1
|
Zhong R, Chernick D, Hottman D, Tan Y, Kim M, Narayanan M, Li L. The HDL-Mimetic Peptide 4F Mitigates Vascular and Cortical Amyloid Pathology and Associated Neuroinflammation in a Transgenic Mouse Model of Cerebral Amyloid Angiopathy and Alzheimer's Disease. Mol Neurobiol 2025:10.1007/s12035-025-04859-9. [PMID: 40120042 DOI: 10.1007/s12035-025-04859-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Accepted: 03/14/2025] [Indexed: 03/25/2025]
Abstract
Alzheimer's disease (AD) is the most common cause of dementia worldwide. Despite recent advances, more effective and safer treatment options for AD are needed. Cerebral amyloid angiopathy (CAA) is one of the key pathological hallmarks of AD characterized by amyloid-β (Aβ) deposition in the cerebral vasculature and is associated with intracerebral hemorrhage, cerebrovascular dysfunction, and cognitive impairment. CAA is also considered to underlie the main adverse effect of recently FDA-approved anti-Aβ immunotherapies, namely the amyloid-related imaging abnormalities (ARIA). Substantial evidence has shown that elevated levels of high-density lipoprotein (HDL) and its main protein component, APOA-I, are associated with reduced CAA and superior cognitive function. 4F is an APOA-I/HDL-mimetic peptide and its clinical safety and activity have been demonstrated in human trials for cardiovascular diseases. The present study investigates whether treatment with 4F modulates CAA and associated cognitive deficits and neuropathologies in the well-established Tg-SwDI mouse model of CAA/AD. Age/sex-matched Tg-SwDI mice received daily treatments of 4F or vehicle (PBS), respectively, by intraperitoneal injections for 12 weeks. The results showed that 4F treatment reduced overall Aβ plaque deposition and CAA, and attenuated CAA-associated microgliosis, without significantly affecting total levels of Aβ, astrocytosis, and behavioral function. Unbiased transcriptomic analysis revealed a heightened inflammatory state in the brain of SwDI mice and that 4F treatment reversed the overactivation of vascular cells, in particular vascular smooth muscle cells, relieving cerebrovascular inflammation in CAA/AD mice. Our study provides experimental evidence for the therapeutic potential of 4F to mitigate CAA and associated pathologies in AD.
Collapse
Affiliation(s)
- Rui Zhong
- Department of Experimental and Clinical Pharmacology, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Dustin Chernick
- Graduate Program in Pharmacology, University of Minnesota, Minneapolis, MN, 55455, USA
| | - David Hottman
- Department of Experimental and Clinical Pharmacology, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Yejun Tan
- Department of Experimental and Clinical Pharmacology, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Minwoo Kim
- Department of Experimental and Clinical Pharmacology, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Manojkumar Narayanan
- Graduate Program in Comparative and Molecular Biosciences, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Ling Li
- Department of Experimental and Clinical Pharmacology, University of Minnesota, Minneapolis, MN, 55455, USA.
- Graduate Program in Pharmacology, University of Minnesota, Minneapolis, MN, 55455, USA.
| |
Collapse
|
2
|
Chernov AS, Telegin GB, Minakov AN, Kazakov VA, Rodionov MV, Palikov VA, Kudriaeva AA, Belogurov AA. Synthetic Amphipathic Helical Peptide L-37pA Ameliorates the Development of Acute Respiratory Distress Syndrome (ARDS) and ARDS-Induced Pulmonary Fibrosis in Mice. Int J Mol Sci 2024; 25:8384. [PMID: 39125954 PMCID: PMC11312864 DOI: 10.3390/ijms25158384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 07/16/2024] [Accepted: 07/23/2024] [Indexed: 08/12/2024] Open
Abstract
In this study, we evaluated the ability of the synthetic amphipathic helical peptide (SAHP), L-37pA, which mediates pathogen recognition and innate immune responses, to treat acute respiratory distress syndrome (ARDS) accompanied by diffuse alveolar damage (DAD) and chronic pulmonary fibrosis (PF). For the modeling of ARDS/DAD, male ICR mice were used. Intrabronchial instillation (IB) of 200 µL of inflammatory agents was performed by an intravenous catheter 20 G into the left lung lobe only, leaving the right lobe unaffected. Intravenous injections (IVs) of L-37pA, dexamethasone (DEX) and physiological saline (saline) were used as therapies for ARDS/DAD. L37pA inhibited the circulating levels of inflammatory cytokines, such as IL-8, TNFα, IL1α, IL4, IL5, IL6, IL9 and IL10, by 75-95%. In all cases, the computed tomography (CT) data indicate that L-37pA reduced lung density faster to -335 ± 23 Hounsfield units (HU) on day 7 than with DEX and saline, to -105 ± 29 HU and -23 ± 11 HU, respectively. The results of functional tests showed that L-37pA treatment 6 h after ARDS/DAD initiation resulted in a more rapid improvement in the physiological respiratory lung by 30-45% functions compared with the comparison drugs. Our data suggest that synthetic amphipathic helical peptide L-37pA blocked a cytokine storm, inhibited acute and chronic pulmonary inflammation, prevented fibrosis development and improved physiological respiratory lung function in the ARDS/DAD mouse model. We concluded that a therapeutic strategy using SAHPs targeting SR-B receptors is a potential novel effective treatment for inflammation-induced ARDS, DAD and lung fibrosis of various etiologies.
Collapse
Affiliation(s)
- Aleksandr S. Chernov
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow 117997, Russia; (G.B.T.); (A.N.M.); (V.A.K.); (V.A.P.); (A.A.K.); (A.A.B.J.)
| | - Georgii B. Telegin
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow 117997, Russia; (G.B.T.); (A.N.M.); (V.A.K.); (V.A.P.); (A.A.K.); (A.A.B.J.)
| | - Alexey N. Minakov
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow 117997, Russia; (G.B.T.); (A.N.M.); (V.A.K.); (V.A.P.); (A.A.K.); (A.A.B.J.)
| | - Vitaly A. Kazakov
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow 117997, Russia; (G.B.T.); (A.N.M.); (V.A.K.); (V.A.P.); (A.A.K.); (A.A.B.J.)
| | - Maksim V. Rodionov
- Medical Radiological Research Center (MRRC) Named after A.F. Tsyb-Branch of the National Medical Radiological Research Center of the Ministry of Health of the Russian Federation, Obninsk 249031, Russia;
| | - Viktor A. Palikov
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow 117997, Russia; (G.B.T.); (A.N.M.); (V.A.K.); (V.A.P.); (A.A.K.); (A.A.B.J.)
| | - Anna A. Kudriaeva
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow 117997, Russia; (G.B.T.); (A.N.M.); (V.A.K.); (V.A.P.); (A.A.K.); (A.A.B.J.)
| | - Alexey A. Belogurov
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow 117997, Russia; (G.B.T.); (A.N.M.); (V.A.K.); (V.A.P.); (A.A.K.); (A.A.B.J.)
- Department of Biological Chemistry, Russian University of Medicine of the Ministry of Health of the Russian Federation, Moscow 127473, Russia
| |
Collapse
|
3
|
Li J, Zhu Z, Li Y, Chen Y, Hu X, Liu Y, Shi Y, Hu Y, Bi Y, Xu X, Zheng M, Cheng L, Jing J. D-4F, an apolipoprotein A-I mimetic, promotes the clearance of myelin debris and the reduction of foamy macrophages after spinal cord injury. Bioengineered 2022; 13:11794-11809. [PMID: 35546071 PMCID: PMC9276047 DOI: 10.1080/21655979.2022.2073063] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
After spinal cord injury (SCI), a large number of blood-derived macrophages infiltrate the lesion site and phagocytose myelin debris to become foamy macrophages, which leads to chronic inflammation. The drug D-4F, an apolipoprotein A-I peptidomimetic made of D-amino acids, has been reported to promote the lipid metabolism of foamy macrophages in atherosclerosis. However, the role and mechanism of D-4F in SCI are still unclear. In this study, we found that D-4F can promote the removal of myelin debris, reduce the formation of foamy macrophages in the lesion core and promote neuroprotection and recovery of motor function after SCI. These beneficial functions of D-4F may be related to its ability to upregulate the expression of ATP-binding cassette transporter A1 (ABCA1), the main transporter that mediates lipid efflux in foamy macrophages because inhibiting the activity of ABCA1 can reverse the effect of D-4F in vitro. In conclusion, D-4F may be a promising candidate for treating SCI by promoting the clearance of myelin debris by foamy macrophages via the ABCA1 pathway.
Collapse
Affiliation(s)
- Jinxin Li
- Department of Orthopedics, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Zhenyu Zhu
- Department of Orthopedics, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Yiteng Li
- Department of Orthopedics, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Yihao Chen
- Department of Orthopedics, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Xuyang Hu
- Department of Orthopedics, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Yanchang Liu
- Department of Orthopedics, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Yi Shi
- Department of Orthopedics, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Yao Hu
- Department of Orthopedics, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Yihui Bi
- Department of Orthopedics, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Xinzhong Xu
- Department of Orthopedics, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Meige Zheng
- Department of Orthopedics, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Li Cheng
- Department of Orthopedics, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Juehua Jing
- Department of Orthopedics, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| |
Collapse
|
4
|
Lewandowski CT, Laham MS, Thatcher GR. Remembering your A, B, C's: Alzheimer's disease and ABCA1. Acta Pharm Sin B 2022; 12:995-1018. [PMID: 35530134 PMCID: PMC9072248 DOI: 10.1016/j.apsb.2022.01.011] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 12/27/2021] [Accepted: 01/07/2022] [Indexed: 12/24/2022] Open
Abstract
The function of ATP binding cassette protein A1 (ABCA1) is central to cholesterol mobilization. Reduced ABCA1 expression or activity is implicated in Alzheimer's disease (AD) and other disorders. Therapeutic approaches to boost ABCA1 activity have yet to be translated successfully to the clinic. The risk factors for AD development and progression, including comorbid disorders such as type 2 diabetes and cardiovascular disease, highlight the intersection of cholesterol transport and inflammation. Upregulation of ABCA1 can positively impact APOE lipidation, insulin sensitivity, peripheral vascular and blood–brain barrier integrity, and anti-inflammatory signaling. Various strategies towards ABCA1-boosting compounds have been described, with a bias toward nuclear hormone receptor (NHR) agonists. These agonists display beneficial preclinical effects; however, important side effects have limited development. In particular, ligands that bind liver X receptor (LXR), the primary NHR that controls ABCA1 expression, have shown positive effects in AD mouse models; however, lipogenesis and unwanted increases in triglyceride production are often observed. The longstanding approach, focusing on LXRβ vs. LXRα selectivity, is over-simplistic and has failed. Novel approaches such as phenotypic screening may lead to small molecule NHR modulators that elevate ABCA1 function without inducing lipogenesis and are clinically translatable.
Collapse
|
5
|
Song R, Han S, Gao H, Jiang H, Li X. Crocin alleviates cognitive impairment associated with atherosclerosis via improving neuroinflammation in LDLR -/- mice fed a high-fat/cholesterol diet. Phytother Res 2022; 36:1284-1296. [PMID: 35084779 DOI: 10.1002/ptr.7384] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 12/28/2021] [Accepted: 01/02/2022] [Indexed: 12/15/2022]
Abstract
Crocin has been extensively investigated in treating neurodegenerative diseases. However, its effect on cognitive impairment associated with atherosclerosis remains unknown. The present study aimed to explore the potential mechanism of crocin on cognitive impairment in a mouse model of atherosclerosis. LDLR-/- mice fed a high-fat/cholesterol diet were administered variable-dose crocin for 56 days through gavage. Biochemical tests showed that serum triglycerides and circulating lipopolysaccharide decreased in mice treated with crocin. Behavioral tests indicated that crocin alleviated cognitive impairment by reducing latency to the platform and increasing the swimming distance in the target quadrant. This mechanism might be associated with crocin inhibiting Aβ deposition by decreasing Aβ1-42 and tau phosphorylation. Crocin improved neuroinflammation by inhibiting the increase in reactive microglia and astrocytes, weakening NLRP3 inflammasome activation accompanied by a reduction in Caspase-1 and IL-1β, and blocking TLR4 signaling accompanied by a decrease in NF-kB p65 and MyD88. In addition, crocin raised the protein expression of ZO-1 and occludin. These findings provide experimental support that crocin attenuates cognitive impairment associated with atherosclerosis by repressing neuroinflammation, which is attributed to its suppression on the activation of microglia and astrocytes, and the production of inflammatory cytokines via targeting the NLRP3 inflammasome and TLR4 signaling.
Collapse
Affiliation(s)
- Ruijuan Song
- Department of Nutrition and Food Hygiene, School of Public Health, Soochow University, Suzhou, China
| | - Shufen Han
- Department of Nutrition and Food Hygiene, School of Public Health, Soochow University, Suzhou, China.,Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Soochow University, Suzhou, China.,School of Public Health, Hangzhou Normal University, Hangzhou, China
| | - Hui Gao
- Department of Nutrition and Food Hygiene, School of Public Health, Soochow University, Suzhou, China
| | - Hui Jiang
- Department of Nutrition and Food Hygiene, School of Public Health, Soochow University, Suzhou, China
| | - Xinli Li
- Department of Nutrition and Food Hygiene, School of Public Health, Soochow University, Suzhou, China
| |
Collapse
|
6
|
HDL, ApoA-I and ApoE-Mimetic Peptides: Potential Broad Spectrum Agent for Clinical Use? Int J Pept Res Ther 2022. [DOI: 10.1007/s10989-021-10352-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
7
|
White CR, Palgunachari M, Wolkowicz P, Anantharamaiah GM. Peptides as Therapeutic Agents for Atherosclerosis. Methods Mol Biol 2022; 2419:89-110. [PMID: 35237960 DOI: 10.1007/978-1-0716-1924-7_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
More than three decades ago, as a test for the amphipathic helix theory, an 18 amino acid residue peptide and its analogs were designed with no sequence homology to any of the exchangeable apolipoproteins. Based on the apolipoprotein A-I (the major protein component of high density lipoproteins, HDL) mimicking properties, they were termed as ApoA-I mimicking peptides. Several laboratories around the world started studying such de novo-designed peptides for their antiatherogenic properties. The present chapter describes the efforts in bringing these peptides as therapeutic agents for atherosclerosis and several lipid-mediated disorders.
Collapse
Affiliation(s)
- C Roger White
- Department of Medicine, UAB Medical Centre, Birmingham, AL, USA
| | | | - Paul Wolkowicz
- Department of Medicine, UAB Medical Centre, Birmingham, AL, USA
| | | |
Collapse
|
8
|
Ghoshal S, Banerjee S, Zhang J, Niehoff ML, Farr SA, Butler AA. Adropin transgenesis improves recognition memory in diet-induced obese LDLR-deficient C57BL/6J mice. Peptides 2021; 146:170678. [PMID: 34695512 PMCID: PMC8649943 DOI: 10.1016/j.peptides.2021.170678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 10/12/2021] [Accepted: 10/19/2021] [Indexed: 10/20/2022]
Abstract
Obesity-related metabolic dysregulation causes mild cognitive impairment and increased risk for dementia. We used an LDLR-deficient C57BL/6J mouse model (LDLRKO) to investigate whether adropin, a neuropeptide linked to neurodegenerative diseases, improves cognitive function in situations of metabolic dysregulation. Adropin transgenic mice (AdrTG) were crossed with LDLRKO; male and female progeny were fed a high fat diet for 3-months. Male chow-fed wild type (WT) mice were used as controls. Diet-induced obesity and LDLR-deficiency caused severe dyslipidemia, irrespective of sex. The AdrTG prevented reduced adropin protein levels in LDLRKO cortex. In males, metabolic dysregulation and AdrTG genotype significantly and bi-directionally affected performance in the novel object recognition (NOR) test, a declarative hippocampal memory task (discrimination index mean ± SE for WT, 0.02 ± 0.088; LDLRKO, -0.115 ± 0.077; AdrTG;LDLRKO, 0.265 ± 0.078; genotype effect, p = 0.009; LDLRKO vs. AdrTG;LDLRKO, P < 0.05). A 2-way ANOVA (fixed variables: sex, AdrTG genotype) indicated a highly significant effect of AdrTG (P = 0.003). The impact of the diet-genotype interaction on the male mouse brain was investigated using RNA-seq. Gene-ontology analysis of transcripts showing fold-changes of>1.3 or <-1.3 (P < 0.05) indicated metabolic dysregulation affected gene networks involved in intercellular/neuronal signaling, immune processes, angiogenesis, and extracellular matrix organization. The AdrTG selectively attenuated the impact of metabolic dysregulation on intercellular/neuronal signaling pathways. Intercellular/neuronal signaling pathways were also the predominant processes overrepresented when directly comparing AdrTG;LDLRKO with LDRKO. In summary, adropin overexpression improves cognitive function in severe metabolic dysregulation through pathways related to cell-cell communication and neuronal processes, and independently of preventing inflammatory responses.
Collapse
Affiliation(s)
- Sarbani Ghoshal
- Department of Biological Science and Geology, QCC-CUNY, Bayside, NY, USA
| | - Subhashis Banerjee
- Department of Pharmacology & Physiology, Saint Louis University School of Medicine, St. Louis, MO, USA
| | - Jinsong Zhang
- Department of Pharmacology & Physiology, Saint Louis University School of Medicine, St. Louis, MO, USA
| | - Michael L Niehoff
- Division of Geriatric Medicine, Saint Louis University School of Medicine and Saint Louis Veterans Affairs Medical Center, Research Service, John Cochran Division, St. Louis, MO, USA
| | - Susan A Farr
- Division of Geriatric Medicine, Saint Louis University School of Medicine and Saint Louis Veterans Affairs Medical Center, Research Service, John Cochran Division, St. Louis, MO, USA; Henry and Amelia Nasrallah Center for Neuroscience, Saint Louis University School of Medicine, St. Louis, MO, USA
| | - Andrew A Butler
- Department of Pharmacology & Physiology, Saint Louis University School of Medicine, St. Louis, MO, USA; Henry and Amelia Nasrallah Center for Neuroscience, Saint Louis University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
9
|
Gao H, Song R, Li Y, Zhang W, Wan Z, Wang Y, Zhang H, Han S. Effects of Oat Fiber Intervention on Cognitive Behavior in LDLR -/- Mice Modeling Atherosclerosis by Targeting the Microbiome-Gut-Brain Axis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:14480-14491. [PMID: 33237770 DOI: 10.1021/acs.jafc.0c05677] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
It is known that cardiovascular disease can result in cognitive impairment. However, whether oat fiber improves cognitive behavior through a cardiovascular-related mechanism remains unclear. The present work was aimed to elucidate the potential of oat fiber on cognitive behavior by targeting the neuroinflammation signal and microbiome-gut-brain axis in a mouse model of atherosclerosis. Male low-density lipoprotein receptor knock-out (LDLR-/-) mice were treated with a high fat/cholesterol diet without or with 0.8% oat fiber for 14 weeks. Behavioral tests indicated that LDLR-/- mice exhibited a significant cognitive impairment; however, oat fiber can improve cognitive behavior by reducing latency to the platform and increasing the number of crossing and swimming distance in the target quadrant. Oat fiber can inhibit Aβ plaque processing in both the cortex and hippocampus via decreasing the relative protein expression of GFAP and IBα1. Notably, oat fiber inhibited the nod-like receptor family pyrin domain-containing 3 inflammasome activation and blocked the toll-like receptor 4 signal pathway in both the cortex and hippocampus, accompanied by a reduction of circulating serum lipopolysaccharide. In addition, oat fiber raised the expressions of short-chain fatty acid (SCFA) receptors and tight junction proteins (zonula occludens-1 and occludin) and improved intestinal microbiota diversity via increasing the contents of gut metabolites SCFAs. In summary, the present study provided experimental evidence that dietary oat fiber retarded the progression of cognitive impairment in a mouse model of atherosclerosis. Mechanistically, the neuroprotective potential was related to oat fiber and its metabolites SCFAs on the diversity and abundance of gut microbiota that produced anti-inflammatory metabolites, leading to repressed neuroinflammation and reduced gut permeability through the microbiome-gut-brain axis.
Collapse
Affiliation(s)
- Hui Gao
- Department of Nutrition and Food Hygiene, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Disease, School of Public Health, Soochow University, 199 Renai Road, Suzhou, 215123 Jiangsu, P.R. China
| | - Ruijuan Song
- Department of Nutrition and Food Hygiene, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Disease, School of Public Health, Soochow University, 199 Renai Road, Suzhou, 215123 Jiangsu, P.R. China
| | - Yuezhen Li
- Department of Nutrition and Food Hygiene, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Disease, School of Public Health, Soochow University, 199 Renai Road, Suzhou, 215123 Jiangsu, P.R. China
| | - Weiguo Zhang
- Independent Scientist, Irving, Texas 75039, United States
| | - Zhongxiao Wan
- Department of Nutrition and Food Hygiene, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Disease, School of Public Health, Soochow University, 199 Renai Road, Suzhou, 215123 Jiangsu, P.R. China
| | - Ying Wang
- Department of Nutrition and Food Hygiene, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Disease, School of Public Health, Soochow University, 199 Renai Road, Suzhou, 215123 Jiangsu, P.R. China
| | - Hong Zhang
- Department of Food and Nutrition, School of Public Health, Southeast University, 87 Dingjiaqiao Road, Nanjing, 210009 Jiangsu, P.R. China
| | - Shufen Han
- Department of Nutrition and Food Hygiene, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Disease, School of Public Health, Soochow University, 199 Renai Road, Suzhou, 215123 Jiangsu, P.R. China
| |
Collapse
|
10
|
Swaminathan SK, Zhou AL, Ahlschwede KM, Curran GL, Lowe VJ, Li L, Kandimalla KK. High-Density Lipoprotein Mimetic Peptide 4F Efficiently Crosses the Blood-Brain Barrier and Modulates Amyloid- β Distribution between Brain and Plasma. J Pharmacol Exp Ther 2020; 375:308-316. [PMID: 32778535 PMCID: PMC7589947 DOI: 10.1124/jpet.120.265876] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 07/24/2020] [Indexed: 12/24/2022] Open
Abstract
Treatments to elevate high-density lipoprotein (HDL) levels in plasma have decreased cerebrovascular amyloid -β (Aβ) deposition and mitigated cognitive decline in Alzheimer disease (AD) transgenic mice. Since the major protein component of HDL particles, apolipoprotein A-I (ApoA-I), has very low permeability at the blood-brain barrier (BBB), we investigated 4F, an 18-amino-acid ApoA-I/HDL mimetic peptide, as a therapeutic alternative. Specifically, we examined the BBB permeability of 4F and its effects on [125I]Aβ trafficking from brain to blood and from blood to brain. After systemic injection in mice, the BBB permeability of [125I]4F, estimated as the permeability-surface area (PS) product, ranged between 2 and 5 × 10-6 ml/g per second in various brain regions. The PS products of [125I]4F were ∼1000-fold higher compared with those determined for [125I]ApoA-I. Moreover, systemic infusion with 4F increased the brain efflux of intracerebrally injected [125I]Aβ42. Conversely, 4F infusion decreased the brain influx of systemically injected [125I]Aβ42. Interestingly, 4F did not significantly alter the brain influx of [125I]Aβ40. To corroborate the in vivo findings, we evaluated the effects of 4F on [125I]Aβ42 transcytosis across polarized human BBB endothelial cell (hCMEC/D3) monolayers. Treatment with 4F increased the abluminal-to-luminal flux and decreased the luminal-to-abluminal flux of [125I]Aβ42 across the hCMEC/D3 monolayers. Additionally, 4F decreased the endothelial accumulation of fluorescein-labeled Aβ42 in the hCMEC/D3 monolayers. These findings provide a mechanistic interpretation for the reductions in brain Aβ burden reported in AD mice after oral 4F administration, which represents a novel strategy for treating AD and cerebral amyloid angiopathy. SIGNIFICANCE STATEMENT: The brain permeability of the ApoA-I mimetic peptide 4F was estimated to be ∼1000-fold greater than ApoA-I after systemic injection of radiolabeled peptide/protein in mice. Further, 4F treatment increased the brain efflux of amyloid -β and also decreased its brain influx, as evaluated in mice and in blood-brain barrier cell monolayers. Thus, 4F represents a potential therapeutic strategy to mitigate brain amyloid accumulation in cerebral amyloid angiopathy and Alzheimer disease.
Collapse
Affiliation(s)
- Suresh K Swaminathan
- Department of Pharmaceutics and Brain Barriers Research Center (S.K.S., A.L.Z., K.M.A., K.K.K.) and Department of Experimental and Clinical Pharmacology (L.L.), University of Minnesota, College of Pharmacy, Minneapolis, Minnesota; Department of Pharmaceutical Sciences, College of Pharmacy, Rosalind Franklin University of Medicine and Science, North Chicago, Illinois (K.M.A.); and Departments of Radiology (G.L.C., V.J.L.) and Neurology (G.L.C.), Mayo Clinic, College of Medicine, Rochester, Minnesota
| | - Andrew L Zhou
- Department of Pharmaceutics and Brain Barriers Research Center (S.K.S., A.L.Z., K.M.A., K.K.K.) and Department of Experimental and Clinical Pharmacology (L.L.), University of Minnesota, College of Pharmacy, Minneapolis, Minnesota; Department of Pharmaceutical Sciences, College of Pharmacy, Rosalind Franklin University of Medicine and Science, North Chicago, Illinois (K.M.A.); and Departments of Radiology (G.L.C., V.J.L.) and Neurology (G.L.C.), Mayo Clinic, College of Medicine, Rochester, Minnesota
| | - Kristen M Ahlschwede
- Department of Pharmaceutics and Brain Barriers Research Center (S.K.S., A.L.Z., K.M.A., K.K.K.) and Department of Experimental and Clinical Pharmacology (L.L.), University of Minnesota, College of Pharmacy, Minneapolis, Minnesota; Department of Pharmaceutical Sciences, College of Pharmacy, Rosalind Franklin University of Medicine and Science, North Chicago, Illinois (K.M.A.); and Departments of Radiology (G.L.C., V.J.L.) and Neurology (G.L.C.), Mayo Clinic, College of Medicine, Rochester, Minnesota
| | - Geoffry L Curran
- Department of Pharmaceutics and Brain Barriers Research Center (S.K.S., A.L.Z., K.M.A., K.K.K.) and Department of Experimental and Clinical Pharmacology (L.L.), University of Minnesota, College of Pharmacy, Minneapolis, Minnesota; Department of Pharmaceutical Sciences, College of Pharmacy, Rosalind Franklin University of Medicine and Science, North Chicago, Illinois (K.M.A.); and Departments of Radiology (G.L.C., V.J.L.) and Neurology (G.L.C.), Mayo Clinic, College of Medicine, Rochester, Minnesota
| | - Val J Lowe
- Department of Pharmaceutics and Brain Barriers Research Center (S.K.S., A.L.Z., K.M.A., K.K.K.) and Department of Experimental and Clinical Pharmacology (L.L.), University of Minnesota, College of Pharmacy, Minneapolis, Minnesota; Department of Pharmaceutical Sciences, College of Pharmacy, Rosalind Franklin University of Medicine and Science, North Chicago, Illinois (K.M.A.); and Departments of Radiology (G.L.C., V.J.L.) and Neurology (G.L.C.), Mayo Clinic, College of Medicine, Rochester, Minnesota
| | - Ling Li
- Department of Pharmaceutics and Brain Barriers Research Center (S.K.S., A.L.Z., K.M.A., K.K.K.) and Department of Experimental and Clinical Pharmacology (L.L.), University of Minnesota, College of Pharmacy, Minneapolis, Minnesota; Department of Pharmaceutical Sciences, College of Pharmacy, Rosalind Franklin University of Medicine and Science, North Chicago, Illinois (K.M.A.); and Departments of Radiology (G.L.C., V.J.L.) and Neurology (G.L.C.), Mayo Clinic, College of Medicine, Rochester, Minnesota
| | - Karunya K Kandimalla
- Department of Pharmaceutics and Brain Barriers Research Center (S.K.S., A.L.Z., K.M.A., K.K.K.) and Department of Experimental and Clinical Pharmacology (L.L.), University of Minnesota, College of Pharmacy, Minneapolis, Minnesota; Department of Pharmaceutical Sciences, College of Pharmacy, Rosalind Franklin University of Medicine and Science, North Chicago, Illinois (K.M.A.); and Departments of Radiology (G.L.C., V.J.L.) and Neurology (G.L.C.), Mayo Clinic, College of Medicine, Rochester, Minnesota
| |
Collapse
|
11
|
The Role of HDL and HDL Mimetic Peptides as Potential Therapeutics for Alzheimer's Disease. Biomolecules 2020; 10:biom10091276. [PMID: 32899606 PMCID: PMC7563116 DOI: 10.3390/biom10091276] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Revised: 08/25/2020] [Accepted: 08/31/2020] [Indexed: 12/11/2022] Open
Abstract
The role of high-density lipoproteins (HDL) in the cardiovascular system has been extensively studied and the cardioprotective effects of HDL are well established. As HDL particles are formed both in the systemic circulation and in the central nervous system, the role of HDL and its associated apolipoproteins in the brain has attracted much research interest in recent years. Alzheimer’s disease (AD) is the most prevalent neurodegenerative disorder and the leading cause of dementia worldwide, for which there currently exists no approved disease modifying treatment. Multiple lines of evidence, including a number of large-scale human clinical studies, have shown a robust connection between HDL levels and AD. Low levels of HDL are associated with increased risk and severity of AD, whereas high levels of HDL are correlated with superior cognitive function. Although the mechanisms underlying the protective effects of HDL in the brain are not fully understood, many of the functions of HDL, including reverse lipid/cholesterol transport, anti-inflammation/immune modulation, anti-oxidation, microvessel endothelial protection, and proteopathy modification, are thought to be critical for its beneficial effects. This review describes the current evidence for the role of HDL in AD and the potential of using small peptides mimicking HDL or its associated apolipoproteins (HDL-mimetic peptides) as therapeutics to treat AD.
Collapse
|
12
|
Castaño D, Rattanasopa C, Monteiro-Cardoso VF, Corlianò M, Liu Y, Zhong S, Rusu M, Liehn EA, Singaraja RR. Lipid efflux mechanisms, relation to disease and potential therapeutic aspects. Adv Drug Deliv Rev 2020; 159:54-93. [PMID: 32423566 DOI: 10.1016/j.addr.2020.04.013] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 04/29/2020] [Accepted: 04/30/2020] [Indexed: 02/06/2023]
Abstract
Lipids are hydrophobic and amphiphilic molecules involved in diverse functions such as membrane structure, energy metabolism, immunity, and signaling. However, altered intra-cellular lipid levels or composition can lead to metabolic and inflammatory dysfunction, as well as lipotoxicity. Thus, intra-cellular lipid homeostasis is tightly regulated by multiple mechanisms. Since most peripheral cells do not catabolize cholesterol, efflux (extra-cellular transport) of cholesterol is vital for lipid homeostasis. Defective efflux contributes to atherosclerotic plaque development, impaired β-cell insulin secretion, and neuropathology. Of these, defective lipid efflux in macrophages in the arterial walls leading to foam cell and atherosclerotic plaque formation has been the most well studied, likely because a leading global cause of death is cardiovascular disease. Circulating high density lipoprotein particles play critical roles as acceptors of effluxed cellular lipids, suggesting their importance in disease etiology. We review here mechanisms and pathways that modulate lipid efflux, the role of lipid efflux in disease etiology, and therapeutic options aimed at modulating this critical process.
Collapse
|
13
|
Oehler B, Brack A, Blum R, Rittner HL. Pain Control by Targeting Oxidized Phospholipids: Functions, Mechanisms, Perspectives. Front Endocrinol (Lausanne) 2020; 11:613868. [PMID: 33569042 PMCID: PMC7868524 DOI: 10.3389/fendo.2020.613868] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Accepted: 11/19/2020] [Indexed: 01/09/2023] Open
Abstract
Within the lipidome oxidized phospholipids (OxPL) form a class of chemically highly reactive metabolites. OxPL are acutely produced in inflamed tissue and act as endogenous, proalgesic (pain-inducing) metabolites. They excite sensory, nociceptive neurons by activating transient receptor potential ion channels, specifically TRPA1 and TRPV1. Under inflammatory conditions, OxPL-mediated receptor potentials even potentiate the action potential firing rate of nociceptors. Targeting OxPL with D-4F, an apolipoprotein A-I mimetic peptide or antibodies like E06, specifically binding oxidized headgroups of phospholipids, can be used to control acute, inflammatory pain syndromes, at least in rodents. With a focus on proalgesic specificities of OxPL, this article discusses, how targeting defined substances of the epilipidome can contribute to mechanism-based therapies against primary and secondary chronic inflammatory or possibly also neuropathic pain.
Collapse
Affiliation(s)
- Beatrice Oehler
- Wolfson Center of Age-Related Diseases, IoPPN, Health and Life Science, King’s College London, London, United Kingdom
- Department of Anesthesiology, University Hospital of Heidelberg, Heidelberg, Germany
- Department of Anesthesiology, University Hospital of Würzburg, Würzburg, Germany
| | - Alexander Brack
- Department of Anesthesiology, University Hospital of Würzburg, Würzburg, Germany
| | - Robert Blum
- Institute of Clinical Neurobiology, Department of Neurology, University Hospital of Würzburg, Würzburg, Germany
| | - Heike L. Rittner
- Department of Anesthesiology, University Hospital of Würzburg, Würzburg, Germany
- *Correspondence: Heike L. Rittner,
| |
Collapse
|
14
|
Association between decreased HDL levels and cognitive deficits in patients with bipolar disorder: a pilot study. Int J Bipolar Disord 2019; 7:25. [PMID: 31761966 PMCID: PMC6875532 DOI: 10.1186/s40345-019-0159-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Accepted: 09/04/2019] [Indexed: 02/07/2023] Open
Abstract
Background Cognitive deficits are common in patients with bipolar disorder (BD). Abnormal high density lipoprotein (HDL) levels have been implicated in cognitive deficits associated with ageing and neurodegenerative disorders. The present study aimed to investigate serum HDL levels, cognitive deficits and their association in patients with BD. Methods Thirty-seven patients with BD and 37 gender- and age-matched healthy controls (HCs) were recruited in a case–control study. Cognition was assessed using the Repeatable Battery for the Assessment of Neuropsychological Status (RBANS), and serum HDL levels were measured using enzymatic colourimetry. Results There was no difference in serum HDL levels between patients with BD and HCs after adjusting for gender, age, education and body mass index (BMI). Cognitive test scores in patients with BD were significantly lower than those in HCs except for the visuospatial/constructional index after adjusting for confounding variables. Serum HDL levels were positively correlated with RBANS total score and language score in patients with BD. Stepwise multiple regression analysis showed that serum HDL levels were significantly correlated with RBANS total score and subscale scores on immediate memory and language in patients with BD after adjusting for confounding factors. Conclusions Our findings suggest that patients with BD had poorer cognitive performance than HCs except for the visuospatial/constructional domain, and decreased serum HDL levels were correlated with cognitive deficits, especially in immediate memory and language domains in patients with BD.
Collapse
|
15
|
Abstract
PURPOSE OF REVIEW We review current knowledge regarding HDL and Alzheimer's disease, focusing on HDL's vasoprotective functions and potential as a biomarker and therapeutic target for the vascular contributions of Alzheimer's disease. RECENT FINDINGS Many epidemiological studies have observed that circulating HDL levels associate with decreased Alzheimer's disease risk. However, it is now understood that the functions of HDL may be more informative than levels of HDL cholesterol (HDL-C). Animal model studies demonstrate that HDL protects against memory deficits, neuroinflammation, and cerebral amyloid angiopathy (CAA). In-vitro studies using state-of-the-art 3D models of the human blood-brain barrier (BBB) confirm that HDL reduces vascular Aβ accumulation and attenuates Aβ-induced endothelial inflammation. Although HDL-based therapeutics have not been tested in clinical trials for Alzheimer's disease , several HDL formulations are in advanced phase clinical trials for coronary artery disease and atherosclerosis and could be leveraged toward Alzheimer's disease . SUMMARY Evidence from human studies, animal models, and bioengineered arteries supports the hypothesis that HDL protects against cerebrovascular dysfunction in Alzheimer's disease. Assays of HDL functions relevant to Alzheimer's disease may be desirable biomarkers of cerebrovascular health. HDL-based therapeutics may also be of interest for Alzheimer's disease, using stand-alone or combination therapy approaches.
Collapse
Affiliation(s)
- Emily B. Button
- Department of Pathology and Laboratory Medicine
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, British Columbia, Canada
| | - Jérôme Robert
- Department of Pathology and Laboratory Medicine
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, British Columbia, Canada
| | - Tara M. Caffrey
- Department of Pathology and Laboratory Medicine
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, British Columbia, Canada
| | - Jianjia Fan
- Department of Pathology and Laboratory Medicine
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, British Columbia, Canada
| | - Wenchen Zhao
- Department of Pathology and Laboratory Medicine
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, British Columbia, Canada
| | - Cheryl L. Wellington
- Department of Pathology and Laboratory Medicine
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
16
|
HMG-CoA Reductase Inhibitors Attenuate Neuronal Damage by Suppressing Oxygen Glucose Deprivation-Induced Activated Microglial Cells. Neural Plast 2019; 2019:7675496. [PMID: 30911291 PMCID: PMC6397982 DOI: 10.1155/2019/7675496] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Revised: 10/03/2018] [Accepted: 10/22/2018] [Indexed: 12/16/2022] Open
Abstract
Ischemic stroke is usually followed by inflammatory responses mediated by microglia. However, the effect of statins on directly preventing posthypoxia microglia inflammatory factors to prevent injury to surrounding healthy neurons is unclear. Atorvastatin and rosuvastatin, which have different physical properties regarding their lipid and water solubility, are the most common HMG-CoA reductase inhibitors (statins) and might directly block posthypoxia microglia inflammatory factors to prevent injury to surrounding neurons. Neuronal damage and microglial activation of the peri-infarct areas were investigated by Western blotting and immunofluorescence after 24 hours in a middle cerebral artery occlusion (MCAO) rat model. The decrease in neurons was in accordance with the increase in microglia, which could be reversed by both atorvastatin and rosuvastatin. The effects of statins on blocking secretions from posthypoxia microglia and reducing the secondary damage to surrounding normal neurons were studied in a coculture system in vitro. BV2 microglia were cultured under oxygen glucose deprivation (OGD) for 3 hours and then cocultured following reperfusion for 24 hours in the upper wells of transwell plates with primary neurons being cultured in the bottom wells. Inflammatory cytokines, including tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), and cyclooxygenase-2 (COX2), which are activated by the nuclear factor-kappa B (NF-κB) signaling pathway in OGD-induced BV2 microglia, promoted decreased release of the anti-inflammatory cytokine IL-10 and apoptosis of neurons in the coculture systems according to ELISA and Western blotting. However, pretreatment with atorvastatin or rosuvastatin significantly reduced neuronal death, synaptic injury, and amyloid-beta (Aβ) accumulation, which might lead to increased low-density lipoprotein receptors (LDLRs) in BV2 microglia. We concluded that the proinflammatory mediators released from postischemia damage could cause damage to surrounding normal neurons, while HMG-CoA reductase inhibitors prevented neuronal apoptosis and synaptic injury by inactivating microglia through blocking the NF-κB signaling pathway.
Collapse
|
17
|
Wang W, Zhu X. HDL mimetic peptides affect apolipoprotein E metabolism: equal supplement or functional enhancer?: An Editorial for 'High-density lipoprotein mimetic peptide 4F mitigates amyloid-β-induced inhibition of apolipoprotein E secretion and lipidation in primary astrocytes and microglia' on page 647. J Neurochem 2018; 147:580-583. [PMID: 30474860 DOI: 10.1111/jnc.14595] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Accepted: 09/17/2018] [Indexed: 01/15/2023]
Abstract
ε4 allele of ApoE is the strongest genetic risk factor for late onset Alzheimer's disease (AD). Supplementation of ApoE proteins or mimetics has been pursued for drug developments against AD. A very low-density lipoprotein (HDL) mimetic peptide 4F was shown to alleviate AD-related deficits in APP transgenic mice, and this editorial highlights a study by Chernick et al. who use both mouse and human neuroglial cells to explore the mechanism underlying beneficial effects of this peptide. The authors demonstrate that 4F peptide significantly increased the secretion and lipidation of ApoE in the absence and presence of Aβ independent of de novo transcription/translation, but requiring ABCA1 and the integrity of the secretory pathway between ER and Golgi. This study reveals a novel mechanism of HDL mimetic peptide as a functional ApoE enhancer and support further development of ApoA-I 4F peptide as effective ApoE modulating agents against AD.
Collapse
Affiliation(s)
- Wenzhang Wang
- Department of Pathology, Case Western Reserve University, Cleveland, Ohio, USA
| | - Xiongwei Zhu
- Department of Pathology, Case Western Reserve University, Cleveland, Ohio, USA
| |
Collapse
|
18
|
Chernick D, Ortiz-Valle S, Jeong A, Swaminathan SK, Kandimalla KK, Rebeck GW, Li L. High-density lipoprotein mimetic peptide 4F mitigates amyloid-β-induced inhibition of apolipoprotein E secretion and lipidation in primary astrocytes and microglia. J Neurochem 2018; 147:647-662. [PMID: 30028014 DOI: 10.1111/jnc.14554] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Revised: 06/26/2018] [Accepted: 07/14/2018] [Indexed: 01/06/2023]
Abstract
The apolipoprotein E (apoE) ε4 allele is the primary genetic risk factor for late-onset Alzheimer's disease (AD). ApoE in the brain is produced primarily by astrocytes; once secreted from these cells, apoE binds lipids and forms high-density lipoprotein (HDL)-like particles. Accumulation of amyloid-β protein (Aβ) in the brain is a key hallmark of AD, and is thought to initiate a pathogenic cascade leading to neurodegeneration and dementia. The level and lipidation state of apoE affect Aβ aggregation and clearance pathways. Elevated levels of plasma HDL are associated with lower risk and severity of AD; the underlying mechanisms, however, have not been fully elucidated. This study was designed to investigate the impact of an HDL mimetic peptide, 4F, on the secretion and lipidation of apoE. We found that 4F significantly increases apoE secretion and lipidation in primary human astrocytes as well as in primary mouse astrocytes and microglia. Aggregated Aβ inhibits glial apoE secretion and lipidation, causing accumulation of intracellular apoE, an effect that is counteracted by co-treatment with 4F. Pharmacological and gene editing approaches show that 4F mediates its effects partially through the secretory pathway from the endoplasmic reticulum to the Golgi apparatus and requires the lipid transporter ATP-binding cassette transporter A1. We conclude that the HDL mimetic peptide 4F promotes glial apoE secretion and lipidation and mitigates the detrimental effects of Aβ on proper cellular trafficking and functionality of apoE. These findings suggest that treatment with such an HDL mimetic peptide may provide therapeutic benefit in AD. Read the Editorial Highlight for this article on page 580.
Collapse
Affiliation(s)
- Dustin Chernick
- Department of Pharmacology, University of Minnesota, Minneapolis, Minnesota, USA
| | | | - Angela Jeong
- Department of Experimental and Clinical Pharmacology, University of Minnesota, Minneapolis, Minnesota, USA
| | - Suresh K Swaminathan
- Department of Pharmaceutics, University of Minnesota, Minneapolis, Minnesota, USA
| | - Karunya K Kandimalla
- Department of Pharmaceutics, University of Minnesota, Minneapolis, Minnesota, USA
| | - G William Rebeck
- Department of Neuroscience, Georgetown University, Washington, District of Columbia, USA
| | - Ling Li
- Department of Pharmacology, University of Minnesota, Minneapolis, Minnesota, USA.,Department of Experimental and Clinical Pharmacology, University of Minnesota, Minneapolis, Minnesota, USA.,Graduate Program in Neuroscience, University of Minnesota, Minneapolis, Minnesota, USA
| |
Collapse
|
19
|
Reed LC, Estrada SM, Walton RB, Napolitano PG, Ieronimakis N. Evaluating maternal hyperglycemic exposure and fetal placental arterial dysfunction in a dual cotyledon, dual perfusion model. Placenta 2018; 69:109-116. [PMID: 30213479 DOI: 10.1016/j.placenta.2018.07.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Revised: 07/11/2018] [Accepted: 07/27/2018] [Indexed: 01/17/2023]
Abstract
BACKGROUND Gestational diabetes affects almost 1 in 10 pregnancies and is associated with adverse outcomes including fetal demise. Pregnancy complications related to diabetes are attributed to placental vascular dysfunction. With diabetes, maternal hyperglycemia is thought to promote placental vasoconstriction. However, it remains poorly understood if and how hyperglycemia leads to placental vascular dysfunction or if humoral factors related to maternal diabetes are responsible. METHODS AND RESULTS Utilizing a human placenta dual cotyledon, dual perfusion assay we examined the arterial pressure response to the thromboxane mimetic U44619, in cotyledons exposed to normal vs. a hyperglycemic infusion into the intervillous space. Tissues were then analyzed for the activity of key signaling molecules related to vascular tone; eNOS, Akt, PKA and VEGFR2. Results indicate a significant increase in fetal vascular resistance with maternal exposure to hyperglycemia. This response corresponded with a reduction in the phosphorylation of eNOS at Ser1177 and Akt at Thr308. In contrast, VEGFR2 at Tyr1175 and PKA at Thr197 were not different with hyperglycemia. CONCLUSION Reductions of eNOS and Akt phosphorylation at key residues implicated in nitric oxide production suggest that hyperglycemia alters the vasodilatory signaling of placental vessels. In contrast, acute hyperglycemic exposure may not alter vasoconstriction via VEGF and PKA signaling. Altogether our results link hyperglycemic exposure in human placentas to nitric oxide signaling; a mechanisms that may account for the elevations in vascular resistance commonly observed in diabetic pregnancies.
Collapse
Affiliation(s)
- Luckey C Reed
- Department of Obstetrics and Gynecology, Madigan Army Medical Center, Tacoma, WA, USA
| | - Sarah M Estrada
- Department of Obstetrics and Gynecology, Madigan Army Medical Center, Tacoma, WA, USA
| | - Robert B Walton
- Department of Obstetrics and Gynecology, Madigan Army Medical Center, Tacoma, WA, USA
| | - Peter G Napolitano
- Department of Obstetrics and Gynecology, Madigan Army Medical Center, Tacoma, WA, USA
| | - Nicholas Ieronimakis
- Department of Clinical Investigation, Madigan Army Medical Center, Tacoma, WA, USA.
| |
Collapse
|
20
|
Walton RB, Reed LC, Estrada SM, Schmiedecke SS, Villazana-Kretzer DL, Napolitano PG, Ieronimakis N. Evaluation of Sildenafil and Tadalafil for Reversing Constriction of Fetal Arteries in a Human Placenta Perfusion Model. Hypertension 2018; 72:167-176. [PMID: 29735634 DOI: 10.1161/hypertensionaha.117.10738] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Revised: 12/28/2017] [Accepted: 04/11/2018] [Indexed: 11/16/2022]
Abstract
Fetal growth restriction resulting from reduced placental blood perfusion is a major cause of neonatal morbidity and mortality. Aside from intense surveillance and early delivery, there is no treatment for fetal growth restriction. A potential treatment associated with placental vasoconstriction is the class of PDE5 (phosphodiesterase type 5) inhibitors such as sildenafil, which is known to cross the placenta. In contrast, tadalafil, a more potent and selective PDE5 inhibitor has not been studied in pregnancy or experimental models of fetal growth restriction. Therefore, we compared the efficacy of these 2 PDE5 inhibitors for reversing vasoconstriction in an ex vivo human placental model and evaluating molecular and physiological responses. Sildenafil and tadalafil were infused into the intervillous space in a preconstricted human placental dual cotyledon, dual perfusion assay for the comparison of arteriole pressures and molecular indicators of drug inhibition. Results indicate a decrease arterial pressure with sildenafil citrate compared with controls, whereas tadalafil showed no difference. PDE5 and endothelial nitric oxide synthase activity were altered with sildenafil but not tadalafil. Sildenafil citrate improved preconstricted placental arterial perfusion in a human placental model, whereas tadalafil showed no response. It is possible that tadalafil did not cross the human placental barrier or was degraded by trophoblasts. This study supports human clinical trials exploring sildenafil as a potential treatment for improving fetal blood flow in fetal growth restriction associated with vasoconstriction.
Collapse
Affiliation(s)
- Robert B Walton
- From the Department of Obstetrics and Gynecology (R.B.W., L.C.R., S.M.E., S.S.S., D.L.V.-K., P.G.N.)
| | - Luckey C Reed
- From the Department of Obstetrics and Gynecology (R.B.W., L.C.R., S.M.E., S.S.S., D.L.V.-K., P.G.N.)
| | - Sarah M Estrada
- From the Department of Obstetrics and Gynecology (R.B.W., L.C.R., S.M.E., S.S.S., D.L.V.-K., P.G.N.)
| | - Stacey S Schmiedecke
- From the Department of Obstetrics and Gynecology (R.B.W., L.C.R., S.M.E., S.S.S., D.L.V.-K., P.G.N.)
| | - Diana L Villazana-Kretzer
- From the Department of Obstetrics and Gynecology (R.B.W., L.C.R., S.M.E., S.S.S., D.L.V.-K., P.G.N.)
| | - Peter G Napolitano
- From the Department of Obstetrics and Gynecology (R.B.W., L.C.R., S.M.E., S.S.S., D.L.V.-K., P.G.N.)
| | - Nicholas Ieronimakis
- Department of Clinical Investigation (N.I.), Madigan Army Medical Center, Joint Base Lewis-McCord, Tacoma, WA.
| |
Collapse
|
21
|
Rutkowsky JM, Lee LL, Puchowicz M, Golub MS, Befroy DE, Wilson DW, Anderson S, Cline G, Bini J, Borkowski K, Knotts TA, Rutledge JC. Reduced cognitive function, increased blood-brain-barrier transport and inflammatory responses, and altered brain metabolites in LDLr -/-and C57BL/6 mice fed a western diet. PLoS One 2018; 13:e0191909. [PMID: 29444171 PMCID: PMC5812615 DOI: 10.1371/journal.pone.0191909] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Accepted: 01/12/2018] [Indexed: 12/20/2022] Open
Abstract
Recent work suggests that diet affects brain metabolism thereby impacting cognitive function. Our objective was to determine if a western diet altered brain metabolism, increased blood-brain barrier (BBB) transport and inflammation, and induced cognitive impairment in C57BL/6 (WT) mice and low-density lipoprotein receptor null (LDLr -/-) mice, a model of hyperlipidemia and cognitive decline. We show that a western diet and LDLr -/- moderately influence cognitive processes as assessed by Y-maze and radial arm water maze. Also, western diet significantly increased BBB transport, as well as microvessel factor VIII in LDLr -/- and microglia IBA1 staining in WT, both indicators of activation and neuroinflammation. Interestingly, LDLr -/- mice had a significant increase in 18F- fluorodeoxyglucose uptake irrespective of diet and brain 1H-magnetic resonance spectroscopy showed increased lactate and lipid moieties. Metabolic assessments of whole mouse brain by GC/MS and LC/MS/MS showed that a western diet altered brain TCA cycle and β-oxidation intermediates, levels of amino acids, and complex lipid levels and elevated proinflammatory lipid mediators. Our study reveals that the western diet has multiple impacts on brain metabolism, physiology, and altered cognitive function that likely manifest via multiple cellular pathways.
Collapse
Affiliation(s)
- Jennifer M. Rutkowsky
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, California, United States of America
- * E-mail:
| | - Linda L. Lee
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of California, Davis, California, United States of America
| | - Michelle Puchowicz
- Department of Nutrition, School of Medicine, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Mari S. Golub
- Department of Environmental Toxicology, University of California, Davis, California, United States of America
| | - Douglas E. Befroy
- Magnetic Resonance Research Center, Department of Diagnostic Radiology, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Dennis W. Wilson
- Department of Pathology, Microbiology, and Immunology, School of Veterinary Medicine, University of California, Davis, California, United States of America
| | - Steven Anderson
- Department of Physiology and Membrane Biology, University of California, Davis, California, United States of America
| | - Gary Cline
- Department of Endocrinology, Yale University, New Haven, Connecticut, United States of America
| | - Jason Bini
- Yale PET Center, Department of Diagnostic Radiology, Yale University, New Haven, Connecticut, United States of America
| | - Kamil Borkowski
- West Coast Metabolomics Center, Genome Center, University of California, Davis, California, United States of America
| | - Trina A. Knotts
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, California, United States of America
| | - John C. Rutledge
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, California, United States of America
| | | |
Collapse
|
22
|
Dunbar RL, Movva R, Bloedon LT, Duffy D, Norris RB, Navab M, Fogelman AM, Rader DJ. Oral Apolipoprotein A-I Mimetic D-4F Lowers HDL-Inflammatory Index in High-Risk Patients: A First-in-Human Multiple-Dose, Randomized Controlled Trial. Clin Transl Sci 2017; 10:455-469. [PMID: 28795506 PMCID: PMC5673907 DOI: 10.1111/cts.12487] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Accepted: 06/13/2017] [Indexed: 12/26/2022] Open
Abstract
A single dose of the apolipoprotein (apo)A-I mimetic peptide D-4F rendered high-density lipoprotein (HDL) less inflammatory, motivating the first multiple-dose study. We aimed to assess safety/tolerability, pharmacokinetics, and pharmacodynamics of daily, orally administered D-4F. High-risk coronary heart disease (CHD) subjects added double-blinded placebo or D-4F to statin for 13 days, randomly assigned 1:3 to ascending cohorts of 100, 300, then 500 mg (n = 62; 46 men/16 women). D-4F was safe and well-tolerated. Mean ± SD plasma D-4F area under the curve (AUC, 0-8h) was 6.9 ± 5.7 ng/mL*h (100 mg), 22.7 ± 19.6 ng/mL*h (300 mg), and 104.0 ± 60.9 ng/mL*h (500 mg) among men, higher among women. Whereas placebo dropped HDL inflammatory index (HII) 28% 8 h postdose (range, 1.25-0.86), 300-500 mg D-4F effectively halved HII: 1.35-0.57 and 1.22-0.63, respectively (P < 0.03 vs. placebo). Oral D-4F peptide dose predicted HII suppression, whereas plasma D-4F exposure was dissociated, suggesting plasma penetration is unnecessary. In conclusion, oral D-4F dosing rendered HDL less inflammatory, affirming oral D-4F as a potential therapy to improve HDL function.
Collapse
Affiliation(s)
- Richard L Dunbar
- Department of Medicine, Division of Translational Medicine and Human Genetics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA.,Department of Medicine, Division of Cardiovascular Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA.,Institute for Translational Medicine and Therapeutics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA.,The Cardiovascular Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Rajesh Movva
- Eastern Maine Medical Center, Bangor, Maine, USA
| | | | - Danielle Duffy
- Department of Medicine, Division of Cardiology, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Robert B Norris
- Department of Medicine, Division of Cardiovascular Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Mohamad Navab
- University of California, Los Angeles, California, USA
| | | | - Daniel J Rader
- Department of Medicine, Division of Translational Medicine and Human Genetics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA.,Department of Medicine, Division of Cardiovascular Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA.,Institute for Translational Medicine and Therapeutics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA.,The Cardiovascular Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
23
|
Iqbal F, Durham WJ, Melhem A, Raslan S, Tran TT, Wright TJ, Asghar R, Fujise K, Volpi E, Sidossis L, Abate N, Sheffield-Moore M, Tuvdendorj D. Sex-dependent difference in the relationship between adipose-tissue cholesterol efflux and estradiol concentrations in young healthy humans. Int J Dev Neurosci 2017; 64:59-62. [PMID: 28709820 DOI: 10.1016/j.ijdevneu.2017.07.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Revised: 06/16/2017] [Accepted: 07/09/2017] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Impaired adipose tissue function and lower levels of high density lipoprotein cholesterol (HDL-C) have been implicated in the development of vascular dementia, and metabolic diseases such as hypertension, atherosclerosis, type 2 diabetes (T2D) and metabolic syndrome. Interestingly, both the substrate fluxes in adipose tissue and HDL-C concentration differ between men and women. Moreover, adipose tissue cholesterol efflux has been implicated in modulation of HDL-C levels. Thus, we aimed to determine if the association between serum estradiol levels and adipose tissue cholesterol efflux is sex-dependent. METHOD We evaluated the serum estradiol levels and adipose tissue cholesterol efflux in young healthy men (n=5) and women (n=3). Adipose tissue cholesterol efflux was determined using subcutaneous microdialysis probes. Linear regression analyses were used to determine the relationship between the parameters, p<0.05 was considered as statistically significant. RESULTS Our data demonstrated that serum estradiol levels directly associated with adipose tissue cholesterol efflux; however, the relationships may be sex-dependent. We discussed our results in the context of currently available data regarding sex-dependent variability in adipose tissue function and HDL-C metabolism as a potential contributor to higher rates of vascular dementia in men. Further research is required to understand the sex-dependent and -independent variabilities in adipose tissue metabolism to determine novel targets for interventions to prevent the development of vascular dementia.
Collapse
Affiliation(s)
- Fatima Iqbal
- Department of Internal Medicine, University of Texas Medical Branch, Galveston, TX 77555, United States
| | - William J Durham
- Department of Internal Medicine, University of Texas Medical Branch, Galveston, TX 77555, United States
| | - Ayyash Melhem
- Department of Internal Medicine, University of Texas Medical Branch, Galveston, TX 77555, United States
| | - Saleem Raslan
- Department of Internal Medicine, University of Texas Medical Branch, Galveston, TX 77555, United States
| | - Tony T Tran
- Department of Internal Medicine, University of Texas Medical Branch, Galveston, TX 77555, United States
| | - Traver J Wright
- Department of Internal Medicine, University of Texas Medical Branch, Galveston, TX 77555, United States
| | - Rabia Asghar
- Department of Internal Medicine, University of Texas Medical Branch, Galveston, TX 77555, United States
| | - Ken Fujise
- Department of Internal Medicine, University of Texas Medical Branch, Galveston, TX 77555, United States
| | - Elena Volpi
- Department of Internal Medicine, University of Texas Medical Branch, Galveston, TX 77555, United States
| | - Labros Sidossis
- Department of Internal Medicine, University of Texas Medical Branch, Galveston, TX 77555, United States
| | - Nicola Abate
- Department of Internal Medicine, University of Texas Medical Branch, Galveston, TX 77555, United States
| | - Melinda Sheffield-Moore
- Department of Internal Medicine, University of Texas Medical Branch, Galveston, TX 77555, United States
| | - Demidmaa Tuvdendorj
- Department of Internal Medicine, University of Texas Medical Branch, Galveston, TX 77555, United States.
| |
Collapse
|
24
|
Proteomic approach to detect changes in hippocampal protein levels in an animal model of type 2 diabetes. Neurochem Int 2017; 108:246-253. [PMID: 28434974 DOI: 10.1016/j.neuint.2017.04.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2016] [Revised: 03/16/2017] [Accepted: 04/19/2017] [Indexed: 12/21/2022]
Abstract
In our previous study, we demonstrated that type 2 diabetes affects blood-brain barrier integrity and ultrastructural morphology in Zucker diabetic fatty (ZDF) rats at 40 weeks of age. In the present study, we investigated the possible candidates for diabetes-related proteins in the hippocampus of ZDF rats and their control littermates (Zucker lean control, ZLC), by using two-dimensional fluorescence difference gel electrophoresis (2D-DIGE) followed by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF). Approximately 2756 protein spots were detected by 2D-DIGE, and an increase or decrease of more than 1.4-fold was observed for 13 proteins in the hippocampal homogenates of ZDF rats relative to those of ZLC rats. Among these proteins, we found four proteins whose levels were significantly lower in the hippocampi of ZDF rats than in those of ZLC rats: glial fibrillary acidic protein (GFAP), apolipoprotein A-I preprotein (apoAI-P), myelin basic protein (MBP), and rCG39881, isoform CRA_a. Among these proteins, apoAI-P protein levels were decreased most prominently in ZDF rats than in ZLC rats, based on Western blot analysis. In addition, immunohistochemical and Western blot studies demonstrated that MBP, not GFAP, immunoreactivity and protein levels were significantly decreased in the hippocampus of ZDF rats compared to ZLC rats. In addition, ultrastructural analysis showed that ZDF rats showed myelin degeneration and disarrangement in the hippocampal tissue. These results suggest that chronic type 2 diabetes affects hippocampal function via reduction of MBP and apoAI-P levels as well as disarrangement of myelin.
Collapse
|
25
|
Lee LL, Aung HH, Wilson DW, Anderson SE, Rutledge JC, Rutkowsky JM. Triglyceride-rich lipoprotein lipolysis products increase blood-brain barrier transfer coefficient and induce astrocyte lipid droplets and cell stress. Am J Physiol Cell Physiol 2017; 312:C500-C516. [PMID: 28077357 DOI: 10.1152/ajpcell.00120.2016] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Revised: 01/06/2017] [Accepted: 01/09/2017] [Indexed: 12/19/2022]
Abstract
Elevation of blood triglycerides, primarily as triglyceride-rich lipoproteins (TGRL), has been linked to cerebrovascular inflammation, vascular dementia, and Alzheimer's disease (AD). Brain microvascular endothelial cells and astrocytes, two cell components of the neurovascular unit, participate in controlling blood-brain barrier (BBB) permeability and regulating neurovascular unit homeostasis. Our studies showed that infusion of high physiological concentrations of TGRL lipolysis products (TGRL + lipoprotein lipase) activate and injure brain endothelial cells and transiently increase the BBB transfer coefficient (Ki = permeability × surface area/volume) in vivo. However, little is known about how blood lipids affect astrocyte lipid accumulation and inflammation. To address this, we first demonstrated TGRL lipolysis products increased lipid droplet formation in cultured normal human astrocytes. We then evaluated the transcriptional pathways activated in astrocytes by TGRL lipolysis products and found upregulated stress and inflammatory-related genes including activating transcription factor 3 (ATF3), macrophage inflammatory protein-3α (MIP-3α), growth differentiation factor-15 (GDF15), and prostaglandin-endoperoxide synthase 2 (COX2). TGRL lipolysis products also activated the JNK/cJUN/ATF3 pathway, induced endoplasmic reticulum stress protein C/EBP homologous protein (CHOP), and the NF-κB pathway, while increasing secretion of MIP-3α, GDF15, and IL-8. Thus our results demonstrate TGRL lipolysis products increase the BBB transfer coefficient (Ki), induce astrocyte lipid droplet formation, activate cell stress pathways, and induce secretion of inflammatory cytokines. Our observations are consistent with evidence for lipid-induced neurovascular injury and inflammation, and we, therefore, speculate that lipid-induced astrocyte injury could play a role in cognitive decline.
Collapse
Affiliation(s)
- Linda L Lee
- Department of Internal Medicine, University of California, Davis, California
| | - Hnin H Aung
- Department of Internal Medicine, University of California, Davis, California
| | - Dennis W Wilson
- Department of Pathology, Microbiology, and Immunology, School of Veterinary Medicine, University of California, Davis, California; and
| | - Steven E Anderson
- Department of Physiology and Membrane Biology, University of California, Davis, California
| | - John C Rutledge
- Department of Internal Medicine, University of California, Davis, California
| | | |
Collapse
|
26
|
Cumulative Brain Injury from Motor Vehicle-Induced Whole-Body Vibration and Prevention by Human Apolipoprotein A-I Molecule Mimetic (4F) Peptide (an Apo A-I Mimetic). J Stroke Cerebrovasc Dis 2016; 24:2759-73. [PMID: 26433438 DOI: 10.1016/j.jstrokecerebrovasdis.2015.08.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Revised: 07/23/2015] [Accepted: 08/04/2015] [Indexed: 11/21/2022] Open
Abstract
BACKGROUND Insidious cumulative brain injury from motor vehicle-induced whole-body vibration (MV-WBV) has not yet been studied. The objective of the present study is to validate whether whole-body vibration for long periods causes cumulative brain injury and impairment of the cerebral function. We also explored a preventive method for MV-WBV injury. METHODS A study simulating whole-body vibration was conducted in 72 male Sprague-Dawley rats divided into 9 groups (N = 8): (1) 2-week normal control; (2) 2-week sham control (in the tube without vibration); (3) 2-week vibration (exposed to whole-body vibration at 30 Hz and .5 G acceleration for 4 hours/day, 5 days/week for 2 weeks; vibration parameters in the present study are similar to the most common driving conditions); (4) 4-week sham control; (5) 4-week vibration; (6) 4-week vibration with human apolipoprotein A-I molecule mimetic (4F)-preconditioning; (7) 8-week sham control; (8) 8-week vibration; and (9) 8-week 4F-preconditioning group. All the rats were evaluated by behavioral, physiological, and histological studies of the brain. RESULTS Brain injury from vibration is a cumulative process starting with cerebral vasoconstriction, squeezing of the endothelial cells, increased free radicals, decreased nitric oxide, insufficient blood supply to the brain, and repeated reperfusion injury to brain neurons. In the 8-week vibration group, which indicated chronic brain edema, shrunken neuron numbers increased and whole neurons atrophied, which strongly correlated with neural functional impairment. There was no prominent brain neuronal injury in the 4F groups. CONCLUSIONS The present study demonstrated cumulative brain injury from MV-WBV and validated the preventive effects of 4F preconditioning.
Collapse
|
27
|
Bhat NR. Vasculoprotection as a Convergent, Multi-Targeted Mechanism of Anti-AD Therapeutics and Interventions. J Alzheimers Dis 2016; 46:581-91. [PMID: 26402511 DOI: 10.3233/jad-150098] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Using a variety of animal models of Alzheimer's disease (AD), there have been a number of recent studies reporting varying degrees of success with anti-AD therapeutics. The efficacies are often discussed in terms of the modulatory effects of the compounds tested on identified or assumed targets among the known (or proposed) pathogenic and neuroprotective mechanisms, largely within the context of the dominant amyloid cascade hypothesis. However, it is clear that several of the relatively more efficacious treatments tend to be multifunctional and target multiple pathological processes associated with AD including most commonly, oxidative and metabolic stress and neuroinflammation. Increasing evidence suggests that vascular and neurodegenerative pathologies often co-exist and that neurovascular dysfunction plays a critical role in the development or progression of AD. In this review, we will discuss the significance of vasculoprotection or neurovascular unit integrity as a common, multi-targeted mechanism underlying the reported efficacy of a majority of anti-AD therapeutics--amyloid-targeted or otherwise--while providing a strong support for future neurovascular-based treatment strategies and interventions.
Collapse
|
28
|
Bocharov AV, Wu T, Baranova IN, Birukova AA, Sviridov D, Vishnyakova TG, Remaley AT, Eggerman TL, Patterson AP, Birukov KG. Synthetic Amphipathic Helical Peptides Targeting CD36 Attenuate Lipopolysaccharide-Induced Inflammation and Acute Lung Injury. THE JOURNAL OF IMMUNOLOGY 2016; 197:611-9. [PMID: 27316682 DOI: 10.4049/jimmunol.1401028] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2014] [Accepted: 04/28/2016] [Indexed: 01/07/2023]
Abstract
Synthetic amphipathic helical peptides (SAHPs) designed as apolipoprotein A-I mimetics are known to bind to class B scavenger receptors (SR-Bs), SR-BI, SR-BII, and CD36, receptors that mediate lipid transport and facilitate pathogen recognition. In this study, we evaluated SAHPs, selected for targeting human CD36, by their ability to attenuate LPS-induced inflammation, endothelial barrier dysfunction, and acute lung injury (ALI). L37pA, which targets CD36 and SR-BI equally, inhibited LPS-induced IL-8 secretion and barrier dysfunction in cultured endothelial cells while reducing lung neutrophil infiltration by 40% in a mouse model of LPS-induced ALI. A panel of 20 SAHPs was tested in HEK293 cell lines stably transfected with various SR-Bs to identify SAHPs with preferential selectivity toward CD36. Among several SAHPs targeting both SR-BI/BII and CD36 receptors, ELK-B acted predominantly through CD36. Compared with L37pA, 5A, and ELK SAHPs, ELK-B was most effective in reducing the pulmonary barrier dysfunction, neutrophil migration into the lung, and lung inflammation induced by LPS. We conclude that SAHPs with relative selectivity toward CD36 are more potent at inhibiting acute pulmonary inflammation and dysfunction. These data indicate that therapeutic strategies using SAHPs targeting CD36, but not necessarily mimicking all apolipoprotein A-I functions, may be considered a possible new treatment approach for inflammation-induced ALI and pulmonary edema.
Collapse
Affiliation(s)
- Alexander V Bocharov
- Department of Laboratory Medicine, Clinical Center, National Institutes of Health, Bethesda, MD 20892; National Heart, Lung, and Blood Institute, Bethesda, MD 20892;
| | - Tinghuai Wu
- Lung Injury Center, The University of Chicago, Chicago, IL 60637
| | - Irina N Baranova
- Department of Laboratory Medicine, Clinical Center, National Institutes of Health, Bethesda, MD 20892
| | - Anna A Birukova
- Lung Injury Center, The University of Chicago, Chicago, IL 60637
| | - Denis Sviridov
- National Institute of Diabetes, Digestive, and Kidney Diseases, Bethesda, MD 20892; and
| | - Tatyana G Vishnyakova
- Department of Laboratory Medicine, Clinical Center, National Institutes of Health, Bethesda, MD 20892
| | - Alan T Remaley
- National Heart, Lung, and Blood Institute, Bethesda, MD 20892
| | - Thomas L Eggerman
- Department of Laboratory Medicine, Clinical Center, National Institutes of Health, Bethesda, MD 20892; National Institute of Diabetes, Digestive, and Kidney Diseases, Bethesda, MD 20892; and
| | - Amy P Patterson
- Department of Laboratory Medicine, Clinical Center, National Institutes of Health, Bethesda, MD 20892; Office of Science Policy, Office of the Director, National Institutes of Health, Bethesda, MD 20892
| | | |
Collapse
|
29
|
Constantinou C, Karavia EA, Xepapadaki E, Petropoulou PI, Papakosta E, Karavyraki M, Zvintzou E, Theodoropoulos V, Filou S, Hatziri A, Kalogeropoulou C, Panayiotakopoulos G, Kypreos KE. Advances in high-density lipoprotein physiology: surprises, overturns, and promises. Am J Physiol Endocrinol Metab 2016; 310:E1-E14. [PMID: 26530157 DOI: 10.1152/ajpendo.00429.2015] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Accepted: 10/30/2015] [Indexed: 12/21/2022]
Abstract
Emerging evidence strongly supports that changes in the HDL metabolic pathway, which result in changes in HDL proteome and function, appear to have a causative impact on a number of metabolic disorders. Here, we provide a critical review of the most recent and novel findings correlating HDL properties and functionality with various pathophysiological processes and disease states, such as obesity, type 2 diabetes mellitus, nonalcoholic fatty liver disease, inflammation and sepsis, bone and obstructive pulmonary diseases, and brain disorders.
Collapse
Affiliation(s)
| | - Eleni A Karavia
- Pharmacology Department, University of Patras Medical School, Rio Achaias, Greece
| | - Eva Xepapadaki
- Pharmacology Department, University of Patras Medical School, Rio Achaias, Greece
| | | | - Eugenia Papakosta
- Pharmacology Department, University of Patras Medical School, Rio Achaias, Greece
| | - Marilena Karavyraki
- Pharmacology Department, University of Patras Medical School, Rio Achaias, Greece
| | - Evangelia Zvintzou
- Pharmacology Department, University of Patras Medical School, Rio Achaias, Greece
| | | | - Serafoula Filou
- Pharmacology Department, University of Patras Medical School, Rio Achaias, Greece
| | - Aikaterini Hatziri
- Pharmacology Department, University of Patras Medical School, Rio Achaias, Greece
| | | | | | - Kyriakos E Kypreos
- Pharmacology Department, University of Patras Medical School, Rio Achaias, Greece
| |
Collapse
|
30
|
Cui X, Chopp M, Zacharek A, Cui C, Yan T, Ning R, Chen J. D-4F Decreases White Matter Damage After Stroke in Mice. Stroke 2015; 47:214-20. [PMID: 26604250 DOI: 10.1161/strokeaha.115.011046] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Accepted: 10/27/2015] [Indexed: 01/10/2023]
Abstract
BACKGROUND AND PURPOSE Stroke-induced neuroinflammation and white matter damage are associated with neurological deficits. Whether D-4F, an apolipoprotein A-I mimetic peptide, treatment of stroke decreases neuroinflammation and white matter damage and improves functional outcome has not been investigated. METHODS Adult male C57BL/6 mice were subjected to permanent middle cerebral artery occlusion (MCAo) and were orally administered saline as a vehicle control and different doses of D-4F (2, 4, 8, 16, or 32 mg/kg) starting at 2 h after MCAo and daily until euthanized at 7 days after MCAo. D-4F treatment did not alter the blood levels of high-density lipoprotein, total cholesterol, triglyceride, blood-brain barrier leakage, and infarction volume compared with control group. RESULTS D-4F (16 mg/kg) treatment of stroke significantly improved functional outcome, increased the white matter density and the number of oligodendrocyte progenitor cells in the ischemic boundary zone of the ipsilateral striatum, and increased myelin basic protein, insulin-like growth factor-1 (IGF1), but decreased inflammatory factor Toll-like receptor-4 and tumor necrosis factor-α expression in the ischemic brain 7 days after MCAo (P<0.05, n=11/group). The neurite/axonal outgrowth in primary cultured neurons was significantly increased when treated with D-4F (100 ng/mL) and IGF1 (100 ng/mL) compared with the nontreatment control. Inhibition of IGF1 significantly attenuated D-4F or IGF1 treatment-induced axonal outgrowth. D-4F-treatment did not increase oligodendrocyte-progenitor cell proliferation but decreased oligodendrocyte-progenitor cell death. CONCLUSIONS D-4F treatment initiated 2 h after MCAo decreases neuroinflammation and white matter damage and improves functional outcome after stroke. D-4F-induced increase in IGF1 may contribute to D-4F-induced neurite/axonal outgrowth after stroke.
Collapse
Affiliation(s)
- Xu Cui
- From the Department of Neurology, Henry Ford Hospital, Detroit, MI (X.C., M.C., A.Z., C.C., T.Y., R.N., J.C.); and Department of Physics, Oakland University, Rochester, MI (M.C.)
| | - Michael Chopp
- From the Department of Neurology, Henry Ford Hospital, Detroit, MI (X.C., M.C., A.Z., C.C., T.Y., R.N., J.C.); and Department of Physics, Oakland University, Rochester, MI (M.C.)
| | - Alex Zacharek
- From the Department of Neurology, Henry Ford Hospital, Detroit, MI (X.C., M.C., A.Z., C.C., T.Y., R.N., J.C.); and Department of Physics, Oakland University, Rochester, MI (M.C.)
| | - Chengcheng Cui
- From the Department of Neurology, Henry Ford Hospital, Detroit, MI (X.C., M.C., A.Z., C.C., T.Y., R.N., J.C.); and Department of Physics, Oakland University, Rochester, MI (M.C.)
| | - Tao Yan
- From the Department of Neurology, Henry Ford Hospital, Detroit, MI (X.C., M.C., A.Z., C.C., T.Y., R.N., J.C.); and Department of Physics, Oakland University, Rochester, MI (M.C.)
| | - Ruizhuo Ning
- From the Department of Neurology, Henry Ford Hospital, Detroit, MI (X.C., M.C., A.Z., C.C., T.Y., R.N., J.C.); and Department of Physics, Oakland University, Rochester, MI (M.C.)
| | - Jieli Chen
- From the Department of Neurology, Henry Ford Hospital, Detroit, MI (X.C., M.C., A.Z., C.C., T.Y., R.N., J.C.); and Department of Physics, Oakland University, Rochester, MI (M.C.).
| |
Collapse
|
31
|
Namiri-Kalantari R, Gao F, Chattopadhyay A, Wheeler AA, Navab KD, Farias-Eisner R, Reddy ST. The dual nature of HDL: Anti-Inflammatory and pro-Inflammatory. Biofactors 2015; 41:153-9. [PMID: 26072738 DOI: 10.1002/biof.1205] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2014] [Accepted: 02/16/2015] [Indexed: 01/07/2023]
Abstract
High density lipoprotein (HDL) has long been considered a protective factor against the development of coronary heart disease. Two important roles of HDL include reverse cholesterol transport (RCT) and the modulation of inflammation. The main protein component of HDL; apolipoprotein A-I (apo A-I) is primarily responsible for RCT. Apo A-I can be damaged by oxidative mechanisms, which reduce the protein's ability to promote RCT. In disease states such as diabetes, associated with a chronic acute-phase response, HDL has been found to be dysfunctional and pro-inflammatory. HDL cholesterol levels do not predict composition and/or function and therefore it is important to evaluate the quality and not just the quantity of HDL cholesterol when considering the risk of cardiovascular events. In clinical practice, there are currently no widely available tests for measuring the composition, functionality, and inflammatory properties of HDL. Small peptides that mimic some of the properties of apo A-I have been shown in pre-clinical models to improve HDL function and reduce atherosclerosis without altering HDL cholesterol levels. Clinical trials using HDL and HDL mimetics as therapeutic agents are currently underway. Results in animal studies and early clinical trials will be reviewed.
Collapse
Affiliation(s)
- Ryan Namiri-Kalantari
- Departments of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Feng Gao
- Obstetrics and Gynecology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Arnab Chattopadhyay
- Departments of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Aerin Alese Wheeler
- Departments of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Kaveh D Navab
- Departments of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Robin Farias-Eisner
- Obstetrics and Gynecology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Srinivasa T Reddy
- Departments of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
- Obstetrics and Gynecology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
- Molecular and Medical Pharmacology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| |
Collapse
|
32
|
Hottman DA, Chernick D, Cheng S, Wang Z, Li L. HDL and cognition in neurodegenerative disorders. Neurobiol Dis 2014; 72 Pt A:22-36. [PMID: 25131449 DOI: 10.1016/j.nbd.2014.07.015] [Citation(s) in RCA: 121] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2014] [Revised: 06/26/2014] [Accepted: 07/28/2014] [Indexed: 12/12/2022] Open
Abstract
High-density lipoproteins (HDLs) are a heterogeneous group of lipoproteins composed of various lipids and proteins. HDL is formed both in the systemic circulation and in the brain. In addition to being a crucial player in the reverse cholesterol transport pathway, HDL possesses a wide range of other functions including anti-oxidation, anti-inflammation, pro-endothelial function, anti-thrombosis, and modulation of immune function. It has been firmly established that high plasma levels of HDL protect against cardiovascular disease. Accumulating evidence indicates that the beneficial role of HDL extends to many other systems including the central nervous system. Cognition is a complex brain function that includes all aspects of perception, thought, and memory. Cognitive function often declines during aging and this decline manifests as cognitive impairment/dementia in age-related and progressive neurodegenerative disorders such as Alzheimer's disease, Parkinson's disease, Huntington's disease, and amyotrophic lateral sclerosis. A growing concern is that no effective therapy is currently available to prevent or treat these devastating diseases. Emerging evidence suggests that HDL may play a pivotal role in preserving cognitive function under normal and pathological conditions. This review attempts to summarize recent genetic, clinical and experimental evidence for the impact of HDL on cognition in aging and in neurodegenerative disorders as well as the potential of HDL-enhancing approaches to improve cognitive function.
Collapse
Affiliation(s)
- David A Hottman
- Department of Experimental and Clinical Pharmacology, University of Minnesota, Minneapolis, MN 55455, USA
| | - Dustin Chernick
- Department of Pharmacology, University of Minnesota, Minneapolis, MN 55455, USA
| | - Shaowu Cheng
- Department of Experimental and Clinical Pharmacology, University of Minnesota, Minneapolis, MN 55455, USA
| | - Zhe Wang
- Department of Experimental and Clinical Pharmacology, University of Minnesota, Minneapolis, MN 55455, USA
| | - Ling Li
- Department of Experimental and Clinical Pharmacology, University of Minnesota, Minneapolis, MN 55455, USA; Department of Pharmacology, University of Minnesota, Minneapolis, MN 55455, USA.
| |
Collapse
|
33
|
Aluganti Narasimhulu C, Selvarajan K, Brown M, Parthasarathy S. Cationic peptides neutralize Ox-LDL, prevent its uptake by macrophages, and attenuate inflammatory response. Atherosclerosis 2014; 236:133-41. [PMID: 25036240 DOI: 10.1016/j.atherosclerosis.2014.06.020] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2014] [Revised: 06/11/2014] [Accepted: 06/19/2014] [Indexed: 01/27/2023]
Abstract
OBJECTIVE Apolipoprotein A1 (ApoA1) and apolipoprotein E (ApoE) mimetic peptides have attracted attention due to their ability to reduce atherosclerosis and exhibit antioxidant, anti-inflammatory, and hypolipidemic properties. In this study, we tested whether three distinct and unrelated cationic peptides would inhibit the oxidation of lipoproteins and whether they would counteract and neutralize the negatively charged modified lipoproteins, inhibit their uptake and inflammation by macrophages. METHODS AND RESULTS 5F-mimetic peptide of ApoA1, LL27 derived from the anti-microbial peptide hCAP, and a human glycodelin derived peptide were commercially synthesized. We noted that these three distinct cationic lysine-rich peptides, two of which were unrelated to any known apolipoproteins, inhibited copper-mediated oxidation of lipoproteins and reduced lipid peroxides in a lysine dependent manner. The peptides also retarded the electrophoretic mobility of previously oxidized LDL and acetylated LDL by virtue of their net positive charge. Pre-incubation of peptides with modified lipoproteins reduced the uptake of the latter by macrophages, thus preventing the formation of foam cells. The cationic peptides inhibited oxidized LDL (Ox-LDL)-induced inflammatory response both in vitro and in vivo. CONCLUSION Based on these results, we suggest that in addition to the well known mimetic peptides, other suitable cationic peptides may be of use for controlling Ox-LDL mediated inflammation and atherosclerotic progression.
Collapse
Affiliation(s)
| | - Krithika Selvarajan
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL 32827, USA
| | - Matthew Brown
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL 32827, USA
| | - Sampath Parthasarathy
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL 32827, USA.
| |
Collapse
|
34
|
Jeon YK, Kim KM, Kim KJ, Kim IJ, Lim SK, Rhee Y. The anabolic effect of teriparatide is undermined by low levels of high-density lipoprotein cholesterol. Calcif Tissue Int 2014; 94:159-68. [PMID: 23907724 DOI: 10.1007/s00223-013-9772-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2012] [Accepted: 07/17/2013] [Indexed: 02/07/2023]
Abstract
Intermittent parathyroid hormone (PTH) administration has a potent ability to increase bone mass, regardless of underlying conditions or species. A recent study using LDLR(-/-) mice showed that the anabolic effect of PTH was blunted by hyperlipidemia, whereas PTH anabolism was rescued by enhancement of high-density lipoprotein cholesterol (HDL-C) function. We conducted a retrospective longitudinal study to determine whether lipid profiles also affect the anabolic effect of intermittent PTH treatment in humans. Fifty-two patients (8 males and 44 females, ages 38-85 years) with severe osteoporosis who had been treated with teriparatide (TPTD, recombinant human PTH(1-34) for 12 months were studied at Severance Hospital, Yonsei University. C-telopeptide (CTX) and osteocalcin (OCN) were measured at 0, 3, and 12 months; and total cholesterol, triglycerides, and HDL-C were measured at baseline. Bone mineral density (BMD) was measured by dual-energy X-ray absorptiometry at 0 and 12 months. Lumbar spine BMD increased significantly after 12 months of treatment with TPTD (10.0 ± 9.3%, p < 0.001). Initial 3-month changes in CTX and OCN levels revealed positive correlations with the increase in lumbar BMD (r = 0.546, p = 0.001 and r = 0.500, p = 0.006, respectively). Moreover, percentage change in lumbar BMD at 12 months showed a negative correlation with baseline total cholesterol (r = -0.438, p = 0.009) and a positive correlation with HDL-C (r = 0.498, p = 0.016). A smaller 3-month increase in OCN and a lower HDL-C level at baseline were associated with a smaller lumbar BMD increase after TPTD treatment, even after adjustment for age, sex, and other confounding factors (β = 0.462, p = 0.031 for ΔOCN and β = 0.670, p = 0.004 for HDL-C). Plasma levels of lipids, especially HDL-C, seem to be associated with the extent of osteoanabolic effects of TPTD in humans.
Collapse
Affiliation(s)
- Yun Kyung Jeon
- Division of Endocrinology, Department of Internal Medicine, Pusan National University, Busan, Korea,
| | | | | | | | | | | |
Collapse
|
35
|
Navab M, Anantharamaiah GM, Reddy ST, Van Lenten BJ, Buga GM, Fogelman AM. Peptide Mimetics of Apolipoproteins Improve HDL Function. J Clin Lipidol 2012; 1:142-7. [PMID: 18449337 DOI: 10.1016/j.jacl.2007.03.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Over the past decade evidence has accumulated that suggests that the anti-inflammatory properties of HDL may be at least as important as the levels of HDL-cholesterol. The recent failure of the torcetrapib clinical trails has highlighted the potential differences between HDL-cholesterol levels and HDL function. Agents to improve HDL function including HDL anti-inflammatory properties provide a new therapeutic strategy for ameliorating atherosclerosis and other chronic inflammatory conditions related to dyslipidemia. Seeking guidance from the structure of the apolipoproteins of the plasma lipoproteins has allowed the creation of a series of polypeptides that have interesting functionality with therapeutic implications. In animal models of atherosclerosis, peptide mimetics of apolipoproteins have been shown to improve the anti-inflammatory properties of HDL, significantly reduce lesions and improve vascular inflammation and function without necessarily altering HDL-cholesterol levels. Some of these are now entering the clinical arena as interventions in pharmacologic and pharmacodynamic studies.
Collapse
Affiliation(s)
- Mohamad Navab
- David Geffen School of Medicine at UCLA, Los Angeles, CA 90095-1679
| | | | | | | | | | | |
Collapse
|
36
|
Jiang H, Stabler SP, Allen RH, Maclean KN. Altered expression of apoA-I, apoA-IV and PON-1 activity in CBS deficient homocystinuria in the presence and absence of treatment: possible implications for cardiovascular outcomes. Mol Genet Metab 2012; 107:55-65. [PMID: 22633282 DOI: 10.1016/j.ymgme.2012.04.025] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2012] [Accepted: 04/28/2012] [Indexed: 12/26/2022]
Abstract
Classical homocystinuria (HCU) is caused by mutations in cystathionine beta-synthase (CBS) which, if untreated, typically results in cognitive impairment, thromboembolic complications and connective tissue disturbances. Paraoxonase-1 (PON1) and apolipoprotein apoA-I are both synthesized in the liver and contribute to much of the cardioprotective effects of high density lipoprotein. Additionally, apoA-I exerts significant neuro-protective effects that act to preserve cognition. Previous work in a Cbs null mouse model that incurs significant liver injury, reported that HCU dramatically decreases PON1 expression. Conflicting reports exist in the literature concerning the relative influence of homocysteine and cysteine upon apoA-I expression. We investigated expression of PON1 and apoA-I in the presence and absence of homocysteine lowering therapy, in both the HO mouse model of HCU and human subjects with this disorder. We observed no significant change in plasma PON1 paraoxonase activity in either mice or humans with HCU indicating that this enzyme is unlikely to contribute to the cardiovascular sequelae of HCU. Plasma levels of apoA-I were unchanged in mice with mildly elevated homocysteine due to CBS deficiency but were significantly diminished in both mice and humans with HCU. Subsequent experiments revealed that HCU acts to dramatically decrease apoA-I levels in the brain. Cysteine supplementation in HO mice had no discernible effect on plasma levels of apoA-I while treatment to lower homocysteine normalized plasma levels of this lipoprotein in both HO mice and humans with HCU. Our results indicate that plasma apoA-I levels in HCU are inversely related to homocysteine and are consistent with a plausible role for decreased expression of apoA-I as a contributory factor for both cardiovascular disease and cognitive impairment in HCU.
Collapse
Affiliation(s)
- Hua Jiang
- Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO 80045-0511, USA
| | | | | | | |
Collapse
|
37
|
Bucci M, Cigliano L, Vellecco V, D'Andrea LD, Ziaco B, Rossi A, Sautebin L, Carlucci A, Abrescia P, Pedone C, Ianaro A, Cirino G. Apolipoprotein A-I (ApoA-I) mimetic peptide P2a by restoring cholesterol esterification unmasks ApoA-I anti-inflammatory endogenous activity in vivo. J Pharmacol Exp Ther 2012; 340:716-22. [PMID: 22171091 DOI: 10.1124/jpet.111.189308] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2025] Open
Abstract
The acute-phase protein haptoglobin (Hpt) binds apolipoprotein A-I (ApoA-I) and impairs its action on lecithin-cholesterol acyltransferase, an enzyme that plays a key role in reverse cholesterol transport. We have previously shown that an ApoA-I mimetic peptide, P2a, displaces Hpt from ApoA-I, restoring the enzyme activity in vitro. The aim of this study was to evaluate whether P2a displaces Hpt from ApoA-I in vivo and whether this event leads to anti-inflammatory activity. Mice received subplantar injections of carrageenan. Paw volume was measured before the injection and 2, 4, 6, 24, 48, 72, and 96 h thereafter. At the same time points, concentrations of HDL cholesterol (C) and cholesterol esters (CEs) were measured by high-performance liquid chromatography, and Hpt and ApoA-I plasma levels were evaluated by enzyme-linked immunosorbent assay. Western blotting analysis for nitric-oxide synthase and cyclooxygenase (COX) isoforms was also performed on paw homogenates. CEs significantly decreased in carrageenan-treated mice during edema development and negatively correlated with the Hpt/ApoA-I ratio. P2a administration significantly restored the CE/C ratio. In addition, P2a displayed an anti-inflammatory effect on the late phase of edema with a significant reduction in COX2 expression coupled to an inhibition of prostaglandin E(2) synthesis, implying that, in the presence of P2a, CE/C ratio rescue and edema inhibition were strictly related. In conclusion, the P2a effect is due to its binding to Hpt with consequent displacement of ApoA-I that exerts anti-inflammatory activity. Therefore, it is feasible to design drugs that, by enhancing the physiological endogenous protective role of ApoA-I, may be useful in inflammation-based diseases.
Collapse
Affiliation(s)
- Mariarosaria Bucci
- Department of Experimental Pharmacology, University of Naples Federico II, via Domenico Montesano 49, 80131 Naples, Italy
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Khalki L, Bennis M, Sokar Z, Ba-M'hamed S. The developmental neurobehavioral effects of fenugreek seeds on prenatally exposed mice. JOURNAL OF ETHNOPHARMACOLOGY 2012; 139:672-677. [PMID: 22178172 DOI: 10.1016/j.jep.2011.12.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2011] [Revised: 12/02/2011] [Accepted: 12/04/2011] [Indexed: 05/31/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Fenugreek (Trigonella foenum graecum (L.)), is a medicinal plant whose seeds and leaves are widely used in Moroccan traditional medicine. Consumption of fenugreek seeds during pregnancy has been associated with a range of congenital malformations, including hydrocephalus, anencephaly and spina bifida. In previous work we have shown that exposure of pregnant mice to aqueous extract of fenugreek seeds (AEFS) leads to reduced litter size, intrauterine growth retardation, and malformations. However, there have been no studies to date of its longer-term neurobehavioral effects. We investigated these effects in prenatally exposed mice. MATERIALS AND METHODS Pregnant females were exposed to 0, 500 or 1000 mg/kg/day AEFS, by gavage, for the whole period of gestation. Pups body weight was measured at 1, 7, 14, 21 and 28 day of age. Behavior of progeny was evaluated three weeks after birth using the open field, the rotarod test and the continuous alternation task by the T-maze. At 28 postnatal day age, brain of progeny was removed and cut for histological evaluation. RESULTS The progeny of exposed mice displayed reduced body weight at birth (1000 mg/kg group: 27%; 500 mg/kg group: 32%) and reduced brain weight (10% in both treated groups). Both males and females mice prenatally exposed to AEFS displayed a significant decrease in the locomotor activity, in the boli deposits during the open field test and in motor coordination. These results seem to show that exposure to AEFS induces a depressive effect in the offspring. Assessment on a continuous alternation T-maze test showed a significant reduction in successful spontaneous alternations in males and females but only in the 1000 mg/kg group. CONCLUSION These results suggest that prenatal exposure of mice to high dose of fenugreek seeds causes growth retardation and altered neurobehavioral performance in the post-weaning period in both male and female.
Collapse
Affiliation(s)
- Loubna Khalki
- Laboratory of Pharmacology, Neurobiology and Behavior, Associated Unit to CNRST (URAC-37), Cadi Ayyad University, Marrakech, Morocco
| | | | | | | |
Collapse
|
39
|
Meriwether D, Imaizumi S, Grijalva V, Hough G, Vakili L, Anantharamaiah GM, Farias-Eisner R, Navab M, Fogelman AM, Reddy ST, Shechter I. Enhancement by LDL of transfer of L-4F and oxidized lipids to HDL in C57BL/6J mice and human plasma. J Lipid Res 2011; 52:1795-809. [PMID: 21804067 DOI: 10.1194/jlr.m016741] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
The apoA-I mimetic peptide L-4F [(Ac-D-W-F-K-A-F-Y-D-K-V-A-E-K-F-K-E-A-F-NH2) synthesized from all L-amino acids] has shown potential for the treatment of a variety of diseases. Here, we demonstrate that LDL promotes association between L-4F and HDL. A 2- to 3-fold greater association of L-4F with human HDL was observed in the presence of human LDL as compared with HDL by itself. This association further increased when LDL was supplemented with the oxidized lipid 15S-hydroxy-5Z, 8Z, 11Z, 13E-eicosatetraenoic acid (15HETE). Additionally, L-4F significantly (P = 0.02) promoted the transfer of 15HETE from LDL to HDL. The transfer of L-4F from LDL to HDL was demonstrated both in vitro and in C57BL/6J mice. L-4F, injected into C57BL/6J mice, associated rapidly with HDL and was then cleared quickly from the circulation. Similarly, L-4F loaded onto human HDL and injected into C57BL/6J mice was cleared quickly with T(1/2) = 23.6 min. This was accompanied by a decline in human apoA-I with little or no effect on the mouse apoA-I. Based on these results, we propose that i) LDL promotes the association of L-4F with HDL and ii) in the presence of L-4F, oxidized lipids in LDL are rapidly transferred to HDL allowing these oxidized lipids to be acted upon by HDL-associated enzymes and/or cleared from the circulation.
Collapse
Affiliation(s)
- David Meriwether
- Department of Obstetrics and Gynecology, University of California Los Angeles, Los Angeles, CA, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Sviridov DO, Ikpot IZ, Stonik J, Drake SK, Amar M, Osei-Hwedieh DO, Piszczek G, Turner S, Remaley AT. Helix stabilization of amphipathic peptides by hydrocarbon stapling increases cholesterol efflux by the ABCA1 transporter. Biochem Biophys Res Commun 2011; 410:446-51. [PMID: 21672528 DOI: 10.1016/j.bbrc.2011.05.154] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2011] [Accepted: 05/27/2011] [Indexed: 10/18/2022]
Abstract
Apolipoprotein mimetic peptides are short amphipathic peptides that efflux cholesterol from cells by the ABCA1 transporter and are being investigated as therapeutic agents for cardiovascular disease. We examined the role of helix stabilization of these peptides in cholesterol efflux. A 23-amino acid long peptide (Ac-VLEDSFKVSFLSALEEYTKKLNTQ-NH2) based on the last helix of apoA-I (A10) was synthesized, as well as two variants, S1A10 and S2A10, in which the third and fourth and third and fifth turn of each peptide, respectively, were covalently joined by hydrocarbon staples. By CD spectroscopy, the stapled variants at 24 °C were more helical in aqueous buffer than A10 (A10 17%, S1A10 62%, S2A10 97%). S1A10 and S2A10 unlike A10 were resistant to proteolysis by pepsin and chymotrypsin. S1A10 and S2A10 showed more than a 10-fold increase in cholesterol efflux by the ABCA1 transporter compared to A10. In summary, hydrocarbon stapling of amphipathic peptides increases their helicity, makes them resistant to proteolysis and enhances their ability to promote cholesterol efflux by the ABCA1 transporter, indicating that this peptide modification may be useful in the development of apolipoprotein mimetic peptides.
Collapse
Affiliation(s)
- D O Sviridov
- Lipoprotein Metabolism Section, Cardiopulmonary Branch, NHLBI, National Institutes of Health, Bethesda, MD 20892-1508, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Namjoshi D, Stukas S, Wellington CL. ABCA1, apoE and apoA-I as potential therapeutic targets for treating Alzheimer’s disease. Neurodegener Dis Manag 2011. [DOI: 10.2217/nmt.11.23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
SUMMARY The association between apoE genotype and risk and age of onset for Alzheimer’s disease (AD) was first discovered in 1993. Innumerable studies since then have defined Aβ-dependent and Aβ-independent roles for apoE in AD pathogenesis. Although therapeutic approaches that specifically target apoE are not yet developed for AD, apoE may have a more fundamental role in brain physiology than previously appreciated. ApoE is the major apolipoprotein in the CNS, coordinating the uptake and delivery of lipids among various cell types in the brain. ApoE receives lipids from the membrane-bound cholesterol and phospholipid transporter ATP-binding cassette transporter A1 (ABCA1). Genetic and pharmacological methods to enhance ABCA1 activity generate lipid-rich apoE particles and provide cognitive and neuropathological benefits in animal models of AD. Recent studies on apoA-I, which is the major lipid acceptor for ABCA1 in peripheral tissues and is also present in the CNS, suggest that increasing apoA-I function may also have neuroprotective effects. In this article, we will discuss the potential of ABCA1, apoE and apoA-I as therapeutic targets for the treatment of AD.
Collapse
Affiliation(s)
- Dhananjay Namjoshi
- Department of Pathology & Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, V5Z 4H4, Canada
| | - Sophie Stukas
- Department of Pathology & Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, V5Z 4H4, Canada
| | | |
Collapse
|
42
|
Sage AP, Lu J, Atti E, Tetradis S, Ascenzi MG, Adams DJ, Demer LL, Tintut Y. Hyperlipidemia induces resistance to PTH bone anabolism in mice via oxidized lipids. J Bone Miner Res 2011; 26:1197-206. [PMID: 21611962 PMCID: PMC3312754 DOI: 10.1002/jbmr.312] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
In hyperlipidemia, oxidized lipids accumulate in vascular tissues and trigger atherosclerosis. Such lipids also deposit in bone tissues, where they may promote osteoporosis. We found previously that oxidized lipids attenuate osteogenesis and that parathyroid hormone (PTH) bone anabolism is blunted in hyperlipidemic mice, suggesting that osteoporotic patients with hyperlipidemia may develop resistance to PTH therapy. To determine if oxidized lipids account for this PTH resistance, we blocked lipid oxidation products in hyperlipidemic mice with an ApoA-I mimetic peptide, D-4F, and the bone anabolic response to PTH treatment was assessed. Skeletally immature Ldlr(-/-) mice were placed on a high-fat diet and treated with D-4F peptide and/or with intermittent PTH(1-34) injections. As expected, D-4F attenuated serum lipid oxidation products and tissue lipid deposition induced by the diet. Importantly, D-4F treatment attenuated the adverse effects of dietary hyperlipidemia on PTH anabolism by restoring micro-computed tomographic parameters of bone quality-cortical mineral content, area, and thickness. D-4F significantly reduced serum markers of bone resorption but not bone formation. PTH and D-4F, together but not separately, also promoted bone anabolism in an alternative model of hyperlipidemia, Apoe(-/-) mice. In normolipemic mice, D-4F cotreatment did not further enhance the anabolic effects of PTH, indicating that the mechanism is through its effects on lipids. These findings suggest that oxidized lipids mediate hyperlipidemia-induced PTH resistance in bone through modulation of bone resorption.
Collapse
Affiliation(s)
- Andrew P Sage
- Division of Cardiology, Department of Medicine, University of California, Los Angeles, Los Angeles, CA 90095-1679, USA
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Imaizumi S, Navab M, Morgantini C, Charles-Schoeman C, Su F, Gao F, Kwon M, Ganapathy E, Meriwether D, Farias-Eisner R, Fogelman AM, Reddy ST. Dysfunctional high-density lipoprotein and the potential of apolipoprotein A-1 mimetic peptides to normalize the composition and function of lipoproteins. Circ J 2011; 75:1533-8. [PMID: 21628835 DOI: 10.1253/circj.cj-11-0460] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Although high-density lipoprotein-cholesterol (HDL-C) levels in large epidemiological studies are inversely related to the risk of coronary heart disease (CHD), increasing the level of circulating HDL-C does not necessarily decrease the risk of CHD events, CHD deaths, or mortality. HDL can act as an anti- or a pro-inflammatory molecule, depending on the context and environment. Based on a number of recent studies, it appears that the anti- or pro-inflammatory nature of HDL may be a more sensitive indicator of the presence or absence of atherosclerosis than HDL-C levels. The HDL proteome has been suggested to be a marker, and perhaps a mediator, of CHD. Apolipoprotein A-1 (apoA-I), the major protein in HDL is a selective target for oxidation by myeloperoxidase, which results in impaired HDL function. Improving HDL function through modification of its lipid and/or protein content maybe a therapeutic target for the treatment of CHD and many inflammatory disorders. HDL/apoA-I mimetic peptides may have the ability to modify the lipid and protein content of HDL and convert dysfunctional HDL to functional HDL. This review focuses on recent studies of dysfunctional HDL in animal models and human disease, and the potential of apoA-I mimetic peptides to normalize the composition and function of lipoproteins.
Collapse
Affiliation(s)
- Satoshi Imaizumi
- Department of Medicine, University of California, Los Angeles, CA, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Osei-Hwedieh DO, Amar M, Sviridov D, Remaley AT. Apolipoprotein mimetic peptides: Mechanisms of action as anti-atherogenic agents. Pharmacol Ther 2010; 130:83-91. [PMID: 21172387 DOI: 10.1016/j.pharmthera.2010.12.003] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2010] [Accepted: 12/01/2010] [Indexed: 12/13/2022]
Abstract
Apolipoprotein mimetic peptides are short synthetic peptides that share structural, as well as biological features of native apolipoproteins. The early positive clinical trials of intravenous preparations of apoA-I, the main protein component of high density lipoproteins (HDL), have stimulated great interest in the use of apolipoprotein mimetic peptides as possible therapeutic agents. Currently, there are a wide variety of apolipoprotein mimetic peptides at various stages of drug development. These peptides typically have been designed to either promote cholesterol efflux or act as anti-oxidants, but they usually exert other biological effects, such as anti-inflammatory and anti-thrombotic effects. Uncertainty about which of these biological properties is the most important for explaining their anti-atherogenic effect is a major unresolved question in the field. Structure-function studies relating the in vitro properties of these peptides to their ability to reduce atherosclerosis in animal models may uncover the best rationale for the design of these peptides and may lead to a better understanding of the mechanisms behind the atheroprotective effect of HDL.
Collapse
Affiliation(s)
- David O Osei-Hwedieh
- Lipoprotein Metabolism Section, Cardio-pulmonary Branch, NHLBI, National Institutes of Health, Bethesda, MD, USA
| | | | | | | |
Collapse
|
45
|
Yao X, Dai C, Fredriksson K, Dagur PK, McCoy JP, Qu X, Yu ZX, Keeran KJ, Zywicke GJ, Amar MJA, Remaley AT, Levine SJ. 5A, an apolipoprotein A-I mimetic peptide, attenuates the induction of house dust mite-induced asthma. THE JOURNAL OF IMMUNOLOGY 2010; 186:576-83. [PMID: 21115733 DOI: 10.4049/jimmunol.1001534] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
New treatment approaches are needed for patients with asthma. Apolipoprotein A-I (apoA-I), the major structural protein of high-density lipoproteins, mediates reverse cholesterol transport and has atheroprotective and anti-inflammatory effects. In this study, we hypothesized that an apoA-I mimetic peptide might be effective at inhibiting asthmatic airway inflammation. A 5A peptide, which is a synthetic, bihelical apoA-I mimetic, was administered to wild-type A/J mice via osmotic mini-pump prior to the induction of house dust mite (HDM)-induced asthma. HDM-challenged mice that received the 5A apoA-I mimetic peptide had significant reductions in the number of bronchoalveolar lavage fluid eosinophils, lymphocytes, and neutrophils, as well as in histopathological evidence of airway inflammation. The reduction in airway inflammation was mediated by a reduction in the expression of Th2- and Th17-type cytokines, as well as in chemokines that promote T cell and eosinophil chemotaxis, including CCL7, CCL17, CCL11, and CCL24. Furthermore, the 5A apoA-I mimetic peptide inhibited the alternative activation of pulmonary macrophages in the lungs of HDM-challenged mice. It also abrogated the development of airway hyperresponsiveness and reduced several key features of airway remodeling, including goblet cell hyperplasia and the expression of collagen genes (Col1a1 and Col3a1). Our results demonstrate that the 5A apoA-I mimetic peptide attenuates the development of airway inflammation and airway hyperresponsiveness in an experimental murine model of HDM-induced asthma. These data support the conclusion that strategies using apoA-I mimetic peptides, such as 5A, might be developed further as a possible new treatment approach for asthma.
Collapse
Affiliation(s)
- Xianglan Yao
- Pulmonary and Vascular Medicine Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Bhat NR. Linking cardiometabolic disorders to sporadic Alzheimer's disease: a perspective on potential mechanisms and mediators. J Neurochem 2010; 115:551-62. [PMID: 20807313 DOI: 10.1111/j.1471-4159.2010.06978.x] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
There is increasing evidence that the incidence of Alzheimer's disease (AD) is significantly influenced by cardiovascular risk factors in association with a cluster of metabolic diseases including diabetes and atherosclerosis. The shared risk is also reflected in the dietary and lifestyle links to both metabolic disorders and AD-type cognitive dysfunction. Recent studies with genetic and diet-induced animal models have begun to illuminate convergent mechanisms and mediators between these two categories of disease conditions with distinct tissue-specific pathologies. Although it is clear that peripheral inflammation and insulin resistance are central to the pathogenesis of the disorders of metabolic syndrome, it seems that the same mechanisms are also in play across the blood-brain barrier that lead to AD-like molecular and cognitive changes. This review highlights these convergent mechanisms and discusses the role of cerebrovascular dysfunction as a conduit to brain emergence of these pathogenic processes that might also represent future therapeutic targets in AD in common with metabolic disorders.
Collapse
Affiliation(s)
- Narayan R Bhat
- Department of Neurosciences, Medical University of South Carolina, Charleston, South Carolina 29425, USA.
| |
Collapse
|
47
|
Lewis TL, Cao D, Lu H, Mans RA, Su YR, Jungbauer L, Linton MF, Fazio S, LaDu MJ, Li L. Overexpression of human apolipoprotein A-I preserves cognitive function and attenuates neuroinflammation and cerebral amyloid angiopathy in a mouse model of Alzheimer disease. J Biol Chem 2010; 285:36958-68. [PMID: 20847045 DOI: 10.1074/jbc.m110.127829] [Citation(s) in RCA: 157] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
To date there is no effective therapy for Alzheimer disease (AD). High levels of circulating high density lipoprotein (HDL) and its main protein, apolipoprotein A-I (apoA-I), reduce the risk of cardiovascular disease. Clinical studies show that plasma HDL cholesterol and apoA-I levels are low in patients with AD. To investigate if increasing plasma apoA-I/HDL levels ameliorates AD-like memory deficits and amyloid-β (Aβ) deposition, we generated a line of triple transgenic (Tg) mice overexpressing mutant forms of amyloid-β precursor protein (APP) and presenilin 1 (PS1) as well as human apoA-I (AI). Here we show that APP/PS1/AI triple Tg mice have a 2-fold increase of plasma HDL cholesterol levels. When tested in the Morris water maze for spatial orientation abilities, whereas APP/PS1 mice develop age-related learning and memory deficits, APP/PS1/AI mice continue to perform normally during aging. Interestingly, no significant differences were found in the total level and deposition of Aβ in the brains of APP/PS1 and APP/PS1/AI mice, but cerebral amyloid angiopathy was reduced in APP/PS1/AI mice. Also, consistent with the anti-inflammatory properties of apoA-I/HDL, glial activation was reduced in the brain of APP/PS1/AI mice. In addition, Aβ-induced production of proinflammatory chemokines/cytokines was decreased in mouse organotypic hippocampal slice cultures expressing human apoA-I. Therefore, we conclude that overexpression of human apoA-I in the circulation prevents learning and memory deficits in APP/PS1 mice, partly by attenuating neuroinflammation and cerebral amyloid angiopathy. These findings suggest that elevating plasma apoA-I/HDL levels may be an effective approach to preserve cognitive function in patients with AD.
Collapse
Affiliation(s)
- Terry L Lewis
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama 35294, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Apolipoprotein A-I mimetic peptides: a potential new therapy for the prevention of atherosclerosis. Cardiol Rev 2010; 18:141-7. [PMID: 20395699 DOI: 10.1097/crd.0b013e3181c4b508] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The beneficial effects of high-density lipoprotein (HDL) on atherosclerosis have largely been attributed to its major protein, apolipoprotein A-I (apoA-I). Used as a therapeutic intervention, apoA-I is a large protein that requires venous administration, and is both difficult and expensive to manufacture. Because of these problems with apoA-I, the generation of smaller, easier to manufacture apoA-I mimetic peptides has become a target for pharmacologic development in the therapeutic management of human atherosclerosis. A potent apoA-I mimetic peptide, 4F, was found to have significant activity in various inflammatory states in both mice and monkeys. The anti-inflammatory and antiatherogenic effects of 4F include increased pre-beta HDL formation, increased cholesterol efflux, the conversion of pro-inflammatory HDL to anti-inflammatory HDL, and reduced lipoprotein oxidation. In addition, improved arterial vasoreactivity is another important function of 4F. In a rat model of diabetes, D-4F increased arterial concentrations of heme oxygenase-1 (HO-1) and superoxide dismutase, decreased superoxide levels, reduced levels of circulating endothelial cells, decreased endothelial cell fragmentation, and restored arterial vasoreactivity to normal. In a mouse model of systemic sclerosis, D-4F functioned to improve vasodilation and angiogenic potential, while reducing myocardial inflammation and oxidative stress. With respect to mouse models of heart transplant-associated atherosclerosis, D-4F induced HO-1. In addition, D-4F was shown to improve cognitive performance in low-density lipoprotein-receptor null mice with Western diet-induced cognitive decline. D-4F also reduced the kidney content of oxidized phospholipids in a mouse model of hyperlipidemia-induced renal inflammation. In early human studies in patients with significant cardiovascular risk, a single dose of oral D-4F was found to safely improve the anti-inflammatory index of HDL. L-4F is also being studied in clinical trials as a potential treatment modality for obesity and the metabolic syndrome.
Collapse
|
49
|
Lahiri DK, Maloney B. Beyond the signaling effect role of amyloid-ß42 on the processing of APP, and its clinical implications. Exp Neurol 2010; 225:51-4. [PMID: 20451519 DOI: 10.1016/j.expneurol.2010.04.018] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2010] [Accepted: 04/30/2010] [Indexed: 02/03/2023]
Abstract
Alzheimer's disease (AD) currently has over 6 million victims in the USA, alone. The recently FDA approved drugs for AD only provide mild, transient relief for symptoms without addressing underlying mechanisms to a significant extent. Basic understanding of the activities of the amyloid beta peptide (Abeta) and associated proteins such as beta-site APP-cleaving enzyme 1 (BACE1) is necessary to develop effective medical responses to AD. Recently (Exper. Neurol. 2010. 221, 18-25), Tabaton et al. have presented a model of both non-pathological and pathological Abeta activities and suggest potential therapeutic pathways based on their proposed framework of Abeta acting as the signal that induces a kinase cascade, ultimately stimulating transcription factors that upregulate genes such as BACE1. We respond by presenting evidence of Abeta's other activities, including protection against metal-induced reactive oxidizing species (ROS), modification of cholesterol transport, and potential activity as a transcription factor in its own right. We touch upon clinical implications of each of these functions and highlight the currently unexplored implications of our suggested novel function of Abeta as a transcription factor. Abeta appears to be a highly multi-functional peptide, and any or all of the pathways it engages in is a likely candidate for antiAD drug development.
Collapse
Affiliation(s)
- Debomoy K Lahiri
- Department of Psychiatry, Institute of Psychiatric Research, Indiana University School of Medicine, Indianapolis, IN 46202, USA.
| | | |
Collapse
|
50
|
Navab M, Anantharamaiah GM, Reddy ST, Van Lenten BJ, Fogelman AM. HDL as a biomarker, potential therapeutic target, and therapy. Diabetes 2009; 58:2711-7. [PMID: 19940234 PMCID: PMC2780869 DOI: 10.2337/db09-0538] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2009] [Accepted: 09/03/2009] [Indexed: 12/16/2022]
Affiliation(s)
- Mohamad Navab
- Department of Medicine, David Geffen School of Medicine, University of California-Los Angeles, Los Angeles, California, USA.
| | | | | | | | | |
Collapse
|