potential to optimize or transform their biological activities. However, the synthesis of terpenoids with a non-natural carbon scaffold is often a challenging endeavor because of the complexity of these molecules. Herein we report the identification and engineering of (S)-adenosyl-l-methionine-dependent sterol methyltransferases for selective C-methylation of linear terpenoids. The engineered enzyme catalyzes selective methylation of unactivated alkenes in mono-, sesqui- and diterpenoids to produce C11 , C16 and C21 derivatives. Preparative conversion and product isolation reveals that this biocatalyst performs C-C bond formation with high chemo- and regioselectivity. The alkene methylation most likely proceeds via a carbocation intermediate and regioselective deprotonation. This method opens new avenues for modifying the carbon scaffold of alkenes in general and terpenoids in particular.
Collapse
Affiliation(s)
- Benjamin Aberle
- Department of Technical Biochemistry, Institute of Biochemistry and Technical Biochemistry, University of Stuttgart, Allmandring 31, 70569, Stuttgart, Germany
| | - Daniel Kowalczyk
- Department of Technical Biochemistry, Institute of Biochemistry and Technical Biochemistry, University of Stuttgart, Allmandring 31, 70569, Stuttgart, Germany
| | - Simon Massini
- Department of Technical Biochemistry, Institute of Biochemistry and Technical Biochemistry, University of Stuttgart, Allmandring 31, 70569, Stuttgart, Germany
| | - Alexander-N Egler-Kemmerer
- Department of Technical Biochemistry, Institute of Biochemistry and Technical Biochemistry, University of Stuttgart, Allmandring 31, 70569, Stuttgart, Germany
| | - Sebastian Gergel
- Department of Technical Biochemistry, Institute of Biochemistry and Technical Biochemistry, University of Stuttgart, Allmandring 31, 70569, Stuttgart, Germany
- Faculty of Chemistry, Organic Chemistry and Biocatalysis, Bielefeld University, Universitätsstraße 25, 33615, Bielefeld, Germany
| | - Stephan C Hammer
- Department of Technical Biochemistry, Institute of Biochemistry and Technical Biochemistry, University of Stuttgart, Allmandring 31, 70569, Stuttgart, Germany
- Faculty of Chemistry, Organic Chemistry and Biocatalysis, Bielefeld University, Universitätsstraße 25, 33615, Bielefeld, Germany
| | - Bernhard Hauer
- Department of Technical Biochemistry, Institute of Biochemistry and Technical Biochemistry, University of Stuttgart, Allmandring 31, 70569, Stuttgart, Germany
| |
Collapse
|
4
|
Sakyi PO, Kwofie SK, Tuekpe JK, Gwira TM, Broni E, Miller WA, Wilson MD, Amewu RK. Inhibiting Leishmania donovani Sterol Methyltransferase to Identify Lead Compounds Using Molecular Modelling. Pharmaceuticals (Basel) 2023; 16:ph16030330. [PMID: 36986430 PMCID: PMC10054574 DOI: 10.3390/ph16030330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 02/03/2023] [Accepted: 02/07/2023] [Indexed: 02/25/2023] Open
Abstract
The recent outlook of leishmaniasis as a global public health concern coupled with the reportage of resistance and lack of efficacy of most antileishmanial drugs calls for a concerted effort to find new leads. The study combined In silico and in vitro approaches to identify novel potential synthetic small-molecule inhibitors targeting the Leishmania donovani sterol methyltransferase (LdSMT). The LdSMT enzyme in the ergosterol biosynthetic pathway is required for the parasite’s membrane fluidity, distribution of membrane proteins, and control of the cell cycle. The lack of LdSMT homologue in the human host and its conserved nature among all Leishmania parasites makes it a viable target for future antileishmanial drugs. Initially, six known inhibitors of LdSMT with IC50 < 10 μM were used to generate a pharmacophore model with a score of 0.9144 using LigandScout. The validated model was used to screen a synthetic library of 95,630 compounds obtained from InterBioScreen limited. Twenty compounds with pharmacophore fit scores above 50 were docked against the modelled three-dimensional structure of LdSMT using AutoDock Vina. Consequently, nine compounds with binding energies ranging from −7.5 to −8.7 kcal/mol were identified as potential hit molecules. Three compounds comprising STOCK6S-06707, STOCK6S-84928, and STOCK6S-65920 with respective binding energies of −8.7, −8.2, and −8.0 kcal/mol, lower than 22,26-azasterol (−7.6 kcal/mol), a known LdSMT inhibitor, were selected as plausible lead molecules. Molecular dynamics simulation studies and molecular mechanics Poisson–Boltzmann surface area calculations showed that the residues Asp25 and Trp208 were critical for ligand binding. The compounds were also predicted to have antileishmanial activity with reasonable pharmacological and toxicity profiles. When the antileishmanial activity of the three hits was evaluated in vitro against the promastigotes of L. donovani, mean half-maximal inhibitory concentrations (IC50) of 21.9 ± 1.5 μM (STOCK6S-06707), 23.5 ± 1.1 μM (STOCK6S-84928), and 118.3 ± 5.8 μM (STOCK6S-65920) were obtained. Furthermore, STOCK6S-84928 and STOCK6S-65920 inhibited the growth of Trypanosoma brucei, with IC50 of 14.3 ± 2.0 μM and 18.1 ± 1.4 μM, respectively. The identified compounds could be optimised to develop potent antileishmanial therapeutic agents.
Collapse
Affiliation(s)
- Patrick O. Sakyi
- Department of Chemistry, School of Physical and Mathematical Sciences, College of Basic and Applied Sciences, University of Ghana, Legon, Accra P.O. Box LG 56, Ghana
- Department of Chemical Sciences, School of Sciences, University of Energy and Natural Resources, Sunyani P.O. Box 214, Ghana
| | - Samuel K. Kwofie
- Department of Biomedical Engineering, School of Engineering Sciences, College of Basic & Applied Sciences, University of Ghana, Legon, Accra P.O. Box LG 77, Ghana
- Department of Biochemistry, Cell, and Molecular Biology, West African Centre for Cell Biology of Infectious Pathogens, College of Basic and Applied Sciences, University of Ghana, Accra P.O. Box LG 54, Ghana
- Correspondence: (S.K.K.); (R.K.A.); Tel.: +233-203797922 (S.K.K.); +233-543823483 (R.K.A.)
| | - Julius K. Tuekpe
- Department of Biochemistry, Cell, and Molecular Biology, West African Centre for Cell Biology of Infectious Pathogens, College of Basic and Applied Sciences, University of Ghana, Accra P.O. Box LG 54, Ghana
| | - Theresa M. Gwira
- Department of Biochemistry, Cell, and Molecular Biology, West African Centre for Cell Biology of Infectious Pathogens, College of Basic and Applied Sciences, University of Ghana, Accra P.O. Box LG 54, Ghana
| | - Emmanuel Broni
- Department of Biomedical Engineering, School of Engineering Sciences, College of Basic & Applied Sciences, University of Ghana, Legon, Accra P.O. Box LG 77, Ghana
- Department of Parasitology, Noguchi Memorial Institute for Medical Research (NMIMR), College of Health Sciences (CHS), University of Ghana, Legon, Accra P.O. Box LG 581, Ghana
- Department of Medicine, Loyola University Medical Center, Maywood, IL 60153, USA
| | - Whelton A. Miller
- Department of Medicine, Loyola University Medical Center, Maywood, IL 60153, USA
- Department of Molecular Pharmacology and Neuroscience, Loyola University Medical Center, Maywood, IL 60153, USA
- Department of Chemical and Biomolecular Engineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Michael D. Wilson
- Department of Parasitology, Noguchi Memorial Institute for Medical Research (NMIMR), College of Health Sciences (CHS), University of Ghana, Legon, Accra P.O. Box LG 581, Ghana
- Department of Medicine, Loyola University Medical Center, Maywood, IL 60153, USA
| | - Richard K. Amewu
- Department of Chemistry, School of Physical and Mathematical Sciences, College of Basic and Applied Sciences, University of Ghana, Legon, Accra P.O. Box LG 56, Ghana
- Correspondence: (S.K.K.); (R.K.A.); Tel.: +233-203797922 (S.K.K.); +233-543823483 (R.K.A.)
| |
Collapse
|
5
|
Steroidal Antimetabolites Protect Mice against Trypanosoma brucei. Molecules 2022; 27:molecules27134088. [PMID: 35807334 PMCID: PMC9268410 DOI: 10.3390/molecules27134088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 06/14/2022] [Accepted: 06/21/2022] [Indexed: 11/18/2022] Open
Abstract
Trypanosoma brucei, the causative agent for human African trypanosomiasis, is an emerging ergosterol-dependent parasite that produces chokepoint enzymes, sterol methyltransferases (SMT), not synthesized in their animal hosts that can regulate cell viability. Here, we report the lethal effects of two recently described natural product antimetabolites that disrupt Acanthamoeba sterol methylation and growth, cholesta-5,7,22,24-tetraenol (CHT) and ergosta-5,7,22,24(28)-tetraenol (ERGT) that can equally target T. brucei. We found that CHT/ERGT inhibited cell growth in vitro, yielding EC50 values in the low nanomolar range with washout experiments showing cidal activity against the bloodstream form, consistent with their predicted mode of suicide inhibition on SMT activity and ergosterol production. Antimetabolite treatment generated altered T. brucei cell morphology and death rapidly within hours. Notably, in vivo ERGT/CHT protected mice infected with T. brucei, doubling their survival time following daily treatment for 8-10 days at 50 mg/kg or 100 mg/kg. The current study demonstrates a new class of lead antibiotics, in the form of common fungal sterols, for antitrypanosomal drug development.
Collapse
|
6
|
Sakyi PO, Broni E, Amewu RK, Miller WA, Wilson MD, Kwofie SK. Homology Modeling, de Novo Design of Ligands, and Molecular Docking Identify Potential Inhibitors of Leishmania donovani 24-Sterol Methyltransferase. Front Cell Infect Microbiol 2022; 12:859981. [PMID: 35719359 PMCID: PMC9201040 DOI: 10.3389/fcimb.2022.859981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Accepted: 04/28/2022] [Indexed: 11/13/2022] Open
Abstract
The therapeutic challenges pertaining to leishmaniasis due to reported chemoresistance and toxicity necessitate the need to explore novel pathways to identify plausible inhibitory molecules. Leishmania donovani 24-sterol methyltransferase (LdSMT) is vital for the synthesis of ergosterols, the main constituents of Leishmania cellular membranes. So far, mammals have not been shown to possess SMT or ergosterols, making the pathway a prime candidate for drug discovery. The structural model of LdSMT was elucidated using homology modeling to identify potential novel 24-SMT inhibitors via virtual screening, scaffold hopping, and de-novo fragment-based design. Altogether, six potential novel inhibitors were identified with binding energies ranging from −7.0 to −8.4 kcal/mol with e-LEA3D using 22,26-azasterol and S1–S4 obtained from scaffold hopping via the ChEMBL, DrugBank, PubChem, ChemSpider, and ZINC15 databases. These ligands showed comparable binding energy to 22,26-azasterol (−7.6 kcal/mol), the main inhibitor of LdSMT. Moreover, all the compounds had plausible ligand efficiency-dependent lipophilicity (LELP) scores above 3. The binding mechanism identified Tyr92 to be critical for binding, and this was corroborated via molecular dynamics simulations and molecular mechanics Poisson–Boltzmann surface area (MM-PBSA) calculations. The ligand A1 was predicted to possess antileishmanial properties with a probability of activity (Pa) of 0.362 and a probability of inactivity (Pi) of 0.066, while A5 and A6 possessed dermatological properties with Pa values of 0.205 and 0.249 and Pi values of 0.162 and 0.120, respectively. Structural similarity search via DrugBank identified vabicaserin, daledalin, zanapezil, imipramine, and cefradine with antileishmanial properties suggesting that the de-novo compounds could be explored as potential antileishmanial agents.
Collapse
Affiliation(s)
- Patrick O. Sakyi
- Department of Chemistry, School of Physical and Mathematical Sciences, College of Basic and Applied Sciences, University of Ghana, Accra, Ghana
- Department of Chemical Sciences, School of Sciences, University of Energy and Natural Resources, Sunyani, Ghana
| | - Emmanuel Broni
- Department of Biomedical Engineering, School of Engineering Sciences, College of Basic & Applied Sciences, University of Ghana, Accra, Ghana
- Department of Parasitology, Noguchi Memorial Institute for Medical Research (NMIMR), College of Health Sciences (CHS), University of Ghana, Accra, Ghana
| | - Richard K. Amewu
- Department of Chemistry, School of Physical and Mathematical Sciences, College of Basic and Applied Sciences, University of Ghana, Accra, Ghana
| | - Whelton A. Miller
- Department of Medicine, Loyola University Medical Center, Maywood, IL, United States
- Department of Molecular Pharmacology and Neuroscience, Loyola University Medical Center, Maywood, IL, United States
- Department of Chemical and Biomolecular Engineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, United States
| | - Michael D. Wilson
- Department of Parasitology, Noguchi Memorial Institute for Medical Research (NMIMR), College of Health Sciences (CHS), University of Ghana, Accra, Ghana
- Department of Medicine, Loyola University Medical Center, Maywood, IL, United States
| | - Samuel Kojo Kwofie
- Department of Biomedical Engineering, School of Engineering Sciences, College of Basic & Applied Sciences, University of Ghana, Accra, Ghana
- Department of Biochemistry, Cell and Molecular Biology, West African Centre for Cell Biology of Infectious Pathogens, College of Basic and Applied Sciences, University of Ghana, Accra, Ghana
- *Correspondence: Samuel Kojo Kwofie,
| |
Collapse
|
7
|
Hajizadeh M, Moosavi-Movahedi Z, Sheibani N, Moosavi-Movahedi AA. An outlook on suicide enzyme inhibition and drug design. JOURNAL OF THE IRANIAN CHEMICAL SOCIETY 2022; 19. [PMCID: PMC8501922 DOI: 10.1007/s13738-021-02416-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/10/2023]
Abstract
There have been recent renewed interests in the importance of suicide enzyme inhibition. The principal objective of this review is to investigate all types of suicide inhibitions for natural enzymes, artificial biocatalysts as well as therapeutic potential of enzyme suicide inhibition. It is discussed the suicide inhibition beneficial in drug design and treatments and non-beneficial achievements for some industrial enzymes such as HRP peroxidase enzyme. The design of biomimetic artificial enzymes explained to prevent inhibition by protecting the active site via environmental conditions. Suicide enzyme inhibition development can be the key mechanism against sever diseases such as SARS. In this report, suicide enzyme inactivation classes are classified based on target enzyme groups via their substrates.
Collapse
Affiliation(s)
- Mina Hajizadeh
- Institute of Biochemistry and Biophysics (IBB), The University of Tehran, Tehran, Iran
| | | | - Nader Sheibani
- Department of Ophthalmology and Visual Sciences, Cell and Regenerative Biology, and Biomedical Engineering, University of Wisconsin School of Medicine and Public Health, Madison, WI USA
| | | |
Collapse
|
8
|
Phan IQ, Rice CA, Craig J, Noorai RE, McDonald JR, Subramanian S, Tillery L, Barrett LK, Shankar V, Morris JC, Van Voorhis WC, Kyle DE, Myler PJ. The transcriptome of Balamuthia mandrillaris trophozoites for structure-guided drug design. Sci Rep 2021; 11:21664. [PMID: 34737367 PMCID: PMC8569187 DOI: 10.1038/s41598-021-99903-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Accepted: 09/27/2021] [Indexed: 11/09/2022] Open
Abstract
Balamuthia mandrillaris, a pathogenic free-living amoeba, causes cutaneous skin lesions as well as granulomatous amoebic encephalitis, a 'brain-eating' disease. As with the other known pathogenic free-living amoebas (Naegleria fowleri and Acanthamoeba species), drug discovery efforts to combat Balamuthia infections of the central nervous system are sparse; few targets have been validated or characterized at the molecular level, and little is known about the biochemical pathways necessary for parasite survival. Current treatments of encephalitis due to B. mandrillaris lack efficacy, leading to case fatality rates above 90%. Using our recently published methodology to discover potential drugs against pathogenic amoebas, we screened a collection of 85 compounds with known antiparasitic activity and identified 59 compounds that impacted the growth of Balamuthia trophozoites at concentrations below 220 µM. Since there is no fully annotated genome or proteome of B. mandrillaris, we sequenced and assembled its transcriptome from a high-throughput RNA-sequencing (RNA-Seq) experiment and located the coding sequences of the genes potentially targeted by the growth inhibitors from our compound screens. We determined the sequence of 17 of these target genes and obtained expression clones for 15 that we validated by direct sequencing. These will be used in the future in combination with the identified hits in structure guided drug discovery campaigns to develop new approaches for the treatment of Balamuthia infections.
Collapse
Affiliation(s)
- Isabelle Q Phan
- Seattle Structural Genomics Center for Infectious Disease (SSGCID), Seattle, WA, USA.
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA, USA.
| | - Christopher A Rice
- Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, GA, USA.
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia, Athens, GA, USA.
| | - Justin Craig
- Seattle Structural Genomics Center for Infectious Disease (SSGCID), Seattle, WA, USA
- Center for Emerging and Re-Emerging Infectious Diseases (CERID), Division of Allergy and Infectious Diseases, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Rooksana E Noorai
- Clemson University Genomics and Bioinformatics Facility, Clemson University, Clemson, SC, USA
| | - Jacquelyn R McDonald
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA, USA
| | - Sandhya Subramanian
- Seattle Structural Genomics Center for Infectious Disease (SSGCID), Seattle, WA, USA
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA, USA
| | - Logan Tillery
- Seattle Structural Genomics Center for Infectious Disease (SSGCID), Seattle, WA, USA
- Center for Emerging and Re-Emerging Infectious Diseases (CERID), Division of Allergy and Infectious Diseases, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Lynn K Barrett
- Seattle Structural Genomics Center for Infectious Disease (SSGCID), Seattle, WA, USA
- Center for Emerging and Re-Emerging Infectious Diseases (CERID), Division of Allergy and Infectious Diseases, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Vijay Shankar
- Center for Human Genetics, Clemson University, Greenwood, SC, USA
| | - James C Morris
- Eukaryotic Pathogens Innovation Center, Department of Genetics and Biochemistry, Clemson University, Clemson, SC, USA
| | - Wesley C Van Voorhis
- Seattle Structural Genomics Center for Infectious Disease (SSGCID), Seattle, WA, USA
- Center for Emerging and Re-Emerging Infectious Diseases (CERID), Division of Allergy and Infectious Diseases, Department of Medicine, University of Washington, Seattle, WA, USA
- Department of Microbiology, University of Washington, Seattle, WA, USA
- Department of Global Health, University of Washington, Seattle, WA, USA
| | - Dennis E Kyle
- Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, GA, USA
| | - Peter J Myler
- Seattle Structural Genomics Center for Infectious Disease (SSGCID), Seattle, WA, USA.
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA, USA.
- Department of Global Health, University of Washington, Seattle, WA, USA.
- Department of Pediatrics, University of Washington, Seattle, WA, USA.
| |
Collapse
|
9
|
Rice CA, Colon BL, Chen E, Hull MV, Kyle DE. Discovery of repurposing drug candidates for the treatment of diseases caused by pathogenic free-living amoebae. PLoS Negl Trop Dis 2020; 14:e0008353. [PMID: 32970675 PMCID: PMC7546510 DOI: 10.1371/journal.pntd.0008353] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 10/09/2020] [Accepted: 07/28/2020] [Indexed: 12/11/2022] Open
Abstract
Diseases caused by pathogenic free-living amoebae include primary amoebic meningoencephalitis (Naegleria fowleri), granulomatous amoebic encephalitis (Acanthamoeba spp.), Acanthamoeba keratitis, and Balamuthia amoebic encephalitis (Balamuthia mandrillaris). Each of these are difficult to treat and have high morbidity and mortality rates due to lack of effective therapeutics. Since repurposing drugs is an ideal strategy for orphan diseases, we conducted a high throughput phenotypic screen of 12,000 compounds from the Calibr ReFRAME library. We discovered a total of 58 potent inhibitors (IC50 <1 μM) against N. fowleri (n = 19), A. castellanii (n = 12), and B. mandrillaris (n = 27) plus an additional 90 micromolar inhibitors. Of these, 113 inhibitors have never been reported to have activity against Naegleria, Acanthamoeba or Balamuthia. Rapid onset of action is important for new anti-amoeba drugs and we identified 19 compounds that inhibit N. fowleri in vitro within 24 hours (halofuginone, NVP-HSP990, fumagillin, bardoxolone, belaronib, and BPH-942, solithromycin, nitracrine, quisinostat, pabinostat, pracinostat, dacinostat, fimepinostat, sanguinarium, radicicol, acriflavine, REP3132, BC-3205 and PF-4287881). These compounds inhibit N. fowleri in vitro faster than any of the drugs currently used for chemotherapy. The results of these studies demonstrate the utility of phenotypic screens for discovery of new drugs for pathogenic free-living amoebae, including Acanthamoeba for the first time. Given that many of the repurposed drugs have known mechanisms of action, these compounds can be used to validate new targets for structure-based drug design.
Collapse
Affiliation(s)
- Christopher A. Rice
- Department of Cellular Biology, University of Georgia, Athens, Georgia, United States of America
- Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, Georgia, United States of America
- * E-mail: (CAR); (DEK)
| | - Beatrice L. Colon
- Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, Georgia, United States of America
- Department of Infectious Diseases, University of Georgia, Athens, Georgia, United States of America
| | - Emily Chen
- Calibr at Scripps Research, La Jolla, California, United States of America
| | - Mitchell V. Hull
- Calibr at Scripps Research, La Jolla, California, United States of America
| | - Dennis E. Kyle
- Department of Cellular Biology, University of Georgia, Athens, Georgia, United States of America
- Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, Georgia, United States of America
- Department of Infectious Diseases, University of Georgia, Athens, Georgia, United States of America
- * E-mail: (CAR); (DEK)
| |
Collapse
|
10
|
Inhibition of Phytosterol Biosynthesis by Azasterols. Molecules 2020; 25:molecules25051111. [PMID: 32131509 PMCID: PMC7179204 DOI: 10.3390/molecules25051111] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 02/25/2020] [Accepted: 02/26/2020] [Indexed: 12/15/2022] Open
Abstract
Inhibitors of enzymes in essential cellular pathways are potent probes to decipher intricate physiological functions of biomolecules. The analysis of Arabidopsis thaliana sterol profiles upon treatment with a series of azasterols reveals a specific in vivo inhibition of SMT2, a plant sterol-C-methyltransferase acting as a branch point between the campesterol and sitosterol biosynthetic segments in the pathway. Side chain azasteroids that modify sitosterol homeostasis help to refine its particular function in plant development.
Collapse
|
11
|
Zhou W, Ramos E, Zhu X, Fisher PM, Kidane ME, Vanderloop BH, Thomas CD, Yan J, Singha U, Chaudhuri M, Nagel MT, Nes WD. Steroidal antibiotics are antimetabolites of Acanthamoeba steroidogenesis with phylogenetic implications. J Lipid Res 2019; 60:981-994. [PMID: 30709898 PMCID: PMC6495176 DOI: 10.1194/jlr.m091587] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 01/22/2019] [Indexed: 12/28/2022] Open
Abstract
Pathogenic organisms may be sensitive to inhibitors of sterol biosynthesis, which carry antimetabolite properties, through manipulation of the key enzyme, sterol methyltransferase (SMT). Here, we isolated natural suicide substrates of the ergosterol biosynthesis pathway, cholesta-5,7,22,24-tetraenol (CHT) and ergosta-5,7,22,24(28)-tetraenol (ERGT), and demonstrated their interference in Acanthamoeba castellanii steroidogenesis: CHT and ERGT inhibit trophozoite growth (EC50 of 51 nM) without affecting cultured human cell growth. Washout experiments confirmed that the target for vulnerability was SMT. Chemical, kinetic, and protein-binding studies of inhibitors assayed with 24-AcSMT [catalyzing C28-sterol via Δ24(28)-olefin production] and 28-AcSMT [catalyzing C29-sterol via Δ25(27)-olefin production] revealed interrupted partitioning and irreversible complex formation from the conjugated double bond system in the side chain of either analog, particularly with 28-AcSMT. Replacement of active site Tyr62 with Phe or Leu residues involved in cation-π interactions that model product specificity prevented protein inactivation. The alkylating properties and high selective index of 103 for CHT and ERGT against 28-AcSMT are indicative of a new class of steroidal antibiotic that, as an antimetabolite, can limit sterol expansion across phylogeny and provide a novel scaffold in the design of amoebicidal drugs. Animal studies of these suicide substrates can further explore the potential of their antibiotic properties.
Collapse
Affiliation(s)
- Wenxu Zhou
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79409
| | - Emilio Ramos
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79409
| | - Xunlu Zhu
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79409
| | - Paxtyn M Fisher
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79409
| | - Medhanie E Kidane
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79409
| | - Boden H Vanderloop
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79409
| | - Crista D Thomas
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79409
| | - Juqiang Yan
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79409
| | - Ujjal Singha
- Department of Microbiology and Immunology Meharry Medical College, Nashville, TN 37208
| | - Minu Chaudhuri
- Department of Microbiology and Immunology Meharry Medical College, Nashville, TN 37208
| | - Michael T Nagel
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79409
| | - W David Nes
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79409.
| |
Collapse
|
12
|
Nickels JT. Anti-parasitic drug discovery takes a giant leap forward. J Lipid Res 2019; 60:919-921. [PMID: 30918064 DOI: 10.1194/jlr.c094250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Affiliation(s)
- Joseph T Nickels
- Institute of Metabolic Disorders, Genesis Biotechnology Group, Hamilton, NJ 08691, and Rutgers Center for Lipid Research, New Jersey Institute for Food, Nutrition, and Health, Rutgers University, New Brunswick, NJ 08901.
| |
Collapse
|
13
|
Evans GB, Schramm VL, Tyler PC. The transition to magic bullets - transition state analogue drug design. MEDCHEMCOMM 2018; 9:1983-1993. [PMID: 30627387 PMCID: PMC6295874 DOI: 10.1039/c8md00372f] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Accepted: 08/24/2018] [Indexed: 12/17/2022]
Abstract
In the absence of industry partnerships, most academic groups lack the infrastructure to rationally design and build drugs via methods used in industry. Instead, academia needs to work smarter using mechanism-based design. Working smarter can mean the development of new drug discovery paradigms and then demonstrating their utility and reproducibility to industry. The collaboration between Vern Schramm's group at the Albert Einstein College of Medicine, USA and Peter Tyler at the Ferrier Research Institute at The Victoria University of Wellington, NZ has refined a drug discovery process called transition state analogue design. This process has been applied to several biomedically relevant nucleoside processing enzymes. In 2017, Mundesine®, conceived using transition state analogue design, received market approval for the treatment of peripheral T-cell lymphoma in Japan. This short review looks at a brief history of transition state analogue design, the fundamentals behind the development of this process, and the success of enzyme inhibitors produced using this drug design methodology.
Collapse
Affiliation(s)
- Gary B Evans
- The Ferrier Research Institute , Victoria University of Wellington , 69 Gracefield Rd , Lower Hutt , 5010 , New Zealand . ; Tel: +64 4 463 0048
- The Maurice Wilkins Centre for Molecular Biodiscovery , The University of Auckland , Auckland , New Zealand
| | - Vern L Schramm
- Department of Biochemistry , Albert Einstein College of Medicine , Bronx , NY 10461 , USA
| | - Peter C Tyler
- The Ferrier Research Institute , Victoria University of Wellington , 69 Gracefield Rd , Lower Hutt , 5010 , New Zealand . ; Tel: +64 4 463 0048
| |
Collapse
|
14
|
Haubrich BA. Microbial Sterolomics as a Chemical Biology Tool. Molecules 2018; 23:E2768. [PMID: 30366429 PMCID: PMC6278499 DOI: 10.3390/molecules23112768] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Revised: 10/23/2018] [Accepted: 10/23/2018] [Indexed: 02/06/2023] Open
Abstract
Metabolomics has become a powerful tool in chemical biology. Profiling the human sterolome has resulted in the discovery of noncanonical sterols, including oxysterols and meiosis-activating sterols. They are important to immune responses and development, and have been reviewed extensively. The triterpenoid metabolite fusidic acid has developed clinical relevance, and many steroidal metabolites from microbial sources possess varying bioactivities. Beyond the prospect of pharmacognostical agents, the profiling of minor metabolites can provide insight into an organism's biosynthesis and phylogeny, as well as inform drug discovery about infectious diseases. This review aims to highlight recent discoveries from detailed sterolomic profiling in microorganisms and their phylogenic and pharmacological implications.
Collapse
Affiliation(s)
- Brad A Haubrich
- Department of Chemistry, University of Nevada, Reno, Reno, NV 89557, USA.
| |
Collapse
|
15
|
Zhou W, Warrilow AGS, Thomas CD, Ramos E, Parker JE, Price CL, Vanderloop BH, Fisher PM, Loftis MD, Kelly DE, Kelly SL, Nes WD. Functional importance for developmental regulation of sterol biosynthesis in Acanthamoeba castellanii. Biochim Biophys Acta Mol Cell Biol Lipids 2018; 1863:1164-1178. [PMID: 30044954 PMCID: PMC6180906 DOI: 10.1016/j.bbalip.2018.07.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Revised: 06/26/2018] [Accepted: 07/20/2018] [Indexed: 02/07/2023]
Abstract
The sterol metabolome of Acanthamoeba castellanii (Ac) yielded 25 sterols. Substrate screening of cloned AcCYP51 revealed obtusifoliol as the natural substrate which converts to ∆8,14-sterol (<95%). The combination of [2H3-methyl]methionine incubation to intact cultures showing C28-ergosterol incorporates 2-2H atoms and C29-7-dehydroporiferasterol incorporates 5 2H-atoms, the natural distribution of sterols, CYP51 and previously published sterol methyltransferase (SMT) data indicate separate ∆24(28)- and ∆25(27)-olefin pathways to C28- and C29-sterol products from the protosterol cycloartenol. In cell-based culture, we observed a marked change in sterol compositions during the growth and encystment phases monitored microscopically and by trypan blue staining; trophozoites possess C28/C29-∆5,7-sterols, viable encysted cells (mature cyst) possess mostly C29-∆5-sterol and non-viable encysted cells possess C28/C29-∆5,7-sterols that turnover variably from stress to 6-methyl aromatic sterols associated with changed membrane fluidity affording lysis. An incompatible fit of steroidal aromatics in membranes was confirmed using the yeast sterol auxotroph GL7. Only viable cysts, including those treated with inhibitor, can excyst into trophozoites. 25-Azacycloartanol or voriconazole that target SMT and CYP51, respectively, are potent enzyme inhibitors in the nanomolar range against the cloned enzymes and amoeba cells. At minimum amoebicidal concentration of inhibitor amoeboid cells rapidly convert to encysted cells unable to excyst. The correlation between stage-specific sterol compositions and the physiological effects of ergosterol biosynthesis inhibitors suggests that amoeba fitness is controlled mainly by developmentally-regulated changes in the phytosterol B-ring; paired interference in the ∆5,7-sterol biosynthesis (to ∆5,7) - metabolism (to ∆5 or 6-methyl aromatic) congruence during cell proliferation and encystment could be a source of therapeutic intervention for Acanthamoeba infections.
Collapse
Affiliation(s)
- Wenxu Zhou
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, United States of America
| | - Andrew G S Warrilow
- Center for Cytochrome P450 Biodiversity, Institute of Life Science, School of Medicine, Swansea University, Swansea, Wales, United Kingdom
| | - Crista D Thomas
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, United States of America
| | - Emilio Ramos
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, United States of America
| | - Josie E Parker
- Center for Cytochrome P450 Biodiversity, Institute of Life Science, School of Medicine, Swansea University, Swansea, Wales, United Kingdom
| | - Claire L Price
- Center for Cytochrome P450 Biodiversity, Institute of Life Science, School of Medicine, Swansea University, Swansea, Wales, United Kingdom
| | - Boden H Vanderloop
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, United States of America
| | - Paxtyn M Fisher
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, United States of America
| | - Michael D Loftis
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, United States of America
| | - Diane E Kelly
- Center for Cytochrome P450 Biodiversity, Institute of Life Science, School of Medicine, Swansea University, Swansea, Wales, United Kingdom
| | - Steven L Kelly
- Center for Cytochrome P450 Biodiversity, Institute of Life Science, School of Medicine, Swansea University, Swansea, Wales, United Kingdom
| | - W David Nes
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, United States of America.
| |
Collapse
|
16
|
Wu C, Li Z, Wang C, Zhou Y, Sun T. Increasing the Purity of Lafutidine Using a “Suicide Substrate”. Org Process Res Dev 2018. [DOI: 10.1021/acs.oprd.8b00070] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Chengjun Wu
- Key Laboratory of Structure-Based Drug Design and Discovery, Shenyang Pharmaceutical University, Ministry of Education, Shenyang 110016, P. R. China
| | - Zhen Li
- Key Laboratory of Structure-Based Drug Design and Discovery, Shenyang Pharmaceutical University, Ministry of Education, Shenyang 110016, P. R. China
| | - Chunchao Wang
- Key Laboratory of Structure-Based Drug Design and Discovery, Shenyang Pharmaceutical University, Ministry of Education, Shenyang 110016, P. R. China
| | - Yanan Zhou
- Key Laboratory of Structure-Based Drug Design and Discovery, Shenyang Pharmaceutical University, Ministry of Education, Shenyang 110016, P. R. China
| | - Tiemin Sun
- Key Laboratory of Structure-Based Drug Design and Discovery, Shenyang Pharmaceutical University, Ministry of Education, Shenyang 110016, P. R. China
| |
Collapse
|
17
|
Synthesis and Biological Activity of Sterol 14α-Demethylase and Sterol C24-Methyltransferase Inhibitors. Molecules 2018; 23:molecules23071753. [PMID: 30018257 PMCID: PMC6099924 DOI: 10.3390/molecules23071753] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Revised: 07/13/2018] [Accepted: 07/15/2018] [Indexed: 11/17/2022] Open
Abstract
Sterol 14α-demethylase (SDM) is essential for sterol biosynthesis and is the primary molecular target for clinical and agricultural antifungals. SDM has been demonstrated to be a valid drug target for antiprotozoal therapies, and much research has been focused on using SDM inhibitors to treat neglected tropical diseases such as human African trypanosomiasis (HAT), Chagas disease, and leishmaniasis. Sterol C24-methyltransferase (24-SMT) introduces the C24-methyl group of ergosterol and is an enzyme found in pathogenic fungi and protozoa but is absent from animals. This difference in sterol metabolism has the potential to be exploited in the development of selective drugs that specifically target 24-SMT of invasive fungi or protozoa without adversely affecting the human or animal host. The synthesis and biological activity of SDM and 24-SMT inhibitors are reviewed herein.
Collapse
|