1
|
Tore EC, Adriaans BC, Olsen T, Vinknes KJ, Kooi ME, Elshorbagy AK, Bastani NE, Dagnelie PC, Eussen SJPM, Gundersen TE, Kožich V, Refsum H, Retterstøl K, Stolt ETK, van Greevenbroek MMJ. Estimated stearoyl-CoA desaturase activity mediates the associations of total cysteine with adiposity: The Maastricht Study. J Clin Lipidol 2025; 19:348-357. [PMID: 40024839 DOI: 10.1016/j.jacl.2024.11.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 10/17/2024] [Accepted: 11/13/2024] [Indexed: 03/04/2025]
Abstract
BACKGROUND Plasma sulfur amino acids (SAAs), particularly cysteine, are associated with obesity. One proposed mechanism is the altered regulation of the stearoyl-CoA desaturase (SCD) enzyme. Changes in the SCD enzyme activity have been linked to obesity, as well as to plasma SAA concentrations. OBJECTIVE This study aimed to investigate whether estimated SCD activity mediates the associations between plasma SAAs and measures of overall adiposity and specific fat depots. METHODS We examined cross-sectional data from a subset of the Maastricht Study (n = 1129, 50.7% men, 56.7% with (pre)diabetes). Concentrations of methionine, total homocysteine, cystathionine, total cysteine (tCys), total glutathione (tGSH), and taurine were measured in fasting plasma. Outcomes included measures of overall, peripheral and central adiposity, and liver fat. SCD activity was estimated by ratios of serum fatty acids as SCD16 and SCD18 indices. The associations between plasma SAAs and measures of adiposity or liver fat were examined with multiple linear regression analysis. Multiple mediation analysis was used to investigate whether the significant associations were mediated by SCD16 and SCD18 indices. RESULTS Plasma tCys was positively associated with all adiposity measures (β ranged from 0.15 to 0.30). SCD16 significantly mediated all associations (proportion mediated ranged from 5.1% to 9.7%). Inconsistent mediation effects were found for SCD18. Despite a significant inverse association of plasma tGSH with all adiposity measures (β ranged from -0.08 to -0.16), no significant mediation effect was found. CONCLUSIONS Plasma tCys may promote excessive body fat accumulation via upregulation of SCD activity.
Collapse
Affiliation(s)
- Elena C Tore
- Department of Internal Medicine, Maastricht University, Maastricht, The Netherlands (Drs Tore, Adriaans, Dagnelie, van Greevenbroek); CARIM, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, The Netherlands (Drs Tore, Adriaans, Kooi, Dagnelie, Eussen, van Greevenbroek).
| | - Bregje C Adriaans
- Department of Internal Medicine, Maastricht University, Maastricht, The Netherlands (Drs Tore, Adriaans, Dagnelie, van Greevenbroek); CARIM, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, The Netherlands (Drs Tore, Adriaans, Kooi, Dagnelie, Eussen, van Greevenbroek)
| | - Thomas Olsen
- Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway (Drs Olsen, Vinknes, Bastani, Refsum, Retterstøl, Stolt)
| | - Kathrine J Vinknes
- Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway (Drs Olsen, Vinknes, Bastani, Refsum, Retterstøl, Stolt)
| | - M Eline Kooi
- CARIM, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, The Netherlands (Drs Tore, Adriaans, Kooi, Dagnelie, Eussen, van Greevenbroek); Department of Radiology & Nuclear Medicine, Maastricht University Medical Center, Maastricht, The Netherlands (Dr Kooi)
| | - Amany K Elshorbagy
- Department of Pharmacology, University of Oxford, Oxford, UK (Drs Elshorbagy, Refsum); Department of Physiology, Faculty of Medicine, University of Alexandria, Alexandria, Egypt (Dr Elshorbagy)
| | - Nasser E Bastani
- Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway (Drs Olsen, Vinknes, Bastani, Refsum, Retterstøl, Stolt)
| | - Pieter C Dagnelie
- Department of Internal Medicine, Maastricht University, Maastricht, The Netherlands (Drs Tore, Adriaans, Dagnelie, van Greevenbroek); CARIM, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, The Netherlands (Drs Tore, Adriaans, Kooi, Dagnelie, Eussen, van Greevenbroek)
| | - Simone J P M Eussen
- CARIM, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, The Netherlands (Drs Tore, Adriaans, Kooi, Dagnelie, Eussen, van Greevenbroek); Department of Epidemiology, Maastricht University, Maastricht, The Netherlands (Dr Eussen); CAPHRI Care and Public Health Research Institute, Maastricht University, Maastricht, The Netherlands (Dr Eussen)
| | | | - Viktor Kožich
- Department of Pediatrics and Inherited Metabolic Disorders, Charles University-First Faculty of Medicine, and General University Hospital in Prague, Prague, Czech Republic (Dr Kožich)
| | - Helga Refsum
- Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway (Drs Olsen, Vinknes, Bastani, Refsum, Retterstøl, Stolt); Department of Pharmacology, University of Oxford, Oxford, UK (Drs Elshorbagy, Refsum)
| | - Kjetil Retterstøl
- Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway (Drs Olsen, Vinknes, Bastani, Refsum, Retterstøl, Stolt); The Lipid Clinic, Oslo University Hospital, Norway (Dr Retterstøl)
| | - Emma T K Stolt
- Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway (Drs Olsen, Vinknes, Bastani, Refsum, Retterstøl, Stolt)
| | - Marleen M J van Greevenbroek
- Department of Internal Medicine, Maastricht University, Maastricht, The Netherlands (Drs Tore, Adriaans, Dagnelie, van Greevenbroek); CARIM, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, The Netherlands (Drs Tore, Adriaans, Kooi, Dagnelie, Eussen, van Greevenbroek)
| |
Collapse
|
2
|
Xia Y, Zhang Y, Zhang Z, Yan N, Sawaswong V, Sun L, Guo W, Wang P, Krausz KW, Gavrilova O, Ntambi JM, Hao H, Yan T, Gonzalez FJ. Intestinal stearoyl-coenzyme A desaturase-inhibition improves obesity-associated metabolic disorders. Acta Pharm Sin B 2025; 15:892-908. [PMID: 40177566 PMCID: PMC11959918 DOI: 10.1016/j.apsb.2024.11.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 10/21/2024] [Accepted: 11/20/2024] [Indexed: 04/05/2025] Open
Abstract
Stearoyl-coenzyme A desaturase 1 (SCD1) catalyzes the rate-limiting step of de novo lipogenesis and modulates lipid homeostasis. Although numerous SCD1 inhibitors were tested for treating metabolic disorders both in preclinical and clinic studies, the tissue-specific roles of SCD1 in modulating obesity-associated metabolic disorders and determining the pharmacological effect of chemical SCD1 inhibition remain unclear. Here a novel role for intestinal SCD1 in obesity-associated metabolic disorders was uncovered. Intestinal SCD1 was found to be induced during obesity progression both in humans and mice. Intestine-specific, but not liver-specific, SCD1 deficiency reduced obesity and hepatic steatosis. A939572, an SCD1-specific inhibitor, ameliorated obesity and hepatic steatosis dependent on intestinal, but not hepatic, SCD1. Mechanistically, intestinal SCD1 deficiency impeded obesity-induced oxidative stress through its novel function of inducing metallothionein 1 in intestinal epithelial cells. These results suggest that intestinal SCD1 could be a viable target that underlies the pharmacological effect of chemical SCD1 inhibition in the treatment of obesity-associated metabolic disorders.
Collapse
Affiliation(s)
- Yangliu Xia
- Cancer Innovation Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Yang Zhang
- Section on Human Iron Metabolism, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Zhipeng Zhang
- Department of General Surgery, Cancer Center, Third Hospital, Peking University, Beijing 100191, China
| | - Nana Yan
- Cancer Innovation Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
- State Key Laboratory of Natural Medicines, Laboratory of Metabolic Regulation and Drug Target Discovery, China Pharmaceutical University, Nanjing 210009, China
| | - Vorthon Sawaswong
- Cancer Innovation Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Lulu Sun
- State Key Laboratory of Female Fertility Promotion, Department of Endocrinology and Metabolism, Third Hospital, Peking University, Beijing 100191, China
| | - Wanwan Guo
- State Key Laboratory of Female Fertility Promotion, Department of Endocrinology and Metabolism, Third Hospital, Peking University, Beijing 100191, China
| | - Ping Wang
- Cancer Innovation Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Kristopher W. Krausz
- Cancer Innovation Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Oksana Gavrilova
- Mouse Metabolism Core Laboratory, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - James M. Ntambi
- Department of Biochemistry, University of Wisconsin–Madison, Madison, WI 53706, USA
| | - Haiping Hao
- State Key Laboratory of Natural Medicines, Laboratory of Metabolic Regulation and Drug Target Discovery, China Pharmaceutical University, Nanjing 210009, China
| | - Tingting Yan
- Cancer Innovation Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
- State Key Laboratory of Natural Medicines, Laboratory of Metabolic Regulation and Drug Target Discovery, China Pharmaceutical University, Nanjing 210009, China
| | - Frank J. Gonzalez
- Cancer Innovation Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
3
|
Sowka A, Balatskyi VV, Navrulin VO, Ntambi JM, Dobrzyn P. Stearoyl-CoA Desaturase 1 Regulates Metabolism and Inflammation in Mouse Perivascular Adipose Tissue in Response to a High-Fat Diet. J Cell Physiol 2025; 240:e31510. [PMID: 39943782 DOI: 10.1002/jcp.31510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 11/12/2024] [Accepted: 12/10/2024] [Indexed: 02/19/2025]
Abstract
The dysregulation of perivascular adipose tissue (PVAT) is a key contributor to obesity-induced vascular dysfunction. Mouse periaortic adipose tissue is divided into two parts: thoracic perivascular adipose tissue (TPVAT) and abdominal perivascular adipose tissue (APVAT). These two parts have different physiological properties, which translate into different effects on the vascular wall in the onset of metabolic syndrome. Stearoyl-CoA desaturase 1 (SCD1) is an enzyme that is involved in the synthesis of monounsaturated fatty acids and has been shown to play an important role in metabolic syndrome, including vascular homeostasis. Despite a considerable focus on the role of SCD1 in the development of vascular disorders, there is currently a lack of knowledge of the relationship between SCD1 and PVAT. The present study investigated effects of SCD1 deficiency on lipolysis, β-oxidation, mitochondrial dynamics, and inflammation in mouse TPVAT and APVAT under high-fat diet (HFD) feeding conditions. We found lower triglyceride levels in PVAT in SCD1-/- mice both in vitro and in vivo compared with wildtype perivascular adipocytes, attributable to activated lipolysis and β-oxidation. Moreover, PVAT in HFD-fed SCD1-/- mice was characterized by higher levels of oxidative phosphorylation complexes and mitochondrial respiratory potential and alterations of mitochondrial morphology compared with wildtype mice. Furthermore, TPVAT and APVAT in SCD1-/- mice showed signs of greater pro-inflammatory macrophage polarization and higher inflammatory markers that were induced by a HFD. This may be related to the accumulation free fatty acids and diacylglycerols, which are enriched in saturated fatty acids. These findings elucidate the role of SCD1 in maintaining vascular integrity.
Collapse
Affiliation(s)
- Adrian Sowka
- Laboratory of Molecular Medical Biochemistry, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Volodymyr V Balatskyi
- Laboratory of Molecular Medical Biochemistry, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Viktor O Navrulin
- Laboratory of Molecular Medical Biochemistry, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - James M Ntambi
- Departments of Biochemistry and Nutritional Sciences, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Pawel Dobrzyn
- Laboratory of Molecular Medical Biochemistry, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| |
Collapse
|
4
|
Yin M, Sun L, Wu S, Ma J, Zhang W, Ji X, Tang Z, Zhang X, Yang Y, Zhang X, Huang J, Zheng S, Liu W, Ji C, Zhang L. TGFβ-mediated inhibition of hypodermal adipocyte progenitor differentiation promotes wound-induced skin fibrosis. Cell Prolif 2025; 58:e13722. [PMID: 39072821 PMCID: PMC11693572 DOI: 10.1111/cpr.13722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 07/05/2024] [Accepted: 07/11/2024] [Indexed: 07/30/2024] Open
Abstract
Aberrant activation of dermal fibroblasts during wound healing often leads to debilitating fibrotic changes in the skin, such as scleroderma and keloids. However, the underlying cellular and molecular mechanisms remain elusive. Here, we established a wound-induced skin fibrosis (WISF) mouse model in mature adult mice, characterised by excessive deposition of collagen bundles, loss of dermal adipocytes, and enrichment of DPP4+Ly6A+THY1+ hypodermal interstitial adipocyte progenitors (HI-APs) and pericytes, resembling human fibrotic skin diseases. This WISF model exhibited an age-dependent gain of fibrotic characteristics, contrasting with the wound-induced hair neogenesis observed in younger mice. Through comprehensive analyses of the WISF, we delineated a trajectory of fibroblast differentiation that originates from HI-APs. These progenitors highly expressed several extracellular matrix (ECM) genes and exhibited a TGFβ pathway signature. TGFβ was identified as the key signal to inhibit the adipogenic potential and maintain the fibrogenic potential of dermal APs. Additionally, administering a TGFβ receptor inhibitor to wound scar reduced the abundance of ECM-producing APs. Finally, analysis of human scleroderma skin tissues revealed a negative correlation between the expression of AP-, ECM-, and TGFβ pathway-related genes and PPARG. Overall, this study establishes a wound-induced skin fibrosis mouse model and demonstrates that TGFβ-mediated blockage of HI-AP differentiation is crucial for driving fibrotic pathology. Targeting HI-APs and adipogenesis may provide novel avenues for developing disease-modifying therapies for fibrotic skin diseases.
Collapse
Affiliation(s)
- Meimei Yin
- State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical SciencesXiamen UniversityXiamenChina
| | - Lixiang Sun
- State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical SciencesXiamen UniversityXiamenChina
- Central Laboratory, Zhongshan Hospital (Xiamen)Fudan UniversityXiamenChina
| | - Shuai Wu
- State Key Laboratory of Cellular Stress Biology, School of Life SciencesXiamen UniversityXiamenChina
| | - Jinhang Ma
- State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical SciencesXiamen UniversityXiamenChina
| | - Wenlu Zhang
- State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical SciencesXiamen UniversityXiamenChina
| | - Xiaoxuan Ji
- State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical SciencesXiamen UniversityXiamenChina
| | - Zhichong Tang
- State Key Laboratory of Cellular Stress Biology, School of Life SciencesXiamen UniversityXiamenChina
| | - Xiaowei Zhang
- State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical SciencesXiamen UniversityXiamenChina
| | - Yichun Yang
- Central Laboratory, Zhongshan Hospital (Xiamen)Fudan UniversityXiamenChina
| | - Xinyuan Zhang
- State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical SciencesXiamen UniversityXiamenChina
| | - Jin‐wen Huang
- Department of DermatologyThe First Affiliated Hospital of Fujian Medical UniversityFuzhouChina
| | - Shaoluan Zheng
- Department of Plastic and Reconstructive Surgery, Zhongshan Hospital (Xiamen)Fudan UniversityXiamenChina
| | - Wen‐jie Liu
- State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical SciencesXiamen UniversityXiamenChina
| | - Chao Ji
- Department of DermatologyThe First Affiliated Hospital of Fujian Medical UniversityFuzhouChina
| | - Ling‐juan Zhang
- State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical SciencesXiamen UniversityXiamenChina
| |
Collapse
|
5
|
Kirad S, Puri S, Deepa PR, Sankaranarayanan M. An insight into advances and challenges in the development of potential stearoyl Co-A desaturase 1 inhibitors. RSC Adv 2024; 14:30487-30517. [PMID: 39318456 PMCID: PMC11421311 DOI: 10.1039/d4ra06237j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Accepted: 09/17/2024] [Indexed: 09/26/2024] Open
Abstract
Stearoyl-CoA desaturase 1 (SCD1) is one of the key enzymes involved in lipid metabolism, plays a vital role in the synthesis of monounsaturated fatty acids (MUFAs) from saturated fatty acids (SFAs). Due to its promising therapeutic potential in treating metabolic disorders, cancers, and skin diseases there is an increasing interest in the development of novel inhibitors against SCD1. This review comprehensively explores the evolution of potential SCD1 inhibitors, focusing on systemic and liver-targeted inhibitors and discusses their structure-activity relationship (SAR) pattern. Among the various small molecules reported, natural products like sterculic acid have emerged as significant SCD1 inhibitors, highlighting the potential of naturally derived compounds in therapeutic development. This review also addresses the challenges in optimizing pharmacokinetic properties and reducing adverse effects, providing insights into the future directions for the development of potential novel SCD1 inhibitors with maximum therapeutic effect and minimum side effects.
Collapse
Affiliation(s)
- Shivani Kirad
- Medicinal Chemistry Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science Pilani Pilani Campus Pilani-333031 Rajasthan India
| | - Sonakshi Puri
- Biochemistry and Enzyme Biotechnology Laboratory, Department of Biological Sciences, Birla Institute of Technology and Science Pilani Pilani Campus Pilani-333031 Rajasthan India
| | - P R Deepa
- Biochemistry and Enzyme Biotechnology Laboratory, Department of Biological Sciences, Birla Institute of Technology and Science Pilani Pilani Campus Pilani-333031 Rajasthan India
| | - Murugesan Sankaranarayanan
- Medicinal Chemistry Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science Pilani Pilani Campus Pilani-333031 Rajasthan India
| |
Collapse
|
6
|
Lee J, Ustione A, Wilkerson EM, Balakrishnan R, Thurmond DC, Goldfarb D, Piston DW. Insulin-Independent Regulation of Type 1 Diabetes via Brown Adipocyte-Secreted Proteins and the Novel Glucagon Regulator Nidogen-2. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.30.610490. [PMID: 39257771 PMCID: PMC11383990 DOI: 10.1101/2024.08.30.610490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
Current treatments for type 1 diabetes (T1D) focus on insulin replacement. We demonstrate the therapeutic potential of a secreted protein fraction from embryonic brown adipose tissue (BAT), independent of insulin. The large molecular weight secreted fraction mediates insulin receptor-dependent recovery of euglycemia in a T1D animal model, nonobese diabetic (NOD) mice, by suppressing glucagon secretion. This fraction also promotes white adipocyte differentiation and browning, maintains healthy BAT, and enhances glucose uptake in adipose tissue, skeletal muscle, and liver. From this fraction, we identify nidogen-2 as a critical BAT-secreted protein that reverses hyperglycemia in NOD mice, inhibits glucagon secretion from pancreatic α-cells, and mimics other actions of the entire secreted fraction. These findings confirm that BAT transplants affect physiology and demonstrate that BAT-secreted peptides represent a novel therapeutic approach to diabetes management. Furthermore, our research reveals a novel signaling role for nidogen-2, beyond its traditional classification as an extracellular matrix protein. HIGHLIGHTS The large molecular weight brown adipocyte-secreted protein fraction suppresses glucagon secretion and normalizes glycemia in mouse models of type 1 diabetes (T1D), independent of insulin, offering a novel therapeutic strategy for disease management.Nidogen-2, a critical component of this fraction, is identified as an inhibitor of glucagon secretion in pancreatic α-cells by regulating intracellular messenger activities.The large-secreted protein fraction prevents T1D-related whitening of brown adipose tissue, promotes adipocyte differentiation, and enhances browning of inguinal white adipose tissue.This fraction enhances glucose uptake in adipose tissue, skeletal muscle, and liver through an insulin receptor-dependent pathway.
Collapse
|
7
|
Velez‐delValle C, Hernandez‐Mosqueira CP, Castro‐Rodriguez LI, Vazquez‐Sandoval A, Marsch‐Moreno M, Kuri‐Harcuch W. Gene expression and characterization of clonally derived murine embryonic brown and brite adipocytes. FEBS Open Bio 2024; 14:1503-1525. [PMID: 38972757 PMCID: PMC11492321 DOI: 10.1002/2211-5463.13861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 05/29/2024] [Accepted: 06/25/2024] [Indexed: 07/09/2024] Open
Abstract
White adipocytes store energy, while brown and brite adipocytes release heat via nonshivering thermogenesis. In this study, we characterized two murine embryonic clonal preadipocyte lines, EB5 and EB7, each displaying unique gene marker expression profiles. EB5 cells differentiate into brown adipocytes, whereas EB7 cells into brite (also known as beige) adipocytes. To draw a comprehensive comparison, we contrasted the gene expression patterns, adipogenic capacity, as well as carbohydrate and lipid metabolism of these cells to that of F442A, a well-known white preadipocyte and adipocyte model. We found that commitment to differentiation in both EB5 and EB7 cells can be induced by 3-Isobutyl-1-methylxanthine/dexamethasone (Mix/Dex) and staurosporine/dexamethasone (St/Dex) treatments. Additionally, the administration of rosiglitazone significantly enhances the brown and brite adipocyte phenotypes. Our data also reveal the involvement of a series of genes in the transcriptional cascade guiding adipogenesis, pinpointing GSK3β as a critical regulator for both EB5 and EB7 adipogenesis. In a developmental context, we observe that, akin to brown fat progenitors, brite fat progenitors make their appearance in murine development by 11-12 days of gestation or potentially earlier. This result contributes to our understanding of adipocyte lineage specification during embryonic development. In conclusion, EB5 and EB7 cell lines are valuable for research into adipocyte biology, providing insights into the differentiation and development of brown and beige adipocytes. Furthermore, they could be useful for the characterization of drugs targeting energy balance for the treatment of obesity and metabolic diseases.
Collapse
Affiliation(s)
- Cristina Velez‐delValle
- Department of Cell BiologyCenter for Research and Advanced Studies (Cinvestav)Mexico CityMexico
| | | | | | | | - Meytha Marsch‐Moreno
- Department of Cell BiologyCenter for Research and Advanced Studies (Cinvestav)Mexico CityMexico
| | - Walid Kuri‐Harcuch
- Department of Cell BiologyCenter for Research and Advanced Studies (Cinvestav)Mexico CityMexico
| |
Collapse
|
8
|
Wu N, Zhang X, Fang C, Zhu M, Wang Z, Jian L, Tan W, Wang Y, Li H, Xu X, Zhou Y, Chu TY, Wang J, Liao Q. Progesterone Enhances Niraparib Efficacy in Ovarian Cancer by Promoting Palmitoleic-Acid-Mediated Ferroptosis. RESEARCH (WASHINGTON, D.C.) 2024; 7:0371. [PMID: 38798714 PMCID: PMC11116976 DOI: 10.34133/research.0371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 04/10/2024] [Indexed: 05/29/2024]
Abstract
Poly (adenosine 5'-diphosphate-ribose) polymerase inhibitors (PARPi) are increasingly important in the treatment of ovarian cancer. However, more than 40% of BRCA1/2-deficient patients do not respond to PARPi, and BRCA wild-type cases do not show obvious benefit. In this study, we demonstrated that progesterone acted synergistically with niraparib in ovarian cancer cells by enhancing niraparib-mediated DNA damage and death regardless of BRCA status. This synergy was validated in an ovarian cancer organoid model and in vivo experiments. Furthermore, we found that progesterone enhances the activity of niraparib in ovarian cancer through inducing ferroptosis by up-regulating palmitoleic acid and causing mitochondrial damage. In clinical cohort, it was observed that progesterone prolonged the survival of patients with ovarian cancer receiving PARPi as second-line maintenance therapy, and high progesterone receptor expression combined with low glutathione peroxidase 4 (GPX4) expression predicted better efficacy of PARPi in patients with ovarian cancer. These findings not only offer new therapeutic strategies for PARPi poor response ovarian cancer but also provide potential molecular markers for predicting the PARPi efficacy.
Collapse
Affiliation(s)
- Nayiyuan Wu
- The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital, Changsha 410078, Hunan, China
- Public Service Platform of Tumor Organoids Technology,
Hunan Gynecological Tumor Clinical Research Center, Changsha 410013, Hunan, China
| | - Xiu Zhang
- The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital, Changsha 410078, Hunan, China
- Public Service Platform of Tumor Organoids Technology,
Hunan Gynecological Tumor Clinical Research Center, Changsha 410013, Hunan, China
| | - Chao Fang
- The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital, Changsha 410078, Hunan, China
- Hunan Key Laboratory of the Research and Development of Novel Pharmaceutical Preparations,
Changsha Medical University, Changsha 410219, Hunan, China
| | - Miaochen Zhu
- The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital, Changsha 410078, Hunan, China
- Public Service Platform of Tumor Organoids Technology,
Hunan Gynecological Tumor Clinical Research Center, Changsha 410013, Hunan, China
| | - Zhibin Wang
- The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital, Changsha 410078, Hunan, China
- Public Service Platform of Tumor Organoids Technology,
Hunan Gynecological Tumor Clinical Research Center, Changsha 410013, Hunan, China
| | - Lian Jian
- The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital, Changsha 410078, Hunan, China
| | - Weili Tan
- The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital, Changsha 410078, Hunan, China
| | - Ying Wang
- The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital, Changsha 410078, Hunan, China
- Public Service Platform of Tumor Organoids Technology,
Hunan Gynecological Tumor Clinical Research Center, Changsha 410013, Hunan, China
| | - He Li
- The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital, Changsha 410078, Hunan, China
| | - Xuemeng Xu
- The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital, Changsha 410078, Hunan, China
- Public Service Platform of Tumor Organoids Technology,
Hunan Gynecological Tumor Clinical Research Center, Changsha 410013, Hunan, China
| | - Yujuan Zhou
- The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital, Changsha 410078, Hunan, China
- Public Service Platform of Tumor Organoids Technology,
Hunan Gynecological Tumor Clinical Research Center, Changsha 410013, Hunan, China
| | - Tang-Yuan Chu
- The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital, Changsha 410078, Hunan, China
- Department of Obstetrics & Gynecology,
Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien 970, Taiwan, China
| | - Jing Wang
- The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital, Changsha 410078, Hunan, China
- Public Service Platform of Tumor Organoids Technology,
Hunan Gynecological Tumor Clinical Research Center, Changsha 410013, Hunan, China
| | - Qianjin Liao
- The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital, Changsha 410078, Hunan, China
- Public Service Platform of Tumor Organoids Technology,
Hunan Gynecological Tumor Clinical Research Center, Changsha 410013, Hunan, China
| |
Collapse
|
9
|
Mori H, Peterson SK, Simmermon RC, Overmyer KA, Nishii A, Paulsson E, Li Z, Jen A, Uranga RM, Maung JN, Yacawych WT, Lewis KT, Schill RL, Hetrick T, Seino R, Inoki K, Coon JJ, MacDougald OA. Scd1 and monounsaturated lipids are required for autophagy and survival of adipocytes. Mol Metab 2024; 83:101916. [PMID: 38492843 PMCID: PMC10975504 DOI: 10.1016/j.molmet.2024.101916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 02/29/2024] [Accepted: 03/11/2024] [Indexed: 03/18/2024] Open
Abstract
OBJECTIVE Exposure of adipocytes to 'cool' temperatures often found in the periphery of the body induces expression of Stearoyl-CoA Desaturase-1 (Scd1), an enzyme that converts saturated fatty acids to monounsaturated fatty acids. The goal of this study is to further investigate the roles of Scd in adipocytes. METHOD In this study, we employed Scd1 knockout cells and mouse models, along with pharmacological Scd1 inhibition to dissect the enzyme's function in adipocyte physiology. RESULTS Our study reveals that production of monounsaturated lipids by Scd1 is necessary for fusion of autophagosomes to lysosomes and that with a Scd1-deficiency, autophagosomes accumulate. In addition, Scd1-deficiency impairs lysosomal and autolysosomal acidification resulting in vacuole accumulation and eventual cell death. Blocking autophagosome formation or supplementation with monounsaturated fatty acids maintains vitality of Scd1-deficient adipocytes. CONCLUSION This study demonstrates the indispensable role of Scd1 in adipocyte survival, with its inhibition in vivo triggering autophagy-dependent cell death and its depletion in vivo leading to the loss of bone marrow adipocytes.
Collapse
Affiliation(s)
- Hiroyuki Mori
- Department of Molecular & Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, USA.
| | - Sydney K Peterson
- Department of Molecular & Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Rachel C Simmermon
- Department of Molecular & Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Katherine A Overmyer
- Morgridge Institute for Research, Madison, WI, USA; National Center for Quantitative Biology of Complex Systems, Madison, WI, USA
| | - Akira Nishii
- Department of Molecular & Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Emma Paulsson
- Department of Molecular & Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Ziru Li
- Department of Molecular & Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Annie Jen
- Department of Biomolecular Chemistry, University of Wisconsin, Madison, WI, USA; Department of Chemistry, University of Wisconsin, Madison, WI, USA
| | - Romina M Uranga
- Department of Molecular & Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Jessica N Maung
- Department of Molecular & Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Warren T Yacawych
- Department of Molecular & Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Kenneth T Lewis
- Department of Molecular & Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Rebecca L Schill
- Department of Molecular & Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Taryn Hetrick
- Department of Molecular & Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Ryo Seino
- Dojindo Molecular Technologies, Inc., Rockville, MD, USA
| | - Ken Inoki
- Department of Molecular & Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Joshua J Coon
- Morgridge Institute for Research, Madison, WI, USA; National Center for Quantitative Biology of Complex Systems, Madison, WI, USA; Department of Biomolecular Chemistry, University of Wisconsin, Madison, WI, USA; Department of Chemistry, University of Wisconsin, Madison, WI, USA
| | - Ormond A MacDougald
- Department of Molecular & Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, USA; Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, USA.
| |
Collapse
|
10
|
Cavallero S, Roustaei M, Satta S, Cho JM, Phan H, Baek KI, Blázquez-Medela AM, Gonzalez-Ramos S, Vu K, Park SK, Yokota T, Sumner J, Mack JJ, Sigmund CD, Reddy ST, Li R, Hsiai TK. Exercise mitigates flow recirculation and activates metabolic transducer SCD1 to catalyze vascular protective metabolites. SCIENCE ADVANCES 2024; 10:eadj7481. [PMID: 38354249 PMCID: PMC10866565 DOI: 10.1126/sciadv.adj7481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 01/11/2024] [Indexed: 02/16/2024]
Abstract
Exercise promotes pulsatile shear stress in the arterial circulation and ameliorates cardiometabolic diseases. However, exercise-mediated metabolic transducers for vascular protection remain under-investigated. Untargeted metabolomic analysis demonstrated that wild-type mice undergoing voluntary wheel running exercise expressed increased endothelial stearoyl-CoA desaturase 1 (SCD1) that catalyzes anti-inflammatory lipid metabolites, namely, oleic (OA) and palmitoleic acids (PA), to mitigate NF-κB-mediated inflammatory responses. In silico analysis revealed that exercise augmented time-averaged wall shear stress but mitigated flow recirculation and oscillatory shear index in the lesser curvature of the mouse aortic arch. Following exercise, endothelial Scd1-deleted mice (Ldlr-/- Scd1EC-/-) on high-fat diet developed persistent VCAM1-positive endothelium in the lesser curvature and the descending aorta, whereas SCD1 overexpression via adenovirus transfection mitigated endoplasmic reticulum stress and inflammatory biomarkers. Single-cell transcriptomics of the aorta identified Scd1-positive and Vcam1-negative endothelial subclusters interacting with other candidate genes. Thus, exercise mitigates flow recirculation and activates endothelial SCD1 to catalyze OA and PA for vascular endothelial protection.
Collapse
Affiliation(s)
- Susana Cavallero
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine at University of California, Los Angeles, CA, USA
- Department of Medicine, VA Greater Los Angeles Health Care System, Los Angeles, CA, USA
| | - Mehrdad Roustaei
- Department of Bioengineering, School of Engineering and Applied Science, University of California, Los Angeles, CA, USA
| | - Sandro Satta
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine at University of California, Los Angeles, CA, USA
- Department of Medicine, VA Greater Los Angeles Health Care System, Los Angeles, CA, USA
| | - Jae Min Cho
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine at University of California, Los Angeles, CA, USA
- Department of Medicine, VA Greater Los Angeles Health Care System, Los Angeles, CA, USA
| | - Henry Phan
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine at University of California, Los Angeles, CA, USA
| | - Kyung In Baek
- Department of Bioengineering, School of Engineering and Applied Science, University of California, Los Angeles, CA, USA
| | - Ana M. Blázquez-Medela
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine at University of California, Los Angeles, CA, USA
- Department of Medicine, VA Greater Los Angeles Health Care System, Los Angeles, CA, USA
| | - Sheila Gonzalez-Ramos
- Department of Bioengineering, School of Engineering and Applied Science, University of California, Los Angeles, CA, USA
| | - Khoa Vu
- Department of Bioengineering, School of Engineering and Applied Science, University of California, Los Angeles, CA, USA
| | - Seul-Ki Park
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine at University of California, Los Angeles, CA, USA
| | - Tomohiro Yokota
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine at University of California, Los Angeles, CA, USA
- Department of Medicine, VA Greater Los Angeles Health Care System, Los Angeles, CA, USA
| | - Jennifer Sumner
- Department of Psychology, College of Life Sciences, University of California, Los Angeles, CA, USA
| | - Julia J. Mack
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine at University of California, Los Angeles, CA, USA
| | - Curt D. Sigmund
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Srinivasa T. Reddy
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine at University of California, Los Angeles, CA, USA
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, CA, USA
| | - Rongsong Li
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine at University of California, Los Angeles, CA, USA
- Department of Medicine, VA Greater Los Angeles Health Care System, Los Angeles, CA, USA
| | - Tzung K. Hsiai
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine at University of California, Los Angeles, CA, USA
- Department of Medicine, VA Greater Los Angeles Health Care System, Los Angeles, CA, USA
- Department of Bioengineering, School of Engineering and Applied Science, University of California, Los Angeles, CA, USA
| |
Collapse
|
11
|
Olichwier A, Sowka A, Balatskyi VV, Gan AM, Dziewulska A, Dobrzyn P. SCD1-related epigenetic modifications affect hormone-sensitive lipase (Lipe) gene expression in cardiomyocytes. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2024; 1871:119608. [PMID: 37852324 DOI: 10.1016/j.bbamcr.2023.119608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 10/10/2023] [Accepted: 10/11/2023] [Indexed: 10/20/2023]
Abstract
Stearoyl-CoA desaturase 1 (SCD1) is an enzyme that is involved in the regulation of lipolysis in the heart. SCD1 also affects epigenetic mechanisms, such as DNA and histone modifications, in various tissues. Both epigenetic modifications and changes in lipid metabolism are involved in the heart's response to hypoxia. The present study tested the hypothesis that SCD1 and epigenetic modifications interact to control lipolysis in cardiomyocytes under normoxic and hypoxic conditions. We found that the inhibition of SCD1 activity and loss of SCD1 expression reduced global DNA methylation levels, DNA methyltransferase (DNMT) activity, and DNMT1 expression in HL-1 cardiomyocytes and the mouse heart. We also found that the inhibition of adipose triglyceride lipase is involved in the control of global DNA methylation levels in cardiomyocytes in an SCD1-independent manner. Additionally, SCD1 inhibition reduced expression of the hormone-sensitive lipase (Lipe) gene through an increase in methylation of the Lipe gene promoter. Under hypoxic conditions, SCD1 inhibition abolished hypoxia-inducible transcription factor 1α, likely through decreases in histone deacetylase, protein kinase A, and abhydrolase domain containing 5 protein levels, leading to the attenuation of DNA hypomethylation by DNMT1. Hypoxia led to demethylation of the Lipe promoter in cardiomyocytes with SCD1 inhibition, which increased Lipe expression. These results indicate that SCD1 is involved in the control of epigenetic mechanisms in the heart and may affect Lipe expression through changes in methylation in its promoter region. Therefore, SCD1 may be considered a key player in the epigenetic response to normoxia and hypoxia in cardiomyocytes.
Collapse
Affiliation(s)
- Adam Olichwier
- Laboratory of Molecular Medical Biochemistry, Nencki Institute of Experimental Biology of Polish Academy of Sciences, Warsaw, Poland
| | - Adrian Sowka
- Laboratory of Molecular Medical Biochemistry, Nencki Institute of Experimental Biology of Polish Academy of Sciences, Warsaw, Poland
| | - Volodymyr V Balatskyi
- Laboratory of Molecular Medical Biochemistry, Nencki Institute of Experimental Biology of Polish Academy of Sciences, Warsaw, Poland
| | - Ana-Maria Gan
- Laboratory of Molecular Medical Biochemistry, Nencki Institute of Experimental Biology of Polish Academy of Sciences, Warsaw, Poland
| | - Anna Dziewulska
- Laboratory of Cell Signaling and Metabolic Disorders, Nencki Institute of Experimental Biology of Polish Academy of Sciences, Warsaw, Poland
| | - Pawel Dobrzyn
- Laboratory of Molecular Medical Biochemistry, Nencki Institute of Experimental Biology of Polish Academy of Sciences, Warsaw, Poland.
| |
Collapse
|
12
|
Edwin RK, Acharya LP, Maity SK, Chakrabarti P, Tantia O, Joshi MB, Satyamoorthy K, Parsa KVL, Misra P. TGS1/PIMT knockdown reduces lipid accumulation in adipocytes, limits body weight gain and promotes insulin sensitivity in mice. Biochim Biophys Acta Mol Basis Dis 2024; 1870:166896. [PMID: 37751782 DOI: 10.1016/j.bbadis.2023.166896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 09/16/2023] [Accepted: 09/20/2023] [Indexed: 09/28/2023]
Abstract
PRIP Interacting protein with Methyl Transferase domain (PIMT/TGS1) is an integral upstream coactivator in the peroxisome proliferator-activated receptor gamma (PPARγ) transcriptional apparatus. PPARγ activation alleviates insulin resistance but promotes weight gain. Herein, we show how PIMT regulates body weight while promoting insulin sensitivity in diet induced obese mice. In vitro, we observed enhanced PIMT levels during adipogenesis. Knockdown of PIMT in 3T3-L1 results in reduced lipid accumulation and alters PPARγ regulated gene expression. Intraperitoneal injection of shPIMT lentivirus in high fat diet (HFD)-fed mice caused reduced adipose tissue size and decreased expression of lipid markers. This was accompanied by significantly lower levels of inflammation, hypertrophy and hyperplasia in the different adipose depots (eWAT and iWAT). Notably, PIMT depletion limits body weight gain in HFD-fed mice along with improved impaired oral glucose clearance. It also enhanced insulin sensitivity revealed by assessment of important insulin resistance markers and increased adiponectin levels. In addition, reduced PIMT levels did not alter the serum free fatty acid and TNFα levels. Finally, the relevance of our studies to human obesity is suggested by our finding that PIMT was upregulated in adipose tissue of obese patients along with crucial fat marker genes. We speculate that PIMT may be a potential target in maintaining energy metabolism, thus regulating obesity.
Collapse
Affiliation(s)
- Rebecca Kristina Edwin
- Centre for Innovation in Molecular and Pharmaceutical Sciences (CIMPS), Dr. Reddy's Institute of Life Sciences, University of Hyderabad Campus, Gachibowli, Hyderabad 500046, India; Manipal School of Life Sciences, Manipal Academy of Higher Education (MAHE), Manipal, Karnataka 576104, India
| | - Lavanya Prakash Acharya
- Manipal School of Life Sciences, Manipal Academy of Higher Education (MAHE), Manipal, Karnataka 576104, India
| | - Sujay K Maity
- Indian Institute of Chemical Biology (CSIR-IICB), 4, Raja Subodh Chandra Mallick Rd, Poddar Nagar, Jadavpur, Kolkata, West Bengal 700032, India
| | - Partha Chakrabarti
- Indian Institute of Chemical Biology (CSIR-IICB), 4, Raja Subodh Chandra Mallick Rd, Poddar Nagar, Jadavpur, Kolkata, West Bengal 700032, India
| | - Om Tantia
- Institute of Laparoscopic Surgery Group of Hospitals, DD - 6, Sector I, Salt Lake City, Kolkata 700064, West Bengal, India
| | - Manjunath B Joshi
- Manipal School of Life Sciences, Manipal Academy of Higher Education (MAHE), Manipal, Karnataka 576104, India
| | - Kapaettu Satyamoorthy
- Manipal School of Life Sciences, Manipal Academy of Higher Education (MAHE), Manipal, Karnataka 576104, India; SDM College of Medical Sciences and Hospital, Shri Dharmasthala Manjunatheshwara (SDM) University, Manjushree Nagar, Sattur, Dharwad, Karnataka 580009, India.
| | - Kishore V L Parsa
- Centre for Innovation in Molecular and Pharmaceutical Sciences (CIMPS), Dr. Reddy's Institute of Life Sciences, University of Hyderabad Campus, Gachibowli, Hyderabad 500046, India.
| | - Parimal Misra
- Centre for Innovation in Molecular and Pharmaceutical Sciences (CIMPS), Dr. Reddy's Institute of Life Sciences, University of Hyderabad Campus, Gachibowli, Hyderabad 500046, India.
| |
Collapse
|
13
|
Sun Q, Xing X, Wang H, Wan K, Fan R, Liu C, Wang Y, Wu W, Wang Y, Wang R. SCD1 is the critical signaling hub to mediate metabolic diseases: Mechanism and the development of its inhibitors. Biomed Pharmacother 2024; 170:115586. [PMID: 38042113 DOI: 10.1016/j.biopha.2023.115586] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 09/23/2023] [Accepted: 09/25/2023] [Indexed: 12/04/2023] Open
Abstract
Metabolic diseases, featured with dysregulated energy homeostasis, have become major global health challenges. Patients with metabolic diseases have high probability to manifest multiple complications in lipid metabolism, e.g. obesity, insulin resistance and fatty liver. Therefore, targeting the hub genes in lipid metabolism may systemically ameliorate the metabolic diseases, along with the complications. Stearoyl-CoA desaturase 1(SCD1) is a key enzyme that desaturates the saturated fatty acids (SFAs) derived from de novo lipogenesis or diet to generate monounsaturated fatty acids (MUFAs). SCD1 maintains the metabolic and tissue homeostasis by responding to, and integrating the multiple layers of endogenous stimuli, which is mediated by the synthesized MUFAs. It critically regulates a myriad of physiological processes, including energy homeostasis, development, autophagy, tumorigenesis and inflammation. Aberrant transcriptional and epigenetic activation of SCD1 regulates AMPK/ACC, SIRT1/PGC1α, NcDase/Wnt, etc, and causes aberrant lipid accumulation, thereby promoting the progression of obesity, non-alcoholic fatty liver, diabetes and cancer. This review critically assesses the integrative mechanisms of the (patho)physiological functions of SCD1 in metabolic homeostasis, inflammation and autophagy. For translational perspective, potent SCD1 inhibitors have been developed to treat various types of cancer. We thus discuss the multidisciplinary advances that greatly accelerate the development of SCD1 new inhibitors. In conclusion, besides cancer treatment, SCD1 may serve as the promising target to combat multiple metabolic complications simultaneously.
Collapse
Affiliation(s)
- Qin Sun
- School of Kinesiology, Shanghai University of Sport, Shanghai 200438, China
| | - Xiaorui Xing
- School of Kinesiology, Shanghai University of Sport, Shanghai 200438, China
| | - Huanyu Wang
- School of Kinesiology, Shanghai University of Sport, Shanghai 200438, China
| | - Kang Wan
- School of Kinesiology, Shanghai University of Sport, Shanghai 200438, China
| | - Ruobing Fan
- School of Kinesiology, Shanghai University of Sport, Shanghai 200438, China
| | - Cheng Liu
- School of Kinesiology, Shanghai University of Sport, Shanghai 200438, China
| | - Yongjian Wang
- School of Kinesiology, Shanghai University of Sport, Shanghai 200438, China
| | - Wenyi Wu
- School of Kinesiology, Shanghai University of Sport, Shanghai 200438, China
| | - Yibing Wang
- School of Kinesiology, Shanghai University of Sport, Shanghai 200438, China.
| | - Ru Wang
- School of Kinesiology, Shanghai University of Sport, Shanghai 200438, China.
| |
Collapse
|
14
|
Gu W, Wang R, Chai Y, Zhang L, Chen R, Li R, Pan J, Zhu J, Sun Q, Liu C. β3 adrenergic receptor activation alleviated PM 2.5-induced hepatic lipid deposition in mice. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 907:168167. [PMID: 39491202 DOI: 10.1016/j.scitotenv.2023.168167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 10/11/2023] [Accepted: 10/26/2023] [Indexed: 11/05/2024]
Abstract
Increasing energy expenditure through activation of hepatocytes is a potential approach to treat fine particulate matter (PM2.5) induced metabolic-associated fatty liver disease (MAFLD). Beta-3 adrenergic receptor (β3-AR) agonists could stimulate brown adipose tissue (BAT) energy expenditure, but it has never been investigated in MAFLD. The objective of this study is to explore the therapeutic effects of administering CL-316,243, a selective agonist of β3-AR, on hepatic lipid metabolism disturbances induced by PM2.5. Firstly, C57BL/6 N mice were intraperitoneally injected with CL-316,243 for one week. CL-316,243 significantly upregulated expression of β3-AR in the liver, accompanied with reduced serum triglyceride (TG) and free fatty acids (FFA). Next, mice were subjected to PM2.5 exposure for 4 weeks, and CL-316,243 was daily intraperitoneally injected in the fourth week of PM2.5 exposure. Exposure to PM2.5 led to a significant increase in hepatic TG and monounsaturated fatty acids (MUFAs), accompanied with elevated activity of SCD1, increased levels of TG synthesis enzymes and inhibited COX4 activity. Furthermore, the administration of CL-316,243 alleviated PM2.5-induced hepatic lipid deposition by enhancing SCD1 activity, TG lipolysis, fatty acid oxidation and TG synthesis via β3-AR/PKA/CREB/PPAR signaling pathway. Therefore, β3-AR activation may serve as a potential therapeutic approach for PM2.5 exposure-induced MAFLD.
Collapse
Affiliation(s)
- Weijia Gu
- School of Public Health, Zhejiang Chinese Medical University, Hangzhou, China; Zhejiang International Science and Technology Cooperation Base of Air Pollution and Health, Hangzhou, China
| | - Ruiqing Wang
- School of Public Health, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yanxi Chai
- School of Public Health, Zhejiang Chinese Medical University, Hangzhou, China
| | - Lu Zhang
- School of Public Health, Zhejiang Chinese Medical University, Hangzhou, China; Zhejiang International Science and Technology Cooperation Base of Air Pollution and Health, Hangzhou, China
| | - Rucheng Chen
- School of Public Health, Zhejiang Chinese Medical University, Hangzhou, China; Zhejiang International Science and Technology Cooperation Base of Air Pollution and Health, Hangzhou, China
| | - Ran Li
- School of Public Health, Zhejiang Chinese Medical University, Hangzhou, China; Zhejiang International Science and Technology Cooperation Base of Air Pollution and Health, Hangzhou, China
| | - Jing Pan
- School of Public Health, Zhejiang Chinese Medical University, Hangzhou, China
| | - Junyao Zhu
- School of Public Health, Zhejiang Chinese Medical University, Hangzhou, China
| | - Qinghua Sun
- School of Public Health, Zhejiang Chinese Medical University, Hangzhou, China; Zhejiang International Science and Technology Cooperation Base of Air Pollution and Health, Hangzhou, China
| | - Cuiqing Liu
- School of Public Health, Zhejiang Chinese Medical University, Hangzhou, China; Zhejiang International Science and Technology Cooperation Base of Air Pollution and Health, Hangzhou, China.
| |
Collapse
|
15
|
Zhang YH, Zhao L, Zhang MY, Cao RD, Hou GM, Teng HJ, Zhang JX. Fatty acid metabolism decreased while sexual selection increased in brown rats spreading south. iScience 2023; 26:107742. [PMID: 37731619 PMCID: PMC10507208 DOI: 10.1016/j.isci.2023.107742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 06/27/2023] [Accepted: 08/24/2023] [Indexed: 09/22/2023] Open
Abstract
For mammals that originate in the cold north, adapting to warmer environments is crucial for southwards invasion. The brown rat (Rattus norvegicus) originated in Northeast China and has become a global pest. R. n. humiliatus (RNH) spread from the northeast, where R. n. caraco (RNC) lives, to North China and diverged to form a subspecies. Genomic analyses revealed that subspecies differentiation was promoted by temperature but impeded by gene flow and that genes related to fatty acid metabolism were under the strongest selection. Transcriptome analyses revealed downregulated hepatic genes related to fatty acid metabolism and upregulated those related to pheromones in RNH vs. RNC. Similar patterns were observed in relation to cold/warm acclimation. RNH preferred mates with stronger pheromone signals intra-populationally and more genetic divergence inter-populationally. We concluded that RNH experienced reduced fat utilization and increased pheromone-mediated sexual selection during its invasion from the cold north to warm south.
Collapse
Affiliation(s)
- Yao-Hua Zhang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents in Agriculture, Institute of Zoology, Chinese Academy of Sciences, Beichen West Road 1-5, Chaoyang District, Beijing 100101, China
| | - Lei Zhao
- State Key Laboratory of Integrated Management of Pest Insects and Rodents in Agriculture, Institute of Zoology, Chinese Academy of Sciences, Beichen West Road 1-5, Chaoyang District, Beijing 100101, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ming-Yu Zhang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents in Agriculture, Institute of Zoology, Chinese Academy of Sciences, Beichen West Road 1-5, Chaoyang District, Beijing 100101, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Rui-Dong Cao
- State Key Laboratory of Integrated Management of Pest Insects and Rodents in Agriculture, Institute of Zoology, Chinese Academy of Sciences, Beichen West Road 1-5, Chaoyang District, Beijing 100101, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guan-Mei Hou
- State Key Laboratory of Integrated Management of Pest Insects and Rodents in Agriculture, Institute of Zoology, Chinese Academy of Sciences, Beichen West Road 1-5, Chaoyang District, Beijing 100101, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hua-Jing Teng
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Radiation Oncology, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Jian-Xu Zhang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents in Agriculture, Institute of Zoology, Chinese Academy of Sciences, Beichen West Road 1-5, Chaoyang District, Beijing 100101, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
16
|
Li C, Shen N, Yang S, Wang HL. Effects of BPA Exposure and Recovery on the Expression of Genes Involved in the Hepatic Lipid Metabolism in Male Mice. TOXICS 2023; 11:775. [PMID: 37755785 PMCID: PMC10535508 DOI: 10.3390/toxics11090775] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 08/29/2023] [Accepted: 08/29/2023] [Indexed: 09/28/2023]
Abstract
Exposure to Bisphenol A (BPA) has led to an increased risk of obesity and nonalcoholic fatty liver diseases (NAFLDs). However, it is as yet unclear if the damage caused by BPA is able to be repaired sufficiently after exposure has ceased. Therefore, this project aims to investigate the effects of BPA on the hepatic lipid metabolism function and its potential mechanisms in mice by comparing the BPA exposure model and the BPA exposure + cessation of drug treatment model. Herein, the male C57BL/6 mice were exposed in the dose of 50 μg/kg/day and 500 μg/kg/day BPA for 8 weeks, and then transferred to a standard chow diet for another 8 weeks to recover. Based on our previous RNA-seq study, we examined the expression patterns of some key genes. The results showed that the mice exposed to BPA manifested NAFLD features. Importantly, we also found that there was a significant expression reversion for SCD1, APOD, ANGPT4, PPARβ, LPL and G0S2 between the exposure and recovery groups, especially for SCD1 and APOD (p < 0.01). Notably, BPA could significantly decrease the level of APOD protein (p < 0.01) whereas there was an extremely significant increase after the exposure ceased. Meanwhile, APOD over-expression suppressed TG accumulation in the AML12 cells. In conclusion, the damage caused by BPA is able to be repaired by the upregulation of APOD and exposure to BPA should be carefully examined in chronic liver metabolic disorders or diseases.
Collapse
Affiliation(s)
- Changqing Li
- College of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Nan Shen
- College of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Shaohua Yang
- College of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Hui-Li Wang
- College of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| |
Collapse
|
17
|
Wang BY, Chang YY, Shiu LY, Lee YJ, Lin YW, Hsu YS, Tsai HT, Hsu SP, Su LJ, Tsai MH, Xiao JH, Lin JA, Chen CH. An integrated analysis of dysregulated SCD1 in human cancers and functional verification of miR-181a-5p/SCD1 axis in esophageal squamous cell carcinoma. Comput Struct Biotechnol J 2023; 21:4030-4043. [PMID: 37664175 PMCID: PMC10468324 DOI: 10.1016/j.csbj.2023.08.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 08/14/2023] [Accepted: 08/14/2023] [Indexed: 09/05/2023] Open
Abstract
Esophageal squamous cell carcinoma (ESCC), one of the most lethal cancers, has become a global health issue. Stearoyl-coA desaturase 1 (SCD1) has been demonstrated to play a crucial role in human cancers. However, pan-cancer analysis has revealed little evidence to date. In the current study, we systematically inspected the expression patterns and potential clinical outcomes of SCD1 in multiple human cancers. SCD1 was dysregulated in several types of cancers, and its aberrant expression acted as a diagnostic biomarker, indicating that SCD1 may play a role in tumorigenesis. We used ESCC as an example to demonstrate that SCD1 was dramatically upregulated in tumor tissues of ESCC and was associated with clinicopathological characteristics in ESCC patients. Furthermore, Kaplan-Meier analysis showed that high SCD1 expression was correlated with poor progression-free survival (PFS) and disease-free survival (DFS) in ESCC patients. The protein-protein interaction (PPI) network and module analysis by PINA database and Gephi were performed to identify the hub targets. Meanwhile, the functional annotation analysis of these hubs was constructed by Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses. Functionally, the gain-of-function of SCD1 in ESCC cells promoted cell proliferation, migration, and invasion; in contrast, loss-of-function of SCD1 in ESCC cells had opposite effects. Bioinformatic, QPCR, Western blotting and luciferase assays indicated that SCD1 was a direct target of miR-181a-5p in ESCC cells. In addition, gain-of-function of miR-181a-5p in ESCC cells reduced the cell growth, migratory, and invasive abilities. Conversely, inhibition of miR-181a-5p expression by its inhibitor in ESCC cells had opposite biological effects. Importantly, reinforced SCD1 in miR-181a-5p mimic ESCC transfectants reversed miR-181a-5p mimic-prevented malignant phenotypes of ESCC cells. Taken together, these results indicate that SCD1 expression influences tumor progression in a variety of cancers, and the miR-181a-5p/SCD1 axis may be a potential therapeutic target for ESCC treatment.
Collapse
Affiliation(s)
- Bing-Yen Wang
- Division of Thoracic Surgery, Department of Surgery, Changhua Christian Hospital, Taiwan
- Institute of Genomics and Bioinformatics, National Chung Hsing University, Taichung, Taiwan
- Department of Post-Baccalaureate Medicine, College of Medicine, National Chung Hsing University, Taichung, Taiwan
- School of Medicine, Chung Shan Medical University, Taichung, Taiwan
- School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Center for General Education, Ming Dao University, Changhua, Taiwan
| | - Yuan-Yen Chang
- Department of Microbiology and Immunology, School of Medicine, Chung-Shan Medical University, and Clinical Laboratory, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Li-Yen Shiu
- Cell Therapy Center, E-Da cancer Hospital, I-Shou University, Kaohsiung, Taiwan
- Cell Therapy and Research Center, E-Da Hospital, I-Shou University, Kaohsiung, Taiwan
| | - Yi-Ju Lee
- Immunology Research Center, Chung Shan Medical University, Taichung, Taiwan
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Yu-Wei Lin
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Yu-Shen Hsu
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Hsin-Ting Tsai
- Department of Medical Research, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Sung-Po Hsu
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Department of Physiology, School of Medicine, Taipei, Taiwan
| | - Li-Jen Su
- Department of Biomedical Sciences and Engineering, Education and Research Center for Technology Assisted Substance Abuse Prevention and Management, and Core Facilities for High Throughput Experimental Analysis, National Central University, Taoyuan County, Taiwan
| | - Meng-Hsiu Tsai
- Department of Biomedical Sciences and Engineering, Education and Research Center for Technology Assisted Substance Abuse Prevention and Management, and Core Facilities for High Throughput Experimental Analysis, National Central University, Taoyuan County, Taiwan
| | - Jing-Hong Xiao
- Department of Biomedical Sciences and Engineering, Education and Research Center for Technology Assisted Substance Abuse Prevention and Management, and Core Facilities for High Throughput Experimental Analysis, National Central University, Taoyuan County, Taiwan
| | - Jer-An Lin
- Department of Food Science and Biotechnology, National Chung Hsing University, Taichung, Taiwan
- Graduate Institute of Food Safety, National Chung Hsing University, Taichung, Taiwan
| | - Chang-Han Chen
- Department of Applied Chemistry, and Graduate Institute of Biomedicine and Biomedical Technology, National Chi Nan University, Nantou, Taiwan
- Department of Medical Research, Taichung Veterans General Hospital, Taichung, Taiwan
- Department of Medical Research, Chung Shan Medical University Hospital, Taichung, Taiwan
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
| |
Collapse
|
18
|
Wu M, Lo TH, Li L, Sun J, Deng C, Chan KY, Li X, Yeh STY, Lee JTH, Lui PPY, Xu A, Wong CM. Amelioration of non-alcoholic fatty liver disease by targeting adhesion G protein-coupled receptor F1 ( Adgrf1). eLife 2023; 12:e85131. [PMID: 37580962 PMCID: PMC10427146 DOI: 10.7554/elife.85131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 07/28/2023] [Indexed: 08/16/2023] Open
Abstract
Background Recent research has shown that the adhesion G protein-coupled receptor F1 (Adgrf1; also known as GPR110; PGR19; KPG_012; hGPCR36) is an oncogene. The evidence is mainly based on high expression of Adgrf1 in numerous cancer types, and knockdown Adgrf1 can reduce the cell migration, invasion, and proliferation. Adgrf1 is, however, mostly expressed in the liver of healthy individuals. The function of Adgrf1 in liver has not been revealed. Interestingly, expression level of hepatic Adgrf1 is dramatically decreased in obese subjects. Here, the research examined whether Adgrf1 has a role in liver metabolism. Methods We used recombinant adeno-associated virus-mediated gene delivery system, and antisense oligonucleotide was used to manipulate the hepatic Adgrf1 expression level in diet-induced obese mice to investigate the role of Adgrf1 in hepatic steatosis. The clinical relevance was examined using transcriptome profiling and archived biopsy specimens of liver tissues from non-alcoholic fatty liver disease (NAFLD) patients with different degree of fatty liver. Results The expression of Adgrf1 in the liver was directly correlated to fat content in the livers of both obese mice and NAFLD patients. Stearoyl-coA desaturase 1 (Scd1), a crucial enzyme in hepatic de novo lipogenesis, was identified as a downstream target of Adgrf1 by RNA-sequencing analysis. Treatment with the liver-specific Scd1 inhibitor MK8245 and specific shRNAs against Scd1 in primary hepatocytes improved the hepatic steatosis of Adgrf1-overexpressing mice and lipid profile of hepatocytes, respectively. Conclusions These results indicate Adgrf1 regulates hepatic lipid metabolism through controlling the expression of Scd1. Downregulation of Adgrf1 expression can potentially serve as a protective mechanism to stop the overaccumulation of fat in the liver in obese subjects. Overall, the above findings not only reveal a new mechanism regulating the progression of NAFLD, but also proposed a novel therapeutic approach to combat NAFLD by targeting Adgrf1. Funding This work was supported by the National Natural Science Foundation of China (81870586), Area of Excellence (AoE/M-707/18), and General Research Fund (15101520) to CMW, and the National Natural Science Foundation of China (82270941, 81974117) to SJ.
Collapse
Affiliation(s)
- Mengyao Wu
- Department of Chemistry and Chemical Engineering, Guangzhou UniversityGuangzhouChina
| | - Tak-Ho Lo
- Department of Health Technology and Informatics, Hong Kong Polytechnic UniversityHong KongHong Kong
| | - Liping Li
- Zhujiang Hospital, Southern Medical UniversityChinaChina
| | - Jia Sun
- Zhujiang Hospital, Southern Medical UniversityChinaChina
| | - Chujun Deng
- Department of Health Technology and Informatics, Hong Kong Polytechnic UniversityHong KongHong Kong
| | - Ka-Ying Chan
- Department of Health Technology and Informatics, Hong Kong Polytechnic UniversityHong KongHong Kong
| | - Xiang Li
- Department of Health Technology and Informatics, Hong Kong Polytechnic UniversityHong KongHong Kong
| | | | - Jimmy Tsz Hang Lee
- Department of Medicine, University of Hong KongHong KongHong Kong
- State Key Laboratory of Pharmaceutical Biotechnology, University of Hong KongHong KongChina
| | - Pauline Po Yee Lui
- Department of Orthopaedics and Traumatology, Chinese University of Hong KongHong KongHong Kong
| | - Aimin Xu
- Department of Medicine, University of Hong KongHong KongHong Kong
- State Key Laboratory of Pharmaceutical Biotechnology, University of Hong KongHong KongChina
| | - Chi-Ming Wong
- Department of Health Technology and Informatics, Hong Kong Polytechnic UniversityHong KongHong Kong
- State Key Laboratory of Pharmaceutical Biotechnology, University of Hong KongHong KongChina
- Hong Kong Polytechnic University, Shenzhen Research InstituteHong KongChina
| |
Collapse
|
19
|
Khan MSH, Hefner M, Reddy A, Dhurandhar NV, Hegde V. E4orf1 improves adipose tissue-specific metabolic risk factors and indicators of cognition function in a mouse model of Alzheimer's disease. Nutr Diabetes 2023; 13:13. [PMID: 37573386 PMCID: PMC10423203 DOI: 10.1038/s41387-023-00242-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 06/20/2023] [Accepted: 07/18/2023] [Indexed: 08/14/2023] Open
Abstract
OBJECTIVE Obesity, impaired glycemic control, and hepatic steatosis often coexist and are risk factors for developing dementia, and Alzheimer's disease (AD). We hypothesized that a therapeutic agent that improves glycemic control and steatosis may attenuate obesity-associated progression of dementia. We previously identified that adenoviral protein E4orf1 improves glycemic control and reduces hepatic steatosis despite obesity in mice. Here, we determined if this metabolic improvement by E4orf1 will ameliorate cognitive decline in a transgenic mouse model of AD. METHODS Fourteen- to twenty-month-old APP/PS1/E4orf1 and APP/PS1 (control) mice were fed a high-fat diet. Cognition was determined by Morris Water Maze (MWM). Systemic glycemic control and metabolic signaling changes in adipose tissue, liver, and brain were determined. RESULTS Compared to control, E4orf1 expression significantly improved glucose clearance, reduced endogenous insulin requirement and lowered body-fat, enhanced glucose and lipid metabolism in adipose tissue, and reduced de novo lipogenesis in the liver. In the brain, E4orf1 mice displayed significantly greater expression of genes involved in neurogenesis and amyloid-beta degradation and performed better in MWM testing. CONCLUSION This study opens-up the possibility of addressing glycemic control and steatosis for attenuating obesity-related cognitive decline. It also underscores the potential of E4orf1 for the purpose, which needs further investigations.
Collapse
Affiliation(s)
- Md Shahjalal Hossain Khan
- Obesity and Metabolic Health Laboratory, Department of Nutritional Sciences, Texas Tech University, Lubbock, TX, 79409, USA
- Neurosignaling Laboratory, Pennington Biomedical Research Center, Baton Rouge, LA, USA
| | - Marleigh Hefner
- Obesity and Metabolic Health Laboratory, Department of Nutritional Sciences, Texas Tech University, Lubbock, TX, 79409, USA
| | - Arubala Reddy
- Obesity and Metabolic Health Laboratory, Department of Nutritional Sciences, Texas Tech University, Lubbock, TX, 79409, USA
| | - Nikhil V Dhurandhar
- Obesity and Metabolic Health Laboratory, Department of Nutritional Sciences, Texas Tech University, Lubbock, TX, 79409, USA
| | - Vijay Hegde
- Obesity and Metabolic Health Laboratory, Department of Nutritional Sciences, Texas Tech University, Lubbock, TX, 79409, USA.
| |
Collapse
|
20
|
Lee HJ, Lee J, Yang MJ, Kim YC, Hong SP, Kim JM, Hwang GS, Koh GY. Endothelial cell-derived stem cell factor promotes lipid accumulation through c-Kit-mediated increase of lipogenic enzymes in brown adipocytes. Nat Commun 2023; 14:2754. [PMID: 37179330 PMCID: PMC10183046 DOI: 10.1038/s41467-023-38433-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 05/03/2023] [Indexed: 05/15/2023] Open
Abstract
Active thermogenesis in the brown adipose tissue (BAT) facilitating the utilization of lipids and glucose is critical for maintaining body temperature and reducing metabolic diseases, whereas inactive BAT accumulates lipids in brown adipocytes (BAs), leading to BAT whitening. Although cellular crosstalk between endothelial cells (ECs) and adipocytes is essential for the transport and utilization of fatty acid in BAs, the angiocrine roles of ECs mediating this crosstalk remain poorly understood. Using single-nucleus RNA sequencing and knock-out male mice, we demonstrate that stem cell factor (SCF) derived from ECs upregulates gene expressions and protein levels of the enzymes for de novo lipogenesis, and promotes lipid accumulation by activating c-Kit in BAs. In the early phase of lipid accumulation induced by denervation or thermoneutrality, transiently expressed c-Kit on BAs increases the protein levels of the lipogenic enzymes via PI3K and AKT signaling. EC-specific SCF deletion and BA-specific c-Kit deletion attenuate the induction of the lipogenic enzymes and suppress the enlargement of lipid droplets in BAs after denervation or thermoneutrality in male mice. These data provide insight into SCF/c-Kit signaling as a regulator that promotes lipid accumulation through the increase of lipogenic enzymes in BAT when thermogenesis is inhibited.
Collapse
Affiliation(s)
- Hyuek Jong Lee
- Center for Vascular Research, Institute for Basic Science (IBS), Daejeon, 34141, Republic of Korea.
| | - Jueun Lee
- Integrated Metabolomics Research Group, Western Seoul Center, Korea Basic Science Institute, Seoul, 03760, Republic of Korea
| | - Myung Jin Yang
- Center for Vascular Research, Institute for Basic Science (IBS), Daejeon, 34141, Republic of Korea
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Young-Chan Kim
- Center for Vascular Research, Institute for Basic Science (IBS), Daejeon, 34141, Republic of Korea
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Seon Pyo Hong
- Center for Vascular Research, Institute for Basic Science (IBS), Daejeon, 34141, Republic of Korea
| | - Jung Mo Kim
- Center for Vascular Research, Institute for Basic Science (IBS), Daejeon, 34141, Republic of Korea
| | - Geum-Sook Hwang
- Integrated Metabolomics Research Group, Western Seoul Center, Korea Basic Science Institute, Seoul, 03760, Republic of Korea.
- Colleage of Pharmacy, Chung-Ang University, Seoul, 06974, Republic of Korea.
| | - Gou Young Koh
- Center for Vascular Research, Institute for Basic Science (IBS), Daejeon, 34141, Republic of Korea.
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea.
| |
Collapse
|
21
|
Cavallero S, Roustaei M, Satta S, Cho JM, Phan H, Baek KI, Blázquez-Medela AM, Gonzalez-Ramos S, Vu K, Park SK, Yokota T, Sumner JA, Mack JJ, Sigmund CD, Reddy ST, Li R, Hsiai TK. Exercise Mitigates Flow Recirculation and Activates Mechanosensitive Transcriptome to Uncover Endothelial SCD1-Catalyzed Anti-Inflammatory Metabolites. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.02.539172. [PMID: 37205360 PMCID: PMC10187200 DOI: 10.1101/2023.05.02.539172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Exercise modulates vascular plasticity in multiple organ systems; however, the metabolomic transducers underlying exercise and vascular protection in the disturbed flow-prone vasculature remain under-investigated. We simulated exercise-augmented pulsatile shear stress (PSS) to mitigate flow recirculation in the lesser curvature of the aortic arch. When human aortic endothelial cells (HAECs) were subjected to PSS ( τ ave = 50 dyne·cm -2 , ∂τ/∂t = 71 dyne·cm -2 ·s -1 , 1 Hz), untargeted metabolomic analysis revealed that Stearoyl-CoA Desaturase (SCD1) in the endoplasmic reticulum (ER) catalyzed the fatty acid metabolite, oleic acid (OA), to mitigate inflammatory mediators. Following 24 hours of exercise, wild-type C57BL/6J mice developed elevated SCD1-catalyzed lipid metabolites in the plasma, including OA and palmitoleic acid (PA). Exercise over a 2-week period increased endothelial SCD1 in the ER. Exercise further modulated the time-averaged wall shear stress (TAWSS or τ ave) and oscillatory shear index (OSI ave ), upregulated Scd1 and attenuated VCAM1 expression in the disturbed flow-prone aortic arch in Ldlr -/- mice on high-fat diet but not in Ldlr -/- Scd1 EC-/- mice. Scd1 overexpression via recombinant adenovirus also mitigated ER stress. Single cell transcriptomic analysis of the mouse aorta revealed interconnection of Scd1 with mechanosensitive genes, namely Irs2 , Acox1 and Adipor2 that modulate lipid metabolism pathways. Taken together, exercise modulates PSS ( τ ave and OSI ave ) to activate SCD1 as a metabolomic transducer to ameliorate inflammation in the disturbed flow-prone vasculature.
Collapse
|
22
|
Mérian J, Ghezali L, Trenteseaux C, Duparc T, Beuzelin D, Bouguetoch V, Combes G, Sioufi N, Martinez LO, Najib S. Intermittent Fasting Resolves Dyslipidemia and Atherogenesis in Apolipoprotein E-Deficient Mice in a Diet-Dependent Manner, Irrespective of Sex. Cells 2023; 12:533. [PMID: 36831200 PMCID: PMC9953823 DOI: 10.3390/cells12040533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 01/30/2023] [Accepted: 02/03/2023] [Indexed: 02/11/2023] Open
Abstract
In humans and animal models, intermittent fasting (IF) interventions promote body weight loss, improve metabolic health, and are thought to lower cardiovascular disease risk. However, there is a paucity of reports on the relevance of such nutritional interventions in the context of dyslipidemia and atherosclerotic cardiovascular diseases. The present study assessed the metabolic and atheroprotective effects of intermittent fasting intervention (IF) in atherosclerosis-prone apolipoprotein E-deficient (Apoe-/-) mice. Groups of male and female Apoe-/- mice were fed a regular (chow) or atherogenic (high-fat, high-cholesterol, HFCD) diet for 4 months, either ad libitum or in an alternate-day fasting manner. The results show that IF intervention improved glucose and lipid metabolism independently of sex. However, IF only decreased body weight gain in males fed chow diet and differentially modulated adipose tissue parameters and liver steatosis in a diet composition-dependent manner. Finally, IF prevented spontaneous aortic atherosclerotic lesion formation in mice fed chow diet, irrespective of sex, but failed to reduce HFCD-diet-induced atherosclerosis. Overall, the current work indicates that IF interventions can efficiently improve glucose homeostasis and treat atherogenic dyslipidemia, but a degree of caution is warranted with regard to the individual sex and the composition of the dietary regimen.
Collapse
Affiliation(s)
- Jules Mérian
- Institut des Maladies Métaboliques et Cardiovasculaires, I2MC, Université de Toulouse, Inserm, Université Toulouse III—Paul Sabatier (UPS), UMR1297, 31432 Toulouse, France
| | - Lamia Ghezali
- Institut des Maladies Métaboliques et Cardiovasculaires, I2MC, Université de Toulouse, Inserm, Université Toulouse III—Paul Sabatier (UPS), UMR1297, 31432 Toulouse, France
- Lifesearch SAS, 195 Route d’Espagne, 31100 Toulouse, France
| | - Charlotte Trenteseaux
- Institut des Maladies Métaboliques et Cardiovasculaires, I2MC, Université de Toulouse, Inserm, Université Toulouse III—Paul Sabatier (UPS), UMR1297, 31432 Toulouse, France
- Lifesearch SAS, 195 Route d’Espagne, 31100 Toulouse, France
| | - Thibaut Duparc
- Institut des Maladies Métaboliques et Cardiovasculaires, I2MC, Université de Toulouse, Inserm, Université Toulouse III—Paul Sabatier (UPS), UMR1297, 31432 Toulouse, France
| | - Diane Beuzelin
- Institut des Maladies Métaboliques et Cardiovasculaires, I2MC, Université de Toulouse, Inserm, Université Toulouse III—Paul Sabatier (UPS), UMR1297, 31432 Toulouse, France
- Lifesearch SAS, 195 Route d’Espagne, 31100 Toulouse, France
| | - Vanessa Bouguetoch
- Institut des Maladies Métaboliques et Cardiovasculaires, I2MC, Université de Toulouse, Inserm, Université Toulouse III—Paul Sabatier (UPS), UMR1297, 31432 Toulouse, France
- Lifesearch SAS, 195 Route d’Espagne, 31100 Toulouse, France
| | - Guillaume Combes
- Institut des Maladies Métaboliques et Cardiovasculaires, I2MC, Université de Toulouse, Inserm, Université Toulouse III—Paul Sabatier (UPS), UMR1297, 31432 Toulouse, France
| | - Nabil Sioufi
- Lifesearch SAS, 195 Route d’Espagne, 31100 Toulouse, France
| | - Laurent O. Martinez
- Institut des Maladies Métaboliques et Cardiovasculaires, I2MC, Université de Toulouse, Inserm, Université Toulouse III—Paul Sabatier (UPS), UMR1297, 31432 Toulouse, France
| | - Souad Najib
- Institut des Maladies Métaboliques et Cardiovasculaires, I2MC, Université de Toulouse, Inserm, Université Toulouse III—Paul Sabatier (UPS), UMR1297, 31432 Toulouse, France
| |
Collapse
|
23
|
Xu SS, Li Y, Wang HP, Chen WB, Wang YQ, Song ZW, Liu H, Zhong S, Sun YH, Zhong S, Sun YH. Depletion of stearoyl-CoA desaturase ( scd) leads to fatty liver disease and defective mating behavior in zebrafish. Zool Res 2023; 44:63-77. [PMID: 36317480 PMCID: PMC9841191 DOI: 10.24272/j.issn.2095-8137.2022.167] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Stearyl coenzyme A desaturase (SCD), also known as delta-9 desaturase, catalyzes the rate-limiting step in the formation of monounsaturated fatty acids. In mammals, depletion or inhibition of SCD activity generally leads to a decrease in triglycerides and cholesteryl esters. However, the endogenous role of scd in teleost fish remains unknown. Here, we generated a zebrafish scd mutant (scd-/-) to elucidate the role of scd in lipid metabolism and sexual development. Gas chromatography-mass spectrometry (GC-MS) showed that the scd-/- mutants had increased levels of saturated fatty acids C16:0 and C18:0, and decreased levels of monounsaturated fatty acids C16:1 and C18:1. The mutant fish displayed a short stature and an enlarged abdomen during development. Unlike Scd-/- mammals, the scd-/- zebrafish showed significantly increased fat accumulation in the whole body, especially in the liver, leading to hepatic mitochondrial dysfunction and severe cell apoptosis. Mechanistically, srebf1, a gene encoding a transcriptional activator related to adipogenesis, acc1 and acaca, genes involved in fatty acid synthesis, and dgat2, a key gene involved in triglyceride synthesis, were significantly upregulated in mutant livers to activate fatty acid biosynthesis and adipogenesis. The scd-/- males exhibited defective natural mating behavior due to defective genital papillae but possessed functional mature sperm. All defects in the scd-/- mutants could be rescued by ubiquitous transgenic overexpression of scd. In conclusion, our study demonstrates that scd is indispensable for maintaining lipid homeostasis and development of secondary sexual characteristics in zebrafish.
Collapse
Affiliation(s)
- Shan-Shan Xu
- Department of Genetics, Wuhan University School of Basic Medical Sciences, Wuhan, Hubei 430071, China,State Key Laboratory of Freshwater Ecology and Biotechnology, Hubei Hongshan Laboratory, Institute of Hydrobiology, Innovation Academy for Seed Design (INASEED), Chinese Academy of Sciences, Wuhan, Hubei 430072, China
| | - Yi Li
- State Key Laboratory of Freshwater Ecology and Biotechnology, Hubei Hongshan Laboratory, Institute of Hydrobiology, Innovation Academy for Seed Design (INASEED), Chinese Academy of Sciences, Wuhan, Hubei 430072, China
| | - Hou-Peng Wang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Hubei Hongshan Laboratory, Institute of Hydrobiology, Innovation Academy for Seed Design (INASEED), Chinese Academy of Sciences, Wuhan, Hubei 430072, China
| | - Wen-Bo Chen
- Department of Genetics, Wuhan University School of Basic Medical Sciences, Wuhan, Hubei 430071, China
| | - Ya-Qing Wang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Hubei Hongshan Laboratory, Institute of Hydrobiology, Innovation Academy for Seed Design (INASEED), Chinese Academy of Sciences, Wuhan, Hubei 430072, China
| | - Zi-Wei Song
- Department of Genetics, Wuhan University School of Basic Medical Sciences, Wuhan, Hubei 430071, China
| | - Hui Liu
- Department of Genetics, Wuhan University School of Basic Medical Sciences, Wuhan, Hubei 430071, China
| | - Shan Zhong
- Department of Genetics, Wuhan University School of Basic Medical Sciences, Wuhan, Hubei 430071, China,Hubei Province Key Laboratory of Allergy and Immunology, Wuhan, Hubei 430071, China,E-mail:
| | - Yong-Hua Sun
- State Key Laboratory of Freshwater Ecology and Biotechnology, Hubei Hongshan Laboratory, Institute of Hydrobiology, Innovation Academy for Seed Design (INASEED), Chinese Academy of Sciences, Wuhan, Hubei 430072, China,College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China,
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Bushman T, Lin TY, Chen X. Depot-Dependent Impact of Time-Restricted Feeding on Adipose Tissue Metabolism in High Fat Diet-Induced Obese Male Mice. Nutrients 2023; 15:238. [PMID: 36615895 PMCID: PMC9823673 DOI: 10.3390/nu15010238] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/29/2022] [Accepted: 12/30/2022] [Indexed: 01/04/2023] Open
Abstract
Time-restricted feeding (TRF) is known to be an effective strategy for weight loss and metabolic health. TRF's effect on metabolism is complex and likely acts on various pathways within multiple tissues. Adipose tissue plays a key role in systemic homeostasis of glucose and lipid metabolism. Adipose tissue dysregulation has been causally associated with metabolic disorders in obesity. However, it is largely unknown how TRF impacts metabolic pathways such as lipolysis, lipogenesis, and thermogenesis within different in adipose tissue depots in obesity. To determine this, we conducted a 10-week TRF regimen in male mice, previously on a long-term high fat diet (HFD) and subjected the mice to TRF of a HFD for 10 h per day or ad libitum. The TRF regimen showed reduction in weight gain. TRF restored HFD-induced impairment of adipogenesis and increased lipid storage in white adipose tissues. TRF also showed a depot-dependent effect in lipid metabolism and restored ATP-consuming futile cycle of lipogenesis and lipolysis that is impaired by HFD within epididymal adipose tissue, but not inguinal fat depot. We demonstrate that TRF may be a beneficial option as a dietary and lifestyle intervention in lowering bodyweight and improving adipose tissue metabolism.
Collapse
Affiliation(s)
| | | | - Xiaoli Chen
- Department of Food Science and Nutrition, University of Minnesota, Twin Cities, MN 55108, USA
| |
Collapse
|
25
|
Nanduri R, Furusawa T, Lobanov A, He B, Xie C, Dadkhah K, Kelly MC, Gavrilova O, Gonzalez FJ, Bustin M. Epigenetic regulation of white adipose tissue plasticity and energy metabolism by nucleosome binding HMGN proteins. Nat Commun 2022; 13:7303. [PMID: 36435799 PMCID: PMC9701217 DOI: 10.1038/s41467-022-34964-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 11/10/2022] [Indexed: 11/28/2022] Open
Abstract
White adipose tissue browning is a key metabolic process controlled by epigenetic factors that facilitate changes in gene expression leading to altered cell identity. We find that male mice lacking the nucleosome binding proteins HMGN1 and HMGN2 (DKO mice), show decreased body weight and inguinal WAT mass, but elevated food intake, WAT browning and energy expenditure. DKO white preadipocytes show reduced chromatin accessibility and lower FRA2 and JUN binding at Pparγ and Pparα promoters. White preadipocytes and mouse embryonic fibroblasts from DKO mice show enhanced rate of differentiation into brown-like adipocytes. Differentiating DKO adipocytes show reduced H3K27ac levels at white adipocyte-specific enhancers but elevated H3K27ac levels at brown adipocyte-specific enhancers, suggesting a faster rate of change in cell identity, from white to brown-like adipocytes. Thus, HMGN proteins function as epigenetic factors that stabilize white adipocyte cell identity, thereby modulating the rate of white adipose tissue browning and affecting energy metabolism in mice.
Collapse
Affiliation(s)
- Ravikanth Nanduri
- Protein Section, Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA.
| | - Takashi Furusawa
- Protein Section, Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Alexei Lobanov
- CCR Collaborative Bioinformatics Resource, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Bing He
- Protein Section, Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Carol Xie
- Nucleic Acid Section, Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Kimia Dadkhah
- CCR Single Analysis Facility, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Bethesda, MD, 20892, USA
| | - Michael C Kelly
- CCR Single Analysis Facility, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Bethesda, MD, 20892, USA
| | - Oksana Gavrilova
- Mouse Metabolism Core Laboratory, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Frank J Gonzalez
- Nucleic Acid Section, Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Michael Bustin
- Protein Section, Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA.
| |
Collapse
|
26
|
O’Neill LM, Phang YX, Liu Z, Lewis SA, Aljohani A, McGahee A, Wade G, Kalyesubula M, Simcox J, Ntambi JM. Hepatic Oleate Regulates Insulin-like Growth Factor-Binding Protein 1 Partially through the mTORC1-FGF21 Axis during High-Carbohydrate Feeding. Int J Mol Sci 2022; 23:14671. [PMID: 36498997 PMCID: PMC9737156 DOI: 10.3390/ijms232314671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 11/13/2022] [Accepted: 11/14/2022] [Indexed: 11/25/2022] Open
Abstract
Stearoyl-CoA desaturase-1 (SCD1) catalyzes the rate-liming step of monounsaturated fatty acid biosynthesis and is a key regulator of systemic glucose metabolism. Mice harboring either a global (GKO) or liver-specific deletion (LKO) of Scd1 display enhanced insulin signaling and whole-body glucose uptake. Additionally, GKO and LKO mice are protected from high-carbohydrate diet-induced obesity. Given that high-carbohydrate diets can lead to chronic metabolic diseases such as obesity, diabetes, and hepatic steatosis, it is critical to understand how Scd1 deficiency confers metabolically beneficial phenotypes. Here we show that insulin-like growth factor-binding protein 1 (IGFBP1), a hepatokine that has been reported to enhance insulin signaling, is significantly elevated in the liver and plasma of GKO and LKO mice fed a low-fat high-carbohydrate diet. We also observed that the expression of hepatic Igfbp1 is regulated by oleic acid (18:1n9), a product of SCD1, through the mTORC1-FGF21 axis both in vivo and in vitro.
Collapse
Affiliation(s)
- Lucas M. O’Neill
- Department of Biochemistry, University of Wisconsin-Madison, 433 Babcock Drive, Madison, WI 53706, USA
| | - Yar Xin Phang
- Department of Biochemistry, University of Wisconsin-Madison, 433 Babcock Drive, Madison, WI 53706, USA
| | - Zhaojin Liu
- Department of Biochemistry, University of Wisconsin-Madison, 433 Babcock Drive, Madison, WI 53706, USA
| | - Sarah A. Lewis
- Department of Biochemistry, University of Wisconsin-Madison, 433 Babcock Drive, Madison, WI 53706, USA
| | - Ahmed Aljohani
- College of Science and Health Professions, King Saud Bin Abdulaziz University for Health Sciences, Riyadh 11564, Saudi Arabia
- King Abdullah International Medical Research Center (KAIMRC), Riyadh 11564, Saudi Arabia
| | - Ayren McGahee
- Department of Biochemistry, University of Wisconsin-Madison, 433 Babcock Drive, Madison, WI 53706, USA
| | - Gina Wade
- Department of Biochemistry, University of Wisconsin-Madison, 433 Babcock Drive, Madison, WI 53706, USA
| | - Mugagga Kalyesubula
- Department of Biochemistry, University of Wisconsin-Madison, 433 Babcock Drive, Madison, WI 53706, USA
| | - Judith Simcox
- Department of Biochemistry, University of Wisconsin-Madison, 433 Babcock Drive, Madison, WI 53706, USA
- Department of Nutritional Sciences, University of Wisconsin-Madison, 1415 Linden Drive, Madison, WI 53706, USA
| | - James M. Ntambi
- Department of Biochemistry, University of Wisconsin-Madison, 433 Babcock Drive, Madison, WI 53706, USA
- Department of Nutritional Sciences, University of Wisconsin-Madison, 1415 Linden Drive, Madison, WI 53706, USA
| |
Collapse
|
27
|
Proteomics Insights into the Gene Network of cis9, trans11-Conjugated Linoleic Acid Biosynthesis in Bovine Mammary Gland Epithelial Cells. Animals (Basel) 2022; 12:ani12131718. [PMID: 35804617 PMCID: PMC9264836 DOI: 10.3390/ani12131718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 06/28/2022] [Accepted: 06/29/2022] [Indexed: 11/16/2022] Open
Abstract
The objective of the study was to elucidate the stearoyl-coenzyme A desaturase (SCD1)-dependent gene network of c9, t11-CLA biosynthesis in MAC-T cells from an energy metabolism perspective. The cells were divided into the CAY group (firstly incubated with CAY10566, a chemical inhibitor of SCD1, then incubated with trans-11-octadecenoic acid, (TVA)), the TVA group (only TVA), and the control group (without CAY, TVA). The c9, t11-CLA, and TVA contents were determined by gas chromatography. The mRNA levels of SCD1 and candidate genes were analyzed via real-time PCR. Tandem mass tag (TMT)-based quantitative proteomics, bioinformatic analysis, parallel reaction monitoring (PRM), and small RNA interference were used to explore genes involved in the SCD1-dependent c9, t11-CLA biosynthesis. The results showed that the SCD1 deficiency led by CAY10566 blocked the biosynthesis of c9, t11-CLA. In total, 60 SCD1-related proteins mainly involved in energy metabolism pathways were primarily screened by TMT-based quantitative proteomics analysis. Moreover, 17 proteins were validated using PRM analysis. Then, 11 genes were verified to have negative relationships with SCD1 after the small RNA interference analysis. Based on the above results, we concluded that genes involved in energy metabolism pathways have an impact on the SCD1-dependent molecular mechanism of c9, t11-CLA biosynthesis.
Collapse
|
28
|
Fang R, Yang S, Gu X, Li C, Bi N, Wang HL. Early-life exposure to bisphenol A induces dysregulation of lipid homeostasis by the upregulation of SCD1 in male mice. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 304:119201. [PMID: 35341816 DOI: 10.1016/j.envpol.2022.119201] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 02/12/2022] [Accepted: 03/21/2022] [Indexed: 06/14/2023]
Abstract
Exposure of Bisphenol A (BPA) is closely associated with an increased prevalence of obesity-related metabolic syndrome. However, the potential mechanism of BPA-induced adipogenesis remains to be fully elucidated. Herein, potential mechanisms of BPA-induced adipogenesis in 3T3-L1 preadipocytes were evaluated using RNA-Seq. Then, using an early-life BPA exposure model, we further evaluated the effects of BPA exposure on lipid and glucose homeostasis. The results showed that lipid content in 3T3-L1 adipocytes was significantly increased after BPA exposure (p < 0.01) and male C57BL/6 mice with the dose of 500 μg/kg/day BPA by once-a-day oral administration for 8 weeks displayed a NAFLD-like phenotype. RNA-Seq analysis of preadipocytes showed that BPA exposure affected multiple biological processes including glycosphingolipid biosynthesis, regulation of lipolysis in adipocytes, PPAR signaling pathway and fatty acid metabolism. The dysregulation in a series of genes of mice was associated to de novo lipogenesis and lipid transport, which was linked to obesity. Importantly, we also found a significant expression increase of stearoyl-CoA desaturase 1 (SCD1) and a significant decrease of apolipoprotein D (APOD) in both fat (p < 0.01) and livers (p < 0.01) of male mice. Besides, the dysregulation of pro-inflammatory genes (TNF-α,IL-6 and SAA3) showed that BPA exposure promoted progression of hepatic inflammation. In conclusion, this study elucidated a novel mechanism in which obesity associated with BPA exposure by targeting SCD1. Exposure to BPA should be carefully examined in the chronic liver metabolic diseases.
Collapse
Affiliation(s)
- Ruyue Fang
- College of Food and Biological Engineering, Hefei University of Technology, 193 Tunxi Road, Hefei, Anhui, 230009, PR China
| | - Shaohua Yang
- College of Food and Biological Engineering, Hefei University of Technology, 193 Tunxi Road, Hefei, Anhui, 230009, PR China
| | - Xiaozhen Gu
- College of Food and Biological Engineering, Hefei University of Technology, 193 Tunxi Road, Hefei, Anhui, 230009, PR China
| | - Changqing Li
- College of Food and Biological Engineering, Hefei University of Technology, 193 Tunxi Road, Hefei, Anhui, 230009, PR China
| | - Nanxi Bi
- College of Food and Biological Engineering, Hefei University of Technology, 193 Tunxi Road, Hefei, Anhui, 230009, PR China
| | - Hui-Li Wang
- College of Food and Biological Engineering, Hefei University of Technology, 193 Tunxi Road, Hefei, Anhui, 230009, PR China.
| |
Collapse
|
29
|
Shen Y, Sun Y, Wang X, Xiao Y, Ma L, Lyu W, Zheng Z, Wang W, Li J. Liver Transcriptome and Gut Microbiome Analysis Reveals the Effects of High Fructose Corn Syrup in Mice. Front Nutr 2022; 9:921758. [PMID: 35845805 PMCID: PMC9280673 DOI: 10.3389/fnut.2022.921758] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Accepted: 06/01/2022] [Indexed: 11/13/2022] Open
Abstract
High fructose corn syrup (HFCS) is a viscous mixture of glucose and fructose that is used primarily as a food additive. This article explored the effect of HFCS on lipid metabolism-expressed genes and the mouse gut microbiome. In total, ten 3-week-old male C57BL/6J mice were randomly divided into two groups, including the control group, given purified water (Group C) and 30% HFCS in water (Group H) for 16 weeks. Liver and colonic content were collected for transcriptome sequencing and 16S rRNA gene sequencing, respectively. HFCS significantly increased body weight, epididymal, perirenal fat weight in mice (p < 0.05), and the proportion of lipid droplets in liver tissue. The expression of the ELOVL fatty acid elongase 3 (Elovl3) gene was reduced, while Stearoyl-Coenzyme A desaturase 1 (Scd1), peroxisome proliferator activated receptor gamma (Pparg), fatty acid desaturase 2 (Fads2), acyl-CoA thioesterase 2 (Acot2), acyl-CoA thioesterase 2 (Acot3), acyl-CoA thioesterase 4 (Acot4), and fatty acid binding protein 2 (Fabp2) was increased in Group H. Compared with Group C, the abundance of Firmicutes was decreased in Group H, while the abundance of Bacteroidetes was increased, and the ratio of Firmicutes/Bacteroidetes was obviously decreased. At the genus level, the relative abundance of Bifidobacterium, Lactobacillus, Faecalibaculum, Erysipelatoclostridium, and Parasutterella was increased in Group H, whereas that of Staphylococcus, Peptococcus, Parabacteroides, Donghicola, and Turicibacter was reduced in Group H. Pparg, Acot2, Acot3, and Scd1 were positively correlated with Erysipelatoclostridium and negatively correlated with Parabacteroides, Staphylococcus, and Turicibacter. Bifidobacterium was negatively correlated with Elovl3. Overall, HFCS affects body lipid metabolism by affecting the expression of lipid metabolism genes in the liver through the gut microbiome.
Collapse
Affiliation(s)
- Yu Shen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, China
- Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Yangying Sun
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, China
| | - Xiaoli Wang
- Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Yingping Xiao
- Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Lingyan Ma
- Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Wentao Lyu
- Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Zibin Zheng
- Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Wen Wang
- Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Jinjun Li
- Institute of Food Sciences, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| |
Collapse
|
30
|
Branched-Chain Fatty Acids Alter the Expression of Genes Responsible for Lipid Synthesis and Inflammation in Human Adipose Cells. Nutrients 2022; 14:nu14112310. [PMID: 35684110 PMCID: PMC9183013 DOI: 10.3390/nu14112310] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 05/26/2022] [Accepted: 05/30/2022] [Indexed: 02/01/2023] Open
Abstract
Recently, we have demonstrated a decreased level of iso-branched-chain fatty acids (iso-BCFAs) in patients with excessive weight. However, it is still unclear whether BCFAs may influence lipid metabolism and inflammation in lipogenic tissues. To verify this, human visceral adipocytes were cultured with three different concentrations of selected iso-BCFA (14-methylpentadecanoic acid) and anteiso-BCFA (12-methyltetradecanoic acid), and then the expression of genes associated with lipid metabolism (FASN-fatty acid synthase; SREBP1-sterol regulatory element-binding protein 1; SCD1-stearoyl-CoA desaturase; ELOVL4-fatty acid elongase 4; ELOVL6-fatty acid elongase 6; FADS2-fatty acid desaturase 2; FADS1-fatty acid desaturase 1) and inflammation (COX-2-cyclooxygenase 2; ALOX-15-lipoxygenase 15; IL-6-interleukin 6) were determined. This study demonstrates for the first time that incubation with iso-BCFA decreases the expression of adipocyte genes that are associated with lipid metabolism (except FASN) and inflammation. These findings suggest that changes in the iso-BCFA profile in obese patients may contribute to adipose inflammation and dyslipidemia. Further studies should evaluate whether iso-BCFA supplementation in obese patients would be beneficial.
Collapse
|
31
|
Tian H, Niu H, Luo J, Yao W, Chen X, Wu J, Geng Y, Gao W, Lei A, Gao Z, Tian X, Zhao X, Shi H, Li C, Hua J. Knockout of Stearoyl-CoA Desaturase 1 Decreased Milk Fat and Unsaturated Fatty Acid Contents of the Goat Model Generated by CRISPR/Cas9. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:4030-4043. [PMID: 35343224 DOI: 10.1021/acs.jafc.2c00642] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Goat milk contains a rich source of nutrients, especially unsaturated fatty acids. However, the regulatory mechanism of milk fat and fatty acid synthesis remains unclear. Stearoyl-CoA desaturase 1 (SCD1) is the key enzyme catalyzing monounsaturated fatty acid synthesis and is essential for milk lipid metabolism. To explore milk lipid synthesis mechanism in vivo, SCD1-knockout goats were generated through CRISPR/Cas9 technology for the first time. SCD1 deficiency did not influence goat growth or serum biochemistry. Plasma phosphatidylcholines increased by lipidomics after SCD1 knockout in goats. Whole-blood RNA-seq indicated alterations in biosynthesis of unsaturated fatty acid synthesis, cAMP, ATPase activity, and Wnt signaling pathways. In SCD1-knockout goats, milk fat percentage and unsaturated fatty acid levels were reduced but other milk components were unchanged. Milk lipidomics revealed decreased triacylglycerols and diacylglycerols levels, and the differential abundance of lipids were enriched in glycerolipid, glycerophospholipids, and thermogenesis metabolism pathways. In milk fat globules, the expression levels of genes related to fatty acid and TAG synthesis including SREBP1 were reduced. ATP content and AMPK activity were promoted, and p-p70S6K protein level was suppressed in SCD1-knockout goat mammary epithelial cells, suggesting that SCD1 affected milk lipid metabolism by influencing AMPK-mTORC1/p70S6K-SREBP1 pathway. The integrative analysis of gene expression levels and lipidomics of milk revealed a crucial role of SCD1 in glycerolipids and glycerophospholipids metabolism pathways. Our observations indicated that SCD1 regulated the synthesis of milk fat and unsaturated fatty acid in goat by affecting lipid metabolism gene expression and lipid metabolic pathways. These findings would be essential for improving goat milk nutritional value which is beneficial to human health.
Collapse
Affiliation(s)
- Huibin Tian
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Huimin Niu
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jun Luo
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Weiwei Yao
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xiaoying Chen
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jiao Wu
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yanan Geng
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Wenchang Gao
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Anmin Lei
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Zhimin Gao
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xiue Tian
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xiaoe Zhao
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Huaiping Shi
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Cong Li
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jinlian Hua
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China
| |
Collapse
|
32
|
Liu X, Li S, Wang L, Zhang W, Wang Y, Gui L, Zan L, Zhao C. The Effect of FATP1 on Adipocyte Differentiation in Qinchuan Beef Cattle. Animals (Basel) 2021; 11:ani11102789. [PMID: 34679811 PMCID: PMC8532991 DOI: 10.3390/ani11102789] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 09/19/2021] [Accepted: 09/20/2021] [Indexed: 11/16/2022] Open
Abstract
Simple Summary Previous research found that FATP1 plays an important role in the regulation of fatty acid metabolism and lipid accumulation in pig and chicken, but its function has not been explored in bovine adipocyte yet. In this study, we investigated the effect of FATP1 expression on preadipocyte differentiation in Qinchuan cattle using overexpression and interference assays. Our results reveal that FATP1 overexpression promoted preadipocyte differentiation, lipid droplet formation, and the expression of LPL and PPARγ, while FATP1 interference had the opposite effects on adipocyte differentiation and fat deposition. Following FATP1 overexpression and FATP1 interference in adipocytes, RNA-seq analysis identified that SLPI, STC1, SEMA6A, TNFRSF19, SLN, PTGS2, ADCYP1, FADS2, and SCD genes were differentially expressed. Pathway analysis revealed that the PPAR signaling pathway, AMPK signal pathway, and Insulin signaling pathway were enriched with differentially expressed genes. We propose that the FATP1 gene may affect the beef quality by involving adipocyte differentiation and lipid deposition, and may shed new light on the formation mechanisms of adipose tissues. Abstract FATP1 plays an important role in the regulation of fatty acid metabolism and lipid accumulation. In this study, we investigated the patterns of FATP1 expression in various tissues obtained from calf and adult Qinchuan cattle, and in differentiating adipocytes. Next, we investigated the effect of FATP1 expression on preadipocyte differentiation in Qinchuan cattle using overexpression and interference assays. We also identified the differentially expressed genes (DEGs) and pathways associated with FATP1 overexpression/interference. Our results reveal that FATP1 was broadly expressed in heart, kidney, muscle, small intestine, large intestine, and perirenal fat tissues. While FATP1 overexpression promoted preadipocyte differentiation, fat deposition, and the expression of several genes involved in fat metabolism, FATP1 interference had the opposite effects on adipocyte differentiation. Following FATP1 overexpression and FATP1 interference in adipocytes, RNA-seq analysis was performed to identify DEGs related to fat metabolism. The DEGs identified include SLPI, STC1, SEMA6A, TNFRSF19, SLN, PTGS2, ADCYP1, FADS2, and SCD. Pathway analysis revealed that the DEGs were enriched in the PPAR signaling pathway, AMPK signal pathway, and Insulin signaling pathway. Our results provide an in-depth understanding of the function and regulation mechanism of FAPT1 in fat metabolism.
Collapse
Affiliation(s)
- Xuchun Liu
- College of Animal Science and Technology, Northwest A&F University, No. 22 Xinong Road, Yangling 712100, China; (X.L.); (S.L.); (L.W.); (W.Z.); (Y.W.); (L.Z.)
| | - Shijun Li
- College of Animal Science and Technology, Northwest A&F University, No. 22 Xinong Road, Yangling 712100, China; (X.L.); (S.L.); (L.W.); (W.Z.); (Y.W.); (L.Z.)
| | - Liyun Wang
- College of Animal Science and Technology, Northwest A&F University, No. 22 Xinong Road, Yangling 712100, China; (X.L.); (S.L.); (L.W.); (W.Z.); (Y.W.); (L.Z.)
| | - Weiyi Zhang
- College of Animal Science and Technology, Northwest A&F University, No. 22 Xinong Road, Yangling 712100, China; (X.L.); (S.L.); (L.W.); (W.Z.); (Y.W.); (L.Z.)
| | - Yujuan Wang
- College of Animal Science and Technology, Northwest A&F University, No. 22 Xinong Road, Yangling 712100, China; (X.L.); (S.L.); (L.W.); (W.Z.); (Y.W.); (L.Z.)
| | - Linsheng Gui
- College of Agriculture and Animal Husbandry, Qinghai University, Xining 810016, China;
| | - Linsen Zan
- College of Animal Science and Technology, Northwest A&F University, No. 22 Xinong Road, Yangling 712100, China; (X.L.); (S.L.); (L.W.); (W.Z.); (Y.W.); (L.Z.)
| | - Chunping Zhao
- College of Animal Science and Technology, Northwest A&F University, No. 22 Xinong Road, Yangling 712100, China; (X.L.); (S.L.); (L.W.); (W.Z.); (Y.W.); (L.Z.)
- Correspondence: ; Tel.: +86-29-8709-1247; Fax: +86-29-8709-1148
| |
Collapse
|
33
|
Cheng H, Shi Z, Yue K, Huang X, Xu Y, Gao C, Yao Z, Zhang YS, Wang J. Sprayable hydrogel dressing accelerates wound healing with combined reactive oxygen species-scavenging and antibacterial abilities. Acta Biomater 2021; 124:219-232. [PMID: 33556605 DOI: 10.1016/j.actbio.2021.02.002] [Citation(s) in RCA: 184] [Impact Index Per Article: 46.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Revised: 01/11/2021] [Accepted: 02/01/2021] [Indexed: 01/28/2023]
Abstract
Wound management poses a considerable economic burden on the global healthcare system, considering the impacts of wound infection, delayed healing and scar formation. To this end, multifunctional dressings based on hydrogels have been developed to stimulate skin healing. Herein, we describe the design, fabrication, and characterization of a sprayable hydrogel-based wound dressing loaded with cerium oxide nanoparticles (CeONs) and an antimicrobial peptide (AMP), for combined reactive oxygen species (ROS)-scavenging and antibacterial properties. We adopted a mussel-inspired strategy to chemically conjugate gelatin with dopamine motifs and prepared a hydrogel dressing with improved binding affinity to wet skin surfaces. Additionally, the release of AMP from the hydrogel demonstrated rapid release ablation and contact ablation against four representative bacterial strains, confirming the desired antimicrobial activities. Moreover, the CeONs-loaded hydrogel dressing exhibited favorable ROS-scavenging abilities. The biocompatibility of the multifunctional hydrogel dressing was further proven in vitro by culturing with HaCaT cells. Overall, the benefits of the developed hydrogel wound dressing, including sprayability, adhesiveness, antimicrobial activity, as well as ROS-scavenging and skin-remodeling ability, highlight its promissing translational potentials in wound management. STATEMENT OF SIGNIFICANCE: Various hydrogel-based wound-dressing materials have been developed to stimulate wound healing. However, from the clinical perspective, few of the current wound dressings meet all the intended multifunctional requirements of preventing infection, promoting rapid wound closure, and minimizing scar formation, while simultaneously offering the convenience of application. In the current study, we adopted a mussel-inspired strategy to functionalize the GelMA hydrogels with DOPA to fabricate GelMA-DOPA hydrogel which exhibited an enhanced binding affinity for wound surfaces, AMP HHC-36 and CeONs are further encapsulated into the GelMA-DOPA hydrogel to confer the hydrogel wound dressing with antimicrobial and ROS-scavenging abilities. The GelMA-DOPA-AMP-CeONs dressing offered the benefits of sprayability, adhesiveness, antimicrobial activity, as well as ROS-scavenging and skin-remodeling ability, which might address the therapeutic and economic burdens associated with chronic wound treatment and management.
Collapse
Affiliation(s)
- Hao Cheng
- Department of Orthopedic, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Zhe Shi
- Department of Orthopedic, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Kan Yue
- South China Advanced Institute for Soft Matter Science and Technology, South China University of Technology, Guangzhou, 510640, China
| | - Xusheng Huang
- Department of Orthopedic, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Yichuan Xu
- Department of Orthopedic, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Chenghao Gao
- Department of Orthopedic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, 43000, China
| | - Zhongqi Yao
- South China Advanced Institute for Soft Matter Science and Technology, South China University of Technology, Guangzhou, 510640, China
| | - Yu Shrike Zhang
- Division of Engineering in Medicine Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA 02139, USA.
| | - Jian Wang
- Department of Orthopedic, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.
| |
Collapse
|
34
|
Qian S, Tang Y, Tang QQ. Adipose tissue plasticity and the pleiotropic roles of BMP signaling. J Biol Chem 2021; 296:100678. [PMID: 33872596 PMCID: PMC8131923 DOI: 10.1016/j.jbc.2021.100678] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Revised: 04/11/2021] [Accepted: 04/15/2021] [Indexed: 12/15/2022] Open
Abstract
Adipose tissues, including white, beige, and brown adipose tissue, have evolved to be highly dynamic organs. Adipose tissues undergo profound changes during development and regeneration and readily undergo remodeling to meet the demands of an everchanging metabolic landscape. The dynamics are determined by the high plasticity of adipose tissues, which contain various cell types: adipocytes, immune cells, endothelial cells, nerves, and fibroblasts. There are numerous proteins that participate in regulating the plasticity of adipose tissues. Among these, bone morphogenetic proteins (BMPs) were initially found to regulate the differentiation of adipocytes, and they are being reported to have pleiotropic functions by emerging studies. Here, in the first half of the article, we summarize the plasticity of adipocytes and macrophages, which are two groups of cells targeted by BMP signaling in adipose tissues. We then review how BMPs regulate the differentiation, death, and lipid metabolism of adipocytes. In addition, the potential role of BMPs in regulating adipose tissue macrophages is considered. Finally, the expression of BMPs in adipose tissues and their metabolic relevance are discussed.
Collapse
Affiliation(s)
- Shuwen Qian
- The Key Laboratory of Metabolism and Molecular Medicine of the Ministry of Education, Department of Biochemistry and Molecular Biology of School of Basic Medical Sciences, and Department of Endocrinology and Metabolism of Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yan Tang
- The Key Laboratory of Metabolism and Molecular Medicine of the Ministry of Education, Department of Biochemistry and Molecular Biology of School of Basic Medical Sciences, and Department of Endocrinology and Metabolism of Zhongshan Hospital, Fudan University, Shanghai, China
| | - Qi-Qun Tang
- The Key Laboratory of Metabolism and Molecular Medicine of the Ministry of Education, Department of Biochemistry and Molecular Biology of School of Basic Medical Sciences, and Department of Endocrinology and Metabolism of Zhongshan Hospital, Fudan University, Shanghai, China.
| |
Collapse
|