1
|
Ke Y, Huang Y, Yi C, Ma L, Chu X, Wu B, Zhao Q, Han S. Structural insights into endogenous ligand selectivity and activation mechanisms of FFAR1 and FFAR2. Cell Rep 2024; 43:115024. [PMID: 39616615 DOI: 10.1016/j.celrep.2024.115024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 10/29/2024] [Accepted: 11/12/2024] [Indexed: 12/28/2024] Open
Abstract
Free fatty acid receptors (FFARs) play critical roles in metabolic regulation and are potential therapeutic targets for metabolic and inflammatory diseases. A comprehensive understanding of the activation mechanisms and endogenous ligand selectivity of FFARs is essential for drug discovery. Here, we report two cryoelectron microscopy structures of the human FFAR1 bound to the endogenous ligand docosahexaenoic acid (DHA) and Gi1 protein as well as FFAR2 in complex with butyrate and Gi1 at 3.2 Å and 3.3 Å resolution, respectively. These structures highlight that distinct locations and sizes of the orthosteric ligand binding pockets are crucial determinants of the endogenous ligand selectivity of this receptor subfamily. Additionally, computational analysis reveals a potential allosteric ligand binding pocket in FFAR2. Furthermore, we observe that the upward movement of helix V upon endogenous ligand binding is responsible for receptor activation. These insights will significantly aid in the development of drugs targeting this receptor family.
Collapse
Affiliation(s)
- Yudun Ke
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210046, China
| | - Yimiao Huang
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210046, China
| | - Cuiying Yi
- State Key Laboratory of Drug Research, State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Limin Ma
- State Key Laboratory of Drug Research, State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Xiaojing Chu
- State Key Laboratory of Drug Research, State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Beili Wu
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210046, China; State Key Laboratory of Drug Research, State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; University of Chinese Academy of Sciences, Beijing 100049, China; School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310020, China; School of Life Science and Technology, Shanghai Tech University, Shanghai 201210, China.
| | - Qiang Zhao
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210046, China; State Key Laboratory of Drug Research, State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; University of Chinese Academy of Sciences, Beijing 100049, China; Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan 528400, China.
| | - Shuo Han
- State Key Laboratory of Drug Research, State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; University of Chinese Academy of Sciences, Beijing 100049, China; School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310020, China.
| |
Collapse
|
2
|
Bakker LM, Boulton ME, Różanowska MB. (Photo)toxicity of Partially Oxidized Docosahexaenoate and Its Effect on the Formation of Lipofuscin in Cultured Human Retinal Pigment Epithelial Cells. Antioxidants (Basel) 2024; 13:1428. [PMID: 39594569 PMCID: PMC11591205 DOI: 10.3390/antiox13111428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 11/08/2024] [Accepted: 11/19/2024] [Indexed: 11/28/2024] Open
Abstract
Docosahexaenoate is a cytoprotective ω-3 polyunsaturated lipid that is abundant in the retina and is essential for its function. Due to its six unsaturated double bonds, docosahexaenoate is highly susceptible to oxidation and the formation of products with photosensitizing properties. This study aimed to test on cultured human retinal pigment epithelial cells ARPE-19 the (photo)cytotoxic potential of partly oxidized docosahexaenoate and its effect on the formation of lipofuscin from phagocytosed photoreceptor outer segments (POSs). The results demonstrate that the cytoprotective effects of docosahexaenoate do not counteract the deleterious effects of its oxidation products, leading to the concentration-dependent loss of cell metabolic activity, which is exacerbated by concomitant exposure to visible light. Partly oxidized docosahexaenoate does not cause permeability of the cell plasma membrane but does cause apoptosis. While vitamin E can provide partial protection from the (photo)toxicity of partly oxidized docosahexaenoate, zeaxanthin undergoes rapid photodegradation and can exacerbate the (photo)toxicity. Feeding cells with POSs enriched in partly oxidized docosahexaenoate results in a greater accumulation of intracellular fluorescent lipofuscin than in cells fed POSs without the addition. In conclusion, partly oxidized docosahexaenoate increases the accumulation of lipofuscin-like intracellular deposits, is cytotoxic, and its toxicity increases during exposure to light. These effects may contribute to the increased progression of geographic atrophy observed after long-term supplementation with docosahexaenoate in age-related macular degeneration patients.
Collapse
Affiliation(s)
- Linda M. Bakker
- School of Optometry and Vision Sciences, Cardiff University, Cardiff CF24 4HQ, Wales, UK;
| | - Michael E. Boulton
- Department of Ophthalmology and Visual Sciences, University of Alabama at Birmingham, Birmingham, AL 35294, USA;
| | - Małgorzata B. Różanowska
- School of Optometry and Vision Sciences, Cardiff University, Cardiff CF24 4HQ, Wales, UK;
- Cardiff Institute for Tissue Engineering and Repair (CITER), Cardiff University, Cardiff CF10 3AX, Wales, UK
| |
Collapse
|
3
|
Jin J, Boeglin WE, Brash AR. Analysis of 12/15-lipoxygenase metabolism of EPA and DHA with special attention to authentication of docosatrienes. J Lipid Res 2021; 62:100088. [PMID: 34022182 PMCID: PMC8219989 DOI: 10.1016/j.jlr.2021.100088] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 05/07/2021] [Accepted: 05/12/2021] [Indexed: 11/14/2022] Open
Abstract
A proposed beneficial impact of highly unsaturated “fish oil” fatty acids is their conversion by lipoxygenase (LOX) enzymes to specialized proresolving lipid mediators, including 12/15-LOX products from EPA and DHA. The transformations of DHA include formation of docosatrienes, named for the distinctive conjugated triene of the double bonds. To further the understanding of biosynthetic pathways and mechanisms, herein we meld together biosynthesis and NMR characterization of the unstable leukotriene A (LTA)-related epoxide intermediates formed by recombinant human 15-LOX-1, along with identification of the stable enzymatic products, and extend the findings into the 12/15-LOX metabolism in resident murine peritoneal macrophages. Oxygenation of EPA by 15-LOX-1 converts the initial 15S-hydroperoxide to 14S,15S-trans-epoxy-5Z,8Z,10E,12E,17Z-EPA (appearing as its 8,15-diol hydrolysis products) and mixtures of dihydroperoxy fatty acids, while mainly the epoxide hydrolysis products are evident in the murine cells. DHA also undergoes transformations to epoxides and dihydroperoxides by 15-LOX-1, resulting in a mixture of 10,17-dihydro(pero)xy derivatives (docosatrienes) and minor 7S,17S- and 14,17S-dihydroperoxides. The 10,17S-dihydroxy hydrolysis products of the LTA-related epoxide intermediate dominate the product profile in mouse macrophages, whereas (neuro)protectin D1, the leukotriene B4-related derivative with trans,trans,cis conjugated triene, was undetectable. In this study, we emphasize the utility of UV spectral characteristics for product identification, being diagnostic of the different double bond configurations and hydroxy fatty acid functionality versus hydroperoxide. LC-MS is not definitive for configurational isomers. Secure identification is based on chromatographic retention times, comparison with authentic standards, and the highly distinctive UV spectra.
Collapse
Affiliation(s)
- Jing Jin
- Department of Pharmacology and the Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, TN, USA
| | - William E Boeglin
- Department of Pharmacology and the Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, TN, USA
| | - Alan R Brash
- Department of Pharmacology and the Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, TN, USA.
| |
Collapse
|
4
|
Lo Van A, Fourmaux B, Picq M, Guichardant M, Lagarde M, Bernoud-Hubac N. Synthesis and Identification of AceDoxyPC, a Protectin-Containing Structured Phospholipid, Using Liquid Chromatography/Mass Spectrometry. Lipids 2017; 52:751-761. [PMID: 28776175 DOI: 10.1007/s11745-017-4280-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Accepted: 07/21/2017] [Indexed: 11/29/2022]
Abstract
Fatty acids have many health benefits in a great variety of diseases ranging from cardiovascular to cerebral diseases. For instance, docosahexaenoic acid (DHA), which is highly enriched in brain phospholipids, plays a major role in anti-inflammatory or neuroprotective pathways. Its effects are thought to be due, in part, to its conversion into derived mediators such as protectins. 1-Lyso,2-docosahexaenoyl-glycerophosphocholine (LysoPtdCho-DHA) is one of the physiological carrier of DHA to the brain. We previously synthesized a structured phosphatidylcholine to mimic 1-lyso,2-docosahexaenoyl-glycerophosphocholine, named AceDoPC® (1-acetyl,2-docosahexaenoyl-glycerophosphocholine), that is considered as a stabilized form of the physiological LysoPtdCho-DHA and that is neuroprotective in experimental ischemic stroke. Considering these, the current study aimed at enzymatically oxygenate DHA contained within AceDoPC® to synthesize a readily structured oxidized phospholipid containing protectin DX (PDX), thereafter named AceDoxyPC (1-acetyl,2-PDX-glycerophosphocholine). Identification of this product was performed using liquid chromatography/tandem mass spectrometry. Such molecule could be used as a bioactive mediator for therapy against neurodegenerative diseases and stroke.
Collapse
Affiliation(s)
- Amanda Lo Van
- Univ Lyon, INSA-Lyon, Inserm UMR 1060, Inra UMR 1397, CarMeN Laboratory, INSA, Bâtiment IMBL, 11 Avenue Jean Capelle, 69621, Villeurbanne Cedex, France
- Department of Developmental Neuroscience, Center for Neuroscience, ART, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Baptiste Fourmaux
- Univ Lyon, INSA-Lyon, Inserm UMR 1060, Inra UMR 1397, CarMeN Laboratory, INSA, Bâtiment IMBL, 11 Avenue Jean Capelle, 69621, Villeurbanne Cedex, France
| | - Madeleine Picq
- Univ Lyon, INSA-Lyon, Inserm UMR 1060, Inra UMR 1397, CarMeN Laboratory, INSA, Bâtiment IMBL, 11 Avenue Jean Capelle, 69621, Villeurbanne Cedex, France
| | - Michel Guichardant
- Univ Lyon, INSA-Lyon, Inserm UMR 1060, Inra UMR 1397, CarMeN Laboratory, INSA, Bâtiment IMBL, 11 Avenue Jean Capelle, 69621, Villeurbanne Cedex, France
| | - Michel Lagarde
- Univ Lyon, INSA-Lyon, Inserm UMR 1060, Inra UMR 1397, CarMeN Laboratory, INSA, Bâtiment IMBL, 11 Avenue Jean Capelle, 69621, Villeurbanne Cedex, France
| | - Nathalie Bernoud-Hubac
- Univ Lyon, INSA-Lyon, Inserm UMR 1060, Inra UMR 1397, CarMeN Laboratory, INSA, Bâtiment IMBL, 11 Avenue Jean Capelle, 69621, Villeurbanne Cedex, France.
| |
Collapse
|
5
|
Ogawa N, Sugiyama T, Morita M, Suganuma Y, Kobayashi Y. Total Synthesis of Resolvin D5. J Org Chem 2017; 82:2032-2039. [DOI: 10.1021/acs.joc.6b02870] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Narihito Ogawa
- Department of Biotechnology, Tokyo Institute of Technology, B-52, Nagatsuta-cho 4259, Midori-ku, Yokohama 226-8501, Japan
| | - Takuo Sugiyama
- Department of Biotechnology, Tokyo Institute of Technology, B-52, Nagatsuta-cho 4259, Midori-ku, Yokohama 226-8501, Japan
| | - Masao Morita
- Department of Biotechnology, Tokyo Institute of Technology, B-52, Nagatsuta-cho 4259, Midori-ku, Yokohama 226-8501, Japan
| | - Yuta Suganuma
- Department of Biotechnology, Tokyo Institute of Technology, B-52, Nagatsuta-cho 4259, Midori-ku, Yokohama 226-8501, Japan
| | - Yuichi Kobayashi
- Department of Biotechnology, Tokyo Institute of Technology, B-52, Nagatsuta-cho 4259, Midori-ku, Yokohama 226-8501, Japan
| |
Collapse
|
6
|
Ali EMT, Sonpol HMA. Neuroprotective and Ameliorating Impacts of Omega-3 Against Aspartame-induced Neuronal and Astrocytic Degeneration. Anat Rec (Hoboken) 2016; 300:1290-1298. [PMID: 27998013 DOI: 10.1002/ar.23536] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2016] [Revised: 08/20/2016] [Accepted: 08/29/2016] [Indexed: 01/24/2023]
Abstract
Aspartame (ASP) is one of the commonest artificial sweetener used all over the world and considered as an extremely risky compound and raises a lot of controversy. Therefore, this study was designed to investigate cellular damage of the anterior horn cells in the spinal cord of albino male rats and the possibility of hindering these changes by using omega-3 (OM3).Thirty seven adult male albino rats were divided into three groups: Control, ASP-treated and ASP + OM3-treated groups. Spinal cord sections were prepared and stained with Hx&E, caspase-3 and GFAP immunostaining. All data were morphometrically and statistically analyzed. In ASP-treated group, the cell body of some degenerated neurons was swollen and its cytoplasm was vacuolated. Their nuclei were eccentric and pyknotic. Moreover, other neurons were of a heterogeneous pattern in the form of cell body shrinkage, loss of Nissl substance, intensely stained eosinophilic cytoplasm and a small darkly stained nucleus that may eventually fragment. However, the cells were apparently normal in ASP+ OM3-treated group. Strong +ve caspase-3 stained neurons were detected in ASP-treated group. Furthermore, the immunoreaction was faint on treating the rats with both ASP and OM3. Few number of +ve GFAP- stained astrocytes were observed in ASP-treated rats. On the other hand, the immunoreactivity for GFAP was found to be intense in the ASP + OM3-treated group. Additionally, there was a significant decrease in the surface area percentage of the +ve GFAP-stained astrocytes of the ASP-treated group compared to the control and the ASP + OM3-treated groups. Anat Rec, 300:1290-1298, 2017. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Eyad M T Ali
- Department of Anatomy, Faculty of Medicine, Mansoura University, Egypt.,Department of Anatomy, Taibah University, Kingdom of Saudi Arabia
| | - Hany M A Sonpol
- Department of Anatomy, Faculty of Medicine, Mansoura University, Egypt
| |
Collapse
|
7
|
Itoh T, Saito T, Yamamoto Y, Ishida H, Yamamoto K. Gram scale synthesis of specialized pro-resolving mediator 17(S)-HDHA using lipoxygenase enhanced by water-soluble reducing agent TCEP. Bioorg Med Chem Lett 2016; 26:343-345. [PMID: 26707393 DOI: 10.1016/j.bmcl.2015.12.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2015] [Revised: 11/22/2015] [Accepted: 12/04/2015] [Indexed: 12/31/2022]
Abstract
17(S)-Hydroxy docosahexaenoic acid (17(S)-HDHA) is a specialized pro-resolving mediator. The oxidation of docosahexaenoic acid (DHA) to 17(S)-HDHA using soybean lipoxygenase was accomplished in the presence of the reducing agent TCEP in high yield and high enantio excess. We demonstrated application of this strategy to the synthesis of other fatty acids and to gram scale synthesis of 17(S)-HDHA.
Collapse
Affiliation(s)
- Toshimasa Itoh
- Laboratory of Drug Design and Medicinal Chemistry, Showa Pharmaceutical University, 3-3165 Higashi-Tamagawagakuen, Machida, Tokyo 194-8543, Japan
| | - Tomoko Saito
- Laboratory of Drug Design and Medicinal Chemistry, Showa Pharmaceutical University, 3-3165 Higashi-Tamagawagakuen, Machida, Tokyo 194-8543, Japan
| | - Yoshinori Yamamoto
- Laboratory of Drug Design and Medicinal Chemistry, Showa Pharmaceutical University, 3-3165 Higashi-Tamagawagakuen, Machida, Tokyo 194-8543, Japan
| | - Hiroaki Ishida
- Laboratory of Drug Design and Medicinal Chemistry, Showa Pharmaceutical University, 3-3165 Higashi-Tamagawagakuen, Machida, Tokyo 194-8543, Japan
| | - Keiko Yamamoto
- Laboratory of Drug Design and Medicinal Chemistry, Showa Pharmaceutical University, 3-3165 Higashi-Tamagawagakuen, Machida, Tokyo 194-8543, Japan.
| |
Collapse
|
8
|
Solvent-induced 7R-dioxygenase activity of soybean 15-lipoxygenase-1 in the formation of omega-3 DPA-derived resolvin analogs. ACTA ACUST UNITED AC 2014. [DOI: 10.1016/j.molcatb.2014.07.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
9
|
Martínez-Yusta A, Goicoechea E, Guillén MD. A Review of Thermo-Oxidative Degradation of Food Lipids Studied by1H NMR Spectroscopy: Influence of Degradative Conditions and Food Lipid Nature. Compr Rev Food Sci Food Saf 2014. [DOI: 10.1111/1541-4337.12090] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Andrea Martínez-Yusta
- Dept. of Food Technology; Lascaray Research Center; Faculty of Pharmacy; Univ. of the Basque Country (UPV/EHU); Vitoria Spain
| | - Encarnación Goicoechea
- Dept. of Food Technology; Lascaray Research Center; Faculty of Pharmacy; Univ. of the Basque Country (UPV/EHU); Vitoria Spain
| | - María D. Guillén
- Dept. of Food Technology; Lascaray Research Center; Faculty of Pharmacy; Univ. of the Basque Country (UPV/EHU); Vitoria Spain
| |
Collapse
|
10
|
Balas L, Guichardant M, Durand T, Lagarde M. Confusion between protectin D1 (PD1) and its isomer protectin DX (PDX). An overview on the dihydroxy-docosatrienes described to date. Biochimie 2014; 99:1-7. [DOI: 10.1016/j.biochi.2013.11.006] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2013] [Accepted: 11/08/2013] [Indexed: 01/16/2023]
|
11
|
Dobson EP, Barrow CJ, Kralovec JA, Adcock JL. Controlled formation of mono- and dihydroxy-resolvins from EPA and DHA using soybean 15-lipoxygenase. J Lipid Res 2013; 54:1439-47. [PMID: 23471029 PMCID: PMC3622336 DOI: 10.1194/jlr.m036186] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2013] [Revised: 02/26/2013] [Indexed: 12/20/2022] Open
Abstract
Resolvins and protectins are important anti-inflammatory and pro-resolution compounds derived from the enzymatic oxidation of omega-3 fatty acids all-cis-5,8,11,14,17-eicosapentaenoic acid (EPA) and all-cis-4,7,10,13,16,19-docosahexaenoic acid (DHA). We have developed a simple, controlled method to synthesize an array of resolvin and protectin analogs from fatty acid starting materials using soybean 15-lipoxygenase. The conditions were optimized for the production of both mono- and dihydroxy derivatives, with enzyme concentration and pH found to have a significant effect on the reaction products. The methods were applied to five biologically important omega-3 and omega-6 fatty acid substrates. Mono- and dihydroxy compounds were successfully synthesized from all substrates and the products were characterized by normal phase (NP) HPLC, GC-MS, TOF-MS, UV-visible (UV-vis) spectroscopy, and NMR spectroscopy. The methods could be further applied to any polyunsaturated fatty acids containing the cis-1,4,7,10-undecatetraene moiety to produce a range of novel compounds with potential biological activity.
Collapse
Affiliation(s)
- Eleanor P. Dobson
- Centre for Chemistry and Biotechnology, Deakin University, Geelong, Victoria 3220, Australia; and
| | - Colin J. Barrow
- Centre for Chemistry and Biotechnology, Deakin University, Geelong, Victoria 3220, Australia; and
| | | | - Jacqui L. Adcock
- Centre for Chemistry and Biotechnology, Deakin University, Geelong, Victoria 3220, Australia; and
| |
Collapse
|
12
|
O’Flaherty JT, Hu Y, Wooten RE, Horita DA, Samuel MP, Thomas MJ, Sun H, Edwards IJ. 15-lipoxygenase metabolites of docosahexaenoic acid inhibit prostate cancer cell proliferation and survival. PLoS One 2012; 7:e45480. [PMID: 23029040 PMCID: PMC3447860 DOI: 10.1371/journal.pone.0045480] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2012] [Accepted: 08/20/2012] [Indexed: 02/06/2023] Open
Abstract
A 15-LOX, it is proposed, suppresses the growth of prostate cancer in part by converting arachidonic, eicosatrienoic, and/or eicosapentaenoic acids to n-6 hydroxy metabolites. These metabolites inhibit the proliferation of PC3, LNCaP, and DU145 prostate cancer cells but only at ≥1-10 µM. We show here that the 15-LOX metabolites of docosahexaenoic acid (DHA), 17-hydroperoxy-, 17-hydroxy-, 10,17-dihydroxy-, and 7,17-dihydroxy-DHA inhibit the proliferation of these cells at ≥0.001, 0.01, 1, and 1 µM, respectively. By comparison, the corresponding 15-hydroperoxy, 15-hydroxy, 8,15-dihydroxy, and 5,15-dihydroxy metabolites of arachidonic acid as well as DHA itself require ≥10-100 µM to do this. Like DHA, the DHA metabolites a) induce PC3 cells to activate a peroxisome proliferator-activated receptor-γ (PPARγ) reporter, express syndecan-1, and become apoptotic and b) are blocked from slowing cell proliferation by pharmacological inhibition or knockdown of PPARγ or syndecan-1. The DHA metabolites thus slow prostate cancer cell proliferation by engaging the PPARγ/syndecan-1 pathway of apoptosis and thereby may contribute to the prostate cancer-suppressing effects of not only 15-LOX but also dietary DHA.
Collapse
Affiliation(s)
- Joseph T. O’Flaherty
- Department of Internal Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina, United States of America
| | - Yungping Hu
- Department of Pathology, Wake Forest School of Medicine, Winston-Salem, North Carolina, United States of America
| | - Rhonda E. Wooten
- Department of Biochemistry, Wake Forest School of Medicine, Winston-Salem, North Carolina, United States of America
| | - David A. Horita
- Department of Biochemistry, Wake Forest School of Medicine, Winston-Salem, North Carolina, United States of America
| | - Michael P. Samuel
- Department of Biochemistry, Wake Forest School of Medicine, Winston-Salem, North Carolina, United States of America
| | - Michael J. Thomas
- Department of Biochemistry, Wake Forest School of Medicine, Winston-Salem, North Carolina, United States of America
| | - Haiguo Sun
- Department of Pathology, Wake Forest School of Medicine, Winston-Salem, North Carolina, United States of America
| | - Iris J. Edwards
- Department of Pathology, Wake Forest School of Medicine, Winston-Salem, North Carolina, United States of America
- * E-mail:
| |
Collapse
|
13
|
Progress in Anti-inflammation Effect of n-3 Fatty Acid Metabolites*. PROG BIOCHEM BIOPHYS 2011. [DOI: 10.3724/sp.j.1206.2010.00108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
14
|
Chechetkin I, Osipova E, Antsygina L, Gogolev Y, Grechkin A. Oxidation of glycerolipids by maize 9-lipoxygenase and its A562G mutant. Chem Phys Lipids 2011; 164:216-20. [DOI: 10.1016/j.chemphyslip.2011.01.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2010] [Revised: 12/30/2010] [Accepted: 01/19/2011] [Indexed: 01/03/2023]
|
15
|
Chen P, Véricel E, Lagarde M, Guichardant M. Poxytrins, a class of oxygenated products from polyunsaturated fatty acids, potently inhibit blood platelet aggregation. FASEB J 2010; 25:382-8. [PMID: 20833872 DOI: 10.1096/fj.10-161836] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Docosahexaenoic acid (DHA), an important component of marine lipids, exhibits anti-inflammatory activity related to some of its oxygenated metabolites, such as neuroprotectin/protectin D1 [NPD1/PD1; 10(R),17(S)-dihydroxy-docosa-4Z,7Z, 11E,13E,15Z,19Z-hexaenoic acid] produced through the 15-lipoxygenase pathway. However, other metabolites from DHA can be produced through this pathway, and other polyunsaturated fatty acids (PUFAs) of nutritional value may be oxygenated as well. Their biological activities remain unknown. Isomers of protectin D1 were synthesized using soybean lipoxygenase and tested for their ability to inhibit human blood platelet aggregation. A geometric isomer called PDX, previously described with the 11E,13Z,15E geometry, instead of 11E,13E,15Z in PD1, inhibited platelet aggregation at submicromolar concentrations when induced by either collagen, arachidonic acid, or thromboxane. The inhibition occurred at the level of both the cyclooxygenase activity and thromboxane receptor site. Interestingly, all the metabolites tested exhibiting the E,Z,E-conjugated triene were active, whereas E,E,Z trienes (as in PD1) or all-trans (E,E,E) trienes were inactive. We conclude that PDX and other oxygenated products from PUFAs of nutritional interest, having the E,Z,E-conjugated triene motif and collectively named poxytrins (PUFA oxygenated trienes), might have antithrombotic potential.
Collapse
Affiliation(s)
- Ping Chen
- Université de Lyon, Unité Mixte de Recherche (UMR) 870, Institut National de la Santé et de la Recherche Médicale (INSERM)/Institut National des Sciences Appliquées–Lyon, and UMR 1235, Institut National de Recherche Agronomique, Villeurbanne, France
| | | | | | | |
Collapse
|
16
|
Hersberger M. Potential role of the lipoxygenase derived lipid mediators in atherosclerosis: leukotrienes, lipoxins and resolvins. Clin Chem Lab Med 2010; 48:1063-73. [DOI: 10.1515/cclm.2010.212] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
17
|
Dangi B, Obeng M, Nauroth JM, Teymourlouei M, Needham M, Raman K, Arterburn LM. Biogenic synthesis, purification, and chemical characterization of anti-inflammatory resolvins derived from docosapentaenoic acid (DPAn-6). J Biol Chem 2009; 284:14744-59. [PMID: 19324874 PMCID: PMC2685656 DOI: 10.1074/jbc.m809014200] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2008] [Revised: 03/25/2009] [Indexed: 12/14/2022] Open
Abstract
Enzymatically oxygenated derivatives of the omega-3 fatty acids cis-4,7,10,13,16,19-docosahexaenoic acid (DHA) and cis-5,8,11,14,17-eicosapentaenoic acid, known as resolvins, have potent inflammation resolution activity (Serhan, C. N., Clish, C. B., Brannon, J., Colgan, S. P., Chiang, N., and Gronert, K. (2000) J. Exp. Med. 192, 1197-1204; Hong, S., Gronert, K., Devchand, P. R., Moussignac, R., and Serhan, C. N. (2003) J. Biol. Chem. 278, 14677-14687). Our objective was to determine whether similar derivatives are enzymatically synthesized from other C-22 fatty acids and whether these molecules possess inflammation resolution properties. The reaction of DHA, DPAn-3, and DPAn-6 with 5-, 12-, and 15-lipoxygenases produced oxylipins, which were identified and characterized by liquid chromatography coupled with tandem mass-spectrometry. DPAn-6 and DPAn-3 proved to be good substrates for 15-lipoxygenase. 15-Lipoxygenase proved to be the most efficient enzyme of the three tested for conversion of long chain polyunsaturated fatty acids to corresponding oxylipins. Since DPAn-6 is a major component of Martek DHA-S oil, we focused our attention on reaction products obtained from the DPAn-6 and 15-lipoxygenase reaction. (17S)-hydroxy-DPAn-6 and (10,17S)-dihydroxy-DPAn-6 were the main products of this reaction. These compounds were purified by preparatory high performance liquid chromatography techniques and further characterized by NMR, UV spectrophotometry, and tandem mass spectrometry. We tested both compounds in two animal models of acute inflammation and demonstrated that both compounds are potent anti-inflammatory agents that are active on local intravenous as well as oral administration. These oxygenated DPAn-6 compounds can thus be categorized as a new class of DPAn-6-derived resolvins.
Collapse
Affiliation(s)
- Bindi Dangi
- Martek Biosciences Corporation, Columbia, Maryland 21045, USA.
| | | | | | | | | | | | | |
Collapse
|
18
|
Dyall SC, Michael-Titus AT. Neurological benefits of omega-3 fatty acids. Neuromolecular Med 2008; 10:219-35. [PMID: 18543124 DOI: 10.1007/s12017-008-8036-z] [Citation(s) in RCA: 194] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2008] [Accepted: 05/06/2008] [Indexed: 12/21/2022]
Abstract
The central nervous system is highly enriched in long-chain polyunsaturated fatty acid (PUFA) of the omega-6 and omega-3 series. The presence of these fatty acids as structural components of neuronal membranes influences cellular function both directly, through effects on membrane properties, and also by acting as a precursor pool for lipid-derived messengers. An adequate intake of omega-3 PUFA is essential for optimal visual function and neural development. Furthermore, there is increasing evidence that increased intake of the long-chain omega-3 PUFA, eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), may confer benefits in a variety of psychiatric and neurological disorders, and in particular neurodegenerative conditions. However, the mechanisms underlying these beneficial effects are still poorly understood. Recent evidence also indicates that in addition to the positive effects seen in chronic neurodegenerative conditions, omega-3 PUFA may also have significant neuroprotective potential in acute neurological injury. Thus, these compounds offer an intriguing prospect as potentially new therapeutic approaches in both chronic and acute conditions. The purpose of this article is to review the current evidence of the neurological benefits of omega-3 PUFA, looking specifically at neurodegenerative conditions and acute neurological injury.
Collapse
Affiliation(s)
- S C Dyall
- British College of Osteopathic Medicine, Lief House, 120-122 Finchley Road, NW5 5HR, London, UK.
| | | |
Collapse
|
19
|
Butovich IA, Lukyanova SM. Inhibition of lipoxygenases and cyclooxygenases by linoleyl hydroxamic acid: comparative in vitro studies. J Lipid Res 2008; 49:1284-94. [PMID: 18305312 DOI: 10.1194/jlr.m700602-jlr200] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In this first comparative in vitro study, linoleyl hydroxamic acid (LHA), a simple and stable derivative of linoleic acid, was tested as an inhibitor of several enzymes involved in arachidonic acid metabolism in mammals. The tested enzymes were human recombinant 5-lipoxygenase (h5-LO), porcine leukocyte 12-LO, rabbit reticulocyte 15-LO, ovine cyclooxygenases 1/2 (COX1/COX2), and human microsomal prostaglandin E synthase-1 (mPGES-1). Potato tuber and soybean lipoxygenases (ptLOX and sLOX, respectively) were studied for comparative purposes. LHA inhibited most of the tested enzymes with the exception of mPGES-1. The LHA inhibitory activity increased as follows: mPGES-1 (no inhibition)<<COX1 = COX2<h5-LO = sLOX = ptLOX<12-LO<<15-LO. The IC(50) values for COX1/COX2, h5-LO, 12-LO, and 15-LO were 60, 7, 0.6, and 0.02 muM, respectively. sLOX was the only tested enzyme that was capable of aerobic oxygenation of LHA, producing 13-hydroperoxy-LHA. The enzyme rapidly inactivated during the reaction. Therefore, LHA could be used as an effective LO/LOX inhibitor without affecting COX1/COX2 and mPGES-1. Possible implications of this observation include treating diseases and pathological states that are caused by (or lead to) hyperproduction of LO-derived metabolites, e.g., inflammation, cardiovascular disorders, cancer, asthma, allergies, psoriasis, and stroke.
Collapse
Affiliation(s)
- Igor A Butovich
- Department of Ophthalmology and Graduate School of Biomedical Sciences, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| | | |
Collapse
|
20
|
Huang LS, Kim MR, Sok DE. Oxygenation of 1-docosahexaenoyl lysophosphatidylcholine by lipoxygenases; conjugated hydroperoxydiene and dihydroxytriene derivatives. Lipids 2007; 42:981-90. [PMID: 17879105 DOI: 10.1007/s11745-007-3112-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2007] [Accepted: 08/07/2007] [Indexed: 01/14/2023]
Abstract
Oxygenation of 1-docosahexaenoyl lysophosphatidylcholine (docosahexaenoyl-lysoPC) by soybean lipoxygenase-1 (LOX-1) or porcine leukocyte LOX was examined. The oxidized products were identified to be hydroperoxydocosahexaenoyl-lysoPC by UV and LC/MS spectrometric analyses. In SP-HPLC and chiral phase-HPLC analyses, the products from the oxygenation of docosahexaenoyl-lysoPC by soybean LOX-1 and porcine leukocyte LOX were found to contain hydroperoxide group mainly at C-17 and C-14, respectively with the S form as a major enantiomer. Next, the sequential exposure of docosahexaenoyl-lysoPC to soybean LOX-1 and porcine leukocyte LOX led to the formation of conjugated triene derivatives possessing a maximal absorption at 271 nm with shoulders at 262 and 281 nm. Based on MS-MS analysis, the conjugated triene derivatives were identified to be 10,17- or 16,17-dihydroxydocosahexaenoyl-lysoPC analogues, suggesting that the diols were produced mainly from hydrolysis of 16,17(S)-epoxide intermediate. In kinetic studies, docosahexaenoyl-lysoPC was more favorable than docosahexaenoic acid as substrate for soybean LOX-1 or leukocyte LOX. Taken together, it is proposed that docosahexaenoyl-lysoPC can be oxygenated as substrates for some lipoxygenases to form conjugated diene and/or triene derivatives.
Collapse
Affiliation(s)
- Long Shuang Huang
- College of Pharmacy, Chungnam National University, Yuseong-ku, Taejon, 305-764, Korea
| | | | | |
Collapse
|