1
|
Bridge-Comer PE, Reilly SM. Measuring the Rate of Lipolysis in Ex vivo Murine Adipose Tissue and Primary Preadipocytes Differentiated In Vitro. J Vis Exp 2023:10.3791/65106. [PMID: 37010285 PMCID: PMC10583296 DOI: 10.3791/65106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2023] Open
Abstract
Adipocytes store energy in the form of triglycerides in lipid droplets. This energy can be mobilized via lipolysis, where the fatty acid side chains are sequentially cleaved from the glycerol backbone, resulting in the release of free fatty acids and glycerol. Due to the low expression of glycerol kinase in white adipocytes, glycerol re-uptake rates are negligible, while fatty acid re-uptake is dictated by the fatty acid binding capacity of media components such as albumin. Both glycerol and fatty acid release into media can be quantified by colorimetric assays to determine the lipolytic rate. By measuring these factors at multiple time points, one can determine the linear rate of lipolysis with high confidence. Here, we provide a detailed protocol for the measurement of lipolysis in in vitro differentiated adipocytes and ex vivo adipose tissue from mice. This protocol may also be optimized for other preadipocyte cell lines or adipose tissue from other organisms; considerations and optimization parameters are discussed. This protocol is designed to be useful in determining and comparing the rate of adipocyte lipolysis between mouse models and treatments.
Collapse
Affiliation(s)
- Pania E Bridge-Comer
- Weill Center for Metabolic Health, Department of Medicine, Weill Cornell Medicine
| | - Shannon M Reilly
- Weill Center for Metabolic Health, Department of Medicine, Weill Cornell Medicine;
| |
Collapse
|
2
|
Zhang Y, Wang H, Tu W, Abbas Raza SH, Cao J, Huang J, Wu H, Fan C, Wang S, Zhao Y, Tan Y. Comparative Transcriptome Analysis Provides Insight into Spatio-Temporal Expression Characteristics and Genetic Regulatory Network in Postnatal Developing Subcutaneous and Visceral Fat of Bama Pig. Front Genet 2022; 13:844833. [PMID: 35432468 PMCID: PMC9008487 DOI: 10.3389/fgene.2022.844833] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Accepted: 03/04/2022] [Indexed: 12/23/2022] Open
Abstract
The depot differences between Subcutaneous Fat (SAF) and Visceral Fat (VAF) are critical for human well-being and disease processes in regard to energy metabolism and endocrine function. Miniature pigs (Sus scrofa) are ideal biomedical models for human energy metabolism and obesity due to the similarity of their lipid metabolism with that of humans. However, the regulation of differences in fat deposition and development remains unclear. In this study, the development of SAF and VAF was characterized and compared in Bama pig during postnatal development (infancy, puberty and adulthood), using RNA sequencing techniques (RNA-Seq). The transcriptome of SAF and VAF was profiled and isolated from 1-, 3- and 6 months-old pigs and identified 23,636 expressed genes, of which 1,165 genes were differentially expressed between the depots and/or developmental stages. Upregulated genes in SAF showed significant function and pathway enrichment in the central nervous system development, lipid metabolism, oxidation-reduction process and cell adhesion, whereas genes involved in the immune system, actin cytoskeleton organization, male gonad development and the hippo signaling pathway were preferentially expressed in VAF. Miner analysis of short time-series expression demonstrated that differentiation in gene expression patterns between the two depots corresponded to their distinct responses in sexual development, hormone signaling pathways, lipid metabolism and the hippo signaling pathway. Transcriptome analysis of SAF and VAF suggested that the depot differences in adipose tissue are not only related to lipid metabolism and endocrine function, but are closely associated with sexual development and organ size regulation.
Collapse
Affiliation(s)
- Yingying Zhang
- Institute of Animal Husbandry and Veterinary Science, Shanghai Academy of Agricultural Sciences, Shanghai, China
- Shanghai Engineering Research Center of Breeding Pig, Shanghai, China
- *Correspondence: Yingying Zhang, ; Yongsong Tan,
| | - Hongyang Wang
- Institute of Animal Husbandry and Veterinary Science, Shanghai Academy of Agricultural Sciences, Shanghai, China
- Shanghai Engineering Research Center of Breeding Pig, Shanghai, China
| | - Weilong Tu
- Institute of Animal Husbandry and Veterinary Science, Shanghai Academy of Agricultural Sciences, Shanghai, China
- Shanghai Engineering Research Center of Breeding Pig, Shanghai, China
| | | | - Jianguo Cao
- Institute of Animal Husbandry and Veterinary Science, Shanghai Academy of Agricultural Sciences, Shanghai, China
- Shanghai Engineering Research Center of Breeding Pig, Shanghai, China
| | - Ji Huang
- Institute of Animal Husbandry and Veterinary Science, Shanghai Academy of Agricultural Sciences, Shanghai, China
- Shanghai Engineering Research Center of Breeding Pig, Shanghai, China
| | - Huali Wu
- Institute of Animal Husbandry and Veterinary Science, Shanghai Academy of Agricultural Sciences, Shanghai, China
- Shanghai Engineering Research Center of Breeding Pig, Shanghai, China
| | - Chun Fan
- Shanghai Laboratory Animal Research Center, Shanghai, China
| | | | - Ying Zhao
- Shanghai Laboratory Animal Research Center, Shanghai, China
| | - Yongsong Tan
- Institute of Animal Husbandry and Veterinary Science, Shanghai Academy of Agricultural Sciences, Shanghai, China
- Shanghai Engineering Research Center of Breeding Pig, Shanghai, China
- *Correspondence: Yingying Zhang, ; Yongsong Tan,
| |
Collapse
|
3
|
Lee MJ, Jash S, Jones JEC, Puri V, Fried SK. Rosiglitazone remodels the lipid droplet and britens human visceral and subcutaneous adipocytes ex vivo. J Lipid Res 2019; 60:856-868. [PMID: 30782959 PMCID: PMC6446708 DOI: 10.1194/jlr.m091173] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 02/15/2019] [Indexed: 12/28/2022] Open
Abstract
Treatment with PPARγ agonists in vivo improves human adipocyte metabolism, but the cellular mechanisms and possible depot differences in responsiveness to their effects are poorly understood. To examine the ex vivo metabolic effects of rosiglitazone (Rosi), we cultured explants of human visceral (omental) and abdominal subcutaneous adipose tissues for 7 days. Rosi increased mRNA levels of transcriptional regulators of brite/beige adipocytes (PGC1α, PRDM16), triglyceride synthesis (GPAT3, DGAT1), and lipolysis (ATGL) similarly in adipose tissues from both depots. In parallel, Rosi increased key modulators of FA oxidation (UCP1, FABP3, PLIN5 protein), rates of FA oxidation, and protein levels of electron transport complexes, suggesting an enhanced respiratory capacity as confirmed in newly differentiated adipocytes. Rosi led to the formation of small lipid droplets (SLDs) around the adipocyte central lipid droplet; each SLD was decorated with redistributed mitochondria that colocalized with PLIN5. SLD maintenance required lipolysis and FA reesterification. Rosi thus coordinated a structural and metabolic remodeling in adipocytes from both visceral and subcutaneous depots that enhanced oxidative capacity. Selective targeting of these cellular mechanisms to improve adipocyte FA handling may provide a new approach to treat metabolic complications of obesity and diabetes.
Collapse
Affiliation(s)
- Mi-Jeong Lee
- Diabetes, Obesity, and Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York, NY; Obesity Center, Boston University School of Medicine, Boston, MA.
| | - Sukanta Jash
- Obesity Center, Boston University School of Medicine, Boston, MA; Department of Biomedical Sciences and Diabetes Institute, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH
| | - Jessica E C Jones
- Department of Medicine, and Department of Biochemistry, Boston University School of Medicine, Boston, MA
| | - Vishwajeet Puri
- Obesity Center, Boston University School of Medicine, Boston, MA; Department of Biomedical Sciences and Diabetes Institute, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH
| | - Susan K Fried
- Diabetes, Obesity, and Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York, NY; Obesity Center, Boston University School of Medicine, Boston, MA
| |
Collapse
|
4
|
Body composition and cardiometabolic health: the need for novel concepts. Eur J Clin Nutr 2018; 72:638-644. [PMID: 29748654 DOI: 10.1038/s41430-018-0158-2] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Revised: 02/20/2018] [Accepted: 02/28/2018] [Indexed: 12/31/2022]
Abstract
It seems reasonable that overweight and obesity should be defined based on body composition rather than indirect indices like BMI or waist circumference. The use of conventional parameters like fat mass or visceral fat is however of similar and limited value for disease risk prediction at the population level and does not contribute much beyond the use of simple BMI or waist circumference. This conundrum may be partly explained by using complex phenotypes (e.g., Metabolic Syndrome or whole body insulin resistance) rather than more disease-specific outcomes like liver- and muscle insulin resistance. In addition, there are multifactorial causes of similar body composition phenotypes that may add to explain the variance in metabolic consequences of these phenotypes. An intriguing hypothesis is that fat mass represents the metabolic load that interacts with fat-free mass that stands for metabolic capacity to determine disease risk. This concept has important implications for assessment of healthy growth and development and when it is challenged with weight gain in adults. Integration of body composition information at the whole body, organ-tissue and cellular level is not required to improve the diagnosis of obesity but facilitates a better understanding of the etiology of obesity-associated metabolic complications.
Collapse
|
5
|
Ortmeyer HK, Goldberg AP, Ryan AS. Exercise with weight loss improves adipose tissue and skeletal muscle markers of fatty acid metabolism in postmenopausal women. Obesity (Silver Spring) 2017; 25:1246-1253. [PMID: 28547918 PMCID: PMC5487288 DOI: 10.1002/oby.21877] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Revised: 03/14/2017] [Accepted: 04/14/2017] [Indexed: 12/12/2022]
Abstract
OBJECTIVE The effects of 6-month weight loss (WL) versus aerobic exercise training (AEX)+WL on fat and skeletal muscle markers of fatty acid metabolism were determined in normal (NGT) and impaired (IGT) glucose tolerant African-American and Caucasian postmenopausal women with overweight/obesity. METHODS Fat (gluteal and abdominal) lipoprotein lipase (LPL), skeletal muscle LPL, acyl-CoA synthase (ACS), ß-hydroxacyl-CoA dehydrogenase, carnitine palmitoyltransferase (CPT-1), and citrate synthase (CS) activities were measured at baseline (n = 104) and before and after WL (n = 34) and AEX+WL (n = 37). RESULTS After controlling for age and race, muscle LPL and CPT-1 were lower in IGT, and the ratios of fat/muscle LPL activity were higher in IGT compared to NGT. Muscle LPL was related to insulin sensitivity (M value) and inversely related to G120 , fasting insulin, and homeostatic model assessment of insulin resistance. AEX+WL decreased abdominal fat LPL and increased muscle LPL, ACS, and CS. The ratios of fat/muscle LPL decreased after AEX+WL. The change in VO2 max was related to the changes in LPL, ACS, and CS and inversely related to the changes in fat/muscle LPL activity ratios. CONCLUSIONS Six-month AEX+WL, and not WL alone, is capable of enhancing skeletal muscle fatty acid metabolism in postmenopausal African-American and Caucasian women with NGT, IGT, and overweight/obesity.
Collapse
Affiliation(s)
- Heidi K. Ortmeyer
- Department of Medicine, Division of Gerontology and Geriatric Medicine at the University of Maryland School of Medicine, Baltimore, Maryland
- Geriatric Research, Education, and Clinical Center at the Veterans Affairs Maryland Health Care System, Baltimore, Maryland
| | - Andrew P. Goldberg
- Department of Medicine, Division of Gerontology and Geriatric Medicine at the University of Maryland School of Medicine, Baltimore, Maryland
- Geriatric Research, Education, and Clinical Center at the Veterans Affairs Maryland Health Care System, Baltimore, Maryland
| | - Alice S. Ryan
- Department of Medicine, Division of Gerontology and Geriatric Medicine at the University of Maryland School of Medicine, Baltimore, Maryland
- Veterans Affairs Research Service and the Baltimore Veterans Affairs Medical Center, Baltimore, Maryland
- Geriatric Research, Education, and Clinical Center at the Veterans Affairs Maryland Health Care System, Baltimore, Maryland
| |
Collapse
|
6
|
Serra MC, Ryan AS, Goldberg AP. Reduced LPL and subcutaneous lipid storage capacity are associated with metabolic syndrome in postmenopausal women with obesity. Obes Sci Pract 2016; 3:106-114. [PMID: 28392937 PMCID: PMC5358073 DOI: 10.1002/osp4.86] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Revised: 11/01/2016] [Accepted: 11/04/2016] [Indexed: 12/11/2022] Open
Abstract
OBJECTIVES This study examines the hypothesis that lower adipose tissue lipoprotein lipase (LPL) activity and a limited capacity for subcutaneous adipocyte expansion will be associated with metabolic syndrome (MSyn) in postmenopausal women who are overweight and obese. METHODS Women (N = 150; age 60 ± 1 year; BMI: 31.5 ± 0.3 kg m-2; mean ± standard errors of the means [SEM]) with and without MSyn had dual-energy X-ray absorptiometry scans for total body fat, CT scans for visceral and subcutaneous abdominal adipose tissue areas, lipid and glucose metabolic profiles, and abdominal and gluteal fat aspirations for subcutaneous fat cell weight (FCW; N = 150) and LPL activity (N = 100). RESULTS Women with MSyn had similar total body fat, but 15% larger abdominal and 11% larger gluteal FCWs and more visceral fat (179 ± 7 vs. 134 ± 6 cm2) than women without MSyn (P's < 0.05). Abdominal LPL activity was 13% (P = 0.18) lower in women with than without MSyn and correlated with abdominal FCW (r = 0.49, P < 0.01) only in those without MSyn. Visceral fat and abdominal and gluteal FCWs correlated with MSyn components, and subcutaneous adipose tissue correlated with abdominal FCW (r = 0.43, P < 0.01) and LPL activity (r = 0.18, P < 0.05), independent of total body fat. CONCLUSIONS These results show that women with MSyn have lower LPL activity, limited capacity for subcutaneous adipocyte lipid storage and greater ectopic fat accumulation in viscera than women without MSyn of comparable obesity. This suggests that the development of novel therapies that would enhance adipocyte expandability might prevent the accumulation of ectopic fat and reduce the risk for MSyn in postmenopausal women with obesity.
Collapse
Affiliation(s)
- M C Serra
- Division of Gerontology and Geriatric Medicine University of Maryland School of Medicine Baltimore MD USA; Geriatric Research, Education and Clinical Center VA Maryland Health Care System Baltimore MD USA
| | - A S Ryan
- Division of Gerontology and Geriatric Medicine University of Maryland School of Medicine Baltimore MD USA; Geriatric Research, Education and Clinical Center VA Maryland Health Care System Baltimore MD USA
| | - A P Goldberg
- Division of Gerontology and Geriatric Medicine University of Maryland School of Medicine Baltimore MD USA; Geriatric Research, Education and Clinical Center VA Maryland Health Care System Baltimore MD USA
| |
Collapse
|
7
|
Abstract
The obesity epidemic in the USA affects disproportionately women and the ethnic minorities. On the other hand, female sex is traditionally associated with a favorable fat distribution preferentially in the subcutaneous depots of the lower body and with improved endocrine and metabolic function of the adipose tissue. However, these data are derived from predominantly non-Hispanic white populations. This review discusses fat distribution patterns in women of diverse ethnic backgrounds, together with data on the release of adipokines from adipose tissue in these populations. Very little information is available on how the metabolic function of the adipocyte differs depending on ethnicity. Thus, it becomes clear that future clinical and translational research should explicitly discuss and take into account the sex and ethnic background of the populations studied.
Collapse
Affiliation(s)
- Kalypso Karastergiou
- Section of Endocrinology, Diabetes & Nutrition, School of Medicine, Boston University, 650 Albany St. EBRC-810, Boston, MA, 02118, USA.
| |
Collapse
|
8
|
Hasson BR, Apovian C, Istfan N. Racial/Ethnic Differences in Insulin Resistance and Beta Cell Function: Relationship to Racial Disparities in Type 2 Diabetes among African Americans versus Caucasians. Curr Obes Rep 2015; 4:241-9. [PMID: 26627219 DOI: 10.1007/s13679-015-0150-2] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Both biological and sociocultural factors have been implicated in the well-documented racial disparity in incidence and prevalence of type 2 diabetes (T2D) between African Americans (AA) and non-Hispanic whites (NHW). This review examines the extent to which biological differences in glucose metabolism, specifically insulin resistance and beta cell function (BCF), contribute to this disparity. The majority of available data suggests that AA are more insulin resistant and have upregulated BCF compared to NHW. Increasing evidence implicates high insulin secretion as a cause rather than consequence of T2D; therefore, upregulated BCF in AA may specifically confer increased risk of T2D in this cohort. Racial disparities in the metabolic characteristics of T2D have direct implications for the treatment and health consequences of this disease; therefore, future research is needed to determine whether strategies to reduce insulin secretion in AA may prevent or delay T2D and lessen racial health disparities.
Collapse
Affiliation(s)
- Brooke R Hasson
- Division of Endocrinology, Diabetes, and Nutrition, Boston University School of Medicine, 88 East Newton Street, Boston, MA, 02118, USA.
| | - Caroline Apovian
- Division of Endocrinology, Diabetes, and Nutrition, Boston University School of Medicine, 88 East Newton Street, Boston, MA, 02118, USA.
| | | |
Collapse
|
9
|
Serra MC, Ryan AS, Sorkin JD, Favors KH, Goldberg AP. High adipose LPL activity and adipocyte hypertrophy reduce visceral fat and metabolic risk in obese, older women. Obesity (Silver Spring) 2015; 23:602-7. [PMID: 25612068 PMCID: PMC4340730 DOI: 10.1002/oby.20998] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Accepted: 11/17/2014] [Indexed: 12/16/2022]
Abstract
OBJECTIVE To determine whether higher subcutaneous adipose tissue lipoprotein lipase activity (AT-LPLA) is associated with greater triglyceride (TG) storage in subcutaneous adipose tissue (SAT), thereby reducing visceral adipose tissue (VAT) accumulation and metabolic dysfunction. METHODS Obese postmenopausal women (60 ± 1 years, mean ± SEM; N = 101) had body composition measured by DXA and CT and had fat aspirations to measure fat cell weight (FCW) and AT-LPLA. Women were ranked by visceral to total abdominal fat ratio (VAT/TAF), and the lowest and highest groups (n = 24) matched for % fat and age. RESULTS The prevalence of metabolic dysfunction was 7- to 10-fold higher in women with high VAT/TAF (Ps < 0.01). Women with low VAT/TAF had 11% and 6% lower abdominal and gluteal FCW but 28% and 54% higher AT-LPLA/10(6) cells in abdominal and gluteal fat, respectively. Abdominal FCW correlated with AT-LPLA in women with low (r = 0.63, P < 0.01) but not high (r = 0.14, P = 0.52) VAT/TAF, and these lines differed in slope (P < 0.05) and intercept (P < 0.01), suggesting greater capacity for TG storage with low VAT/TAF. There were no relationships between gluteal FCW and AT-LPLA. The relationship between SAT and abdominal AT-LPLA (r = 0.39, P < 0.01) suggests that higher AT-LPLA promotes TG storage. CONCLUSIONS These results suggest that higher AT-LPLA is associated with SAT adipocyte hypertrophy, which reduces visceral adiposity and metabolic risk in obese, older women.
Collapse
Affiliation(s)
| | | | | | | | - Andrew P. Goldberg
- Corresponding author and person to who reprint requests should be addressed: 66 W. Redwood St., Howard Hall, Room 115, Baltimore, MD 21201, , Phone: 410-706-6052, Fax: 410-706-6053
| |
Collapse
|
10
|
Ma X, Lee P, Chisholm DJ, James DE. Control of adipocyte differentiation in different fat depots; implications for pathophysiology or therapy. Front Endocrinol (Lausanne) 2015; 6:1. [PMID: 25688231 PMCID: PMC4311677 DOI: 10.3389/fendo.2015.00001] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2014] [Accepted: 01/07/2015] [Indexed: 12/11/2022] Open
Abstract
Adipocyte differentiation and its impact on restriction or expansion of particular adipose tissue depots have physiological and pathophysiological significance in view of the different functions of these depots. Brown or "beige" fat [brown adipose tissue (BAT)] expansion can enhance thermogenesis, lipid oxidation, insulin sensitivity, and glucose tolerance; conversely expanded visceral fat [visceral white adipose tissue (VAT)] is associated with insulin resistance, low grade inflammation, dyslipidemia, and cardiometabolic risk. The largest depot, subcutaneous white fat [subcutaneous white adipose tissue (SAT)], has important beneficial characteristics including storage of lipid "out of harms way" and secretion of adipokines, especially leptin and adiponectin, with positive metabolic effects including lipid oxidation, energy utilization, enhanced insulin action, and an anti-inflammatory role. The absence of these functions in lipodystrophies leads to major metabolic disturbances. An ability to expand white adipose tissue adipocyte differentiation would seem an important defense mechanism against the detrimental effects of energy excess and limit harmful accumulation of lipid in "ectopic" sites, such as liver and muscle. Adipocyte differentiation involves a transcriptional cascade with PPARγ being most important in SAT but less so in VAT, with increased angiogenesis also critical. The transcription factor, Islet1, is fairly specific to VAT and in vitro inhibits adipocyte differentiation. The physiological importance of Islet1 requires further study. Basic control of differentiation is similar in BAT but important differences include the effect of PGC-1α on mitochondrial biosynthesis and upregulation of UCP1; also PRDM16 plays a pivotal role in expression of the BAT phenotype. Modulation of the capacity or function of these different adipose tissue depots, by altering adipocyte differentiation or other means, holds promise for interventions that can be helpful in human disease, particularly cardiometabolic disorders associated with the world wide explosion of obesity.
Collapse
Affiliation(s)
- Xiuquan Ma
- Cellular Systems Biology, Diabetes and Metabolism Division, Garvan Institute of Medical Research, Sydney, NSW, Australia
- Charles Perkins Centre, School of Molecular Bioscience, The University of Sydney, Sydney, NSW, Australia
| | - Paul Lee
- Clinical Diabetes, Appetite and Metabolism, Diabetes and Metabolism Division, Garvan Institute of Medical Research, Sydney, NSW, Australia
| | - Donald J. Chisholm
- Clinical Diabetes, Appetite and Metabolism, Diabetes and Metabolism Division, Garvan Institute of Medical Research, Sydney, NSW, Australia
| | - David E. James
- Charles Perkins Centre, School of Molecular Bioscience, School of Medicine, The University of Sydney, Sydney, NSW, Australia
- *Correspondence: David E. James, Charles Perkins Centre, School of Molecular Bioscience, School of Medicine, The University of Sydney, Building D17, Johns Hopkins Drive Street, Sydney, NSW 2460, Australia e-mail:
| |
Collapse
|
11
|
Casey BA, Kohrt WM, Schwartz RS, Van Pelt RE. Subcutaneous adipose tissue insulin resistance is associated with visceral adiposity in postmenopausal women. Obesity (Silver Spring) 2014; 22:1458-63. [PMID: 24420961 PMCID: PMC4037374 DOI: 10.1002/oby.20703] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2013] [Revised: 12/30/2013] [Accepted: 01/09/2014] [Indexed: 11/11/2022]
Abstract
OBJECTIVE Whole body and subcutaneous adipose tissue (SAT) insulin resistance association with regional fat mass (FM) was determined. METHODS Postmenopausal women (mean ± SD; age 56 ± 4 years, n = 25) who were overweight or obese (BMI 29.9 ± 5.1 kg/m(2) ) were studied. Whole body and regional FM were measured by dual-energy X-ray absorptiometry (DXA) and computed tomography (CT). Women were studied during basal and insulin-stimulated (3-stage euglycemic clamp) conditions. Whole-body lipolysis was assessed by [(2) H5 ]-glycerol rate of appearance and abdominal and femoral SAT lipolysis by interstitial glycerol (microdialysis). RESULTS Whole body insulin resistance in skeletal muscle (insulin-stimulated glucose disposal) and adipose tissue (insulin-suppressed lipolysis) were independently related to trunk FM (r = -0.336 and 0.484, respectively), but not leg FM (r = -0.142 and -0.148, respectively). Local antilipolytic insulin resistance in abdominal, but not femoral, SAT was positively related to trunk FM (r = 0.552) and visceral FM (r = 0.511) but not related to leg FM (r = -0.289). Whole body and abdominal, but not femoral, adipose tissue insulin sensitivity were strongly related to skeletal muscle insulin sensitivity (r = -0.727 and -0.674, respectively). CONCLUSIONS The association of SAT insulin sensitivity (lipolysis) with adiposity and skeletal muscle insulin sensitivity was specific to the abdominal region.
Collapse
Affiliation(s)
- Beret A. Casey
- Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Wendy M. Kohrt
- Department of Medicine, Division of Geriatric Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Robert S. Schwartz
- Department of Medicine, Division of Geriatric Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Rachael E. Van Pelt
- Department of Medicine, Division of Geriatric Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO
| |
Collapse
|
12
|
Sorkin JD, Vasaitis TS, Streeten E, Ryan AS, Goldberg AP. Evidence for threshold effects of 25-hydroxyvitamin D on glucose tolerance and insulin resistance in black and white obese postmenopausal women. J Nutr 2014; 144:734-42. [PMID: 24717362 PMCID: PMC3985830 DOI: 10.3945/jn.114.190660] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
We identified normal vs. abnormal 25-hydroxyvitamin D [25(OH)D] concentrations by examining the relation of 25(OH)D to non-bone-related measures (plasma glucose, insulin resistance, lipids, blood pressure, fitness, obesity, and regional adiposity) and asking whether there is a 25(OH)D concentration above and below which the relation between 25(OH)D and outcome changes. We examined the relation between 25(OH)D and outcome by race to see whether race-specific normal ranges are needed, and we examined the role of insulin-like growth factor-1 (IGF-1) in modulating the relation between 25(OH)D and outcome. In a cross-sectional study of 239 overweight and obese, sedentary postmenopausal women without diabetes (83 black, 156 white), outcome measures included plasma lipids, glucose, insulin, homeostasis model assessment of insulin resistance (HOMA-IR), IGF-1, parathyroid hormone (PTH), aerobic fitness, body composition, subcutaneous abdominal and visceral fat, and blood pressure. We identified threshold effects in the association between 25(OH)D and these variables using piecewise linear regressions. We found that 25(OH)D was inversely related to fasting glucose, fasting and 2-h insulin, HOMA-IR, visceral abdominal fat, percentage fat, PTH, and triglycerides. Evidence for a threshold effect of 25(OH)D was found for 2-h glucose, 2-h insulin, fasting insulin, and HOMA-IR. There was no evidence suggesting the need for race-specific normal 25(OH)D concentrations. IGF-1 modulated the relation between 25(OH)D and outcome but only below, and not above, a threshold 25(OH)D concentration. Our findings suggest a threshold effect of 25(OH)D on glucose-insulin metabolism such that 25(OH)D ≥ ∼26 μg/L (65.0 pmol/L) supports normal glucose homeostasis and that the same cut point defining normal 25(OH)D concentration can be used in black and white women. This study was registered at clinicaltrials.gov as NCT01798030.
Collapse
Affiliation(s)
- John D. Sorkin
- Divisions of Gerontology and Geriatric Medicine and,Department of Veterans Affairs, Baltimore Veterans Affairs Medical Center, Baltimore, MD; and,To whom correspondence should be addressed. E-mail:
| | - Tadas Sean Vasaitis
- Divisions of Gerontology and Geriatric Medicine and,University of Maryland Eastern Shore School of Pharmacy, Princess Anne, MD
| | - Elizabeth Streeten
- Endocrinology, Diabetes, and Nutrition, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD,Department of Veterans Affairs, Baltimore Veterans Affairs Medical Center, Baltimore, MD; and
| | - Alice S. Ryan
- Divisions of Gerontology and Geriatric Medicine and,Department of Veterans Affairs, Baltimore Veterans Affairs Medical Center, Baltimore, MD; and
| | - Andrew P. Goldberg
- Divisions of Gerontology and Geriatric Medicine and,Department of Veterans Affairs, Baltimore Veterans Affairs Medical Center, Baltimore, MD; and
| |
Collapse
|
13
|
Lee MJ, Pickering RT, Puri V. Prolonged efficiency of siRNA-mediated gene silencing in primary cultures of human preadipocytes and adipocytes. Obesity (Silver Spring) 2014; 22:1064-9. [PMID: 24307633 PMCID: PMC3968221 DOI: 10.1002/oby.20641] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2013] [Accepted: 10/05/2013] [Indexed: 01/27/2023]
Abstract
OBJECTIVE Primary human preadipocytes and differentiated adipocytes in culture are valuable cell culture systems to study adipogenesis and adipose function in relation to human adipose biology. To use these systems for mechanistic studies, siRNA-mediated knockdown of genes for its effectiveness was studied. METHODS Methods were developed to effectively deliver siRNA for gene silencing in primary preadipocytes isolated from human subcutaneous adipose tissue and newly differentiated adipocytes. Expression level of genes and proteins was measured using quantitative RT-PCR and western blotting. Lipid droplet morphology was observed using microscopy, and glycerol release was quantified as a measure of lipolysis. RESULTS siRNA-mediated knockdown of genes in primary human preadipocytes resulted in prolonged silencing effects, suppressing genes throughout the process of their differentiation. In newly differentiated adipocytes, siRNA-mediated gene knockdown allowed proteins to stay depleted for at least 5 days. It was possible to re-express a protein after its siRNA-mediated depletion. Importantly, siRNA transfected human adipocytes remained metabolically active, responding to β-adrenergic stimulation to increase lipolysis. CONCLUSIONS Our study describes the methods of gene silencing in primary cultures of human preadipocytes and adipocytes and their prolonged effectiveness.
Collapse
Affiliation(s)
- Mi-Jeong Lee
- Section of Endocrinology, Diabetes and Nutrition, Department of Medicine, Boston University School of Medicine, 650 Albany Street, Boston MA 02118
- Co-corresponding authors; correspondence should be addressed to: ;
| | - R. Taylor Pickering
- Section of Endocrinology, Diabetes and Nutrition, Department of Medicine, Boston University School of Medicine, 650 Albany Street, Boston MA 02118
| | - Vishwajeet Puri
- Section of Endocrinology, Diabetes and Nutrition, Department of Medicine, Boston University School of Medicine, 650 Albany Street, Boston MA 02118
- Co-corresponding authors; correspondence should be addressed to: ;
| |
Collapse
|
14
|
Lee MJ, Fried SK. Optimal protocol for the differentiation and metabolic analysis of human adipose stromal cells. Methods Enzymol 2014; 538:49-65. [PMID: 24529433 DOI: 10.1016/b978-0-12-800280-3.00004-9] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
Obesity is reaching epidemic proportions so there is growing interest in the mechanisms that regulates adipose tissue development and function. Although murine adipose cell lines are useful for many mechanistic studies, primary human adipose stromal cells (ASCs), which can be isolated from distinct adipose depots and cultured in vitro, have clear translational relevance. We describe the methods to isolate, culture, and differentiate human ASCs to adipocytes that respond to physiologically relevant hormones, such as insulin and β-adrenergic agonists. We also describe methods for assaying hormonal effects on glucose transport and lipolysis.
Collapse
Affiliation(s)
- Mi-Jeong Lee
- Division of Endocrinology, Diabetes and Nutrition, Boston University School of Medicine, Boston, Massachusetts, USA.
| | - Susan K Fried
- Division of Endocrinology, Diabetes and Nutrition, Boston University School of Medicine, Boston, Massachusetts, USA.
| |
Collapse
|
15
|
Goedecke JH, Levitt NS, Evans J, Ellman N, Hume DJ, Kotze L, Tootla M, Victor H, Keswell D. The role of adipose tissue in insulin resistance in women of African ancestry. J Obes 2013; 2013:952916. [PMID: 23401754 PMCID: PMC3557633 DOI: 10.1155/2013/952916] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2012] [Accepted: 12/13/2012] [Indexed: 01/01/2023] Open
Abstract
Women of African ancestry, particularly those living in industrialized countries, experience a disproportionately higher prevalence of type 2 diabetes (T2D) compared to their white counterparts. Similarly, obesity and insulin resistance, which are major risk factors for T2D, are greater in black compared to white women. The exact mechanisms underlying these phenomena are not known. This paper will focus on the role of adipose tissue biology. Firstly, the characteristic body fat distribution of women of African ancestry will be discussed, followed by the depot-specific associations with insulin resistance. Factors involved in adipose tissue biology and their relation to insulin sensitivity will then be explored, including the role of sex hormones, glucocorticoid metabolism, lipolysis and adipogenesis, and their consequent effects on adipose tissue hypoxia, oxidative stress, and inflammation. Finally the role of ectopic fat deposition will be discussed. The paper proposes directions for future research, in particular highlighting the need for longitudinal and/or intervention studies to better understand the mechanisms underlying the high prevalence of insulin resistance and T2D in women of African ancestry.
Collapse
Affiliation(s)
- Julia H Goedecke
- UCT/MRC Research Unit for Exercise Science and Sports Medicine, South African Medical Research Council, Parow, Cape Town 7505, South Africa.
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Lee MJ, Wu Y, Fried SK. A modified protocol to maximize differentiation of human preadipocytes and improve metabolic phenotypes. Obesity (Silver Spring) 2012; 20:2334-40. [PMID: 22627913 PMCID: PMC4320940 DOI: 10.1038/oby.2012.116] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Adipose stromal cells proliferate and differentiate into adipocytes, providing a valuable model system for studies of adipocyte biology. We compared differentiation protocols for human preadipocytes and report on their metabolic phenotypes. By simply prolonging the adipogenic induction period from the first 3 to 7 days, the proportion of cells acquiring adipocyte morphology increased from 30-70% to over 80% in human subcutaneous preadipocytes (passages 5-6). These morphological changes were accompanied by increases in the adipogenic marker expression and improved adipocyte metabolic phenotypes: enhanced responses to β-adrenergically stimulated lipolysis and to insulin-stimulated glucose metabolism into triglyceride (TG). Confirming previous studies, fetal bovine serum (FBS) dose-dependently inhibited adipogenesis. However, in subcutaneous preadipocytes that differentiate well (donor-dependant high capacity and subcultured fewer than two times), the use of 7d-induction protocols in both 3% FBS and serum-free conditions allowed >80% differentiation. Responsiveness to β-adrenergically stimulated lipolysis was lower in 3% FBS. Rates of insulin-stimulated glucose uptake were higher in adipocytes differentiated with 3% FBS, whereas the sensitivity to insulin was almost identical between the two groups. In summary, extending the length of the induction period in adipogenic cocktail improves the degree of differentiation and responses to key metabolic hormones. This protocol permits functional analysis of metabolic phenotypes in valuable primary human adipocyte cultures through multiple passages.
Collapse
Affiliation(s)
- Mi-Jeong Lee
- Correspondence to Mi-Jeong Lee PhD, Division of Endocrinology, Diabetes, and Nutrition, Department of Medicine, Boston University, Boston Nutrition and Obesity Research Center, 650 Albany St, EBRC-810, Boston, MA 02118 Tel: 617-638-8258; Fax: 617-638-7124;
| | | | | |
Collapse
|
17
|
Lee MJ, Fried SK. Glucocorticoids antagonize tumor necrosis factor-α-stimulated lipolysis and resistance to the antilipolytic effect of insulin in human adipocytes. Am J Physiol Endocrinol Metab 2012; 303:E1126-33. [PMID: 22949029 PMCID: PMC3492859 DOI: 10.1152/ajpendo.00228.2012] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
High concentrations of TNF within obese adipose tissue increase basal lipolysis and antagonize insulin signaling. Adipocytes of the obese are also exposed to elevated levels of glucocorticoids (GCs), which antagonize TNF actions in many cell types. We tested the hypothesis that TNF decreases sensitivity to the antilipolytic effect of insulin and that GCs antagonize this effect in differentiated human adipocytes. Lipolysis and expression levels of lipolytic proteins were measured after treating adipocytes with TNF, dexamethasone (DEX), or DEX + TNF for up to 48 h. TNF not only increased basal lipolysis, it caused resistance to the antilipolytic effects of insulin in human adipocytes. DEX alone did not significantly affect lipolysis. Cotreatment with DEX blocked TNF induction of basal lipolysis and insulin resistance by antagonizing TNF stimulation of PKA-mediated phosphorylation of hormone-sensitive lipase (HSL) at Ser⁵⁶³ and Ser⁶⁶⁰ and perilipin. TNF did not affect perilipin, HSL, or phosphodiesterase-3B mass but paradoxically suppressed adipose tissue triglyceride lipase expression, and this effect was blocked by DEX. The extent to which GCs can restrain the lipolytic actions of TNF may both diminish the potentially deleterious effects of excess lipolysis and contribute to fat accumulation in obesity.
Collapse
Affiliation(s)
- Mi-Jeong Lee
- Section of Endocrinology, Diabetes, and Nutrition, Department of Medicine, Boston University, Boston, Massachusetts, USA.
| | | |
Collapse
|
18
|
Adipose tissue heterogeneity: implication of depot differences in adipose tissue for obesity complications. Mol Aspects Med 2012; 34:1-11. [PMID: 23068073 DOI: 10.1016/j.mam.2012.10.001] [Citation(s) in RCA: 581] [Impact Index Per Article: 44.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Obesity, defined as excess fat mass, increases risks for multiple metabolic diseases, such as type 2 diabetes, cardiovascular disease and several types of cancer. Over and above fat mass per se, the pattern of fat distribution, android or truncal as compared to gynoid or peripheral, has a profound influence on systemic metabolism and hence risk for metabolic diseases. Increases in upper body adipose tissue (visceral and abdominal subcutaneous) confer an independent risk, while the quantity of gluteofemoral adipose tissue is protective. Variations in the capacity of different depots to store and release fatty acids and to produce adipokines are important determinants of fat distribution and its metabolic consequences. Depot differences in cellular composition and physiology, including innervation and blood flow, likely influence their phenotypic properties. A number of lines of evidence also support the idea that adipocytes from different anatomical depots are intrinsically different as a result of genetic or developmental events. In this chapter, we will review the phenotypic characteristics of different adipose depots and mechanisms that link their depot-specific biology to metabolic complications in men and women.
Collapse
|
19
|
Karastergiou K, Smith SR, Greenberg AS, Fried SK. Sex differences in human adipose tissues - the biology of pear shape. Biol Sex Differ 2012; 3:13. [PMID: 22651247 PMCID: PMC3411490 DOI: 10.1186/2042-6410-3-13] [Citation(s) in RCA: 650] [Impact Index Per Article: 50.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2012] [Accepted: 05/31/2012] [Indexed: 12/15/2022] Open
Abstract
Women have more body fat than men, but in contrast to the deleterious metabolic consequences of the central obesity typical of men, the pear-shaped body fat distribution of many women is associated with lower cardiometabolic risk. To understand the mechanisms regulating adiposity and adipose tissue distribution in men and women, significant research attention has focused on comparing adipocyte morphological and metabolic properties, as well as the capacity of preadipocytes derived from different depots for proliferation and differentiation. Available evidence points to possible intrinsic, cell autonomous differences in preadipocytes and adipocytes, as well as modulatory roles for sex steroids, the microenvironment within each adipose tissue, and developmental factors. Gluteal-femoral adipose tissues of women may simply provide a safe lipid reservoir for excess energy, or they may directly regulate systemic metabolism via release of metabolic products or adipokines. We provide a brief overview of the relationship of fat distribution to metabolic health in men and women, and then focus on mechanisms underlying sex differences in adipose tissue biology.
Collapse
Affiliation(s)
- Kalypso Karastergiou
- Department of Medicine, Section of Endocrinology, Diabetes & Nutrition, Boston University School of Medicine, Boston, MA, USA.
| | | | | | | |
Collapse
|