1
|
He X, Zhang J, Huang M, Wang J, Yang S, Yu X, Xu Y, Yang W. Serum apolipoprotein H determines ferroptosis resistance by modulating cellular lipid composition. Cell Death Dis 2024; 15:718. [PMID: 39353906 PMCID: PMC11445452 DOI: 10.1038/s41419-024-07099-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 09/07/2024] [Accepted: 09/23/2024] [Indexed: 10/03/2024]
Abstract
Ferroptosis is a regulated cell death process dependent on iron, triggered by the accumulation of lipid peroxidation. The environmental context significantly impacts cellular sensitivities to ferroptosis. Serum, constituting the extracellular fluid composition in vivo, provides crucial environmental biomolecules. In this study, we investigated the influence of sera on ferroptosis induction, pinpointing the serum protein apolipoprotein H (APOH) as a pivotal inhibitor of ferroptosis. Moreover, we elucidated that APOH suppresses ferroptosis by activating the phosphoinositide 3-kinase (PI3K)-AKT-sterol regulatory element-binding proteins (SREBPs) pathway, thereby elevating stearoyl-CoA desaturase (SCD) levels and augmenting cellular monounsaturated fatty acid-containing phospholipids (MUFA-PLs). Furthermore, ApoHinfer, the peptide derivative of the active region of APOH, mimics its ferroptosis inhibitory activity. Our findings underscore the critical role of serum protein APOH in the inhibition of ferroptosis and indicates potential therapeutic applications in treating cancer and diseases associated with ferroptosis.
Collapse
Affiliation(s)
- Xiang He
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jiahui Zhang
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Masha Huang
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jie Wang
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Simin Yang
- Core Facility of Basic Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiang Yu
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yingjie Xu
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wen Yang
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
2
|
Liu Y, Li T, Xu J, Li S, Li B, Elgozair M. Apolipoprotein H deficiency exacerbates alcohol-induced liver injury via gut Dysbiosis and altered bile acid metabolism. Biochim Biophys Acta Mol Cell Biol Lipids 2024; 1869:159535. [PMID: 39033850 DOI: 10.1016/j.bbalip.2024.159535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 07/06/2024] [Accepted: 07/14/2024] [Indexed: 07/23/2024]
Abstract
BACKGROUND APOH plays an essential role in lipid metabolism and the transport of lipids in the circulation. Previous studies have shown that APOH deficiency causes fatty liver and gut microbiota dysbiosis in mouse models. However, the role and potential mechanisms of APOH deficiency in the pathogenesis of alcoholic liver disease remain unclear. METHODS C57BL/6 WT and ApoH-/- mice were used to construct the binge-on-chronic alcohol feeding model. Mouse liver transcriptome, targeted bile acid metabolome, and 16S gut bacterial taxa were assayed and analyzed. Open-source human liver transcriptome dataset was analyzed. RESULTS ApoH-/- mice fed with alcohol showed severe hepatic steatosis. Liver RNAseq and RT-qPCR data indicated that APOH deficiency predominantly impacts hepatic lipid metabolism by disrupting de novo lipogenesis, cholesterol processing, and bile acid metabolism. A targeted bile acid metabolomics assay indicated significant changes in bile acid composition, including increased percentages of TCA in the liver and DCA in the gut of alcohol-fed ApoH-/- mice. The concentrations of CA, NorCA, and HCA in the liver were higher in ApoH-/- mice on an ethanol diet compared to the control mice (p < 0.05). Additionally, APOH deficiency altered the composition of gut flora, which correlated with changes in the liver bile acid composition in the ethanol-feeding mouse model. Finally, open-source transcript-level data from human ALD livers highlighted a remarkable link between APOH downregulation and steatohepatitis, as well as bile acid metabolism. CONCLUSION APOH deficiency aggravates alcohol induced hepatic steatosis through the disruption of gut microbiota homeostasis and bile acid metabolism in mice.
Collapse
Affiliation(s)
- Yaming Liu
- Department of Gastroenterology and Hepatology, The Second Hospital of Dalian Medical University, Dalian, Liaoning Province, China 116011; Department of Digestive Diseases, School of Medicine, Xiamen University, Xiamen, Fujian Province, China 361001.
| | - Tingting Li
- Department of Digestive Diseases, School of Medicine, Xiamen University, Xiamen, Fujian Province, China 361001
| | - Jun Xu
- Clinical Center of Immune-Mediated Digestive Diseases, Peking University People's Hospital, Beijing, China 100044
| | - Shanshan Li
- The Fourth Liver Disease Center, Beijing YouAn Hospital, Capital Medical University, Beijing, China 100069
| | - Binbin Li
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, USA 55902
| | - Mohamad Elgozair
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, USA 55902
| |
Collapse
|
3
|
Giannakopoulos B, Krilis SA. Domain 5 of Beta 2 glycoprotein I: Friend or foe in health? Context matters. Clin Immunol 2024; 265:110282. [PMID: 38917928 DOI: 10.1016/j.clim.2024.110282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 06/03/2024] [Accepted: 06/05/2024] [Indexed: 06/27/2024]
Abstract
Beta 2 glycoprotein I (β2GPI) is the major autoantigen in the antiphospholipid syndrome, an autoimmune disorder characterized by thrombotic and obstetric complications. The autoantibodies that target beta 2 glycoprotein I are pathogenic and contribute to disease pathogenesis. The β2GPI molecule is composed of 5 domains that are numbered 1 through to 5. Autoantibodies bind mainly to domain 1 whereas the majority of the biological functions of the β2GPI molecule in diverse processes such as apoptotic cell clearance, complement regulation, lipopolysaccharide clearance and anticoagulation have been localised to domain 5 and its unique biochemistry, reviewed in this article. The role of purified domain 5 peptide as a potential therapeutic agent in APS and ischemia reperfusion injury is discussed.
Collapse
Affiliation(s)
- Bill Giannakopoulos
- Faculty of Medicine and Health, University of New South Wales, St George and Sutherland Campus, Level 2, Pitney Building, Kogarah, Sydney, NSW 2217, Australia; Department of Rheumatology, St George Public Hospital, Kogarah, Sydney, 2217, Australia.
| | - Steven A Krilis
- Faculty of Medicine and Health, University of New South Wales, St George and Sutherland Campus, Level 2, Pitney Building, Kogarah, Sydney, NSW 2217, Australia; Department of Infectious Diseases, Immunology, and Sexual Health, St George Public Hospital, Kogarah, Sydney 2217, Australia.
| |
Collapse
|
4
|
Mourino-Alvarez L, Juarez-Alia C, Sastre-Oliva T, Perales-Sánchez I, Hernandez-Fernandez G, Chicano-Galvez E, Peralbo-Molina Á, Madruga F, Blanco-Lopez E, Tejerina T, Barderas MG. Dysregulation of Lipid Metabolism Serves as A Link Between Alzheimer's and Cardiovascular Disease, As Witnessed in A Cross-Sectional Study. Aging Dis 2024; 16:1769-1784. [PMID: 39012677 PMCID: PMC12096944 DOI: 10.14336/ad.2024.0434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Accepted: 05/31/2024] [Indexed: 07/17/2024] Open
Abstract
Cardiovascular risk factors and established cardiovascular disease (CVD) increase the risk of suffering dementia of the Alzheimer's type (DAT). Here, we set out to define specific molecular profiles of CVD in patients with DAT to better understand its relationship, to unravel the mechanisms underlying the high risk of developing DAT in CVD patients and to define new markers of early disease. Plasma samples from patients with DAT, with and without CVD, were analyzed through a multiomics approach, with integration of metabolomics and proteomics datasets using the OmicsNet web-based tool. Metabolomics results showed an enrichment in lipids and lipid-like molecules. Similarly, the most significant cluster identified through proteomics was formed by 5 proteins related to lipoprotein and cholesterol metabolism. After integration and functional enrichment, glycerolipid metabolism, fatty acid degradation and sphingolipid metabolism were among the most significant functions. Finally, the differential expression of ABCA1 and APOH proteins was verified, in an independent cohort also including controls and patients with CVD alone. Both proteins positively correlated with phospho-Tau (181), a classical hallmark of DAT. Different molecular profiles exist in patients with DAT, with and without CVD, with exacerbated alterations in patients in which DAT and CVD co-exist. This information may help to define biomarkers like ABCA1 and APOH that identify patients with cardiovascular dysfunction that are at high risk of developing DAT. Such markers will allow more personalized interventions to be selected, a further step towards precision medicine for individuals whose molecular profiles indicate a distinct response to the same management strategies.
Collapse
Affiliation(s)
- Laura Mourino-Alvarez
- Department of Vascular Physiopathology, Hospital Nacional de Paraplejicos, SESCAM, 45071 Toledo, Spain.
- Department of Vascular Physiopathology, Hospital Nacional de Paraplejicos, IDISCAM, 45071 Toledo, Spain.
| | - Cristina Juarez-Alia
- Department of Vascular Physiopathology, Hospital Nacional de Paraplejicos, SESCAM, 45071 Toledo, Spain.
- Department of Vascular Physiopathology, Hospital Nacional de Paraplejicos, IDISCAM, 45071 Toledo, Spain.
| | - Tamara Sastre-Oliva
- Department of Vascular Physiopathology, Hospital Nacional de Paraplejicos, SESCAM, 45071 Toledo, Spain.
- Department of Vascular Physiopathology, Hospital Nacional de Paraplejicos, IDISCAM, 45071 Toledo, Spain.
| | - Inés Perales-Sánchez
- Department of Vascular Physiopathology, Hospital Nacional de Paraplejicos, SESCAM, 45071 Toledo, Spain.
- Department of Vascular Physiopathology, Hospital Nacional de Paraplejicos, IDISCAM, 45071 Toledo, Spain.
| | - German Hernandez-Fernandez
- Department of Vascular Physiopathology, Hospital Nacional de Paraplejicos, SESCAM, 45071 Toledo, Spain.
- Department of Vascular Physiopathology, Hospital Nacional de Paraplejicos, IDISCAM, 45071 Toledo, Spain.
| | - Eduardo Chicano-Galvez
- IMIBIC Mass Spectrometry and Molecular Imaging Unit, Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Reina Sofia University Hospital, University of Cordoba (UCO), Córdoba, Spain.
| | - Ángela Peralbo-Molina
- IMIBIC Mass Spectrometry and Molecular Imaging Unit, Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Reina Sofia University Hospital, University of Cordoba (UCO), Córdoba, Spain.
| | - Felipe Madruga
- Departament of Geriatrics, Hospital Virgen del Valle, SESCAM, Toledo, Spain.
| | - Emilio Blanco-Lopez
- Department of Cardiology, Ciudad Real General University Hospital, Ciudad Real, Spain.
| | - Teresa Tejerina
- Department of Pharmacology, School of Medicine, Universidad Complutense de Madrid, Madrid, Spain.
| | - María G. Barderas
- Department of Vascular Physiopathology, Hospital Nacional de Paraplejicos, SESCAM, 45071 Toledo, Spain.
- Department of Vascular Physiopathology, Hospital Nacional de Paraplejicos, IDISCAM, 45071 Toledo, Spain.
| |
Collapse
|
5
|
Sharma A, Sharma C, Sharma L, Wal P, Mishra P, Sachdeva N, Yadav S, Vargas De-La Cruz C, Arora S, Subramaniyan V, Rawat R, Behl T, Nandave M. Targeting the vivid facets of apolipoproteins as a cardiovascular risk factor in rheumatoid arthritis. Can J Physiol Pharmacol 2024; 102:305-317. [PMID: 38334084 DOI: 10.1139/cjpp-2023-0259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2024]
Abstract
Mostly, cardiovascular diseases are blamed for casualties in rheumatoid arthritis (RA) patients. Customarily, dyslipidemia is probably the most prevalent underlying cause of untimely demise in people suffering from RA as it hastens the expansion of atherosclerosis. The engagement of inflammatory cytokines like tumor necrosis factor-α (TNF-α), interleukin-1 (IL-1), interleukin-6 (IL-6), etc., is crucial in the progression and proliferation of both RA and abnormal lipid parameters. Thus, lipid abnormalities should be monitored frequently in patients with both primary and advanced RA stages. An advanced lipid profile examination, i.e., direct role of apolipoproteins associated with various lipid molecules is a more dependable approach for better understanding of the disease and selecting suitable therapeutic targets. Therefore, studying their apolipoproteins is more relevant than assessing RA patients' altered lipid profile levels. Among the various apolipoprotein classes, Apo A1 and Apo B are primarily being focused. In addition, it also addresses how calculating Apo B:Apo A1 ratio can aid in analyzing the disease's risk. The marketed therapies available to control lipid abnormalities are associated with many other risk factors. Hence, directly targeting Apo A1 and Apo B would provide a better and safer option.
Collapse
Affiliation(s)
- Aditi Sharma
- Department of Pharmacology, School of Pharmaceutical Sciences, Shoolini University, Solan, Himachal Pradesh, India
| | - Chakshu Sharma
- Department of Pharmacology, School of Pharmaceutical Sciences, Shoolini University, Solan, Himachal Pradesh, India
| | - Lalit Sharma
- Department of Pharmacology, School of Pharmaceutical Sciences, Shoolini University, Solan, Himachal Pradesh, India
| | - Pranay Wal
- Pranveer Singh Institute of Technology, Pharmacy, Kanpur, Uttar Pradesh, India
| | - Preeti Mishra
- Raja Balwant Singh Engineering Technical Campus, Bichpuri, Agra, India
| | - Nitin Sachdeva
- Department of Anesthesia, Mediclinic Aljowhara Hospital, Al Ain, United Arab Emirates
| | - Shivam Yadav
- School of Pharmacy, Babu Banarasi Das University, Lucknow, Uttar Pradesh, India
| | - Celia Vargas De-La Cruz
- Department of Pharmacology, Bromatology and Toxicology, Faculty of Pharmacy and Biochemistry, Universidad Nacional Mayor de San Marcos, Lima 15001, Peru
- E-Health Research Center, Universidad de Ciencias y Humanidades, Lima 15001, Peru
| | - Sandeep Arora
- Amity Institute of Pharmacy, Amity University, Noida, Uttar Pradesh, India
| | - Vetriselvan Subramaniyan
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University, Jalan Lagoon Selatan, Bandar Sunway, 47500 Selangor Darul Ehsan, Malaysia
- Centre for Transdisciplinary Research, Department of Pharmacology, Saveetha Dental College Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, Tamil Nadu 600077, India
| | - Ravi Rawat
- School of Health Sciences and Technology, University of Petroleum and Energy Studies, Bidholi, Dehradun, Uttarakhand, India
| | - Tapan Behl
- Amity School of Pharmaceutical Sciences, Amity University, Mohali, Punjab, India
| | - Mukesh Nandave
- Department of Pharmacology, Delhi Pharmaceutical Sciences and Research University, Pushp Vihar, Delhi, India
| |
Collapse
|
6
|
Liu Y, Zhao Y, Liu Q, Li B, Daniel PV, Chen B, Wu Z. Effects of apolipoprotein H downregulation on lipid metabolism, fatty liver disease, and gut microbiota dysbiosis. J Lipid Res 2024; 65:100483. [PMID: 38101620 PMCID: PMC10818206 DOI: 10.1016/j.jlr.2023.100483] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 11/27/2023] [Accepted: 12/04/2023] [Indexed: 12/17/2023] Open
Abstract
Apolipoprotein H (APOH) downregulation can cause hepatic steatosis and gut microbiota dysbiosis. However, the mechanism by which APOH-regulated lipid metabolism contributes to metabolic dysfunction-associated steatotic liver disease (MASLD) remains undetermined. Herein, we aim to explore the regulatory effect of APOH, mediated through various pathways, on metabolic homeostasis and MASLD pathogenesis. We analyzed serum marker levels, liver histopathology, and cholesterol metabolism-related gene expression in global ApoH-/- C57BL/6 male mice. We used RNA sequencing and metabolomic techniques to investigate the association between liver metabolism and bacterial composition. Fifty-two differentially expressed genes were identified between ApoH-/- and WT mice. The mRNA levels of de novo lipogenesis genes were highly upregulated in ApoH-/- mice than in WT mice. Fatty acid, glycerophospholipid, sterol lipid, and triglyceride levels were elevated, while hyodeoxycholic acid levels were significantly reduced in the liver tissues of ApoH-/- mice than in those of WT mice. Microbial beta diversity was lower in ApoH-/- mice than in WT mice, and gut microbiota metabolic functions were activated in ApoH-/- mice. Moreover, ApoH transcripts were downregulated in patients with MASLD, and APOH-related differential genes were enriched in lipid metabolism. Open-source transcript-level data from human metabolic dysfunction-associated steatohepatitis livers reinforced a significant association between metabolic dysfunction-associated steatohepatitis and APOH downregulation. In conclusion, our studies demonstrated that APOH downregulation aggravates fatty liver and induces gut microbiota dysbiosis by dysregulating bile acids. Our findings offer a novel perspective on APOH-mediated lipid metabolic dysbiosis and provide a valuable framework for deciphering the role of APOH in fatty liver disease.
Collapse
Affiliation(s)
- Yaming Liu
- Department of Gastroenterology and Hepatology, Xiamen University Zhongshan Hospital, Xiamen, FJ, China; Department of Digestive Diseases, School of Medicine, Xiamen University, Xiamen, FJ, China.
| | - Yiqun Zhao
- Department of Gastroenterology and Hepatology, Xiamen University Zhongshan Hospital, Xiamen, FJ, China; Department of Digestive Diseases, School of Medicine, Xiamen University, Xiamen, FJ, China
| | - Qiusong Liu
- Department of Tumor and Vascular Interventional Radiology, Xiamen University Zhongshan Hospital, Xiamen, FJ, China
| | - Binbin Li
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, USA
| | - P Vineeth Daniel
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, USA
| | - Binbin Chen
- Department of Digestive Diseases, School of Medicine, Xiamen University, Xiamen, FJ, China
| | - Zeyi Wu
- Department of Computer Science and Engineering, University of California, San Diego, CA, USA
| |
Collapse
|
7
|
Liu Y, Wu Y, Jiang X, Chen B, Lu J, Cai Z, Fu B, Zheng W, Wu R, Chen G, Tian S, Ren J. Apolipoprotein H induces sex-specific steatohepatitis and gut dysbiosis during chronic hepatitis B infection. iScience 2023; 26:106100. [PMID: 36852272 PMCID: PMC9958358 DOI: 10.1016/j.isci.2023.106100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 12/07/2022] [Accepted: 01/25/2023] [Indexed: 02/04/2023] Open
Abstract
Apolipoprotein H (APOH) is involved in lipid metabolism and functions as an acute-phase protein during hepatitis B virus (HBV) infection. Herein, we explored whether APOH acts on the development of fatty liver upon chronic HBV infection. Serum APOH level was significantly lower in cirrhosis patients than in healthy controls or patients with chronic infection. It showed sex bias, with elevated levels in female patients with chronic infection. Also, serum APOH levels were negatively correlated with HBV surface antigen (HBsAg) but positively correlated with albumin and triglyceride levels. In In vitro HBV infection model, HBV upregulated APOH expression in a non-temporal manner, and HBsAg levels were elevated by silencing APOH. RNA sequencing (RNA-seq) demonstrated bidirectional expression of APOH, which impacted the immunoregulation upon infection or the metabolic regulation in HepG2.2.15 cells. Then, ApoH -/- mice with persistent HBV replication displayed steatohepatitis and gut microbiota dysbiosis with synergistic sex differences. Our study deciphers the roles of APOH in chronic liver diseases.
Collapse
Affiliation(s)
- Yaming Liu
- Department of Gastroenterology and Hepatology, Xiamen University Zhongshan Hospital, Xiamen, Fujian Province 361001, China,Department of Digestive Diseases, School of Medicine, Xiamen University, Xiamen, Fujian Province 361001, China
| | - Yangtao Wu
- Department of Digestive Diseases, School of Medicine, Xiamen University, Xiamen, Fujian Province 361001, China,National Institute of Diagnostic and Vaccine Development in Infectious Disease, Xiamen University, Xiamen, Fujian Province 361001, China
| | - Xiaoming Jiang
- Department of Hepatology, The First Hospital of Jilin University, Changchun, Jilin Province 132001, China
| | - Bo Chen
- Department of Hepatobiliary Surgery, The first affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province 325000, China
| | - Jing Lu
- Department of Digestive Diseases, School of Medicine, Xiamen University, Xiamen, Fujian Province 361001, China
| | - Zexin Cai
- Department of Digestive Diseases, School of Medicine, Xiamen University, Xiamen, Fujian Province 361001, China
| | - Baorong Fu
- Department of Digestive Diseases, School of Medicine, Xiamen University, Xiamen, Fujian Province 361001, China,National Institute of Diagnostic and Vaccine Development in Infectious Disease, Xiamen University, Xiamen, Fujian Province 361001, China
| | - Wei Zheng
- Department of Digestive Diseases, School of Medicine, Xiamen University, Xiamen, Fujian Province 361001, China,Department of Pathology, Xiamen University Zhongshan Hospital, Xiamen, Fujian Province 361001, China
| | - Ruihong Wu
- Department of Hepatology, The First Hospital of Jilin University, Changchun, Jilin Province 132001, China
| | - Gang Chen
- Department of Hepatobiliary Surgery, The first affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province 325000, China
| | - Shulan Tian
- Division of Computational Biology, Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN 55905, USA
| | - Jianlin Ren
- Department of Gastroenterology and Hepatology, Xiamen University Zhongshan Hospital, Xiamen, Fujian Province 361001, China,Department of Digestive Diseases, School of Medicine, Xiamen University, Xiamen, Fujian Province 361001, China,Corresponding author
| |
Collapse
|
8
|
Liu Y, Wu Z, Zhang Y, Chen B, Yu S, Li W, Ren J. Alcohol-dependent downregulation of apolipoprotein H exacerbates fatty liver and gut microbiota dysbiosis in mice. Lipids Health Dis 2022; 21:89. [PMID: 36123743 PMCID: PMC9487114 DOI: 10.1186/s12944-022-01699-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 09/07/2022] [Indexed: 11/10/2022] Open
Abstract
Background Alcohol-related liver disease (ALD) is a major chronic liver ailment caused by alcohol overconsumption and abuse. Apolipoprotein H (APOH) participates in lipid metabolism and might have a potential regulatory role in ALD. Therefore, this study aimed to explore the effects of ApoH on alcohol-induced liver injury and gut microbiota dysbiosis. Methods ApoH−/− mice were generated and the synergic alcoholic steatohepatitis mouse model was constructed, which were used to assess liver function and pathological changes. Results ApoH−/− mice clearly exhibited spontaneous steatohepatitis. Severe hepatic steatosis was observed in alcohol-fed WT and ApoH−/− mice, in which ApoH expression was reduced post alcohol consumption. Moreover, RNA-seq and KEGG pathway analyses indicated that differential expression genes enriched in lipid metabolism and oxidation–reduction process between in alcohol-fed ApoH−/− mice and pair-fed control mice. Finally, gut microbiota diversity and composition were assessed by 16S rRNA Illumina next-generation sequencing. Alpha diversity of enterobacteria was lower in ApoH−/− mice with ethanol feeding than in ethanol-fed WT mice and all control-fed mice (P < 0.05). Moreover, KEGG enrichment analysis, using PICRUSt software, revealed that metabolic functions were activated in the gut microorganisms of ApoH−/− mice with ethanol feeding (P < 0.05). Conclusions Alcohol-downregulated ApoH expression, leading to the progress of fatty liver disease and gut microbiota dysbiosis.
Collapse
Affiliation(s)
- Yaming Liu
- Department of Gastroenterology and Hepatology, Xiamen University Zhongshan Hospital, Xiamen, 361001, Fujian Province, China.,Department of Digestive Diseases, School of Medicine, Xiamen University, Xiamen, 361001, Fujian Province, China
| | - Zhe Wu
- Digestive Department, Peking University People's Hospital, Beijing, 100001, China
| | - Yong Zhang
- Department of Digestive Diseases, School of Medicine, Xiamen University, Xiamen, 361001, Fujian Province, China.,School of Life Sciences, Xiamen University, Xiamen, 361001, Fujian Province, China
| | - Binbin Chen
- Department of Digestive Diseases, School of Medicine, Xiamen University, Xiamen, 361001, Fujian Province, China.,School of Medicine, Xiamen University, Xiamen, 361001, Fujian Province, China
| | - Shuqi Yu
- Department of Pathology, Xiamen University Zhongshan Hospital, Xiamen, 361001, Fujian Province, China
| | - Wanyun Li
- Department of Digestive Diseases, School of Medicine, Xiamen University, Xiamen, 361001, Fujian Province, China.,School of Medicine, Xiamen University, Xiamen, 361001, Fujian Province, China
| | - Jianlin Ren
- Department of Gastroenterology and Hepatology, Xiamen University Zhongshan Hospital, Xiamen, 361001, Fujian Province, China. .,Department of Digestive Diseases, School of Medicine, Xiamen University, Xiamen, 361001, Fujian Province, China.
| |
Collapse
|
9
|
Dod R, Rajendran A, Kathrotia M, Clarke A, Dodani S. Cardiovascular Disease in South Asian Immigrants: a Review of Dysfunctional HDL as a Potential Marker. J Racial Ethn Health Disparities 2022; 10:1194-1200. [PMID: 35449485 PMCID: PMC9022895 DOI: 10.1007/s40615-022-01306-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 04/05/2022] [Accepted: 04/07/2022] [Indexed: 11/24/2022]
Abstract
South Asians (SAs) account for a quarter of the world's population and are one of the fastest-growing immigrant groups in the United States (US). South Asian Immigrants (SAIs) are disproportionately more at risk of developing cardiovascular disease (CVD) than other ethnic/racial groups. Atherosclerosis is a chronic inflammatory disorder and is the major cause of CVD. Traditional CVD risk factors, though important, do not fully explain the elevated risk of CVD in SAIs. High-density lipoproteins (HDLs) are heterogeneous lipoproteins that modify their composition and functionality depending on physiological or pathological conditions. With its cholesterol efflux, anti-inflammatory, and antioxidant functions, HDL is traditionally considered a protective factor for CVD. However, its functions can be compromised under pathological conditions, such as chronic inflammation, making it dysfunctional (Dys-HDL). SAIs have a high prevalence of type 2 diabetes and metabolic syndrome, which may further promote Dys-HDL. This review explores the potential association between Dys-HDL and CVD in SAIs and presents current literature discussing the role of Dys-HDL in CVD.
Collapse
Affiliation(s)
- Rohan Dod
- School of Medicine, Eastern Virginia Medical School, Norfolk, VA, USA
| | - Aishwarya Rajendran
- EVMS - Sentara Healthcare Analytics and Delivery Science Institute, Eastern Virginia Medical School, Norfolk, VA, USA
| | - Mayuri Kathrotia
- School of Medicine, Eastern Virginia Medical School, Norfolk, VA, USA
| | - Amanda Clarke
- EVMS - Sentara Healthcare Analytics and Delivery Science Institute, Eastern Virginia Medical School, Norfolk, VA, USA
| | - Sunita Dodani
- School of Medicine, Eastern Virginia Medical School, Norfolk, VA, USA. .,EVMS - Sentara Healthcare Analytics and Delivery Science Institute, Eastern Virginia Medical School, Norfolk, VA, USA.
| |
Collapse
|
10
|
Guo L, Wei C, Yi L, Yang W, Geng Z, Chen X. Transcriptional Insights into Key Genes and Pathways Underlying Muscovy Duck Subcutaneous Fat Deposition at Different Developmental Stages. Animals (Basel) 2021; 11:ani11072099. [PMID: 34359227 PMCID: PMC8300375 DOI: 10.3390/ani11072099] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 07/07/2021] [Accepted: 07/10/2021] [Indexed: 01/24/2023] Open
Abstract
Simple Summary Subcutaneous fat is an important factor affecting the meat quality and feed conversion rate of waterfowl. The current study compared the transcriptome data of Muscovy duck subcutaneous fat among three developmental stages, aiming at exploring the key regulatory genes for subcutaneous fat deposition. The results generated abundant candidate genes and pathways involving in subcutaneous fat deposition in Muscovy duck. This study provides an important reference for revealing the developmental mechanisms of subcutaneous fat in duck. Abstract Subcutaneous fat is a crucial trait for waterfowl, largely associated with meat quality and feed conversion rate. In this study, RNA-seq was used to identify differentially expressed genes of subcutaneous adipose tissue among three developmental stages (12, 35, and 66 weeks) in Muscovy duck. A total of 138 and 129 differentially expressed genes (DEGs) were identified between 35 and 12 weeks (wk), and 66 and 35 wk, respectively. Compared with 12 wk, subcutaneous fat tissue at 35 wk upregulated several genes related to cholesterol biosynthesis and fatty acid biosynthesis, including HSD17B7 and MSMO1, while it downregulated fatty acid beta-oxidation related genes, including ACOX1 and ACSL1. Notably, most of the DEGs (92.2%) were downregulated in 66 wk compared with 35 wk, consistent with the slower metabolism of aging duck. Protein network interaction and function analyses revealed GC, AHSG, FGG, and FGA were the key genes for duck subcutaneous fat from adult to old age. Additionally, the PPAR signaling pathway, commonly enriched between the two comparisons, might be the key pathway contributing to subcutaneous fat metabolism among differential developmental stages in Muscovy duck. These results provide several candidate genes and pathways potentially involved in duck subcutaneous fat deposition, expanding our understanding of the molecular mechanisms underlying subcutaneous fat deposition during development.
Collapse
|
11
|
Lee JS, Lee EJ, Yeom J, Oh JS, Hong S, Lee CK, Yoo B, Kim K, Kim YG. Urine β-2-glycoprotein 1 as a biomarker for diagnosis of systemic lupus erythematosus. Lupus 2021; 30:1306-1313. [PMID: 33966541 DOI: 10.1177/09612033211014268] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
OBJECTIVE The need for a biomarker with robust sensitivity and specificity in diagnosing systemic lupus erythematosus (SLE) remains unmet. Compared with blood samples, urine samples are more easily collected; thus, we aimed to identify such a biomarker based on urinary proteomics which could distinguish patients with SLE from healthy controls (HCs). METHODS Urine samples were collected from 76 SLE patients who visited rheumatology clinic in 2019 at Asan medical center and from 25 HCs. Urine proteins were analyzed using sequential windowed acquisition of all theoretical fragment ion spectra-mass spectrometry, and the candidate marker was confirmed by enzyme-linked immunosorbent assay (ELISA). Receiver operating characteristic curve analysis was used to determine the diagnostic value of the candidate biomarker. RESULTS Of 1157 proteins quantified, 153 were differentially expressed in urine samples from HCs. Among them were previously known markers including α-1-acid glycoprotein 1, α-2-HS-glycoprotein, ceruloplasmin, and prostaglandin-H2 D-isomerase. Moreover, the amount of β-2 glycoprotein (APOH) was increased in the urine of patients with SLE. The ELISA results also showed the level of urine APOH was higher in patients with SLE than in HCs and patients with rheumatoid arthritis. Moreover, the level was not different between SLE patients with and without nephritis. The urine APOH had an area under the curve value of 0.946 at a cut-off value of 228.53 ng/mg (sensitivity 91.5%, specificity 92.0%) for the diagnosis of SLE. CONCLUSION The results indicate that the urine APOH level can be an appropriate screening tool in a clinical setting when SLE is suspected.
Collapse
Affiliation(s)
- Jung Sun Lee
- Department of Internal Medicine, Seoul Veterans Hospital, Seoul, Korea
| | - Eun-Ju Lee
- Department of Internal Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Jeonghun Yeom
- Clinical Proteomics Core Laboratory, Convergence Medicine Research Center, Asan Medical Center, Seoul, Korea
| | - Ji Seon Oh
- Department of Information Medicine, Asan Medical Center, Seoul, Korea
| | - Seokchan Hong
- Department of Internal Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Chang-Keun Lee
- Department of Internal Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Bin Yoo
- Department of Internal Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Kyunggon Kim
- Clinical Proteomics Core Laboratory, Convergence Medicine Research Center, Asan Medical Center, Seoul, Korea
| | - Yong-Gil Kim
- Department of Internal Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| |
Collapse
|
12
|
Hoekstra M, Chen HY, Rong J, Dufresne L, Yao J, Guo X, Tsai MY, Tsimikas S, Post WS, Vasan RS, Rotter JI, Larson MG, Thanassoulis G, Engert JC. Genome-Wide Association Study Highlights APOH as a Novel Locus for Lipoprotein(a) Levels-Brief Report. Arterioscler Thromb Vasc Biol 2021; 41:458-464. [PMID: 33115273 PMCID: PMC7769958 DOI: 10.1161/atvbaha.120.314965] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 10/12/2020] [Indexed: 02/07/2023]
Abstract
OBJECTIVE Lp(a) (lipoprotein[a]) is an independent risk factor for cardiovascular diseases and plasma levels are primarily determined by variation at the LPA locus. We performed a genome-wide association study in the UK Biobank to determine whether additional loci influence Lp(a) levels. Approach and Results: We included 293 274 White British individuals in the discovery analysis. Approximately 93 095 623 variants were tested for association with natural log-transformed Lp(a) levels using linear regression models adjusted for age, sex, genotype batch, and 20 principal components of genetic ancestry. After quality control, 131 independent variants were associated at genome-wide significance (P≤5×10-8). In addition to validating previous associations at LPA, APOE, and CETP, we identified a novel variant at the APOH locus, encoding β2GPI (beta2-glycoprotein I). The APOH variant rs8178824 was associated with increased Lp(a) levels (β [95% CI] [ln nmol/L], 0.064 [0.047-0.081]; P=2.8×10-13) and demonstrated a stronger effect after adjustment for variation at the LPA locus (β [95% CI] [ln nmol/L], 0.089 [0.076-0.10]; P=3.8×10-42). This association was replicated in a meta-analysis of 5465 European-ancestry individuals from the Framingham Offspring Study and Multi-Ethnic Study of Atherosclerosis (β [95% CI] [ln mg/dL], 0.16 [0.044-0.28]; P=0.0071). CONCLUSIONS In a large-scale genome-wide association study of Lp(a) levels, we identified APOH as a novel locus for Lp(a) in individuals of European ancestry. Additional studies are needed to determine the precise role of β2GPI in influencing Lp(a) levels as well as its potential as a therapeutic target.
Collapse
Affiliation(s)
- Mary Hoekstra
- Division of Experimental Medicine, McGill University, Montreal, Quebec
- Preventive and Genomic Cardiology, McGill University Health Centre and Research Institute, Montreal, Quebec
| | - Hao Yu Chen
- Division of Experimental Medicine, McGill University, Montreal, Quebec
- Preventive and Genomic Cardiology, McGill University Health Centre and Research Institute, Montreal, Quebec
| | - Jian Rong
- Boston University’s and NHLBI’s Framingham Heart Study, Boston, Massachusetts
| | - Line Dufresne
- Preventive and Genomic Cardiology, McGill University Health Centre and Research Institute, Montreal, Quebec
| | - Jie Yao
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, California
| | - Xiuqing Guo
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, California
| | - Michael Y. Tsai
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, Minnesota
| | - Sotirios Tsimikas
- Division of Cardiovascular Medicine, Sulpizio Cardiovascular Center, University of California San Diego, La Jolla, California
| | - Wendy S. Post
- Division of Cardiology, Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| | | | - Jerome I. Rotter
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, California
| | - Martin G. Larson
- Boston University’s and NHLBI’s Framingham Heart Study, Boston, Massachusetts
| | - George Thanassoulis
- Division of Experimental Medicine, McGill University, Montreal, Quebec
- Preventive and Genomic Cardiology, McGill University Health Centre and Research Institute, Montreal, Quebec
| | - James C. Engert
- Division of Experimental Medicine, McGill University, Montreal, Quebec
- Preventive and Genomic Cardiology, McGill University Health Centre and Research Institute, Montreal, Quebec
- Department of Human Genetics, McGill University, Montreal, Quebec
| |
Collapse
|
13
|
Zhou Y, Mägi R, Milani L, Lauschke VM. Global genetic diversity of human apolipoproteins and effects on cardiovascular disease risk. J Lipid Res 2018; 59:1987-2000. [PMID: 30076208 PMCID: PMC6168301 DOI: 10.1194/jlr.p086710] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Revised: 07/16/2018] [Indexed: 12/13/2022] Open
Abstract
Abnormal plasma apolipoprotein levels are consistently implicated in CVD risk. Although 30% to 60% of their interindividual variability is genetic, common genetic variants explain only 10% to 20% of these differences. Rare genetic variants may be major sources of the missing heritability, yet quantitative evaluations of their contribution to phenotypic variability are lacking. Here, we analyzed whole-genome and whole-exome sequencing data from 138,632 individuals across seven major human populations to present a systematic overview of genetic apolipoprotein variability. We provide population-specific frequencies of 38 clinically important apolipoprotein alleles and identify further 6,875 genetic variants, 33% of which are novel and 98.7% of which are rare with minor allele frequencies <1%. We predicted the functional impact of rare variants and found that their relative importance differed drastically between genes and among ethnicities. Importantly, we validated the clinical relevance of multiple variants with predicted effects by leveraging association data from the CARDIoGRAM (Coronary Artery Disease Genomewide Replication and Meta-analysis) and Global Lipids Genetics consortia. Overall, we provide a consolidated overview of population-specific apolipoprotein genetics as a valuable data resource for scientists and clinicians, estimate the importance of rare genetic variants for the missing heritability of apolipoprotein-associated disease traits, and pinpoint multiple novel apolipoprotein variants with putative population-specific impacts on serum lipid levels.
Collapse
Affiliation(s)
- Yitian Zhou
- Department of Physiology and Pharmacology, Section of Pharmacogenetics, Karolinska Institutet, Stockholm, Sweden
| | - Reedik Mägi
- Estonian Genome Center, University of Tartu, Tartu, Estonia
| | - Lili Milani
- Estonian Genome Center, University of Tartu, Tartu, Estonia
- Science for Life Laboratory, Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - Volker M Lauschke
- Department of Physiology and Pharmacology, Section of Pharmacogenetics, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
14
|
About F, Oudot-Mellakh T, Niay J, Rabiéga P, Pedergnana V, Duffy D, Sultanik P, Cagnot C, Carrat F, Marcellin P, Zoulim F, Larrey D, Hézode C, Fontaine H, Bronowicki JP, Pol S, Albert ML, Theodorou I, Cobat A, Abel L, ANRS CO20-CUPIC study group. Impact of IL28B, APOH and ITPA Polymorphisms on Efficacy and Safety of TVR- or BOC-Based Triple Therapy in Treatment-Experienced HCV-1 Patients with Compensated Cirrhosis from the ANRS CO20-CUPIC Study. PLoS One 2015; 10:e0145105. [PMID: 26670100 PMCID: PMC4682920 DOI: 10.1371/journal.pone.0145105] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Accepted: 11/29/2015] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Human genetic factors influence the outcome of pegylated interferon and ribavirin hepatitis C therapy. We explored the role of IL28B, APOH and ITPA SNPs on the outcomes of triple therapy including telaprevir or boceprevir in patients with compensated cirrhosis chronically infected with HCV-1. PATIENTS AND METHODS A total of 256 HCV-1 Caucasian treatment-experienced patients with compensated cirrhosis from the ANRS CO20-CUPIC cohort were genotyped for a total of 10 candidate SNPs in IL28B (rs12979860 and rs368234815), APOH (rs8178822, rs12944940, rs10048158, rs52797880, rs1801689 and rs1801690) and ITPA (rs1127354 and rs7270101). We tested the association of IL28B and APOH SNPs with sustained virological response and of ITPA SNPs with anemia related phenotypes by means of logistic regression assuming an additive genetic model. RESULTS None of the six APOH SNPs were associated with sustained virological response. The favorable alleles of the IL28B SNPs rs12979860 and rs368234815 were associated with sustained virological response (rs12979860: OR = 2.35[1.50-3.70], P = 2x10(-4)). Refined analysis showed that the effect of IL28B SNPs on sustained virological response was restricted to prior PegIFN/RBV relapse (OR = 3.80[1.82-8.92], P = 8x10(-4)). We also confirmed the association between ITPA low activity alleles and protection against early hemoglobin decline in triple therapy (P = 2x10(-5)). CONCLUSION Our results suggest that the screening of rs12979860 may remain interesting for decision making in prior relapse HCV-1 Caucasian patients with compensated cirrhosis eligible for a telaprevir- or boceprevir-based therapy.
Collapse
Affiliation(s)
- Frédégonde About
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut National de la Santé et de la Recherche Médicale (INSERM) U1163, Paris, France
- Paris Descartes University, Imagine Institute, Paris, France
| | - Tiphaine Oudot-Mellakh
- Laboratory of Immunity and Infection, Centre d’Immunologie et des Maladies Infectieuses de Paris (CIMI), INSERM U1135, Groupe Hospitalier Pitié Salpétrière, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France
- Plateforme Génomique Inserm-ANRS, Groupe Hospitalier Pitié Salpétrière, AP-HP, UPMC Université Paris 6, Paris, France
| | - Jonathan Niay
- Laboratory of Immunity and Infection, Centre d’Immunologie et des Maladies Infectieuses de Paris (CIMI), INSERM U1135, Groupe Hospitalier Pitié Salpétrière, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France
- Plateforme Génomique Inserm-ANRS, Groupe Hospitalier Pitié Salpétrière, AP-HP, UPMC Université Paris 6, Paris, France
| | - Pascaline Rabiéga
- Sorbonne Universités, UPMC Université Paris 06, INSERM, Institut Pierre Louis d’épidémiologie et de Santé Publique (IPLESP UMRS 1136), Paris, France
| | - Vincent Pedergnana
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut National de la Santé et de la Recherche Médicale (INSERM) U1163, Paris, France
- Paris Descartes University, Imagine Institute, Paris, France
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| | - Darragh Duffy
- Centre for Human Immunology, Department of Immunology, Institut Pasteur, Paris, France
- The Laboratory of Dendritic Cell Biology, Department of Immunology, Institut Pasteur, INSERM U818, Paris, France
| | - Philippe Sultanik
- Département d'Hépatologie, Hôpital Cochin, AP-HP, Université Paris Descartes, Paris, France
- INSERM UMS20, Institut Pasteur, Paris, France
| | - Carole Cagnot
- Unit for Basic and Clinical research on Viral Hepatitis, Inserm-ANRS (France REcherche Nord & sud Sida-HIV Hépatites-FRENSH), Paris, France
| | - Fabrice Carrat
- Sorbonne Universités, UPMC Université Paris 06, INSERM, Institut Pierre Louis d’épidémiologie et de Santé Publique (IPLESP UMRS 1136), Paris, France
- Service de Santé Publique, Hôpital Saint Antoine, AP-HP, Paris, France
| | | | - Fabien Zoulim
- Centre de recherche en cancérologie de Lyon (CRCL), INSERM UMR I 1052/CNRS 5286, Lyon cedex 03, France
- Université Claude-Bernard Lyon 1, Villeurbanne, France
- Hospices civils de Lyon, Hôpital de la Croix-Rousse, service d'hépatologie et de gastroentérologie, Lyon, France
| | | | - Christophe Hézode
- Department of Hepatology and Gastroenterology, Hôpital Henri Mondor, AP-HP, Université Paris-Est Créteil (UPEC), Créteil, France
- Institut Mondor de Recherche Biomédicale (IMRB), INSERM U955, UPEC, Créteil, France
| | - Hélène Fontaine
- Département d'Hépatologie, Hôpital Cochin, AP-HP, Université Paris Descartes, Paris, France
- INSERM UMS20, Institut Pasteur, Paris, France
| | - Jean-Pierre Bronowicki
- Department of Hepatogastroenterology, INSERM U954, CHU de Nancy, Université de Lorraine, Vandoeuvre-Lès-Nancy, France
| | - Stanislas Pol
- Département d'Hépatologie, Hôpital Cochin, AP-HP, Université Paris Descartes, Paris, France
- INSERM UMS20, Institut Pasteur, Paris, France
| | - Matthew L. Albert
- Centre for Human Immunology, Department of Immunology, Institut Pasteur, Paris, France
- The Laboratory of Dendritic Cell Biology, Department of Immunology, Institut Pasteur, INSERM U818, Paris, France
- INSERM UMS20, Institut Pasteur, Paris, France
| | - Ioannis Theodorou
- Laboratory of Immunity and Infection, Centre d’Immunologie et des Maladies Infectieuses de Paris (CIMI), INSERM U1135, Groupe Hospitalier Pitié Salpétrière, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France
- Plateforme Génomique Inserm-ANRS, Groupe Hospitalier Pitié Salpétrière, AP-HP, UPMC Université Paris 6, Paris, France
| | - Aurélie Cobat
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut National de la Santé et de la Recherche Médicale (INSERM) U1163, Paris, France
- Paris Descartes University, Imagine Institute, Paris, France
| | - Laurent Abel
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut National de la Santé et de la Recherche Médicale (INSERM) U1163, Paris, France
- Paris Descartes University, Imagine Institute, Paris, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, United States of America
| | | |
Collapse
|
15
|
Ronsein GE, Reyes-Soffer G, He Y, Oda M, Ginsberg H, Heinecke JW. Targeted Proteomics Identifies Paraoxonase/Arylesterase 1 (PON1) and Apolipoprotein Cs as Potential Risk Factors for Hypoalphalipoproteinemia in Diabetic Subjects Treated with Fenofibrate and Rosiglitazone. Mol Cell Proteomics 2015; 15:1083-93. [PMID: 26667175 DOI: 10.1074/mcp.m115.054528] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Indexed: 11/06/2022] Open
Abstract
Low levels of high-density lipoprotein cholesterol (HDL-C) and high triglyceride levels contribute to the excess rate of cardiovascular events seen in subjects with type 2 diabetes. Fenofibrate treatment partially reverses dyslipidemia in these subjects. However, a paradoxical marked reduction in HDL-C and HDL's major protein, apolipoprotein A-I, is a complication of fenofibrate in combination with rosiglitazone, an insulin-sensitizing agent. Risk factors for this condition, termed hypoalphalipoproteinemia, have yet to be identified. Using a case-control study design with subjects enrolled in the Action to Control Cardiovascular Risk in Diabetes (ACCORD) trial, we tested the hypothesis that alterations in HDL's protein cargo predispose diabetic subjects to fenofibrate/rosiglitazone-induced hypoalphalipoproteinemia. HDL was isolated from blood obtained from controls (no decreases or increase in HDL-C while receiving fenofibrate/rosiglitazone therapy) and cases (developed hypoalphalipoproteinemia after fenofibrate/rosiglitazone treatment) participating in the ACCORD study before they began fenofibrate/rosiglitazone treatment. HDL proteins were quantified by targeted parallel reaction monitoring (PRM) and selected reaction monitoring (SRM) with isotope dilution. This approach demonstrated marked increases in the relative concentrations of paraoxonase/arylesterase 1 (PON1), apolipoprotein C-II (APOC2), apolipoprotein C-I, and apolipoprotein H in the HDL of subjects who developed hypoalphalipoproteinemia. The case and control subjects did not differ significantly in baseline HDL-C levels or other traditional lipid risk factors. We used orthogonal biochemical techniques to confirm increased levels of PON1 and APOC2. Our observations suggest that an imbalance in HDL proteins predisposes diabetic subjects to develop hypoalphalipoproteinemia on fenofibrate/rosiglitazone therapy.
Collapse
Affiliation(s)
- Graziella E Ronsein
- From the ‡Department of Medicine, University of Washington, Seattle, WA, 98109;
| | - Gissette Reyes-Soffer
- § Columbia University College of Physicians and Surgeons, Department of Medicine, New York, NY 10032
| | - Yi He
- From the ‡Department of Medicine, University of Washington, Seattle, WA, 98109
| | - Michael Oda
- ¶Children's Hospital Oakland Research Institute, Oakland, CA 94609
| | - Henry Ginsberg
- § Columbia University College of Physicians and Surgeons, Department of Medicine, New York, NY 10032
| | - Jay W Heinecke
- From the ‡Department of Medicine, University of Washington, Seattle, WA, 98109
| |
Collapse
|
16
|
Tang L, Zeng W, Lu X, Wang QY, Liu H, Cheng ZP, Wu YY, Hu B, Jian XR, Guo T, Wang HF, Hu Y. Identification of APOH polymorphisms as common genetic risk factors for venous thrombosis in the Chinese population. J Thromb Haemost 2014; 12:1616-25. [PMID: 25081279 DOI: 10.1111/jth.12679] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2014] [Accepted: 07/25/2014] [Indexed: 11/29/2022]
Abstract
BACKGROUND Venous thrombosis (VT) is a worldwide medical problem. In order to identify individuals at high risk early, it is necessary to find more genetic risk factors. Nowadays, the studies on genetic factors of thrombosis are mainly focused on coagulation and anticoagulation factors. The exploration of other proteins involved in thrombosis and hemostasis may lead to a breakthrough. OBJECTIVES We used APOH as a candidate gene to investigate the existence of genetic variation that could increase the risk of thrombosis. METHODS/RESULTS In the current study, with a resequencing method followed by a case-control study, four polymorphisms (c.-32C>A, c.422T>C, c.461G>A, and c.1004G>C) in APOH (encoding β2 -glycoprotein I) were found to be in high linkage disequilibrium, which could result in three haplotypes. The H2 heterozygotes and H3 homozygotes had approximately 1.5-fold and seven-fold increased risks for VT, respectively. The minor allele frequency in the general population was ~ 10%. In addition, H3 individuals showed a significantly decreased level of β2 -glycoprotein I, but an increased level of thrombin generation. Functional tests indicated that the mutant β2 -glycoprotein I had a significantly lower capacity to extend thrombin clotting time and increase thrombin generation potential. CONCLUSIONS This study revealed APOH as a new candidate gene associated with thrombosis, and further genetic research on this gene in patients in whom the cause of thrombophilia is unknown is therefore warranted.
Collapse
Affiliation(s)
- L Tang
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Hubei Clinical Research Center of Thrombosis and Hemostasis, Wuhan, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Chambers JC, Abbott J, Zhang W, Turro E, Scott WR, Tan ST, Afzal U, Afaq S, Loh M, Lehne B, O'Reilly P, Gaulton KJ, Pearson RD, Li X, Lavery A, Vandrovcova J, Wass MN, Miller K, Sehmi J, Oozageer L, Kooner IK, Al-Hussaini A, Mills R, Grewal J, Panoulas V, Lewin AM, Northwood K, Wander GS, Geoghegan F, Li Y, Wang J, Aitman TJ, McCarthy MI, Scott J, Butcher S, Elliott P, Kooner JS. The South Asian genome. PLoS One 2014; 9:e102645. [PMID: 25115870 PMCID: PMC4130493 DOI: 10.1371/journal.pone.0102645] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2013] [Accepted: 06/21/2014] [Indexed: 12/15/2022] Open
Abstract
The genetic sequence variation of people from the Indian subcontinent who comprise one-quarter of the world's population, is not well described. We carried out whole genome sequencing of 168 South Asians, along with whole-exome sequencing of 147 South Asians to provide deeper characterisation of coding regions. We identify 12,962,155 autosomal sequence variants, including 2,946,861 new SNPs and 312,738 novel indels. This catalogue of SNPs and indels amongst South Asians provides the first comprehensive map of genetic variation in this major human population, and reveals evidence for selective pressures on genes involved in skin biology, metabolism, infection and immunity. Our results will accelerate the search for the genetic variants underlying susceptibility to disorders such as type-2 diabetes and cardiovascular disease which are highly prevalent amongst South Asians.
Collapse
Affiliation(s)
- John C. Chambers
- Epidemiology and Biostatistics, Imperial College London, Norfolk Place, London, United Kingdom
- Imperial College Healthcare NHS Trust, London, United Kingdom
- MRC-HPA Centre for Environment and Health, Imperial College London, Norfolk Place, London, United Kingdom
- Ealing Hospital NHS Trust, Southall, Middlesex, United Kingdom
| | - James Abbott
- Centre for Integrative Systems Biology and Bioinformatics, Imperial College London, London, United Kingdom
| | - Weihua Zhang
- Epidemiology and Biostatistics, Imperial College London, Norfolk Place, London, United Kingdom
- Ealing Hospital NHS Trust, Southall, Middlesex, United Kingdom
| | - Ernest Turro
- Epidemiology and Biostatistics, Imperial College London, Norfolk Place, London, United Kingdom
- Computational Biology and Statistics, University of Cambridge, Cambridge, United Kingdom
| | - William R. Scott
- Epidemiology and Biostatistics, Imperial College London, Norfolk Place, London, United Kingdom
| | - Sian-Tsung Tan
- Ealing Hospital NHS Trust, Southall, Middlesex, United Kingdom
- NHLI, Imperial College London, Hammersmith Hospital, London, United Kingdom
| | - Uzma Afzal
- Epidemiology and Biostatistics, Imperial College London, Norfolk Place, London, United Kingdom
| | - Saima Afaq
- Epidemiology and Biostatistics, Imperial College London, Norfolk Place, London, United Kingdom
| | - Marie Loh
- Epidemiology and Biostatistics, Imperial College London, Norfolk Place, London, United Kingdom
| | - Benjamin Lehne
- Epidemiology and Biostatistics, Imperial College London, Norfolk Place, London, United Kingdom
| | - Paul O'Reilly
- Epidemiology and Biostatistics, Imperial College London, Norfolk Place, London, United Kingdom
| | - Kyle J. Gaulton
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| | - Richard D. Pearson
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| | - Xinzhong Li
- Institute of Clinical Sciences, Imperial College London, London, United Kingdom
- Royal Brompton and Harefield Hospitals NHS Trust, London, United Kingdom
| | - Anita Lavery
- Epidemiology and Biostatistics, Imperial College London, Norfolk Place, London, United Kingdom
| | - Jana Vandrovcova
- MRC Clinical Sciences Centre, Imperial College London, London, United Kingdom
| | - Mark N. Wass
- Centre for Integrative Systems Biology and Bioinformatics, Imperial College London, London, United Kingdom
| | - Kathryn Miller
- Ealing Hospital NHS Trust, Southall, Middlesex, United Kingdom
| | - Joban Sehmi
- Ealing Hospital NHS Trust, Southall, Middlesex, United Kingdom
- NHLI, Imperial College London, Hammersmith Hospital, London, United Kingdom
| | | | | | - Abtehale Al-Hussaini
- Epidemiology and Biostatistics, Imperial College London, Norfolk Place, London, United Kingdom
| | - Rebecca Mills
- Ealing Hospital NHS Trust, Southall, Middlesex, United Kingdom
| | - Jagvir Grewal
- Ealing Hospital NHS Trust, Southall, Middlesex, United Kingdom
| | | | - Alexandra M. Lewin
- Epidemiology and Biostatistics, Imperial College London, Norfolk Place, London, United Kingdom
| | - Korrinne Northwood
- MRC Clinical Sciences Centre, Imperial College London, London, United Kingdom
| | - Gurpreet S. Wander
- Hero DMC Heart Institute, Dayanand Medical College and Hospital, Ludhiana, India
| | - Frank Geoghegan
- Ealing Hospital NHS Trust, Southall, Middlesex, United Kingdom
| | | | | | - Timothy J. Aitman
- MRC Clinical Sciences Centre, Imperial College London, London, United Kingdom
| | - Mark I. McCarthy
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
- Oxford Centre for Diabetes, Endocrinology & Metabolism, University of Oxford, Churchill Hospital, Oxford, United Kingdom
- Oxford NIHR Biomedical Research Centre, Churchill Hospital, Oxford, United Kingdom
| | - James Scott
- NHLI, Imperial College London, Hammersmith Hospital, London, United Kingdom
| | - Sarah Butcher
- Centre for Integrative Systems Biology and Bioinformatics, Imperial College London, London, United Kingdom
| | - Paul Elliott
- Epidemiology and Biostatistics, Imperial College London, Norfolk Place, London, United Kingdom
- Imperial College Healthcare NHS Trust, London, United Kingdom
- MRC-HPA Centre for Environment and Health, Imperial College London, Norfolk Place, London, United Kingdom
| | - Jaspal S. Kooner
- Imperial College Healthcare NHS Trust, London, United Kingdom
- Ealing Hospital NHS Trust, Southall, Middlesex, United Kingdom
- NHLI, Imperial College London, Hammersmith Hospital, London, United Kingdom
| |
Collapse
|
18
|
Foulkes AS, Matthews GJ, Das U, Ferguson JF, Lin R, Reilly MP. Mixed modeling of meta-analysis P-values (MixMAP) suggests multiple novel gene loci for low density lipoprotein cholesterol. PLoS One 2013; 8:e54812. [PMID: 23405096 PMCID: PMC3566142 DOI: 10.1371/journal.pone.0054812] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2012] [Accepted: 12/17/2012] [Indexed: 12/26/2022] Open
Abstract
Informing missing heritability for complex disease will likely require leveraging information across multiple SNPs within a gene region simultaneously to characterize gene and locus-level contributions to disease phenotypes. To this aim, we introduce a novel strategy, termed Mixed modeling of Meta-Analysis P-values (MixMAP), that draws on a principled statistical modeling framework and the vast array of summary data now available from genetic association studies, to test formally for locus level association. The primary inputs to this approach are: (a) single SNP level p-values for tests of association; and (b) the mapping of SNPs to genomic regions. The output of MixMAP is comprised of locus level estimates and tests of association. In application of MixMAP to summary data from the Global Lipids Gene Consortium, we suggest twelve new loci (PKN, FN1, UGT1A1, PPARG, DMDGH, PPARD, CDK6, VPS13B, GAD2, GAB2, APOH and NPC1) for low-density lipoprotein cholesterol (LDL-C), a causal risk factor for cardiovascular disease and we also demonstrate the potential utility of MixMAP in small data settings. Overall, MixMAP offers novel and complementary information as compared to SNP-based analysis approaches and is straightforward to implement with existing open-source statistical software tools.
Collapse
Affiliation(s)
- Andrea S Foulkes
- Division of Biostatistics, School of Public Health and Health Sciences at the University of Massachusetts, Amherst, MA, USA.
| | | | | | | | | | | |
Collapse
|
19
|
Song F, Poljak A, Crawford J, Kochan NA, Wen W, Cameron B, Lux O, Brodaty H, Mather K, Smythe GA, Sachdev PS. Plasma apolipoprotein levels are associated with cognitive status and decline in a community cohort of older individuals. PLoS One 2012; 7:e34078. [PMID: 22701550 PMCID: PMC3372509 DOI: 10.1371/journal.pone.0034078] [Citation(s) in RCA: 132] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2011] [Accepted: 02/21/2012] [Indexed: 11/29/2022] Open
Abstract
Objectives Apolipoproteins have recently been implicated in the etiology of Alzheimer’s disease (AD). In particular, Apolipoprotein J (ApoJ or clusterin) has been proposed as a biomarker of the disease at the pre-dementia stage. We examined a group of apolipoproteins, including ApoA1, ApoA2, ApoB, ApoC3, ApoE, ApoH and ApoJ, in the plasma of a longitudinal community based cohort. Methods 664 subjects (257 with Mild Cognitive Impairment [MCI] and 407 with normal cognition), mean age 78 years, from the Sydney Memory and Aging Study (MAS) were followed up over two years. Plasma apolipoprotein levels at baseline (Wave 1) were measured using a multiplex bead fluorescence immunoassay technique. Results At Wave 1, MCI subjects had lower levels of ApoA1, ApoA2 and ApoH, and higher levels of ApoE and ApoJ, and a higher ApoB/ApoA1 ratio. Carriers of the apolipoprotein E ε4 allele had significantly lower levels of plasma ApoE, ApoC3 and ApoH and a significantly higher level of ApoB. Global cognitive scores were correlated positively with ApoH and negatively with ApoJ levels. ApoJ and ApoE levels were correlated negatively with grey matter volume and positively with cerebrospinal fluid (CSF) volume on MRI. Lower ApoA1, ApoA2 and ApoH levels, and higher ApoB/ApoA1 ratio, increased the risk of cognitive decline over two years in cognitively normal individuals. ApoA1 was the most significant predictor of decline. These associations remained after statistically controlling for lipid profile. Higher ApoJ levels predicted white matter atrophy over two years. Conclusions Elderly individuals with MCI have abnormal apolipoprotein levels, which are related to cognitive function and volumetric MRI measures cross-sectionally and are predictive of cognitive impairment in cognitively normal subjects. ApoA1, ApoH and ApoJ are potential plasma biomarkers of cognitive decline in non-demented elderly individuals.
Collapse
Affiliation(s)
- Fei Song
- Brain and Aging Research Program, University of New South Wales, Sydney, Australia
- School of Psychiatry, University of New South Wales, Sydney, Australia
- Bioanalytical Mass Spectrometry Facility, University of New South Wales, Sydney, Australia
| | - Anne Poljak
- Brain and Aging Research Program, University of New South Wales, Sydney, Australia
- Bioanalytical Mass Spectrometry Facility, University of New South Wales, Sydney, Australia
- School of Medical Sciences, University of New South Wales, Sydney, Australia
| | - John Crawford
- Brain and Aging Research Program, University of New South Wales, Sydney, Australia
- School of Psychiatry, University of New South Wales, Sydney, Australia
| | - Nicole A. Kochan
- Brain and Aging Research Program, University of New South Wales, Sydney, Australia
- School of Psychiatry, University of New South Wales, Sydney, Australia
| | - Wei Wen
- Brain and Aging Research Program, University of New South Wales, Sydney, Australia
- School of Psychiatry, University of New South Wales, Sydney, Australia
| | - Barbara Cameron
- School of Medical Sciences, University of New South Wales, Sydney, Australia
| | - Ora Lux
- Brain and Aging Research Program, University of New South Wales, Sydney, Australia
| | - Henry Brodaty
- Brain and Aging Research Program, University of New South Wales, Sydney, Australia
- School of Psychiatry, University of New South Wales, Sydney, Australia
- Dementia Collaborative Research Centre, University of New South Wales, Sydney, Australia
| | - Karen Mather
- Brain and Aging Research Program, University of New South Wales, Sydney, Australia
- School of Psychiatry, University of New South Wales, Sydney, Australia
| | - George A. Smythe
- Bioanalytical Mass Spectrometry Facility, University of New South Wales, Sydney, Australia
- School of Medical Sciences, University of New South Wales, Sydney, Australia
| | - Perminder S. Sachdev
- Brain and Aging Research Program, University of New South Wales, Sydney, Australia
- School of Psychiatry, University of New South Wales, Sydney, Australia
- * E-mail:
| |
Collapse
|
20
|
Current world literature. Curr Opin Lipidol 2010; 21:148-52. [PMID: 20616627 DOI: 10.1097/mol.0b013e3283390e49] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
21
|
Current world literature. Curr Opin Endocrinol Diabetes Obes 2010; 17:177-85. [PMID: 20190584 DOI: 10.1097/med.0b013e3283382286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|