1
|
Al-Beltagi M, Saeed NK, Bediwy AS, Elbeltagi R. Unraveling the nutritional challenges in epilepsy: Risks, deficiencies, and management strategies: A systematic review. World J Exp Med 2025; 15:104328. [DOI: 10.5493/wjem.v15.i2.104328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 02/24/2025] [Accepted: 03/18/2025] [Indexed: 04/16/2025] Open
Abstract
BACKGROUND Malnutrition and epilepsy share a complex bidirectional relationship, with malnutrition serving as a potential risk factor for epilepsy development, while epilepsy, in turn, often exerts profound effects on nutritional status. Nutritional interventions have emerged as a critical adjunctive approach in epilepsy management.
AIM To explore the multifaceted associations between malnutrition and epilepsy, structured into three primary sections: (1) Elucidating the impact of malnutrition as a risk factor for epilepsy onset; (2) Examining the reciprocal influence of epilepsy on nutritional status, and (3) Evaluating diverse nutritional interventions in the management of epilepsy.
METHODS A systematic search was conducted across PubMed, Scopus, and Web of Science databases utilizing defined keywords related to malnutrition, epilepsy, and nutritional interventions. Inclusion criteria encompassed various study types, including clinical trials, animal models, cohort studies, case reports, meta-analyses, systematic reviews, guidelines, editorials, and review articles. Four hundred sixteen pertinent references were identified, with 198 review articles, 153 research studies, 21 case reports, 24 meta-analyses, 14 systematic reviews, 4 guidelines, and 2 editorials meeting the predefined criteria.
RESULTS The review revealed the intricate interplay between malnutrition and epilepsy, highlighting malnutrition as a potential risk factor in epilepsy development and elucidating how epilepsy often leads to nutritional deficiencies. Findings underscored the importance of nutritional interventions in managing epilepsy, showing their impact on seizure frequency, neuronal function, and overall brain health.
CONCLUSION This systematic review emphasizes the bidirectional relationship between malnutrition and epilepsy while emphasizing the critical role of nutritional management in epilepsy treatment. The multifaceted insights underscore the need for a holistic approach to addressing nutritional aspects alongside conventional epilepsy management strategies.
Collapse
Affiliation(s)
- Mohammed Al-Beltagi
- Department of Pediatrics, Faculty of Medicine, Tanta University, Tanta 31511, Alghrabia, Egypt
- Department of Pediatrics, University Medical Center, King Abdulla Medical City, Arabian Gulf University, Manama 26671, Bahrain
| | - Nermin Kamal Saeed
- Medical Microbiology Section, Department of Pathology, Salmaniya Medical Complex, Governmental Hospitals, Manama 12, Bahrain
- Medical Microbiology Section, Department of Pathology, The Royal College of Surgeons in Ireland, Busaiteen 15503, Muharraq, Bahrain
| | - Adel Salah Bediwy
- Department of Pulmonology, Faculty of Medicine, Tanta University, Tanta 31527, Alghrabia, Egypt
- Department of Pulmonology, University Medical Center, King Abdulla Medical City, Arabian Gulf University, Manama 26671, Bahrain
| | - Reem Elbeltagi
- Medicine, Royal College of Surgeons in Ireland, Medical University of Bahrain, Busaiteen 15503, Muharraq, Bahrain
| |
Collapse
|
2
|
Boltri M, Scalia A, Brusa F, Manzo F, Apicella E, Mendolicchio L. Keto therapy-unveiling the potential of ketogenic diet in psychiatric care: A scoping review. Nutrition 2025; 134:112710. [PMID: 40043464 DOI: 10.1016/j.nut.2025.112710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 01/28/2025] [Accepted: 02/05/2025] [Indexed: 04/12/2025]
Abstract
BACKGROUND Within the framework of gut-brain interactions, the ketogenic diet (KD), a high-fat, low-carbohydrate, and moderate-protein dietary intervention, has gained attention for its potential in psychiatric care. Renowned for its efficacy in managing obesity, KD has demonstrated effectiveness in facilitating weight loss and inducing favorable metabolic changes in the short term. With its established benefits in neurological disorders, KD is now being investigated as a potential therapeutic avenue for individuals with psychiatric conditions. OBJECTIVE This scoping review aims to summarize the latest studies on this topic, consider clinical implications, and suggest future research directions. METHODS Records were systematically (PRISMA-ScR guidelines) identified through PubMed, Scopus, and EBSCOhost searches. RESULTS A total of 58 studies were initially identified, with 13 meeting the eligibility criteria. While clinical trials remain limited, emerging evidence from case reports, case series, and pilot studies highlights the potential of a KD in reducing symptoms across psychiatric conditions, including mood disorders, psychotic disorders, alcohol use, and eating disorders. A KD shows potential in reducing cravings in eating and alcohol use disorders by stabilizing brain metabolism and modulating addictive behaviors, while its neuroprotective and anti-inflammatory effects may contribute to symptom improvement in mood and psychotic disorders. CONCLUSIONS Implementing a KD in patients with mental disorders seems to be a feasible and well-tolerated approach, resulting in psychiatric symptom reduction and improvements in metabolic health. Most interestingly, research suggests that KD can also be safely implemented in the care of patients with addictive-like eating disorders.
Collapse
Affiliation(s)
- Margherita Boltri
- I.R.C.C.S. Istituto Auxologico Italiano, Experimental Laboratory for Metabolic Neurosciences Research, Piancavallo, VCO, Italy; Psychology Department, Università Cattolica del Sacro Cuore, Milan, Italy.
| | - Alberto Scalia
- I.R.C.C.S. Istituto Auxologico Italiano, Experimental Laboratory for Metabolic Neurosciences Research, Piancavallo, VCO, Italy
| | - Federico Brusa
- I.R.C.C.S. Istituto Auxologico Italiano, Experimental Laboratory for Metabolic Neurosciences Research, Piancavallo, VCO, Italy
| | - Francesca Manzo
- I.R.C.C.S. Istituto Auxologico Italiano, Experimental Laboratory for Metabolic Neurosciences Research, Piancavallo, VCO, Italy
| | - Emanuela Apicella
- I.R.C.C.S. Istituto Auxologico Italiano, Experimental Laboratory for Metabolic Neurosciences Research, Piancavallo, VCO, Italy
| | - Leonardo Mendolicchio
- I.R.C.C.S. Istituto Auxologico Italiano, Experimental Laboratory for Metabolic Neurosciences Research, Piancavallo, VCO, Italy
| |
Collapse
|
3
|
Coggan JS, Shichkova P, Markram H, Keller D. Seizure and redox rescue in a model of glucose transport deficiency. PLoS Comput Biol 2025; 21:e1012959. [PMID: 40184423 PMCID: PMC12002639 DOI: 10.1371/journal.pcbi.1012959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 04/16/2025] [Accepted: 03/12/2025] [Indexed: 04/06/2025] Open
Abstract
Disruptions of energy supply to the brain are associated with many neurodegenerative pathologies and are difficult to study due to numerous interlinked metabolic pathways. We explored the effects of diminished energy supply on brain metabolism using a computational model of the neuro-glia-vasculature ensemble, in the form of a neuron, an astrocyte and local blood supply. As a case study, we investigated the glucose transporter type-1 deficiency syndrome (GLUT1-DS), a childhood affliction characterized by impaired glucose utilization and associated with phenotypes including seizures. Compared to neurons, astrocytes exhibited markedly higher metabolite concentration variabilities for all but a few redox species. This effect could signal a role for astrocytes in absorbing the shock of blood nutrient fluctuations. Redox balances were disrupted in GLUT1-DS with lower levels of reducing equivalent carriers NADH and ATP. The best non-glucose nutrient or pharmacotherapies for re-establishing redox normalcy involved lactate, the keto-diet (β-hydroxybutyrate), NAD and Q10 supplementation, suggesting a possible glucose sparing mechanism. GLUT1-DS seizures resulted from after-discharge neuronal firing caused by post-stimulus ATP reductions and impaired Na+/K+-ATPase, which can be rescued by restoring either normal glucose or by relatively small increases in neuronal ATP.
Collapse
Affiliation(s)
- Jay S. Coggan
- Blue Brain Project, EPFL: École Polytechnique Fédérale de Lausanne, Geneva, Switzerland
| | - Polina Shichkova
- Blue Brain Project, EPFL: École Polytechnique Fédérale de Lausanne, Geneva, Switzerland
- Biognosys AG, Schlieren, Switzerland
| | - Henry Markram
- Blue Brain Project, EPFL: École Polytechnique Fédérale de Lausanne, Geneva, Switzerland
| | - Daniel Keller
- Blue Brain Project, EPFL: École Polytechnique Fédérale de Lausanne, Geneva, Switzerland
| |
Collapse
|
4
|
Wu J, Hu X, Zhao Z, Zhao Z, Yang B. Expanding the Clinical and Genetic Spectrum of Mitochondrial Short-Chain Enoyl-CoA Hydratase 1 Deficiency: Insights From Two Unrelated Chinese Families. Mol Genet Genomic Med 2025; 13:e70097. [PMID: 40192239 PMCID: PMC11973933 DOI: 10.1002/mgg3.70097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 02/08/2025] [Accepted: 03/26/2025] [Indexed: 04/10/2025] Open
Abstract
BACKGROUND Mitochondrial short-chain enoyl-CoA hydratase 1 deficiency (ECHS1D) is a rare autosomal recessive disorder affecting valine metabolism, with clinical severity ranging from neonatal death to survival into adulthood. Despite advances in understanding ECHS1D, the genetic basis remains underexplored, particularly in underrepresented populations. METHODS This study aimed to investigate the clinical and genetic characteristics of ECHS1D in two unrelated Chinese families and identify novel pathogenic variants. Clinical and genetic data were collected, and whole-genome sequencing was performed to identify pathogenic variants in the ECHS1 gene. RESULTS The first proband, a 15-month-old girl, presented with developmental delays and metabolic acidosis, with an MRI revealing abnormal signals in the basal ganglia. The second proband, a 6.5-year-old girl with movement-induced dystonia, exhibited lethargy following recurrent fever and vomiting, with similar MRI findings. Genetic testing identified novel compound heterozygous variants: c.759_762del (p.Gly255Valfs*21) and c.489G>A (p.Pro163=) in Proband 1 and c.518C>T (p.Ala173Val) and c.244G>A (p.Val82Met) in Proband 2. The c.759_762del (p.Gly255Valfs21) variant, identified for the first time, likely results in severe symptoms due to a loss of normal function. CONCLUSION These findings expand the ECHS1 mutational spectrum and emphasize the importance of genetic testing for early diagnosis and personalized management of ECHS1D. Interventions such as dietary valine restriction and the avoidance of triggering factors may improve clinical outcomes, while further research is needed to explore targeted therapeutic strategies.
Collapse
Affiliation(s)
- Jihua Wu
- Department of NeurologyAnhui Provincial Children's HospitalHefeiChina
| | - Xuehui Hu
- Department of NeurologyAnhui Provincial Children's HospitalHefeiChina
| | - Zhongli Zhao
- Department of NeurologyAnhui Provincial Children's HospitalHefeiChina
| | - Zhen Zhao
- Department of ImagingAnhui Provincial Children's HospitalHefeiChina
| | - Bin Yang
- Department of NeurologyAnhui Provincial Children's HospitalHefeiChina
| |
Collapse
|
5
|
Na JH, Lee YM. Therapeutic Approach to Epilepsy in Patients with Mitochondrial Diseases. Yonsei Med J 2025; 66:131-140. [PMID: 39999988 PMCID: PMC11865870 DOI: 10.3349/ymj.2024.0325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 12/03/2024] [Accepted: 12/31/2024] [Indexed: 02/27/2025] Open
Abstract
Mitochondrial diseases (MDs) are genetic disorders with diverse phenotypes that affect high-energy-demand organs, notably the central nervous system and muscles. Epilepsy is a common comorbidity, affecting 40%-60% of patients with MDs and significantly reducing their quality of life. This review discusses the different treatment modalities for epilepsy in patients with MDs. Advances in genetic sequencing have identified specific mutations in mitochondrial and nuclear DNA, enabling more precise diagnoses and tailored therapeutic strategies. Anti-seizure medications and dietary interventions, such as ketogenic diets and their variants, have been effective in reducing seizures and improving mitochondrial function. Emerging treatments include gene therapy, mitochondrial transplantation, and antioxidants such as EPI-743, which protect mitochondrial integrity and improve neurological function. Additionally, therapies that promote mitochondrial biogenesis, such as bezafibrate and epicatechin, are being explored for their potential to enhance mitochondrial proliferation and energy production. Gene therapy aims to correct genetic defects underlying MDs. Techniques like mitochondrial gene replacement and using viral vectors to deliver functional genes have shown promise in preclinical studies. Mitochondrial transplantation, an emerging experimental technique, involves transferring healthy mitochondria into cells with dysfunctional mitochondria. This technique has been demonstrated to restore mitochondrial function and energy metabolism in preclinical models. Patient-derived induced pluripotent stem cells can model specific mitochondrial dysfunctions in vitro, allowing for the testing of various treatments tailored to individual genetic and biochemical profiles. The future of mitochondrial medicine is promising, with the development of more targeted and personalized therapeutic strategies offering hope for improved management and prognosis of mitochondrial epilepsy.
Collapse
Affiliation(s)
- Ji-Hoon Na
- Department of Pediatrics, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Young-Mock Lee
- Department of Pediatrics, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Korea.
| |
Collapse
|
6
|
Yang HM. Mitochondrial Dysfunction in Neurodegenerative Diseases. Cells 2025; 14:276. [PMID: 39996748 PMCID: PMC11853439 DOI: 10.3390/cells14040276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2025] [Revised: 02/11/2025] [Accepted: 02/12/2025] [Indexed: 02/26/2025] Open
Abstract
Mitochondrial dysfunction represents a pivotal characteristic of numerous neurodegenerative disorders, including Alzheimer's disease, Parkinson's disease, Huntington's disease, and amyotrophic lateral sclerosis. These conditions, distinguished by unique clinical and pathological features, exhibit shared pathways leading to neuronal damage, all of which are closely associated with mitochondrial dysfunction. The high metabolic requirements of neurons make even minor mitochondrial deficiencies highly impactful, driving oxidative stress, energy deficits, and aberrant protein processing. Growing evidence from genetic, biochemical, and cellular investigations associates impaired electron transport chain activity and disrupted quality-control mechanisms, such as mitophagy, with the initial phases of disease progression. Furthermore, the overproduction of reactive oxygen species and persistent neuroinflammation can establish feedforward cycles that exacerbate neuronal deterioration. Recent clinical research has increasingly focused on interventions aimed at enhancing mitochondrial resilience-through antioxidants, small molecules that modulate the balance of mitochondrial fusion and fission, or gene-based therapeutic strategies. Concurrently, initiatives to identify dependable mitochondrial biomarkers seek to detect pathological changes prior to the manifestation of overt symptoms. By integrating the current body of knowledge, this review emphasizes the critical role of preserving mitochondrial homeostasis as a viable therapeutic approach. It also addresses the complexities of translating these findings into clinical practice and underscores the potential of innovative strategies designed to delay or potentially halt neurodegenerative processes.
Collapse
Affiliation(s)
- Han-Mo Yang
- Division of Cardiology, Department of Internal Medicine, Seoul National University Hospital, Seoul 03080, Republic of Korea
| |
Collapse
|
7
|
Fang RY, Pan XR, Zeng XX, Li ZZ, Chen BF, Zeng HM, Peng J. Gut-brain axis as a bridge in obesity and depression: Mechanistic exploration and therapeutic prospects. World J Psychiatry 2025; 15:101134. [PMID: 39831021 PMCID: PMC11684226 DOI: 10.5498/wjp.v15.i1.101134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 11/02/2024] [Accepted: 11/18/2024] [Indexed: 12/18/2024] Open
Abstract
A recent study by Wang et al, published in the World Journal of Psychiatry, provided preventative and therapeutic strategies for the comorbidity of obesity and depression. The gut-brain axis, which acts as a two-way communication system between the gastrointestinal tract and the central nervous system, plays a pivotal role in the pathogenesis of these conditions. Evidence suggests that metabolic byproducts, such as short-chain fatty acids, lipopolysaccharide and bile acids, which are generated by the gut microbiota, along with neurotransmitters and inflammatory mediators within the gut-brain axis, modulate the host's metabolic processes, neuronal regulation, and immune responses through diverse mechanisms. The interaction between obesity and depression via the gut-brain axis involves disruptions in the gut microbiota balance, inflammatory immune responses, and alterations in the neuroendocrine system. Modulating the gut-brain axis, for example, through a ketogenic diet, the use of probiotics, and the supplementation of antioxidants, offers new remedial approaches for obesity and depression. Future research that explores the mechanisms of the gut-brain axis is needed to provide more evidence for clinical treatment.
Collapse
Affiliation(s)
- Rui-Ying Fang
- The Second Clinical Medical College, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, Jiangxi Province, China
| | - Xiao-Rui Pan
- The Second Clinical Medical College, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, Jiangxi Province, China
| | - Xin-Xing Zeng
- The Second Clinical Medical College, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, Jiangxi Province, China
| | - Zheng-Zheng Li
- The Second Clinical Medical College, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, Jiangxi Province, China
| | - Bo-Fan Chen
- The Second Clinical Medical College, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, Jiangxi Province, China
| | - Hai-Min Zeng
- The Second Clinical Medical College, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, Jiangxi Province, China
| | - Jie Peng
- The Second Clinical Medical College, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, Jiangxi Province, China
| |
Collapse
|
8
|
Merle L, Rastelli M, Datiche F, Véjux A, Jacquin-Piques A, Bouret SG, Benani A. Maternal Diet and Vulnerability to Cognitive Impairment in Adulthood: Possible Link with Alzheimer's Disease? Neuroendocrinology 2025; 115:242-266. [PMID: 39799941 DOI: 10.1159/000543499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Accepted: 12/15/2024] [Indexed: 01/15/2025]
Abstract
BACKGROUND Aging is the main risk factor for developing cognitive impairments and associated neurodegenerative diseases. However, environmental factors, including nutritional health, are likely to promote or reduce cognitive impairments and neurodegenerative pathologies. An intricate relationship exists between maternal nutrition and adult eating behavior, metabolic phenotype, and cognitive abilities. SUMMARY The objective of the present review was to collect available data, suggesting a link between maternal overnutrition and the latter impairment of cognitive functions in the progeny, and to relate this relationship with Alzheimer's disease (AD). Indeed, cognitive impairments are major behavioral signs of AD. We first reviewed studies showing an association between unbalanced maternal diet and cognitive impairments in the progeny in humans and rodent models. Then we looked for cellular and molecular hallmarks which could constitute a breeding ground for AD in those models. With this end, we focused on synaptic dysfunction, altered neurogenesis, neuroinflammation, oxidative stress, and pathological protein aggregation. Finally, we proposed an indirect mechanism linking maternal unbalanced diet and progeny's vulnerability to cognitive impairments and neurodegeneration through promoting metabolic diseases. We also discussed the involvement of progeny's gut microbiota in the maternal diet-induced vulnerability to metabolic and neurodegenerative diseases. KEY MESSAGES Further investigations are needed to fully decipher how maternal diet programs the fetus and infant brain. Addressing this knowledge gap would pave the way to precise nutrition and personalized medicine to better handle cognitive impairments in adulthood.
Collapse
Affiliation(s)
- Laetitia Merle
- Centre des Sciences du Goût et de l'Alimentation, CNRS, INRAE, Institut Agro, Université de Bourgogne, Dijon, France
| | - Marialetizia Rastelli
- Laboratory of Development and Plasticity of the Neuroendocrine Brain, Lille Neuroscience and Cognition, Inserm UMR-S1172, CHU Lille, University of Lille, Lille, France
| | - Frédérique Datiche
- Centre des Sciences du Goût et de l'Alimentation, CNRS, INRAE, Institut Agro, Université de Bourgogne, Dijon, France
| | - Anne Véjux
- Centre des Sciences du Goût et de l'Alimentation, CNRS, INRAE, Institut Agro, Université de Bourgogne, Dijon, France
| | - Agnès Jacquin-Piques
- Centre des Sciences du Goût et de l'Alimentation, CNRS, Department of Clinical Neurophysiology, INRAE, Institut Agro, Université de Bourgogne, CHU Dijon, Dijon, France
| | - Sébastien G Bouret
- Laboratory of Development and Plasticity of the Neuroendocrine Brain, Lille Neuroscience and Cognition, Inserm UMR-S1172, CHU Lille, University of Lille, Lille, France
| | - Alexandre Benani
- Centre des Sciences du Goût et de l'Alimentation, CNRS, INRAE, Institut Agro, Université de Bourgogne, Dijon, France
| |
Collapse
|
9
|
Rubio C, López-Landa A, Romo-Parra H, Rubio-Osornio M. Impact of the Ketogenic Diet on Neurological Diseases: A Review. Life (Basel) 2025; 15:71. [PMID: 39860011 PMCID: PMC11767209 DOI: 10.3390/life15010071] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 12/28/2024] [Accepted: 01/08/2025] [Indexed: 01/27/2025] Open
Abstract
BACKGROUND The ketogenic diet (KD), high in fat and low in carbohydrates, was introduced in the 1920s as a non-pharmacological treatment for refractory epilepsy. Although its mechanism of action is not fully understood, beneficial effects have been observed in neurological diseases such as epilepsy, Alzheimer's disease, and Parkinson's disease. OBJECTIVE This review examines the impact of the ketogenic diet and its molecular and neuroglial effects as a complementary therapy for neurological diseases. DISCUSSION KD is associated with neuroprotective and antioxidant effects that improve mitochondrial function, regulate neurotransmitter flow, and reduce neuroinflammation and oxidative stress. Glial cells play an essential role in the utilization of ketone bodies (KBs) within the central nervous system's metabolism, particularly during ketosis induced by the KD. Thus, the KD represents a broad and promising strategy that involves both neurons and glial cells, with a molecular impact on brain metabolism and neuroinflammatory homeostasis. CONCLUSION Multiple molecular mechanisms have been identified to explain the benefits of the KD in neurological diseases; however, further experimental and clinical studies are needed to address various molecular pathways in order to achieve conclusive results.
Collapse
Affiliation(s)
- Carmen Rubio
- Neurophysiology Department, Instituto Nacional de Neurología y Neurocirugía “Manuel Velasco Suárez”, Mexico City 14269, Mexico; (C.R.); (A.L.-L.); (H.R.-P.)
| | - Alejandro López-Landa
- Neurophysiology Department, Instituto Nacional de Neurología y Neurocirugía “Manuel Velasco Suárez”, Mexico City 14269, Mexico; (C.R.); (A.L.-L.); (H.R.-P.)
- School of Medicine, Benemérita Universidad Autónoma de Puebla, Puebla City 72000, Mexico
| | - Hector Romo-Parra
- Neurophysiology Department, Instituto Nacional de Neurología y Neurocirugía “Manuel Velasco Suárez”, Mexico City 14269, Mexico; (C.R.); (A.L.-L.); (H.R.-P.)
- Psychology Department, Universidad Iberoamericana, Mexico City 01376, Mexico
| | - Moisés Rubio-Osornio
- Neurochemistry Department, Instituto Nacional de Neurología y Neurocirugía “Manuel Velasco Suárez”, Mexico City 14269, Mexico
| |
Collapse
|
10
|
Li D, Dawson J, Gunton JE. Therapeutic Potential of Ketogenic Interventions for Autosomal-Dominant Polycystic Kidney Disease: A Systematic Review. Nutrients 2024; 17:145. [PMID: 39796576 PMCID: PMC11723166 DOI: 10.3390/nu17010145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 12/19/2024] [Accepted: 12/25/2024] [Indexed: 01/13/2025] Open
Abstract
BACKGROUND Recent findings have highlighted that abnormal energy metabolism is a key feature of autosomal-dominant polycystic kidney disease (ADPKD). Emerging evidence suggests that nutritional ketosis could offer therapeutic benefits, including potentially slowing or even reversing disease progression. This systematic review aims to synthesise the literature on ketogenic interventions to evaluate the impact in ADPKD. METHODS A systematic search was conducted in Medline, Embase, and Scopus using relevant Medical Subject Headings (MeSH) and keywords. Studies assessing ketogenic interventions in the management of ADPKD in both human and animal models were selected for data extraction and analysis. RESULTS Three animal reports and six human studies were identified. Ketogenic diets (KD) significantly slowed polycystic kidney disease (PKD) progression in rats with improved renal function and reduced cystic areas. There was reduced renal fibrosis and cell proliferation. The supplementation of beta-hydroxybutyrate (BHB) in rats also reduced PKD progression in a dose-dependent manner. Human studies (n = 129) on KD in ADPKD reported consistent body mass index (BMI) reduction across trials, with an average weight loss of ∼4 kg. Improvements in blood pressure were also noted. Ketosis was achieved in varying degrees. Effects on kidney function (eGFR) were beneficial. Results for kidney volume were mixed but most studies were underpowered for this outcome. Lipid profiles showed increases in total cholesterol (∼1 mmol/L) and LDL cholesterol (∼0.4 mmol/L) in most studies. Safety concerns such as "keto flu" symptoms, elevated uric acid levels, and occasional kidney stones were noted. Overall feasibility and adherence to the KD were rated positively by most participants. CONCLUSIONS Human studies are promising; however, they have been limited by small sample sizes and short durations. Larger, long-term trials are needed to assess the efficacy, adherence, and safety of ketogenic diets in people with ADPKD.
Collapse
Affiliation(s)
- Donglai Li
- Centre for Diabetes, Obesity and Endocrinology Research (CDOER), Westmead Institute for Medical Research, Westmead, Sydney, NSW 2145, Australia;
- Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2066, Australia
| | - Jessica Dawson
- NHMRC Clinical Trials Centre, University of Sydney, Sydney, NSW 2050, Australia;
- Department Nutrition and Dietetics, St George Hospital, Sydney, NSW 2217, Australia
| | - Jenny E. Gunton
- Centre for Diabetes, Obesity and Endocrinology Research (CDOER), Westmead Institute for Medical Research, Westmead, Sydney, NSW 2145, Australia;
- Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2066, Australia
- Department of Diabetes and Endocrinology, Room 2040, Clinical Sciences Corridor, Westmead Hospital, Westmead, Sydney, NSW 2145, Australia
| |
Collapse
|
11
|
Öztürk E, Aslan Çin NN, Cansu A, Akyol A. Ketogenic diet as a therapeutic approach in autism spectrum disorder: a narrative review. Metab Brain Dis 2024; 40:67. [PMID: 39692905 DOI: 10.1007/s11011-024-01506-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 12/13/2024] [Indexed: 12/19/2024]
Abstract
The ketogenic diet (KD) originated in the 1920s. It is a dietary model that is low in carbohydrates, adequate in protein, and high in fat content. The diet mimics starvation and increases the production of ketone bodies, leading to ketosis in metabolism. KD is used as an anticonvulsant treatment approach in patients with drug-resistant epilepsy. In addition, it is thought that a KD may have therapeutic potential in the treatment of neurological disorders, including autism spectrum disorders (ASD). Numerous recent studies have demonstrated that a KD can improve behavioural parameters in individuals with ASD. This review aims to address the potential mechanisms of action of the KD and to examine the effects of the KD on individuals diagnosed with ASD. It is likely that this role is mediated through improvements in energy metabolism, reduction of pro-inflammatory cytokine levels, control of neurotransmitters, gene expression and modulation of the gut microbiota. Based on the available evidence, a KD appears to be a safe and effective treatment for ASD.
Collapse
Affiliation(s)
- Elif Öztürk
- Faculty of Health Sciences, Department of Nutrition and Dietetics, Karadeniz Technical University, Trabzon, Türkiye.
| | - Nazlı Nur Aslan Çin
- Faculty of Health Sciences, Department of Nutrition and Dietetics, Karadeniz Technical University, Trabzon, Türkiye
| | - Ali Cansu
- Faculty of Medicine, Department of Pediatric Diseases, Karadeniz Technical University, Trabzon, Turkey
| | - Aslı Akyol
- Faculty of Health Sciences, Department of Nutrition and Dietetics, Hacettepe University, Ankara, Turkey
| |
Collapse
|
12
|
Möhrle D, Murari K, Rho JM, Cheng N. Vocal communication in asocial BTBR mice is more malleable by a ketogenic diet in juveniles than adults. Neuroscience 2024; 561:43-64. [PMID: 39413868 DOI: 10.1016/j.neuroscience.2024.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 08/28/2024] [Accepted: 10/01/2024] [Indexed: 10/18/2024]
Abstract
Deficits in social communication and language development are a hallmark of autism spectrum disorder currently with no effective approaches to reduce the negative impact. Interventional studies using animal models have been very limited in demonstrating improved vocal communication. Autism has been proposed to involve metabolic dysregulation. Ketogenic diet (KD) is a metabolism-based therapy for medically intractable epilepsy, and its applications in other neurological conditions have been increasingly tested. However, how KD would affect vocal communication has not been explored. The BTBR mouse strain is widely used to model asocial phenotypes. They display robust and pronounced deficits in vocalization during social interaction, and have metabolic changes implicated in autism. We investigated the effects of KD on ultrasonic vocalizations (USVs) in juvenile and adult BTBR mice during male-female social encounters. After a brief treatment with KD, the number, spectral bandwidth, and much of the temporal structure of USVs were robustly closer to control levels in both juvenile and adult BTBR mice. Composition of call categories and transitioning between individual call subtypes were more effectively altered to more closely align with the control group in juvenile BTBR mice. Together, our data provide further support to the hypothesis that metabolism-based dietary intervention could modify disease expression, including core symptoms, in autism. Future studies should tease apart the molecular mechanisms of KD's effects on vocalization.
Collapse
Affiliation(s)
- Dorit Möhrle
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada; Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada; Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada.
| | - Kartikeya Murari
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada; Department of Biomedical Engineering, Schulich School of Engineering, University of Calgary, Calgary, AB, Canada; Department of Electrical and Software Engineering, Schulich School of Engineering, University of Calgary, Calgary, AB, Canada.
| | - Jong M Rho
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada; Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.
| | - Ning Cheng
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada; Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada; Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada.
| |
Collapse
|
13
|
Bellomo F, Pugliese S, Cairoli S, Krohn P, De Stefanis C, Raso R, Rega LR, Taranta A, De Leo E, Ciolfi A, Cicolani N, Petrini S, Luciani A, Goffredo BM, Porzio O, Devuyst O, Dionisi-Vici C, Emma F. Ketogenic Diet and Progression of Kidney Disease in Animal Models of Nephropathic Cystinosis. J Am Soc Nephrol 2024; 35:1493-1506. [PMID: 38995697 PMCID: PMC11543012 DOI: 10.1681/asn.0000000000000439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 07/09/2024] [Indexed: 07/14/2024] Open
Abstract
Key Points Ketogenic diet can change the metabolism in the body and helped restore the function of altered pathways in nephropathic cystinosis. Ketogenic diet had significant benefits for preventing kidney damage, even when initiated after the onset of kidney impairment. Ketogenic diet may provide a partial therapeutic alternative in countries where cysteamine therapy is too expensive. Background Nephropathic cystinosis is a rare inherited lysosomal storage disorder caused by mutations in the CTNS gene that encodes for cystinosin, a lysosomal cystine/H+ symporter. From the standpoint of the kidneys, patients develop early-onset renal Fanconi syndrome and progressive CKD. Current therapy with cysteamine delays but does not prevent kidney failure and has significant side effects that limit adherence and reduce the quality of life of patients. Methods We have tested biochemically and histologically the effects of ketogenic diet on kidney disease of two animal models of nephropathic cystinosis. Results When Ctns −/− mice were fed with ketogenic diet from 3 to 12 months of age, we observed significant nearly complete prevention of Fanconi syndrome, including low molecular weight proteinuria, glycosuria, and polyuria. Compared with wild-type animals, BUN at 12 months was higher in cystinotic mice fed with standard diet (P < 0.001), but not with ketogenic diet. At sacrifice, kidneys of knockout mice fed with ketogenic diet appeared macroscopically similar to those of wild-type animals, which was reflected microscopically by a significant reduction of interstitial cell infiltration (CD3 and CD68 positive cells, P < 0.01), of interstitial fibrosis (Masson and α -smooth muscle actin staining, P < 0.001), and of apoptosis (cleaved caspase-3 levels; P < 0.001), and by indirect evidence of restoration of a normal autophagic flux (SQSTM1/p62 and LC3-II expression, P < 0.05). Beneficial effects of ketogenic diet on tubular function were also observed after mice were fed with this ketogenic diet from the age of 6 months to the age of 15 months, after they had developed proximal tubular dysfunction. Although slightly less pronounced, these results were replicated in Ctns −/− rats fed with ketogenic diet from 2 to 8 months of life. Conclusions These results indicate significant mitigation of the kidney phenotype in cystinotic animals fed with ketogenic diet.
Collapse
Affiliation(s)
- Francesco Bellomo
- Laboratory of Nephrology, Bambino Gesù Children's Hospital IRCCS, Rome, Italy
| | - Sara Pugliese
- Laboratory of Nephrology, Bambino Gesù Children's Hospital IRCCS, Rome, Italy
| | - Sara Cairoli
- Division of Metabolic Diseases and Drug Biology, Bambino Gesù Children's Hospital IRCCS, Rome, Italy
| | - Patrick Krohn
- Institute of Physiology, University of Zurich, Zurich, Switzerland
| | | | - Roberto Raso
- Laboratory of Nephrology, Bambino Gesù Children's Hospital IRCCS, Rome, Italy
| | - Laura Rita Rega
- Laboratory of Nephrology, Bambino Gesù Children's Hospital IRCCS, Rome, Italy
| | - Anna Taranta
- Laboratory of Nephrology, Bambino Gesù Children's Hospital IRCCS, Rome, Italy
| | - Ester De Leo
- Laboratory of Nephrology, Bambino Gesù Children's Hospital IRCCS, Rome, Italy
| | - Andrea Ciolfi
- Molecular Genetics and Functional Genomics, Bambino Gesù Children's Hospital IRCCS, Rome, Italy
| | - Nicolò Cicolani
- Confocal Microscopy Core Facility, Bambino Gesù Children's Hospital IRCCS, Rome, Italy
| | - Stefania Petrini
- Confocal Microscopy Core Facility, Bambino Gesù Children's Hospital IRCCS, Rome, Italy
| | | | - Bianca Maria Goffredo
- Division of Metabolic Diseases and Drug Biology, Bambino Gesù Children's Hospital IRCCS, Rome, Italy
| | - Ottavia Porzio
- Clinical Biochemistry Laboratory, Bambino Gesù Children's Hospital IRCCS, Rome, Italy
| | - Olivier Devuyst
- Institute of Physiology, University of Zurich, Zurich, Switzerland
| | - Carlo Dionisi-Vici
- Division of Metabolic Diseases and Drug Biology, Bambino Gesù Children's Hospital IRCCS, Rome, Italy
| | - Francesco Emma
- Laboratory of Nephrology, Bambino Gesù Children's Hospital IRCCS, Rome, Italy
- Division of Nephrology, Bambino Gesù Children's Hospital IRCCS, Rome, Italy
| |
Collapse
|
14
|
Phillips MCL, Picard M. Neurodegenerative disorders, metabolic icebergs, and mitohormesis. Transl Neurodegener 2024; 13:46. [PMID: 39242576 PMCID: PMC11378521 DOI: 10.1186/s40035-024-00435-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 07/25/2024] [Indexed: 09/09/2024] Open
Abstract
Neurodegenerative disorders are typically "split" based on their hallmark clinical, anatomical, and pathological features, but they can also be "lumped" by a shared feature of impaired mitochondrial biology. This leads us to present a scientific framework that conceptualizes Alzheimer's disease (AD), Parkinson's disease (PD), amyotrophic lateral sclerosis (ALS), and Huntington's disease (HD) as "metabolic icebergs" comprised of a tip, a bulk, and a base. The visible tip conveys the hallmark neurological symptoms, neurodegenerative regions, and neuronal protein aggregates for each disorder. The hidden bulk depicts impaired mitochondrial biology throughout the body, which is multifaceted and may be subdivided into impaired cellular metabolism, cell-specific mitotypes, and mitochondrial behaviours, functions, activities, and features. The underlying base encompasses environmental factors, especially modern industrial toxins, dietary lifestyles, and cognitive, physical, and psychosocial behaviours, but also accommodates genetic factors specific to familial forms of AD, PD, and ALS, as well as HD. Over years or decades, chronic exposure to a particular suite of environmental and genetic factors at the base elicits a trajectory of impaired mitochondrial biology that maximally impacts particular subsets of mitotypes in the bulk, which eventually surfaces as the hallmark features of a particular neurodegenerative disorder at the tip. We propose that impaired mitochondrial biology can be repaired and recalibrated by activating "mitohormesis", which is optimally achieved using strategies that facilitate a balanced oscillation between mitochondrial stressor and recovery phases. Sustainably harnessing mitohormesis may constitute a potent preventative and therapeutic measure for people at risk of, or suffering with, neurodegenerative disorders.
Collapse
Affiliation(s)
- Matthew C L Phillips
- Department of Neurology, Waikato Hospital, Hamilton, 3204, New Zealand.
- Department of Medicine, University of Auckland, Auckland, 1142, New Zealand.
| | - Martin Picard
- Division of Behavioral Medicine, Department of Psychiatry, Columbia University Irving Medical Center, New York, NY, 10032, USA
- Department of Neurology, H. Houston Merritt Center, Columbia Translational Neuroscience Initiative, Columbia University Irving Medical Center, New York, NY, 10032, USA
- New York State Psychiatric Institute, New York, NY, 10032, USA
- Robert N Butler Columbia Aging Center, Columbia University Mailman School of Public Health, New York, NY, USA
| |
Collapse
|
15
|
Meeusen H, Kalf RS, Broekaart DWM, Silva JP, Verkuyl JM, van Helvoort A, Gorter JA, van Vliet EA, Aronica E. Effective reduction in seizure severity and prevention of a fatty liver by a novel low ratio ketogenic diet composition in the rapid kindling rat model of epileptogenesis. Exp Neurol 2024; 379:114861. [PMID: 38876196 DOI: 10.1016/j.expneurol.2024.114861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 06/02/2024] [Accepted: 06/09/2024] [Indexed: 06/16/2024]
Abstract
Drug-resistant epilepsy patients may benefit from non-pharmacological therapies, such as the ketogenic diet (KD). However, its high fat content poses compliance challenges and metabolic risks. To mitigate this, we developed a novel KD composition with less fat and additional nutrients (citrate, nicotinamide riboside, and omega-3 fatty acids) for ketone-independent neuroprotection. The efficacy, metabolic and neuropathological effects of the novel KD and a classic KD were compared to a control diet in the rapid kindling model of temporal lobe epilepsy. Both KD groups entered ketosis before kindling onset, with higher ketone levels in the classic KD group. Remarkably, rats on the novel KD had slower progression of behavioral seizures as compared to rats on a control diet, while this was not the case for rats on a classic KD. Both KDs reduced electrographic after-discharge duration, preserved neurons in the dorsal hippocampus, and normalized activity in open field tests. The novel KD, despite lower fat and ketone levels, demonstrated effective reduction of behavioral seizure severity while the classic KD did not, suggesting alternative mode(s) of action are involved. Additionally, the novel KD significantly mitigated liver triglyceride and plasma fatty acid levels compared to the classic KD, indicating a reduced risk of long-term liver steatosis. Our findings highlight the potential of the novel KD to enhance therapeutic efficacy and compliance in epilepsy patients.
Collapse
Affiliation(s)
- Hester Meeusen
- Amsterdam UMC location University of Amsterdam, Dept of (Neuro)pathology, Amsterdam Neuroscience, Meibergdreef 9, Amsterdam, the Netherlands; Danone Research & Innovation, Utrecht, the Netherlands
| | - Rozemarijn S Kalf
- Amsterdam UMC location University of Amsterdam, Dept of (Neuro)pathology, Amsterdam Neuroscience, Meibergdreef 9, Amsterdam, the Netherlands; Danone Research & Innovation, Utrecht, the Netherlands
| | - Diede W M Broekaart
- Amsterdam UMC location University of Amsterdam, Dept of (Neuro)pathology, Amsterdam Neuroscience, Meibergdreef 9, Amsterdam, the Netherlands
| | - Jose P Silva
- Danone Research & Innovation, Utrecht, the Netherlands
| | | | - Ardy van Helvoort
- Danone Research & Innovation, Utrecht, the Netherlands; NUTRIM - Institute of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, the Netherlands
| | - Jan A Gorter
- Center for Neuroscience, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, the Netherlands
| | - Erwin A van Vliet
- Amsterdam UMC location University of Amsterdam, Dept of (Neuro)pathology, Amsterdam Neuroscience, Meibergdreef 9, Amsterdam, the Netherlands; Center for Neuroscience, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, the Netherlands.
| | - Eleonora Aronica
- Amsterdam UMC location University of Amsterdam, Dept of (Neuro)pathology, Amsterdam Neuroscience, Meibergdreef 9, Amsterdam, the Netherlands; Stichting Epilepsie Instellingen Nederland (SEIN), Heemstede, the Netherlands
| |
Collapse
|
16
|
Monda A, La Torre ME, Messina A, Di Maio G, Monda V, Moscatelli F, De Stefano M, La Marra M, Padova MD, Dipace A, Limone P, Casillo M, Monda M, Messina G, Polito R. Exploring the ketogenic diet's potential in reducing neuroinflammation and modulating immune responses. Front Immunol 2024; 15:1425816. [PMID: 39188713 PMCID: PMC11345202 DOI: 10.3389/fimmu.2024.1425816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 07/30/2024] [Indexed: 08/28/2024] Open
Abstract
The ketogenic diet (KD) is marked by a substantial decrease in carbohydrate intake and an elevated consumption of fats and proteins, leading to a metabolic state referred to as "ketosis," where fats become the primary source of energy. Recent research has underscored the potential advantages of the KD in mitigating the risk of various illnesses, including type 2 diabetes, hyperlipidemia, heart disease, and cancer. The macronutrient distribution in the KD typically entails high lipid intake, moderate protein consumption, and low carbohydrate intake. Restricting carbohydrates to below 50 g/day induces a catabolic state, prompting metabolic alterations such as gluconeogenesis and ketogenesis. Ketogenesis diminishes fat and glucose accumulation as energy reserves, stimulating the production of fatty acids. Neurodegenerative diseases, encompassing Alzheimer's disease, Parkinson's disease are hallmarked by persistent neuroinflammation. Evolving evidence indicates that immune activation and neuroinflammation play a significant role in the pathogenesis of these diseases. The protective effects of the KD are linked to the generation of ketone bodies (KB), which play a pivotal role in this dietary protocol. Considering these findings, this narrative review seeks to delve into the potential effects of the KD in neuroinflammation by modulating the immune response. Grasping the immunomodulatory effects of the KD on the central nervous system could offer valuable insights into innovative therapeutic approaches for these incapacitating conditions.
Collapse
Affiliation(s)
- Antonietta Monda
- Department of Human Sciences and Quality of Life Promotion of the Telematic University “San Raffaele”, Rome, Italy
| | - Maria Ester La Torre
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| | - Antonietta Messina
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, Naples, Italy
| | - Girolamo Di Maio
- Department of Experimental Medicine, Section of Human Physiology and Unit of Dietetics and Sports Medicine, University of Campania “Luigi Vanvitelli”, Naples, Italy
| | - Vincenzo Monda
- Department of Exercise Sciences and Well-Being, University of Naples “Parthenope”, Naples, Italy
| | - Fiorenzo Moscatelli
- Department of Wellbeing, Nutrition and Sport, Pegaso Telematic University, Naples, Italy
| | - Marida De Stefano
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| | - Marco La Marra
- Department of Experimental Medicine, Section of Human Physiology and Unit of Dietetics and Sports Medicine, University of Campania “Luigi Vanvitelli”, Naples, Italy
| | | | - Anna Dipace
- Department of Wellbeing, Nutrition and Sport, Pegaso Telematic University, Naples, Italy
| | - Pierpaolo Limone
- Department of Wellbeing, Nutrition and Sport, Pegaso Telematic University, Naples, Italy
| | - Maria Casillo
- Department of Experimental Medicine, Section of Human Physiology and Unit of Dietetics and Sports Medicine, University of Campania “Luigi Vanvitelli”, Naples, Italy
| | - Marcellino Monda
- Department of Experimental Medicine, Section of Human Physiology and Unit of Dietetics and Sports Medicine, University of Campania “Luigi Vanvitelli”, Naples, Italy
| | - Giovanni Messina
- Department of Experimental Medicine, Section of Human Physiology and Unit of Dietetics and Sports Medicine, University of Campania “Luigi Vanvitelli”, Naples, Italy
| | - Rita Polito
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| |
Collapse
|
17
|
You M, Chen N, Yang Y, Cheng L, He H, Cai Y, Liu Y, Liu H, Hong G. The gut microbiota-brain axis in neurological disorders. MedComm (Beijing) 2024; 5:e656. [PMID: 39036341 PMCID: PMC11260174 DOI: 10.1002/mco2.656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 06/15/2024] [Accepted: 06/17/2024] [Indexed: 07/23/2024] Open
Abstract
Previous studies have shown a bidirectional communication between human gut microbiota and the brain, known as the microbiota-gut-brain axis (MGBA). The MGBA influences the host's nervous system development, emotional regulation, and cognitive function through neurotransmitters, immune modulation, and metabolic pathways. Factors like diet, lifestyle, genetics, and environment shape the gut microbiota composition together. Most research have explored how gut microbiota regulates host physiology and its potential in preventing and treating neurological disorders. However, the individual heterogeneity of gut microbiota, strains playing a dominant role in neurological diseases, and the interactions of these microbial metabolites with the central/peripheral nervous systems still need exploration. This review summarizes the potential role of gut microbiota in driving neurodevelopmental disorders (autism spectrum disorder and attention deficit/hyperactivity disorder), neurodegenerative diseases (Alzheimer's and Parkinson's disease), and mood disorders (anxiety and depression) in recent years and discusses the current clinical and preclinical gut microbe-based interventions, including dietary intervention, probiotics, prebiotics, and fecal microbiota transplantation. It also puts forward the current insufficient research on gut microbiota in neurological disorders and provides a framework for further research on neurological disorders.
Collapse
Affiliation(s)
- Mingming You
- Xiamen Key Laboratory of Genetic TestingThe Department of Laboratory MedicineThe First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen UniversityXiamenChina
| | - Nan Chen
- Master of Public HealthSchool of Public HealthXiamen UniversityXiamenChina
| | - Yuanyuan Yang
- Xiamen Key Laboratory of Genetic TestingThe Department of Laboratory MedicineThe First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen UniversityXiamenChina
| | - Lingjun Cheng
- Xiamen Key Laboratory of Genetic TestingThe Department of Laboratory MedicineThe First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen UniversityXiamenChina
| | - Hongzhang He
- Xiamen Key Laboratory of Genetic TestingThe Department of Laboratory MedicineThe First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen UniversityXiamenChina
| | - Yanhua Cai
- Master of Public HealthSchool of Public HealthXiamen UniversityXiamenChina
| | - Yating Liu
- Xiamen Key Laboratory of Genetic TestingThe Department of Laboratory MedicineThe First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen UniversityXiamenChina
| | - Haiyue Liu
- Xiamen Key Laboratory of Genetic TestingThe Department of Laboratory MedicineThe First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen UniversityXiamenChina
| | - Guolin Hong
- Xiamen Key Laboratory of Genetic TestingThe Department of Laboratory MedicineThe First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen UniversityXiamenChina
| |
Collapse
|
18
|
Molaei E, Molaei A, Dashti-Khavidaki S, Nasiri-Toosi M, Abbasi MR, Jafarian A. Could the administration of SGLT2i agents serve as a viable prophylactic approach against CNI-induced toxicities? Med Hypotheses 2024; 189:111417. [DOI: 10.1016/j.mehy.2024.111417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
19
|
Ahmad Y, Seo DS, Jang Y. Metabolic Effects of Ketogenic Diets: Exploring Whole-Body Metabolism in Connection with Adipose Tissue and Other Metabolic Organs. Int J Mol Sci 2024; 25:7076. [PMID: 39000187 PMCID: PMC11241756 DOI: 10.3390/ijms25137076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 06/17/2024] [Accepted: 06/24/2024] [Indexed: 07/16/2024] Open
Abstract
The ketogenic diet (KD) is characterized by minimal carbohydrate, moderate protein, and high fat intake, leading to ketosis. It is recognized for its efficiency in weight loss, metabolic health improvement, and various therapeutic interventions. The KD enhances glucose and lipid metabolism, reducing triglycerides and total cholesterol while increasing high-density lipoprotein levels and alleviating dyslipidemia. It significantly influences adipose tissue hormones, key contributors to systemic metabolism. Brown adipose tissue, essential for thermogenesis and lipid combustion, encounters modified UCP1 levels due to dietary factors, including the KD. UCP1 generates heat by uncoupling electron transport during ATP synthesis. Browning of the white adipose tissue elevates UCP1 levels in both white and brown adipose tissues, a phenomenon encouraged by the KD. Ketone oxidation depletes intermediates in the Krebs cycle, requiring anaplerotic substances, including glucose, glycogen, or amino acids, for metabolic efficiency. Methylation is essential in adipogenesis and the body's dietary responses, with DNA methylation of several genes linked to weight loss and ketosis. The KD stimulates FGF21, influencing metabolic stability via the UCP1 pathways. The KD induces a reduction in muscle mass, potentially involving anti-lipolytic effects and attenuating proteolysis in skeletal muscles. Additionally, the KD contributes to neuroprotection, possesses anti-inflammatory properties, and alters epigenetics. This review encapsulates the metabolic effects and signaling induced by the KD in adipose tissue and major metabolic organs.
Collapse
Affiliation(s)
- Yusra Ahmad
- Department of Biology and Chemistry, Changwon National University, Changwon 51140, Republic of Korea
| | - Dong Soo Seo
- Department of Biology and Chemistry, Changwon National University, Changwon 51140, Republic of Korea
| | - Younghoon Jang
- Department of Biology and Chemistry, Changwon National University, Changwon 51140, Republic of Korea
| |
Collapse
|
20
|
Ildarabadi A, Mir Mohammad Ali SN, Rahmani F, Mosavari N, Pourbakhtyaran E, Rezaei N. Inflammation and oxidative stress in epileptic children: from molecular mechanisms to clinical application of ketogenic diet. Rev Neurosci 2024; 35:473-488. [PMID: 38347675 DOI: 10.1515/revneuro-2023-0128] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Accepted: 12/18/2023] [Indexed: 06/02/2024]
Abstract
Childhood epilepsy affects up to 1 % of children. It has been shown that 30 % of patients are resistant to drug treatments, making further investigation of other potential treatment strategies necessary. One such approach is the ketogenic diet (KD) showing promising results and potential benefits beyond the use of current antiepileptic drugs. This study aims to investigate the effects of KD on inflammation and oxidative stress, as one of the main suggested mechanisms of neuroprotection, in children with epilepsy. This narrative review was conducted using the Medline and Google Scholar databases, and by searching epilepsy, drug-resistant epilepsy, child, children, ketogenic, ketogenic diet, diet, ketogenic, keto, ketone bodies (BHB), PUFA, gut microbiota, inflammation, inflammation mediators, neurogenic inflammation, neuroinflammation, inflammatory marker, adenosine modulation, mitochondrial function, MTOR pathway, Nrf2 pathway, mitochondrial dysfunction, PPARɣ, oxidative stress, ROS/RNS, and stress oxidative as keywords. Compelling evidence underscores inflammation and oxidative stress as pivotal factors in epilepsy, even in cases with genetic origins. The ketogenic diet effectively addresses these factors by reducing ROS and RNS, enhancing antioxidant defenses, improving mitochondrial function, and regulating inflammatory genes. Additionally, KD curbs pro-inflammatory cytokine and chemokine production by dampening NF-κB activation, inhibiting the NLRP3 inflammasome, increasing brain adenosine levels, mTOR pathway inhibition, upregulating PPARɣ expression, and promoting a healthy gut microbiota while emphasizing the consumption of healthy fats. KD could be considered a promising therapeutic intervention in patients with epilepsy particularly in drug-resistant epilepsy cases, due to its targeted approach addressing oxidative stress and inflammatory mechanisms.
Collapse
Affiliation(s)
- Azam Ildarabadi
- Department of Nutrition Science, Science and Research Branch, Faculty of Medical Science and Technology, Islamic Azad University, Shodada Hesarak Blvd, Tehran 1477893855, Iran
- Network of Interdisciplinarity in Neonates and Infants (NINI), Universal Scientific Education and Research Network (USERN), Dr. Qarib St, Tehran 1419733151, Iran
| | - Seyedeh Nooshan Mir Mohammad Ali
- Network of Interdisciplinarity in Neonates and Infants (NINI), Universal Scientific Education and Research Network (USERN), Dr. Qarib St, Tehran 1419733151, Iran
- Department of Food, Nutrition, Dietetics and Health, Kansas State University, Manhattan, KS 66502, USA
| | - Fatemeh Rahmani
- Department of Nutrition Science, Science and Research Branch, Faculty of Medical Science and Technology, Islamic Azad University, Shodada Hesarak Blvd, Tehran 1477893855, Iran
- Network of Interdisciplinarity in Neonates and Infants (NINI), Universal Scientific Education and Research Network (USERN), Dr. Qarib St, Tehran 1419733151, Iran
| | - Narjes Mosavari
- Network of Interdisciplinarity in Neonates and Infants (NINI), Universal Scientific Education and Research Network (USERN), Dr. Qarib St, Tehran 1419733151, Iran
| | - Elham Pourbakhtyaran
- Network of Interdisciplinarity in Neonates and Infants (NINI), Universal Scientific Education and Research Network (USERN), Dr. Qarib St, Tehran 1419733151, Iran
- Department of Pediatric Neurology, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Dr. Qarib St, Tehran 1419733151, Iran
| | - Nima Rezaei
- Network of Interdisciplinarity in Neonates and Infants (NINI), Universal Scientific Education and Research Network (USERN), Dr. Qarib St, Tehran 1419733151, Iran
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center Hospital, Tehran University of Medical Sciences, Dr. Qarib St, Tehran 1419733151, Iran
- Department of Immunology, School of Medicine, Tehran University of Medical Science, Pour Sina St, Tehran 1461884513, Iran
- Research Center for Immunodeficiencies, Children's Medical Center Hospital, Dr. Qarib St, Keshavarz Blvd, Tehran 14194, Iran
| |
Collapse
|
21
|
Rühling MR, Hartmann H, Das AM. Simplification of Dietary Treatment in Pharmacoresistant Epilepsy: Impact of C8 and C10 Fatty Acids on Sirtuins of Neuronal Cells In Vitro. Nutrients 2024; 16:1678. [PMID: 38892612 PMCID: PMC11174688 DOI: 10.3390/nu16111678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 05/25/2024] [Accepted: 05/27/2024] [Indexed: 06/21/2024] Open
Abstract
Pharmacotherapy is the therapeutic mainstay in epilepsy; however, in about 30% of patients, epileptic seizures are drug-resistant. A ketogenic diet (KD) is an alternative therapeutic option. The mechanisms underlying the anti-seizure effect of a KD are not fully understood. Epileptic seizures lead to an increased energy demand of neurons. An improvement in energy provisions may have a protective effect. C8 and C10 fatty acids have been previously shown to activate mitochondrial function in vitro. This could involve sirtuins (SIRTs) as regulatory elements of energy metabolism. The aim of the present study was to investigate whether ß-hydroxybutyrate (ßHB), C8 fatty acids, C10 fatty acids, or a combination of C8 and C10 (250/250 µM) fatty acids, which all increase under a KD, could up-regulate SIRT1, -3, -4, and -5 in HT22 hippocampal murine neurons in vitro. Cells were incubated for 1 week in the presence of these metabolites. The sirtuins were measured at the enzyme (fluorometrically), protein (Western blot), and gene expression (PCR) levels. In hippocampal cells, the C8, C10, and C8 and C10 incubations led to increases in the sirtuin levels, which were not inferior to a ßHB incubation as the 'gold standard'. This may indicate that both C8 and C10 fatty acids are important for the antiepileptic effect of a KD. A KD may be replaced by nutritional supplements of C8 and C10 fatty acids, which could facilitate the diet.
Collapse
|
22
|
Fan S, Kong C, Zhou R, Zheng X, Ren D, Yin Z. Protein Post-Translational Modifications Based on Proteomics: A Potential Regulatory Role in Animal Science. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:6077-6088. [PMID: 38501450 DOI: 10.1021/acs.jafc.3c08332] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/20/2024]
Abstract
Genomic studies in animal breeding have provided a wide range of references; however, it is important to note that genes and mRNA alone do not fully capture the complexity of living organisms. Protein post-translational modification, which involves covalent modifications regulated by genetic and environmental factors, serves as a fundamental epigenetic mechanism that modulates protein structure, activity, and function. In this review, we comprehensively summarize various phosphorylation and acylation modifications on metabolic enzymes relevant to energy metabolism in animals, including acetylation, succinylation, crotonylation, β-hydroxybutylation, acetoacetylation, and lactylation. It is worth noting that research on animal energy metabolism and modification regulation lags behind the demands for growth and development in animal breeding compared to human studies. Therefore, this review provides a novel research perspective by exploring unreported types of modifications in livestock based on relevant findings from human or animal models.
Collapse
Affiliation(s)
- Shuhao Fan
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Chengcheng Kong
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230013, China
| | - Ren Zhou
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Xianrui Zheng
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Dalong Ren
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Zongjun Yin
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
| |
Collapse
|
23
|
Wesół-Kucharska D, Greczan M, Kaczor M, Ehmke vel Emczyńska-Seliga E, Hajdacka M, Czekuć-Kryśkiewicz E, Piekutowska-Abramczuk D, Halat-Wolska P, Ciara E, Jaworski M, Jezela-Stanek A, Rokicki D. Efficacy and Safety of Ketogenic Diet Treatment in Pediatric Patients with Mitochondrial Disease. Nutrients 2024; 16:812. [PMID: 38542723 PMCID: PMC10975652 DOI: 10.3390/nu16060812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 02/09/2024] [Accepted: 03/11/2024] [Indexed: 01/05/2025] Open
Abstract
Mitochondrial diseases (MDs) are a heterogeneous group of disorders resulting from abnormal mitochondrial function. Currently, there is no causal treatment for MDs. The aim of the study was to assess the effectiveness and safety of the ketogenic diet (KD) in patients with MD and to analyse selected biochemical and clinical parameters evaluating the effectiveness of KD treatment in patients with MDs. A total of 42 paediatric patients were assigned to four groups: group 1-patients with MD in whom KD treatment was started (n = 11); group 2-patients with MD remaining on an ordinary diet (n = 10); group 3-patients without MD in whom KD treatment was initiated (n = 10), group 4-patients without MD on a regular diet (n = 11). Clinical improvement was observed in 9/11 patients with MD treated with KD. Among patients with MD without KD, the clinical condition deteriorated in 7/10 patients, improved in 2/10 patients, and remained unchanged in one patient. Adverse events of KD occurred with a comparable frequency in groups 1 and 3. There was no significant difference in changes in biomarker concentrations over the course of the study among patients treated and untreated with KD.
Collapse
Affiliation(s)
- Dorota Wesół-Kucharska
- Department of Pediatrics, Nutrition and Metabolic Diseases, The Children’s Memorial Health Institute, Al. Dzieci Polskich 20, 04-730 Warsaw, Poland; (M.G.); (M.K.); (E.E.v.E.-S.); (M.H.); (D.R.)
| | - Milena Greczan
- Department of Pediatrics, Nutrition and Metabolic Diseases, The Children’s Memorial Health Institute, Al. Dzieci Polskich 20, 04-730 Warsaw, Poland; (M.G.); (M.K.); (E.E.v.E.-S.); (M.H.); (D.R.)
| | - Magdalena Kaczor
- Department of Pediatrics, Nutrition and Metabolic Diseases, The Children’s Memorial Health Institute, Al. Dzieci Polskich 20, 04-730 Warsaw, Poland; (M.G.); (M.K.); (E.E.v.E.-S.); (M.H.); (D.R.)
| | - Ewa Ehmke vel Emczyńska-Seliga
- Department of Pediatrics, Nutrition and Metabolic Diseases, The Children’s Memorial Health Institute, Al. Dzieci Polskich 20, 04-730 Warsaw, Poland; (M.G.); (M.K.); (E.E.v.E.-S.); (M.H.); (D.R.)
| | - Małgorzata Hajdacka
- Department of Pediatrics, Nutrition and Metabolic Diseases, The Children’s Memorial Health Institute, Al. Dzieci Polskich 20, 04-730 Warsaw, Poland; (M.G.); (M.K.); (E.E.v.E.-S.); (M.H.); (D.R.)
| | - Edyta Czekuć-Kryśkiewicz
- Laboratory of Radioimmunology and Experimental Medicine, Department of Biochemistry, Radioimmunology and Experimental Medicine, The Children’s Memorial Health Institute, Al. Dzieci Polskich 20, 04-730 Warsaw, Poland;
| | - Dorota Piekutowska-Abramczuk
- Department of Medical Genetics, The Children’s Memorial Health Institute, Al. Dzieci Polskich 20, 04-730 Warsaw, Poland; (D.P.-A.); (P.H.-W.); (E.C.)
| | - Paulina Halat-Wolska
- Department of Medical Genetics, The Children’s Memorial Health Institute, Al. Dzieci Polskich 20, 04-730 Warsaw, Poland; (D.P.-A.); (P.H.-W.); (E.C.)
| | - Elżbieta Ciara
- Department of Medical Genetics, The Children’s Memorial Health Institute, Al. Dzieci Polskich 20, 04-730 Warsaw, Poland; (D.P.-A.); (P.H.-W.); (E.C.)
| | - Maciej Jaworski
- Laboratory of Densitometry, Department of Biochemistry, Radioimmunology and Experimental Medicine, The Children’s Memorial Health Institute, Al. Dzieci Polskich 20, 04-730 Warsaw, Poland;
| | - Aleksandra Jezela-Stanek
- Department of Genetics and Clinical Immunology, National Institute of Tuberculosis and Lung Diseases, 26 Plocka Str, 01-138 Warsaw, Poland;
| | - Dariusz Rokicki
- Department of Pediatrics, Nutrition and Metabolic Diseases, The Children’s Memorial Health Institute, Al. Dzieci Polskich 20, 04-730 Warsaw, Poland; (M.G.); (M.K.); (E.E.v.E.-S.); (M.H.); (D.R.)
| |
Collapse
|
24
|
Simeone T, Simeone K. The Unconventional Effects of the Ketogenic Diet (KD) in Preclinical Epilepsy. Epilepsy Curr 2024; 24:117-122. [PMID: 39280056 PMCID: PMC11394414 DOI: 10.1177/15357597231216916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/18/2024] Open
Abstract
The integration of metabolic therapeutics in the available clinical armory is becoming more commonplace in health care as our understanding about the dependence of disease on metabolism continues to deepen and evolve. In the epilepsy field, we often think about the ketogenic diet (KD, high fat: carbohydrate ratio) in terms of its anti-seizure efficacy. The aim of this article is to review what we've learned from preclinical studies about the KD's more unconventional effects, including its neuroprotective effects, anti-epileptogenic and disease-modifying effects, and how the KD influences comorbidities associated with epilepsy. As time moves us into the future and metabolic therapies become more common place, the effects of the KD considered unconventional herein, may end up being referred to as traditional.
Collapse
Affiliation(s)
- Timothy Simeone
- Department of Pharmacology and Neuroscience, Creighton University School of Medicine, Omaha, NE, USA
| | - Kristina Simeone
- Department of Pharmacology and Neuroscience, Creighton University School of Medicine, Omaha, NE, USA
| |
Collapse
|
25
|
Ciubuc-Batcu MT, Stapelberg NJC, Headrick JP, Renshaw GMC. A mitochondrial nexus in major depressive disorder: Integration with the psycho-immune-neuroendocrine network. Biochim Biophys Acta Mol Basis Dis 2024; 1870:166920. [PMID: 37913835 DOI: 10.1016/j.bbadis.2023.166920] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 10/06/2023] [Accepted: 10/09/2023] [Indexed: 11/03/2023]
Abstract
Nervous system processes, including cognition and affective state, fundamentally rely on mitochondria. Impaired mitochondrial function is evident in major depressive disorder (MDD), reflecting cumulative detrimental influences of both extrinsic and intrinsic stressors, genetic predisposition, and mutation. Glucocorticoid 'stress' pathways converge on mitochondria; oxidative and nitrosative stresses in MDD are largely mitochondrial in origin; both initiate cascades promoting mitochondrial DNA (mtDNA) damage with disruptions to mitochondrial biogenesis and tryptophan catabolism. Mitochondrial dysfunction facilitates proinflammatory dysbiosis while directly triggering immuno-inflammatory activation via released mtDNA, mitochondrial lipids and mitochondria associated membranes (MAMs), further disrupting mitochondrial function and mitochondrial quality control, promoting the accumulation of abnormal mitochondria (confirmed in autopsy studies). Established and putative mechanisms highlight a mitochondrial nexus within the psycho-immune neuroendocrine (PINE) network implicated in MDD. Whether lowering neuronal resilience and thresholds for disease, or linking mechanistic nodes within the MDD pathogenic network, impaired mitochondrial function emerges as an important risk, a functional biomarker, providing a therapeutic target in MDD. Several treatment modalities have been demonstrated to reset mitochondrial function, which could benefit those with MDD.
Collapse
Affiliation(s)
- M T Ciubuc-Batcu
- Griffith University School of Medicine and Dentistry, Australia; Gold Coast Health, Queensland, Australia
| | - N J C Stapelberg
- Bond University Faculty of Health Sciences and Medicine, Australia; Gold Coast Health, Queensland, Australia
| | - J P Headrick
- Griffith University School of Pharmacy and Medical Science, Australia
| | - G M C Renshaw
- Hypoxia and Ischemia Research Unit, Griffith University, School of Health Sciences and Social Work, Australia.
| |
Collapse
|
26
|
Ng ACH, Choudhary A, Barrett KT, Gavrilovici C, Scantlebury MH. Mechanisms of infantile epileptic spasms syndrome: What have we learned from animal models? Epilepsia 2024; 65:266-280. [PMID: 38036453 DOI: 10.1111/epi.17841] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 11/27/2023] [Accepted: 11/28/2023] [Indexed: 12/02/2023]
Abstract
The devastating developmental and epileptic encephalopathy of infantile epileptic spasms syndrome (IESS) has numerous causes, including, but not limited to, brain injury, metabolic, and genetic conditions. Given the stereotyped electrophysiologic, age-dependent, and clinical findings, there likely exists one or more final common pathways in the development of IESS. The identity of this final common pathway is unknown, but it may represent a novel therapeutic target for infantile spasms. Previous research on IESS has focused largely on identifying the neuroanatomic substrate using specialized neuroimaging techniques and cerebrospinal fluid analysis in human patients. Over the past three decades, several animal models of IESS were created with an aim to interrogate the underlying pathogenesis of IESS, to identify novel therapeutic targets, and to test various treatments. Each of these models have been successful at recapitulating multiple aspects of the human IESS condition. These animal models have implicated several different molecular pathways in the development of infantile spasms. In this review we outline the progress that has been made thus far using these animal models and discuss future directions to help researchers identify novel treatments for drug-resistant IESS.
Collapse
Affiliation(s)
- Andy Cheuk-Him Ng
- Department of Pediatrics, Alberta Children's Hospital Research Institute, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Anamika Choudhary
- Department of Pediatrics, Alberta Children's Hospital Research Institute, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Karlene T Barrett
- Department of Pediatrics, Alberta Children's Hospital Research Institute, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Cezar Gavrilovici
- Department of Pediatrics, Alberta Children's Hospital Research Institute, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Morris H Scantlebury
- Department of Pediatrics, Alberta Children's Hospital Research Institute, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
27
|
Jang J, Kim SR, Lee JE, Lee S, Son HJ, Choe W, Yoon KS, Kim SS, Yeo EJ, Kang I. Molecular Mechanisms of Neuroprotection by Ketone Bodies and Ketogenic Diet in Cerebral Ischemia and Neurodegenerative Diseases. Int J Mol Sci 2023; 25:124. [PMID: 38203294 PMCID: PMC10779133 DOI: 10.3390/ijms25010124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 12/18/2023] [Accepted: 12/18/2023] [Indexed: 01/12/2024] Open
Abstract
Ketone bodies (KBs), such as acetoacetate and β-hydroxybutyrate, serve as crucial alternative energy sources during glucose deficiency. KBs, generated through ketogenesis in the liver, are metabolized into acetyl-CoA in extrahepatic tissues, entering the tricarboxylic acid cycle and electron transport chain for ATP production. Reduced glucose metabolism and mitochondrial dysfunction correlate with increased neuronal death and brain damage during cerebral ischemia and neurodegeneration. Both KBs and the ketogenic diet (KD) demonstrate neuroprotective effects by orchestrating various cellular processes through metabolic and signaling functions. They enhance mitochondrial function, mitigate oxidative stress and apoptosis, and regulate epigenetic and post-translational modifications of histones and non-histone proteins. Additionally, KBs and KD contribute to reducing neuroinflammation and modulating autophagy, neurotransmission systems, and gut microbiome. This review aims to explore the current understanding of the molecular mechanisms underpinning the neuroprotective effects of KBs and KD against brain damage in cerebral ischemia and neurodegenerative diseases, including Alzheimer's disease and Parkinson's disease.
Collapse
Affiliation(s)
- Jiwon Jang
- Department of Biomedical Sciences, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea; (J.J.); (S.R.K.); (J.E.L.); (S.L.); (H.J.S.); (W.C.); (K.-S.Y.); (S.S.K.)
- Biomedical Science Institute, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Su Rim Kim
- Department of Biomedical Sciences, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea; (J.J.); (S.R.K.); (J.E.L.); (S.L.); (H.J.S.); (W.C.); (K.-S.Y.); (S.S.K.)
- Biomedical Science Institute, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Jo Eun Lee
- Department of Biomedical Sciences, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea; (J.J.); (S.R.K.); (J.E.L.); (S.L.); (H.J.S.); (W.C.); (K.-S.Y.); (S.S.K.)
- Biomedical Science Institute, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Seoyeon Lee
- Department of Biomedical Sciences, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea; (J.J.); (S.R.K.); (J.E.L.); (S.L.); (H.J.S.); (W.C.); (K.-S.Y.); (S.S.K.)
- Biomedical Science Institute, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Hyeong Jig Son
- Department of Biomedical Sciences, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea; (J.J.); (S.R.K.); (J.E.L.); (S.L.); (H.J.S.); (W.C.); (K.-S.Y.); (S.S.K.)
- Biomedical Science Institute, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Wonchae Choe
- Department of Biomedical Sciences, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea; (J.J.); (S.R.K.); (J.E.L.); (S.L.); (H.J.S.); (W.C.); (K.-S.Y.); (S.S.K.)
- Biomedical Science Institute, Kyung Hee University, Seoul 02447, Republic of Korea
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Kyung-Sik Yoon
- Department of Biomedical Sciences, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea; (J.J.); (S.R.K.); (J.E.L.); (S.L.); (H.J.S.); (W.C.); (K.-S.Y.); (S.S.K.)
- Biomedical Science Institute, Kyung Hee University, Seoul 02447, Republic of Korea
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Sung Soo Kim
- Department of Biomedical Sciences, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea; (J.J.); (S.R.K.); (J.E.L.); (S.L.); (H.J.S.); (W.C.); (K.-S.Y.); (S.S.K.)
- Biomedical Science Institute, Kyung Hee University, Seoul 02447, Republic of Korea
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Eui-Ju Yeo
- Department of Biochemistry, College of Medicine, Gachon University, Incheon 21999, Republic of Korea
| | - Insug Kang
- Department of Biomedical Sciences, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea; (J.J.); (S.R.K.); (J.E.L.); (S.L.); (H.J.S.); (W.C.); (K.-S.Y.); (S.S.K.)
- Biomedical Science Institute, Kyung Hee University, Seoul 02447, Republic of Korea
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| |
Collapse
|
28
|
Field R, Field T, Pourkazemi F, Rooney K. Low-carbohydrate and ketogenic diets: a scoping review of neurological and inflammatory outcomes in human studies and their relevance to chronic pain. Nutr Res Rev 2023; 36:295-319. [PMID: 35438071 DOI: 10.1017/s0954422422000087] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Dietary restriction of carbohydrate has been demonstrated to be beneficial for nervous system dysfunction in animal models and may be beneficial for human chronic pain. The purpose of this review is to assess the impact of a low-carbohydrate/ketogenic diet on the adult nervous system function and inflammatory biomarkers to inform nutritional research for chronic pain. An electronic database search was carried out in May 2021. Publications were screened for prospective research with dietary carbohydrate intake <130 g per day and duration of ≥2 weeks. Studies were categorised into those reporting adult neurological outcomes to be extracted for analysis and those reporting other adult research outcomes. Both groups were screened again for reported inflammatory biomarkers. From 1548 studies, there were 847 studies included. Sixty-four reported neurological outcomes with 83% showing improvement. Five hundred and twenty-three studies had a different research focus (metabolic n = 394, sport/performance n = 51, cancer n = 33, general n = 30, neurological with non-neuro outcomes n = 12, or gastrointestinal n = 4). The second screen identified sixty-three studies reporting on inflammatory biomarkers, with 71% reporting a reduction in inflammation. The overall results suggest a favourable outcome on the nervous system and inflammatory biomarkers from a reduction in dietary carbohydrates. Both nervous system sensitisation and inflammation occur in chronic pain, and the results from this review indicate it may be improved by low-carbohydrate nutritional therapy. More clinical trials within this population are required to build on the few human trials that have been done.
Collapse
Affiliation(s)
- Rowena Field
- Faculty of Medicine and Health, The University of Sydney, Sydney, Australia
| | - Tara Field
- The New South Wales Ministry of Health (NSW Health), Sydney, Australia
| | | | - Kieron Rooney
- Faculty of Medicine and Health, The University of Sydney, Sydney, Australia
| |
Collapse
|
29
|
Diao Y, Lanz B, Jelescu IO. Subject classification and cross-time prediction based on functional connectivity and white matter microstructure features in a rat model of Alzheimer's using machine learning. Alzheimers Res Ther 2023; 15:193. [PMID: 37936236 PMCID: PMC10629161 DOI: 10.1186/s13195-023-01328-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 10/09/2023] [Indexed: 11/09/2023]
Abstract
BACKGROUND The pathological process of Alzheimer's disease (AD) typically takes decades from onset to clinical symptoms. Early brain changes in AD include MRI-measurable features such as altered functional connectivity (FC) and white matter degeneration. The ability of these features to discriminate between subjects without a diagnosis, or their prognostic value, is however not established. METHODS The main trigger mechanism of AD is still debated, although impaired brain glucose metabolism is taking an increasingly central role. Here, we used a rat model of sporadic AD, based on impaired brain glucose metabolism induced by an intracerebroventricular injection of streptozotocin (STZ). We characterized alterations in FC and white matter microstructure longitudinally using functional and diffusion MRI. Those MRI-derived measures were used to classify STZ from control rats using machine learning, and the importance of each individual measure was quantified using explainable artificial intelligence methods. RESULTS Overall, combining all the FC and white matter metrics in an ensemble way was the best strategy to discriminate STZ rats, with a consistent accuracy over 0.85. However, the best accuracy early on was achieved using white matter microstructure features, and later on using FC. This suggests that consistent damage in white matter in the STZ group might precede FC. For cross-timepoint prediction, microstructure features also had the highest performance while, in contrast, that of FC was reduced by its dynamic pattern which shifted from early hyperconnectivity to late hypoconnectivity. CONCLUSIONS Our study highlights the MRI-derived measures that best discriminate STZ vs control rats early in the course of the disease, with potential translation to humans.
Collapse
Affiliation(s)
- Yujian Diao
- Animal Imaging and Technology Section, CIBM Center for Biomedical Imaging, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
- Laboratory for Functional and Metabolic Imaging, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Bernard Lanz
- Animal Imaging and Technology Section, CIBM Center for Biomedical Imaging, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Ileana Ozana Jelescu
- Animal Imaging and Technology Section, CIBM Center for Biomedical Imaging, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.
- Department of Radiology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland.
| |
Collapse
|
30
|
Rohwer N, El Hage R, Smyl C, Ocvirk S, Goris T, Grune T, Swidsinski A, Weylandt KH. Ketogenic Diet Has Moderate Effects on the Fecal Microbiota of Wild-Type Mice. Nutrients 2023; 15:4629. [PMID: 37960282 PMCID: PMC10648986 DOI: 10.3390/nu15214629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 10/17/2023] [Accepted: 10/27/2023] [Indexed: 11/15/2023] Open
Abstract
The ketogenic diet (KD) is a high-fat, low-carbohydrate diet that has been reported to have neuroprotective effects. The health effects of KD might be linked to an altered gut microbiome, which plays a major role in host health, leading to neuroprotective effects via the gut-brain axis. However, results from different studies, most often based on the 16S rRNA gene and metagenome sequencing, have been inconsistent. In this study, we assessed the effect of a 4-week KD compared to a western diet (WD) on the colonic microbiome of female C57Bl/6J mice by analyzing fecal samples using fluorescence in situ hybridization. Our results showed distinct changes in the total number of gut bacteria following the 4-week KD, in addition to changes in the composition of the microbiome. KD-fed mice showed higher absolute numbers of Actinobacteria (especially Bifidobacteria spp.) and lower absolute levels of Proteobacteria, often linked to gut inflammation, in comparison with WD-fed mice. Furthermore, an increased abundance of the typically rare genus Atopobium was observed. These changes may indicate the possible anti-inflammatory effects of the KD. However, since the overall changes in the microbiota seem low, the KD effects might be linked to the differential abundance of only a few key genera in mice.
Collapse
Affiliation(s)
- Nadine Rohwer
- Medical Department B, Division of Hepatology, Gastroenterology, Oncology, Hematology, Endocrinology and Diabetes, Brandenburg Medical School, University Hospital Ruppin-Brandenburg, 16816 Neuruppin, Germany;
- Faculty of Health Sciences, Joint Faculty of the Brandenburg University of Technology Cottbus-Senftenberg, Brandenburg Medical School and University of Potsdam, 14476 Potsdam, Germany
- Department of Molecular Toxicology, German Institute of Human Nutrition Potsdam-Rehbruecke, 14558 Nuthetal, Germany
| | - Racha El Hage
- Department of Vascular Surgery, University Hospital Ruppin-Brandenburg, Brandenburg Medical School, 16816 Neuruppin, Germany;
| | - Christopher Smyl
- Medical Department, Division of Hepatology and Gastroenterology, Campus Virchow-Klinikum, Charité Universitätsmedizin Berlin, 13353 Berlin, Germany
| | - Soeren Ocvirk
- Intestinal Microbiology Research Group, German Institute of Human Nutrition Potsdam-Rehbruecke, 14558 Nuthetal, Germany
- ZIEL—Institute for Food and Health, Technical University of Munich, 85354 Freising-Weihenstephan, Germany
| | - Tobias Goris
- Intestinal Microbiology Research Group, German Institute of Human Nutrition Potsdam-Rehbruecke, 14558 Nuthetal, Germany
| | - Tilman Grune
- Department of Molecular Toxicology, German Institute of Human Nutrition Potsdam-Rehbruecke, 14558 Nuthetal, Germany
| | - Alexander Swidsinski
- Medical Department, Division of Hepatology and Gastroenterology, Campus Mitte, Charité Universitätsmedizin, 10117 Berlin, Germany
- Department of General Hygiene, Institute of Public Health, M Sechenov First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia
| | - Karsten-H. Weylandt
- Medical Department B, Division of Hepatology, Gastroenterology, Oncology, Hematology, Endocrinology and Diabetes, Brandenburg Medical School, University Hospital Ruppin-Brandenburg, 16816 Neuruppin, Germany;
- Faculty of Health Sciences, Joint Faculty of the Brandenburg University of Technology Cottbus-Senftenberg, Brandenburg Medical School and University of Potsdam, 14476 Potsdam, Germany
| |
Collapse
|
31
|
Cefis M, Chaney R, Wirtz J, Méloux A, Quirié A, Leger C, Prigent-Tessier A, Garnier P. Molecular mechanisms underlying physical exercise-induced brain BDNF overproduction. Front Mol Neurosci 2023; 16:1275924. [PMID: 37868812 PMCID: PMC10585026 DOI: 10.3389/fnmol.2023.1275924] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 09/18/2023] [Indexed: 10/24/2023] Open
Abstract
Accumulating evidence supports that physical exercise (EX) is the most effective non-pharmacological strategy to improve brain health. EX prevents cognitive decline associated with age and decreases the risk of developing neurodegenerative diseases and psychiatric disorders. These positive effects of EX can be attributed to an increase in neurogenesis and neuroplastic processes, leading to learning and memory improvement. At the molecular level, there is a solid consensus to involve the neurotrophin brain-derived neurotrophic factor (BDNF) as the crucial molecule for positive EX effects on the brain. However, even though EX incontestably leads to beneficial processes through BDNF expression, cellular sources and molecular mechanisms underlying EX-induced cerebral BDNF overproduction are still being elucidated. In this context, the present review offers a summary of the different molecular mechanisms involved in brain's response to EX, with a specific focus on BDNF. It aims to provide a cohesive overview of the three main mechanisms leading to EX-induced brain BDNF production: the neuronal-dependent overexpression, the elevation of cerebral blood flow (hemodynamic hypothesis), and the exerkine signaling emanating from peripheral tissues (humoral response). By shedding light on these intricate pathways, this review seeks to contribute to the ongoing elucidation of the relationship between EX and cerebral BDNF expression, offering valuable insights into the potential therapeutic implications for brain health enhancement.
Collapse
Affiliation(s)
- Marina Cefis
- Département des Sciences de l’Activité Physique, Faculté des Sciences, Université du Québec à Montréal, Montreal, QC, Canada
- INSERM UMR1093-CAPS, Université de Bourgogne, UFR des Sciences de Santé, Dijon, France
| | - Remi Chaney
- INSERM UMR1093-CAPS, Université de Bourgogne, UFR des Sciences de Santé, Dijon, France
| | - Julien Wirtz
- INSERM UMR1093-CAPS, Université de Bourgogne, UFR des Sciences de Santé, Dijon, France
| | - Alexandre Méloux
- INSERM UMR1093-CAPS, Université de Bourgogne, UFR des Sciences de Santé, Dijon, France
| | - Aurore Quirié
- INSERM UMR1093-CAPS, Université de Bourgogne, UFR des Sciences de Santé, Dijon, France
| | - Clémence Leger
- INSERM UMR1093-CAPS, Université de Bourgogne, UFR des Sciences de Santé, Dijon, France
| | - Anne Prigent-Tessier
- INSERM UMR1093-CAPS, Université de Bourgogne, UFR des Sciences de Santé, Dijon, France
| | - Philippe Garnier
- INSERM UMR1093-CAPS, Université de Bourgogne, UFR des Sciences de Santé, Dijon, France
- Département Génie Biologique, Institut Universitaire de Technologie, Dijon, France
| |
Collapse
|
32
|
Gao Y, Sheng X, Tan D, Kim S, Choi S, Paudel S, Lee T, Yan C, Tan M, Kim KM, Cho SS, Ki SH, Huang H, Zhao Y, Lee S. Identification of Histone Lysine Acetoacetylation as a Dynamic Post-Translational Modification Regulated by HBO1. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2300032. [PMID: 37382194 PMCID: PMC10477889 DOI: 10.1002/advs.202300032] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 05/29/2023] [Indexed: 06/30/2023]
Abstract
Ketone bodies have long been known as a group of lipid-derived alternative energy sources during glucose shortages. Nevertheless, the molecular mechanisms underlying their non-metabolic functions remain largely elusive. This study identified acetoacetate as the precursor for lysine acetoacetylation (Kacac), a previously uncharacterized and evolutionarily conserved histone post-translational modification. This protein modification is comprehensively validated using chemical and biochemical approaches, including HPLC co-elution and MS/MS analysis using synthetic peptides, Western blot, and isotopic labeling. Histone Kacac can be dynamically regulated by acetoacetate concentration, possibly via acetoacetyl-CoA. Biochemical studies show that HBO1, traditionally known as an acetyltransferase, can also serve as an acetoacetyltransferase. In addition, 33 Kacac sites are identified on mammalian histones, depicting the landscape of histone Kacac marks across species and organs. In summary, this study thus discovers a physiologically relevant and enzymatically regulated histone mark that sheds light on the non-metabolic functions of ketone bodies.
Collapse
Affiliation(s)
- Yan Gao
- College of PharmacyKyungpook National UniversityDaegu41566Republic of Korea
| | - Xinlei Sheng
- Ben May Department for Cancer ResearchThe University of ChicagoChicagoIL60637USA
| | - Doudou Tan
- Shanghai Institute of Materia MedicaChinese Academy of SciencesShanghai201203China
| | - SunJoo Kim
- College of PharmacyKyungpook National UniversityDaegu41566Republic of Korea
- Ben May Department for Cancer ResearchThe University of ChicagoChicagoIL60637USA
| | - Soyoung Choi
- College of PharmacyKyungpook National UniversityDaegu41566Republic of Korea
| | - Sanjita Paudel
- College of PharmacyKyungpook National UniversityDaegu41566Republic of Korea
| | - Taeho Lee
- College of PharmacyKyungpook National UniversityDaegu41566Republic of Korea
| | - Cong Yan
- Shanghai Institute of Materia MedicaChinese Academy of SciencesShanghai201203China
| | - Minjia Tan
- Shanghai Institute of Materia MedicaChinese Academy of SciencesShanghai201203China
| | - Kyu Min Kim
- Department of Biomedical Science, College of Natural ScienceChosun UniversityGwangju61452South Korea
| | - Sam Seok Cho
- College of PharmacyChosun UniversityGwangju61452South Korea
| | - Sung Hwan Ki
- College of PharmacyChosun UniversityGwangju61452South Korea
| | - He Huang
- Shanghai Institute of Materia MedicaChinese Academy of SciencesShanghai201203China
- University of Chinese Academy of SciencesBeijing100049China
| | - Yingming Zhao
- Ben May Department for Cancer ResearchThe University of ChicagoChicagoIL60637USA
| | - Sangkyu Lee
- School of PharmacySungkyunkwan UniversitySuwon16419South Korea
| |
Collapse
|
33
|
Zhang W, Chen S, Huang X, Tong H, Niu H, Lu L. Neuroprotective effect of a medium-chain triglyceride ketogenic diet on MPTP-induced Parkinson's disease mice: a combination of transcriptomics and metabolomics in the substantia nigra and fecal microbiome. Cell Death Discov 2023; 9:251. [PMID: 37460539 DOI: 10.1038/s41420-023-01549-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 06/18/2023] [Accepted: 07/05/2023] [Indexed: 07/20/2023] Open
Abstract
The ketogenic diet (KD) is a low carbohydrate and high-fat protein diet. It plays a protective role in neurodegenerative diseases by elevating the levels of ketone bodies in blood, regulating central and peripheral metabolism and mitochondrial functions, inhibiting neuroinflammation and oxidative stress, and altering the gut microbiota. However, studies on ketogenic therapy for Parkinson's disease (PD) are still in their infancy. Therefore, we examined the possible protective effect of KD in a 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced PD mouse model, examined the mouse gut microbiota and its metabolites, and performed transcriptomics and metabolomics on the substantia nigra of mice. Our results showed that a long-term medium-chain triglyceride KD (MCT-KD) significantly reduced MPTP-induced damage to dopaminergic (DA) neurons, exerted antioxidant stress through the PI3K/Akt/Nrf2 pathway, and reversed oxidative stress in DA neurons. The MCT-KD also reduced mitochondrial loss, promoted ATP production, and inhibited the activation of microglia to protect DA neurons in MPTP-induced PD mice. MCT-KD altered the gut microbiota and consequently changed the metabolism of substantia nigra neurons through gut microbiota metabolites. Compared to the MPTP group, MCT-KD increased the abundance of gut microbiota, including Blautia and Romboutsia. MCT-KD also affects purine metabolism in the substantia nigra pars compacta (SNpc) by altering fecal metabolites. This study shows that MCT-KD has multiple protective effects against PD.
Collapse
Affiliation(s)
- Wenlong Zhang
- Department of Neurology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong Province, 510120, China
| | - Shiyu Chen
- Department of General practice, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong Province, 510282, China
| | - Xingting Huang
- Department of Neurology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong Province, 510120, China
| | - Huichun Tong
- Guangdong Key Laboratory of Non-human Primate Research, Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, Guangdong Province, 510632, China
| | - Hongxin Niu
- General practice and Special medical service center, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong Province, 510282, China.
| | - Lingli Lu
- Department of General practice, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong Province, 510282, China.
| |
Collapse
|
34
|
Bohnen JLB, Wigstrom TP, Griggs AM, Roytman S, Paalanen RR, Andrews HA, Bohnen NI, Franklin JJH, McInnis MG. Ketogenic-Mimicking Diet as a Therapeutic Modality for Bipolar Disorder: Biomechanistic Rationale and Protocol for a Pilot Clinical Trial. Nutrients 2023; 15:3068. [PMID: 37447394 PMCID: PMC10346691 DOI: 10.3390/nu15133068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 07/03/2023] [Accepted: 07/04/2023] [Indexed: 07/15/2023] Open
Abstract
There is growing interest in the investigation of ketogenic diets as a potential therapy for bipolar disorder. The overlapping pharmacotherapies utilized for both bipolar disorder and seizures suggest that a mechanistic overlap may exist between these conditions, with fasting and the ketogenic diet representing the most time-proven therapies for seizure control. Recently, preliminary evidence has begun to emerge supporting a potential role for ketogenic diets in treating bipolar disorder. Notably, some patients may struggle to initiate a strict diet in the midst of a mood episode or significant life stressors. The key question addressed by this pilot clinical trial protocol is if benefits can be achieved with a less restrictive diet, as this would allow such an intervention to be accessible for more patients. Recent development of so-called ketone esters, that once ingested is converted to natural ketone bodies, combined with low glycemic index dietary changes has the potential to mimic two foundational components of therapeutic ketosis: high levels of ketones and minimal spiking of glucose/insulin. This pilot clinical trial protocol thus aims to investigate the effect of a 'ketogenic-mimicking diet' (combining supplementation of ketone esters with a low glycemic index dietary intervention) on neural network stability, mood, and biomarker outcomes in the setting of bipolar disorder. Positive findings obtained via this pilot clinical trial protocol may support future target engagement studies of ketogenic-mimicking diets or related ketogenic interventions. A lack of positive findings, in contrast, may justify a focus on more strict dietary interventions for future research.
Collapse
Affiliation(s)
| | | | - Alexis M. Griggs
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109, USA
- Neurology Service and GRECC, VA Ann Arbor Healthcare System, Ann Arbor, MI 48105, USA
| | - Stiven Roytman
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109, USA
| | | | | | - Nicolaas I. Bohnen
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109, USA
- University of Michigan Medical School, Ann Arbor, MI 48109, USA
- Neurology Service and GRECC, VA Ann Arbor Healthcare System, Ann Arbor, MI 48105, USA
- Morris K. Udall Center of Excellence for Parkinson’s Disease Research, University of Michigan, Ann Arbor, MI 48109, USA
- Parkinson’s Foundation Research Center of Excellence, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Radiology, University of Michigan, Ann Arbor, MI 48109, USA
| | | | - Melvin G. McInnis
- Department of Psychiatry, University of Michigan, Ann Arbor, MI 48109, USA
- Heinz C. Prechter Bipolar Research Program, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
35
|
Yu M, Li H, Sun D, Li D, Zhong J, Gu Q, Huang S, Luo R, Zhu D, Yuan B, Li B, Xiao N, Chen Y, Zhang Y, Wei J, Jiang Y, Liao J, Qin J. The ketogenic diet for Dravet syndrome: A multicenter retrospective study. Nutrition 2023; 110:111976. [PMID: 37060636 DOI: 10.1016/j.nut.2023.111976] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 11/06/2022] [Accepted: 01/13/2023] [Indexed: 04/17/2023]
Abstract
OBJECTIVE The ketogenic diet (KD) is one of the main treatments for drug-resistant epilepsy. However, there have been few multicenter reports on the use of the KD for the treatment of Dravet syndrome (DS). The aim of this study was to analyze the efficacy and safety of this approach based on a large number of multicenter cases. METHODS This was a retrospective, multicenter cohort study from 14 centers in China. All patients were treated with the KD. We compared the effects of KD intervention time, age, and other factors. RESULTS From March 2014 to March 2020, we treated 114 patients with DS with the KD. The male-to-female ratio was 67:47. The KD median initiation age was 3 y and 4 mo, and the median number of antiseizure medications (ASMs) was 2.4. KD therapy was the first choice for three patients. Exactly 10.5% of the patients started KD therapy after failure of the first ASM therapy, with 35.1% after failure of the second, 44.7% after the third, and 7% after the fourth or more. After KD therapy for 1, 3, 6, and 12 mo, the seizure-free rates were 14%, 32.5%, 30.7%, and 19.3%, respectively; KD efficacy (≥50% reduction in seizure frequency) were 57.9%, 76.3%, 59.6%, and 43%, respectively; the retention rates were 97.4%, 93%, 71.9%, and 46.5%, respectively; and the rates of adverse events were 25.2%, 19.9%, 11%, and 5.7%, respectively. CONCLUSIONS Real-world, multicenter data analysis showed that the KD is effective for patients with DS and has a low incidence of side effects.
Collapse
Affiliation(s)
- Mei Yu
- Department of Neurology, Shenzhen Children's Hospital, Shenzhen, China
| | - Hua Li
- Department of Epilepsy center, Guangdong 999 Brain Hospital, Guangzhou, China
| | - Dan Sun
- Department of Neurology, Wuhan Children's Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China
| | - Dan Li
- Department of Neurology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Jianmin Zhong
- Department of Neurology, Jiangxi Provincial Children's Hospital, Nanchang, China
| | - Qiang Gu
- Department of Pediatric Neurology, Peking University First Hospital, Beijing, China
| | - Shaoping Huang
- Department of Neurology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Rong Luo
- Department of Neurology, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Dengna Zhu
- Department of Neurology, Third Affiliated Hospital, Zhengzhou University, Zhengzhou, China
| | - Baoqiang Yuan
- Department of Neurology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Baomin Li
- Department of Neurology, Qilu Hospital of Shandong University, Jinan, China
| | - Nong Xiao
- Department of Neurology, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Yucai Chen
- Department of Neurology, Children's Hospital of Shanghai, Shanghai, China
| | - Yuqin Zhang
- Department of Neurology, Tianjin Children's Hospital, Tianjin, China
| | - Jurong Wei
- Department of Neurology, Children's Hospital of Shanghai, Shanghai, China
| | - Yuwu Jiang
- Department of Pediatric Neurology, Peking University First Hospital, Beijing, China.
| | - Jianxiang Liao
- Department of Neurology, Shenzhen Children's Hospital, Shenzhen, China.
| | - Jiong Qin
- Department of Neurology, Peking University People's Hospital, Beijing, China.
| |
Collapse
|
36
|
Lin X, Dai C, Chen Z, Zhang T, Pu X. Preliminary screening of biomarkers in HAPE based on quasi-targeted metabolomics. Front Physiol 2023; 14:1122026. [PMID: 36969595 PMCID: PMC10034721 DOI: 10.3389/fphys.2023.1122026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 02/24/2023] [Indexed: 03/11/2023] Open
Abstract
High altitude pulmonary edema (HAPE) is a serious threat to the physical and mental health of people who quickly enter high plateaus, deserves more attention and in-depth research. In our study, through the detection of various physiological indexes and other phenotypes in a HAPE rat model, the HAPE group showed a significant decrease in oxygen partial pressure and oxygen saturation, and a significant increase in pulmonary artery pressure and lung tissue water content. The lung histomorphology showed characteristics such as pulmonary interstitial thickening and inflammatory cell infiltration. We applied quasi-targeted metabolomics to compare and analyze the components of metabolites in arterial–veinous blood in control rats and HAPE rats. Using kyoto Encyclopedia of Genes Genomes (KEGG) enrichment analysis and two machine algorithms, we speculate that after hypoxic stress and comparing arterial blood and venous blood products in rats, the metabolites were richer, indicating that normal physiological activities, such as metabolism and pulmonary circulationhad a greater impact after hypoxic stress; D-mannoseDOWN, oxidized glutathioneDOWN, glutathione disulfideDOWN, and dehydrocholic acidDOWN in arterial blood play key roles in predicting the occurrence of HAPE; in venous blood, L-leucineDOWN, L-thyroxineDOWN, and cis-4-hydroxy- D-prolineDOWN may have key roles, which can be considered biomarkers of HAPE. This result provides a new perspective for the further diagnosis and treatment of plateau disease and lays a strong foundation for further research.
Collapse
Affiliation(s)
- Xue Lin
- Department of Basic Medicine, Medical College of Qinghai University, Xining, Qinghai Province, China
- West China Hospital, Sichuan University, Chengdu, Sichuan Provience, China
| | - Chongyang Dai
- Department of Basic Medicine, Medical College of Qinghai University, Xining, Qinghai Province, China
| | - Zhi Chen
- College of Life Science, Qinghai Normal University, Xining, Qinghai Province, China
| | - Tongzuo Zhang
- Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, Qinghai Province, China
- *Correspondence: Tongzuo Zhang, ; Xiaoyan Pu,
| | - Xiaoyan Pu
- Department of Basic Medicine, Medical College of Qinghai University, Xining, Qinghai Province, China
- *Correspondence: Tongzuo Zhang, ; Xiaoyan Pu,
| |
Collapse
|
37
|
Bedlack R, Barkhaus PE, Barnes B, Beauchamp M, Bertorini T, Bromberg MB, Carter GT, Chaudry V, Cudkowicz M, Jackson C, Levitsky G, Lund I, McDermott C, Novella S, Olby N, Ostrow L, Pattee GL, Heiman-Patterson T, Ratner D, Salmon K, Steves S, Terrelonge M, Wicks P, Wills AM. ALSUntangled #63: ketogenic diets. Amyotroph Lateral Scler Frontotemporal Degener 2023; 24:159-163. [PMID: 34645313 DOI: 10.1080/21678421.2021.1990346] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 09/28/2021] [Indexed: 01/26/2023]
Abstract
ALSUntangled reviews alternative and off label treatments with a goal of helping patients make more informed decisions about them. Here we review ketogenic diets. We shows that these have plausible mechanisms, including augmenting cellular energy balance and reducing excitotoxicity, neuroinflammation and oxidative stress. We review a mouse model study, anecdotal reports and trials in ALS and other diseases. We conclude that there is yet not enough data to recommend ketogenic diets for patients with ALS, especially in light of the many side effects these can have.
Collapse
Affiliation(s)
- Richard Bedlack
- Neurology Department, Duke University, Durham, NC, United States
| | - Paul E Barkhaus
- Neurology Department, Froedtert & the Medical College of Wisconsin, Kenosha, WI, United States
| | - Benjamin Barnes
- Neurology Department, Augusta University Medical College of Georgia, Augusta, GA, United States
| | | | - Tulio Bertorini
- Neurology Department, The University of Tennessee Health Science Center VolShop Memphis, Memphis, TN, United States
| | - Mark B Bromberg
- Neurology Department, University of Utah Health Hospitals and Clinics, Salt Lake City, UT, United States
| | - Gregory T Carter
- St Lukes Rehabilitation Hospital, Physical Medicine and Rehabilitation, Chesterfield, MO, United States
| | - Vinay Chaudry
- Neurology Department, University of North Carolina School of Medicine Neuroscience Center, Chapel Hill, NC, United States
| | - Merit Cudkowicz
- Neurology Department, Mass General Brigham Inc., Boston, MA, United States
| | - Ce Jackson
- Neurology Department, The University of Texas Health Science Center at San Antonio - Greehey Academic and Research Campus, San Antonio, TX, United States
| | | | - Isaac Lund
- Green Hope High School, Cary, NC, United States
| | - Christopher McDermott
- The University of Sheffield Institute for Translational Neuroscience, Sheffield, United Kingdom
| | - Steven Novella
- Neurology Department, Yale University, New Haven, CT, United States
| | - Natasha Olby
- Neurology Department, North Carolina State University, Raleigh, NC, United States
| | - Lyle Ostrow
- Neurology Department, Johns Hopkins University, Baltimore, MD, United States
| | - Gary L Pattee
- Neurology Department, University of Nebraska Medical Center College of Medicine, Omaha, NE, United States
| | | | - Dylan Ratner
- Longmeadow High School, Longmeadow, MA, United States
| | - Kristiana Salmon
- Neurology Department, McGill Centre for Research in Neuroscience, Montreal, Canada
| | - Susan Steves
- Nutrition Department, Duke University, Durham, NC, United States
| | - Mark Terrelonge
- Neurology Department, University of California San Francisco, San Francisco, CA, United States
| | | | - Anne-Marie Wills
- Neurology Department, Mass General Brigham Inc., Boston, MA, United States
| |
Collapse
|
38
|
Huang Z, Li Y, Park H, Ho M, Bhardwaj K, Sugimura N, Lee HW, Meng H, Ebert MP, Chao K, Burgermeister E, Bhatt AP, Shetty SA, Li K, Wen W, Zuo T. Unveiling and harnessing the human gut microbiome in the rising burden of non-communicable diseases during urbanization. Gut Microbes 2023; 15:2237645. [PMID: 37498052 PMCID: PMC10376922 DOI: 10.1080/19490976.2023.2237645] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 07/12/2023] [Accepted: 07/13/2023] [Indexed: 07/28/2023] Open
Abstract
The world is witnessing a global increase in the urban population, particularly in developing Asian and African countries. Concomitantly, the global burden of non-communicable diseases (NCDs) is rising, markedly associated with the changing landscape of lifestyle and environment during urbanization. Accumulating studies have revealed the role of the gut microbiome in regulating the immune and metabolic homeostasis of the host, which potentially bridges external factors to the host (patho-)physiology. In this review, we discuss the rising incidences of NCDs during urbanization and their links to the compositional and functional dysbiosis of the gut microbiome. In particular, we elucidate the effects of urbanization-associated factors (hygiene/pollution, urbanized diet, lifestyles, the use of antibiotics, and early life exposure) on the gut microbiome underlying the pathogenesis of NCDs. We also discuss the potential and feasibility of microbiome-inspired and microbiome-targeted approaches as novel avenues to counteract NCDs, including fecal microbiota transplantation, diet modulation, probiotics, postbiotics, synbiotics, celobiotics, and precision antibiotics.
Collapse
Affiliation(s)
- Ziyu Huang
- Key Laboratory of Human Microbiome and Chronic Diseases, Sun Yat-Sen University, Ministry of Education, Guangzhou, China
- Guangdong Institute of Gastroenterology, the Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
- Biomedical Innovation Centre, the Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
- The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Yue Li
- Key Laboratory of Human Microbiome and Chronic Diseases, Sun Yat-Sen University, Ministry of Education, Guangzhou, China
- Guangdong Institute of Gastroenterology, the Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
- Biomedical Innovation Centre, the Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
- The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Heekuk Park
- Department of Medicine, Division of Infectious Diseases, Columbia University Irving Medical Centre, New York, NY, USA
| | - Martin Ho
- Department of Engineering, University of Cambridge, Cambridge, UK
| | - Kanchan Bhardwaj
- Department of Biotechnology, Faculty of Engineering and Technology, Manav Rachna International Institute of Research and Studies, Haryana, India
| | - Naoki Sugimura
- Gastrointestinal Centre and Institute of Minimally-Invasive Endoscopic Care (iMEC), Sano Hospital, Kobe, Japan
| | - Hye Won Lee
- Institute of Gastroenterology and Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea
| | - Huicui Meng
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-Sen University, Sun Yat-Sen University, Shenzhen, China
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Guangzhou, China
- Guangdong Province Engineering Laboratory for Nutrition Translation, Guangzhou, China
| | - Matthias P. Ebert
- Department of Medicine II, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- DKFZ-Hector Cancer Institute, Mannheim, Germany
- Mannheim Cancer Centre (MCC), University Medical Centre Mannheim, Mannheim, Germany
| | - Kang Chao
- The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
- Department of Gastroenterology, the Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Elke Burgermeister
- Department of Medicine II, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Aadra P. Bhatt
- Department of Medicine, Centre for Gastrointestinal Biology and Disease, and the Lineberger Comprehensive Cancer Centre, University of North Carolina, Chapel Hill, NC, USA
| | - Sudarshan A. Shetty
- Department of Medical Microbiology and Infection Prevention, University Medical Centre Groningen, Groningen, The Netherlands
| | - Kai Li
- Key Laboratory of Human Microbiome and Chronic Diseases, Sun Yat-Sen University, Ministry of Education, Guangzhou, China
- Guangdong Institute of Gastroenterology, the Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
- The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Weiping Wen
- Key Laboratory of Human Microbiome and Chronic Diseases, Sun Yat-Sen University, Ministry of Education, Guangzhou, China
- Biomedical Innovation Centre, the Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
- The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Tao Zuo
- Key Laboratory of Human Microbiome and Chronic Diseases, Sun Yat-Sen University, Ministry of Education, Guangzhou, China
- Guangdong Institute of Gastroenterology, the Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
- Biomedical Innovation Centre, the Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
- The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| |
Collapse
|
39
|
Tao Y, Leng SX, Zhang H. Ketogenic Diet: An Effective Treatment Approach for Neurodegenerative Diseases. Curr Neuropharmacol 2022; 20:2303-2319. [PMID: 36043794 PMCID: PMC9890290 DOI: 10.2174/1570159x20666220830102628] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 06/13/2022] [Accepted: 07/03/2022] [Indexed: 12/29/2022] Open
Abstract
This review discusses the effects and mechanisms of a ketogenic diet on neurodegenerative diseases on the basis of available evidence. A ketogenic diet refers to a high-fat, mediumprotein, and low-carbohydrate diet that leads to a metabolic shift to ketosis. This review systematically summarizes the scientific literature supporting this effective treatment approach for neurodegenerative diseases, including effects on mitochondrial function, oxidative stress, neuronal apoptosis, neuroinflammation, and the microbiota-gut-brain axis. It also highlights the clinical evidence for the effects of the ketogenic diet in the treatment of Alzheimer's disease, Parkinson's disease, and motor neuron disease. Finally, it discusses the common adverse effects of ketogenic therapy. Although the complete mechanism of the ketogenic diet in the treatment of neurodegenerative diseases remains to be elucidated, its clinical efficacy has attracted many new followers. The ketogenic diet is a good candidate for adjuvant therapy, but its specific applicability depends on the type and the degree of the disease.
Collapse
Affiliation(s)
- Ye Tao
- Department of Geriatrics, The First Affiliated Hospital of China Medical University, Shenyang 110001, China
| | - Sean X Leng
- Division of Geriatric Medicine and Gerontology, Department of Medicine, Johns Hopkins University School of Medicine, 5501 Hopkins Bayview Circle - Room 1A.38A, Baltimore, MD, 21224, USA
| | - Haiyan Zhang
- Department of Geriatrics, The First Affiliated Hospital of China Medical University, Shenyang 110001, China
| |
Collapse
|
40
|
Zima L, West R, Smolen P, Kobori N, Hergenroeder G, Choi HA, Moore AN, Redell JB, Dash PK. Epigenetic Modifications and Their Potential Contribution to Traumatic Brain Injury Pathobiology and Outcome. J Neurotrauma 2022; 39:1279-1288. [PMID: 35481812 PMCID: PMC9529317 DOI: 10.1089/neu.2022.0128] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Epigenetic information is not permanently encoded in the DNA sequence, but rather consists of reversible, heritable modifications that regulate the gene expression profile of a cell. Epigenetic modifications can result in cellular changes that can be long lasting and include DNA methylation, histone methylation, histone acetylation, and RNA methylation. As epigenetic modifications are reversible, the enzymes that add (epigenetic writers), the proteins that decode (epigenetic readers), and the enzymes that remove (epigenetic erasers) these modifications can be targeted to alter cellular function and disease biology. While epigenetic modifications and their contributions are intense topics of current research in the context of a number of diseases, including cancer, inflammatory diseases, and Alzheimer disease, the study of epigenetics in the context of traumatic brain injury (TBI) is in its infancy. In this review, we will summarize the experimental and clinical findings demonstrating that TBI triggers epigenetic modifications, with a focus on changes in DNA methylation, histone methylation, and the translational utility of the universal methyl donor S-adenosylmethionine (SAM). Finally, we will review the evidence for using methyl donors as possible treatments for TBI-associated pathology and outcome.
Collapse
Affiliation(s)
- Laura Zima
- Department of Neurological Surgery, University of Texas Health Science Center McGovern Medical School, Houston, Texas, USA
| | - Rebecca West
- Department of Neurobiology and Anatomy, University of Texas Health Science Center McGovern Medical School, Houston, Texas, USA
| | - Paul Smolen
- Department of Neurobiology and Anatomy, University of Texas Health Science Center McGovern Medical School, Houston, Texas, USA
| | - Nobuhide Kobori
- Department of Neurobiology and Anatomy, University of Texas Health Science Center McGovern Medical School, Houston, Texas, USA
| | - Georgene Hergenroeder
- Department of Neurological Surgery, University of Texas Health Science Center McGovern Medical School, Houston, Texas, USA
| | - HuiMahn A. Choi
- Department of Neurological Surgery, University of Texas Health Science Center McGovern Medical School, Houston, Texas, USA
| | - Anthony N. Moore
- Department of Neurobiology and Anatomy, University of Texas Health Science Center McGovern Medical School, Houston, Texas, USA
| | - John B. Redell
- Department of Neurobiology and Anatomy, University of Texas Health Science Center McGovern Medical School, Houston, Texas, USA
| | - Pramod K. Dash
- Department of Neurobiology and Anatomy, University of Texas Health Science Center McGovern Medical School, Houston, Texas, USA
| |
Collapse
|
41
|
Mohammadifard N, Haghighatdoost F, Rahimlou M, Rodrigues APS, Gaskarei MK, Okhovat P, de Oliveira C, Silveira EA, Sarrafzadegan N. The Effect of Ketogenic Diet on Shared Risk Factors of Cardiovascular Disease and Cancer. Nutrients 2022; 14:nu14173499. [PMID: 36079756 PMCID: PMC9459811 DOI: 10.3390/nu14173499] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 08/20/2022] [Accepted: 08/23/2022] [Indexed: 11/29/2022] Open
Abstract
Cardiovascular disease (CVD) and cancer are the first and second leading causes of death worldwide, respectively. Epidemiological evidence has demonstrated that the incidence of cancer is elevated in patients with CVD and vice versa. However, these conditions are usually regarded as separate events despite the presence of shared risk factors between both conditions, such as metabolic abnormalities and lifestyle. Cohort studies suggested that controlling for CVD risk factors may have an impact on cancer incidence. Therefore, it could be concluded that interventions that improve CVD and cancer shared risk factors may potentially be effective in preventing and treating both diseases. The ketogenic diet (KD), a low-carbohydrate and high-fat diet, has been widely prescribed in weight loss programs for metabolic abnormalities. Furthermore, recent research has investigated the effects of KD on the treatment of numerous diseases, including CVD and cancer, due to its role in promoting ketolysis, ketogenesis, and modifying many other metabolic pathways with potential favorable health effects. However, there is still great debate regarding prescribing KD in patients either with CVD or cancer. Considering the number of studies on this topic, there is a clear need to summarize potential mechanisms through which KD can improve cardiovascular health and control cell proliferation. In this review, we explained the history of KD, its types, and physiological effects and discussed how it could play a role in CVD and cancer treatment and prevention.
Collapse
Affiliation(s)
- Noushin Mohammadifard
- Isfahan Cardiovascular Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan 8158388994, Iran
| | - Fahimeh Haghighatdoost
- Interventional Cardiology Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan 8158388994, Iran
- Correspondence: ; Tel.: +98-31-36115318
| | - Mehran Rahimlou
- Department of Nutrition, Faculty of Medicine, Zanjan University of Medical Sciences, Zanjan 4515863994, Iran
| | | | - Mohammadamin Khajavi Gaskarei
- Heart Failure Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan 8158388994, Iran
| | - Paria Okhovat
- Pediatric Cardiovascular Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan 8158388994, Iran
| | - Cesar de Oliveira
- Department of Epidemiology & Public Health, Institute of Epidemiology & Health Care, University College, London WC1E 6BT, UK
| | - Erika Aparecida Silveira
- Department of Epidemiology & Public Health, Institute of Epidemiology & Health Care, University College, London WC1E 6BT, UK
- Postgraduate Program in Health Sciences, Faculty of Medicine, Federal University of Goiás, Goiânia 74690-900, Brazil
| | - Nizal Sarrafzadegan
- Isfahan Cardiovascular Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan 8158388994, Iran
- Faculty of Medicine, School of Population and Public Health, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| |
Collapse
|
42
|
Tanaka M, Szabó Á, Spekker E, Polyák H, Tóth F, Vécsei L. Mitochondrial Impairment: A Common Motif in Neuropsychiatric Presentation? The Link to the Tryptophan-Kynurenine Metabolic System. Cells 2022; 11:2607. [PMID: 36010683 PMCID: PMC9406499 DOI: 10.3390/cells11162607] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 08/14/2022] [Accepted: 08/19/2022] [Indexed: 02/07/2023] Open
Abstract
Nearly half a century has passed since the discovery of cytoplasmic inheritance of human chloramphenicol resistance. The inheritance was then revealed to take place maternally by mitochondrial DNA (mtDNA). Later, a number of mutations in mtDNA were identified as a cause of severe inheritable metabolic diseases with neurological manifestation, and the impairment of mitochondrial functions has been probed in the pathogenesis of a wide range of illnesses including neurodegenerative diseases. Recently, a growing number of preclinical studies have revealed that animal behaviors are influenced by the impairment of mitochondrial functions and possibly by the loss of mitochondrial stress resilience. Indeed, as high as 54% of patients with one of the most common primary mitochondrial diseases, mitochondrial encephalomyopathy with lactic acidosis and stroke-like episodes (MELAS) syndrome, present psychiatric symptoms including cognitive impairment, mood disorder, anxiety, and psychosis. Mitochondria are multifunctional organelles which produce cellular energy and play a major role in other cellular functions including homeostasis, cellular signaling, and gene expression, among others. Mitochondrial functions are observed to be compromised and to become less resilient under continuous stress. Meanwhile, stress and inflammation have been linked to the activation of the tryptophan (Trp)-kynurenine (KYN) metabolic system, which observably contributes to the development of pathological conditions including neurological and psychiatric disorders. This review discusses the functions of mitochondria and the Trp-KYN system, the interaction of the Trp-KYN system with mitochondria, and the current understanding of the involvement of mitochondria and the Trp-KYN system in preclinical and clinical studies of major neurological and psychiatric diseases.
Collapse
Affiliation(s)
- Masaru Tanaka
- ELKH-SZTE Neuroscience Research Group, Danube Neuroscience Research Laboratory, Eötvös Loránd Research Network, University of Szeged (ELKH-SZTE), Tisza Lajos krt. 113, H-6725 Szeged, Hungary
| | - Ágnes Szabó
- Department of Neurology, Albert Szent-Györgyi Medical School, University of Szeged, Semmelweis u. 6, H-6725 Szeged, Hungary
- Doctoral School of Clinical Medicine, University of Szeged, Korányi fasor 6, H-6720 Szeged, Hungary
| | - Eleonóra Spekker
- ELKH-SZTE Neuroscience Research Group, Danube Neuroscience Research Laboratory, Eötvös Loránd Research Network, University of Szeged (ELKH-SZTE), Tisza Lajos krt. 113, H-6725 Szeged, Hungary
| | - Helga Polyák
- Department of Neurology, Albert Szent-Györgyi Medical School, University of Szeged, Semmelweis u. 6, H-6725 Szeged, Hungary
- Doctoral School of Clinical Medicine, University of Szeged, Korányi fasor 6, H-6720 Szeged, Hungary
| | - Fanni Tóth
- ELKH-SZTE Neuroscience Research Group, Danube Neuroscience Research Laboratory, Eötvös Loránd Research Network, University of Szeged (ELKH-SZTE), Tisza Lajos krt. 113, H-6725 Szeged, Hungary
| | - László Vécsei
- ELKH-SZTE Neuroscience Research Group, Danube Neuroscience Research Laboratory, Eötvös Loránd Research Network, University of Szeged (ELKH-SZTE), Tisza Lajos krt. 113, H-6725 Szeged, Hungary
- Department of Neurology, Albert Szent-Györgyi Medical School, University of Szeged, Semmelweis u. 6, H-6725 Szeged, Hungary
| |
Collapse
|
43
|
Gao L, Cao M, Du GH, Qin XM. Huangqin Decoction Exerts Beneficial Effects on Rotenone-Induced Rat Model of Parkinson's Disease by Improving Mitochondrial Dysfunction and Alleviating Metabolic Abnormality of Mitochondria. Front Aging Neurosci 2022; 14:911924. [PMID: 35912075 PMCID: PMC9334858 DOI: 10.3389/fnagi.2022.911924] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Accepted: 06/20/2022] [Indexed: 11/13/2022] Open
Abstract
Parkinson's disease (PD) is a common neurodegenerative disease, and the pathogenesis of PD is closely related to mitochondrial dysfunction. Previous studies have indicated that traditional Chinese medicine composition of Huangqin Decoction (HQD), including Scutellariae Radix, licorice, and Paeoniae Radix Alba, has therapeutic effects on PD, but whether HQD has a therapeutic effect on PD has not been reported. In this study, the protective effects of HQD on rotenone-induced PD rats were evaluated by behavioral assays (open field, rotating rod, suspension, gait, inclined plate, and grid) and immunohistochemistry. The mechanisms of HQD on attenuation of mitochondrial dysfunction were detected by biochemical assays and mitochondrial metabolomics. The results showed that HQD (20 g/kg) can protect rats with PD by improving motor coordination and muscle strength, increasing the number of tyrosine hydroxylase (TH)-positive neurons in rats with PD. Besides, HQD can improve mitochondrial dysfunction by increasing the content of adenosine triphosphate (ATP) and mitochondrial complex I. Mitochondrial metabolomics analysis revealed that the ketone body of acetoacetic acid (AcAc) in the rotenone group was significantly higher than that of the control group. Ketone bodies have been known to be used as an alternative energy source to provide energy to the brain when glucose was deficient. Further studies demonstrated that HQD could increase the expression of glucose transporter GLUT1, the content of tricarboxylic acid cycle rate-limiting enzyme citrate synthase (CS), and the level of hexokinase (HK) in rats with PD but could decrease the content of ketone bodies [AcAc and β-hydroxybutyric acid (β-HB)] and the expression of their transporters (MCT1). Our study revealed that the decrease of glucose metabolism in the rotenone group was parallel to the increase of substitute substrates (ketone bodies) and related transporters, and HQD could improve PD symptoms by activating the aerobic glycolysis pathway.
Collapse
Affiliation(s)
- Li Gao
- Modern Research Center for Traditional Chinese Medicine, The Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan, China
- Key Laboratory of Effective Substances Research and Utilization in TCM of Shanxi Province, Taiyuan, China
- *Correspondence: Li Gao
| | - Min Cao
- Modern Research Center for Traditional Chinese Medicine, The Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan, China
- Key Laboratory of Effective Substances Research and Utilization in TCM of Shanxi Province, Taiyuan, China
| | - Guan-hua Du
- Peking Union Medical College, Institute of Materia Medica, Chinese Academy of Medical Sciences, Beijing, China
| | - Xue-mei Qin
- Modern Research Center for Traditional Chinese Medicine, The Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan, China
- Key Laboratory of Effective Substances Research and Utilization in TCM of Shanxi Province, Taiyuan, China
- Xue-mei Qin
| |
Collapse
|
44
|
Cicek E, Sanlier N. The place of a ketogenic diet in the treatment of resistant epilepsy: a comprehensive review. Nutr Neurosci 2022:1-14. [PMID: 35791085 DOI: 10.1080/1028415x.2022.2095819] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Objective: The ketogenic diet (KD) is a high-fat, adequate-protein, and low-carb diet. Ketone bodies increase in the blood due to low carbohydrate content and high-fat content in the diet. The most important feature of the ketogenic diet is that it causes the production of ketone bodies in the liver. Ketone bodies are an alternative fuel to glucose for the brain and form the structure necessary for the cell membrane and biosynthesis of triglycerides. The ketogenic diet provides evidence on seizure control with anticonvulsant effects. In this review, the positive/negative effects of KD on seizure control, place, importance, quality of life, cognition, and behavior in the treatment of resistant epilepsy were examined.Methods: Scientific information on the subject was obtained from the literature accessed through databases such as MEDLINE, Embase, Web of Science, Cochrane Central, www.ClinicalTrials.gov, PubMed, Science Direct, and Google Scholar.Results: Although it has started to be used as a treatment method in many diseases today, the main area of effect of KD is drug-resistant epilepsy. In order for the ketogenic diet to be successful in these patients, it is necessary to choose the appropriate patient, medical treatment and diet plan, inform the patient sufficiently, and perform frequent monitoring in accordance with the follow-up criteria. It is argued that KD is one of the most effective treatments for epilepsy.Conclusion: The fact that KDs generally have a restricted diet pattern, the need for supplementation, biochemical findings and possible side effects raise the issue of diet sustainability. More clinical studies are needed to generalize.
Collapse
Affiliation(s)
- Ebru Cicek
- Ankara Medipol University, School of Health Sciences, Department of Nutrition and Dietetics, Ankara, Turkey
| | - Nevin Sanlier
- Ankara Medipol University, School of Health Sciences, Department of Nutrition and Dietetics, Ankara, Turkey
| |
Collapse
|
45
|
Mooli RGR, Ramakrishnan SK. Emerging Role of Hepatic Ketogenesis in Fatty Liver Disease. Front Physiol 2022; 13:946474. [PMID: 35860662 PMCID: PMC9289363 DOI: 10.3389/fphys.2022.946474] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 06/08/2022] [Indexed: 11/18/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD), the most common chronic liver diseases, arise from non-alcoholic fatty liver (NAFL) characterized by excessive fat accumulation as triglycerides. Although NAFL is benign, it could progress to non-alcoholic steatohepatitis (NASH) manifested with inflammation, hepatocyte damage and fibrosis. A subset of NASH patients develops end-stage liver diseases such as cirrhosis and hepatocellular carcinoma. The pathogenesis of NAFLD is highly complex and strongly associated with perturbations in lipid and glucose metabolism. Lipid disposal pathways, in particular, impairment in condensation of acetyl-CoA derived from β-oxidation into ketogenic pathway strongly influence the hepatic lipid loads and glucose metabolism. Current evidence suggests that ketogenesis dispose up to two-thirds of the lipids entering the liver, and its dysregulation significantly contribute to the NAFLD pathogenesis. Moreover, ketone body administration in mice and humans shows a significant improvement in NAFLD. This review focuses on hepatic ketogenesis and its role in NAFLD pathogenesis. We review the possible mechanisms through which impaired hepatic ketogenesis may promote NAFLD progression. Finally, the review sheds light on the therapeutic implications of a ketogenic diet in NAFLD.
Collapse
|
46
|
Effects of Treadmill Exercise on Social Behavior in Rats Exposed to Thimerosal with Respect to the Hippocampal Level of GluN1, GluN2A, and GluN2B. J Mol Neurosci 2022; 72:1345-1357. [PMID: 35597884 DOI: 10.1007/s12031-022-02027-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 05/09/2022] [Indexed: 10/18/2022]
Abstract
Thimerosal (THIM) kills brain neurons via induction of apoptosis and necrosis and induces the pathological features of autism spectrum disorder (ASD) in rats. THIM also affects the function of glutamatergic receptors. On the other hand, exercise induces both improvement and impairment effects on memory, depending on intensity, type, and duration. Treadmill exercise can also alter the expression of glutamatergic receptors. In this study, we aimed to investigate the effect of THIM and three protocols of treadmill exercise on social interaction memory and hippocampal expression of GluN1, GluN2A, and GluN2B in rats. THIM was injected intramuscularly at the dose of 300 µg/kg. The three-chamber apparatus was used to evaluate social interaction memory, and western blotting was used to assess protein expression. The results showed that THIM impaired social memory. Exercise 1 impaired social affiliation in controls. Social memory was impaired in all exercise groups of controls. Exercise 1 + 2 impaired social affiliation in THIM rats. Social memory was impaired in all groups of THIM rats. Exercises 2 and 1 + 2 decreased the expression of GluN1, and exercise 1 increased the expression of GluN2A and GluN2B in controls. THIM increased the expression of GluN2B, while exercise 1 reversed this effect. All exercise protocols increased the expression of GluN2A, and exercises 2 and 1 + 2 increased the expression of GluN1 in THIM rats. In conclusion, both THIM and exercise impaired social memory. Of note, the results did not show a separate and influential role for glutamatergic subunits in modulating memory processes following THIM injection or exercise.
Collapse
|
47
|
Increased Hippocampal Afterdischarge Threshold in Ketogenic Diet is Accompanied by Enhanced Kynurenine Pathway Activity. Neurochem Res 2022; 47:2109-2122. [PMID: 35522366 DOI: 10.1007/s11064-022-03605-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 03/22/2022] [Accepted: 04/08/2022] [Indexed: 10/18/2022]
Abstract
The efficacy of a ketogenic diet (KD) in controlling seizure has been shown in many experimental and clinical studies, however, its mechanism of action still needs further clarification. The major goal of the present study was to investigate the influence of the commercially available KD and caloric restriction (CR) on the hippocampal afterdischarge (AD) threshold in rats, and concomitant biochemical changes, specifically concerning the kynurenine pathway, in plasma and the hippocampus. As expected, the rats on the KD showed higher AD threshold accompanied by increased plasma β-hydroxybutyrate level compared to the control group and the CR rats. This group presented also lowered tryptophan and elevated kynurenic acid levels in plasma with similar changes in the hippocampus. Moreover, the KD rats showed decreased levels of branched chain amino acids (BCAA) and aromatic amino acids (AAA) in plasma and the hippocampus. No regular biochemical changes were observed in the CR group. Our results are analogous to those detected after single administrations of fatty acids and valproic acid in our previous studies, specifically to an increase in the kynurenine pathway activity and changes in peripheral and central BCAA and AAA levels. This suggests that the anticonvulsant effect of the KD may be at least partially associated with those observed biochemical alternations.
Collapse
|
48
|
Pietrzak D, Kasperek K, Rękawek P, Piątkowska-Chmiel I. The Therapeutic Role of Ketogenic Diet in Neurological Disorders. Nutrients 2022; 14:1952. [PMID: 35565918 PMCID: PMC9102882 DOI: 10.3390/nu14091952] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 04/30/2022] [Accepted: 05/04/2022] [Indexed: 02/01/2023] Open
Abstract
The ketogenic diet (KD) is a high-fat, low-carbohydrate and adequate-protein diet that has gained popularity in recent years in the context of neurological diseases (NDs). The complexity of the pathogenesis of these diseases means that effective forms of treatment are still lacking. Conventional therapy is often associated with increasing tolerance and/or drug resistance. Consequently, more effective therapeutic strategies are being sought to increase the effectiveness of available forms of therapy and improve the quality of life of patients. For the moment, it seems that KD can provide therapeutic benefits in patients with neurological problems by effectively controlling the balance between pro- and antioxidant processes and pro-excitatory and inhibitory neurotransmitters, and modulating inflammation or changing the composition of the gut microbiome. In this review we evaluated the potential therapeutic efficacy of KD in epilepsy, depression, migraine, Alzheimer's disease and Parkinson's disease. In our opinion, KD should be considered as an adjuvant therapeutic option for some neurological diseases.
Collapse
Affiliation(s)
- Diana Pietrzak
- Chair and Department of Toxicology, Faculty of Pharmacy, Medical University of Lublin, Jaczewskiego 8b Street, 20-090 Lublin, Poland; (K.K.); (P.R.)
| | | | | | - Iwona Piątkowska-Chmiel
- Chair and Department of Toxicology, Faculty of Pharmacy, Medical University of Lublin, Jaczewskiego 8b Street, 20-090 Lublin, Poland; (K.K.); (P.R.)
| |
Collapse
|
49
|
Tharmaraja T, Ho JS, Sia CH, Lim NA, Chong YF, Lim AY, Rathakrishnan RR, Yeo LL, Sharma VK, Tan BY. Sodium-glucose cotransporter 2 inhibitors and neurological disorders: a scoping review. Ther Adv Chronic Dis 2022; 13:20406223221086996. [PMID: 35432846 PMCID: PMC9006360 DOI: 10.1177/20406223221086996] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Accepted: 02/24/2022] [Indexed: 01/24/2023] Open
Abstract
Background Sodium-glucose cotransporter 2 inhibitors (SGLT2i) are a group of antidiabetic medications with a favourable cardiovascular, renal and overall safety profile. Given the limited treatment options available for neurological disorders, it is important to determine whether the pleiotropic effects of SGLT2i can be utilised in their prevention and management. Methods All articles published before 20 March 2021 were systematically searched in MEDLINE, EMBASE, Scopus, Web of Science, APA PsycINFO and ClinicalTrials.gov. Overall, 1395 titles were screened, ultimately resulting in 160 articles being included in the qualitative analysis. Screening and data extraction were conducted by two independent authors and studies were excluded if they were not an original research study. Findings Of the 160 studies, 134 addressed stroke, 19 cognitive impairment, 4 epilepsy and 4 movement disorders, encompassing a range from systematic reviews and randomised controlled trials to bioinformatic and animal studies. Most animal studies demonstrated significant improvements in behavioural and neurological deficits, which were reflected in beneficial changes in neurovascular units, synaptogenesis, neurotransmitter levels and target receptors' docking energies. The evidence from the minority clinical literature was conflicting and many studies did not reach statistical significance. Interpretation SGLT2i may exert neurological benefits through three mechanisms: reduction in cardiovascular risk factors, augmentation of ketogenesis and anti-inflammatory pathways. Most clinical studies were observational, meaning that a causal relationship could not be established, while randomised controlled trials were heterogeneous and powered to detect cardiovascular or renal outcomes. We suggest that a longitudinal study should be conducted and specifically powered to detect neurological outcomes.
Collapse
Affiliation(s)
- Thahesh Tharmaraja
- Intensive Care Unit, University College Hospital, University College London Hospitals NHS Foundation Trust, London, UK
| | - Jamie S.Y. Ho
- Intensive Care Unit, Royal Free Hospital, Royal Free London NHS Foundation Trust, London, UK
| | - Ching-Hui Sia
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Nicole-Ann Lim
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Yao Feng Chong
- Division of Neurology, Department of Medicine, National University Health System, Singapore
| | - Amanda Y.L. Lim
- Division of Endocrinology, Department of Medicine, National University Health System, Singapore
| | - Rahul R. Rathakrishnan
- Division of Neurology, Department of Medicine, National University Health System, Singapore
| | - Leonard L.L. Yeo
- Division of Neurology, Department of Medicine, National University Health System, Singapore
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, NUHS Tower Block, 1E Kent Ridge Road Level 11, 119228 Singapore
| | - Vijay K. Sharma
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Division of Neurology, Department of Medicine, National University Health System, Singapore
| | - Benjamin Y.Q. Tan
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Division of Neurology, Department of Medicine, National University Health System, Singapore
| |
Collapse
|
50
|
Abstract
The brain is a highly energy-demanding organ and requires bioenergetic adaptability to balance normal activity with pathophysiological fuelling of spontaneous recurrent seizures, the hallmark feature of the epilepsies. Recurrent or prolonged seizures have long been known to permanently alter neuronal circuitry and to cause excitotoxic injury and aberrant inflammation. Furthermore, pathological changes in bioenergetics and metabolism are considered downstream consequences of epileptic seizures that begin at the synaptic level. However, as we highlight in this Review, evidence is also emerging that primary derangements in cellular or mitochondrial metabolism can result in seizure genesis and lead to spontaneous recurrent seizures. Basic and translational research indicates that the relationships between brain metabolism and epileptic seizures are complex and bidirectional, producing a vicious cycle that compounds the deleterious consequences of seizures. Metabolism-based treatments such as the high-fat, antiseizure ketogenic diet have become mainstream, and metabolic substrates and enzymes have become attractive molecular targets for seizure prevention and recovery. Moreover, given that metabolism is crucial for epigenetic as well as inflammatory changes, the idea that epileptogenesis can be both negatively and positively influenced by metabolic changes is rapidly gaining ground. Here, we review evidence that supports both pathophysiological and therapeutic roles for brain metabolism in epilepsy.
Collapse
|