1
|
Kotlyarov SN, Suchkov IA, Uryas'yev OM, Yakusheva EN, Shchulkin AV, Kotlyarova AA. Analysis of Influence of Cigarette Smoke on Signaling Pathways of Innate Immune System in Monocytes of Peripheral Blood. I.P. PAVLOV RUSSIAN MEDICAL BIOLOGICAL HERALD 2023; 31:391-404. [DOI: 10.17816/pavlovj306495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/13/2024]
Abstract
INTRODUCTION: Tobacco smoking is an important medical problem since it has a significant impact on the development and progression of chronic obstructive pulmonary disease (COPD). The components of tobacco smoke can initiate and support local and systemic inflammation with participation of monocytes and macrophages.
AIM: To study molecular mechanisms associated with the impact of cigarette smoke on signaling pathways of the innate immune system in monocytes of peripheral blood.
MATERIALS AND METHODS: The methods of in silico analysis was used to identify genes associated with the impact of tobacco smoke. On the basis of the data obtained, a cellular model of inflammation was created in vitro using tobacco smoke extract and monocytes of peripheral blood isolated by immunomagnetic separation. An enzyme-linked immunoassay (ELISA) kit was used to measure the concentration of tumor necrosis factor- (TNF-), interleukin-1 (IL-1) in cell supernatants, and of Toll-like receptor 4 (TLR4), ATP-binding cassette A1 (ABCA1) in homogenates of cell membranes of native monocytes and monocytes exposed to 4% tobacco smoke extract. These data were compared with the levels of TNF-, IL-1, TLR4 and ABCA1 in monocytes of peripheral blood of patients with COPD with frequent exacerbation phenotype and with obliterating atherosclerosis of lower limb arteries (OALLA). For statistical processing and visualization of the data, MedCalc 20.1.4 and R (version 4.2.2) software was used.
RESULTS: Tobacco smoke influences TLR4, TNF- signaling pathways and lipid metabolism. Cigarette smoke extract enhanced the expression of proinflammatory cytokines TNF- and IL-1 in cell supernatants, increased the level of TLR4 and decreased that of ABCA1 in plasmolemma of monocytes of peripheral blood. In patients with COPD with frequent exacerbation phenotype and with OALLA, there were shown increase in the levels of proinflammatory TNF- and IL-1 cytokines in cell supernatants, increase in the level of TLR4 and reduction of the level of ABCA1 in plasmolemma of monocytes of peripheral blood compared to native monocytes of healthy individuals.
CONCLUSION: Cigarette smoke enhances the production of proinflammatory TNF- and IL-1 cytokines, increases the levels of TLR4 protein and reduces the amount of ABCA1 transporter in membranes of monocytes of peripheral blood. This may partially explain the cause of the influence of cigarette smoke on development of the pulmonary and cardiovascular diseases. COPD with frequent exacerbation phenotype and OALLA are characterized by enhancement of inflammation with participation of monocytes.
Collapse
|
2
|
Parente M, Tonini C, Segatto M, Pallottini V. Regulation of cholesterol metabolism: New players for an old physiological process. J Cell Biochem 2023; 124:1449-1465. [PMID: 37796135 DOI: 10.1002/jcb.30477] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 08/30/2023] [Accepted: 09/12/2023] [Indexed: 10/06/2023]
Abstract
Identified more than two centuries ago, cholesterol plays a pivotal role in human physiology. Since cholesterol metabolism is a physiologically significant process, it is not surprising that its alterations are associated with several pathologies. The discovery of new molecular targets or compounds able to modulate this sophisticated metabolism has been capturing the attention of research groups worldwide since many years. Endogenous and exogenous compounds are known to regulate cellular cholesterol synthesis and uptake, or reduce cholesterol absorption at the intestinal level, thereby regulating cholesterol homeostasis. However, there is a great need of new modulators and diverse new pathways have been uncovered. Here, after illustrating cholesterol metabolism and its well-known regulators, some new players of this important physiological process are also described.
Collapse
Affiliation(s)
| | | | - Marco Segatto
- Department of Bioscience and Territory, University of Molise, Pesche, Italy
| | - Valentina Pallottini
- Department of Science, University Roma Tre, Rome, Italy
- Neuroendocrinology Metabolism and Neuropharmacology Unit, IRCSS Fondazione Santa Lucia, Via del Fosso Fiorano, Rome, Italy
| |
Collapse
|
3
|
Iyer DR, Venkatraman J, Tanguy E, Vitale N, Mahapatra NR. Chromogranin A and its derived peptides: potential regulators of cholesterol homeostasis. Cell Mol Life Sci 2023; 80:271. [PMID: 37642733 PMCID: PMC11072126 DOI: 10.1007/s00018-023-04908-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 08/02/2023] [Accepted: 08/03/2023] [Indexed: 08/31/2023]
Abstract
Chromogranin A (CHGA), a member of the granin family of proteins, has been an attractive therapeutic target and candidate biomarker for several cardiovascular, neurological, and inflammatory disorders. The prominence of CHGA stems from the pleiotropic roles of several bioactive peptides (e.g., catestatin, pancreastatin, vasostatins) generated by its proteolytic cleavage and by their wide anatomical distribution. These peptides are emerging as novel modulators of cardiometabolic diseases that are often linked to high blood cholesterol levels. However, their impact on cholesterol homeostasis is poorly understood. The dynamic nature of cholesterol and its multitudinous roles in almost every aspect of normal body function makes it an integral component of metabolic physiology. A tightly regulated coordination of cholesterol homeostasis is imperative for proper functioning of cellular and metabolic processes. The deregulation of cholesterol levels can result in several pathophysiological states. Although studies till date suggest regulatory roles for CHGA and its derived peptides on cholesterol levels, the mechanisms by which this is achieved still remain unclear. This review aims to aggregate and consolidate the available evidence linking CHGA with cholesterol homeostasis in health and disease. In addition, we also look at common molecular regulatory factors (viz., transcription factors and microRNAs) which could govern the expression of CHGA and genes involved in cholesterol homeostasis under basal and pathological conditions. In order to gain further insights into the pathways mediating cholesterol regulation by CHGA/its derived peptides, a few prospective signaling pathways are explored, which could act as primers for future studies.
Collapse
Affiliation(s)
- Dhanya R Iyer
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, 600036, India
| | - Janani Venkatraman
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, 600036, India
| | - Emeline Tanguy
- Institut des Neurosciences Cellulaires et Intégratives, CNRS UPR 3212 and Université de Strasbourg, 5 Rue Blaise Pascal, 67000, Strasbourg, France
| | - Nicolas Vitale
- Institut des Neurosciences Cellulaires et Intégratives, CNRS UPR 3212 and Université de Strasbourg, 5 Rue Blaise Pascal, 67000, Strasbourg, France.
| | - Nitish R Mahapatra
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, 600036, India.
| |
Collapse
|
4
|
Kotlyarov S. The Role of Smoking in the Mechanisms of Development of Chronic Obstructive Pulmonary Disease and Atherosclerosis. Int J Mol Sci 2023; 24:8725. [PMID: 37240069 PMCID: PMC10217854 DOI: 10.3390/ijms24108725] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 05/05/2023] [Accepted: 05/11/2023] [Indexed: 05/28/2023] Open
Abstract
Tobacco smoking is a major cause of chronic obstructive pulmonary disease (COPD) and atherosclerotic cardiovascular disease (ASCVD). These diseases share common pathogenesis and significantly influence each other's clinical presentation and prognosis. There is increasing evidence that the mechanisms underlying the comorbidity of COPD and ASCVD are complex and multifactorial. Smoking-induced systemic inflammation, impaired endothelial function and oxidative stress may contribute to the development and progression of both diseases. The components present in tobacco smoke can have adverse effects on various cellular functions, including macrophages and endothelial cells. Smoking may also affect the innate immune system, impair apoptosis, and promote oxidative stress in the respiratory and vascular systems. The purpose of this review is to discuss the importance of smoking in the mechanisms underlying the comorbid course of COPD and ASCVD.
Collapse
Affiliation(s)
- Stanislav Kotlyarov
- Department of Nursing, Ryazan State Medical University, 390026 Ryazan, Russia
| |
Collapse
|
5
|
Parmar MP, Kaur M, Bhavanam S, Mulaka GSR, Ishfaq L, Vempati R, C MF, Kandepi HV, Er R, Sahu S, Davalgi S. A Systematic Review of the Effects of Smoking on the Cardiovascular System and General Health. Cureus 2023; 15:e38073. [PMID: 37234135 PMCID: PMC10208588 DOI: 10.7759/cureus.38073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/24/2023] [Indexed: 05/27/2023] Open
Abstract
The main risk factor for atherosclerotic cardiovascular disease is smoking. Nicotine and carbon monoxide are two dangerous substances that are found in cigarette smoke. The increased heart rate can have an almost instantaneous impact on the heart and blood vessels. Smoking is well known to cause oxidative stress, endanger the lining of the arteries, and accelerate the accumulation of fatty plaque in the blood vessels. It raises the danger of sudden thrombotic events, inflammatory alterations, and low-density lipoprotein oxidation. The smoke's carbon monoxide decreases the blood's capacity to deliver oxygen, adding to the heart's stress. Notably, these risks increase when diabetes, hypertension, high cholesterol, and glucose intolerance are present. It has a detrimental effect on peripheral blood vessels, raising the possibility of thromboangiitis obliterans. Stroke risk is known to be increased by smoking. As compared to those who continue to smoke, those who give up smoking have a much longer life expectancy. Chronic cigarette smoking has been shown to affect the macrophages' ability to remove cholesterol. Abstinence from smoking enhances the function of high-density lipoproteins and cholesterol efflux, lowering the risk of plaque buildup. In this review, we present the most recent information regarding the causal relationship between smoking and cardiovascular health as well as the long-term advantages of quitting.
Collapse
Affiliation(s)
- Mihirkumar P Parmar
- Internal Medicine, Gujarat Medical Education and Research Society (GMERS) Medical College, Vadnagar, Vadnagar, IND
| | - Mankirat Kaur
- Internal Medicine, Sri Guru Ram Das Medical College and Hospital, Amritsar, IND
| | | | | | - Lyluma Ishfaq
- Medicine, Directorate of Health Services Kashmir, Srinagar, IND
| | - Roopeessh Vempati
- Internal Medicine, Gandhi Medical College and Hospital, Hyderabad, IND
| | - Mohammed Faseel C
- Internal Medicine, Government Medical College Kozhikode, Kozhikode, IND
| | | | - Rajagopal Er
- Internal Medicine, Bicol Christian College of Medicine, Albay, PHL
| | - Sweta Sahu
- Surgery, Jagadguru Jayadeva Murugarajendra (JJM) Medical College, Davangere, IND
| | - Shubha Davalgi
- Community Medicine, Jagadguru Jayadeva Murugarajendra (JJM) Medical College, Davangere, IND
| |
Collapse
|
6
|
Zhang Q, Jiang Z, Xu Y. HDL and Oxidation. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1377:63-77. [PMID: 35575921 DOI: 10.1007/978-981-19-1592-5_5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
In this chapter, we will focus on HDLs' activity of inhibiting LDL oxidation and neutralizing some other oxidants. ApoA-I was known as the main antioxidant component in HDLs. The regulation of antioxidant capacity of HDL is mainly exhibited in regulation of apoA-I and alterations at the level of the HDL lipidome and the modifications of the proteome, especially MPO and PON1. HDL oxidation will influence the processes of inflammation and cholesterol transport, which are important processes in atherosclerosis, metabolic diseases, and many other diseases. In a word, HDL oxidation might be an effective antioxidant target in treatment of many diseases.
Collapse
Affiliation(s)
- Qi Zhang
- The Institute of Cardiovascular Sciences and Institute of Systems Biomedicine, School of Basic Medical Sciences, Key Laboratory of Molecular Cardiovascular Science of Ministry of Education, NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Beijing Key Laboratory of Cardiovascular Receptors Research, Health Science Center, Peking University, Beijing, China
| | - Zongzhe Jiang
- Department of Endocrinology and Metabolism, Metabolic Vascular Disease Key Laboratory of Sichuan Province, Sichuan Clinical Research Center for Nephropathy, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Yong Xu
- Department of Endocrinology and Metabolism, Metabolic Vascular Disease Key Laboratory of Sichuan Province, Sichuan Clinical Research Center for Nephropathy, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China.
| |
Collapse
|
7
|
Miroshnikova VV, Panteleeva AA, Pobozheva IA, Razgildina ND, Polyakova EA, Markov AV, Belyaeva OD, Berkovich OA, Baranova EI, Nazarenko MS, Puzyrev VP, Pchelina SN. ABCA1 and ABCG1 DNA methylation in epicardial adipose tissue of patients with coronary artery disease. BMC Cardiovasc Disord 2021; 21:566. [PMID: 34837967 PMCID: PMC8627066 DOI: 10.1186/s12872-021-02379-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 11/10/2021] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Recent studies have focused on the potential role of epicardial adipose tissue (EAT) in the development of coronary artery disease (CAD). ABCA1 and ABCG1 transporters regulate cell cholesterol content and reverse cholesterol transport. We aimed to determine whether DNA methylation and mRNA levels of the ABCA1 and ABCG1 genes in EAT and subcutaneous adipose tissue (SAT) were associated with CAD. METHODS Paired EAT and SAT samples were collected from 82 patients undergoing elective cardiac surgery either for coronary artery bypass grafting (CAD group, N = 66) or valve surgery (NCAD group, N = 16). ABCA1 and ABCG1 mRNA levels in EAT and SAT samples were analyzed using real time polymerase chain reaction, ABCA1 protein levels in EAT samples were assessed by western blotting. ABCA1 and ABCG1 DNA methylation analysis was performed in 24 samples from the CAD group and 9 samples from the NCAD group via pyrosequencing. RESULTS DNA methylation levels in the ABCA1 promoter and ABCG1 cg27243685 and cg06500161 CpG sites were higher in EAT samples from patients with CAD compared with NCAD (21.92% vs 10.81%, p = 0.003; 71.51% vs 68.42%, p = 0.024; 46.11% vs 37.79%, p = 0.016, respectively). In patients with CAD, ABCA1 and ABCG1 DNA methylation levels were higher in EAT than in SAT samples (p < 0.05). ABCA1 mRNA levels in EAT samples were reduced in the subgroup of patients with CAD and concomitant carotid artery disease or peripheral artery disease compared with the NCAD group (p = 0.024). ABCA1 protein levels in EAT samples tended to be lower in CAD patients than in the NCAD group (p = 0.053). DNA methylation levels at the ABCG1 cg27243685 site positively correlated with plasma triglyceride concentration (r = 0.510, p = 0.008), body mass index (r = 0.556, p = 0.013) and waist-to-hip ratio (r = 0.504, p = 0.012) in SAT samples. CONCLUSION CAD is associated with ABCA1 and ABCG1 DNA hypermethylation in EAT. CAD with concomitant carotid artery disease or peripheral artery disease is accompanied by decreased ABCA1 gene expression in EAT. DNA methylation levels at the ABCG1 cg27243685 locus in SAT are associated with hypertriglyceridemia and obesity.
Collapse
Affiliation(s)
- Valentina V Miroshnikova
- Petersburg Nuclear Physics Institute Named By B.P. Konstantinov of National Research Center "Kurchatov Institute", Gatchina, Russian Federation.
- Pavlov First Saint Petersburg State Medical University, St.-Petersburg, Russian Federation.
| | - Alexandra A Panteleeva
- Petersburg Nuclear Physics Institute Named By B.P. Konstantinov of National Research Center "Kurchatov Institute", Gatchina, Russian Federation
- Pavlov First Saint Petersburg State Medical University, St.-Petersburg, Russian Federation
- National Research Centre "Kurchatov Institute", Moscow, Russia
| | - Irina A Pobozheva
- Petersburg Nuclear Physics Institute Named By B.P. Konstantinov of National Research Center "Kurchatov Institute", Gatchina, Russian Federation
- Pavlov First Saint Petersburg State Medical University, St.-Petersburg, Russian Federation
- National Research Centre "Kurchatov Institute", Moscow, Russia
| | - Natalia D Razgildina
- Petersburg Nuclear Physics Institute Named By B.P. Konstantinov of National Research Center "Kurchatov Institute", Gatchina, Russian Federation
| | - Ekaterina A Polyakova
- Pavlov First Saint Petersburg State Medical University, St.-Petersburg, Russian Federation
| | - Anton V Markov
- Laboratory of Population Genetics, Research Institute of Medical Genetics, Tomsk, Russian Federation
| | - Olga D Belyaeva
- Pavlov First Saint Petersburg State Medical University, St.-Petersburg, Russian Federation
| | - Olga A Berkovich
- Pavlov First Saint Petersburg State Medical University, St.-Petersburg, Russian Federation
| | - Elena I Baranova
- Pavlov First Saint Petersburg State Medical University, St.-Petersburg, Russian Federation
| | - Maria S Nazarenko
- Laboratory of Population Genetics, Research Institute of Medical Genetics, Tomsk, Russian Federation
| | - Valery P Puzyrev
- Laboratory of Population Genetics, Research Institute of Medical Genetics, Tomsk, Russian Federation
| | - Sofya N Pchelina
- Petersburg Nuclear Physics Institute Named By B.P. Konstantinov of National Research Center "Kurchatov Institute", Gatchina, Russian Federation
- Pavlov First Saint Petersburg State Medical University, St.-Petersburg, Russian Federation
- National Research Centre "Kurchatov Institute", Moscow, Russia
| |
Collapse
|
8
|
Dong Y, Lin Y, Liu W, Zhang W, Jiang Y, Song W. Atrial Natriuretic Peptide Inhibited ABCA1/G1-dependent Cholesterol Efflux Related to Low HDL-C in Hypertensive Pregnant Patients. Front Pharmacol 2021; 12:715302. [PMID: 34393795 PMCID: PMC8355588 DOI: 10.3389/fphar.2021.715302] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 06/24/2021] [Indexed: 01/03/2023] Open
Abstract
Objective: It has been reported that atrial natriuretic peptide (ANP) regulates lipid metabolism by stimulating adipocyte browning, lipolysis, and lipid oxidation, and by impacting the secretion of adipokines. In our previous study, we found that the plasma ANP concentration of hypertensive disorders of pregnancy (HDP) was significantly increased in comparison to that of normotensive pregnancy patients. Thus, this study’s objective was to investigate the lipid profile in patients with HDP and determine the effects of ANP on the cholesterol efflux in THP-1 macrophages. Methods: A total of 265 HDP patients and 178 normotensive women as the control group were recruited. Clinical demographic characteristics and laboratory profile data were collected. Plasma total triglycerides (TGs), total cholesterol (TC), low-density cholesterol (LDL-C), and high-density cholesterol (HDL-C) were compared between the two groups. THP-1 monocytes were incubated with different concentrations of ANP. ATP-binding cassette transporter A1 (ABCA1) and ATP-binding cassette transporter G1 (ABCG1) mRNA and protein were evaluated. ABCA1- and ABCG1-mediated cholesterol efflux to apolipoprotein A-Ⅰ (apoA-Ⅰ) and HDL, respectively, were measured by green fluorescent labeled NBD cholesterol. Natriuretic peptide receptor A (NPR-A) siRNA and specific agonists of the peroxisome proliferator–activated receptor-γ (PPAR-γ) and liver X receptor α (LXRα) were studied to investigate the mechanism involved. Results: Plasma TG, TC, LDL-C, and LDL-C/HDL-C were significantly increased, and HDL-C was significantly decreased in the HDP group in comparison to the control (all p < 0.001). ANP inhibited the expression of ABCA1 and ABCG1 at both the mRNA and protein levels in a dose-dependent manner. The functions of ABCA1- and ABCG1-mediated cholesterol efflux to apoA-I and HDL were significantly decreased. NPR-A siRNA further confirmed that ANP binding to its receptor inhibited ABCA1/G1 expression through the PPAR-γ/LXRα pathway. Conclusions: ABCA1/G1 was inhibited by the stimulation of ANP when combined with NPR-A through the PPAR-γ/LXRα pathway in THP-1 macrophages. The ABCA1/G1-mediated cholesterol efflux was also impaired by the stimulation of ANP. This may provide a new explanation for the decreased level of HDL-C in HDP patients.
Collapse
Affiliation(s)
- Yubing Dong
- Department of Hypertension, The First Affiliated Hospital of Dalian Medical University, DaLian, China
| | - Yi Lin
- Department of Hypertension, The First Affiliated Hospital of Dalian Medical University, DaLian, China
| | - Wanyu Liu
- Department of Hypertension, The First Affiliated Hospital of Dalian Medical University, DaLian, China
| | - Wei Zhang
- Department of Hypertension, The First Affiliated Hospital of Dalian Medical University, DaLian, China
| | - Yinong Jiang
- Department of Hypertension, The First Affiliated Hospital of Dalian Medical University, DaLian, China
| | - Wei Song
- Department of Hypertension, The First Affiliated Hospital of Dalian Medical University, DaLian, China
| |
Collapse
|
9
|
Kotlyarov S, Kotlyarova A. Molecular Mechanisms of Lipid Metabolism Disorders in Infectious Exacerbations of Chronic Obstructive Pulmonary Disease. Int J Mol Sci 2021; 22:7634. [PMID: 34299266 PMCID: PMC8308003 DOI: 10.3390/ijms22147634] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 07/13/2021] [Accepted: 07/15/2021] [Indexed: 02/06/2023] Open
Abstract
Exacerbations largely determine the character of the progression and prognosis of chronic obstructive pulmonary disease (COPD). Exacerbations are connected with changes in the microbiological landscape in the bronchi due to a violation of their immune homeostasis. Many metabolic and immune processes involved in COPD progression are associated with bacterial colonization of the bronchi. The objective of this review is the analysis of the molecular mechanisms of lipid metabolism and immune response disorders in the lungs in COPD exacerbations. The complex role of lipid metabolism disorders in the pathogenesis of some infections is only beginning to be understood, however, there are already fewer and fewer doubts even now about its significance both in the pathogenesis of infectious exacerbations of COPD and in general in the progression of the disease. It is shown that the lipid rafts of the plasma membranes of cells are involved in many processes related to the detection of pathogens, signal transduction, the penetration of pathogens into the cell. Smoking disrupts the normally proceeded processes of lipid metabolism in the lungs, which is a part of the COPD pathogenesis.
Collapse
Affiliation(s)
- Stanislav Kotlyarov
- Department of Nursing, Ryazan State Medical University, 390026 Ryazan, Russia
| | - Anna Kotlyarova
- Department of Pharmacology and Pharmacy, Ryazan State Medical University, 390026 Ryazan, Russia;
| |
Collapse
|
10
|
Kotlyarov S. Participation of ABCA1 Transporter in Pathogenesis of Chronic Obstructive Pulmonary Disease. Int J Mol Sci 2021; 22:3334. [PMID: 33805156 PMCID: PMC8037621 DOI: 10.3390/ijms22073334] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 03/19/2021] [Accepted: 03/22/2021] [Indexed: 12/12/2022] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is the important medical and social problem. According to modern concepts, COPD is a chronic inflammatory disease, macrophages play a key role in its pathogenesis. Macrophages are heterogeneous in their functions, which is largely determined by their immunometabolic profile, as well as the features of lipid homeostasis, in which the ATP binding cassette transporter A1 (ABCA1) plays an essential role. The objective of this work is the analysis of the ABCA1 protein participation and the function of reverse cholesterol transport in the pathogenesis of COPD. The expression of the ABCA1 gene in lung tissues takes the second place after the liver, which indicates the important role of the carrier in lung function. The participation of the transporter in the development of COPD consists in provision of lipid metabolism, regulation of inflammation, phagocytosis, and apoptosis. Violation of the processes in which ABCA1 is involved may be a part of the pathophysiological mechanisms, leading to the formation of a heterogeneous clinical course of the disease.
Collapse
Affiliation(s)
- Stanislav Kotlyarov
- Department of Nursing, Ryazan State Medical University, 390026 Ryazan, Russia
| |
Collapse
|
11
|
Yanai H, Yoshida H. Secondary dyslipidemia: its treatments and association with atherosclerosis. Glob Health Med 2021; 3:15-23. [PMID: 33688591 PMCID: PMC7936375 DOI: 10.35772/ghm.2020.01078] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 12/01/2020] [Accepted: 12/07/2020] [Indexed: 04/15/2023]
Abstract
Dyslipidemia is classified into primary and secondary types. Primary dyslipidemia is basically inherited and caused by single or multiple gene mutations that result in either overproduction or defective clearance of triglycerides and cholesterol. Secondary dyslipidemia is caused by unhealthy lifestyle factors and acquired medical conditions, including underlying diseases and applied drugs. Secondary dyslipidemia accounts for approximately 30-40% of all dyslipidemia. Secondary dyslipidemia should be treated by finding and addressing its causative diseases or drugs. For example, treatment of secondary dyslipidemia, such as hyperlipidemia due to hypothyroidism, by using statin without controlling hypothyroidism, may lead to myopathy and serious adverse events such as rhabdomyolysis. Differential diagnosis of secondary dyslipidemia is very important for safe and effective treatment. Here, we describe an overview about diseases and drugs that interfere with lipid metabolism leading to secondary dyslipidemia. Further, we show the association of each secondary dyslipidemia with atherosclerosis and the treatments for such dyslipidemia.
Collapse
Affiliation(s)
- Hidekatsu Yanai
- Department of Diabetes, Endocrinology and Metabolism, National Center for Global Health and Medicine Kohnodai Hospital, Chiba, Japan
- Address correspondence to:Hidekatsu Yanai, Department of Diabetes, Endocrinology and Metabolism, National Center for Global Health and Medicine Kohnodai Hospital, 1-7-1 Kohnodai, Ichikawa, Chiba 272- 8516, Japan. E-mail:
| | - Hiroshi Yoshida
- Department of Laboratory Medicine, The Jikei University Kashiwa Hospital, Chiba, Japan
| |
Collapse
|
12
|
Panteleeva AA, Razgildina ND, Brovin DL, Pobozheva IA, Dracheva KV, Berkovich OA, Polyakova EA, Belyaeva OD, Baranova EI, Pchelina SN, Miroshnikova VV. The Expression of Genes Encoding ABCA1 and ABCG1 Transporters and PPARγ, LXRβ, and RORα Transcriptional Factors in Subcutaneous and Visceral Adipose Tissue in Women with Metabolic Syndrome. Mol Biol 2021. [DOI: 10.1134/s0026893321010131] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
13
|
He P, Gelissen IC, Ammit AJ. Regulation of ATP binding cassette transporter A1 (ABCA1) expression: cholesterol-dependent and - independent signaling pathways with relevance to inflammatory lung disease. Respir Res 2020; 21:250. [PMID: 32977800 PMCID: PMC7519545 DOI: 10.1186/s12931-020-01515-9] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 09/21/2020] [Indexed: 12/11/2022] Open
Abstract
The role of the ATP binding cassette transporter A1 (ABCA1) in maintaining cellular lipid homeostasis in cardiovascular disease is well established. More recently, the important beneficial role played by ABCA1 in modulating pathogenic disease mechanisms, such as inflammation, in a broad range of chronic conditions has been realised. These studies position ABCA1 as a potential therapeutic target in a diverse range of diseases where inflammation is an underlying cause. Chronic respiratory conditions such as asthma and chronic obstructive pulmonary disease (COPD) are driven by inflammation, and as such, there is now a growing recognition that we need a greater understanding of the signaling pathways responsible for regulation of ABCA1 expression in this clinical context. While the signaling pathways responsible for cholesterol-mediated ABCA1 expression have been clearly delineated through decades of studies in the atherosclerosis field, and thus far appear to be translatable to the respiratory field, less is known about the cholesterol-independent signaling pathways that can modulate ABCA1 expression in inflammatory lung disease. This review will identify the various signaling pathways and ligands that are associated with the regulation of ABCA1 expression and may be exploited in future as therapeutic targets in the setting of chronic inflammatory lung diseases.
Collapse
Affiliation(s)
- Patrick He
- Woolcock Emphysema Centre, Woolcock Institute of Medical Research, University of Sydney, Sydney, NSW, Australia
- School of Life Sciences, Faculty of Science, University of Technology Sydney, Sydney, NSW, Australia
| | - Ingrid C Gelissen
- Sydney Pharmacy School, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, 2006, Australia
| | - Alaina J Ammit
- Woolcock Emphysema Centre, Woolcock Institute of Medical Research, University of Sydney, Sydney, NSW, Australia.
- School of Life Sciences, Faculty of Science, University of Technology Sydney, Sydney, NSW, Australia.
| |
Collapse
|
14
|
Hafiane A, Favari E, Daskalopoulou SS, Vuilleumier N, Frias MA. High-density lipoprotein cholesterol efflux capacity and cardiovascular risk in autoimmune and non-autoimmune diseases. Metabolism 2020; 104:154141. [PMID: 31923386 DOI: 10.1016/j.metabol.2020.154141] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 12/23/2019] [Accepted: 01/05/2020] [Indexed: 12/22/2022]
Abstract
Functional assessment of cholesterol efflux capacity (CEC) to high-density lipoprotein (HDL) is an emerging tool for evaluating morbidity and mortality associated with cardiovascular disease (CVD). By promoting macrophage reverse cholesterol transport (RCT), HDL-mediated CEC is believed to play an important role in atherosclerotic lesion progression in the vessel wall. Furthermore, recent evidence indicates that the typical inverse associations between various forms of CEC and CV events may be strongly modulated by environmental systemic factors and traditional CV risk factors, in addition to autoimmune diseases. These factors influence the complex and dynamic composition of HDL particles, which in turn positively or negatively affect HDL-CEC. Herein, we review recent findings connecting HDL-CEC to traditional CV risk factors and cardiometabolic conditions (non-autoimmune diseases) as well as autoimmune diseases, with a specific focus on how these factors may influence the associations between HDL-CEC and CVD risk.
Collapse
Affiliation(s)
- Anouar Hafiane
- Department of Medicine, Faculty of Medicine, Research Institute of the McGill University Health Centre, McGill University, 1001 Decarie Blvd, Bloc E01. 3370H, Montréal, Qc H4A 3J1, Canada.
| | - Elda Favari
- Department of Food and Drug, University of Parma, Parco Area delle Scienze, 27/A, 43124 Parma, Italy.
| | - Stella S Daskalopoulou
- Department of Medicine, Division of Internal Medicine, McGill University, Research Institute of the McGill University Health Centre, 1001 Decarie Blvd, EM1.2230, Montreal, Quebec H4A 3J1, Canada.
| | - Nicolas Vuilleumier
- Division of Laboratory Medicine, Diagnostic Department, Geneva University Hospitals, 1211 Geneva, Switzerland; Division of Laboratory Medicine, Department of Medical Specialties, Faculty of Medicine, University of Geneva, 1206 Geneva, Switzerland.
| | - Miguel A Frias
- Division of Laboratory Medicine, Diagnostic Department, Geneva University Hospitals, 1211 Geneva, Switzerland; Division of Laboratory Medicine, Department of Medical Specialties, Faculty of Medicine, University of Geneva, 1206 Geneva, Switzerland.
| |
Collapse
|
15
|
Koga M, Kanaoka Y, Okamoto M, Nakao Y, Inada K, Takayama S, Kataoka Y, Yamauchi A. Varenicline aggravates atherosclerotic plaque formation in nicotine-pretreated ApoE knockout mice due to enhanced oxLDL uptake by macrophages through downregulation of ABCA1 and ABCG1 expression. J Pharmacol Sci 2019; 142:9-15. [PMID: 31771811 DOI: 10.1016/j.jphs.2019.11.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 10/18/2019] [Accepted: 11/05/2019] [Indexed: 11/17/2022] Open
Abstract
Varenicline is a widely used and effective drug for smoking cessation. We previously reported that varenicline aggravates atherosclerosis in apolipoprotein E knockout (ApoE KO) mice. However, it remains unknown whether varenicline affects cardiovascular events in patients with nicotine addiction. Here, we examined the effect of varenicline on atherosclerotic plaque formation in nicotine-pretreated ApoE KO mice and oxidized low-density lipoprotein (oxLDL) uptake in nicotine-treated peritoneal macrophages. Varenicline caused significant progression of plaque formation in the whole aorta and aortic root and further accelerated the increased formation of a macrophage-rich plaque area in the aortic root in nicotine-pretreated ApoE KO mice. Varenicline (10 μM) enhanced oxLDL uptake in peritoneal macrophages. Furthermore, this treatment significantly further lowered the decreased protein levels of ATP-binding cassette (ABC) transporter without affecting the expression of scavenger receptors LOX-1 and CD36 in RAW264.7 cells treated with 100 nM nicotine. Varenicline enhanced nicotine-induced oxLDL uptake in macrophages through decreased expression of cholesterol efflux transporters ABCA1 and ABCG1 and thereby progressed atherosclerotic plaque formation. Taken together, we tentatively conclude that nicotine exposure before and/or during varenicline treatment can aggravate varenicline-increased atherosclerotic plaque formation and progression. Therefore, this enhanced risk requires special consideration when prescribing varenicline to smoker patients.
Collapse
Affiliation(s)
- Mitsuhisa Koga
- Department of Pharmaceutical Care and Health Sciences, Faculty of Pharmaceutical Sciences, Fukuoka University, 8-19-1 Nanakuma, Jonan-ku, Fukuoka 814-0180, Japan
| | - Yuki Kanaoka
- Department of Pharmaceutical Care and Health Sciences, Faculty of Pharmaceutical Sciences, Fukuoka University, 8-19-1 Nanakuma, Jonan-ku, Fukuoka 814-0180, Japan
| | - Mana Okamoto
- Department of Pharmaceutical Care and Health Sciences, Faculty of Pharmaceutical Sciences, Fukuoka University, 8-19-1 Nanakuma, Jonan-ku, Fukuoka 814-0180, Japan
| | - Yuki Nakao
- Department of Pharmaceutical Care and Health Sciences, Faculty of Pharmaceutical Sciences, Fukuoka University, 8-19-1 Nanakuma, Jonan-ku, Fukuoka 814-0180, Japan
| | - Koshun Inada
- Department of Pharmaceutical Care and Health Sciences, Faculty of Pharmaceutical Sciences, Fukuoka University, 8-19-1 Nanakuma, Jonan-ku, Fukuoka 814-0180, Japan
| | - Saki Takayama
- Department of Pharmaceutical Care and Health Sciences, Faculty of Pharmaceutical Sciences, Fukuoka University, 8-19-1 Nanakuma, Jonan-ku, Fukuoka 814-0180, Japan
| | - Yasufumi Kataoka
- Department of Pharmaceutical Care and Health Sciences, Faculty of Pharmaceutical Sciences, Fukuoka University, 8-19-1 Nanakuma, Jonan-ku, Fukuoka 814-0180, Japan
| | - Atsushi Yamauchi
- Department of Pharmaceutical Care and Health Sciences, Faculty of Pharmaceutical Sciences, Fukuoka University, 8-19-1 Nanakuma, Jonan-ku, Fukuoka 814-0180, Japan.
| |
Collapse
|
16
|
The Acute Effects of Cigarette Smoking on the Functional State of High Density Lipoprotein. Am J Med Sci 2018; 356:374-381. [DOI: 10.1016/j.amjms.2018.07.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 06/27/2018] [Accepted: 07/12/2018] [Indexed: 02/07/2023]
|
17
|
Chen HY, Li SC, Chen LF, Wang W, Wang Y, Yan XW. The effects of cigarette smoking and smoking cessation on high-density lipoprotein functions: implications for coronary artery disease. Ann Clin Biochem 2018; 56:100-111. [PMID: 29961342 DOI: 10.1177/0004563218788386] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Smoking cessation was associated with improved prognosis of coronary artery disease. This study was designed to investigate the effect of smoking cessation on high-density lipoprotein functionality in coronary artery disease patients. METHODS In this prospective, randomized and parallel controlled study, coronary artery disease smokers ( n = 28) and healthy smokers ( n = 30) were divided into smoking cessation group and continuous smoking group, respectively. Blood samples were collected before and after three-month smoking cessation. Plasma high-density lipoprotein was isolated by density gradient centrifugation. The ability of high-density lipoprotein against copper-induced oxidation of lipoprotein was determined to evaluate the antioxidative property of high-density lipoprotein, and the macrophage migration inhibited by high-density lipoprotein was tested to identify the antichemotactic property of high-density lipoprotein. High-density lipoprotein-induced macrophage cholesterol efflux was measured by fluorescence spectrometry using NBD cholesterol analogue. Healthy non-smoking volunteers were enrolled as the baseline control. RESULTS The baseline antioxidative, antichemotactic ability of high-density lipoprotein and high-density lipoprotein-induced cellular cholesterol efflux in coronary artery disease smokers and healthy smokers were significantly attenuated when compared with those in healthy non-smokers. After three-month smoking cessation, both the antioxidative ability and antichemotactic ability of high-density lipoprotein were improved significantly in coronary artery disease smokers. However, high-density lipoprotein-induced cellular cholesterol efflux was not increased by smoking cessation. In in vitro experiments, carbon monoxide reduced the antioxidative ability and nicotine enhanced the antichemotactic ability of high-density lipoprotein. CONCLUSIONS Smoking cessation is an effective measure to improve high-density lipoprotein functions in coronary artery disease smokers. Our study re-emphasizes the importance of smoking cessation in the secondary prevention of coronary artery disease.
Collapse
Affiliation(s)
- Hong-Ying Chen
- Department of Cardiology, Peking Union Medical College Hospital (PUMCH), Beijing, P. R. China
| | - Shi-Cheng Li
- Department of Cardiology, Peking Union Medical College Hospital (PUMCH), Beijing, P. R. China
| | - Lian-Feng Chen
- Department of Cardiology, Peking Union Medical College Hospital (PUMCH), Beijing, P. R. China
| | - Wei Wang
- Department of Cardiology, Peking Union Medical College Hospital (PUMCH), Beijing, P. R. China
| | - Yu Wang
- Department of Cardiology, Peking Union Medical College Hospital (PUMCH), Beijing, P. R. China
| | - Xiao-Wei Yan
- Department of Cardiology, Peking Union Medical College Hospital (PUMCH), Beijing, P. R. China
| |
Collapse
|
18
|
Woudberg NJ, Pedretti S, Lecour S, Schulz R, Vuilleumier N, James RW, Frias MA. Pharmacological Intervention to Modulate HDL: What Do We Target? Front Pharmacol 2018; 8:989. [PMID: 29403378 PMCID: PMC5786575 DOI: 10.3389/fphar.2017.00989] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Accepted: 12/22/2017] [Indexed: 12/24/2022] Open
Abstract
The cholesterol concentrations of low-density lipoprotein (LDL) and high-density lipoprotein (HDL) have traditionally served as risk factors for cardiovascular disease. As such, novel therapeutic interventions aiming to raise HDL cholesterol have been tested in the clinical setting. However, most trials led to a significant increase in HDL cholesterol with no improvement in cardiovascular events. The complexity of the HDL particle, which exerts multiple physiological functions and is comprised of a number of subclasses, has raised the question as to whether there should be more focus on HDL subclass and function rather than cholesterol quantity. We review current data regarding HDL subclasses and subclass-specific functionality and highlight how current lipid modifying drugs such as statins, cholesteryl ester transfer protein inhibitors, fibrates and niacin often increase cholesterol concentrations of specific HDL subclasses. In addition this review sets out arguments suggesting that the HDL3 subclass may provide better protective effects than HDL2.
Collapse
Affiliation(s)
- Nicholas J. Woudberg
- Hatter Institute for Cardiovascular Research in Africa and South African Medical Research Council Inter-University Cape Heart Group, Department of Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Sarah Pedretti
- Hatter Institute for Cardiovascular Research in Africa and South African Medical Research Council Inter-University Cape Heart Group, Department of Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
- Division of Endocrinology, Diabetes, Hypertension and Nutrition, Department of Internal Medicine Specialities, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Sandrine Lecour
- Hatter Institute for Cardiovascular Research in Africa and South African Medical Research Council Inter-University Cape Heart Group, Department of Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Rainer Schulz
- Institute of Physiology, Justus Liebig University Giessen, Giessen, Germany
| | - Nicolas Vuilleumier
- Division of Laboratory Medicine, Department of Genetics and Laboratory Medicine, Geneva University Hospitals, Geneva, Switzerland
| | - Richard W. James
- Division of Endocrinology, Diabetes, Hypertension and Nutrition, Department of Internal Medicine Specialities, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Miguel A. Frias
- Division of Endocrinology, Diabetes, Hypertension and Nutrition, Department of Internal Medicine Specialities, Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Division of Laboratory Medicine, Department of Genetics and Laboratory Medicine, Geneva University Hospitals, Geneva, Switzerland
| |
Collapse
|
19
|
Talbot CP, Plat J, Ritsch A, Mensink RP. Determinants of cholesterol efflux capacity in humans. Prog Lipid Res 2018; 69:21-32. [PMID: 29269048 DOI: 10.1016/j.plipres.2017.12.001] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Revised: 12/09/2017] [Accepted: 12/11/2017] [Indexed: 12/26/2022]
|
20
|
Nagao Y, Hirayama S, Kon M, Sasamoto K, Sugihara M, Hirayama A, Isshiki M, Seino U, Miyazaki O, Miida T. Current smokers with hyperlipidemia lack elevated preβ1-high-density lipoprotein concentrations. J Clin Lipidol 2017; 11:242-249. [DOI: 10.1016/j.jacl.2016.12.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Revised: 11/27/2016] [Accepted: 12/29/2016] [Indexed: 01/17/2023]
|
21
|
Paraoxsonase2 (PON2) and oxidative stress involvement in pomegranate juice protection against cigarette smoke-induced macrophage cholesterol accumulation. Chem Biol Interact 2016; 259:394-400. [PMID: 27163848 DOI: 10.1016/j.cbi.2016.05.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2015] [Revised: 04/15/2016] [Accepted: 05/05/2016] [Indexed: 12/08/2022]
Abstract
Exposure to cigarette smoke (CS) promotes various stages of atherosclerosis development. Macrophages are the predominant cells in early atherogenesis, and the polyphenolic-rich pomegranate juice (PJ) is known for its protective role against macrophage atherogenicity. The aim of the current study was to examine the atherogenic effects of CS on macrophages, and to evaluate the protective effects of PJ against CS-induced macrophage atherogenicity. Murine J774A.1 macrophages were treated with CS-exposed medium in the absence or presence of PJ. Parameters of lipid peroxidation in CS-exposed medium were measured by the lipid peroxides and thiobarbituric acid reactive substances (TBARS) assays. Atherogenicity of macrophages incubated with increasing concentrations of CS-exposed medium was assessed by cytotoxicity, oxidative stress determined by generation of reactive oxygen species (ROS) using DCFH-DA, activity of the cellular anti-oxidant paraoxonase2 (PON2), macrophage accumulation of cholesterol and triglycerides, as well as through high density lipoprotein (HDL)-mediated cholesterol efflux from the cells. CS exposure resulted in significant and dose-dependent increases in lipid peroxides and TBARS medium levels (up to 3 and 8-fold, respectively). Incubation of macrophages with CS-exposed medium resulted in dose-dependent increases in macrophage damage/injury (up to 6-fold), intracellular ROS levels (up to 31%), PON2 activity (up to 2-fold), and macrophage cholesterol content (up to 24%). The latter might be explained by reduced HDL-mediated cholesterol efflux from CS-exposed macrophages (by 21%). PJ protected macrophages from CS-induced increases in intracellular ROS levels and cholesterol accumulation, as well as the attenuated efflux of cholesterol. These data indicate that CS stimulates macrophage oxidation and activates PON2 as a possible compensatory response to the oxidative burden. CS impairs HDL-mediated cholesterol efflux from macrophages leading to cellular accumulation of cholesterol. The atherogenic and oxidative effects of CS are attenuated by PJ, a polyphenolic-rich anti-oxidant.
Collapse
|
22
|
|
23
|
Calza L, Colangeli V, Manfredi R, Bon I, Re MC, Viale P. Clinical management of dyslipidaemia associated with combination antiretroviral therapy in HIV-infected patients. J Antimicrob Chemother 2016; 71:1451-65. [PMID: 26846208 DOI: 10.1093/jac/dkv494] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The introduction of potent combination antiretroviral therapy (cART) has had a remarkable impact on the natural history of HIV infection, leading to a dramatic decline in the mortality rate and a considerable increase in the life expectancy of HIV-positive people. However, cART use is frequently associated with several metabolic complications, mostly represented by lipid metabolism alterations, which are reported very frequently among persons treated with antiretroviral agents. In particular, hyperlipidaemia occurs in up to 70%-80% of HIV-positive subjects receiving cART and is mainly associated with specific antiretroviral drugs belonging to three classes of antiretroviral agents: NRTIs, NNRTIs and PIs. The potential long-term consequences of cART-associated dyslipidaemia are not completely understood, but an increased risk of premature coronary heart disease has been reported in HIV-infected patients on cART, so prompt correction of lipid metabolism abnormalities is mandatory in this population. Dietary changes, regular aerobic exercise and switching to a different antiretroviral regimen associated with a more favourable metabolic profile are the first steps in clinical management, but lipid-lowering therapy with fibrates or statins is often required. In this case, the choice of hypolipidaemic drugs should take into account the potential pharmacokinetic interactions with many antiretroviral agents.
Collapse
Affiliation(s)
- Leonardo Calza
- Department of Medical and Surgical Sciences, Section of Infectious Diseases, S. Orsola-Malpighi Hospital, University of Bologna, via G. Massarenti n.11, 40138 Bologna, Italy
| | - Vincenzo Colangeli
- Department of Medical and Surgical Sciences, Section of Infectious Diseases, S. Orsola-Malpighi Hospital, University of Bologna, via G. Massarenti n.11, 40138 Bologna, Italy
| | - Roberto Manfredi
- Department of Medical and Surgical Sciences, Section of Infectious Diseases, S. Orsola-Malpighi Hospital, University of Bologna, via G. Massarenti n.11, 40138 Bologna, Italy
| | - Isabella Bon
- Department of Specialized, Diagnostic and Experimental Medicine, Section of Microbiology, S. Orsola-Malpighi Hospital, University of Bologna, via G. Massarenti n.11, 40138 Bologna, Italy
| | - Maria Carla Re
- Department of Specialized, Diagnostic and Experimental Medicine, Section of Microbiology, S. Orsola-Malpighi Hospital, University of Bologna, via G. Massarenti n.11, 40138 Bologna, Italy
| | - Pierluigi Viale
- Department of Medical and Surgical Sciences, Section of Infectious Diseases, S. Orsola-Malpighi Hospital, University of Bologna, via G. Massarenti n.11, 40138 Bologna, Italy
| |
Collapse
|
24
|
Korth RM. LDL-Related Intolerance to Glucose, Diastolic Hypertension and Additive Effects of Smoking Were Found with Three Female Study Groups. Health (London) 2016. [DOI: 10.4236/health.2016.83026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
25
|
Abstract
High-density lipoproteins (HDLs) protect against atherosclerosis by removing excess cholesterol from macrophages through the ATP-binding cassette transporter A1 (ABCA1) and ATP-binding cassette transporter G1 (ABCG1) pathways involved in reverse cholesterol transport. Factors that impair the availability of functional apolipoproteins or the activities of ABCA1 and ABCG1 could, therefore, strongly influence atherogenesis. HDL also inhibits lipid oxidation, restores endothelial function, exerts anti-inflammatory and antiapoptotic actions, and exerts anti-inflammatory actions in animal models. Such properties could contribute considerably to the capacity of HDL to inhibit atherosclerosis. Systemic and vascular inflammation has been proposed to convert HDL to a dysfunctional form that has impaired antiatherogenic effects. A loss of anti-inflammatory and antioxidative proteins, perhaps in combination with a gain of proinflammatory proteins, might be another important component in rendering HDL dysfunctional. The proinflammatory enzyme myeloperoxidase induces both oxidative modification and nitrosylation of specific residues on plasma and arterial apolipoprotein A-I to render HDL dysfunctional, which results in impaired ABCA1 macrophage transport, the activation of inflammatory pathways, and an increased risk of coronary artery disease. Understanding the features of dysfunctional HDL or apolipoprotein A-I in clinical practice might lead to new diagnostic and therapeutic approaches to atherosclerosis.
Collapse
|
26
|
Jin SG, Chen GL, Yang SL, Zhao MY. Gene-gene interactions among CX3CL1, LEPR and IL-6 related to coronary artery disease in Chinese Han population. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2015; 8:5968-5973. [PMID: 26191329 PMCID: PMC4503200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 02/07/2015] [Accepted: 04/10/2015] [Indexed: 06/04/2023]
Abstract
OBJECTIVE The purpose of this study was to investigate the impact of the interactions among CX3CL1 (rs170364 and rs614230), LEPR (rs6700896), and IL-6 (rs2066992) polymorphisms on the risk of coronary artery disease (CAD) in Chinese Han population. METHODS 120 CAD patients and 109 healthy controls were enrolled in the study. Polymerase chain reaction (PCR) and direct sequencing methods were used to analyze the genotypes of CX3CL1, LEPR, and IL-6 polymorphisms. Multifactor dimensionality reduction (MDR) software was utilized to analyze gene-gene interactions. Odds ratios (ORs) and 95% confidence intervals (95% CIs) were used for evaluating the association between gene polymorphisms or gene-gene interactions and CAD risk. RESULTS In the study, TT genotype of rs170364 in CX3CL1 might decrease the CAD risk (OR=0.39, 95% CI=0.16-0.98). No significant correlation was found between T allele of rs170364 and CAD risk (P>0.05). CC genotype and C allele in rs614230 (CX3CL1) were significantly related with decreased risk of CAD (OR=0.38, 95% CI=0.17-0.86; OR=0.66, 95% CI=0.45-0.97). For IL-6 rs2066992 polymorphism. GG genotype could increase the risk of CAD (OR=2.32, 95% CI=1.04-5.17). Whereas, no significant correlation was observed between LEPR rs6700896 and CAD susceptibility. MDR analysis showed that CX3CL1, LEPR and IL-6 genes might jointly promote the occurrence of CAD. CONCLUSIONS The interactions of CX3CL1, LEPR and IL-6 genes might increase the risk of CAD.
Collapse
Affiliation(s)
- Song-Gen Jin
- Department of Intensive Care Unit, The First Clinical Hospital Affliated to Harbin Medical UniversityHarbin 150001, Heilongjiang, China
| | - Guo-Lin Chen
- The First Ward of Department of Infection, The First Clinical Hospital Affliated to Harbin Medical UniversityHarbin 150001, Heilongjiang, China
| | - Song-Liu Yang
- Department of Intensive Care Unit, The First Clinical Hospital Affliated to Harbin Medical UniversityHarbin 150001, Heilongjiang, China
| | - Ming-Yan Zhao
- Department of Intensive Care Unit, The First Clinical Hospital Affliated to Harbin Medical UniversityHarbin 150001, Heilongjiang, China
| |
Collapse
|