1
|
Pu N, Li S, Wu H, Zhao N, Wang K, Wei D, Wang J, Sha L, Zhao Y, Tao Y, Song Z. Beacon of Hope for Age-Related Retinopathy: Antioxidative Mechanisms and Pre-Clinical Trials of Quercetin Therapy. Antioxidants (Basel) 2025; 14:561. [PMID: 40427443 PMCID: PMC12108410 DOI: 10.3390/antiox14050561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2025] [Revised: 04/27/2025] [Accepted: 04/28/2025] [Indexed: 05/29/2025] Open
Abstract
Age-related retinopathy is one of the leading causes of visual impairment and irreversible blindness, characterized by progressive neuronal and myelin loss. The damages caused by oxidation contributes to the hallmarks of aging and represents fundamental components in pathological pathways that are thought to drive multiple age-related retinopathies. Quercetin (Que), a natural polyphenol abundant in vegetables, herbs, and fruits, has been extensively studied for its long-term antioxidative effects mediated through diverse mechanisms. Additionally, Que and its derivatives exhibit a broad spectrum of pharmacological characteristics in the cellular responses of age-related retinopathy induced by oxidative stress, including anti-inflammatory, anti-neovascularization, regulatory, and neuroprotective effects in autophagy and apoptosis processes. This review mainly focuses on the antioxidative mechanisms and curative effects of Que treatment for various age-related retinopathies, such as retinitis pigmentosa, diabetic retinopathy, age-related macular degeneration, and glaucoma. Furthermore, we discuss emerging technologies and methods involving Que and its derivatives in the therapeutic strategies for age-related retinopathies, highlighting their promise for clinical translation.
Collapse
Affiliation(s)
- Ning Pu
- Department of Ophthalmology, Henan Eye Hospital, Henan Provincial People’s Hospital, People’s Hospital of Zhengzhou University, Zhengzhou 450003, China; (N.P.); (H.W.); (D.W.); (J.W.); (L.S.); (Y.Z.)
- College of Medicine, Zhengzhou University, Zhengzhou 450001, China; (S.L.); (N.Z.); (K.W.)
| | - Siyu Li
- College of Medicine, Zhengzhou University, Zhengzhou 450001, China; (S.L.); (N.Z.); (K.W.)
| | - Hao Wu
- Department of Ophthalmology, Henan Eye Hospital, Henan Provincial People’s Hospital, People’s Hospital of Zhengzhou University, Zhengzhou 450003, China; (N.P.); (H.W.); (D.W.); (J.W.); (L.S.); (Y.Z.)
- College of Medicine, Zhengzhou University, Zhengzhou 450001, China; (S.L.); (N.Z.); (K.W.)
| | - Na Zhao
- College of Medicine, Zhengzhou University, Zhengzhou 450001, China; (S.L.); (N.Z.); (K.W.)
| | - Kexin Wang
- College of Medicine, Zhengzhou University, Zhengzhou 450001, China; (S.L.); (N.Z.); (K.W.)
| | - Dong Wei
- Department of Ophthalmology, Henan Eye Hospital, Henan Provincial People’s Hospital, People’s Hospital of Zhengzhou University, Zhengzhou 450003, China; (N.P.); (H.W.); (D.W.); (J.W.); (L.S.); (Y.Z.)
- College of Medicine, Zhengzhou University, Zhengzhou 450001, China; (S.L.); (N.Z.); (K.W.)
| | - Jiale Wang
- Department of Ophthalmology, Henan Eye Hospital, Henan Provincial People’s Hospital, People’s Hospital of Zhengzhou University, Zhengzhou 450003, China; (N.P.); (H.W.); (D.W.); (J.W.); (L.S.); (Y.Z.)
- College of Medicine, Zhengzhou University, Zhengzhou 450001, China; (S.L.); (N.Z.); (K.W.)
| | - Lulu Sha
- Department of Ophthalmology, Henan Eye Hospital, Henan Provincial People’s Hospital, People’s Hospital of Zhengzhou University, Zhengzhou 450003, China; (N.P.); (H.W.); (D.W.); (J.W.); (L.S.); (Y.Z.)
- College of Medicine, Zhengzhou University, Zhengzhou 450001, China; (S.L.); (N.Z.); (K.W.)
| | - Yameng Zhao
- Department of Ophthalmology, Henan Eye Hospital, Henan Provincial People’s Hospital, People’s Hospital of Zhengzhou University, Zhengzhou 450003, China; (N.P.); (H.W.); (D.W.); (J.W.); (L.S.); (Y.Z.)
- College of Medicine, Zhengzhou University, Zhengzhou 450001, China; (S.L.); (N.Z.); (K.W.)
| | - Ye Tao
- Department of Ophthalmology, Henan Eye Hospital, Henan Provincial People’s Hospital, People’s Hospital of Zhengzhou University, Zhengzhou 450003, China; (N.P.); (H.W.); (D.W.); (J.W.); (L.S.); (Y.Z.)
- College of Medicine, Zhengzhou University, Zhengzhou 450001, China; (S.L.); (N.Z.); (K.W.)
| | - Zongming Song
- Department of Ophthalmology, Henan Eye Hospital, Henan Provincial People’s Hospital, People’s Hospital of Zhengzhou University, Zhengzhou 450003, China; (N.P.); (H.W.); (D.W.); (J.W.); (L.S.); (Y.Z.)
| |
Collapse
|
2
|
Hayakawa R, Ishii T, Fushimi T, Kamei Y, Yamaguchi A, Sugimoto K, Ashida H, Akagawa M. Luteolin protects human ARPE-19 retinal pigment epithelium cells from blue light-induced phototoxicity through activation of Nrf2/Keap1 signaling. Free Radic Res 2025; 59:356-368. [PMID: 40340707 DOI: 10.1080/10715762.2025.2503832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2025] [Revised: 04/08/2025] [Accepted: 04/23/2025] [Indexed: 05/10/2025]
Abstract
Age-related macular degeneration (AMD), a serious physical and mental health problem worldwide, is the leading cause of irreversible, severe vision impairment and loss in older people. AMD is associated with multiple risk factors, many of which are closely linked to increased oxidative stress. Some studies have suggested that long-term and excessive exposure to blue light may be a potential risk factor for the development or progression of AMD. Recently, we demonstrated that blue light irradiation caused oxidative stress in all-trans-retinal (atRAL)-exposed human ARPE-19 retinal pigment epithelium cells by generating singlet oxygen (1O2), leading to apoptotic cell death. Luteolin, a flavonoid found in various edible plants, has been reported to possess divergent health-promoting properties including anti-oxidative and chemopreventive effects by up-regulating anti-oxidative and phase II detoxifying enzymes through activation of Keap1/Nrf2 signaling. Herein, we verified the cytoprotective action of luteolin against blue light irradiation using atRAL-exposed ARPE-19 cells. Our results established that luteolin effectively prevented blue light-induced apoptosis of ARPE-19 cells by mitigating oxidative stress. We also confirmed that luteolin suppressed intracellular accumulation of 1O2 and formation of atRAL-derived lipofuscin by increased expression of heme oxygenase-1 and aldehyde dehydrogenase 1A1 through activation of Keap1/Nrf2 signaling. Furthermore, our data implied that the luteolin-provoked activation of Keap1/Nrf2 signaling might be due to covalent binding of luteolin o-quinone to the critical cysteinyl thiol in Keap1. The present results suggest that luteolin could be helpful in the prevention and amelioration of blue light-induced retinal degeneration, including AMD.
Collapse
Affiliation(s)
- Ryo Hayakawa
- Department of Biological Chemistry, Division of Applied Life Science, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Sakai, Japan
| | - Takeshi Ishii
- Faculty of Nutrition, Kobe Gakuin University, Kobe, Japan
| | - Taiki Fushimi
- Department of Food and Nutrition, Institute of Biomedical sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Yuki Kamei
- Department of Food and Nutrition, Institute of Biomedical sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Ai Yamaguchi
- Live Cell Imaging Institute, Osaka, Japan
- Research Institute for Cellular Damage Evaluation of Ionizing Radiation and Blue Light, Osaka Prefecture University, Sakai, Japan
| | - Kenji Sugimoto
- Live Cell Imaging Institute, Osaka, Japan
- Research Institute for Cellular Damage Evaluation of Ionizing Radiation and Blue Light, Osaka Prefecture University, Sakai, Japan
| | - Hitoshi Ashida
- Faculty of Food and Nutrition, Mukogawa Women's University, Nishinomiya, Japan
| | - Mitsugu Akagawa
- Department of Food and Nutrition, Institute of Biomedical sciences, Tokushima University Graduate School, Tokushima, Japan
| |
Collapse
|
3
|
Tang S, Yang J, Xiao B, Wang Y, Lei Y, Lai D, Qiu Q. Aberrant Lipid Metabolism and Complement Activation in Age-Related Macular Degeneration. Invest Ophthalmol Vis Sci 2024; 65:20. [PMID: 39405051 PMCID: PMC11482642 DOI: 10.1167/iovs.65.12.20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 09/10/2024] [Indexed: 10/19/2024] Open
Abstract
Age-related macular degeneration (AMD) stands as a leading cause of severe visual impairment and blindness among the elderly globally. As a multifactorial disease, AMD's pathogenesis is influenced by genetic, environmental, and age-related factors, with lipid metabolism abnormalities and complement system dysregulation playing critical roles. This review delves into recent advancements in understanding the intricate interaction between these two crucial pathways, highlighting their contribution to the disease's progression through chronic inflammation, drusen formation, and retinal pigment epithelium dysfunction. Importantly, emerging evidence points to dysregulated lipid profiles, particularly alterations in high-density lipoprotein levels, oxidized lipid deposits, and intracellular lipofuscin accumulation, as exacerbating factors that enhance complement activation and subsequently amplify tissue damage in AMD. Furthermore, genetic studies have revealed significant associations between AMD and specific genes involved in lipid transport and complement regulation, shedding light on disease susceptibility and underlying mechanisms. The review further explores the clinical implications of these findings, advocating for a novel therapeutic approach that integrates lipid metabolism modulators with complement inhibitors. By concurrently targeting these pathways, the dual-targeted approach holds promise in significantly improving outcomes for AMD patients, heralding a new horizon in AMD management and treatment.
Collapse
Affiliation(s)
- Siao Tang
- Xiangya School of Medicine, Central South University, Changsha, Hunan, PR China
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
- National Clinical Research Center for Eye Diseases, Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai, PR China
| | - Jiaqi Yang
- Xiangya School of Medicine, Central South University, Changsha, Hunan, PR China
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
- National Clinical Research Center for Eye Diseases, Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai, PR China
| | - Bingqing Xiao
- Xiangya School of Medicine, Central South University, Changsha, Hunan, PR China
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
- National Clinical Research Center for Eye Diseases, Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai, PR China
| | - Yani Wang
- Xiangya School of Medicine, Central South University, Changsha, Hunan, PR China
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
- National Clinical Research Center for Eye Diseases, Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai, PR China
| | - Yiou Lei
- Xiangya School of Medicine, Central South University, Changsha, Hunan, PR China
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
- National Clinical Research Center for Eye Diseases, Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai, PR China
| | - Dongwei Lai
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
- National Clinical Research Center for Eye Diseases, Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai, PR China
| | - Qinghua Qiu
- Department of Ophthalmology, Tong Ren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
| |
Collapse
|
4
|
Scortecci JF, Garces FA, Mahto JK, Molday LL, Van Petegem F, Molday RS. Structural and functional characterization of the nucleotide-binding domains of ABCA4 and their role in Stargardt disease. J Biol Chem 2024; 300:107666. [PMID: 39128720 PMCID: PMC11405800 DOI: 10.1016/j.jbc.2024.107666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 07/29/2024] [Accepted: 08/06/2024] [Indexed: 08/13/2024] Open
Abstract
ABCA4 is an ATP-binding cassette (ABC) transporter that prevents the buildup of toxic retinoid compounds by facilitating the transport of N-retinylidene-phosphatidylethanolamine across membranes of rod and cone photoreceptor cells. Over 1500 missense mutations in ABCA4, many in the nucleotide-binding domains (NBDs), have been genetically linked to Stargardt disease. Here, we show by cryo-EM that ABCA4 is converted from an open outward conformation to a closed conformation upon the binding of adenylyl-imidodiphosphate. Structural information and biochemical studies were used to further define the role of the NBDs in the functional properties of ABCA4 and the mechanisms by which mutations lead to the loss in activity. We show that ATPase activity in both NBDs is required for the functional activity of ABCA4. Mutations in Walker A asparagine residues cause a severe reduction in substrate-activated ATPase activity due to the loss in polar interactions with residues within the D-loops of the opposing NBD. The structural basis for how disease mutations in other NBD residues, including the R1108C, R2077W, R2107H, and L2027F, affect the structure and function of ABCA4 is described. Collectively, our studies provide insight into the structure and function of ABCA4 and mechanisms underlying Stargardt disease.
Collapse
Affiliation(s)
- Jessica Fernandes Scortecci
- Department of Biochemistry & Molecular Biology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Fabian A Garces
- Department of Biochemistry & Molecular Biology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Jai K Mahto
- Department of Biochemistry & Molecular Biology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Laurie L Molday
- Department of Biochemistry & Molecular Biology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Filip Van Petegem
- Department of Biochemistry & Molecular Biology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Robert S Molday
- Department of Biochemistry & Molecular Biology, University of British Columbia, Vancouver, British Columbia, Canada.
| |
Collapse
|
5
|
De Bruyn H, Johnson M, Moretti M, Ahmed S, Mujat M, Akula JD, Glavan T, Mihalek I, Aslaksen S, Molday LL, Molday RS, Berkowitz BA, Fulton AB. The Surviving, Not Thriving, Photoreceptors in Patients with ABCA4 Stargardt Disease. Diagnostics (Basel) 2024; 14:1545. [PMID: 39061682 PMCID: PMC11275370 DOI: 10.3390/diagnostics14141545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 06/25/2024] [Accepted: 07/02/2024] [Indexed: 07/28/2024] Open
Abstract
Stargardt disease (STGD1), associated with biallelic variants in the ABCA4 gene, is the most common heritable macular dystrophy and is currently untreatable. To identify potential treatment targets, we characterized surviving STGD1 photoreceptors. We used clinical data to identify macular regions with surviving STGD1 photoreceptors. We compared the hyperreflective bands in the optical coherence tomographic (OCT) images that correspond to structures in the STGD1 photoreceptor inner segments to those in controls. We used adaptive optics scanning light ophthalmoscopy (AO-SLO) to study the distribution of cones and AO-OCT to evaluate the interface of photoreceptors and retinal pigment epithelium (RPE). We found that the profile of the hyperreflective bands differed dramatically between patients with STGD1 and controls. AO-SLOs showed patches in which cone densities were similar to those in healthy retinas and others in which the cone population was sparse. In regions replete with cones, there was no debris at the photoreceptor-RPE interface. In regions with sparse cones, there was abundant debris. Our results raise the possibility that pharmaceutical means may protect surviving photoreceptors and so mitigate vision loss in patients with STGD1.
Collapse
Affiliation(s)
- Hanna De Bruyn
- Department of Ophthalmology, Boston Children’s Hospital, Boston, MA 02115, USA; (H.D.B.)
| | - Megan Johnson
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Madelyn Moretti
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Saleh Ahmed
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Mircea Mujat
- Physical Sciences, Inc., 20 New England Business Center, Andover, MA 01810, USA;
| | - James D. Akula
- Department of Ophthalmology, Boston Children’s Hospital, Boston, MA 02115, USA; (H.D.B.)
- Department of Ophthalmology, Harvard Medical School, Boston, MA 02115, USA
| | - Tomislav Glavan
- Department of Molecular Medicine and Biotechnology, Faculty of Medicine, University of Rijeka, 51000 Rijeka, Croatia
| | - Ivana Mihalek
- Department of Molecular Medicine and Biotechnology, Faculty of Medicine, University of Rijeka, 51000 Rijeka, Croatia
| | - Sigrid Aslaksen
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
- Department of Clinical Science, University of Bergen, 5007 Bergen, Norway
- Department of Medical Genetics, Haukeland University Hospital, 5009 Bergen, Norway
| | - Laurie L. Molday
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Robert S. Molday
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Bruce A. Berkowitz
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Anne B. Fulton
- Department of Ophthalmology, Boston Children’s Hospital, Boston, MA 02115, USA; (H.D.B.)
- Department of Ophthalmology, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
6
|
Tan LX, Oertel FC, Cheng A, Cobigo Y, Keihani A, Bennett DJ, Abdelhak A, Montes SC, Chapman M, Chen RY, Cordano C, Ward ME, Casaletto K, Kramer JH, Rosen HJ, Boxer A, Miller BL, Green AJ, Elahi FM, Lakkaraju A. Targeting complement C3a receptor resolves mitochondrial hyperfusion and subretinal microglial activation in progranulin-deficient frontotemporal dementia. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.29.595206. [PMID: 38854134 PMCID: PMC11160746 DOI: 10.1101/2024.05.29.595206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
Mutations in progranulin ( GRN ) cause frontotemporal dementia ( GRN -FTD) due to deficiency of the pleiotropic protein progranulin. GRN -FTD exhibits diverse pathologies including lysosome dysfunction, lipofuscinosis, microgliosis, and neuroinflammation. Yet, how progranulin loss causes disease remains unresolved. Here, we report that non-invasive retinal imaging of GRN -FTD patients revealed deficits in photoreceptors and the retinal pigment epithelium (RPE) that correlate with cognitive decline. Likewise, Grn -/- mice exhibit early RPE dysfunction, microglial activation, and subsequent photoreceptor loss. Super-resolution live imaging and transcriptomic analyses identified RPE mitochondria as an early driver of retinal dysfunction. Loss of mitochondrial fission protein 1 (MTFP1) in Grn -/- RPE causes mitochondrial hyperfusion and bioenergetic defects, leading to NF-kB-mediated activation of complement C3a-C3a receptor signaling, which drives further mitochondrial hyperfusion and retinal inflammation. C3aR antagonism restores RPE mitochondrial integrity and limits subretinal microglial activation. Our study identifies a previously unrecognized mechanism by which progranulin modulates mitochondrial integrity and complement-mediated neuroinflammation.
Collapse
|
7
|
Andreazzoli M, Longoni B, Angeloni D, Demontis GC. Retinoid Synthesis Regulation by Retinal Cells in Health and Disease. Cells 2024; 13:871. [PMID: 38786093 PMCID: PMC11120330 DOI: 10.3390/cells13100871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 05/13/2024] [Accepted: 05/13/2024] [Indexed: 05/25/2024] Open
Abstract
Vision starts in retinal photoreceptors when specialized proteins (opsins) sense photons via their covalently bonded vitamin A derivative 11cis retinaldehyde (11cis-RAL). The reaction of non-enzymatic aldehydes with amino groups lacks specificity, and the reaction products may trigger cell damage. However, the reduced synthesis of 11cis-RAL results in photoreceptor demise and suggests the need for careful control over 11cis-RAL handling by retinal cells. This perspective focuses on retinoid(s) synthesis, their control in the adult retina, and their role during retina development. It also explores the potential importance of 9cis vitamin A derivatives in regulating retinoid synthesis and their impact on photoreceptor development and survival. Additionally, recent advancements suggesting the pivotal nature of retinoid synthesis regulation for cone cell viability are discussed.
Collapse
Affiliation(s)
| | - Biancamaria Longoni
- Department of Translational Medicine and New Technologies in Medicine, University of Pisa, 56126 Pisa, Italy
| | - Debora Angeloni
- The Institute of Biorobotics, Scuola Superiore Sant’Anna, 56127 Pisa, Italy
| | | |
Collapse
|
8
|
Basyal D, Lee S, Kim HJ. Antioxidants and Mechanistic Insights for Managing Dry Age-Related Macular Degeneration. Antioxidants (Basel) 2024; 13:568. [PMID: 38790673 PMCID: PMC11117704 DOI: 10.3390/antiox13050568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 04/26/2024] [Accepted: 05/02/2024] [Indexed: 05/26/2024] Open
Abstract
Age-related macular degeneration (AMD) severely affects central vision due to progressive macular degeneration and its staggering prevalence is rising globally, especially in the elderly population above 55 years. Increased oxidative stress with aging is considered an important contributor to AMD pathogenesis despite multifaceted risk factors including genetic predisposition and environmental agents. Wet AMD can be managed with routine intra-vitreal injection of angiogenesis inhibitors, but no satisfactory medicine has been approved for the successful management of the dry form. The toxic carbonyls due to photo-oxidative degradation of accumulated bisretinoids within lysosomes initiate a series of events including protein adduct formation, impaired autophagy flux, complement activation, and chronic inflammation, which is implicated in dry AMD. Therapy based on antioxidants has been extensively studied for its promising effect in reducing the impact of oxidative stress. This paper reviews the dry AMD pathogenesis, delineates the effectiveness of dietary and nutrition supplements in clinical studies, and explores pre-clinical studies of antioxidant molecules, extracts, and formulations with their mechanistic insights.
Collapse
Affiliation(s)
| | | | - Hye Jin Kim
- College of Pharmacy, Keimyung University, Dauge 42601, Republic of Korea
| |
Collapse
|
9
|
Gurubaran IS. Mitochondrial damage and clearance in retinal pigment epithelial cells. Acta Ophthalmol 2024; 102 Suppl 282:3-53. [PMID: 38467968 DOI: 10.1111/aos.16661] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 01/31/2024] [Indexed: 03/13/2024]
Abstract
Age-related macular degeneration (AMD) is a devastating eye disease that causes permanent vision loss in the central part of the retina, known as the macula. Patients with such severe visual loss face a reduced quality of life and are at a 1.5 times greater risk of death compared to the general population. Currently, there is no cure for or effective treatment for dry AMD. There are several mechanisms thought to underlie the disease, for example, ageing-associated chronic oxidative stress, mitochondrial damage, harmful protein aggregation and inflammation. As a way of gaining a better understanding of the molecular mechanisms behind AMD and thus developing new therapies, we have created a peroxisome proliferator-activated receptor gamma coactivator 1-alpha and nuclear factor erythroid 2-related factor 2 (PGC1α/NFE2L2) double-knockout (dKO) mouse model that mimics many of the clinical features of dry AMD, including elevated levels of oxidative stress markers, damaged mitochondria, accumulating lysosomal lipofuscin and extracellular drusen-like structures in retinal pigment epithelial cells (RPE). In addition, a human RPE cell-based model was established to examine the impact of non-functional intracellular clearance systems on inflammasome activation. In this study, we found that there was a disturbance in the autolysosomal machinery responsible for clearing mitochondria in the RPE cells of one-year-old PGC1α/NFE2L2-deficient mice. The confocal immunohistochemical analysis revealed an increase in autophagosome marker microtubule-associated proteins 1A/1B light chain 3B (LC3B) as well as multiple mitophagy markers such as PTE-induced putative kinase 1 (PINK1) and E3 ubiquitin ligase (PARKIN), along with signs of damaged mitochondria. However, no increase in autolysosome formation was detected, nor was there a colocalization of the lysosomal marker LAMP2 or the mitochondrial marker, ATP synthase β. There was an upregulation of late autolysosomal fusion Ras-related protein (Rab7) in the perinuclear space of RPE cells, together with autofluorescent aggregates. Additionally, we observed an increase in the numbers of Toll-like receptors 3 and 9, while those of NOD-like receptor 3 were decreased in PGC1α/NFE2L2 dKO retinal specimens compared to wild-type animals. There was a trend towards increased complement component C5a and increased involvement of the serine protease enzyme, thrombin, in enhancing the terminal pathway producing C5a, independent of C3. The levels of primary acute phase C-reactive protein and receptor for advanced glycation end products were also increased in the PGC1α/NFE2L2 dKO retina. Furthermore, selective proteasome inhibition with epoxomicin promoted both nicotinamide adenine dinucleotide phosphate (NADPH) oxidase and mitochondrial-mediated oxidative stress, leading to the release of mitochondrial DNA to the cytosol, resulting in potassium efflux-dependent activation of the absent in melanoma 2 (AIM2) inflammasome and the subsequent secretion of interleukin-1β in ARPE-19 cells. In conclusion, the data suggest that there is at least a relative decrease in mitophagy, increases in the amounts of C5 and thrombin and decreased C3 levels in this dry AMD-like model. Moreover, selective proteasome inhibition evoked mitochondrial damage and AIM2 inflammasome activation in ARPE-19 cells.
Collapse
Affiliation(s)
- Iswariyaraja Sridevi Gurubaran
- Department of Medicine, Clinical Medicine Unit, University of Eastern Finland Institute of Clinical Medicine, Kuopio, Northern Savonia, Finland
| |
Collapse
|
10
|
Różanowska MB. Lipofuscin, Its Origin, Properties, and Contribution to Retinal Fluorescence as a Potential Biomarker of Oxidative Damage to the Retina. Antioxidants (Basel) 2023; 12:2111. [PMID: 38136230 PMCID: PMC10740933 DOI: 10.3390/antiox12122111] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 12/05/2023] [Accepted: 12/09/2023] [Indexed: 12/24/2023] Open
Abstract
Lipofuscin accumulates with age as intracellular fluorescent granules originating from incomplete lysosomal digestion of phagocytosed and autophagocytosed material. The purpose of this review is to provide an update on the current understanding of the role of oxidative stress and/or lysosomal dysfunction in lipofuscin accumulation and its consequences, particularly for retinal pigment epithelium (RPE). Next, the fluorescence of lipofuscin, spectral changes induced by oxidation, and its contribution to retinal fluorescence are discussed. This is followed by reviewing recent developments in fluorescence imaging of the retina and the current evidence on the prognostic value of retinal fluorescence for the progression of age-related macular degeneration (AMD), the major blinding disease affecting elderly people in developed countries. The evidence of lipofuscin oxidation in vivo and the evidence of increased oxidative damage in AMD retina ex vivo lead to the conclusion that imaging of spectral characteristics of lipofuscin fluorescence may serve as a useful biomarker of oxidative damage, which can be helpful in assessing the efficacy of potential antioxidant therapies in retinal degenerations associated with accumulation of lipofuscin and increased oxidative stress. Finally, amendments to currently used fluorescence imaging instruments are suggested to be more sensitive and specific for imaging spectral characteristics of lipofuscin fluorescence.
Collapse
Affiliation(s)
- Małgorzata B. Różanowska
- School of Optometry and Vision Sciences, College of Biomedical and Life Sciences, Cardiff University, Maindy Road, Cardiff CF24 4HQ, Wales, UK;
- Cardiff Institute for Tissue Engineering and Repair (CITER), Redwood Building, King Edward VII Avenue, Cardiff CF10 3NB, Wales, UK
| |
Collapse
|
11
|
Hackley SA, Johnson LN. The photic blink reflex as an index of photophobia. Biol Psychol 2023; 184:108695. [PMID: 37757999 DOI: 10.1016/j.biopsycho.2023.108695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 09/21/2023] [Accepted: 09/24/2023] [Indexed: 09/29/2023]
Abstract
Two recent studies of eye closure triggered by intense luminance increase suggest that this behavior reflects the melanopsin-based retinal activity known to underlie photophobia, the pathological aversion to light (Kardon, 2012; Kaiser et al., 2021). Early studies of the photic blink reflex (PBR) are reviewed to help guide future research on this possible objective index of photophobia. Electromyographic recordings of the lid-closure muscle, orbicularis oculi, reveal distinct bursts with typical onset latencies of 50 and 80 ms, R50 and R80, respectively. The latter component appears to be especially sensitive to visual signals from intrinsically photosensitive retinal ganglion cells (ipRGCs) and to prior trigeminal nociceptive stimuli. The authors argue that the R80's function, in addition to protecting the eyeballs from physical contact, is to shape the upper and lower eyelids into a narrow slit to restrict incoming light. This serves to prevent retinal bleaching or injury, while allowing continued visual function.
Collapse
Affiliation(s)
- Steven A Hackley
- Department of Psychological Sciences, University of Missouri, Columbia, USA.
| | - Lenworth N Johnson
- Department of Ophthalmology, Warren Alpert Medical School of Brown University, USA
| |
Collapse
|
12
|
Plau J, Morgan CE, Fedorov Y, Banerjee S, Adams DJ, Blaner WS, Yu EW, Golczak M. Discovery of Nonretinoid Inhibitors of CRBP1: Structural and Dynamic Insights for Ligand-Binding Mechanisms. ACS Chem Biol 2023; 18:2309-2323. [PMID: 37713257 PMCID: PMC10591915 DOI: 10.1021/acschembio.3c00402] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 09/01/2023] [Indexed: 09/16/2023]
Abstract
The dysregulation of retinoid metabolism has been linked to prevalent ocular diseases including age-related macular degeneration and Stargardt disease. Modulating retinoid metabolism through pharmacological approaches holds promise for the treatment of these eye diseases. Cellular retinol-binding protein 1 (CRBP1) is the primary transporter of all-trans-retinol (atROL) in the eye, and its inhibition has recently been shown to protect mouse retinas from light-induced retinal damage. In this report, we employed high-throughput screening to identify new chemical scaffolds for competitive, nonretinoid inhibitors of CRBP1. To understand the mechanisms of interaction between CRBP1 and these inhibitors, we solved high-resolution X-ray crystal structures of the protein in complex with six selected compounds. By combining protein crystallography with hydrogen/deuterium exchange mass spectrometry, we quantified the conformational changes in CRBP1 caused by different inhibitors and correlated their magnitude with apparent binding affinities. Furthermore, using molecular dynamic simulations, we provided evidence for the functional significance of the "closed" conformation of CRBP1 in retaining ligands within the binding pocket. Collectively, our study outlines the molecular foundations for understanding the mechanism of high-affinity interactions between small molecules and CRBPs, offering a framework for the rational design of improved inhibitors for this class of lipid-binding proteins.
Collapse
Affiliation(s)
- Jacqueline Plau
- Department
of Pharmacology, Small Molecule Drug Development Core Facility, Department of Genetics, and Cleveland Center
for Membrane and Structural Biology, School of Medicine, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, Ohio 44106, United States
| | - Christopher E. Morgan
- Department
of Pharmacology, Small Molecule Drug Development Core Facility, Department of Genetics, and Cleveland Center
for Membrane and Structural Biology, School of Medicine, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, Ohio 44106, United States
- Department
of Chemistry, Thiel College, Greenville, Pennsylvania 16125, United States
| | - Yuriy Fedorov
- Department
of Pharmacology, Small Molecule Drug Development Core Facility, Department of Genetics, and Cleveland Center
for Membrane and Structural Biology, School of Medicine, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, Ohio 44106, United States
| | - Surajit Banerjee
- Department
of Chemistry and Chemical Biology, Cornell
University, Ithaca, New York 14850, United States
- Northeastern
Collaborative Access Team, Argonne National
Laboratory, Argonne, Illinois 60439, United States
| | - Drew J. Adams
- Department
of Pharmacology, Small Molecule Drug Development Core Facility, Department of Genetics, and Cleveland Center
for Membrane and Structural Biology, School of Medicine, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, Ohio 44106, United States
| | - William S. Blaner
- Department
of Medicine, College of Physicians and Surgeons, Columbia University, New York, New York 10032, United States
| | - Edward W. Yu
- Department
of Pharmacology, Small Molecule Drug Development Core Facility, Department of Genetics, and Cleveland Center
for Membrane and Structural Biology, School of Medicine, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, Ohio 44106, United States
| | - Marcin Golczak
- Department
of Pharmacology, Small Molecule Drug Development Core Facility, Department of Genetics, and Cleveland Center
for Membrane and Structural Biology, School of Medicine, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, Ohio 44106, United States
| |
Collapse
|
13
|
Parmann R, Tsang SH, Sparrow JR. Primary versus Secondary Elevations in Fundus Autofluorescence. Int J Mol Sci 2023; 24:12327. [PMID: 37569703 PMCID: PMC10419315 DOI: 10.3390/ijms241512327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 07/25/2023] [Accepted: 07/31/2023] [Indexed: 08/13/2023] Open
Abstract
The method of quantitative fundus autofluorescence (qAF) can be used to assess the levels of bisretinoids in retinal pigment epithelium (RPE) cells so as to aid the interpretation and management of a variety of retinal conditions. In this review, we focused on seven retinal diseases to highlight the possible pathways to increased fundus autofluorescence. ABCA4- and RDH12-associated diseases benefit from known mechanisms whereby gene malfunctioning leads to elevated bisretinoid levels in RPE cells. On the other hand, peripherin2/RDS-associated disease (PRPH2/RDS), retinitis pigmentosa (RP), central serous chorioretinopathy (CSC), acute zonal occult outer retinopathy (AZOOR), and ceramide kinase like (CERKL)-associated retinal degeneration all express abnormally high fundus autofluorescence levels without a demonstrated pathophysiological pathway for bisretinoid elevation. We suggest that, while a known link from gene mutation to increased production of bisretinoids (as in ABCA4- and RDH12-associated diseases) causes primary elevation in fundus autofluorescence, a secondary autofluorescence elevation also exists, where an impairment and degeneration of photoreceptor cells by various causes leads to an increase in bisretinoid levels in RPE cells.
Collapse
Affiliation(s)
- Rait Parmann
- Departments of Ophthalmology, Columbia University, 635 W. 165th Street, New York, NY 10032, USA
| | - Stephen H. Tsang
- Departments of Ophthalmology, Columbia University, 635 W. 165th Street, New York, NY 10032, USA
- Departments of Pathology and Cell Biology, Columbia University, 635 W. 165th Street, New York, NY 10032, USA
| | - Janet R. Sparrow
- Departments of Ophthalmology, Columbia University, 635 W. 165th Street, New York, NY 10032, USA
- Departments of Pathology and Cell Biology, Columbia University, 635 W. 165th Street, New York, NY 10032, USA
| |
Collapse
|
14
|
Lyu Y, Tschulakow AV, Wang K, Brash DE, Schraermeyer U. Chemiexcitation and melanin in photoreceptor disc turnover and prevention of macular degeneration. Proc Natl Acad Sci U S A 2023; 120:e2216935120. [PMID: 37155898 PMCID: PMC10194005 DOI: 10.1073/pnas.2216935120] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 04/03/2023] [Indexed: 05/10/2023] Open
Abstract
Age-related macular degeneration, Stargardt disease, and their Abca4-/- mouse model are characterized by accelerated accumulation of the pigment lipofuscin, derived from photoreceptor disc turnover in the retinal pigment epithelium (RPE); lipofuscin accumulation and retinal degeneration both occur earlier in albino mice. Intravitreal injection of superoxide (O2•-) generators reverses lipofuscin accumulation and rescues retinal pathology, but neither the target nor mechanism is known. Here we show that RPE contains thin multi-lamellar membranes (TLMs) resembling photoreceptor discs, which associate with melanolipofuscin granules in pigmented mice but in albinos are 10-fold more abundant and reside in vacuoles. Genetically over-expressing tyrosinase in albinos generates melanosomes and decreases TLM-related lipofuscin. Intravitreal injection of generators of O2•- or nitric oxide (•NO) decreases TLM-related lipofuscin in melanolipofuscin granules of pigmented mice by ~50% in 2 d, but not in albinos. Prompted by evidence that O2•- plus •NO creates a dioxetane on melanin that excites its electrons to a high-energy state (termed "chemiexcitation"), we show that exciting electrons directly using a synthetic dioxetane reverses TLM-related lipofuscin even in albinos; quenching the excited-electron energy blocks this reversal. Melanin chemiexcitation assists in safe photoreceptor disc turnover.
Collapse
Affiliation(s)
- Yanan Lyu
- Division of Experimental Vitreoretinal Surgery, Centre for Ophthalmology, University of Tuebingen, Tuebingen72076, Germany
| | - Alexander V. Tschulakow
- Division of Experimental Vitreoretinal Surgery, Centre for Ophthalmology, University of Tuebingen, Tuebingen72076, Germany
- OcuTox GmbH, Preclinical Drug Assessment, Hechingen72379, Germany
| | - Kun Wang
- Division of Experimental Vitreoretinal Surgery, Centre for Ophthalmology, University of Tuebingen, Tuebingen72076, Germany
| | - Douglas E. Brash
- Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, CT06520-8040
- Yale Comprehensive Cancer Center, Yale University School of Medicine, New Haven, CT06520-8028
| | - Ulrich Schraermeyer
- Division of Experimental Vitreoretinal Surgery, Centre for Ophthalmology, University of Tuebingen, Tuebingen72076, Germany
- OcuTox GmbH, Preclinical Drug Assessment, Hechingen72379, Germany
| |
Collapse
|
15
|
Greenstein VC, Castillejos DS, Tsang SH, Lee W, Sparrow JR, Allikmets R, Birch DG, Hood DC. Monitoring Lesion Area Progression in Stargardt Disease: A Comparison of En Face Optical Coherence Tomography and Fundus Autofluorescence. Transl Vis Sci Technol 2023; 12:2. [PMID: 37126335 PMCID: PMC10153573 DOI: 10.1167/tvst.12.5.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 03/23/2023] [Indexed: 05/02/2023] Open
Abstract
Purpose To compare longitudinal changes in en face spectral domain-optical coherence tomography (SD-OCT) measurements of ellipsoid zone (EZ) and retinal pigment epithelium (RPE) loss to changes in the hypoautofluorescent and hyperautofluorescent (AF) areas detected with short-wavelength (SW)-AF in ABCA4-associated retinopathy. Methods SD-OCT volume scans were obtained from 20 patients (20 eyes) over 2.6 ± 1.2 years (range 1-5 years). The EZ, and RPE/Bruch's membrane boundaries were segmented, and en face slab images generated. SubRPE and EZ slab images were used to measure areas of atrophic RPE and EZ loss. These were compared to longitudinal measurements of the hypo- and abnormal AF (hypoAF and surrounding hyperAF) areas. Results At baseline, the en face area of EZ loss was significantly larger than the subRPE atrophic area, and the abnormal AF area was significantly larger than the hypoAF area. The median rate of EZ loss was significantly greater than the rate of increase in the subRPE atrophic area (1.2 mm2/yr compared to 0.5 mm2/yr). The median rate of increase in the abnormal AF area was significantly greater than the increase in the hypoAF area (1.6 mm2/yr compared to 0.6 mm2/yr). Conclusions En face SD-OCT can be used to quantify changes in RPE atrophy and photoreceptor integrity. It can be a complementary or alternative technique to SW-AF with the advantage of monitoring EZ loss. The SW-AF results emphasize the importance of measuring changes in the hypo- and abnormal AF areas. Translational Relevance The findings are relevant to the selection of outcome measures for monitoring ABCA4-associated retinopathy.
Collapse
Affiliation(s)
- Vivienne C. Greenstein
- Department of Ophthalmology, Harkness Eye Institute, Columbia University, New York, NY, USA
| | - David S. Castillejos
- Department of Ophthalmology, Harkness Eye Institute, Columbia University, New York, NY, USA
| | - Stephen H. Tsang
- Department of Ophthalmology, Harkness Eye Institute, Columbia University, New York, NY, USA
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, NY, USA
| | - Winston Lee
- Department of Ophthalmology, Harkness Eye Institute, Columbia University, New York, NY, USA
- Department of Genetics and Development, Columbia University Medical Center, New York, NY, USA
| | - Janet R. Sparrow
- Department of Ophthalmology, Harkness Eye Institute, Columbia University, New York, NY, USA
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, NY, USA
| | - Rando Allikmets
- Department of Ophthalmology, Harkness Eye Institute, Columbia University, New York, NY, USA
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, NY, USA
| | | | - Donald C. Hood
- Department of Ophthalmology, Harkness Eye Institute, Columbia University, New York, NY, USA
- Department of Psychology, Columbia University, New York, NY, USA
| |
Collapse
|
16
|
Kitao M, Yamaguchi A, Tomioka T, Kai K, Kamei Y, Sugimoto K, Akagawa M. Astaxanthin protects human ARPE-19 retinal pigment epithelium cells from blue light-induced phototoxicity by scavenging singlet oxygen. Free Radic Res 2023; 57:430-443. [PMID: 37897411 DOI: 10.1080/10715762.2023.2277144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 10/19/2023] [Indexed: 10/30/2023]
Abstract
Age-related macular degeneration (AMD) is one of an increasing number of diseases that causes irreversible impairment and loss of vision in the elderly. AMD occurs by oxidative stress-mediated apoptosis of retinal pigment epithelium cells. The onset of AMD may be positively correlated with the exposure to blue light. We screened food-derived carotenoids for cytoprotective action against blue light irradiation using human ARPE-19 retinal pigment epithelium cells. This study revealed that blue light irradiation triggered apoptosis and oxidative stress in all-trans-retinal (atRAL)-exposed ARPE-19 cells by generating singlet oxygen (1O2), leading to significant cell death. We found that astaxanthin, a potent anti-oxidative xanthophyll abundant in several marine organisms including microalgae, salmon, and shrimp, significantly suppresses blue light-induced apoptotic cell death of atRAL-exposed ARPE-19 cells by scavenging 1O2. Mechanistic studies using the blue-light irradiated cells also demonstrated that the cytoprotective effects of astaxanthin can be attributed to scavenging of 1O2 directly. Our results suggest the potential value of astaxanthin as a dietary strategy to prevent blue light-induced retinal degeneration including AMD.
Collapse
Affiliation(s)
- Mana Kitao
- Faculty of Biomolecular Chemistry, Division of Applied Life Science, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Sakai, Japan
| | - Ai Yamaguchi
- Faculty of Integrated Bioscience, Division of Applied Life Science, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Sakai, Japan
| | - Takuma Tomioka
- Faculty of Biomolecular Chemistry, Division of Applied Life Science, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Sakai, Japan
| | - Kenji Kai
- Faculty of Biomolecular Chemistry, Division of Applied Life Science, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Sakai, Japan
| | - Yuki Kamei
- Department of Food and Nutrition, Institute of Biomedical sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Kenji Sugimoto
- Faculty of Integrated Bioscience, Division of Applied Life Science, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Sakai, Japan
| | - Mitsugu Akagawa
- Department of Food and Nutrition, Institute of Biomedical sciences, Tokushima University Graduate School, Tokushima, Japan
| |
Collapse
|
17
|
Xu T, Molday L, Molday R. Retinal-phospholipid Schiff-base conjugates and their interaction with ABCA4, the ABC transporter associated with Stargardt Disease. J Biol Chem 2023; 299:104614. [PMID: 36931393 PMCID: PMC10127136 DOI: 10.1016/j.jbc.2023.104614] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 03/10/2023] [Accepted: 03/11/2023] [Indexed: 03/17/2023] Open
Abstract
N-retinylidene-phosphatidylethanolamine (N-Ret-PE), the Schiff-base conjugate formed through the reversible reaction of retinal (Vitamin A-aldehyde) and phosphatidylethanolamine, plays a crucial role in the visual cycle and visual pigment photoregeneration. However, N-Ret-PE can react with another molecule of retinal to form toxic di-retinoids if not removed from photoreceptors through its transport across photoreceptor membranes by the ATP-binding-cassette transporter ABCA4. Loss-of-function mutations in ABCA4 are known to cause Stargardt disease (STGD1), an inherited retinal degenerative disease associated with the accumulation of fluorescent di-retinoids and severe loss in vision. A larger assessment of retinal-phospholipid Schiff-base conjugates in photoreceptors is needed, along with further investigation of ABCA4 residues important for N-Ret-PE binding. In this study we show that N-Ret-PE formation is dependent on pH and phospholipid content. When retinal is added to liposomes or photoreceptor membranes, 40-60% is converted to N-Ret-PE at physiological pH. Phosphatidylserine and taurine also react with retinal to form N-retinylidene-phosphatidylserine (N-Ret-PS) and N-retinylidene-taurine, respectively, but at significantly lower levels. N-Ret-PS is not a substrate for ABCA4 and reacts poorly with retinal to form di-retinoids. Additionally, amino acid residues within the binding pocket of ABCA4 that contribute to its interaction with N-Ret-PE were identified and characterized using site-directed mutagenesis together with functional and binding assays. Substitution of arginine residues and hydrophobic residues with alanine or residues implicated in STGD1 significantly reduced or in some cases eliminated substrate-activated ATPase activity and substrate binding. Collectively, this study provides important insight into conditions which affect retinal-phospholipid Schiff-base formation and mechanisms underlying the pathogenesis of STGD1.
Collapse
Affiliation(s)
- Tongzhou Xu
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, B.C. V6T 1Z3 Canada
| | - LaurieL Molday
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, B.C. V6T 1Z3 Canada
| | - RobertS Molday
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, B.C. V6T 1Z3 Canada.
| |
Collapse
|
18
|
Arunkumar R, Bernstein PS. Macular Pigment Carotenoids and Bisretinoid A2E. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1415:15-20. [PMID: 37440008 DOI: 10.1007/978-3-031-27681-1_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/14/2023]
Abstract
Lutein (L), zeaxanthin (Z), and meso-zeaxanthin (MZ) are the three macular pigments (MP) carotenoids that uniquely accumulate in the macula lutea region of the human retina. L and Z are obtained by humans through dietary intake. The third MP, MZ, is rarely present in diet, and its abundance in the human fovea is due to the metabolic conversion of dietary L by the retinal pigment epithelium's RPE65 enzyme. The major functions of MP in ocular health are to filter high-intensity, phototoxic blue light and to act as effective antioxidants for scavenging free radicals. The pyridinium bisretinoid, N-retinylidene-N-retinylethanolamine (A2E), contributes to drusen formation in dry age-related macular degeneration (AMD) and to the autofluorescent flecks in autosomal recessive Stargardt disease (STGD1). Retinal carotenoids attenuate A2E formation and can directly and indirectly alleviate A2E-mediated oxidative damage. In this chapter, we review these more recently recognized interconnections between MP carotenoids and A2E bisretinoids.
Collapse
Affiliation(s)
- Ranganathan Arunkumar
- Department of Ophthalmology and Visual Sciences, John A. Moran Eye Center, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Paul S Bernstein
- Department of Ophthalmology and Visual Sciences, John A. Moran Eye Center, University of Utah School of Medicine, Salt Lake City, UT, USA.
| |
Collapse
|
19
|
Berlin A, Clark ME, Swain TA, Fischer NA, McGwin G, Sloan KR, Owsley C, Curcio CA. Impact of the Aging Lens and Posterior Capsular Opacification on Quantitative Autofluorescence Imaging in Age-Related Macular Degeneration. Transl Vis Sci Technol 2022; 11:23. [PMID: 36239964 PMCID: PMC9586138 DOI: 10.1167/tvst.11.10.23] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Purpose The purpose of this study was to investigate quantitative autofluorescence (qAF8) in patients with and without early or intermediate age-related macular degeneration (AMD); to determine the impact of the aged crystalline lens and posterior capsular opacification (PCO). Methods In phakic and pseudophakic eyes ≥60 years, AMD status was determined by the Beckman system. PCO presence and severity was extracted from clinical records. qAF8 was calculated using custom FIJI plugins. Differences in qAF8, stratified by lens status, PCO severity, and AMD status, were analyzed using generalized estimating equations. Results In 210 eyes of 115 individuals (mean age = 75.7 ± 6.6 years), qAF8 was lower in intermediate AMD compared to early AMD (P = 0.05). qAF8 did not differ between phakic and pseudophakic eyes (P = 0.8909). In phakic (n = 83) and pseudophakic (n = 127) eyes considered separately, qAF8 did not differ by AMD status (P = 0.0936 and 0.3494, respectively). Qualitative review of qAF images in phakic eyes illustrated high variability. In pseudophakic eyes, qAF8 did not differ with PCO present versus absent (54.5% vs. 45.5%). Review of implanted intraocular lenses (IOLs) revealed that 43.9% were blue-filter IOLs. Conclusions qAF8 was not associated with AMD status, up to intermediate AMD, considering only pseudophakic eyes to avoid noisy images in phakic eyes. In pseudophakic eyes, qAF8 was not affected by PCO. Because blue-filter IOLs may reduce levels of exciting light for qAF8, future studies investigating qAF in eyes with different IOL types are needed. Translational Relevance To reduce variability in observational studies and clinical trials requiring qAF8, pseudophakic participants without blue-filter IOLs or advanced PCO should be preferentially enrolled.
Collapse
Affiliation(s)
- Andreas Berlin
- Department of Ophthalmology and Visual Sciences, School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA,University Hospital Würzburg, Würzburg, Germany
| | - Mark E. Clark
- Department of Ophthalmology and Visual Sciences, School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Thomas A. Swain
- Department of Ophthalmology and Visual Sciences, School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Nathan A. Fischer
- Department of Ophthalmology and Visual Sciences, School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Gerald McGwin
- Department of Ophthalmology and Visual Sciences, School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA,Department of Epidemiology, School of Public Health, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Kenneth R. Sloan
- Department of Ophthalmology and Visual Sciences, School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Cynthia Owsley
- Department of Ophthalmology and Visual Sciences, School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Christine A. Curcio
- Department of Ophthalmology and Visual Sciences, School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| |
Collapse
|
20
|
Verra DM, Spinnhirny P, Sandu C, Grégoire S, Acar N, Berdeaux O, Brétillon L, Sparrow JR, Hicks D. Intrinsic differences in rod and cone membrane composition: implications for cone degeneration. Graefes Arch Clin Exp Ophthalmol 2022; 260:3131-3148. [PMID: 35524799 DOI: 10.1007/s00417-022-05684-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 04/19/2022] [Accepted: 04/22/2022] [Indexed: 11/04/2022] Open
Abstract
PURPOSE In many retinal pathological conditions, rod and cone degeneration differs. For example, the early-onset maculopathy Stargardts disease type 1 (STGD1) is typified by loss of cones while rods are often less affected. We wanted to examine whether there exist intrinsic membrane differences between rods and cones that might explain such features. METHODS Abca4 mRNA and protein levels were quantified in rod- and cone-enriched samples from wild-type and Nrl-/- mice retinas; rod- and cone-enriched outer segments (ROS and COS respectively) were prepared from pig retinas, and total lipids were analyzed by flame ionization, chromatography, and tandem mass spectrometry. Immunohistochemical staining of cone-rich rodent Arvicanthis ansorgei retinas was conducted, and ultra-high performance liquid chromatography of lipid species in porcine ROS and COS was performed. RESULTS Abca4 mRNA and Abca4 protein content was significantly higher (50-300%) in cone compared to rod-enriched samples. ROS and COS displayed dramatic differences in several lipids, including very long chain poly-unsaturated fatty acids (VLC-PUFAs), especially docosahexaenoic acid (DHA, 22:6n-3): ROS 20.6% DHA, COS 3.3% (p < 0.001). VLC-PUFAs (> 50 total carbons) were virtually absent from COS. COS were impoverished (> 6× less) in phosphatidylethanolamine compared to ROS. ELOVL4 ("ELOngation of Very Long chain fatty acids 4") antibody labelled Arvicanthis cones only very weakly compared to rods. Finally, there were large amounts (905 a.u.) of the bisretinoid A2PE in ROS, whereas it was much lower (121 a.u., ~ 7.5-fold less) in COS fractions. In contrast, COS contained fivefold higher amounts of all-trans-retinal dimer (115 a.u. compared to 22 a.u. in rods). CONCLUSIONS Compared to rods, cones expressed higher levels of Abca4 mRNA and Abca4 protein, were highly impoverished in PUFA (especially DHA) and phosphatidylethanolamine, and contained significant amounts of all-trans-retinal dimer. Based on these and other data, we propose that in contrast to rods, cones are preferentially vulnerable to stress and may die through direct cellular toxicity in pathologies such as STGD1.
Collapse
Affiliation(s)
- Daniela M Verra
- Département de Neurobiologie des Rythmes, Institut des Neurosciences Cellulaires et Intégratives, CNRS UPR 3212, 8 Allée Général Rouvillois, 67000, Strasbourg Cedex, France
| | - Perrine Spinnhirny
- Département de Neurobiologie des Rythmes, Institut des Neurosciences Cellulaires et Intégratives, CNRS UPR 3212, 8 Allée Général Rouvillois, 67000, Strasbourg Cedex, France
| | - Cristina Sandu
- Département de Neurobiologie des Rythmes, Institut des Neurosciences Cellulaires et Intégratives, CNRS UPR 3212, 8 Allée Général Rouvillois, 67000, Strasbourg Cedex, France
| | - Stéphane Grégoire
- UMR 1324 Centre des Sciences du Goût et de l'Alimentation, Eye and Nutrition Research Group, INRA, Dijon, France.,UMR 6265 Centre des Sciences du Goût et de l'Alimentation, CNRS, Dijon, France.,Centre des Sciences du Goût et de l'Alimentation, Université de Bourgogne, Dijon, France
| | - Niyazi Acar
- UMR 1324 Centre des Sciences du Goût et de l'Alimentation, Eye and Nutrition Research Group, INRA, Dijon, France.,UMR 6265 Centre des Sciences du Goût et de l'Alimentation, CNRS, Dijon, France.,Centre des Sciences du Goût et de l'Alimentation, Université de Bourgogne, Dijon, France
| | - Olivier Berdeaux
- UMR 1324 Centre des Sciences du Goût et de l'Alimentation, Eye and Nutrition Research Group, INRA, Dijon, France.,UMR 6265 Centre des Sciences du Goût et de l'Alimentation, CNRS, Dijon, France.,Centre des Sciences du Goût et de l'Alimentation, Université de Bourgogne, Dijon, France
| | - Lionel Brétillon
- UMR 1324 Centre des Sciences du Goût et de l'Alimentation, Eye and Nutrition Research Group, INRA, Dijon, France.,UMR 6265 Centre des Sciences du Goût et de l'Alimentation, CNRS, Dijon, France.,Centre des Sciences du Goût et de l'Alimentation, Université de Bourgogne, Dijon, France
| | - Janet R Sparrow
- Departments of Ophthalmology, and Pathology and Cell Biology, Columbia University Medical Center, New York, NY, USA
| | - David Hicks
- Département de Neurobiologie des Rythmes, Institut des Neurosciences Cellulaires et Intégratives, CNRS UPR 3212, 8 Allée Général Rouvillois, 67000, Strasbourg Cedex, France.
| |
Collapse
|
21
|
Różanowska MB, Różanowski B. Photodegradation of Lipofuscin in Suspension and in ARPE-19 Cells and the Similarity of Fluorescence of the Photodegradation Product with Oxidized Docosahexaenoate. Int J Mol Sci 2022; 23:ijms23020922. [PMID: 35055111 PMCID: PMC8778276 DOI: 10.3390/ijms23020922] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Revised: 01/07/2022] [Accepted: 01/12/2022] [Indexed: 02/01/2023] Open
Abstract
Retinal lipofuscin accumulates with age in the retinal pigment epithelium (RPE), where its fluorescence properties are used to assess retinal health. It was observed that there is a decrease in lipofuscin fluorescence above the age of 75 years and in the early stages of age-related macular degeneration (AMD). The purpose of this study was to investigate the response of lipofuscin isolated from human RPE and lipofuscin-laden cells to visible light, and to determine whether an abundant component of lipofuscin, docosahexaenoate (DHA), can contribute to lipofuscin fluorescence upon oxidation. Exposure of lipofuscin to visible light leads to a decrease in its long-wavelength fluorescence at about 610 nm, with a concomitant increase in the short-wavelength fluorescence. The emission spectrum of photodegraded lipofuscin exhibits similarity with that of oxidized DHA. Exposure of lipofuscin-laden cells to light leads to a loss of lipofuscin granules from cells, while retaining cell viability. The spectral changes in fluorescence in lipofuscin-laden cells resemble those seen during photodegradation of isolated lipofuscin. Our results demonstrate that fluorescence emission spectra, together with quantitation of the intensity of long-wavelength fluorescence, can serve as a marker useful for lipofuscin quantification and for monitoring its oxidation, and hence useful for screening the retina for increased oxidative damage and early AMD-related changes.
Collapse
Affiliation(s)
- Małgorzata B. Różanowska
- School of Optometry and Vision Sciences, Cardiff University, Cardiff CF24 4HQ, UK
- Cardiff Institute for Tissue Engineering and Repair (CITER), Cardiff University, Cardiff CF10 3NB, UK
- Correspondence: ; Tel.: +44-2920875057
| | - Bartosz Różanowski
- Institute of Biology, Pedagogical University of Kraków, 30-084 Kraków, Poland;
| |
Collapse
|
22
|
Molday RS, Garces FA, Scortecci JF, Molday LL. Structure and function of ABCA4 and its role in the visual cycle and Stargardt macular degeneration. Prog Retin Eye Res 2021; 89:101036. [PMID: 34954332 DOI: 10.1016/j.preteyeres.2021.101036] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 12/07/2021] [Accepted: 12/13/2021] [Indexed: 12/17/2022]
Abstract
ABCA4 is a member of the superfamily of ATP-binding cassette (ABC) transporters that is preferentially localized along the rim region of rod and cone photoreceptor outer segment disc membranes. It uses the energy from ATP binding and hydrolysis to transport N-retinylidene-phosphatidylethanolamine (N-Ret-PE), the Schiff base adduct of retinal and phosphatidylethanolamine, from the lumen to the cytoplasmic leaflet of disc membranes. This ensures that all-trans-retinal and excess 11-cis-retinal are efficiently cleared from photoreceptor cells thereby preventing the accumulation of toxic retinoid compounds. Loss-of-function mutations in the gene encoding ABCA4 cause autosomal recessive Stargardt macular degeneration, also known as Stargardt disease (STGD1), and related autosomal recessive retinopathies characterized by impaired central vision and an accumulation of lipofuscin and bis-retinoid compounds. High resolution structures of ABCA4 in its substrate and nucleotide free state and containing bound N-Ret-PE or ATP have been determined by cryo-electron microscopy providing insight into the molecular architecture of ABCA4 and mechanisms underlying substrate recognition and conformational changes induced by ATP binding. The expression and functional characterization of a large number of disease-causing missense ABCA4 variants have been determined. These studies have shed light into the molecular mechanisms underlying Stargardt disease and a classification that reliably predicts the effect of a specific missense mutation on the severity of the disease. They also provide a framework for developing rational therapeutic treatments for ABCA4-associated diseases.
Collapse
Affiliation(s)
- Robert S Molday
- Department of Biochemistry & Molecular Biology, University of British Columbia, Vancouver, B.C., Canada; Department of Ophthalmology & Visual Sciences, University of British Columbia, Vancouver, B.C., Canada.
| | - Fabian A Garces
- Department of Biochemistry & Molecular Biology, University of British Columbia, Vancouver, B.C., Canada
| | | | - Laurie L Molday
- Department of Biochemistry & Molecular Biology, University of British Columbia, Vancouver, B.C., Canada
| |
Collapse
|
23
|
Pan C, Banerjee K, Lehmann GL, Almeida D, Hajjar KA, Benedicto I, Jiang Z, Radu RA, Thompson DH, Rodriguez-Boulan E, Nociari MM. Lipofuscin causes atypical necroptosis through lysosomal membrane permeabilization. Proc Natl Acad Sci U S A 2021; 118:e2100122118. [PMID: 34782457 PMCID: PMC8617501 DOI: 10.1073/pnas.2100122118] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/22/2021] [Indexed: 01/16/2023] Open
Abstract
Lipofuscin granules enclose mixtures of cross-linked proteins and lipids in proportions that depend on the tissue analyzed. Retinal lipofuscin is unique in that it contains mostly lipids with very little proteins. However, retinal lipofuscin also presents biological and physicochemical characteristics indistinguishable from conventional granules, including indigestibility, tendency to cause lysosome swelling that results in rupture or defective functions, and ability to trigger NLRP3 inflammation, a symptom of low-level disruption of lysosomes. In addition, like conventional lipofuscins, it appears as an autofluorescent pigment, considered toxic waste, and a biomarker of aging. Ocular lipofuscin accumulates in the retinal pigment epithelium (RPE), whereby it interferes with the support of the neuroretina. RPE cell death is the primary cause of blindness in the most prevalent incurable genetic and age-related human disorders, Stargardt disease and age-related macular degeneration (AMD), respectively. Although retinal lipofuscin is directly linked to the cell death of the RPE in Stargardt, the extent to which it contributes to AMD is a matter of debate. Nonetheless, the number of AMD clinical trials that target lipofuscin formation speaks for the potential relevance for AMD as well. Here, we show that retinal lipofuscin triggers an atypical necroptotic cascade, amenable to pharmacological intervention. This pathway is distinct from canonic necroptosis and is instead dependent on the destabilization of lysosomes. We also provide evidence that necroptosis is activated in aged human retinas with AMD. Overall, this cytotoxicity mechanism may offer therapeutic targets and markers for genetic and age-related diseases associated with lipofuscin buildups.
Collapse
Affiliation(s)
- Chendong Pan
- Department of Ophthalmology, Weill Cornell Medicine, Margaret Dyson Vision Research Institute, New York, NY 10065
| | - Kalpita Banerjee
- Department of Ophthalmology, Weill Cornell Medicine, Margaret Dyson Vision Research Institute, New York, NY 10065
| | - Guillermo L Lehmann
- Department of Ophthalmology, Weill Cornell Medicine, Margaret Dyson Vision Research Institute, New York, NY 10065
| | - Dena Almeida
- Department of Pediatrics, Weill Cornell Medicine, New York, NY 10065
| | | | - Ignacio Benedicto
- Department of Ophthalmology, Weill Cornell Medicine, Margaret Dyson Vision Research Institute, New York, NY 10065
- Centro Nacional de Investigaciones Cardiovasculares, Madrid 47907, Spain
| | - Zhichun Jiang
- UCLA Stein Eye Institute, Department of Ophthalmology, University of California, Los Angeles, CA 90095
| | - Roxana A Radu
- UCLA Stein Eye Institute, Department of Ophthalmology, University of California, Los Angeles, CA 90095
| | - David H Thompson
- Department of Chemistry, Purdue University, West Lafayette, IN 28029
| | - Enrique Rodriguez-Boulan
- Department of Ophthalmology, Weill Cornell Medicine, Margaret Dyson Vision Research Institute, New York, NY 10065
| | - Marcelo M Nociari
- Department of Ophthalmology, Weill Cornell Medicine, Margaret Dyson Vision Research Institute, New York, NY 10065;
| |
Collapse
|
24
|
Różanowska MB, Pawlak A, Różanowski B. Products of Docosahexaenoate Oxidation as Contributors to Photosensitising Properties of Retinal Lipofuscin. Int J Mol Sci 2021; 22:ijms22073525. [PMID: 33805370 PMCID: PMC8037991 DOI: 10.3390/ijms22073525] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 03/24/2021] [Accepted: 03/25/2021] [Indexed: 12/16/2022] Open
Abstract
Retinal lipofuscin which accumulates with age in the retinal pigment epithelium (RPE) is subjected to daily exposures to high fluxes of visible light and exhibits potent photosensitising properties; however, the molecules responsible for its photoreactivity remain unknown. Here, we demonstrate that autooxidation of docosahexaenoate (DHE) leads to the formation of products absorbing, in addition to UVB and UVA light, also visible light. The products of DHE oxidation exhibit potent photosensitising properties similar to photosensitising properties of lipofuscin, including generation of an excited triplet state with similar characteristics as the lipofuscin triplet state, and photosensitised formation of singlet oxygen and superoxide. The quantum yields of singlet oxygen and superoxide generation by oxidised DHE photoexcited with visible light are 2.4- and 3.6-fold higher, respectively, than for lipofuscin, which is consistent with the fact that lipofuscin contains some chromophores which do contribute to the absorption of light but not so much to its photosensitising properties. Importantly, the wavelength dependence of photooxidation induced by DHE oxidation products normalised to equal numbers of incident photons is also similar to that of lipofuscin—it steeply increases with decreasing wavelength. Altogether, our results demonstrate that products of DHE oxidation include potent photosensitiser(s) which are likely to contribute to lipofuscin photoreactivity.
Collapse
Affiliation(s)
- Małgorzata B. Różanowska
- School of Optometry and Vision Sciences, Cardiff University, Cardiff CF24 4HQ, Wales, UK
- Cardiff Institute for Tissue Engineering and Repair (CITER), Cardiff University, Cardiff CF24 4HQ, Wales, UK
- Correspondence: ; Tel.: +44-292087-5057
| | - Anna Pawlak
- Department of Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Kraków, Poland;
| | | |
Collapse
|
25
|
Ding Y, Chen Z, Lu Y. Vitamin A supplementation prevents the bronchopulmonary dysplasia in premature infants: A systematic review and meta-analysis. Medicine (Baltimore) 2021; 100:e23101. [PMID: 33545924 PMCID: PMC7837939 DOI: 10.1097/md.0000000000023101] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 09/16/2020] [Accepted: 10/12/2020] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND It is necessary to evaluate the effectiveness and safety of vitamin A supplementation on the bronchopulmonary dysplasia (BPD) in premature infants. METHODS Randomized controlled trials (RCTs) on the role of supplemental vitamin A in preterm infants were searched. The Medline et al databases were manually searched from inception to April 30, 2020. Related outcomes including incidence of BPD, retinopathy of prematurity (ROP), necrotizing enterocolitis (NEC), intraventricular hemorrhage (IVH), sepsis and mortality were assessed with Review Manager 5.3 software, and Random-effect model was applied for all conditions. RESULTS A total of 9 RCTs with 1409 patients were included. The analyzed results showed that the incidence of BPD in vitamin A group was significantly less than that of control group (OR = 0.67, 95%CI [0.52-0.88]). There was no significant difference in the incidence of ROP (OR = 0.65, 95%CI [0.29-1.48]), NEC (OR = 0.88, 95%CI [0.59-1.30]), IVH (OR = 0.90, 95%CI [0.65-1.25]), sepsis (OR = 0.84, 95%CI [0.64-1.09]) and mortality (OR = 0.98, 95%CI [0.72-1.34]) among two groups. CONCLUSION Vitamin A supplementation is beneficial to the prophylaxis of BPD in premature infants, further studies on the administration approaches and dosages of vitamin A in premature infants are warranted.
Collapse
|
26
|
Fliesler SJ. Introduction to the Thematic Review Series: Seeing 2020: lipids and lipid-soluble molecules in the eye. J Lipid Res 2020; 62:100007. [PMID: 33558206 PMCID: PMC7872965 DOI: 10.1016/j.jlr.2020.100007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 12/03/2020] [Indexed: 10/29/2022] Open
Affiliation(s)
- Steven J Fliesler
- Research Service, VA Western New York Healthcare System, Buffalo, NY, USA; Departments of Ophthalmology and Biochemistry and Neuroscience Graduate Program, Jacobs School of Medicine and Biomedical Sciences, SUNY-University at Buffalo, Buffalo, NY, USA.
| |
Collapse
|
27
|
Tan LX, Germer CJ, La Cunza N, Lakkaraju A. Complement activation, lipid metabolism, and mitochondrial injury: Converging pathways in age-related macular degeneration. Redox Biol 2020; 37:101781. [PMID: 33162377 PMCID: PMC7767764 DOI: 10.1016/j.redox.2020.101781] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Revised: 10/22/2020] [Accepted: 10/29/2020] [Indexed: 02/07/2023] Open
Abstract
The retinal pigment epithelium (RPE) is the primary site of injury in non-neovascular age-related macular degeneration or dry AMD. Polymorphisms in genes that regulate complement activation and cholesterol metabolism are strongly associated with AMD, but the biology underlying disease-associated variants is not well understood. Here, we highlight recent studies that have used molecular, biochemical, and live-cell imaging methods to elucidate mechanisms by which aging-associated insults conspire with AMD genetic risk variants to tip the balance towards disease. We discuss how critical functions including lipid metabolism, autophagy, complement regulation, and mitochondrial dynamics are compromised in the RPE, and how a deeper understanding of these mechanisms has helped identify promising therapeutic targets to preserve RPE homeostasis in AMD.
Collapse
Affiliation(s)
- Li Xuan Tan
- Department of Ophthalmology, School of Medicine, University of California, San Francisco, CA, USA
| | - Colin J Germer
- Department of Ophthalmology, School of Medicine, University of California, San Francisco, CA, USA; Pharmaceutical Sciences and Pharmacogenomics Graduate Program, University of California, San Francisco, CA, USA
| | - Nilsa La Cunza
- Department of Ophthalmology, School of Medicine, University of California, San Francisco, CA, USA; Pharmaceutical Sciences and Pharmacogenomics Graduate Program, University of California, San Francisco, CA, USA
| | - Aparna Lakkaraju
- Department of Ophthalmology, School of Medicine, University of California, San Francisco, CA, USA; Pharmaceutical Sciences and Pharmacogenomics Graduate Program, University of California, San Francisco, CA, USA; Department of Anatomy, School of Medicine, University of California, San Francisco, CA, USA.
| |
Collapse
|
28
|
Abstract
Taurine is a sulfur-containing amino acid that is not incorporated into protein but is abundant in retina. Schiff base adducts that form nonenzymatically and reversibly from reactions between taurine and vitamin A aldehyde (A1T) are increased under conditions in which the visual chromophore 11-cis-retinal is more abundant. These settings include black versus albino mice, dark-adapted versus light-adapted mice, and mice expressing the Rpe65-Leu450 versus Rpe65-Met450 variant. Conversely, A1T is less abundant in mouse models deficient in 11-cis-retinal. As an amphiphile, protonated A1T may serve to facilitate retinoid trafficking and could constitute a small-molecule reserve of mobilizable 11-cis-retinal in photoreceptor cells. Visual pigment consists of opsin covalently linked to the vitamin A-derived chromophore, 11-cis-retinaldehyde. Photon absorption causes the chromophore to isomerize from the 11-cis- to all-trans-retinal configuration. Continued light sensitivity necessitates the regeneration of 11-cis-retinal via a series of enzyme-catalyzed steps within the visual cycle. During this process, vitamin A aldehyde is shepherded within photoreceptors and retinal pigment epithelial cells to facilitate retinoid trafficking, to prevent nonspecific reactivity, and to conserve the 11-cis configuration. Here we show that redundancy in this system is provided by a protonated Schiff base adduct of retinaldehyde and taurine (A1-taurine, A1T) that forms reversibly by nonenzymatic reaction. A1T was present as 9-cis, 11-cis, 13-cis, and all-trans isomers, and the total levels were higher in neural retina than in retinal pigment epithelium (RPE). A1T was also more abundant under conditions in which 11-cis-retinaldehyde was higher; this included black versus albino mice, dark-adapted versus light-adapted mice, and mice carrying the Rpe65-Leu450 versus Rpe65-450Met variant. Taurine levels paralleled these differences in A1T. Moreover, A1T was substantially reduced in mice deficient in the Rpe65 isomerase and in mice deficient in cellular retinaldehyde-binding protein; in these models the production of 11-cis-retinal is compromised. A1T is an amphiphilic small molecule that may represent a mechanism for escorting retinaldehyde. The transient Schiff base conjugate that the primary amine of taurine forms with retinaldehyde would readily hydrolyze to release the retinoid and thus may embody a pool of 11-cis-retinal that can be marshalled in photoreceptor cells.
Collapse
|