1
|
Kim M, Zheng Z. Walking the VLDL tightrope in cardiometabolic diseases. Trends Endocrinol Metab 2025; 36:278-291. [PMID: 39191606 PMCID: PMC11861388 DOI: 10.1016/j.tem.2024.07.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 07/22/2024] [Accepted: 07/26/2024] [Indexed: 08/29/2024]
Abstract
Very-low-density lipoprotein (VLDL), a triglyceride-rich lipoprotein secreted by hepatocytes, is pivotal for supplying peripheral tissues with fatty acids for energy production. As if walking on a tightrope, perturbations in the balance of VLDL metabolism contribute to cardiometabolic dysfunction, promoting pathologies such as cardiovascular disease (CVD) or metabolic dysfunction-associated steatotic liver disease (MASLD). Despite the advent of lipid-lowering therapies, including statins and proprotein convertase subtilisin/kexin type 9 (PCSK9) inhibitors, risks for cardiovascular events persist. With limitations to currently available CVD therapeutics and no US Food and Drug Administration (FDA)-approved treatment for MASLD, this review summarizes the current understanding of VLDL metabolism that sheds light on novel therapeutic avenues to pursue for cardiometabolic disorders.
Collapse
Affiliation(s)
- Mindy Kim
- Medical Scientist Training Program, Medical College of Wisconsin, Milwaukee, 53226, USA; Department of Physiology, Medical College of Wisconsin, Milwaukee, 53226, USA.
| | - Ze Zheng
- Department of Physiology, Medical College of Wisconsin, Milwaukee, 53226, USA; Department of Medicine, Medical College of Wisconsin, Milwaukee, 53226, USA; Cardiovascular Center, Medical College of Wisconsin, Milwaukee, 53226, USA; Thrombosis & Hemostasis Program, Versiti Blood Research Institute, Milwaukee, 53226, USA.
| |
Collapse
|
2
|
Berndsen ZT, Cassidy CK. The structure of apolipoprotein B100 from human low-density lipoprotein. Nature 2025; 638:836-843. [PMID: 39662503 PMCID: PMC11839476 DOI: 10.1038/s41586-024-08467-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 11/28/2024] [Indexed: 12/13/2024]
Abstract
Low-density lipoprotein (LDL) has a central role in lipid and cholesterol metabolism and is a key agent in the development and progression of atherosclerosis, the leading cause of mortality worldwide1,2. Apolipoprotein B100 (apoB100), one of the largest proteins in the genome, is the primary structural and functional component of LDL, yet its size and complex lipid associations have posed major challenges for structural studies3. Here we present the structure of apoB100 resolved to subnanometre resolution in most regions using an integrative approach of cryo-electron microscopy, AlphaFold24 and molecular-dynamics-based refinement5. The structure consists of a large globular N-terminal domain and an approximately 61-nm-long continuous amphipathic β-sheet that wraps around the LDL particle like a belt. Distributed quasi-symmetrically across the two sides of the β-belt are nine strategically located interstrand inserts that extend across the lipid surface to provide additional structural support through a network of long-range interactions. We further compare our structure to a comprehensive list of more than 200 intramolecular cross-links and find close agreement between the two. These results suggest a mechanism for how the various domains of apoB100 act in concert to maintain LDL shape and cohesion across a range of particle sizes. More generally, they advance our fundamental understanding of LDL synthesis, form and function, and will help to accelerate the design of potential therapeutics.
Collapse
Affiliation(s)
| | - C Keith Cassidy
- Department of Physics, University of Missouri, Columbia, MO, USA.
| |
Collapse
|
3
|
Wakabayashi T, Takahashi M, Okazaki H, Okazaki S, Yokote K, Tada H, Ogura M, Ishigaki Y, Yamashita S, Harada-Shiba M. Current Diagnosis and Management of Familial Hypobetalipoproteinemia 1. J Atheroscler Thromb 2024; 31:1005-1023. [PMID: 38710625 PMCID: PMC11224688 DOI: 10.5551/jat.rv22018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 03/28/2024] [Indexed: 05/08/2024] Open
Abstract
Familial hypobetalipoproteinemia (FHBL) 1 is a rare genetic disorder with an autosomal codominant mode of inheritance and is caused by defects in the apolipoprotein (apo) B (APOB) gene that disable lipoprotein formation. ApoB proteins are required for the formation of very low-density lipoproteins (VLDLs), chylomicrons, and their metabolites. VLDLs transport cholesterol and triglycerides from the liver to the peripheral tissues, whereas chylomicrons transport absorbed lipids and fat-soluble vitamins from the intestine. Homozygous or compound heterozygotes of FHBL1 (HoFHBL1) are extremely rare, and defects in APOB impair VLDL and chylomicron secretion, which result in marked hypolipidemia with malabsorption of fat and fat-soluble vitamins, leading to various complications such as growth disorders, acanthocytosis, retinitis pigmentosa, and neuropathy. Heterozygotes of FHBL1 are relatively common and are generally asymptomatic, except for moderate hypolipidemia and possible hepatic steatosis. If left untreated, HoFHBL1 can cause severe complications and disabilities that are pathologically and phenotypically similar to abetalipoproteinemia (ABL) (an autosomal recessive disorder) caused by mutations in the microsomal triglyceride transfer protein (MTTP) gene. Although HoFHBL1 and ABL cannot be distinguished from the clinical manifestations and laboratory findings of the proband, moderate hypolipidemia in first-degree relatives may help diagnose HoFHBL1. There is currently no specific treatment for HoFHBL1. Palliative therapy including high-dose fat-soluble vitamin supplementation may prevent or delay complications. Registry research on HoFHBL1 is currently ongoing to better understand the disease burden and unmet needs of this life-threatening disease with few therapeutic options.
Collapse
Affiliation(s)
- Tetsuji Wakabayashi
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Jichi Medical University, Tochigi, Japan
| | - Manabu Takahashi
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Jichi Medical University, Tochigi, Japan
| | - Hiroaki Okazaki
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Jichi Medical University, Tochigi, Japan
| | - Sachiko Okazaki
- Division for Health Service Promotion, The University of Tokyo, Tokyo, Japan
| | | | - Hayato Tada
- Department of Cardiovascular Medicine, Kanazawa University Graduate School of Medical Sciences, Ishikawa, Japan
| | - Masatsune Ogura
- Department of Clinical Laboratory Technology, Faculty of Medical Science, Juntendo University, Tokyo, Japan
| | - Yasushi Ishigaki
- Division of Diabetes, Metabolism and Endocrinology, Department of Internal Medicine, Iwate Medical University, Iwate, Japan
| | - Shizuya Yamashita
- Department of Cardiology, Rinku General Medical Center, Osaka, Japan
| | - Mariko Harada-Shiba
- Cardiovascular Center, Osaka Medical and Pharmaceutical University, Osaka, Japan
| | - on behalf of the Committee on Primary Dyslipidemia under the Research Program on Rare and Intractable Disease of the Ministry of Health, Labour and Welfare of Japan
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Jichi Medical University, Tochigi, Japan
- Division for Health Service Promotion, The University of Tokyo, Tokyo, Japan
- Chiba University, Chiba, Japan
- Department of Cardiovascular Medicine, Kanazawa University Graduate School of Medical Sciences, Ishikawa, Japan
- Department of Clinical Laboratory Technology, Faculty of Medical Science, Juntendo University, Tokyo, Japan
- Division of Diabetes, Metabolism and Endocrinology, Department of Internal Medicine, Iwate Medical University, Iwate, Japan
- Department of Cardiology, Rinku General Medical Center, Osaka, Japan
- Cardiovascular Center, Osaka Medical and Pharmaceutical University, Osaka, Japan
| |
Collapse
|
4
|
Avitzur Y, Jimenez L, Martincevic I, Acra S, Courtney-Martin G, Gray M, Hope K, Muise A, Prieto Jimenez PM, Taylor N, Thiagarajah JR, Martín MG. Diet management in congenital diarrheas and enteropathies - general concepts and disease-specific approach, a narrative review. Am J Clin Nutr 2024; 120:17-33. [PMID: 38734141 PMCID: PMC11251218 DOI: 10.1016/j.ajcnut.2024.05.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 04/27/2024] [Accepted: 05/06/2024] [Indexed: 05/13/2024] Open
Abstract
Congenital diarrheas and enteropathies (CODE) are a group of rare, heterogenous, monogenic disorders that lead to chronic diarrhea in infancy. Definitive treatment is rarely available, and supportive treatment is the mainstay. Nutritional management in the form of either specialized formulas, restrictive diet, or parenteral nutrition support in CODE with poor enteral tolerance is the cornerstone of CODE treatment and long-term growth. The evidence to support the use of specific diet regimens and nutritional approaches in most CODE disorders is limited due to the rarity of these diseases and the scant published clinical experience. The goal of this review was to create a comprehensive guide for nutritional management in CODE, based on the currently available literature, disease mechanism, and the PediCODE group experience. Enteral diet management in CODE can be divided into 3 distinct conceptual frameworks: nutrient elimination, nutrient supplementation, and generalized nutrient restriction. Response to nutrient elimination or supplementation can lead to resolution or significant improvement in the chronic diarrhea of CODE and resumption of normal growth. This pattern can be seen in CODE due to carbohydrate malabsorption, defects in fat absorption, and occasionally in electrolyte transport defects. In contrast, general diet restriction is mainly supportive. However, occasionally it allows parenteral nutrition weaning or reduction over time, mainly in enteroendocrine defects and rarely in epithelial trafficking and polarity defects. Further research is required to better elucidate the role of diet in the treatment of CODE and the appropriate diet management for each disease.
Collapse
Affiliation(s)
- Yaron Avitzur
- Group for Improvement of Intestinal Function and Treatment (GIFT), Transplant and Regenerative Centre, SickKids Hospital, Toronto, ON, Canada; Division of Gastroenterology, Hepatology and Nutrition, SickKids Hospital, University of Toronto, Toronto, ON, Canada.
| | - Lissette Jimenez
- Division of Gastroenterology, Hepatology and Nutrition, Boston Children's Hospital, Harvard Medical School, Boston, MA, United States; Congenital Enteropathy Program, Boston Children's Hospital, Boston, MA, United States;; Harvard Digestive Disease Center, Boston MA, United States
| | - Inez Martincevic
- Division of Gastroenterology, Hepatology and Nutrition, SickKids Hospital, University of Toronto, Toronto, ON, Canada
| | - Sari Acra
- Division of Pediatric Gastroenterology, Hepatology and Nutrition, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Glenda Courtney-Martin
- Group for Improvement of Intestinal Function and Treatment (GIFT), Transplant and Regenerative Centre, SickKids Hospital, Toronto, ON, Canada; Department of Nutritional Sciences, University of Toronto, Toronto, ON, Canada
| | - Megan Gray
- Division of Gastroenterology, Hepatology and Nutrition, Boston Children's Hospital, Harvard Medical School, Boston, MA, United States
| | - Kayla Hope
- Division of Gastroenterology, Hepatology and Nutrition, Boston Children's Hospital, Harvard Medical School, Boston, MA, United States
| | - Aleixo Muise
- Division of Gastroenterology, Hepatology and Nutrition, SickKids Hospital, University of Toronto, Toronto, ON, Canada
| | - Paula M Prieto Jimenez
- Division of Gastroenterology and Nutrition, Department of Pediatrics, Mattel Children's Hospital and the David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, United States
| | - Nancy Taylor
- Division of Pediatric Gastroenterology, Hepatology and Nutrition, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Jay R Thiagarajah
- Division of Gastroenterology, Hepatology and Nutrition, Boston Children's Hospital, Harvard Medical School, Boston, MA, United States; Congenital Enteropathy Program, Boston Children's Hospital, Boston, MA, United States;; Harvard Digestive Disease Center, Boston MA, United States
| | - Martín G Martín
- Division of Gastroenterology and Nutrition, Department of Pediatrics, Mattel Children's Hospital and the David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, United States.
| |
Collapse
|
5
|
Ramos Bachiller B, Luque-Ramírez M, Rodríguez-Jiménez C, Arrieta Blanco FJ. Familial ApoB-specific familial hypobetalipoproteinemia in a patient with non-classical congenital adrenal hyperplasia. CLINICA E INVESTIGACION EN ARTERIOSCLEROSIS : PUBLICACION OFICIAL DE LA SOCIEDAD ESPANOLA DE ARTERIOSCLEROSIS 2024; 36:128-132. [PMID: 38195282 DOI: 10.1016/j.arteri.2023.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 12/14/2023] [Indexed: 01/11/2024]
Abstract
Familial hypobetalipoproteinaemia is a disorder of lipid metabolism characterized by low levels of total cholesterol, low-density lipoprotein cholesterol and apolipoprotein B. ApoB-related familial hypolipoproteinemia is an autosomal condition with a codominance inheritance pattern. Non-classical congenital adrenal hyperplasia is an autosomal recessive disorder due to mutations in the CYP21A2, a gene encoding for the enzyme 21-hydroxylase, which results in an androgen excess production from adrenal source. We here present the case of a 25-year-old woman with NCAH showing decreased levels of total-cholesterol, low-density lipoprotein cholesterol and triglycerides. Her parent had digestive symptoms and severe hepatic steatosis with elevated liver enzymes, as well as decreased levels of total and low-density lipoprotein cholesterol. A genetic-molecular study of the proband identified a mutation in the APOB gene, which allowed a diagnosis of heterozygous ApoB-related hypolipoproteinaemia to be made.
Collapse
Affiliation(s)
- Beatriz Ramos Bachiller
- Servicio de Endocrinología y Nutrición, Complejo Asistencial Universitario de León, Castilla-León, España.
| | - Manuel Luque-Ramírez
- Servicio de Endocrinología y Nutrición, Hospital Universitario Ramón y Cajal, Madrid, España; Grupo de Investigación en Diabetes, Obesidad y Reproducción Humana, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), CIBER de Diabetes y Enfermedades Metabólicas asociadas, y Universidad de Alcalá, Madrid, España
| | - Carmen Rodríguez-Jiménez
- Department of Genetics of Metabolic Diseases, Instituto de Genética Médica y Molecular (INGEMM), Hospital Universitario La Paz, Madrid, España
| | - Francisco J Arrieta Blanco
- Servicio de Endocrinología y Nutrición, Hospital Universitario Ramón y Cajal, Madrid, España; Centro de Referencia Nacional (CSUR) y Europeo (MetabERN) para Enfermedades Metabólicas Hereditarias, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, España
| |
Collapse
|
6
|
Tada H, Kojima N, Kawashiri MA, Takamura M. The first Japanese case with familial combined hypolipidemia without any complications caused by loss-of function variants in ANGPTL3: Case report. Heliyon 2024; 10:e29924. [PMID: 38699738 PMCID: PMC11063418 DOI: 10.1016/j.heliyon.2024.e29924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 04/11/2024] [Accepted: 04/17/2024] [Indexed: 05/05/2024] Open
Abstract
Familial combined hypolipidemia, previously known as Familial hypobetalipoproteinemia 2 (FHBL2) is considered as an extremely rare recessive disease. Here, we present the case of familial combined hypolipidemia with homozygous loss-of function (LOF) variants in angiopoietin-like protein 3 (ANGPTL3) ((NM_014495.4) c.439_442del (p.Thr146_Asn147insTer)) using panel sequencing (46 yr male whose LDL cholesterol = 34 mg/dL). The serum level of ANGPTL3 was quite low (undetectable). Despite of extreme decreasing LDL cholesterol, this case did not have any complications as hypobetalipidemia (HBL), such as steatorrhea vomiting, hematological, neuromuscular, or ophthalmological symptoms. In addition, we did not find any systemic atherosclerosis in his carotid arteries and in coronary arteries. Based on the findings suggest that inhibition of ANGPTL3 effectively reduce LDL cholesterol without any apparent side effects, although it is still unclear if he will suffer any disadvantages because of this situation in the future.
Collapse
Affiliation(s)
- Hayato Tada
- Department of Cardiology, Kanazawa University Graduate School of Medicine, Kanazawa, Japan
| | - Nobuko Kojima
- Department of Cardiology, Kanazawa University Graduate School of Medicine, Kanazawa, Japan
| | | | - Masayuki Takamura
- Department of Cardiology, Kanazawa University Graduate School of Medicine, Kanazawa, Japan
| |
Collapse
|
7
|
Kounatidis D, Vallianou NG, Poulaki A, Evangelopoulos A, Panagopoulos F, Stratigou T, Geladari E, Karampela I, Dalamaga M. ApoB100 and Atherosclerosis: What's New in the 21st Century? Metabolites 2024; 14:123. [PMID: 38393015 PMCID: PMC10890411 DOI: 10.3390/metabo14020123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 02/08/2024] [Accepted: 02/09/2024] [Indexed: 02/25/2024] Open
Abstract
ApoB is the main protein of triglyceride-rich lipoproteins and is further divided into ApoB48 in the intestine and ApoB100 in the liver. Very low-density lipoprotein (VLDL) is produced by the liver, contains ApoB100, and is metabolized into its remnants, intermediate-density lipoprotein (IDL) and low-density lipoprotein (LDL). ApoB100 has been suggested to play a crucial role in the formation of the atherogenic plaque. Apart from being a biomarker of atherosclerosis, ApoB100 seems to be implicated in the inflammatory process of atherosclerosis per se. In this review, we will focus on the structure, the metabolism, and the function of ApoB100, as well as its role as a predictor biomarker of cardiovascular risk. Moreover, we will elaborate upon the molecular mechanisms regarding the pathophysiology of atherosclerosis, and we will discuss the disorders associated with the APOB gene mutations, and the potential role of various drugs as therapeutic targets.
Collapse
Affiliation(s)
- Dimitris Kounatidis
- Second Department of Internal Medicine, Hippokration General Hospital, School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece;
| | - Natalia G. Vallianou
- Department of Internal Medicine, Evangelismos General Hospital, 10676 Athens, Greece; (F.P.); (E.G.)
| | - Aikaterini Poulaki
- Hematology Unit, Second Department of Internal Medicine, School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece;
| | | | - Fotis Panagopoulos
- Department of Internal Medicine, Evangelismos General Hospital, 10676 Athens, Greece; (F.P.); (E.G.)
| | - Theodora Stratigou
- Department of Endocrinology and Metabolism, Evangelismos General Hospital, 10676 Athens, Greece;
| | - Eleni Geladari
- Department of Internal Medicine, Evangelismos General Hospital, 10676 Athens, Greece; (F.P.); (E.G.)
| | - Irene Karampela
- Second Department of Critical Care, Attikon General University Hospital, Medical School, National and Kapodistrian University of Athens, 12462 Athens, Greece;
| | - Maria Dalamaga
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece;
| |
Collapse
|
8
|
Lin Z, Ji X, Tian N, Gan Y, Ke L. APOB is a potential prognostic biomarker in hepatocellular carcinoma. Discov Oncol 2024; 15:28. [PMID: 38310202 PMCID: PMC10838261 DOI: 10.1007/s12672-024-00877-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 01/30/2024] [Indexed: 02/05/2024] Open
Abstract
Hepatocellular carcinoma (HCC) is significantly associated with adverse prognostic outcomes. The development and progression of different types of human tumors are significantly influenced by APOB. Nevertheless, the significance and pathomechanisms of APOB in HCC have not been conclusively determined. We assessed APOB expression levels in HCC using three publicly available databases of TIMER2.0, UALCAN and Human Protein Atlas. To identify the biological function of APOB, we conducted enrichment analysis via LinkedOmics. Moreover, UALCAN was employed to assess the relationship between APOB expression and clinicopathological features among HCC patients. Additionally, the Kaplan-Meier plotter was utilized to investigate the prognostic relevance of APOB in HCC. To explore potential regulatory ncRNAs that could bind to APOB, we utilized StarBase and GEPIA. Furthermore, the correlation between APOB expression and immune cell infiltration, as well as immune checkpoint genes, was investigated using Spearman's correlation analysis in TISIDB, GEPIA, and TIMER2.0. The findings of our investigation showed a notable decrease in the expression levels of APOB among individuals diagnosed with HCC. Moreover, a noteworthy correlation was observed between the expression of APOB and immune checkpoint genes, alongside the occurrence of immune cell infiltration. The levels of APOB expression in HCC tissues also showed correlations with various clinicopathological features. According to Cox regression analysis, decreased APOB expression emerged as a potential autonomous predictor for OS, RFS, DSS, and PFS among HCC patients. Furthermore, we identified six potential pathways associated with non-coding RNA (ncRNA) as the most promising pathway for APOB in HCC. Our results illuminate the possible involvement of APOB in HCC and offer understanding into its governing mechanisms and medical importance.
Collapse
Affiliation(s)
- Zhifeng Lin
- Department of Medical Record; Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology; Guangdong Provincial Key Laboratory of Major Obstetric Diseases, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.
| | - Xiaohui Ji
- Department of Obstetrics and Gynaecology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Nana Tian
- Department of Medical Record, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yu Gan
- Department of Medical Record, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Li Ke
- Department of Medical Record; Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology; Guangdong Provincial Key Laboratory of Major Obstetric Diseases, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.
| |
Collapse
|
9
|
Park SY, Kim HS, Chu MA, Jang HJ, Kang S. Case report of familial hypobetalipoproteinemia: a novel APOB mutation and literature review. Ann Pediatr Endocrinol Metab 2023; 28:S9-S11. [PMID: 36758975 PMCID: PMC10783931 DOI: 10.6065/apem.2244180.090] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 09/14/2022] [Accepted: 09/20/2022] [Indexed: 02/05/2023] Open
Affiliation(s)
- So Yun Park
- Department of Pediatrics, Keimyung University Dongsan Hospital, Keimyung University School of Medicine, Daegu, Korea
| | - Heung Sik Kim
- Department of Pediatrics, Keimyung University Daegu Dongsan Hospital, Daegu, Korea
| | - Mi Ae Chu
- Department of Pediatrics, Keimyung University Daegu Dongsan Hospital, Daegu, Korea
| | - Hyo-Jeong Jang
- Department of Pediatrics, Keimyung University Dongsan Hospital, Keimyung University School of Medicine, Daegu, Korea
| | - Seokjin Kang
- Department of Pediatrics, Keimyung University Dongsan Hospital, Keimyung University School of Medicine, Daegu, Korea
| |
Collapse
|
10
|
D’Erasmo L, Di Martino M, Neufeld T, Fraum TJ, Kang CJ, Burks KH, Costanzo AD, Minicocci I, Bini S, Maranghi M, Pigna G, Labbadia G, Zheng J, Fierro D, Montali A, Ceci F, Catalano C, Davidson NO, Lucisano G, Nicolucci A, Arca M, Stitziel NO. ANGPTL3 Deficiency and Risk of Hepatic Steatosis. Circulation 2023; 148:1479-1489. [PMID: 37712257 PMCID: PMC10805521 DOI: 10.1161/circulationaha.123.065866] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 08/24/2023] [Indexed: 09/16/2023]
Abstract
BACKGROUND ANGPTL3 (angiopoietin-like 3) is a therapeutic target for reducing plasma levels of triglycerides and low-density lipoprotein cholesterol. A recent trial with vupanorsen, an antisense oligonucleotide targeting hepatic production of ANGPTL3, reported a dose-dependent increase in hepatic fat. It is unclear whether this adverse effect is due to an on-target effect of inhibiting hepatic ANGPTL3. METHODS We recruited participants with ANGPTL3 deficiency related to ANGPTL3 loss-of-function (LoF) mutations, along with wild-type (WT) participants from 2 previously characterized cohorts located in Campodimele, Italy, and St. Louis, MO. Magnetic resonance spectroscopy and magnetic resonance proton density fat fraction were performed to measure hepatic fat fraction and the distribution of extrahepatic fat. To estimate the causal relationship between ANGPTL3 and hepatic fat, we generated a genetic instrument of plasma ANGPTL3 levels as a surrogate for hepatic protein synthesis and performed Mendelian randomization analyses with hepatic fat in the UK Biobank study. RESULTS We recruited participants with complete (n=6) or partial (n=32) ANGPTL3 deficiency related to ANGPTL3 LoF mutations, as well as WT participants (n=92) without LoF mutations. Participants with ANGPTL3 deficiency exhibited significantly lower total cholesterol (complete deficiency, 78.5 mg/dL; partial deficiency, 172 mg/dL; WT, 188 mg/dL; P<0.05 for both deficiency groups compared with WT), along with plasma triglycerides (complete deficiency, 26 mg/dL; partial deficiency, 79 mg/dL; WT, 88 mg/dL; P<0.05 for both deficiency groups compared with WT) without any significant difference in hepatic fat (complete deficiency, 9.8%; partial deficiency, 10.1%; WT, 9.9%; P>0.05 for both deficiency groups compared with WT) or severity of hepatic steatosis as assessed by magnetic resonance imaging. In addition, ANGPTL3 deficiency did not alter the distribution of extrahepatic fat. Results from Mendelian randomization analyses in 36 703 participants from the UK Biobank demonstrated that genetically determined ANGPTL3 plasma protein levels were causally associated with low-density lipoprotein cholesterol (P=1.7×10-17) and triglycerides (P=3.2×10-18) but not with hepatic fat (P=0.22). CONCLUSIONS ANGPTL3 deficiency related to LoF mutations in ANGPTL3, as well as genetically determined reduction of plasma ANGPTL3 levels, is not associated with hepatic steatosis. Therapeutic approaches to inhibit ANGPTL3 production in hepatocytes are not necessarily expected to result in the increased risk for hepatic steatosis that was observed with vupanorsen.
Collapse
Affiliation(s)
- Laura D’Erasmo
- Department of Translational and Precision Medicine, Sapienza University of Rome, Rome, Italy
| | - Michele Di Martino
- Department of Radiological Sciences, Oncology, Anatomical Pathology, Sapienza University of Rome, Rome, Italy
| | - Thomas Neufeld
- Center for Cardiovascular Research, Cardiovascular Division, Department of Medicine, Washington University School of Medicine, Saint Louis, Missouri, USA
| | - Tyler J. Fraum
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, Saint Louis, Missouri, USA
| | - Chul Joo Kang
- McDonnell Genome Institute, Washington University School of Medicine, Saint Louis, Missouri, USA
| | - Kendall H. Burks
- Center for Cardiovascular Research, Cardiovascular Division, Department of Medicine, Washington University School of Medicine, Saint Louis, Missouri, USA
| | - Alessia Di Costanzo
- Department of Translational and Precision Medicine, Sapienza University of Rome, Rome, Italy
| | - Ilenia Minicocci
- Department of Translational and Precision Medicine, Sapienza University of Rome, Rome, Italy
| | - Simone Bini
- Department of Translational and Precision Medicine, Sapienza University of Rome, Rome, Italy
| | - Marianna Maranghi
- Department of Translational and Precision Medicine, Sapienza University of Rome, Rome, Italy
| | - Giovanni Pigna
- Department of Translational and Precision Medicine, Sapienza University of Rome, Rome, Italy
| | - Giancarlo Labbadia
- Department of Internal Medicine, Anesthesiology, and Cardiovascular Sciences, Sapienza University of Rome, Rome, Italy
| | - Jie Zheng
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, Saint Louis, Missouri, USA
| | | | - Anna Montali
- Department of Translational and Precision Medicine, Sapienza University of Rome, Rome, Italy
| | - Fabrizio Ceci
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Carlo Catalano
- Department of Radiological Sciences, Oncology, Anatomical Pathology, Sapienza University of Rome, Rome, Italy
| | - Nicholas O. Davidson
- Division of Gastroenterology, Department of Medicine, Washington University School of Medicine, Saint Louis, Missouri, USA
| | - Giuseppe Lucisano
- CORESEARCH Srl - Center for Outcomes Research and Clinical Epidemiology, Pescara Italy
| | - Antonio Nicolucci
- CORESEARCH Srl - Center for Outcomes Research and Clinical Epidemiology, Pescara Italy
| | - Marcello Arca
- Department of Translational and Precision Medicine, Sapienza University of Rome, Rome, Italy
| | - Nathan O. Stitziel
- Center for Cardiovascular Research, Cardiovascular Division, Department of Medicine, Washington University School of Medicine, Saint Louis, Missouri, USA
- McDonnell Genome Institute, Washington University School of Medicine, Saint Louis, Missouri, USA
- Department of Genetics, Washington University School of Medicine, Saint Louis, Missouri, USA
| |
Collapse
|
11
|
Dron JS, Patel AP, Zhang Y, Jurgens SJ, Maamari DJ, Wang M, Boerwinkle E, Morrison AC, de Vries PS, Fornage M, Hou L, Lloyd-Jones DM, Psaty BM, Tracy RP, Bis JC, Vasan RS, Levy D, Heard-Costa N, Rich SS, Guo X, Taylor KD, Gibbs RA, Rotter JI, Willer CJ, Oelsner EC, Moran AE, Peloso GM, Natarajan P, Khera AV. Association of Rare Protein-Truncating DNA Variants in APOB or PCSK9 With Low-density Lipoprotein Cholesterol Level and Risk of Coronary Heart Disease. JAMA Cardiol 2023; 8:258-267. [PMID: 36723951 PMCID: PMC9996405 DOI: 10.1001/jamacardio.2022.5271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 11/29/2022] [Indexed: 02/02/2023]
Abstract
Importance Protein-truncating variants (PTVs) in apolipoprotein B (APOB) and proprotein convertase subtilisin/kexin type 9 (PCSK9) are associated with significantly lower low-density lipoprotein (LDL) cholesterol concentrations. The association of these PTVs with coronary heart disease (CHD) warrants further characterization in large, multiracial prospective cohort studies. Objective To evaluate the association of PTVs in APOB and PCSK9 with LDL cholesterol concentrations and CHD risk. Design, Setting, and Participants This studied included participants from 5 National Heart, Lung, and Blood Institute (NHLBI) studies and the UK Biobank. NHLBI study participants aged 5 to 84 years were recruited between 1971 and 2002 across the US and underwent whole-genome sequencing. UK Biobank participants aged 40 to 69 years were recruited between 2006 and 2010 in the UK and underwent whole-exome sequencing. Data were analyzed from June 2021 to October 2022. Exposures PTVs in APOB and PCSK9. Main Outcomes and Measures Estimated untreated LDL cholesterol levels and CHD. Results Among 19 073 NHLBI participants (10 598 [55.6%] female; mean [SD] age, 52 [17] years), 139 (0.7%) carried an APOB or PCSK9 PTV, which was associated with 49 mg/dL (95% CI, 43-56) lower estimated untreated LDL cholesterol level. Over a median (IQR) follow-up of 21.5 (13.9-29.4) years, incident CHD was observed in 12 of 139 carriers (8.6%) vs 3029 of 18 934 noncarriers (16.0%), corresponding to an adjusted hazard ratio of 0.51 (95% CI, 0.28-0.89; P = .02). Among 190 464 UK Biobank participants (104 831 [55.0%] female; mean [SD] age, 57 [8] years), 662 (0.4%) carried a PTV, which was associated with 45 mg/dL (95% CI, 42-47) lower estimated untreated LDL cholesterol level. Estimated CHD risk by age 75 years was 3.7% (95% CI, 2.0-5.3) in carriers vs 7.0% (95% CI, 6.9-7.2) in noncarriers, corresponding to an adjusted hazard ratio of 0.51 (95% CI, 0.32-0.81; P = .004). Conclusions and Relevance Among 209 537 individuals in this study, 0.4% carried an APOB or PCSK9 PTV that was associated with less exposure to LDL cholesterol and a 49% lower risk of CHD.
Collapse
Affiliation(s)
- Jacqueline S. Dron
- Center for Genomic Medicine, Department of Medicine, Massachusetts General Hospital, Boston
- Cardiovascular Disease Initiative, The Broad Institute of MIT and Harvard, Cambridge, Massachusetts
| | - Aniruddh P. Patel
- Center for Genomic Medicine, Department of Medicine, Massachusetts General Hospital, Boston
- Cardiovascular Disease Initiative, The Broad Institute of MIT and Harvard, Cambridge, Massachusetts
- Department of Medicine, Harvard Medical School, Boston, Massachusetts
- Cardiology Division, Department of Medicine, Massachusetts General Hospital, Boston
| | - Yiyi Zhang
- Division of General Medicine, Columbia University, New York, New York
| | - Sean J. Jurgens
- Cardiovascular Disease Initiative, The Broad Institute of MIT and Harvard, Cambridge, Massachusetts
- Department of Experimental Cardiology, Amsterdam UMC, Amsterdam, the Netherlands
| | - Dimitri J. Maamari
- Center for Genomic Medicine, Department of Medicine, Massachusetts General Hospital, Boston
- Cardiovascular Disease Initiative, The Broad Institute of MIT and Harvard, Cambridge, Massachusetts
- Department of Medicine, Harvard Medical School, Boston, Massachusetts
| | - Minxian Wang
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Eric Boerwinkle
- Human Genetics Center, Department of Epidemiology, Human Genetics, and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston
| | - Alanna C. Morrison
- Human Genetics Center, Department of Epidemiology, Human Genetics, and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston
| | - Paul S. de Vries
- Human Genetics Center, Department of Epidemiology, Human Genetics, and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston
| | - Myriam Fornage
- Human Genetics Center, Department of Epidemiology, Human Genetics, and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston
- Institute of Molecular Medicine, McGovern Medical School, University of Texas Health Science Center at Houston
| | - Lifang Hou
- Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Donald M. Lloyd-Jones
- Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Bruce M. Psaty
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle
- Department of Epidemiology, University of Washington, Seattle
- Department of Health Systems and Population Health, University of Washington, Seattle
| | - Russell P. Tracy
- Department of Pathology and Laboratory Medicine, Larner College of Medicine at the University of Vermont, Colchester, Vermont
- Department of Biochemistry, Larner College of Medicine at the University of Vermont, Colchester, Vermont
| | - Joshua C. Bis
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle
| | - Ramachandran S. Vasan
- Sections of Preventive Medicine and Epidemiology, Cardiovascular Medicine, Department of Medicine, Boston University School of Medicine, Boston, Massachusetts
- Department of Epidemiology, Boston University School of Public Health, Boston, Massachusetts
- Framingham Heart Study, Framingham, Massachusetts
| | - Daniel Levy
- Framingham Heart Study, Framingham, Massachusetts
- Population Sciences Branch, National Heart, Lung, and Blood Institute, Bethesda, Maryland
| | - Nancy Heard-Costa
- Framingham Heart Study, Framingham, Massachusetts
- Department of Neurology, Boston University School of Medicine, Boston, Massachusetts
| | - Stephen S. Rich
- Center for Public Health Genomics, University of Virginia, Charlottesville
| | - Xiuqing Guo
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, California
| | - Kent D. Taylor
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, California
| | - Richard A. Gibbs
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas
| | - Jerome I. Rotter
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, California
| | | | | | - Andrew E. Moran
- Division of General Medicine, Columbia University, New York, New York
| | - Gina M. Peloso
- Department of Biostatistics, Boston University School of Public Health, Boston, Massachusetts
| | - Pradeep Natarajan
- Cardiovascular Disease Initiative, The Broad Institute of MIT and Harvard, Cambridge, Massachusetts
- Department of Medicine, Harvard Medical School, Boston, Massachusetts
- Cardiology Division, Department of Medicine, Massachusetts General Hospital, Boston
| | - Amit V. Khera
- Center for Genomic Medicine, Department of Medicine, Massachusetts General Hospital, Boston
- Cardiovascular Disease Initiative, The Broad Institute of MIT and Harvard, Cambridge, Massachusetts
- Department of Medicine, Harvard Medical School, Boston, Massachusetts
- Verve Therapeutics, Boston, Massachusetts
| |
Collapse
|
12
|
Mango G, Osti N, Udali S, Vareschi A, Malerba G, Giorgetti A, Pizzolo F, Friso S, Girelli D, Olivieri O, Castagna A, Martinelli N. Novel protein-truncating variant in the APOB gene may protect from coronary artery disease and adverse cardiovascular events. ATHEROSCLEROSIS PLUS 2022; 49:42-46. [PMID: 36644201 PMCID: PMC9833228 DOI: 10.1016/j.athplu.2022.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 06/09/2022] [Accepted: 06/20/2022] [Indexed: 01/18/2023]
Abstract
Background and aims Genetic testing is still rarely used for the diagnosis of dyslipidemia, even though gene variants determining plasma lipids levels are not uncommon. Methods Starting from a a pilot-analysis of targeted Next Generation Sequencing (NGS) of 5 genes related to familial hypercholesterolemia (LDLR, APOB, PCSK9, HMGCR, APOE) within a cardiovascular cohort in subjects with extreme plasma concentrations of low-density lipoprotein (LDL) cholesterol, we discovered and characterized a novel point mutation in the APOB gene, which was associated with very low levels of apolipoprotein B (ApoB) and LDL cholesterol. Results APOB c.6943 G > T induces a premature stop codon at the level of exon 26 in the APOB gene and generates a protein which has the 51% of the mass of the wild type ApoB-100 (ApoB-51), with a truncation at the level of residue 2315. The premature stop codon occurs after the one needed for the synthesis of ApoB-48, allowing chylomicron production at intestinal level and thus avoiding potential nutritional impairments. The heterozygous carrier of APOB c.6943G > T, despite a very high-risk profile encompassing all the traditional risk factors except for dyslipidemia, had normal coronary arteries by angiography and did not report any major adverse cardiovascular event during a 20-years follow-up, thereby obtaining advantage from the gene variant as regards protection against atherosclerosis, apparently without any metabolic retaliation. Conclusions Our data support the use of targeted NGS in well-characterized clinical settings, as well as they indicate that.a partial block of ApoB production may be well tolerated and improve cardiovascular outcomes.
Collapse
Affiliation(s)
- Gabriele Mango
- Department of Medicine, Unit of Internal Medicine, University of Verona, Italy
| | - Nicola Osti
- Department of Medicine, Unit of Internal Medicine, University of Verona, Italy
| | - Silvia Udali
- Department of Medicine, Unit of Internal Medicine, University of Verona, Italy
| | - Anna Vareschi
- Department of Medicine, Unit of Internal Medicine, University of Verona, Italy
| | - Giovanni Malerba
- Laboratory of Computational Genomics, Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, 37134, Verona, Italy
| | | | - Francesca Pizzolo
- Department of Medicine, Unit of Internal Medicine, University of Verona, Italy
| | - Simonetta Friso
- Department of Medicine, Unit of Internal Medicine, University of Verona, Italy
| | - Domenico Girelli
- Department of Medicine, Unit of Internal Medicine, University of Verona, Italy
| | - Oliviero Olivieri
- Department of Medicine, Unit of Internal Medicine, University of Verona, Italy
| | - Annalisa Castagna
- Department of Medicine, Unit of Internal Medicine, University of Verona, Italy
| | - Nicola Martinelli
- Department of Medicine, Unit of Internal Medicine, University of Verona, Italy,Corresponding author. Department of Medicine, University of Verona Policlinico G.B. Rossi, Piazzale L.A. Scuro 10, 37134, Verona, Italy.
| |
Collapse
|
13
|
Lin Z, Huang X, Ji X, Tian N, Gan Y, Ke L. Analysis of multiple databases identifies crucial genes correlated with prognosis of hepatocellular carcinoma. Sci Rep 2022; 12:9002. [PMID: 35637248 PMCID: PMC9151754 DOI: 10.1038/s41598-022-13159-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 05/20/2022] [Indexed: 11/27/2022] Open
Abstract
Despite advancements made in the therapeutic strategies on hepatocellular carcinoma (HCC), the survival rate of HCC patient is not satisfactory enough. Therefore, there is an urgent need for the valuable prognostic biomarkers in HCC therapy. In this study, we aimed to screen hub genes correlated with prognosis of HCC via multiple databases. 117 HCC-related genes were obtained from the intersection of the four databases. We subsequently identify 10 hub genes (JUN, IL10, CD34, MTOR, PTGS2, PTPRC, SELE, CSF1, APOB, MUC1) from PPI network by Cytoscape software analysis. Significant differential expression of hub genes between HCC tissues and adjacent tissues were observed in UALCAN, HCCDB and HPA databases. These hub genes were significantly associated with immune cell infiltrations and immune checkpoints. The hub genes were correlated with clinical parameters and survival probability of HCC patients. 147 potential targeted therapeutic drugs for HCC were identified through the DGIdb database. These hub genes could be used as novel prognostic biomarkers for HCC therapy.
Collapse
Affiliation(s)
- Zhifeng Lin
- Guangdong Province Key Laboratory of Major Obstetric Diseases, Department of Medical Record, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China
| | - Xuqiong Huang
- Medical Administration Division, Affiliated Huadu Hospital, Southern Medical University (People's Hospiatl of Huadu District), Guangzhou, 510800, China
| | - Xiaohui Ji
- Department of Obstetrics and Gynaecology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Nana Tian
- Department of Medical Record, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China
| | - Yu Gan
- Department of Medical Record, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China
| | - Li Ke
- Guangdong Province Key Laboratory of Major Obstetric Diseases, Department of Medical Record, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China.
| |
Collapse
|
14
|
Diagnosis and management of secondary causes of steatohepatitis. J Hepatol 2021; 74:1455-1471. [PMID: 33577920 DOI: 10.1016/j.jhep.2021.01.045] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 01/09/2021] [Accepted: 01/25/2021] [Indexed: 02/06/2023]
Abstract
The term non-alcoholic fatty liver disease (NAFLD) was originally coined to describe hepatic fat deposition as part of the metabolic syndrome. However, a variety of rare hereditary liver and metabolic diseases, intestinal diseases, endocrine disorders and drugs may underlie, mimic, or aggravate NAFLD. In contrast to primary NAFLD, therapeutic interventions are available for many secondary causes of NAFLD. Accordingly, secondary causes of fatty liver disease should be considered during the diagnostic workup of patients with fatty liver disease, and treatment of the underlying disease should be started to halt disease progression. Common genetic variants in several genes involved in lipid handling and metabolism modulate the risk of progression from steatosis to fibrosis, cirrhosis and hepatocellular carcinoma development in NAFLD, alcohol-related liver disease and viral hepatitis. Hence, we speculate that genotyping of common risk variants for liver disease progression may be equally useful to gauge the likelihood of developing advanced liver disease in patients with secondary fatty liver disease.
Collapse
|
15
|
Luo Z, Huang J, Li Z, Liu Z, Fu L, Hu Y, Shen X. Cajanolactone A, a Stilbenoid From Cajanus canjan (L.) Millsp, Prevents High-Fat Diet-Induced Obesity via Suppressing Energy Intake. Front Pharmacol 2021; 12:695561. [PMID: 34135763 PMCID: PMC8201603 DOI: 10.3389/fphar.2021.695561] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 05/20/2021] [Indexed: 12/13/2022] Open
Abstract
Cajanolactone A (CLA) is a stilbenoid isolated from Cajanus canjan (L.) Millsp with the potential to prevent postmenopausal obesity. In this study, the effect of CLA on high-fat diet (HFD)-induced obesity in female C57BL/6 mice was investigated. It was found that, treatment with CLA reduced the energy intake and effectively protected the mice from HFD-induced body weight gain, fat accumulation within the adipose tissues and liver, and impairment in energy metabolism. Further investigation revealed that CLA significantly down-regulated the expression of ORX, ORXR2, pMCH, and Gal in the hypothalamus and antagonized HFD-induced changes in the expression of UCP1, Pgc-1α, Tfam, and Mfn1 in the inguinal white adipose tissue (iWAT); Caveolin-1, MT and UCP3 in the perigonadal white adipose tissue (pWAT); and Pdhb, IRS2, Mttp, Hadhb, and Cpt1b in the liver. CLA also protected the pWAT and liver from HFD-induced mitochondrial damage. However, neither HFD nor CLA showed an effect on the mass of brown adipose tissue (BAT) or the expression of UCP1 in the BAT. In summary, our findings suggest that CLA is a potential drug candidate for preventing diet-induced obesity, at least in females. CLA works most likely by suppressing the hypothalamic expression of orexigenic genes, which leads to reduced energy intake, and subsequently, reduced fat accumulation, thereby protecting the adipose tissues and the liver from lipid-induced mitochondrial dysfunction.
Collapse
Affiliation(s)
- Zhuohui Luo
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jiawen Huang
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Zhiping Li
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Zhiwen Liu
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Linchun Fu
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yingjie Hu
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xiaoling Shen
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
16
|
Martínez-Hervás S, Real-Collado JT, Ascaso-Gimilio JF. Hypotriglyceridemias/hypolipidemias. CLINICA E INVESTIGACION EN ARTERIOSCLEROSIS : PUBLICACION OFICIAL DE LA SOCIEDAD ESPANOLA DE ARTERIOSCLEROSIS 2021; 33 Suppl 2:63-68. [PMID: 34006356 DOI: 10.1016/j.arteri.2020.12.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 12/31/2020] [Indexed: 06/12/2023]
Abstract
Hypolipoproteinemias are characterized by a decrease in the plasma concentration of lipoproteins. Within them, we find two groups: hypobetalipoproteinemias (HBL), due to a decrease in the plasma concentration of lipoproteins containing apolipoprotein B, and hypoalphalipoproteinemias. Hypolipoproteinemias can be classified according to their origin, into primary and secondary. Primary HBLs are rare entities produced by mutations in different genes. So far, more than 140 mutations have been identified in the APOB, PCSK9, ANGPTL3, MTTP, and SAR1 genes. Early diagnosis and treatment are essential to avoid the development of serious complications. In this review we address the diagnosis and treatment of HBL, especially those in which there is hypotriglyceridemia.
Collapse
Affiliation(s)
- Sergio Martínez-Hervás
- Servicio de Endocrinología y Nutrición, Hospital Clínico Universitario de Valencia-INCLIVA, Valencia, España; Departamento de Medicina, Universitat de Valencia, Valencia, España; CIBER de Diabetes y Enfermedades Metabólicas asociadas (CIBERDEM), Valencia, España.
| | - José Tomás Real-Collado
- Servicio de Endocrinología y Nutrición, Hospital Clínico Universitario de Valencia-INCLIVA, Valencia, España; Departamento de Medicina, Universitat de Valencia, Valencia, España; CIBER de Diabetes y Enfermedades Metabólicas asociadas (CIBERDEM), Valencia, España
| | - Juan Francisco Ascaso-Gimilio
- Departamento de Medicina, Universitat de Valencia, Valencia, España; CIBER de Diabetes y Enfermedades Metabólicas asociadas (CIBERDEM), Valencia, España
| |
Collapse
|
17
|
Zeng X, Wan H, Zhong J, Feng Y, Zhang Z, Wang Y. Large lipid transfer proteins in hepatopancreas of the mud crab Scylla paramamosain. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2021; 38:100801. [PMID: 33667756 DOI: 10.1016/j.cbd.2021.100801] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 01/31/2021] [Accepted: 01/31/2021] [Indexed: 11/28/2022]
Abstract
Large lipid transfer proteins (LLTPs) are extensively involved in various physiological processes. In the present study, five LLTP sequences encoding apolipocrustacein 1 (apoCr 1), apoCr 2, precursor of the large discoidal lipoprotein (dLp) and high density lipoprotein/β-glucan binding protein (HDL-BGBP) (dLp-BGBP), microsomal triglyceride transfer protein (MTP) and clotting protein (CP) were identified in the hepatopancreas of Scylla paramamosain. Of these, apoCr 2, dLp-BGBP, and MTP were newly identified in this species, and the former two proteins were classified into the APO family while the later into the MTP family in phylogenetic trees. The apoCr 1 expression level was dramatically increased in the hepatopancreas towards ovarian maturation, which was extremely greater than that in the ovaries concurrently, likely to meet the considerable requirements of yolk protein and lipids for embryo development. The dLp-BGBP expression level in male crabs was comparable to that in female crabs, supporting HDL-BGBP acts as a major circulatory lipid carrier. The close phylogenetic relationship between dLp-BGBP and the scaffolding protein of lipid transfer particle implied dLp might facilitate lipid transfer between the hepatopancreas and HDL-BGBP-containing lipoproteins. The MTP expression level was positively related to ovarian development in both the hepatopancreas and ovaries, indicating MTP may be involved in lipoprotein assembly in the hepatopancreas and lipid droplet maturation in the ovaries. CP may play a crucial role in embryo development based on high expression level observed in the testes of mature crabs. Our findings provide novel insights into LLTP superfamily members and their functions in decapods.
Collapse
Affiliation(s)
- Xianyuan Zeng
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Fisheries College, Jimei University, 185 Yinjiang Road, Jimei District, Xiamen 361021, China; School of Life Sciences, Ningde Normal University, 1 College Road, Dongqiao Economic and Technological Development Zone, Ningde 352100, China
| | - Haifu Wan
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Fisheries College, Jimei University, 185 Yinjiang Road, Jimei District, Xiamen 361021, China
| | - Jinying Zhong
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Fisheries College, Jimei University, 185 Yinjiang Road, Jimei District, Xiamen 361021, China
| | - Yan Feng
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Fisheries College, Jimei University, 185 Yinjiang Road, Jimei District, Xiamen 361021, China
| | - Ziping Zhang
- Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, College of Animal Science, Fujian Agriculture and Forestry University, 15 Shangxiadian Road, Cangshan District, Fuzhou 350002, China.
| | - Yilei Wang
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Fisheries College, Jimei University, 185 Yinjiang Road, Jimei District, Xiamen 361021, China.
| |
Collapse
|
18
|
Vilar-Gomez E, Gawrieh S, Liang T, McIntyre AD, Hegele RA, Chalasani N. Interrogation of selected genes influencing serum LDL-Cholesterol levels in patients with well characterized NAFLD. J Clin Lipidol 2021; 15:275-291. [PMID: 33454241 PMCID: PMC8187295 DOI: 10.1016/j.jacl.2020.12.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Revised: 12/07/2020] [Accepted: 12/23/2020] [Indexed: 12/28/2022]
Abstract
BACKGROUND The clinical significance of rare mutations in LDL metabolism genes on nonalcoholic fatty liver disease (NAFLD) severity is not well understood. OBJECTIVE To examine the significance of mutations in LDL metabolism genes including apolipoprotein B (APOB), proprotein convertase subtilisin kexin 9 (PCSK9) and LDL receptor (LDLR) in patients with NAFLD. METHODS Patients with biopsy-confirmed NAFLD from the NASH Clinical Research Network studies were stratified into 3 groups of LDL-C (≤50 mg/dL, 130-150 mg/dL, ≥ 190 mg/dL) and then 120 (40 per group) were randomly selected from the strata. We examined the presence of mutations on LDL genes and analyzed its association with selected NAFLD-related features. Multivariable analyses were adjusted for age, race, gender and use of statins. RESULTS Among 40 patients with LDL-C ≤ 50 mg/dL, 7 (18%) patients had heterozygous variants in APOB and 2 had heterozygous variants in PCSK9 (5%). We also found heterozygous mutations in 3 (8%) patients with LDL-C ≥ 190 mg/dL; 2 and 1 located in LDLR and APOE genes, respectively. Compared to wild-type controls with LDL-C ≤ 50, APOB carriers displayed higher levels of alanine aminotransferase (85.86 ± 35.14 U/L vs 45.61 ± 20.84 U/L, Adj. P = 0.002) and steatosis >66% (57% vs 24%, Adj. P = 0.050). These associations remained statistically significant after excluding statin users. Other histological features of NAFLD severity were not different between wild-type controls and APOB mutation carriers. CONCLUSION Mutations in the APOB gene are common among NAFLD patients with very low LDL-C and may be associated with increased aminotransferase levels and steatosis severity.
Collapse
Affiliation(s)
- Eduardo Vilar-Gomez
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Samer Gawrieh
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Tiebing Liang
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Adam D McIntyre
- Department of Biochemistry, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| | - Robert A Hegele
- Department of Biochemistry, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada; Robarts Research Institute, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada; Department of Medicine, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| | - Naga Chalasani
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA.
| |
Collapse
|
19
|
Schade DS, Shey L, Eaton RP. Cholesterol Review: A Metabolically Important Molecule. Endocr Pract 2021; 26:1514-1523. [PMID: 33471744 DOI: 10.4158/ep-2020-0347] [Citation(s) in RCA: 114] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 06/27/2020] [Indexed: 01/28/2023]
Abstract
OBJECTIVE Cholesterol is an important molecule in humans and both its excess and its deficiency cause disease. Most clinicians appreciate its role in stabilizing cellular plasma membranes but are unaware of its myriad other functions. METHODS This review highlights cholesterol's newly recognized important roles in human physiology and pathophysiology. RESULTS The basis for cholesterol's ubiquitous presence in eukaryote organisms is its three part structure involving hydrophilic, hydrophobic, and rigid domains. This structure permits cholesterol to regulate multiple cellular processes ranging from membrane fluidity and permeability to gene transcription. Cholesterol not only serves as a molecule of regulation itself, but also forms the backbone of all steroid hormones and vitamin D analogs. Cholesterol is responsible for growth and development throughout life and may be useful as an anticancer facilitator. Because humans have a limited ability to catabolize cholesterol, it readily accumulates in the body when an excess from the diet or a genetic abnormality occurs. This accumulation results in the foremost cause of death and disease (atherosclerosis) in the Western world. Identification of cholesterol's disease-producing capabilities dates back 5,000 years to the Tyrolean iceman and more recently to ancient mummies from many cultures throughout the world. In contrast, a deficiency of cholesterol in the circulation may result in an inability to distribute vitamins K and E to vital organs with serious consequences. CONCLUSION Understanding the benefits and hazards of cholesterol in the clinical setting will improve the endocrinologist's ability to control diseases associated with this unique molecule. ABBREVIATIONS CVD = cardiovascular disease; HDL = high-density lipoprotein; LDL = low-density lipoprotein; NPC1L1 = Niemann-Pick C-1-like-1 protein; U.S. = United States; USDA = U.S. Department of Agriculture.
Collapse
Affiliation(s)
- David S Schade
- From the (1)University of New Mexico School of Medicine, Department of Internal Medicine, Division of Endocrinology and Metabolism, Albuquerque, New Mexico, and the.
| | - Lynda Shey
- University of New Mexico Hospital, Diabetes Comprehensive Care Center, Albuquerque, New Mexico
| | - R Philip Eaton
- From the (1)University of New Mexico School of Medicine, Department of Internal Medicine, Division of Endocrinology and Metabolism, Albuquerque, New Mexico, and the
| |
Collapse
|
20
|
Huh JY, Reilly SM, Abu-Odeh M, Murphy AN, Mahata SK, Zhang J, Cho Y, Seo JB, Hung CW, Green CR, Metallo CM, Saltiel AR. TANK-Binding Kinase 1 Regulates the Localization of Acyl-CoA Synthetase ACSL1 to Control Hepatic Fatty Acid Oxidation. Cell Metab 2020; 32:1012-1027.e7. [PMID: 33152322 PMCID: PMC7710607 DOI: 10.1016/j.cmet.2020.10.010] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 08/20/2020] [Accepted: 10/12/2020] [Indexed: 12/12/2022]
Abstract
Hepatic TANK (TRAF family member associated NFκB activator)-binding kinase 1 (TBK1) activity is increased during obesity, and administration of a TBK1 inhibitor reduces fatty liver. Surprisingly, liver-specific TBK1 knockout in mice produces fatty liver by reducing fatty acid oxidation. TBK1 functions as a scaffolding protein to localize acyl-CoA synthetase long-chain family member 1 (ACSL1) to mitochondria, which generates acyl-CoAs that are channeled for β-oxidation. TBK1 is induced during fasting and maintained in the unphosphorylated, inactive state, enabling its high affinity binding to ACSL1 in mitochondria. In TBK1-deficient liver, ACSL1 is shifted to the endoplasmic reticulum to promote fatty acid re-esterification in lieu of oxidation in response to fasting, which accelerates hepatic lipid accumulation. The impaired fatty acid oxidation in TBK1-deficient hepatocytes is rescued by the expression of kinase-dead TBK1. Thus, TBK1 operates as a rheostat to direct the fate of fatty acids in hepatocytes, supporting oxidation when inactive during fasting and promoting re-esterification when activated during obesity.
Collapse
Affiliation(s)
- Jin Young Huh
- Department of Medicine, University of California, San Diego, San Diego, CA 92093, USA
| | - Shannon M Reilly
- Department of Medicine, University of California, San Diego, San Diego, CA 92093, USA
| | - Mohammad Abu-Odeh
- Department of Medicine, University of California, San Diego, San Diego, CA 92093, USA
| | - Anne N Murphy
- Department of Pharmacology, University of California, San Diego, San Diego, CA 92093, USA
| | - Sushil K Mahata
- Department of Medicine, University of California, San Diego, San Diego, CA 92093, USA; VA San Diego Healthcare System, San Diego, CA 92161, USA
| | - Jinyu Zhang
- Division of Biological Sciences, University of California, San Diego, San Diego, CA 92093, USA
| | - Yoori Cho
- Division of Biological Sciences, University of California, San Diego, San Diego, CA 92093, USA
| | - Jong Bae Seo
- Department of Biosciences, Mokpo National University, Jeonnam 58554, Republic of Korea
| | - Chao-Wei Hung
- Department of Medicine, University of California, San Diego, San Diego, CA 92093, USA
| | - Courtney R Green
- Department of Bioengineering, University of California, San Diego, San Diego, CA 92093, USA
| | - Christian M Metallo
- Department of Bioengineering, University of California, San Diego, San Diego, CA 92093, USA
| | - Alan R Saltiel
- Department of Medicine, University of California, San Diego, San Diego, CA 92093, USA; Department of Pharmacology, University of California, San Diego, San Diego, CA 92093, USA.
| |
Collapse
|
21
|
Rimbert A, Vanhoye X, Coulibaly D, Marrec M, Pichelin M, Charrière S, Peretti N, Valéro R, Wargny M, Carrié A, Lindenbaum P, Deleuze JF, Genin E, Redon R, Rollat-Farnier PA, Goxe D, Degraef G, Marmontel O, Divry E, Bigot-Corbel E, Moulin P, Cariou B, Di Filippo M. Phenotypic Differences Between Polygenic and Monogenic Hypobetalipoproteinemia. Arterioscler Thromb Vasc Biol 2020; 41:e63-e71. [PMID: 33207932 DOI: 10.1161/atvbaha.120.315491] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
OBJECTIVE Primary hypobetalipoproteinemia is characterized by LDL-C (low-density lipoprotein cholesterol) concentrations below the fifth percentile. Primary hypobetalipoproteinemia mostly results from heterozygous mutations in the APOB (apolipoprotein B) and PCSK9 genes, and a polygenic origin is hypothesized in the remaining cases. Hypobetalipoproteinemia patients present an increased risk of nonalcoholic fatty liver disease and steatohepatitis. Here, we compared hepatic alterations between monogenic, polygenic, and primary hypobetalipoproteinemia of unknown cause. Approach and Results: Targeted next-generation sequencing was performed in a cohort of 111 patients with hypobetalipoproteinemia to assess monogenic and polygenic origins using an LDL-C-dedicated polygenic risk score. Forty patients (36%) had monogenic hypobetalipoproteinemia, 38 (34%) had polygenic hypobetalipoproteinemia, and 33 subjects (30%) had hypobetalipoproteinemia from an unknown cause. Patients with monogenic hypobetalipoproteinemia had lower LDL-C and apolipoprotein B plasma levels compared with those with polygenic hypobetalipoproteinemia. Liver function was assessed by hepatic ultrasonography and liver enzymes levels. Fifty-nine percent of patients with primary hypobetalipoproteinemia presented with liver steatosis, whereas 21% had increased alanine aminotransferase suggestive of liver injury. Monogenic hypobetalipoproteinemia was also associated with an increased prevalence of liver steatosis (81% versus 29%, P<0.001) and liver injury (47% versus 0%) compared with polygenic hypobetalipoproteinemia. CONCLUSIONS This study highlights the importance of genetic diagnosis in the clinical care of primary hypobetalipoproteinemia patients. It shows for the first time that a polygenic origin of hypobetalipoproteinemia is associated with a lower risk of liver steatosis and liver injury versus monogenic hypobetalipoproteinemia. Thus, polygenic risk score is a useful tool to establish a more personalized follow-up of primary hypobetalipoproteinemia patients.
Collapse
Affiliation(s)
- Antoine Rimbert
- Université de Nantes, CNRS, INSERM, l'institut du thorax, France (A.R., M.P., M.W., P.L., R.R., B.C.)
| | - Xavier Vanhoye
- Hospices Civils de Lyon, UF Dyslipidémies Service de Biochimie et de Biologie Moléculaire Grand Est, Bron, France (X.V., D.C., O.M., E.D., M.D.F.)
| | - Dramane Coulibaly
- Hospices Civils de Lyon, UF Dyslipidémies Service de Biochimie et de Biologie Moléculaire Grand Est, Bron, France (X.V., D.C., O.M., E.D., M.D.F.)
| | - Marie Marrec
- L'institut du thorax, CHU NANTES, CIC INSERM 1413, France (M.M., M.P., M.W., B.C.)
| | - Matthieu Pichelin
- L'institut du thorax, CHU NANTES, CIC INSERM 1413, France (M.M., M.P., M.W., B.C.)
| | - Sybil Charrière
- CarMen Laboratory, INSERM, INRA, INSA Lyon, Université Claude Bernard Lyon 1, Pierre-Bénite, France (S.C., N.P., O.M., P.M., M.D.F.).,Hospices Civils de Lyon, Fédération d'endocrinologie, maladies métaboliques, diabète et nutrition, Hôpital Louis Pradel, Bron, France (S.C., P.M.)
| | - Noël Peretti
- CarMen Laboratory, INSERM, INRA, INSA Lyon, Université Claude Bernard Lyon 1, Pierre-Bénite, France (S.C., N.P., O.M., P.M., M.D.F.).,Hospices Civils de Lyon, Service de Gastroentérologie Hépatologie et Nutrition Pédiatrique, HFME, Bron, France (N.P.)
| | - René Valéro
- Aix Marseille Univ, APHM, INSERM, INRAE, C2VN, University Hospital La Conception, Department of Nutrition, Metabolic Diseases and Endocrinology, Marseille, France (R.V.)
| | - Matthieu Wargny
- Université de Nantes, CNRS, INSERM, l'institut du thorax, France (A.R., M.P., M.W., P.L., R.R., B.C.).,L'institut du thorax, CHU NANTES, CIC INSERM 1413, France (M.M., M.P., M.W., B.C.)
| | - Alain Carrié
- Sorbonne Universite, Inserm UMR_S116, Institute of Cardiometabolism and Nutrition (ICAN), Hopital Pitie-Salpetriere 75651 Paris, France (A.C.).,UF de génétique de l'Obésité et des Dyslipidémies, Laboratoire de Biochimie Endocrinienne et Oncologique, APHP, Sorbonne Université, Hôpital de la Pitié-salpêtrière, Paris, France (A.C.)
| | - Pierre Lindenbaum
- Université de Nantes, CNRS, INSERM, l'institut du thorax, France (A.R., M.P., M.W., P.L., R.R., B.C.)
| | - Jean-François Deleuze
- Centre National de Recherche en Génomique Humaine, Institut de Génomique, CEA, Evry, France (J.-F.D.)
| | - Emmanuelle Genin
- Inserm, Univ Brest, EFS, CHU Brest, UMR 1078, GGB, France (E.G.)
| | - Richard Redon
- Université de Nantes, CNRS, INSERM, l'institut du thorax, France (A.R., M.P., M.W., P.L., R.R., B.C.)
| | | | - Didier Goxe
- CPAM, Centre d'examens de santé de la CPAM de la Vendée, La Roche-sur-Yon, France (D.G.)
| | | | - Oriane Marmontel
- Hospices Civils de Lyon, UF Dyslipidémies Service de Biochimie et de Biologie Moléculaire Grand Est, Bron, France (X.V., D.C., O.M., E.D., M.D.F.).,CarMen Laboratory, INSERM, INRA, INSA Lyon, Université Claude Bernard Lyon 1, Pierre-Bénite, France (S.C., N.P., O.M., P.M., M.D.F.)
| | - Eléonore Divry
- Hospices Civils de Lyon, UF Dyslipidémies Service de Biochimie et de Biologie Moléculaire Grand Est, Bron, France (X.V., D.C., O.M., E.D., M.D.F.)
| | - Edith Bigot-Corbel
- Laboratoire de Biochimie, CHU de Nantes, Hôpital G et R Laënnec, Bd Jacques Monod, Saint-Herblain (E.B.-C.)
| | - Philippe Moulin
- CarMen Laboratory, INSERM, INRA, INSA Lyon, Université Claude Bernard Lyon 1, Pierre-Bénite, France (S.C., N.P., O.M., P.M., M.D.F.).,Hospices Civils de Lyon, Fédération d'endocrinologie, maladies métaboliques, diabète et nutrition, Hôpital Louis Pradel, Bron, France (S.C., P.M.)
| | - Bertrand Cariou
- Université de Nantes, CNRS, INSERM, l'institut du thorax, France (A.R., M.P., M.W., P.L., R.R., B.C.).,L'institut du thorax, CHU NANTES, CIC INSERM 1413, France (M.M., M.P., M.W., B.C.)
| | - Mathilde Di Filippo
- Hospices Civils de Lyon, UF Dyslipidémies Service de Biochimie et de Biologie Moléculaire Grand Est, Bron, France (X.V., D.C., O.M., E.D., M.D.F.).,CarMen Laboratory, INSERM, INRA, INSA Lyon, Université Claude Bernard Lyon 1, Pierre-Bénite, France (S.C., N.P., O.M., P.M., M.D.F.)
| |
Collapse
|
22
|
Peloso GM, Nomura A, Khera AV, Chaffin M, Won HH, Ardissino D, Danesh J, Schunkert H, Wilson JG, Samani N, Erdmann J, McPherson R, Watkins H, Saleheen D, McCarthy S, Teslovich TM, Leader JB, Lester Kirchner H, Marrugat J, Nohara A, Kawashiri MA, Tada H, Dewey FE, Carey DJ, Baras A, Kathiresan S. Rare Protein-Truncating Variants in APOB, Lower Low-Density Lipoprotein Cholesterol, and Protection Against Coronary Heart Disease. CIRCULATION-GENOMIC AND PRECISION MEDICINE 2020; 12:e002376. [PMID: 30939045 PMCID: PMC7044908 DOI: 10.1161/circgen.118.002376] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Supplemental Digital Content is available in the text. Background Familial hypobetalipoproteinemia is a genetic disorder caused by rare protein-truncating variants (PTV) in the gene encoding APOB (apolipoprotein B), the major protein component of LDL (low-density lipoprotein) and triglyceride-rich lipoprotein particles. Whether heterozygous APOB deficiency is associated with decreased risk for coronary heart disease (CHD) is uncertain. We combined family-based and large scale gene-sequencing to characterize the association of rare PTVs in APOB with circulating LDL-C (LDL cholesterol), triglycerides, and risk for CHD. Methods We sequenced the APOB gene in 29 Japanese hypobetalipoproteinemia families, as well as 57 973 individuals derived from 12 CHD case-control studies—18 442 with early-onset CHD and 39 531 controls. We defined PTVs as variants that lead to a premature stop, disrupt canonical splice-sites, or lead to insertions/deletions that shift reading frame. We tested the association of rare APOB PTV carrier status with blood lipid levels and CHD. Results Among 29 familial hypobetalipoproteinemia families, 8 families harbored APOB PTVs. Carrying 1 APOB PTV was associated with 55 mg/dL lower LDL-C (P=3×10-5) and 53% lower triglyceride level (P=2×10-4). Among 12 case-control studies, an APOB PTV was present in 0.038% of CHD cases as compared to 0.092% of controls. APOB PTV carrier status was associated with a 43 mg/dL lower LDL-C (P=2×10-7), a 30% decrease in triglycerides (P=5×10-4), and a 72% lower risk for CHD (odds ratio, 0.28; 95% CI, 0.12–0.64; P=0.002). Conclusions Rare PTV mutations in APOB which are associated with lower LDL-C and reduced triglycerides also confer protection against CHD.
Collapse
Affiliation(s)
- Gina M Peloso
- Department of Biostatistics, Boston University School of Public Health, MA (G.M.P.)
| | - Akihiro Nomura
- Department of Cardiovascular and Internal Medicine, Kanazawa University Graduate School of Medicine, Kanazawa, Japan (A. Nomura, A. Nohara, M.K., H.T.)
| | - Amit V Khera
- Program in Medical and Population Genetics, Broad Institute, Cambridge, MA (A.V.K., M.C., S.K.).,Cardiovascular Research Center (A.V.K., S.K.), Center for Genomic Medicine (A.V.K., S.K.), and Department of Medicine (A.V.K., S.K.), Massachusetts General Hospital, Boston, MA
| | - Mark Chaffin
- Program in Medical and Population Genetics, Broad Institute, Cambridge, MA (A.V.K., M.C., S.K.)
| | - Hong-Hee Won
- Samsung Advanced Institute for Health Sciences and Technology, Sungkyunkwan University, Samsung Medical Center, Seoul, Republic of Korea (H.-H.W.)
| | - Diego Ardissino
- Cardiology, Azienda Ospedaliero-Universitaria di Parma, University of Parma, Parma, Italy (D.A.).,ASTC: Associazione per lo Studio Della Trombosi in Cardiologia, Pavia, Italy (D.A.)
| | - John Danesh
- MRC/BHF Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care (J.D.), University of Cambridge, Cambridge, United Kingdom.,The National Institute for Health Research Blood and Transplant Research Unit (NIHR BTRU) in Donor Health & Genomics (J.D.), University of Cambridge, Cambridge, United Kingdom.,Wellcome Trust Sanger Institute, Genome Campus, Hinxton, United Kingdom (J.D.)
| | - Heribert Schunkert
- Deutsches Herzzentrum München, Technische Universität München, Deutsches Zentrum für Herz-Kreislauf-Forschung, München, Germany (H.S.)
| | - James G Wilson
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, MS (J.G.W.)
| | - Nilesh Samani
- Department of Cardiovascular Sciences, University of Leicester, Leicester, United Kingdom (N.S.).,NIHR Leicester Biomedical Research Center, Glenfield Hospital, Leicester, United Kingdom (N.S.)
| | - Jeanette Erdmann
- Institute for Integrative and Experimental Genomics, University of Lübeck, Germany (J.E.)
| | - Ruth McPherson
- University of Ottawa Heart Institute, Ottawa, Canada (R.M.)
| | - Hugh Watkins
- Cardiovascular Medicine, Radcliffe Department of Medicine and Wellcome Trust Center for Human Genetics, University of Oxford, Oxford, United Kingdom (H.W.)
| | - Danish Saleheen
- Department of Biostatistics and Epidemiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA (D.S.)
| | - Shane McCarthy
- Regeneron Genetics Center, Tarrytown, NY (S.M., T.M.T., F.E.D., A.B.)
| | - Tanya M Teslovich
- Regeneron Genetics Center, Tarrytown, NY (S.M., T.M.T., F.E.D., A.B.)
| | - Joseph B Leader
- Geisinger Health System, Danville, PA (J.B.L., H.L.K., D.J.C.)
| | | | - Jaume Marrugat
- Registre Gironí del Cor group, IMIM (Hospital del Mar Research Institute), Barcelona, Spain (J.M.). CIBER Enfermedades Cardiovasculares (CIBERCV), Barcelona, Spain (J.M.)
| | - Atsushi Nohara
- Department of Cardiovascular and Internal Medicine, Kanazawa University Graduate School of Medicine, Kanazawa, Japan (A. Nomura, A. Nohara, M.K., H.T.)
| | - Masa-Aki Kawashiri
- Department of Cardiovascular and Internal Medicine, Kanazawa University Graduate School of Medicine, Kanazawa, Japan (A. Nomura, A. Nohara, M.K., H.T.)
| | - Hayato Tada
- Department of Cardiovascular and Internal Medicine, Kanazawa University Graduate School of Medicine, Kanazawa, Japan (A. Nomura, A. Nohara, M.K., H.T.)
| | - Frederick E Dewey
- Regeneron Genetics Center, Tarrytown, NY (S.M., T.M.T., F.E.D., A.B.)
| | - David J Carey
- Geisinger Health System, Danville, PA (J.B.L., H.L.K., D.J.C.)
| | - Aris Baras
- Regeneron Genetics Center, Tarrytown, NY (S.M., T.M.T., F.E.D., A.B.)
| | - Sekar Kathiresan
- Program in Medical and Population Genetics, Broad Institute, Cambridge, MA (A.V.K., M.C., S.K.).,Cardiovascular Research Center (A.V.K., S.K.), Center for Genomic Medicine (A.V.K., S.K.), and Department of Medicine (A.V.K., S.K.), Massachusetts General Hospital, Boston, MA
| |
Collapse
|
23
|
Musialik J, Boguszewska-Chachulska A, Pojda-Wilczek D, Gorzkowska A, Szymańczak R, Kania M, Kujawa-Szewieczek A, Wojcieszyn M, Hartleb M, Więcek A. A Rare Mutation in The APOB Gene Associated with Neurological Manifestations in Familial Hypobetalipoproteinemia. Int J Mol Sci 2020; 21:ijms21041439. [PMID: 32093271 PMCID: PMC7073066 DOI: 10.3390/ijms21041439] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Revised: 02/10/2020] [Accepted: 02/15/2020] [Indexed: 12/29/2022] Open
Abstract
Clinical phenotypes of familial hypobetalipoproteinemia (FHBL) are related to a number of defective apolipoprotein B (APOB) alleles. Fatty liver disease is a typical manifestation, but serious neurological symptoms can appear. In this study, genetic analysis of the APOB gene and ophthalmological diagnostics were performed for family members with FHBL. Five relatives with FHBL, including a proband who developed neurological disorders, were examined. A sequencing analysis of the whole coding region of the APOB gene, including flanking intronic regions, was performed using the next-generation sequencing (NGS) method. Electrophysiological ophthalmological examinations were also done. In the proband and his affected relatives, NGS identified the presence of the pathogenic, rare heterozygous splicing variant c.3696+1G>T. Two known heterozygous missense variants-c.2188G>A, p.(Val730Ile) and c.8353A>C, p.(Asn2785His)-in the APOB gene were also detected. In all patients, many ophthalmologic abnormalities in electrophysiological tests were also found. The identified splicing variant c.3696+1G>T can be associated with observed autosomal, dominant FHBL with coexisting neurological symptoms, and both identified missense variants could be excluded as the main cause of observed clinical signs, according to mutation databases and the literature. Electroretinography examination is a sensitive method for the detection of early neuropathy and should therefore be recommended for the care of patients with FHBL.
Collapse
Affiliation(s)
- Joanna Musialik
- Department of Nephrology, Transplantation and Internal Medicine, Medical University of Silesia in Katowice, 40-055 Katowice, Poland; (A.K.-S.); (A.W.)
- Correspondence:
| | | | - Dorota Pojda-Wilczek
- Department of Ophthalmology, Medical University of Silesia in Katowice, 40-055 Katowice, Poland;
| | - Agnieszka Gorzkowska
- Department of Neurology, Department of Neurorehabilitation, Medical University of Silesia in Katowice, 40-055 Katowice, Poland;
| | | | - Magdalena Kania
- Genomed SA, 02-971 Warsaw, Poland; (A.B.-C.); (R.S.); (M.K.)
| | - Agata Kujawa-Szewieczek
- Department of Nephrology, Transplantation and Internal Medicine, Medical University of Silesia in Katowice, 40-055 Katowice, Poland; (A.K.-S.); (A.W.)
| | - Małgorzata Wojcieszyn
- Department of Gastroenterology, II John Paul Pediatric Center, 41-200 Sosnowiec, Poland;
| | - Marek Hartleb
- Department of Gastroenterology and Hepatology, Medical University of Silesia in Katowice, 40-055 Katowice, Poland;
| | - Andrzej Więcek
- Department of Nephrology, Transplantation and Internal Medicine, Medical University of Silesia in Katowice, 40-055 Katowice, Poland; (A.K.-S.); (A.W.)
| |
Collapse
|
24
|
Koerner CM, Roberts BS, Neher SB. Endoplasmic reticulum quality control in lipoprotein metabolism. Mol Cell Endocrinol 2019; 498:110547. [PMID: 31442546 PMCID: PMC6814580 DOI: 10.1016/j.mce.2019.110547] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 08/16/2019] [Accepted: 08/17/2019] [Indexed: 12/26/2022]
Abstract
Lipids play a critical role in energy metabolism, and a suite of proteins is required to deliver lipids to tissues. Several of these proteins require an intricate endoplasmic reticulum (ER) quality control (QC) system and unique secondary chaperones for folding. Key examples include apolipoprotein B (apoB), which is the primary scaffold for many lipoproteins, dimeric lipases, which hydrolyze triglycerides from circulating lipoproteins, and the low-density lipoprotein receptor (LDLR), which clears cholesterol-rich lipoproteins from the circulation. ApoB requires specialized proteins for lipidation, dimeric lipases lipoprotein lipase (LPL) and hepatic lipase (HL) require a transmembrane maturation factor for secretion, and the LDLR requires several specialized, domain-specific chaperones. Deleterious mutations in these proteins or their chaperones may result in dyslipidemias, which are detrimental to human health. Here, we review the ER quality control systems that ensure secretion of apoB, LPL, HL, and LDLR with a focus on the specialized chaperones required by each protein.
Collapse
Affiliation(s)
- Cari M Koerner
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, USA
| | - Benjamin S Roberts
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, USA
| | - Saskia B Neher
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, USA.
| |
Collapse
|
25
|
Chen L, Chen XW, Huang X, Song BL, Wang Y, Wang Y. Regulation of glucose and lipid metabolism in health and disease. SCIENCE CHINA-LIFE SCIENCES 2019; 62:1420-1458. [PMID: 31686320 DOI: 10.1007/s11427-019-1563-3] [Citation(s) in RCA: 180] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Accepted: 10/15/2019] [Indexed: 02/08/2023]
Abstract
Glucose and fatty acids are the major sources of energy for human body. Cholesterol, the most abundant sterol in mammals, is a key component of cell membranes although it does not generate ATP. The metabolisms of glucose, fatty acids and cholesterol are often intertwined and regulated. For example, glucose can be converted to fatty acids and cholesterol through de novo lipid biosynthesis pathways. Excessive lipids are secreted in lipoproteins or stored in lipid droplets. The metabolites of glucose and lipids are dynamically transported intercellularly and intracellularly, and then converted to other molecules in specific compartments. The disorders of glucose and lipid metabolism result in severe diseases including cardiovascular disease, diabetes and fatty liver. This review summarizes the major metabolic aspects of glucose and lipid, and their regulations in the context of physiology and diseases.
Collapse
Affiliation(s)
- Ligong Chen
- School of Pharmaceutical Sciences, Beijing Advanced Innovation Center for Structural Biology, Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Tsinghua University, Beijing, 100084, China.
| | - Xiao-Wei Chen
- State Key Laboratory of Membrane Biology, Institute of Molecular Medicine, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871, China.
| | - Xun Huang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Bao-Liang Song
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, 430072, China.
| | - Yan Wang
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, 430072, China.
| | - Yiguo Wang
- MOE Key Laboratory of Bioinformatics, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
26
|
Lee G, Jeong YS, Kim DW, Kwak MJ, Koh J, Joo EW, Lee JS, Kah S, Sim YE, Yim SY. Clinical significance of APOB inactivation in hepatocellular carcinoma. Exp Mol Med 2018; 50:1-12. [PMID: 30429453 PMCID: PMC6235894 DOI: 10.1038/s12276-018-0174-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2018] [Revised: 07/03/2018] [Accepted: 07/18/2018] [Indexed: 12/19/2022] Open
Abstract
Recent findings from The Cancer Genome Atlas project have provided a comprehensive map of genomic alterations that occur in hepatocellular carcinoma (HCC), including unexpected mutations in apolipoprotein B (APOB). We aimed to determine the clinical significance of this non-oncogenetic mutation in HCC. An Apob gene signature was derived from genes that differed between control mice and mice treated with siRNA specific for Apob (1.5-fold difference; P < 0.005). Human gene expression data were collected from four independent HCC cohorts (n = 941). A prediction model was constructed using Bayesian compound covariate prediction, and the robustness of the APOB gene signature was validated in HCC cohorts. The correlation of the APOB signature with previously validated gene signatures was performed, and network analysis was conducted using ingenuity pathway analysis. APOB inactivation was associated with poor prognosis when the APOB gene signature was applied in all human HCC cohorts. Poor prognosis with APOB inactivation was consistently observed through cross-validation with previously reported gene signatures (NCIP A, HS, high-recurrence SNUR, and high RS subtypes). Knowledge-based gene network analysis using genes that differed between low-APOB and high-APOB groups in all four cohorts revealed that low-APOB activity was associated with upregulation of oncogenic and metastatic regulators, such as HGF, MTIF, ERBB2, FOXM1, and CD44, and inhibition of tumor suppressors, such as TP53 and PTEN. In conclusion, APOB inactivation is associated with poor outcome in patients with HCC, and APOB may play a role in regulating multiple genes involved in HCC development.
Collapse
Affiliation(s)
- Gena Lee
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Yun Seong Jeong
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Do Won Kim
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Min Jun Kwak
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jiwon Koh
- Department of Pathology, Seoul National University College of Medicine, Seoul, Korea
| | - Eun Wook Joo
- Department of Gynecology, School of Medicine, Kyung Hee University, Seoul, Korea
| | - Ju-Seog Lee
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Susie Kah
- Department of Internal Medicine, School of Medicine, Kyung Hee University, Seoul, Korea
| | - Yeong-Eun Sim
- Department of Internal Medicine, School of Medicine, Kyung Hee University, Seoul, Korea
| | - Sun Young Yim
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA. .,Department of Internal Medicine, Korea University, College of Medicine, Seoul, Korea.
| |
Collapse
|
27
|
New Sequencing technologies help revealing unexpected mutations in Autosomal Dominant Hypercholesterolemia. Sci Rep 2018; 8:1943. [PMID: 29386597 PMCID: PMC5792649 DOI: 10.1038/s41598-018-20281-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Accepted: 01/15/2018] [Indexed: 01/25/2023] Open
Abstract
Autosomal dominant hypercholesterolemia (ADH) is characterized by elevated LDL-C levels leading to coronary heart disease. Four genes are implicated in ADH: LDLR, APOB, PCSK9 and APOE. Our aim was to identify new mutations in known genes, or in new genes implicated in ADH. Thirteen French families with ADH were recruited and studied by exome sequencing after exclusion, in their probands, of mutations in the LDLR, PCSK9 and APOE genes and fragments of exons 26 and 29 of APOB gene. We identified in one family a p.Arg50Gln mutation in the APOB gene, which occurs in a region not usually associated with ADH. Segregation and in-silico analysis suggested that this mutation is disease causing in the family. We identified in another family with the p.Ala3396Thr mutation of APOB, one patient with a severe phenotype carrying also a mutation in PCSK9: p.Arg96Cys. This is the first compound heterozygote reported with a mutation in APOB and PCSK9. Functional studies proved that the p.Arg96Cys mutation leads to increased LDL receptor degradation. This work shows that Next-Generation Sequencing (exome, genome or targeted sequencing) are powerful tools to find new mutations and identify compound heterozygotes, which will lead to better diagnosis and treatment of ADH.
Collapse
|
28
|
Machado MV, Diehl AM. Pathogenesis of Nonalcoholic Fatty Liver Disease. ZAKIM AND BOYER'S HEPATOLOGY 2018:369-390.e14. [DOI: 10.1016/b978-0-323-37591-7.00025-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
29
|
ArulJothi KN, Suruthi Abirami B, Devi A. Genetic spectrum of low density lipoprotein receptor gene variations in South Indian population. Clin Chim Acta 2017; 478:28-36. [PMID: 29269200 DOI: 10.1016/j.cca.2017.12.024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Revised: 12/14/2017] [Accepted: 12/17/2017] [Indexed: 10/18/2022]
Abstract
BACKGROUND Low density lipoprotein receptor (LDLR) is a membrane bound receptor maintaining cholesterol homeostasis along with Apolipoprotein B (APOB), Proprotein Convertase Subtilisin/Kexin type 9 (PCSK9) and other genes of lipid metabolism. Any pathogenic variation in these genes alters the function of the receptor and leads to Familial Hypercholesterolemia (FH) and other cardiovascular diseases. OBJECTIVE This study was aimed at screening the LDLR, APOB and PCSK9 genes in Hypercholesterolemic patients to define the genetic spectrum of FH in Indian population. METHODS Familial Hypercholesterolemia patients (n=78) of South Indian Tamil population with LDL cholesterol and Total cholesterol levels above 4.9mmol/l and 7.5mmol/l with family history of Myocardial infarction were involved. DNA was isolated by organic extraction method from blood samples and LDLR, APOB and PCSK9 gene exons were amplified using primers that cover exon-intron boundaries. The amplicons were screened using High Resolution Melt (HRM) Analysis and the screened samples were sequenced after purification. RESULTS This study reports 20 variations in South Indian population for the first time. In this set of variations 9 are novel variations which are reported for the first time, 11 were reported in other studies also. The in silico analysis for all the variations detected in this study were done to predict the probabilistic effect in pathogenicity of FH. CONCLUSION This study adds 9 novel variations and 11 recurrent variations to the spectrum of LDLR gene mutations in Indian population. All these variations are reported for the first time in Indian population. This spectrum of variations was different from the variations of previous Indian reports.
Collapse
Affiliation(s)
- K N ArulJothi
- Cardiovascular Genetics Group, Department of Genetic Genetic Engineering, SRM University, India
| | - B Suruthi Abirami
- Cardiovascular Genetics Group, Department of Genetic Genetic Engineering, SRM University, India
| | - Arikketh Devi
- Cardiovascular Genetics Group, Department of Genetic Genetic Engineering, SRM University, India.
| |
Collapse
|
30
|
Boffa MB. Emerging Therapeutic Options for Lowering of Lipoprotein(a): Implications for Prevention of Cardiovascular Disease. Curr Atheroscler Rep 2017; 18:69. [PMID: 27761705 DOI: 10.1007/s11883-016-0622-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
PURPOSE OF REVIEW Elevated plasma concentrations of lipoprotein(a) (Lp(a)) are an independent and causal risk factor for cardiovascular diseases including coronary artery disease, ischemic stroke, and calcific aortic valve stenosis. This review summarizes the rationale for Lp(a) lowering and surveys relevant clinical trial data using a variety of agents capable of lowering Lp(a). RECENT FINDINGS Contemporary guidelines and recommendations outline populations of patients who should be screened for elevated Lp(a) and who might benefit from Lp(a) lowering. Therapies including drugs and apheresis have been described that lower Lp(a) levels modestly (∼20 %) to dramatically (∼80 %). Existing therapies that lower Lp(a) also have beneficial effects on other aspects of the lipid profile, with the exception of Lp(a)-specific apheresis and an antisense oligonucleotide that targets the mRNA encoding apolipoprotein(a). No clinical trials conducted to date have managed to answer the key question of whether Lp(a) lowering confers a benefit in terms of ameliorating cardiovascular risk, although additional outcome trials of therapies that lower Lp(a) are ongoing. It is more likely, however, that Lp(a)-specific agents will provide the most appropriate approach for addressing this question.
Collapse
Affiliation(s)
- Michael B Boffa
- Department of Biochemistry, Room 4245A Robarts Research Institute, University of Western Ontario, 1151 Richmond Street North, London, ON, Canada, N6A 5B7.
| |
Collapse
|
31
|
Di Costanzo A, Di Leo E, Noto D, Cefalù AB, Minicocci I, Polito L, D'Erasmo L, Cantisani V, Spina R, Tarugi P, Averna M, Arca M. Clinical and biochemical characteristics of individuals with low cholesterol syndromes: A comparison between familial hypobetalipoproteinemia and familial combined hypolipidemia. J Clin Lipidol 2017; 11:1234-1242. [PMID: 28733173 DOI: 10.1016/j.jacl.2017.06.013] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Revised: 05/27/2017] [Accepted: 06/17/2017] [Indexed: 12/16/2022]
Abstract
BACKGROUND The most frequent monogenic causes of low plasma cholesterol are familial hypobetalipoproteinemia (FHBL1) because of truncating mutations in apolipoprotein B coding gene (APOB) and familial combined hypolipidemia (FHBL2) due to loss-of-function mutations in ANGPTL3 gene. OBJECTIVE A direct comparison of lipid phenotypes of these 2 conditions has never been carried out. In addition, although an increased prevalence of liver steatosis in FHBL1 has been consistently reported, the hepatic consequences of FHBL2 are not well established. METHODS We investigated 350 subjects, 67 heterozygous carriers of APOB mutations, 63 carriers of the p.S17* mutation in ANGPTL3 (57 heterozygotes and 6 homozygotes), and 220 noncarrier normolipemic controls. Prevalence and degree of hepatic steatosis were assessed by ultrasonography. RESULTS A steady decrease of low-density lipoprotein cholesterol levels were observed from heterozygous to homozygous FHBL2 and to FHBL1 individuals, with the lowest levels in heterozygous FHBL1 carrying truncating mutations in exons 1 to 25 of APOB (P for trend <.001). Plasma triglycerides levels were similar in heterozygous FHBL1 and homozygous FHBL2 individuals, but higher in heterozygous FHBL2. The lowest high-density lipoprotein cholesterol levels were detected in homozygous FHBL2 (P for trend <.001). Compared with controls, prevalence and severity of hepatic steatosis were increased in heterozygous FHBL1 (P < .001), but unchanged in FHBL2 individuals. CONCLUSION Truncating APOB mutations showed the more striking low-density lipoprotein cholesterol lowering effect compared with p.S17* mutation in ANGPTL3. Reduced high-density lipoprotein cholesterol levels were the unique lipid characteristic associated with FHBL2. Mutations impairing liver synthesis or secretion of apolipoprotein B are crucial to increase the risk of liver steatosis.
Collapse
Affiliation(s)
- Alessia Di Costanzo
- Department of Internal Medicine and Medical Specialties, Sapienza University of Rome, Rome, Italy.
| | - Enza Di Leo
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Davide Noto
- Department of Biomedicine, Internal Medicine and Medical Specialties, University of Palermo, Palermo, Italy
| | - Angelo Baldassare Cefalù
- Department of Biomedicine, Internal Medicine and Medical Specialties, University of Palermo, Palermo, Italy
| | - Ilenia Minicocci
- Department of Internal Medicine and Medical Specialties, Sapienza University of Rome, Rome, Italy
| | - Luca Polito
- Department of Internal Medicine and Medical Specialties, Sapienza University of Rome, Rome, Italy
| | - Laura D'Erasmo
- Department of Internal Medicine and Medical Specialties, Sapienza University of Rome, Rome, Italy
| | - Vito Cantisani
- Department of Radiological Sciences, Sapienza University of Rome, Rome, Italy
| | - Rossella Spina
- Department of Biomedicine, Internal Medicine and Medical Specialties, University of Palermo, Palermo, Italy
| | - Patrizia Tarugi
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Maurizio Averna
- Department of Biomedicine, Internal Medicine and Medical Specialties, University of Palermo, Palermo, Italy
| | - Marcello Arca
- Department of Internal Medicine and Medical Specialties, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
32
|
Gross JJ, Schwinn AC, Schmitz-Hsu F, Menzi F, Drögemüller C, Albrecht C, Bruckmaier RM. Rapid Communication: Cholesterol deficiency-associated APOB mutation impacts lipid metabolism in Holstein calves and breeding bulls. J Anim Sci 2017; 94:1761-6. [PMID: 27136033 DOI: 10.2527/jas.2016-0439] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
During the last months, the number of reports on Holstein calves suffering from incurable idiopathic diarrhea dramatically increased. Affected calves showed severe hypocholesterolemia and mostly died within days up to a few months after birth. This new autosomal monogenic recessive inherited fat metabolism disorder, termed cholesterol deficiency (CD), is caused by a loss of function mutation of the bovine gene. The objective of the present study was to investigate specific components of lipid metabolism in 6 homozygous for the mutation (CDS) and 6 normal Holstein calves with different genotypes. Independent of sex, CDS had significantly lower plasma concentrations of total cholesterol (TC), free cholesterol (FC), high-density lipoprotein cholesterol (HDL-C), low-density lipoprotein cholesterol (LDL-C), very-low-density lipoprotein cholesterol (VLDL-C), triacylglycerides (TAG), and phospholipids (PL) compared with homozygous wild-type calves ( < 0.05). Furthermore, we studied the effect of the genotype on cholesterol metabolism in adult Holstein breeding bulls of Swissgenetics. Among a total of 254 adult males, the homozygous mutant genotype was absent, 36 bulls were heterozygous carriers (CDC), and 218 bulls were homozygous wild-type (CDF). In CDC bulls, plasma concentrations of TC, FC, HDL-C, LDL-C, VLDL-C, TAG, and PL were lower compared with CDF bulls ( < 0.05). The ratios of FC:cholesteryl esters (CE) and FC:TC were higher in CDC bulls compared with CDF bulls, whereas the ratio of CE:TC was lower in CDC bulls compared with CDF bulls ( < 0.01). In conclusion, the CD-associated mutation was shown to affect lipid metabolism in affected Holstein calves and adult breeding bulls. Besides cholesterol, the concentrations of PL, TAG, and lipoproteins also were distinctly reduced in homozygous and heterozygous carriers of the mutation. Beyond malabsorption of dietary lipids, deleterious effects of apolipoprotein B deficiency on hepatic lipid metabolism, steroid biosynthesis, and cell membrane function can be expected, which may result in unspecific symptoms of reduced fertility, growth, and health.
Collapse
|
33
|
Widdowson WM, McGowan A, Phelan J, Boran G, Reynolds J, Gibney J. Vascular Disease Is Associated With the Expression of Genes for Intestinal Cholesterol Transport and Metabolism. J Clin Endocrinol Metab 2017; 102:326-335. [PMID: 27841945 DOI: 10.1210/jc.2016-2728] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Accepted: 11/07/2016] [Indexed: 01/10/2023]
Abstract
CONTEXT Intestinal cholesterol metabolism is important in influencing postprandial lipoprotein concentrations, and might be important in the development of vascular disease. OBJECTIVE This study evaluated associations between expression of intestinal cholesterol metabolism genes, postprandial lipid metabolism, and endothelial function/early vascular disease in human subjects. DESIGN/PATIENTS One hundred patients undergoing routine oesophago-gastro-duodenoscopy were recruited. mRNA levels of Nieman-Pick C1-like 1 protein (NPC1L1), ABC-G5, ABC-G8, ABC-A1, microsomal tissue transport protein (MTTP), and sterol-regulatory element-binding protein (SREBP)-2 were measured in duodenal biopsies using quantitative reverse transcription polymerase chain reaction. Postprandially, serum lipid and glycemic profiles were measured, endothelial function was assessed using fasting, and postprandial flow-mediated dilatation (FMD) and carotid intima-media thickness (IMT). Subjects were divided into those above and below the median value of relative expression of each gene, and results were compared between the groups. RESULTS There were no between-group differences in demographic variables or classical cardiovascular risks. For all genes, the postprandial triglyceride incremental area under the curve was greater (P < 0.05) in the group with greater expression. Postprandial apolipoprotein B48 (ApoB48) levels were greater (P < 0.05) in groups with greater expression of NPC1L1, ABC-G8, and SREBP-2. For all genes, postprandial but not fasting FMD was lower (P < 0.01) in the group with greater expression. Triglyceride and ApoB48 levels correlated significantly with postprandial FMD. Carotid artery IMT was greater (P < 0.05) in groups with greater expression of MTTP, ABC-A1, and SREBP-2. CONCLUSION Intestinal cholesterol metabolism gene expression is significantly associated with postprandial increment in triglycerides, intestinal ApoB48, and reduced postprandial FMD. Some genes were also associated with increased IMT. These findings suggest a role of intestinal cholesterol metabolism in development of early vascular disease.
Collapse
Affiliation(s)
| | - Anne McGowan
- Department of Endocrinology and Diabetes Mellitus and
| | - James Phelan
- Department of Surgery, St. James's Hospital, Dublin 8, Ireland
| | - Gerard Boran
- Department of Chemical Pathology, Tallaght Hospital, Tallaght, Dublin 24, Ireland; and
| | - John Reynolds
- Department of Surgery, St. James's Hospital, Dublin 8, Ireland
| | - James Gibney
- Department of Endocrinology and Diabetes Mellitus and
| |
Collapse
|
34
|
Yamamoto T, Wada F, Harada-Shiba M. Development of Antisense Drugs for Dyslipidemia. J Atheroscler Thromb 2016; 23:1011-25. [PMID: 27466159 PMCID: PMC5090806 DOI: 10.5551/jat.rv16001] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Abnormal elevation of low-density lipoprotein (LDL) and triglyceride-rich lipoproteins in plasma as well as dysfunction of anti-atherogenic high-density lipoprotein (HDL) have both been recognized as essential components of the pathogenesis of atherosclerosis and are classified as dyslipidemia. This review describes the arc of development of antisense oligonucleotides for the treatment of dyslipidemia. Chemically-armed antisense candidates can act on various kinds of transcripts, including mRNA and miRNA, via several different endogenous antisense mechanisms, and have exhibited potent systemic anti-dyslipidemic effects. Here, we present specific cutting-edge technologies have recently been brought into antisense strategies, and describe how they have improved the potency of antisense drugs in regard to pharmacokinetics and pharmacodynamics. In addition, we discuss perspectives for the use of armed antisense oligonucleotides as new clinical options for dyslipidemia, in the light of outcomes of recent clinical trials and safety concerns indicated by several clinical and preclinical studies.
Collapse
|
35
|
Abstract
The introduction of statins ≈ 30 years ago ushered in the era of lipid lowering as the most effective way to reduce risk of atherosclerotic cardiovascular disease. Nonetheless, residual risk remains high, and statin intolerance is frequently encountered in clinical practice. After a long dry period, the field of therapeutics targeted to lipids and atherosclerosis has entered a renaissance. Moreover, the demonstration of clinical benefits from the addition of ezetimibe to statin therapy in subjects with acute coronary syndromes has renewed the enthusiasm for the cholesterol hypothesis and the hope that additional agents that lower low-density lipoprotein will decrease risk of atherosclerotic cardiovascular disease. Drugs in the orphan disease category are now available for patients with the most extreme hypercholesterolemia. Furthermore, discovery and rapid translation of a novel biological pathway has given rise to a new class of cholesterol-lowering drugs, the proprotein convertase subtilisin kexin-9 inhibitors. Trials of niacin added to statin have failed to demonstrate cardiac benefits, and 3 cholesterol ester transfer protein inhibitors have also failed to reduce atherosclerotic cardiovascular disease risk, despite producing substantial increases in HDL levels. Although the utility of triglyceride-lowering therapies remains uncertain, 2 large clinical trials are testing the influence of omega-3 polyunsaturated fatty acids on atherosclerotic events in hypertriglyceridemia. Novel antisense therapies targeting apolipoprotein C-III (for triglyceride reduction) and apo(a) (for lipoprotein(a) reduction) are showing a promising trajectory. Finally, 2 large clinical trials are formally putting the inflammatory hypothesis of atherosclerosis to the test and may open a new avenue for cardiovascular disease risk reduction.
Collapse
Affiliation(s)
- Michael D Shapiro
- From the Knight Cardiovascular Institute, Center for Preventive Cardiology, Oregon Health & Science University, Portland, OR
| | - Sergio Fazio
- From the Knight Cardiovascular Institute, Center for Preventive Cardiology, Oregon Health & Science University, Portland, OR.
| |
Collapse
|
36
|
Wang Y, Liu L, Zhang H, Fan J, Zhang F, Yu M, Shi L, Yang L, Lam SM, Wang H, Chen X, Wang Y, Gao F, Shui G, Xu Z. Mea6 controls VLDL transport through the coordinated regulation of COPII assembly. Cell Res 2016; 26:787-804. [PMID: 27311593 DOI: 10.1038/cr.2016.75] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Revised: 05/02/2016] [Accepted: 05/09/2016] [Indexed: 12/16/2022] Open
Abstract
Lipid accumulation, which may be caused by the disturbance in very low density lipoprotein (VLDL) secretion in the liver, can lead to fatty liver disease. VLDL is synthesized in endoplasmic reticulum (ER) and transported to Golgi apparatus for secretion into plasma. However, the underlying molecular mechanism for VLDL transport is still poorly understood. Here we show that hepatocyte-specific deletion of meningioma-expressed antigen 6 (Mea6)/cutaneous T cell lymphoma-associated antigen 5C (cTAGE5C) leads to severe fatty liver and hypolipemia in mice. Quantitative lipidomic and proteomic analyses indicate that Mea6/cTAGE5 deletion impairs the secretion of different types of lipids and proteins, including VLDL, from the liver. Moreover, we demonstrate that Mea6/cTAGE5 interacts with components of the ER coat protein complex II (COPII) which, when depleted, also cause lipid accumulation in hepatocytes. Our findings not only reveal several novel factors that regulate lipid transport, but also provide evidence that Mea6 plays a critical role in lipid transportation through the coordinated regulation of the COPII machinery.
Collapse
Affiliation(s)
- Yaqing Wang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Liang Liu
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China.,University of Chinese Academy of Sciences, Beijing 100101, China
| | - Hongsheng Zhang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China.,University of Chinese Academy of Sciences, Beijing 100101, China
| | - Junwan Fan
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China.,University of Chinese Academy of Sciences, Beijing 100101, China
| | - Feng Zhang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China.,University of Chinese Academy of Sciences, Beijing 100101, China
| | - Mei Yu
- School of Life Science, Shandong University, Jinan 250100, China
| | - Lei Shi
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Lin Yang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Sin Man Lam
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Huimin Wang
- Institute of Molecular Medicine, Peking University, Beijing 100871, China
| | - Xiaowei Chen
- Institute of Molecular Medicine, Peking University, Beijing 100871, China
| | - Yingchun Wang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Fei Gao
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Guanghou Shui
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Zhiheng Xu
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China.,Translational Medical Center for Stem Cell Therapy, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| |
Collapse
|
37
|
Saleem S, Heuer C, Sun C, Kendall D, Moreno J, Vishwanath R. Technical note: The role of circulating low-density lipoprotein levels as a phenotypic marker for Holstein cholesterol deficiency in dairy cattle. J Dairy Sci 2016; 99:5545-5550. [PMID: 27108167 DOI: 10.3168/jds.2015-10805] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Accepted: 03/14/2016] [Indexed: 11/19/2022]
Abstract
With the recent discovery of a Holstein cholesterol deficiency (HCD) haplotype, the USDA has labeled many dairy animals as HCD carriers based on haplotype and pedigree analysis. We set out to investigate the effect of HCD status on various cholesterol transport molecules, namely low-density lipoprotein cholesterol (LDL-C), high-density lipoprotein cholesterol, and triglycerides in both males and females. A genome-wide association study was also conducted to narrow down the genomic region correlated with varying LDL-C levels. In the study, 34 HCD carrier animals showed significantly lower cholesterol and LDL-C levels compared with their 34 closely related, non-HCD controls. The genome-wide association study based on 73 animals using 56,198 SNP markers revealed an association with chromosome 11 in the region of 66,218,925 to 66,946,746 bp. We also tested the effect of HCD status on sperm quality traits using fresh ejaculates and frozen-thawed semen samples, but did not find any discriminating effects. Our study has demonstrated the use of LDL-C as a key phenotypic marker for determining HCD status in dairy cattle and this is the first study that clearly shows a cause-effect relationship of the HCD haplotype on circulating LDL-C.
Collapse
Affiliation(s)
- S Saleem
- Inguran, LLC dba STGenetics, 22575 SH6 South, Navasota, TX 77868
| | - C Heuer
- Inguran, LLC dba STGenetics, 22575 SH6 South, Navasota, TX 77868
| | - C Sun
- Inguran, LLC dba STGenetics, 22575 SH6 South, Navasota, TX 77868
| | - D Kendall
- Inguran, LLC dba STGenetics, 22575 SH6 South, Navasota, TX 77868
| | - J Moreno
- Inguran, LLC dba STGenetics, 22575 SH6 South, Navasota, TX 77868
| | - R Vishwanath
- Inguran, LLC dba STGenetics, 22575 SH6 South, Navasota, TX 77868.
| |
Collapse
|
38
|
Kivelä AM, Huusko J, Ylä-Herttuala S. Prospect and progress of gene therapy in treating atherosclerosis. Expert Opin Biol Ther 2015; 15:1699-712. [PMID: 26328616 DOI: 10.1517/14712598.2015.1084282] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
INTRODUCTION Despite considerable improvements in therapies, atherosclerotic cardiovascular diseases remain the leading cause of death worldwide. Therefore, in addition to current treatment options, new therapeutic approaches are still needed. AREAS COVERED In this review, novel gene and RNA interference-based therapy approaches and promising target genes for treating atherosclerosis are addressed. In addition, relevant animal models for the demonstration of the efficacy of different gene therapy applications, and current progress toward more efficient, targeted and safer gene transfer vectors are reviewed. EXPERT OPINION Atherosclerosis represents a complex multifactorial disease that is dependent on the interplay between lipoprotein metabolism, cellular reactions and inflammation. Recent advances and novel targets, especially in the field of RNA interference-based therapies, are very promising. However, it should be noted that the modulation of a particular gene is not as clearly associated with a complex polygenic disease as it is in the case of monogenic diseases. A deeper understanding of molecular mechanisms of atherosclerosis, further progress in vector development and the demonstration of treatment efficacy in relevant animal models will be required before gene therapy of atherosclerosis meets its clinical reality.
Collapse
Affiliation(s)
- Annukka M Kivelä
- a 1 University of Eastern Finland, A.I. Virtanen Institute for Molecular Sciences, Department of Biotechnology and Molecular Medicine , Kuopio, Finland +358 403 552 075 ;
| | - Jenni Huusko
- a 1 University of Eastern Finland, A.I. Virtanen Institute for Molecular Sciences, Department of Biotechnology and Molecular Medicine , Kuopio, Finland +358 403 552 075 ;
| | - Seppo Ylä-Herttuala
- a 1 University of Eastern Finland, A.I. Virtanen Institute for Molecular Sciences, Department of Biotechnology and Molecular Medicine , Kuopio, Finland +358 403 552 075 ; .,b 2 Science Service Center , Kuopio, Finland.,c 3 Kuopio University Hospital, Gene Therapy Unit , Kuopio, Finland
| |
Collapse
|
39
|
Ramasamy I. Recent advances in physiological lipoprotein metabolism. Clin Chem Lab Med 2015; 52:1695-727. [PMID: 23940067 DOI: 10.1515/cclm-2013-0358] [Citation(s) in RCA: 141] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2013] [Accepted: 07/08/2013] [Indexed: 01/21/2023]
Abstract
Research into lipoprotein metabolism has developed because understanding lipoprotein metabolism has important clinical indications. Lipoproteins are risk factors for cardiovascular disease. Recent advances include the identification of factors in the synthesis and secretion of triglyceride rich lipoproteins, chylomicrons (CM) and very low density lipoproteins (VLDL). These included the identification of microsomal transfer protein, the cotranslational targeting of apoproteinB (apoB) for degradation regulated by the availability of lipids, and the characterization of transport vesicles transporting primordial apoB containing particles to the Golgi. The lipase maturation factor 1, glycosylphosphatidylinositol-anchored high density lipoprotein binding protein 1 and an angiopoietin-like protein play a role in lipoprotein lipase (LPL)-mediated hydrolysis of secreted CMs and VLDL so that the right amount of fatty acid is delivered to the right tissue at the right time. Expression of the low density lipoprotein (LDL) receptor is regulated at both transcriptional and post-transcriptional level. Proprotein convertase subtilisin/kexin type 9 (PCSK9) has a pivotal role in the degradation of LDL receptor. Plasma remnant lipoproteins bind to specific receptors in the liver, the LDL receptor, VLDL receptor and LDL receptor-like proteins prior to removal from the plasma. Reverse cholesterol transport occurs when lipid free apoAI recruits cholesterol and phospholipid to assemble high density lipoprotein (HDL) particles. The discovery of ABC transporters (ABCA1 and ABCG1) and scavenger receptor class B type I (SR-BI) provided further information on the biogenesis of HDL. In humans HDL-cholesterol can be returned to the liver either by direct uptake by SR-BI or through cholesteryl ester transfer protein exchange of cholesteryl ester for triglycerides in apoB lipoproteins, followed by hepatic uptake of apoB containing particles. Cholesterol content in cells is regulated by several transcription factors, including the liver X receptor and sterol regulatory element binding protein. This review summarizes recent advances in knowledge of the molecular mechanisms regulating lipoprotein metabolism.
Collapse
|
40
|
Giammanco A, Cefalù AB, Noto D, Averna MR. The pathophysiology of intestinal lipoprotein production. Front Physiol 2015; 6:61. [PMID: 25852563 PMCID: PMC4367171 DOI: 10.3389/fphys.2015.00061] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Accepted: 02/14/2015] [Indexed: 12/12/2022] Open
Abstract
Intestinal lipoprotein production is a multistep process, essential for the absorption of dietary fats and fat-soluble vitamins. Chylomicron assembly begins in the endoplasmic reticulum with the formation of primordial, phospholipids-rich particles that are then transported to the Golgi for secretion. Several classes of transporters play a role in the selective uptake and/or export of lipids through the villus enterocytes. Once secreted in the lymph stream, triglyceride-rich lipoproteins (TRLs) are metabolized by Lipoprotein lipase (LPL), which catalyzes the hydrolysis of triacylglycerols of very low density lipoproteins (VLDLs) and chylomicrons, thereby delivering free fatty acids to various tissues. Genetic mutations in the genes codifying for these proteins are responsible of different inherited disorders affecting chylomicron metabolism. This review focuses on the molecular pathways that modulate the uptake and the transport of lipoproteins of intestinal origin and it will highlight recent findings on TRLs assembly.
Collapse
Affiliation(s)
| | | | | | - Maurizio R. Averna
- Dipartimento Biomedico di Medicina Interna e Specialistica, Università degli Studi di PalermoPalermo, Italy
| |
Collapse
|
41
|
Understanding PCSK9 and anti-PCSK9 therapies. J Clin Lipidol 2015; 9:170-86. [DOI: 10.1016/j.jacl.2015.01.001] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2014] [Revised: 01/05/2015] [Accepted: 01/06/2015] [Indexed: 12/20/2022]
|
42
|
Cefalù AB, Norata GD, Ghiglioni DG, Noto D, Uboldi P, Garlaschelli K, Baragetti A, Spina R, Valenti V, Pederiva C, Riva E, Terracciano L, Zoja A, Grigore L, Averna MR, Catapano AL. Homozygous familial hypobetalipoproteinemia: two novel mutations in the splicing sites of apolipoprotein B gene and review of the literature. Atherosclerosis 2015; 239:209-17. [PMID: 25618028 DOI: 10.1016/j.atherosclerosis.2015.01.014] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2014] [Revised: 12/21/2014] [Accepted: 01/13/2015] [Indexed: 01/07/2023]
Abstract
OBJECTIVE Familial hypobetalipoproteinemia (FHBL) is autosomal codominant disorder of lipoprotein metabolism characterized by low plasma levels of total cholesterol (TC), low-density lipoprotein-cholesterol (LDL-C) and apolipoprotein B (apoB) below the 5(th) percentile of the distribution in the population. Patients with the clinical diagnosis of homozygous FHBL (Ho-FHBL) are extremely rare and few patients have been characterized at the molecular level. Here we report the medical history and the molecular characterization of one paediatric patient with clinical features of Ho-FHBL. METHODS A one month old infant with failure to thrive, severe hypocholesterolemia and acanthocytosis was clinically and genetically characterized. Molecular characterization of the proband and her parents was performed by direct sequencing of the APOB gene and functional role of the identified mutations was assessed by the minigene methodology. RESULTS The proband was found carrying two novel splicing mutations of the APOB gene (c.3696+1G > C and c.3697-1G > A). CHOK1H8 cells expressing minigenes harbouring the mutations showed that these two mutations were associated with the retention of intron 23 and skipping of exon 24, resulting in two truncated apoB fragments of approximate size of 26-28 % of ApoB-100 and the total absence of apoB. CONCLUSION We describe the first case of Ho-FHBL due to two splicing mutations affecting both the donor and the acceptor splice sites of the same intron of the APOB gene occurring in the same patient. The clinical management of the proband is discussed and a review of the clinical and genetic features of the published Ho-FHBL cases is reported.
Collapse
Affiliation(s)
- Angelo B Cefalù
- Dipartimento Biomedico di Medicina Interna e Specialistica (DIBIMIS), Università degli Studi di Palermo, Italy
| | - Giuseppe D Norata
- Department of Pharmacology and Biomolecular Sciences, Università degli Studi di Milano, Milano, Italy
| | | | - Davide Noto
- Dipartimento Biomedico di Medicina Interna e Specialistica (DIBIMIS), Università degli Studi di Palermo, Italy
| | - Patrizia Uboldi
- Department of Pharmacology and Biomolecular Sciences, Università degli Studi di Milano, Milano, Italy
| | - Katia Garlaschelli
- Department of Pharmacology and Biomolecular Sciences, Università degli Studi di Milano, Milano, Italy
| | - Andrea Baragetti
- Department of Pharmacology and Biomolecular Sciences, Università degli Studi di Milano, Milano, Italy
| | - Rossella Spina
- Dipartimento Biomedico di Medicina Interna e Specialistica (DIBIMIS), Università degli Studi di Palermo, Italy
| | - Vincenza Valenti
- Dipartimento Biomedico di Medicina Interna e Specialistica (DIBIMIS), Università degli Studi di Palermo, Italy
| | - Cristina Pederiva
- Dipartimento di Scienze della Salute, Università degli Studi di Milano, Italy
| | - Enrica Riva
- Dipartimento di Scienze della Salute, Università degli Studi di Milano, Italy
| | | | - Alexa Zoja
- Department of Paediatrics, Melloni Hospital, Milano, Italy
| | - Liliana Grigore
- Department of Pharmacology and Biomolecular Sciences, Università degli Studi di Milano, Milano, Italy; IRCCS Multimedica, Milano, Italy
| | - Maurizio R Averna
- Dipartimento Biomedico di Medicina Interna e Specialistica (DIBIMIS), Università degli Studi di Palermo, Italy.
| | - Alberico L Catapano
- Department of Pharmacology and Biomolecular Sciences, Università degli Studi di Milano, Milano, Italy; IRCCS Multimedica, Milano, Italy.
| |
Collapse
|
43
|
Genetic therapies to lower cholesterol. Vascul Pharmacol 2015; 64:11-5. [DOI: 10.1016/j.vph.2014.12.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2014] [Revised: 12/05/2014] [Accepted: 12/16/2014] [Indexed: 12/11/2022]
|
44
|
PCSK9 inhibition in LDL cholesterol reduction: Genetics and therapeutic implications of very low plasma lipoprotein levels. Pharmacol Ther 2015; 145:58-66. [DOI: 10.1016/j.pharmthera.2014.07.004] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2013] [Accepted: 07/11/2014] [Indexed: 01/15/2023]
|
45
|
Nassir F, Ibdah JA. Role of mitochondria in nonalcoholic fatty liver disease. Int J Mol Sci 2014; 15:8713-42. [PMID: 24837835 PMCID: PMC4057755 DOI: 10.3390/ijms15058713] [Citation(s) in RCA: 254] [Impact Index Per Article: 23.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2014] [Revised: 05/04/2014] [Accepted: 05/07/2014] [Indexed: 12/15/2022] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) affects about 30% of the general population in the United States and includes a spectrum of disease that includes simple steatosis, non-alcoholic steatohepatitis (NASH), fibrosis and cirrhosis. Significant insight has been gained into our understanding of the pathogenesis of NALFD; however the key metabolic aberrations underlying lipid accumulation in hepatocytes and the progression of NAFLD remain to be elucidated. Accumulating and emerging evidence indicate that hepatic mitochondria play a critical role in the development and pathogenesis of steatosis and NAFLD. Here, we review studies that document a link between the pathogenesis of NAFLD and hepatic mitochondrial dysfunction with particular focus on new insights into the role of impaired fatty acid oxidation, the transcription factor peroxisome proliferator-activated receptor-γ coactivator-1α (PGC-1α), and sirtuins in development and progression of NAFLD.
Collapse
Affiliation(s)
- Fatiha Nassir
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of Missouri, Columbia, MO 65212, USA.
| | - Jamal A Ibdah
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of Missouri, Columbia, MO 65212, USA.
| |
Collapse
|
46
|
Kozlitina J, Smagris E, Stender S, Nordestgaard BG, Zhou HH, Tybjærg-Hansen A, Vogt TF, Hobbs HH, Cohen JC. Exome-wide association study identifies a TM6SF2 variant that confers susceptibility to nonalcoholic fatty liver disease. Nat Genet 2014; 46:352-6. [PMID: 24531328 PMCID: PMC3969786 DOI: 10.1038/ng.2901] [Citation(s) in RCA: 917] [Impact Index Per Article: 83.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2013] [Accepted: 01/27/2014] [Indexed: 02/06/2023]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is the most common form of liver disease. To elucidate the molecular basis of NAFLD, we performed an exome-wide association study of liver fat content. Three variants were associated with higher liver fat levels at the exome-wide significance level of 3.6 × 10(-7): two in PNPLA3, an established locus for NAFLD, and one (encoding p.Glu167Lys) in TM6SF2, a gene of unknown function. The TM6SF2 variant encoding p.Glu167Lys was also associated with higher circulating levels of alanine transaminase, a marker of liver injury, and with lower levels of low-density lipoprotein-cholesterol (LDL-C), triglycerides and alkaline phosphatase in 3 independent populations (n > 80,000). When recombinant protein was expressed in cultured hepatocytes, 50% less Glu167Lys TM6SF2 protein was produced relative to wild-type TM6SF2. Adeno-associated virus-mediated short hairpin RNA knockdown of Tm6sf2 in mice increased liver triglyceride content by threefold and decreased very-low-density lipoprotein (VLDL) secretion by 50%. Taken together, these data indicate that TM6SF2 activity is required for normal VLDL secretion and that impaired TM6SF2 function causally contributes to NAFLD.
Collapse
Affiliation(s)
- Julia Kozlitina
- 1] McDermott Center for Human Growth and Development, University of Texas Southwestern Medical Center, Dallas, Texas, USA. [2]
| | - Eriks Smagris
- 1] McDermott Center for Human Growth and Development, University of Texas Southwestern Medical Center, Dallas, Texas, USA. [2]
| | - Stefan Stender
- Department of Clinical Biochemistry, Rigshospitalet, Copenhagen University Hospital and Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Børge G Nordestgaard
- 1] Copenhagen General Population Study, Herlev Hospital, Copenhagen University Hospital and Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark. [2] Department of Clinical Biochemistry, Herlev Hospital, Copenhagen University Hospital and Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark. [3] Copenhagen City Heart Study, Frederiksberg Hospital, Copenhagen University Hospital and Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Heather H Zhou
- Merck Research Laboratories, Kenilworth, New Jersey, USA
| | - Anne Tybjærg-Hansen
- 1] Department of Clinical Biochemistry, Rigshospitalet, Copenhagen University Hospital and Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark. [2] Copenhagen General Population Study, Herlev Hospital, Copenhagen University Hospital and Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark. [3] Copenhagen City Heart Study, Frederiksberg Hospital, Copenhagen University Hospital and Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Thomas F Vogt
- Merck Research Laboratories, Kenilworth, New Jersey, USA
| | - Helen H Hobbs
- 1] McDermott Center for Human Growth and Development, University of Texas Southwestern Medical Center, Dallas, Texas, USA. [2] Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Jonathan C Cohen
- McDermott Center for Human Growth and Development, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| |
Collapse
|
47
|
Jiang ZG, Mukamal K, Tapper E, Robson SC, Tsugawa Y. Low LDL-C and high HDL-C levels are associated with elevated serum transaminases amongst adults in the United States: a cross-sectional study. PLoS One 2014; 9:e85366. [PMID: 24454851 PMCID: PMC3893181 DOI: 10.1371/journal.pone.0085366] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2013] [Accepted: 11/25/2013] [Indexed: 01/14/2023] Open
Abstract
Background Dyslipidemia, typically recognized as high serum triglyceride, high low-density lipoprotein cholesterol (LDL-C) or low high-density lipoprotein cholesterol (HDL-C) levels, are associated with nonalcoholic fatty liver disease (NAFLD). However, low LDL-C levels could result from defects in lipoprotein metabolism or impaired liver synthetic function, and may serve as ab initio markers for unrecognized liver diseases. Whether such relationships exist in the general population has not been investigated. We hypothesized that despite common conception that low LDL-C is desirable, it might be associated with elevated liver enzymes due to metabolic liver diseases. Methods and Findings We examined the associations between alanine aminotransferase (ALT), aspartate aminotransferase (AST) and major components of serum lipid profiles in a nationally representative sample of 23,073 individuals, who had no chronic viral hepatitis and were not taking lipid-lowering medications, from the National Health and Nutrition Examination Survey (NHANES) from 1999 to 2010. ALT and AST exhibited non-linear U-shaped associations with LDL-C and HDL-C, but not with triglyceride. After adjusting for potential confounders, individuals with LDL-C less than 40 and 41–70 mg/dL were associated with 4.2 (95% CI 1.5–11.7, p = 0.007) and 1.6 (95% CI 1.1–2.5, p = 0.03) times higher odds of abnormal liver enzymes respectively, when compared with those with LDL-C values 71–100 mg/dL (reference group). Surprisingly, those with HDL-C levels above 100 mg/dL was associated with 3.2 (95% CI 2.1–5.0, p<0.001) times higher odds of abnormal liver enzymes, compared with HDL-C values of 61–80 mg/dL. Conclusions Both low LDL-C and high HDL-C, often viewed as desirable, were associated with significantly higher odds of elevated transaminases in the general U.S. adult population. Our findings underscore an underestimated biological link between lipoprotein metabolism and liver diseases, and raise a potential need for liver evaluation among over 10 million people with particularly low LDL-C or high HDL-C in the United States.
Collapse
Affiliation(s)
- Zhenghui Gordon Jiang
- Division of Gastroenterology and Hepatology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Kenneth Mukamal
- Division of General Medicine and Primary Care, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Elliot Tapper
- Division of Gastroenterology and Hepatology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Simon C Robson
- Division of Gastroenterology and Hepatology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Yusuke Tsugawa
- Division of General Medicine and Primary Care, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, United States of America ; Harvard University Interfaculty Initiative in Health Policy, Harvard University, Cambridge, Massachusetts, United States of America
| |
Collapse
|
48
|
Martín-Morales R, García-Díaz JD, Tarugi P, González-Santos P, Saavedra-Vallejo P, Magnolo L, Mesa-Latorre JM, di Leo E, Valdivielso P. Familial hypobetalipoproteinemia: analysis of three Spanish cases with two new mutations in the APOB gene. Gene 2013; 531:92-6. [PMID: 24001780 DOI: 10.1016/j.gene.2013.08.049] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2013] [Revised: 08/13/2013] [Accepted: 08/14/2013] [Indexed: 01/25/2023]
Abstract
Extremely low LDL-cholesterol concentrations are very unusual and generally related with comorbidities accompanying malnutrition. Less frequently low LDL-cholesterol levels result from mutations in the APOB, PCSK9, ANGPTL3, SAR1B and MTTP genes (primary hypobetalipoproteinemia). We investigated three patients with plasma LDL-cholesterol levels below the fifth percentile of the Spanish population. We recorded data on demographic and anthropometric characteristics, life style habits, physical examination, liver ultrasound and lipid and lipoprotein levels, in the probands and their first-degree relatives. Secondary causes of hypocholesterolemia were ruled out by clinical study, complementary tests and follow-up. The APOB, MTTP and SAR1B genes were sequenced. Patients were found to be heterozygotes for point mutations located in the exon 26 of the APOB gene. One patient, with fatty liver, carried a previously described mutation (c.7600C>T) (Arg2507X), causing the formation of truncated Apo B-55.25. The other two mutations producing truncations are new. One asymptomatic patient carried the Arg3672X (Apo B-80.93) and the other with fatty liver and steatorrhea carried the Ser2184fsVal2193X (Apo B-48.32). Our study reinforces the concept that in the heterozygous carriers of truncated Apo Bs, the clinical manifestations of FHBL are dependent on the size of the truncations.
Collapse
Affiliation(s)
- R Martín-Morales
- Unidad de Lípidos, Unidad de Gestión Clínica de Medicina Interna, Instituto de Biomedicina de Málaga (IBIMA), Hospital Universitario Virgen de la Victoria, Universidad de Malaga, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Abstract
Elevated low-density lipoprotein cholesterol (LDL-C) is an established cause of cardiovascular disease and subsequent adverse events. The efficacy and safety of lowering plasma LDL-C to reduce the risk of coronary heart disease (CHD) and secondary event rates are now well established. What has not been established, however, is a plasma LDL-C lower threshold level of safety and efficacy. Here we review intensive plasma LDL-C-lowering with statins and argue that even further reductions of plasma LDL-C than current guideline targets is likely to safely reduce cardiovascular event rates. We discuss how to achieve very low levels of plasma LDL-C using both traditional and novel LDL-lowering therapies.
Collapse
Affiliation(s)
- Daniel P Sherbet
- University of Texas Southwestern Medical Center, Dallas, TX, USA
| | | | | | | |
Collapse
|
50
|
Rivas MA, Pirinen M, Neville MJ, Gaulton KJ, Moutsianas L, Lindgren CM, Karpe F, McCarthy MI, Donnelly P. Assessing association between protein truncating variants and quantitative traits. Bioinformatics 2013; 29:2419-26. [PMID: 23860716 PMCID: PMC3777107 DOI: 10.1093/bioinformatics/btt409] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
MOTIVATION In sequencing studies of common diseases and quantitative traits, power to test rare and low frequency variants individually is weak. To improve power, a common approach is to combine statistical evidence from several genetic variants in a region. Major challenges are how to do the combining and which statistical framework to use. General approaches for testing association between rare variants and quantitative traits include aggregating genotypes and trait values, referred to as 'collapsing', or using a score-based variance component test. However, little attention has been paid to alternative models tailored for protein truncating variants. Recent studies have highlighted the important role that protein truncating variants, commonly referred to as 'loss of function' variants, may have on disease susceptibility and quantitative levels of biomarkers. We propose a Bayesian modelling framework for the analysis of protein truncating variants and quantitative traits. RESULTS Our simulation results show that our models have an advantage over the commonly used methods. We apply our models to sequence and exome-array data and discover strong evidence of association between low plasma triglyceride levels and protein truncating variants at APOC3 (Apolipoprotein C3). AVAILABILITY Software is available from http://www.well.ox.ac.uk/~rivas/mamba
Collapse
Affiliation(s)
- Manuel A Rivas
- Wellcome Trust Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7BN, UK, Institute for Molecular Medicine Finland, University of Helsinki, Helsinki 00290, Finland, Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of Medicine, Oxford OX3 7LJ, UK, NIHR Oxford Biomedical Research Centre, OUH Trust, Oxford OX3 7LE, UK and Department of Statistics, University of Oxford, Oxford OX1 3TG, UK
| | | | | | | | | | | | | | | | | | | |
Collapse
|