1
|
Freuchet A, Pinçon A, Sette A, Lindestam Arlehamn CS. Inflammation and heterogeneity in synucleinopathies. Front Immunol 2024; 15:1432342. [PMID: 39281666 PMCID: PMC11392857 DOI: 10.3389/fimmu.2024.1432342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 08/15/2024] [Indexed: 09/18/2024] Open
Abstract
Neurodegenerative diseases represent a huge healthcare challenge which is predicted to increase with an aging population. Synucleinopathies, including Parkinson's disease (PD), dementia with Lewy bodies (DLB), and multiple system atrophy (MSA), present complex challenges in understanding their onset and progression. They are characterized by the abnormal aggregation of α-synuclein in the brain leading to neurodegeneration. Accumulating evidence supports the existence of distinct subtypes based on the site of α-synuclein aggregation initiation, genetics, and, more recently, neuroinflammation. Mediated by both central nervous system-resident cells, peripheral immune cells, and gut dysbiosis, neuroinflammation appears as a key process in the onset and progression of neuronal loss. Sex-based differences add another layer of complexity to synucleinopathies, influencing disease prevalence - with a known higher incidence of PD in males compared to females - as well as phenotype and immune responses. Biological sex affects neuroinflammatory pathways and the immune response, suggesting the need for sex-specific therapeutic strategies and biomarker identification. Here, we review the heterogeneity of synucleinopathies, describing the etiology, the mechanisms by which the inflammatory processes contribute to the pathology, and the consideration of sex-based differences to highlight the need for personalized therapeutics.
Collapse
Affiliation(s)
- Antoine Freuchet
- Center for Autoimmunity and Inflammation, La Jolla Institute for Immunology, San Diego, CA, United States
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, United States
| | - Anaëlle Pinçon
- Center for Autoimmunity and Inflammation, La Jolla Institute for Immunology, San Diego, CA, United States
- Master de Biologie, Ecole Normale Superieure de Lyon, University of Lyon, Lyon, France
| | - Alessandro Sette
- Center for Autoimmunity and Inflammation, La Jolla Institute for Immunology, San Diego, CA, United States
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, United States
- Department of Medicine, University of California, San Diego, San Diego, CA, United States
| | - Cecilia S Lindestam Arlehamn
- Center for Autoimmunity and Inflammation, La Jolla Institute for Immunology, San Diego, CA, United States
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, United States
| |
Collapse
|
2
|
Velucci V, Idrissi S, Pellicciari R, Esposito M, Trinchillo A, Belvisi D, Fabbrini G, Ferrazzano G, Terranova C, Girlanda P, Majorana G, Rizzo V, Bono F, Idone G, Laterza V, Avanzino L, Di Biasio F, Marchese R, Castagna A, Ramella M, Lettieri C, Rinaldo S, Altavista MC, Polidori L, Bertolasi L, Tozzi MC, Erro R, Barone P, Barbero P, Ceravolo R, Mascia MM, Ercoli T, Muroni A, Artusi CA, Zibetti M, Scaglione CLM, Bentivoglio AR, Cotelli MS, Magistrelli L, Cossu G, Albanese A, Squintani GM, Schirinzi T, Gigante AF, Maderna L, Eleopra R, Pisani A, Cassano D, Romano M, Rizzo M, Berardelli A, Defazio G. Does sex influence the natural history of idiopathic adult-onset dystonia? J Neurol Neurosurg Psychiatry 2024; 95:784-790. [PMID: 38429083 DOI: 10.1136/jnnp-2023-332927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 02/17/2024] [Indexed: 03/03/2024]
Abstract
BACKGROUND Several earlier studies showed a female predominance in idiopathic adult-onset dystonia (IAOD) affecting the craniocervical area and a male preponderance in limb dystonia. However, sex-related differences may result from bias inherent to study design. Moreover, information is lacking on whether sex-related differences exist in expressing other dystonia-associated features and dystonia spread. OBJECTIVE To provide accurate information on the relationship between sex differences, motor phenomenology, dystonia-associated features and the natural history of IAOD. METHODS Data of 1701 patients with IAOD from the Italian Dystonia Registry were analysed. RESULTS Women predominated over men in blepharospasm, oromandibular, laryngeal and cervical dystonia; the sex ratio was reversed in task-specific upper limb dystonia; and no clear sex difference emerged in non-task-specific upper limb dystonia and lower limb dystonia. This pattern was present at disease onset and the last examination. Women and men did not significantly differ for several dystonia-associated features and tendency to spread. In women and men, the absolute number of individuals who developed dystonia tended to increase from 20 to 60 years and then declined. However, when we stratified by site of dystonia onset, different patterns of female-to-male ratio over time could be observed in the various forms of dystonia. CONCLUSIONS Our findings provide novel evidence on sex as a key mediator of IAOD phenotype at disease onset. Age-related sexual dimorphism may result from the varying exposures to specific age-related and sex-related environmental risk factors interacting in a complex manner with biological factors such as hormonal sex factors.
Collapse
Affiliation(s)
- Vittorio Velucci
- Department of Translational Biomedicine and Neuroscience, University of Bari Aldo Moro, Bari, Italy
| | - Sarah Idrissi
- Department of Translational Biomedicine and Neuroscience, University of Bari Aldo Moro, Bari, Italy
| | - Roberta Pellicciari
- Department of Translational Biomedicine and Neuroscience, University of Bari Aldo Moro, Bari, Italy
| | - Marcello Esposito
- Clinical Neurophysiology Unit, Antonio Cardarelli Hospital, Naples, Italy
| | - Assunta Trinchillo
- Department of Neurosciences, Reproductive Sciences and Odontostomatology, Federico II University Hospital, Naples, Italy
- Neurosciences Research Centre, Molecular and Clinical Sciences Research Institute, St George's University of London, London, UK
| | - Daniele Belvisi
- Department of Human Neurosciences, University of Rome La Sapienza, Rome, Italy
- IRCCS Neuromed Institute, Pozzilli, Italy
| | - Giovanni Fabbrini
- Department of Human Neurosciences, University of Rome La Sapienza, Rome, Italy
- IRCCS Neuromed Institute, Pozzilli, Italy
| | - Gina Ferrazzano
- Department of Human Neurosciences, University of Rome La Sapienza, Rome, Italy
| | - Carmen Terranova
- Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | - Paolo Girlanda
- Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | - Giovanni Majorana
- Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | - Vincenzo Rizzo
- Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | - Francesco Bono
- Center for Botulinum Toxin Therapy, Neurologic Unit, Mater Domini University Hospital, Catanzaro, Italy
| | - Giovanni Idone
- Center for Botulinum Toxin Therapy, Neurologic Unit, Mater Domini University Hospital, Catanzaro, Italy
| | - Vincenzo Laterza
- Center for Botulinum Toxin Therapy, Neurologic Unit, Mater Domini University Hospital, Catanzaro, Italy
| | - Laura Avanzino
- Department of Experimental Medicine, Section of Human Physiology, University of Genoa, Genoa, Italy
- IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | | | | | | | | | - Christian Lettieri
- Clinical Neurology Unit, Santa Maria della Misericordia University Hospital, Udine, Italy
| | - Sara Rinaldo
- Parkinson and Movement Disorders Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | | | - Luigi Polidori
- Neurology Unit, Presidio Ospedaliero San Filippo Neri, Rome, Italy
| | - Laura Bertolasi
- Neurologic Unit, Integrated University Hospital of Verona, Verona, Italy
| | - Maria Chiara Tozzi
- Neurologic Unit, Integrated University Hospital of Verona, Verona, Italy
| | - Roberto Erro
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, Salerno, Italy
| | - Paolo Barone
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, Salerno, Italy
| | | | - Roberto Ceravolo
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | | | | | | | - Carlo Alberto Artusi
- Department of Neuroscience "Rita Levi Montalcini", University of Turin, Turin, Italy
| | - Maurizio Zibetti
- Department of Neuroscience "Rita Levi Montalcini", University of Turin, Turin, Italy
| | | | - Anna Rita Bentivoglio
- Movement Disorders Unit, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | | | - Luca Magistrelli
- Department of Translational Medicine, Movement Disorders Centre, Neurology Unit, University of Eastern Piedmont, Novara, Italy
| | - Giovanni Cossu
- Neurology Service and Stroke Unit, Department of Neuroscience, AO Brotzu, Cagliari, Italy
| | - Alberto Albanese
- Department of Neurology, IRCCS Humanitas Research Hospital, Rozzano, Italy
| | | | - Tommaso Schirinzi
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | | | - Luca Maderna
- Department of Neurology and Laboratory of Neuroscience, IRCCS Istituto Auxologico Italiano, Milan, Italy
| | - Roberto Eleopra
- Parkinson and Movement Disorders Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Antonio Pisani
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
| | | | - Marcello Romano
- Neurology Unit, Villa Sofia Cervello United Hospitals, Palermo, Italy
| | - Marina Rizzo
- Neurology Unit, Villa Sofia Cervello United Hospitals, Palermo, Italy
| | - Alfredo Berardelli
- Department of Human Neurosciences, University of Rome La Sapienza, Rome, Italy
- IRCCS Neuromed Institute, Pozzilli, Italy
| | - Giovanni Defazio
- Department of Translational Biomedicine and Neuroscience, University of Bari Aldo Moro, Bari, Italy
| |
Collapse
|
3
|
Feng L, Sharma A, Wang Z, Muresanu DF, Tian ZR, Lafuente JV, Buzoianu AD, Nozari A, Wiklund L, Sharma HS. Co-administration of Nanowired DL-3-n-Butylphthalide (DL-NBP) Together with Mesenchymal Stem Cells, Monoclonal Antibodies to Alpha Synuclein and TDP-43 (TAR DNA-Binding Protein 43) Enhance Superior Neuroprotection in Parkinson's Disease Following Concussive Head Injury. ADVANCES IN NEUROBIOLOGY 2023; 32:97-138. [PMID: 37480460 DOI: 10.1007/978-3-031-32997-5_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/24/2023]
Abstract
dl-3-n-butylphthalide (dl-NBP) is one of the potent antioxidant compounds that induces profound neuroprotection in stroke and traumatic brain injury. Our previous studies show that dl-NBP reduces brain pathology in Parkinson's disease (PD) following its nanowired delivery together with mesenchymal stem cells (MSCs) exacerbated by concussive head injury (CHI). CHI alone elevates alpha synuclein (ASNC) in brain or cerebrospinal fluid (CSF) associated with elevated TAR DNA-binding protein 43 (TDP-43). TDP-43 protein is also responsible for the pathologies of PD. Thus, it is likely that exacerbation of brain pathology in PD following brain injury may be thwarted using nanowired delivery of monoclonal antibodies (mAb) to ASNC and/or TDP-43. In this review, the co-administration of dl-NBP with MSCs and mAb to ASNC and/or TDP-43 using nanowired delivery in PD and CHI-induced brain pathology is discussed based on our own investigations. Our observations show that co-administration of TiO2 nanowired dl-NBP with MSCs and mAb to ASNC with TDP-43 induced superior neuroprotection in CHI induced exacerbation of brain pathology in PD, not reported earlier.
Collapse
Affiliation(s)
- Lianyuan Feng
- Department of Neurology, Bethune International Peace Hospital, Zhongshan Road (West), Shijiazhuang, Hebei Province, China
| | - Aruna Sharma
- International Experimental Central Nervous System Injury & Repair (IECNSIR), Department of Surgical Sciences, Anesthesiology & Intensive Care Medicine, Uppsala University Hospital, Uppsala University, Uppsala, Sweden
| | - Zhenguo Wang
- Shijiazhuang Pharma Group NBP Pharmaceutical Co., Ltd., Shijiazhuang, Hebei Province, China
| | - Dafin F Muresanu
- Department of Clinical Neurosciences, University of Medicine & Pharmacy, Cluj-Napoca, Romania
- "RoNeuro" Institute for Neurological Research and Diagnostic, Cluj-Napoca, Romania
| | - Z Ryan Tian
- Department of Chemistry & Biochemistry, University of Arkansas, Fayetteville, AR, USA
| | - José Vicente Lafuente
- LaNCE, Department of Neuroscience, University of the Basque Country (UPV/EHU), Leioa, Bizkaia, Spain
| | - Anca D Buzoianu
- Department of Clinical Pharmacology and Toxicology, "Iuliu Hatieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Ala Nozari
- Anesthesiology & Intensive Care, Chobanian & Avedisian School of Medicine, Boston University, Boston, MA, USA
| | - Lars Wiklund
- International Experimental Central Nervous System Injury & Repair (IECNSIR), Department of Surgical Sciences, Anesthesiology & Intensive Care Medicine, Uppsala University Hospital, Uppsala University, Uppsala, Sweden
| | - Hari Shanker Sharma
- International Experimental Central Nervous System Injury & Repair (IECNSIR), Department of Surgical Sciences, Anesthesiology & Intensive Care Medicine, Uppsala University Hospital, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
4
|
Almeida ZL, Brito RMM. Amyloid Disassembly: What Can We Learn from Chaperones? Biomedicines 2022; 10:3276. [PMID: 36552032 PMCID: PMC9776232 DOI: 10.3390/biomedicines10123276] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 09/14/2022] [Accepted: 09/26/2022] [Indexed: 12/23/2022] Open
Abstract
Protein aggregation and subsequent accumulation of insoluble amyloid fibrils with cross-β structure is an intrinsic characteristic of amyloid diseases, i.e., amyloidoses. Amyloid formation involves a series of on-pathway and off-pathway protein aggregation events, leading to mature insoluble fibrils that eventually accumulate in multiple tissues. In this cascade of events, soluble oligomeric species are formed, which are among the most cytotoxic molecular entities along the amyloid cascade. The direct or indirect action of these amyloid soluble oligomers and amyloid protofibrils and fibrils in several tissues and organs lead to cell death in some cases and organ disfunction in general. There are dozens of different proteins and peptides causing multiple amyloid pathologies, chief among them Alzheimer's, Parkinson's, Huntington's, and several other neurodegenerative diseases. Amyloid fibril disassembly is among the disease-modifying therapeutic strategies being pursued to overcome amyloid pathologies. The clearance of preformed amyloids and consequently the arresting of the progression of organ deterioration may increase patient survival and quality of life. In this review, we compiled from the literature many examples of chemical and biochemical agents able to disaggregate preformed amyloids, which have been classified as molecular chaperones, chemical chaperones, and pharmacological chaperones. We focused on their mode of action, chemical structure, interactions with the fibrillar structures, morphology and toxicity of the disaggregation products, and the potential use of disaggregation agents as a treatment option in amyloidosis.
Collapse
Affiliation(s)
| | - Rui M. M. Brito
- Chemistry Department and Coimbra Chemistry Centre—Institute of Molecular Sciences (CQC-IMS), University of Coimbra, 3004-535 Coimbra, Portugal
| |
Collapse
|
5
|
Mehanna R, Smilowska K, Fleisher J, Post B, Hatano T, Pimentel Piemonte ME, Kumar KR, McConvey V, Zhang B, Tan E, Savica R. Age Cutoff for Early-Onset Parkinson's Disease: Recommendations from the International Parkinson and Movement Disorder Society Task Force on Early Onset Parkinson's Disease. Mov Disord Clin Pract 2022; 9:869-878. [PMID: 36247919 PMCID: PMC9547138 DOI: 10.1002/mdc3.13523] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 07/13/2022] [Accepted: 07/15/2022] [Indexed: 11/09/2022] Open
Abstract
Background Early-onset Parkinson's disease (EOPD)/young-onset Parkinson's disease (YOPD) is defined as Parkinson's disease (PD) with an age at onset (AAO) after age 21 years but before the usual AAO for PD. Consensus is lacking, and the reported maximal age for EOPD/YOPD has varied from 40 to 60 years, leading to a lack of uniformity in published studies and difficulty in harmonization of data. EOPD and YOPD have both been used in the literature, somewhat interchangeably. Objective To define the nomenclature and AAO cutoff for EOPD/YOPD. Methods An extensive review of the literature and task force meetings were conducted. Conclusions were reached by consensus. Results First, the literature has seen a shift from the use of YOPD toward EOPD. This seems motivated by an attempt to avoid age-related stigmatization of patients. Second, in defining EOPD, 56% of the countries use 50 or 51 years as the cutoff age. Third, the majority of international genetic studies in PD use an age cutoff of younger than 50 years to define EOPD. Fourth, many studies suggest that changes in the estrogen level can affect the predisposition to develop PD, making the average age at menopause of 50 years an important factor to consider when defining EOPD. Fifth, considering the differential impact of the AAO of PD on professional and social life, using 50 years as the upper cutoff for the definition of EOPD seems reasonable. Conclusions This task force recommends the use of EOPD rather than YOPD. It defines EOPD as PD with AAO after 21 years but before 50 years.
Collapse
Affiliation(s)
- Raja Mehanna
- UTMove, Departement of NeurologyUniversity of Texas Health Science Center at HoustonHoustonTexasUSA
| | - Katarzyna Smilowska
- Department of NeurologySilesian Center of NeurologyKatowicePoland
- Department of Neurology5th Regional HospitalSosnowiecPoland
| | - Jori Fleisher
- Department of Neurological SciencesRush University School of MedicineChicagoIllinoisUSA
| | - Bart Post
- Department of NeurologyRadboudumcNijmegenThe Netherlands
| | - Taku Hatano
- Department of NeurologyJuntendo University School of MedicineTokyoJapan
| | - Maria Elisa Pimentel Piemonte
- Physical Therapy, Speech Therapy, and Occupational TherapyDepartment, Medical School, University of São PauloSão PauloBrazil
| | - Kishore Raj Kumar
- Molecular Medicine Laboratory and Department of Neurology, Concord Repatriation General Hospital, Faculty of Medicine and HealthUniversity of SydneySydneyNew South WalesAustralia
- Kinghorn Centre for Clinical GenomicsGarvan Institute of Medical ResearchDarlinghurstNew South WalesAustralia
| | | | - Baorong Zhang
- Department of NeurologyThe Second Affiliated HospitalHangzhouChina
| | - Eng‐King Tan
- Department of NeurologyNational Neuroscience InstituteSingaporeSingapore
| | | |
Collapse
|
6
|
Arabia G, De Martino A, Moro E. Sex and gender differences in movement disorders: Parkinson's disease, essential tremor, dystonia and chorea. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2022; 164:101-128. [PMID: 36038202 DOI: 10.1016/bs.irn.2022.06.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Sex and gender-based differences in epidemiology, clinical features and therapeutical responses are emerging in several movement disorders, even though they are still not widely recognized. In this chapter, we summarize the most relevant evidence concerning these differences in Parkinson's disease, essential tremor, dystonia and chorea. Indeed, both sex-related biological (hormonal levels fluctuations) and gender-related variables (socio-cultural and environmental factors) may differently impact symptoms manifestation and severity, phenotype and disease progression of movement disorders on men and women. Moreover, sex differences in treatment responses should be taken into account in any therapeutical planning. Physicians need to be aware of these major differences between men and women that will eventually have a major impact on better tailoring prevention, treatment, or even delaying progression of the most common movement disorders.
Collapse
Affiliation(s)
- Gennarina Arabia
- Magna Graecia University, Movement Disorders Center, Neurology Unit, Catanzaro, Italy.
| | - Antonio De Martino
- Magna Graecia University, Movement Disorders Center, Neurology Unit, Catanzaro, Italy
| | - Elena Moro
- Grenoble Alpes University, CHU of Grenoble, Division of Neurology, Grenoble Institute of Neurosciences, Grenoble, France
| |
Collapse
|
7
|
Radojević B, Dragašević-Mišković NT, Marjanović A, Branković M, Milovanović A, Petrović I, Svetel M, Jančić I, Stanisavljević D, Milićević O, Savić MM, Kostić VS. The correlation between genetic factors and freezing of gait in patients with Parkinson's disease. Parkinsonism Relat Disord 2022; 98:7-12. [PMID: 35398727 DOI: 10.1016/j.parkreldis.2022.03.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 03/20/2022] [Accepted: 03/30/2022] [Indexed: 10/18/2022]
Abstract
BACKGROUND Clinical-related risk factors to freezing of gait (FOG) in Parkinson's disease (PD) have been identified. Still, the influence of genetic variations on the FOG occurrence has been poorly studied thus far. AIM We aimed to evaluate the association of six selected polymorphisms of DRD2, ANKK1, and COMT genes with the FOG occurrence and explore the influence of ANNK1/DRD2 haplotypes on the onset of FOG in the group of PD patients. METHOD PD patients (n = 234), treated with levodopa for at least two years, were genotyped for the rs4680 in COMT, rs6277, rs1076560, and rs2283265 in DRD2, and rs1800497 and rs2734849 polymorphisms in ANKK1 genes. FOG was evaluated by posing a direct question. In addition, a comprehensive set of clinical scales was applied to all patients. RESULTS FOG occurred in 132 (56.4%) PD patients in our cohort. Freezers were younger at PD onset, had longer disease duration, used higher levodopa daily doses and dopaminergic agents, and had higher motor and non-motor scales scores than non-freezers. FOG was more frequent among AA rs4680 COMT carriers than AG and GG rs4680 COMT carriers. Independent predictors of FOG were: disease duration of more than ten years, levodopa daily dose higher than 500 mg/day, motor status, and COMT AA genotype. AGGAA and GGAAA haplotypes were revealed as protective and vulnerability factors for FOG occurrence. CONCLUSION In addition to previously identified disease- and therapy-related risk factors, our results suggested a possible contribution of dopamine-related genes to the FOG occurrence.
Collapse
Affiliation(s)
| | | | - Ana Marjanović
- Clinic of Neurology, Faculty of Medicine, University of Belgrade, Serbia
| | - Marija Branković
- Clinic of Neurology, Faculty of Medicine, University of Belgrade, Serbia
| | - Andona Milovanović
- Clinic of Neurology, Faculty of Medicine, University of Belgrade, Serbia
| | - Igor Petrović
- Clinic of Neurology, Faculty of Medicine, University of Belgrade, Serbia
| | - Marina Svetel
- Clinic of Neurology, Faculty of Medicine, University of Belgrade, Serbia
| | - Ivan Jančić
- Faculty of Pharmacy, University of Belgrade, Serbia
| | - Dejana Stanisavljević
- Institute Medical Statistics and Informatics, Faculty of Medicine, University of Belgrade, Serbia
| | - Ognjen Milićević
- Institute Medical Statistics and Informatics, Faculty of Medicine, University of Belgrade, Serbia
| | | | - Vladimir S Kostić
- Clinic of Neurology, Faculty of Medicine, University of Belgrade, Serbia
| |
Collapse
|
8
|
Almey A, Milner TA, Brake WG. Estrogen receptors observed at extranuclear neuronal sites and in glia in the nucleus accumbens core and shell of the female rat: Evidence for localization to catecholaminergic and GABAergic neurons. J Comp Neurol 2022; 530:2056-2072. [PMID: 35397175 PMCID: PMC9167786 DOI: 10.1002/cne.25320] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 02/17/2022] [Accepted: 03/07/2022] [Indexed: 11/08/2022]
Abstract
Estrogens affect dopamine-dependent diseases/behavior and have rapid effects on dopamine release and receptor availability in the nucleus accumbens (NAc). Low levels of nuclear estrogen receptor (ER) α and ERβ are seen in the NAc, which cannot account for the rapid effects of estrogens in this region. G-protein coupled ER 1 (GPER1) is observed at low levels in the NAc shell, which also likely does not account for the array of estrogens' effects in this region. Prior studies demonstrated membrane-associated ERs in the dorsal striatum; these experiments extend those findings to the NAc core and shell. Single- and dual-immunolabeling electron microscopy determined whether ERα, ERβ, and GPER1 are at extranuclear sites in the NAc core and shell and whether ERα and GPER1 were localized to catecholaminergic or γ-aminobutyric acid-ergic (GABAergic) neurons. All three ERs are observed, almost exclusively, at extranuclear sites in the NAc, and similarly distributed in the core and shell. ERα, ERβ, and GPER1 are primarily in axons and axon terminals suggesting that estrogens affect transmission in the NAc via presynaptic mechanisms. About 10% of these receptors are found on glia. A small proportion of ERα and GPER1 are localized to catecholaminergic terminals, suggesting that binding at these ERs alters release of catecholamines, including dopamine. A larger proportion of ERα and GPER1 are localized to GABAergic dendrites and terminals, suggesting that estrogens alter GABAergic transmission to indirectly affect dopamine transmission in the NAc. Thus, the localization of ERs could account for the rapid effects of estrogen in the NAc.
Collapse
Affiliation(s)
- Anne Almey
- Department of Psychology, Centre for Studies in Behavioral Neurobiology (CSBN), Concordia University, Montreal, Canada
| | - Teresa A Milner
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York City, New York, USA.,Harold and Margaret Milliken Hatch Laboratory of Neuroendocrinology, The Rockefeller University, New York City, New York, USA
| | - Wayne G Brake
- Department of Psychology, Centre for Studies in Behavioral Neurobiology (CSBN), Concordia University, Montreal, Canada
| |
Collapse
|
9
|
From Menopause to Neurodegeneration-Molecular Basis and Potential Therapy. Int J Mol Sci 2021; 22:ijms22168654. [PMID: 34445359 PMCID: PMC8395405 DOI: 10.3390/ijms22168654] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 08/09/2021] [Accepted: 08/09/2021] [Indexed: 12/12/2022] Open
Abstract
The impacts of menopause on neurodegenerative diseases, especially the changes in steroid hormones, have been well described in cell models, animal models, and humans. However, the therapeutic effects of hormone replacement therapy on postmenopausal women with neurodegenerative diseases remain controversial. The steroid hormones, steroid hormone receptors, and downstream signal pathways in the brain change with aging and contribute to disease progression. Estrogen and progesterone are two steroid hormones which decline in circulation and the brain during menopause. Insulin-like growth factor 1 (IGF-1), which plays an import role in neuroprotection, is rapidly decreased in serum after menopause. Here, we summarize the actions of estrogen, progesterone, and IGF-1 and their signaling pathways in the brain. Since the incidence of Alzheimer’s disease (AD) is higher in women than in men, the associations of steroid hormone changes and AD are emphasized. The signaling pathways and cellular mechanisms for how steroid hormones and IGF-1 provide neuroprotection are also addressed. Finally, the molecular mechanisms of potential estrogen modulation on N-methyl-d-aspartic acid receptors (NMDARs) are also addressed. We provide the viewpoint of why hormone therapy has inconclusive results based on signaling pathways considering their complex response to aging and hormone treatments. Nonetheless, while diagnosable AD may not be treatable by hormone therapy, its preceding stage of mild cognitive impairment may very well be treatable by hormone therapy.
Collapse
|
10
|
Piscopo P, Bellenghi M, Manzini V, Crestini A, Pontecorvi G, Corbo M, Ortona E, Carè A, Confaloni A. A Sex Perspective in Neurodegenerative Diseases: microRNAs as Possible Peripheral Biomarkers. Int J Mol Sci 2021; 22:ijms22094423. [PMID: 33922607 PMCID: PMC8122918 DOI: 10.3390/ijms22094423] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 04/20/2021] [Accepted: 04/20/2021] [Indexed: 12/11/2022] Open
Abstract
Sex is a significant variable in the prevalence and incidence of neurological disorders. Sex differences exist in neurodegenerative disorders (NDs), where sex dimorphisms play important roles in the development and progression of Alzheimer’s disease, Parkinson’s disease, and amyotrophic lateral sclerosis. In the last few years, some sex specific biomarkers for the identification of NDs have been described and recent studies have suggested that microRNA (miRNA) could be included among these, as influenced by the hormonal and genetic background. Failing to consider the possible differences between males and females in miRNA evaluation could introduce a sex bias in studies by not considering some of these sex-related biomarkers. In this review, we recapitulate what is known about the sex-specific differences in peripheral miRNA levels in neurodegenerative diseases. Several studies have reported sex-linked disparities, and from the literature analysis miR-206 particularly has been shown to have a sex-specific involvement. Hopefully, in the near future, patient stratification will provide important additional clues in diagnosis, prognosis, and tailoring of the best therapeutic approaches for each patient. Sex-specific biomarkers, such as miRNAs, could represent a useful tool for characterizing subgroups of patients.
Collapse
Affiliation(s)
- Paola Piscopo
- Department of Neuroscience, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy; (V.M.); (A.C.); (A.C.)
- Correspondence: ; Tel.: +39-064-990-3538
| | - Maria Bellenghi
- Center of Gender Specific Medicine, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy; (M.B.); (G.P.); (E.O.); (A.C.)
| | - Valeria Manzini
- Department of Neuroscience, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy; (V.M.); (A.C.); (A.C.)
| | - Alessio Crestini
- Department of Neuroscience, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy; (V.M.); (A.C.); (A.C.)
| | - Giada Pontecorvi
- Center of Gender Specific Medicine, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy; (M.B.); (G.P.); (E.O.); (A.C.)
| | - Massimo Corbo
- Department of Neurorehabilitation Sciences, Casa Cura Policlinico, Via Dezza 48, 20144 Milano, Italy;
| | - Elena Ortona
- Center of Gender Specific Medicine, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy; (M.B.); (G.P.); (E.O.); (A.C.)
| | - Alessandra Carè
- Center of Gender Specific Medicine, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy; (M.B.); (G.P.); (E.O.); (A.C.)
| | - Annamaria Confaloni
- Department of Neuroscience, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy; (V.M.); (A.C.); (A.C.)
| |
Collapse
|
11
|
Avram CM, Brumbach BH, Hiller AL. A Report of Tamoxifen and Parkinson's Disease in a US Population and a Review of the Literature. Mov Disord 2021; 36:1238-1242. [PMID: 33449420 DOI: 10.1002/mds.28471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Revised: 11/08/2020] [Accepted: 12/09/2020] [Indexed: 11/07/2022] Open
Abstract
BACKGROUND Tamoxifen, a selective estrogen receptor modulator, has been shown to variably affect Parkinson's disease (PD) risk. OBJECTIVE The aim of this study was to review epidemiological literature and evaluate the rate of PD in women with breast cancer with tamoxifen exposure in a US population. METHODS A literature search was conducted to identify relevant studies. We performed a retrospective cohort analysis using the Nurses' Health Study Version One to report descriptive statistics. RESULTS Most studies suggest there may be a time-dependent effect of tamoxifen on PD risk, with the risk increasing with time from exposure. However, rates of PD in persons exposed to tamoxifen overall appear to be low. In our cohort, PD was evident in 6.2 per 1,000 of those with tamoxifen use and 3.6 per 1,000 of those without tamoxifen use. Time from breast cancer to PD diagnosis was 9.7 years among women with tamoxifen exposure and 11.7 among women without. CONCLUSIONS Tamoxifen may be associated with an increased risk for PD. Further research is needed to elucidate the role of estrogen and selective estrogen antagonism in PD. © 2021 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Carmen M Avram
- Duke University Medical Center, Durham, North Carolina, USA
| | | | - Amie L Hiller
- Oregon Health and Science University, Portland, Oregon, USA
| |
Collapse
|
12
|
Ozdilek B, Demircan B. Serum microRNA expression levels in Turkish patients with Parkinson's disease. Int J Neurosci 2020; 131:1181-1189. [PMID: 32546033 DOI: 10.1080/00207454.2020.1784165] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Objectives: To determine the serum expression levels of seven candidate microRNAs (miRNA); miR-19a, miR-19b, miR-29a, miR-29c, miR-181, miR-195 and miR-221 in Turkish patients with Parkinson's disease (PD) and explored their potential role in the diagnosis of PD. We further described the relationship between these miRNAs with the clinical findings and treatment of PD.Materials and methods: The study included 51 PD patients and 20 healthy controls. The clinical severity of disease was assessed using the Hoehn Yahr staging scale and the Unified Parkinson's Disease Rating Scale (UPDRS). Venous blood samples were taken after fasting for 12 h, then centrifuged. Obtained serum samples were stored until analysis of miRNA. In the laboratory, expression levels of these miRNAs were analyzed using a real-time PCR instrument. Receiver-operating characteristic analysis and area-under the-curve (AUC) was used to evaluate these miRNA levels as potential diagnostic biomarkers for PD.Results: miR-29c expression levels were increased significantly for PD patients compared to healthy controls. There were no significant differences in levels of other miRNAs between PD patients and controls. The AUC of miR-29c was 0.689. The sensitivity and specificity of this diagnostic test was 54.9% and 80.0%, respectively. miR-195 level was found to have a significant positive correlation only with age. Significant negative correlation was found between miR-29a level and UPDRS total score. miR-19b was found higher in ropinirole drug used group than that of pramipexole group.Conclusion: This study suggests that serum miR-29c expression level might be potential biomarker in the diagnosis of Turkish Parkinson patients.
Collapse
Affiliation(s)
- Betul Ozdilek
- Department of Neurology, Faculty of Medicine, Istanbul Medeniyet University, Istanbul, Turkey.,Clinic of Neurology, Ministry of Health Goztepe Training and Research Hospital, Istanbul, Turkey
| | - Berna Demircan
- Department of Medical Biology, Faculty of Medicine, Istanbul Medeniyet University, Istanbul, Turkey
| |
Collapse
|
13
|
Vegeto E, Villa A, Della Torre S, Crippa V, Rusmini P, Cristofani R, Galbiati M, Maggi A, Poletti A. The Role of Sex and Sex Hormones in Neurodegenerative Diseases. Endocr Rev 2020; 41:5572525. [PMID: 31544208 PMCID: PMC7156855 DOI: 10.1210/endrev/bnz005] [Citation(s) in RCA: 130] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Accepted: 09/20/2019] [Indexed: 12/11/2022]
Abstract
Neurodegenerative diseases (NDs) are a wide class of disorders of the central nervous system (CNS) with unknown etiology. Several factors were hypothesized to be involved in the pathogenesis of these diseases, including genetic and environmental factors. Many of these diseases show a sex prevalence and sex steroids were shown to have a role in the progression of specific forms of neurodegeneration. Estrogens were reported to be neuroprotective through their action on cognate nuclear and membrane receptors, while adverse effects of male hormones have been described on neuronal cells, although some data also suggest neuroprotective activities. The response of the CNS to sex steroids is a complex and integrated process that depends on (i) the type and amount of the cognate steroid receptor and (ii) the target cell type-either neurons, glia, or microglia. Moreover, the levels of sex steroids in the CNS fluctuate due to gonadal activities and to local metabolism and synthesis. Importantly, biochemical processes involved in the pathogenesis of NDs are increasingly being recognized as different between the two sexes and as influenced by sex steroids. The aim of this review is to present current state-of-the-art understanding on the potential role of sex steroids and their receptors on the onset and progression of major neurodegenerative disorders, namely, Alzheimer's disease, Parkinson's diseases, amyotrophic lateral sclerosis, and the peculiar motoneuron disease spinal and bulbar muscular atrophy, in which hormonal therapy is potentially useful as disease modifier.
Collapse
Affiliation(s)
- Elisabetta Vegeto
- Center of Excellence on Neurodegenerative Diseases, Università degli Studi di Milano, Italy.,Dipartimento di Scienze Farmaceutiche (DiSFarm), Università degli Studi di Milano, Italy
| | - Alessandro Villa
- Center of Excellence on Neurodegenerative Diseases, Università degli Studi di Milano, Italy.,Dipartimento di Scienze della Salute (DiSS), Università degli Studi di Milano, Italy
| | - Sara Della Torre
- Center of Excellence on Neurodegenerative Diseases, Università degli Studi di Milano, Italy.,Dipartimento di Scienze Farmaceutiche (DiSFarm), Università degli Studi di Milano, Italy
| | - Valeria Crippa
- Center of Excellence on Neurodegenerative Diseases, Università degli Studi di Milano, Italy.,Dipartimento di Eccellenza di Scienze Farmacologiche e Biomolecolari (DiSFeB), Università degli Studi di Milano, Italy
| | - Paola Rusmini
- Center of Excellence on Neurodegenerative Diseases, Università degli Studi di Milano, Italy.,Dipartimento di Eccellenza di Scienze Farmacologiche e Biomolecolari (DiSFeB), Università degli Studi di Milano, Italy
| | - Riccardo Cristofani
- Center of Excellence on Neurodegenerative Diseases, Università degli Studi di Milano, Italy.,Dipartimento di Eccellenza di Scienze Farmacologiche e Biomolecolari (DiSFeB), Università degli Studi di Milano, Italy
| | - Mariarita Galbiati
- Center of Excellence on Neurodegenerative Diseases, Università degli Studi di Milano, Italy.,Dipartimento di Eccellenza di Scienze Farmacologiche e Biomolecolari (DiSFeB), Università degli Studi di Milano, Italy
| | - Adriana Maggi
- Center of Excellence on Neurodegenerative Diseases, Università degli Studi di Milano, Italy.,Dipartimento di Scienze Farmaceutiche (DiSFarm), Università degli Studi di Milano, Italy
| | - Angelo Poletti
- Center of Excellence on Neurodegenerative Diseases, Università degli Studi di Milano, Italy.,Dipartimento di Eccellenza di Scienze Farmacologiche e Biomolecolari (DiSFeB), Università degli Studi di Milano, Italy
| |
Collapse
|
14
|
Presence of Androgen Receptor Variant in Neuronal Lipid Rafts. eNeuro 2017; 4:eN-NWR-0109-17. [PMID: 28856243 PMCID: PMC5575139 DOI: 10.1523/eneuro.0109-17.2017] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Revised: 08/03/2017] [Accepted: 08/14/2017] [Indexed: 11/21/2022] Open
Abstract
Fast, nongenomic androgen actions have been described in various cell types, including neurons. However, the receptor mediating this cell membrane–initiated rapid signaling remains unknown. This study found a putative androgen receptor splice variant in a dopaminergic N27 cell line and in several brain regions (substantia nigra pars compacta, entorhinal cortex, and hippocampus) from gonadally intact and gonadectomized (young and middle-aged) male rats. This putative splice variant protein has a molecular weight of 45 kDa and lacks an N-terminal domain, indicating it is homologous to the human AR45 splice variant. Interestingly, AR45 was highly expressed in all brain regions examined. In dopaminergic neurons, AR45 is localized to plasma membrane lipid rafts, a microdomain involved in cellular signaling. Further, AR45 protein interacts with membrane-associated G proteins Gαq and Gαo. Neither age nor hormone levels altered AR45 expression in dopaminergic neurons. These results provide the first evidence of AR45 protein expression in the brain, specifically plasma membrane lipid rafts. AR45 presence in lipid rafts indicates that it may function as a membrane androgen receptor to mediate fast, nongenomic androgen actions.
Collapse
|
15
|
Siani F, Greco R, Levandis G, Ghezzi C, Daviddi F, Demartini C, Vegeto E, Fuzzati-Armentero MT, Blandini F. Influence of Estrogen Modulation on Glia Activation in a Murine Model of Parkinson's Disease. Front Neurosci 2017; 11:306. [PMID: 28620274 PMCID: PMC5449471 DOI: 10.3389/fnins.2017.00306] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Accepted: 05/16/2017] [Indexed: 12/15/2022] Open
Abstract
Epidemiological data suggest a sexual dimorphism in Parkinson disease (PD), with women showing lower risk of developing PD. Vulnerability of the nigrostriatal pathway may be influenced by exposure to estrogenic stimulation throughout fertile life. To further address this issue, we analyzed the progression of nigrostriatal damage, microglia and astrocyte activation and microglia polarization triggered by intrastriatal injection of dopaminergic neurotoxin 6-hydroxydopamine (6-OHDA) in male, female and ovariectomized (OVX) mice, as well as in OVX mice supplemented with 17βestradiol (OVX+E). Animals were sacrificed at different time points following 6-OHDA injection and brain sections containing striatum and substantia nigra pars compacta (SNc) underwent immunohistochemistry for tyrosine hydroxylase (TH) (dopaminergic marker), immunofluorescence for IBA1 and GFAP (markers of microglia and astrocyte activation, respectively) and triple immunoflorescent to identify polarization of microglia toward the cytotoxic M1 (DAPI/IBA1/TNFα) or cytoprotective M2 (DAPI/IBA1/CD206) phenotype. SNc damage induced by 6-OHDA was significantly higher in OVX mice, as compared to all other experimental groups, at 7 and 14 days after surgery. Astrocyte activation was higher in OVX mice with respect the other experimental groups, at all time points. Microglial activation in the SNc was detected at earlier time points in male, female and OVX+E, while in OVX mice was detected at all time-points. Microglia polarization toward the M2, but not the M1, phenotype was detected in female and OVX+E mice, while the M1 phenotype was observed only in male and OVX mice. Our results support the protective effects of estrogens against nigrostriatal degeneration, suggesting that such effects may be mediated by an interaction with microglia, which tend to polarize preferentially toward an M2, cytoprotective phenotype in the presence of intense estrogenic stimulation.
Collapse
Affiliation(s)
- Francesca Siani
- Laboratory of Functional Neurochemistry, Center for Research in Neurodegenerative Diseases, C. Mondino National Neurological InstitutePavia, Italy
| | - Rosaria Greco
- Laboratory of Neurophysiology of Integrative Autonomic Systems, Headache Science Center, C. Mondino National Neurological InstitutePavia, Italy
| | - Giovanna Levandis
- Laboratory of Functional Neurochemistry, Center for Research in Neurodegenerative Diseases, C. Mondino National Neurological InstitutePavia, Italy
| | - Cristina Ghezzi
- Laboratory of Functional Neurochemistry, Center for Research in Neurodegenerative Diseases, C. Mondino National Neurological InstitutePavia, Italy
| | - Francesca Daviddi
- Laboratory of Functional Neurochemistry, Center for Research in Neurodegenerative Diseases, C. Mondino National Neurological InstitutePavia, Italy
| | - Chiara Demartini
- Laboratory of Neurophysiology of Integrative Autonomic Systems, Headache Science Center, C. Mondino National Neurological InstitutePavia, Italy
| | - Elisabetta Vegeto
- Department of Pharmacological and Biomolecular Sciences, Center of Excellence on Neurodegenerative Diseases, University of MilanMilan, Italy
| | - Marie-Thérèse Fuzzati-Armentero
- Laboratory of Functional Neurochemistry, Center for Research in Neurodegenerative Diseases, C. Mondino National Neurological InstitutePavia, Italy
| | - Fabio Blandini
- Laboratory of Functional Neurochemistry, Center for Research in Neurodegenerative Diseases, C. Mondino National Neurological InstitutePavia, Italy
| |
Collapse
|
16
|
Expression of aromatase and estrogen receptors in lumbar motoneurons of mice. Neurosci Lett 2017; 653:7-11. [PMID: 28501695 DOI: 10.1016/j.neulet.2017.05.017] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Revised: 05/08/2017] [Accepted: 05/09/2017] [Indexed: 12/12/2022]
Abstract
Estrogen exerts protective roles in amyotrophic lateral sclerosis (ALS). However, the expression of aromatase (ARO) and estrogen receptors (ERs) in the motoneurons of spinal cord, has not yet been elucidated. By immunohistochemistry, we found that ARO and ERs were present in the ventral horn of adult mice lumbar spinal cord, and colocalized with SMI-32, a motoneuron specific marker. Within motoneurons, we observed that ARO is detected primarily in the cytoplasm, with fewer ARO in the nucleus; ERα and ERβ mainly localized in the nucleus with less in the cytoplasm; while GPR30 is located in soma and processes. In conclusion, we found that ERs and ARO are expressed in the motoneurons of lumbar spinal cord in adult mice. These findings suggest that estrogen may be useful as a promising therapeutic agent for prevention of damage and improvement of locomotor function in ALS.
Collapse
|
17
|
Labandeira-Garcia JL, Rodriguez-Perez AI, Valenzuela R, Costa-Besada MA, Guerra MJ. Menopause and Parkinson's disease. Interaction between estrogens and brain renin-angiotensin system in dopaminergic degeneration. Front Neuroendocrinol 2016; 43:44-59. [PMID: 27693730 DOI: 10.1016/j.yfrne.2016.09.003] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2016] [Revised: 09/26/2016] [Accepted: 09/27/2016] [Indexed: 02/07/2023]
Abstract
The neuroprotective effects of menopausal hormonal therapy in Parkinson's disease (PD) have not yet been clarified, and it is controversial whether there is a critical period for neuroprotection. Studies in animal models and clinical and epidemiological studies indicate that estrogens induce dopaminergic neuroprotection. Recent studies suggest that inhibition of the brain renin-angiotensin system (RAS) mediates the effects of estrogens in PD models. In the substantia nigra, ovariectomy induces a decrease in levels of estrogen receptor-α (ER-α) and increases angiotensin activity, NADPH-oxidase activity and expression of neuroinflammatory markers, which are regulated by estrogen replacement therapy. There is a critical period for the neuroprotective effect of estrogen replacement therapy, and local ER-α and RAS play a major role. Astrocytes play a major role in ER-α-induced regulation of local RAS, but neurons and microglia are also involved. Interestingly, treatment with angiotensin receptor antagonists after the critical period induced neuroprotection.
Collapse
Affiliation(s)
- Jose L Labandeira-Garcia
- Laboratory of Neuroanatomy and Experimental Neurology, Dept. of Morphological Sciences, CIMUS, University of Santiago de Compostela, Santiago de Compostela, Spain; Networking Research Center on Neurodegenerative Diseases (CIBERNED), Spain.
| | - Ana I Rodriguez-Perez
- Laboratory of Neuroanatomy and Experimental Neurology, Dept. of Morphological Sciences, CIMUS, University of Santiago de Compostela, Santiago de Compostela, Spain; Networking Research Center on Neurodegenerative Diseases (CIBERNED), Spain
| | - Rita Valenzuela
- Laboratory of Neuroanatomy and Experimental Neurology, Dept. of Morphological Sciences, CIMUS, University of Santiago de Compostela, Santiago de Compostela, Spain; Networking Research Center on Neurodegenerative Diseases (CIBERNED), Spain
| | - Maria A Costa-Besada
- Laboratory of Neuroanatomy and Experimental Neurology, Dept. of Morphological Sciences, CIMUS, University of Santiago de Compostela, Santiago de Compostela, Spain; Networking Research Center on Neurodegenerative Diseases (CIBERNED), Spain
| | - Maria J Guerra
- Laboratory of Neuroanatomy and Experimental Neurology, Dept. of Morphological Sciences, CIMUS, University of Santiago de Compostela, Santiago de Compostela, Spain; Networking Research Center on Neurodegenerative Diseases (CIBERNED), Spain
| |
Collapse
|
18
|
Abstract
Inflammatory activation of microglia is a hallmark of several disorders of the central nervous system. In addition to protecting the brain against inflammatory insults, microglia are neuroprotective and play a significant role in maintaining neuronal connectivity, but the prolongation of an inflammatory status may limit the beneficial functions of these immune cells. The finding that estrogen receptors are present in monocyte-derived cells and that estrogens prevent and control the inflammatory response raise the question of the role that this sex steroid plays in the manifestation and progression of pathologies that have a clear sex difference in prevalence, such as multiple sclerosis, Parkinson's disease, and Alzheimer's disease. The present review aims to provide a critical review of the current literature on the actions of estrogen in microglia and on the involvement of estrogen receptors in the manifestation of selected neurological disorders. This current understanding highlights a research area that should be expanded to identify appropriate replacement therapies to slow the progression of such diseases.
Collapse
Affiliation(s)
- Alessandro Villa
- Center of Excellence on Neurodegenerative Diseases and Department of Pharmacological and Biomolecular Sciences, University of Milan, 20133 Milan, Italy
| | - Elisabetta Vegeto
- Center of Excellence on Neurodegenerative Diseases and Department of Pharmacological and Biomolecular Sciences, University of Milan, 20133 Milan, Italy
| | - Angelo Poletti
- Center of Excellence on Neurodegenerative Diseases and Department of Pharmacological and Biomolecular Sciences, University of Milan, 20133 Milan, Italy
| | - Adriana Maggi
- Center of Excellence on Neurodegenerative Diseases and Department of Pharmacological and Biomolecular Sciences, University of Milan, 20133 Milan, Italy
| |
Collapse
|
19
|
Network and Pathway-Based Analyses of Genes Associated with Parkinson's Disease. Mol Neurobiol 2016; 54:4452-4465. [PMID: 27349437 DOI: 10.1007/s12035-016-9998-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Accepted: 06/14/2016] [Indexed: 01/08/2023]
Abstract
Parkinson's disease (PD) is a major neurodegenerative disease influenced by both genetic and environmental factors. Although previous studies have provided insights into the significant impacts of genetic factors on PD, the molecular mechanism underlying PD remains largely unclear. Under such situation, a comprehensive analysis focusing on biological function and interactions of PD-related genes will provide us valuable information to understand the pathogenesis of PD. In the current study, by reviewing the literatures deposited in PUBMED, we identified 242 genes genetically associated with PD, referred to as PD-related genes gene set (PDgset). Functional analysis revealed that biological processes and biochemical pathways related to neurodevelopment, metabolism, and immune system were enriched in PDgset. Then, pathway crosstalk analysis indicated that the enriched pathways could be grouped into two modules, with one module consisted of pathways mainly involved in neuronal signaling and another in immune response. Further, based on a global human interactome, we found that PDgset tended to have more moderate degree compared with cancer-related genes. Moreover, PD-specific molecular network was inferred using Steiner minimal tree algorithm and some potential related genes associated with PD were identified. In summary, by using network- and pathway-based methods to explore pathogenetic mechanism underlying PD, results from our work may have important implications for understanding the molecular mechanism underlying PD. Also, the framework proposed in our current work can be used to infer pathological molecular network and genes related to a specific disease.
Collapse
|
20
|
Agalliu I, San Luciano M, Mirelman A, Giladi N, Waro B, Aasly J, Inzelberg R, Hassin-Baer S, Friedman E, Ruiz-Martinez J, Marti-Masso JF, Orr-Urtreger A, Bressman S, Saunders-Pullman R. Higher frequency of certain cancers in LRRK2 G2019S mutation carriers with Parkinson disease: a pooled analysis. JAMA Neurol 2015; 72:58-65. [PMID: 25401981 DOI: 10.1001/jamaneurol.2014.1973] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
IMPORTANCE Patients with Parkinson disease (PD) who harbor LRRK2 G2019S mutations may have increased risks of nonskin cancers. However, the results have been inconsistent across studies. OBJECTIVES To analyze pooled data from 5 centers to further examine the association between LRRK2 G2019S mutation and cancer among patients with PD and to explore factors that could explain discrepancies. DESIGN, SETTING, AND PARTICIPANTS Clinical, demographic, and genotyping data as well as cancer outcomes were pooled from 1549 patients with PD recruited across 5 movement disorders clinics located in Europe, Israel, and the United States. Associations between LRRK2 G2019S mutation and the outcomes were examined using mixed-effects logistic regression models to estimate odds ratios (ORs) and 95% CIs. Models were adjusted for age and ethnicity (Ashkenazi Jewish vs others) as fixed effects and study center as a random effect. MAIN OUTCOMES AND MEASURES All cancers combined, nonskin cancers, smoking-related cancers, hormone-related cancers, and other types of cancer. RESULTS The overall prevalence of the LRRK2 G2019S mutation was 11.4% among all patients with PD. Mutation carriers were younger at PD diagnosis and more likely to be women (53.1%) and of Ashkenazi Jewish descent (76.8%) in comparison with individuals who were not mutation carriers. The LRRK2 G2019S mutation carriers had statistically significant increased risks for nonskin cancers (OR, 1.62; 95% CI, 1.04-2.52), hormone-related cancers (OR, 1.87; 95% CI, 1.07-3.26) and breast cancer (OR, 2.34; 95% CI, 1.05-5.22) in comparison with noncarriers. There were no associations with other cancers. There were no major statistically significant differences in the results when the data were stratified by Ashkenazi Jewish ethnicity; however, there was some evidence of heterogeneity across centers. CONCLUSIONS AND RELEVANCE This multinational study from 5 centers demonstrates that LRRK2 G2019S mutation carriers have an overall increased risk of cancer, especially for hormone-related cancer and breast cancer in women. Larger prospective cohorts or family-based studies investigating associations between LRRK2 mutations and cancer among patients with PD are warranted to better understand the underlying genetic susceptibility between PD and hormone-related cancers.
Collapse
Affiliation(s)
- Ilir Agalliu
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, New York
| | - Marta San Luciano
- Department of Neurology, School of Medicine, University of California, San Francisco
| | - Anat Mirelman
- Movement Disorders Unit, Department of Neurology, Tel-Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Nir Giladi
- Movement Disorders Unit, Department of Neurology, Tel-Aviv Sourasky Medical Center, Tel Aviv, Israel4Department of Neurology, Sackler School of Medicine, Tel-Aviv University, Tel Aviv, Israel
| | - Bjorg Waro
- Department of Neurology, St Olav's Hospital, Trondheim, Norway6Department of Neuroscience, Norwegian University of Science and Technology, Trondheim, Norway
| | - Jan Aasly
- Department of Neurology, St Olav's Hospital, Trondheim, Norway6Department of Neuroscience, Norwegian University of Science and Technology, Trondheim, Norway
| | - Rivka Inzelberg
- Department of Neurology, Sackler School of Medicine, Tel-Aviv University, Tel Aviv, Israel7Parkinson's Disease and Movement Disorders Clinic, Department of Neurology, Sheba Medical Center, Tel Hashomer, Ramat Gan, Israel
| | - Sharon Hassin-Baer
- Parkinson's Disease and Movement Disorders Clinic, Department of Neurology, Sheba Medical Center, Tel Hashomer, Ramat Gan, Israel8Department of Human Genetics, Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Eitan Friedman
- Parkinson's Disease and Movement Disorders Clinic, Department of Neurology, Sheba Medical Center, Tel Hashomer, Ramat Gan, Israel8Department of Human Genetics, Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Javier Ruiz-Martinez
- Biodonostia Research Institute, Neurosciences Area, University of the Basque Country, San Sebastian, Spain10Neurology Department, University Hospital Donostia, San Sebastian, Spain11Center for Biomedical Research in Neurodegenerative Diseases Network, San
| | - Jose Felix Marti-Masso
- Biodonostia Research Institute, Neurosciences Area, University of the Basque Country, San Sebastian, Spain10Neurology Department, University Hospital Donostia, San Sebastian, Spain11Center for Biomedical Research in Neurodegenerative Diseases Network, San
| | - Avi Orr-Urtreger
- Department of Human Genetics, Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, Israel12Genetic Institute, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Susan Bressman
- Department of Neurology, Mount Sinai Beth Israel Medical Center, New York, New York14Department of Neurology, Albert Einstein College of Medicine, Bronx, New York15Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Rachel Saunders-Pullman
- Department of Neurology, Mount Sinai Beth Israel Medical Center, New York, New York14Department of Neurology, Albert Einstein College of Medicine, Bronx, New York15Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, New York
| |
Collapse
|
21
|
Labandeira-Garcia JL, Rodríguez-Perez AI, Villar-Cheda B, Borrajo A, Dominguez-Meijide A, Guerra MJ. Rho Kinase and Dopaminergic Degeneration. Neuroscientist 2014; 21:616-29. [DOI: 10.1177/1073858414554954] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The small GTP-binding protein Rho plays an important role in several cellular functions. RhoA, which is a member of the Rho family, initiates cellular processes that act on its direct downstream effector Rho-associated kinase (ROCK). ROCK inhibition protects against dopaminergic cell death induced by dopaminergic neurotoxins. It has been suggested that ROCK inhibition activates neuroprotective survival cascades in dopaminergic neurons. Axon-stabilizing effects in damaged neurons may represent another mechanism of neuroprotection of dopaminergic neurons by ROCK inhibition. However, it has been shown that microglial cells play a crucial role in neuroprotection by ROCK inhibition and that activation of microglial ROCK mediates major components of the microglial inflammatory response. Additional mechanisms such as interaction with autophagy may also contribute to the neuroprotective effects of ROCK inhibition. Interestingly, ROCK interacts with several brain factors that play a major role in dopaminergic neuron vulnerability such as NADPH-oxidase, angiotensin, and estrogen. ROCK inhibition may provide a new neuroprotective strategy for Parkinson’s disease. This is of particular interest because ROCK inhibitors are currently used against vascular diseases in clinical practice. However, it is necessary to develop more potent and selective ROCK inhibitors to reduce side effects and enhance the efficacy.
Collapse
Affiliation(s)
- Jose L. Labandeira-Garcia
- Laboratory of Neuroanatomy and Experimental Neurology, Department of Morphological Sciences, CIMUS, University of Santiago de Compostela, Santiago de Compostela, Spain
- Networking Research Center on Neurodegenerative Diseases (CIBERNED), Spain
| | - Ana I. Rodríguez-Perez
- Laboratory of Neuroanatomy and Experimental Neurology, Department of Morphological Sciences, CIMUS, University of Santiago de Compostela, Santiago de Compostela, Spain
- Networking Research Center on Neurodegenerative Diseases (CIBERNED), Spain
| | - Begoña Villar-Cheda
- Laboratory of Neuroanatomy and Experimental Neurology, Department of Morphological Sciences, CIMUS, University of Santiago de Compostela, Santiago de Compostela, Spain
- Networking Research Center on Neurodegenerative Diseases (CIBERNED), Spain
| | - Ana Borrajo
- Laboratory of Neuroanatomy and Experimental Neurology, Department of Morphological Sciences, CIMUS, University of Santiago de Compostela, Santiago de Compostela, Spain
- Networking Research Center on Neurodegenerative Diseases (CIBERNED), Spain
| | - Antonio Dominguez-Meijide
- Laboratory of Neuroanatomy and Experimental Neurology, Department of Morphological Sciences, CIMUS, University of Santiago de Compostela, Santiago de Compostela, Spain
- Networking Research Center on Neurodegenerative Diseases (CIBERNED), Spain
| | - Maria J. Guerra
- Laboratory of Neuroanatomy and Experimental Neurology, Department of Morphological Sciences, CIMUS, University of Santiago de Compostela, Santiago de Compostela, Spain
- Networking Research Center on Neurodegenerative Diseases (CIBERNED), Spain
| |
Collapse
|
22
|
Abstract
Parkinson's disease (PD) displays a greater prevalence and earlier age at onset in men. This review addresses the concept that sex differences in PD are determined, largely, by biological sex differences in the NSDA system which, in turn, arise from hormonal, genetic and environmental influences. Current therapies for PD rely on dopamine replacement strategies to treat symptoms, and there is an urgent, unmet need for disease modifying agents. As a significant degree of neuroprotection against the early stages of clinical or experimental PD is seen, respectively, in human and rodent females compared with males, a better understanding of brain sex dimorphisms in the intact and injured NSDA system will shed light on mechanisms which have the potential to delay, or even halt, the progression of PD. Available evidence suggests that sex-specific, hormone-based therapeutic agents hold particular promise for developing treatments with optimal efficacy in men and women.
Collapse
|
23
|
Labandeira-García JL, Garrido-Gil P, Rodriguez-Pallares J, Valenzuela R, Borrajo A, Rodríguez-Perez AI. Brain renin-angiotensin system and dopaminergic cell vulnerability. Front Neuroanat 2014; 8:67. [PMID: 25071471 PMCID: PMC4086395 DOI: 10.3389/fnana.2014.00067] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2014] [Accepted: 06/24/2014] [Indexed: 01/11/2023] Open
Abstract
Although the renin-angiotensin system (RAS) was classically considered as a circulating system that regulates blood pressure, many tissues are now known to have a local RAS. Angiotensin, via type 1 receptors, is a major activator of the NADPH-oxidase complex, which mediates several key events in oxidative stress (OS) and inflammatory processes involved in the pathogenesis of major aging-related diseases. Several studies have demonstrated the presence of RAS components in the basal ganglia, and particularly in the nigrostriatal system. In the nigrostriatal system, RAS hyperactivation, via NADPH-oxidase complex activation, exacerbates OS and the microglial inflammatory response and contributes to progression of dopaminergic degeneration, which is inhibited by angiotensin receptor blockers and angiotensin converting enzyme (ACE) inhibitors. Several factors may induce an increase in RAS activity in the dopaminergic system. A decrease in dopaminergic activity induces compensatory upregulation of local RAS function in both dopaminergic neurons and glia. In addition to its role as an essential neurotransmitter, dopamine may also modulate microglial inflammatory responses and neuronal OS via RAS. Important counterregulatory interactions between angiotensin and dopamine have also been observed in several peripheral tissues. Neurotoxins and proinflammatory factors may also act on astrocytes to induce an increase in RAS activity, either independently of or before the loss of dopamine. Consistent with a major role of RAS in dopaminergic vulnerability, increased RAS activity has been observed in the nigra of animal models of aging, menopause and chronic cerebral hypoperfusion, which also showed higher dopaminergic vulnerability. Manipulation of the brain RAS may constitute an effective neuroprotective strategy against dopaminergic vulnerability and progression of Parkinson's disease.
Collapse
Affiliation(s)
- Jose L Labandeira-García
- Laboratory of Neuroanatomy and Experimental Neurology, Department of Morphological Sciences, CIMUS, Faculty of Medicine, University of Santiago de Compostela Santiago de Compostela, Spain ; Networking Research Center on Neurodegenerative Diseases (CIBERNED) Madrid, Spain
| | - Pablo Garrido-Gil
- Laboratory of Neuroanatomy and Experimental Neurology, Department of Morphological Sciences, CIMUS, Faculty of Medicine, University of Santiago de Compostela Santiago de Compostela, Spain ; Networking Research Center on Neurodegenerative Diseases (CIBERNED) Madrid, Spain
| | - Jannette Rodriguez-Pallares
- Laboratory of Neuroanatomy and Experimental Neurology, Department of Morphological Sciences, CIMUS, Faculty of Medicine, University of Santiago de Compostela Santiago de Compostela, Spain ; Networking Research Center on Neurodegenerative Diseases (CIBERNED) Madrid, Spain
| | - Rita Valenzuela
- Laboratory of Neuroanatomy and Experimental Neurology, Department of Morphological Sciences, CIMUS, Faculty of Medicine, University of Santiago de Compostela Santiago de Compostela, Spain ; Networking Research Center on Neurodegenerative Diseases (CIBERNED) Madrid, Spain
| | - Ana Borrajo
- Laboratory of Neuroanatomy and Experimental Neurology, Department of Morphological Sciences, CIMUS, Faculty of Medicine, University of Santiago de Compostela Santiago de Compostela, Spain ; Networking Research Center on Neurodegenerative Diseases (CIBERNED) Madrid, Spain
| | - Ana I Rodríguez-Perez
- Laboratory of Neuroanatomy and Experimental Neurology, Department of Morphological Sciences, CIMUS, Faculty of Medicine, University of Santiago de Compostela Santiago de Compostela, Spain ; Networking Research Center on Neurodegenerative Diseases (CIBERNED) Madrid, Spain
| |
Collapse
|
24
|
Rodriguez-Perez AI, Dominguez-Meijide A, Lanciego JL, Guerra MJ, Labandeira-Garcia JL. Inhibition of Rho kinase mediates the neuroprotective effects of estrogen in the MPTP model of Parkinson's disease. Neurobiol Dis 2013; 58:209-19. [DOI: 10.1016/j.nbd.2013.06.004] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2013] [Revised: 05/27/2013] [Accepted: 06/04/2013] [Indexed: 11/26/2022] Open
|
25
|
Weisskopf MG, Knekt P, O'Reilly EJ, Lyytinen J, Reunanen A, Laden F, Altshul L, Ascherio A. Polychlorinated biphenyls in prospectively collected serum and Parkinson's disease risk. Mov Disord 2012; 27:1659-65. [PMID: 23044514 DOI: 10.1002/mds.25217] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2012] [Revised: 08/21/2012] [Accepted: 08/30/2012] [Indexed: 11/12/2022] Open
Abstract
Evidence suggests possible Parkinson's disease (PD)-relevant neural effects of exposure to polychlorinated biphenyls. Limited epidemiological evidence suggests that polychlorinated biphenyl exposure may increase PD risk, but no studies have involved biomarkers of polychlorinated biphenyl exposure before PD onset. We examined the prospective association between serum polychlorinated biphenyls and PD. We conducted a nested case-control study within the Finnish Mobile Clinic Health Examination Survey with serum samples collected during 1968-1972 and analyzed in 2005-2007 for polychlorinated biphenyls. Incident PD cases were identified through the Social Insurance Institution's registry and were confirmed by medical record review (n = 101). Controls (n = 349) were matched on age, sex, municipality, and vital status. We used logistic regression to estimate adjusted odds ratios. There was no evidence of increasing risk of PD with increasing polychlorinated biphenyl exposure in adjusted analyses. Instead, there was a trend toward lower odds of PD with increasing serum polychlorinated biphenyl concentrations, which was most pronounced for the sum of all measured polychlorinated biphenyl congeners and the sum of dioxin-like congeners. Compared with that of those in the lowest quintile, the odds ratio of PD among those in the highest quintile of total polychlorinated biphenyls was 0.29 (95% confidence interval, 0.12-0.70; P trend = .02) and for dioxin-like congeners was 0.34 (95% confidence interval, 0.13-0.90; P trend = .05). These results do not support an increased risk of PD from polychlorinated biphenyl exposure and instead suggest a possible protective effect of polychlorinated biphenyl exposure.
Collapse
Affiliation(s)
- Marc G Weisskopf
- Department of Environmental Health, Harvard School of Public Health, Boston, Massachusetts 02215, USA.
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Zhang X, Zhuang X, Gan S, Wu Z, Chen W, Hu Y, Wang N. Screening for FMR1 expanded alleles in patients with parkinsonism in mainland China. Neurosci Lett 2012; 514:16-21. [PMID: 22387066 DOI: 10.1016/j.neulet.2012.02.036] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2011] [Revised: 02/09/2012] [Accepted: 02/12/2012] [Indexed: 10/28/2022]
Abstract
Expanded alleles of the fragile X mental retardation 1 (FMR1) gene are generally divided into four classes based on the abundance of unstable CGG repeat expansions (CGGs) in its 5'-untranslated region. It has recently been reported that two of the four classes, premutation (55-200 CGGs) and gray zone (GZ, 40-54 CGGs) alleles, was potentially associated with parkinsonism. To investigate this association in patients in mainland China, a total of 360 Chinese patients with parkinsonism and 295 gender and age matched controls were recruited in this study. Indeed, no premutation or full mutation alleles (>200 CGGs) was detected among all the subjects. A total of 11 patients with parkinsonism were identified to have GZ alleles compared with only 1 carrier among the controls (P<0.05). Notably, 10 of the 11 GZ alleles carriers with parkinsonism were female, which was 6.8% of all 147 female patients compared with none in the control females (P<0.05). No significant difference was detected between the male groups of patients and controls. Therefore, our results indicate that FMR1 GZ allele is potentially associated with parkinsonism in mainland China, and the association is only present in the female patients, but not in the male.
Collapse
Affiliation(s)
- Xiong Zhang
- Department of Neurology and Institute of Neurology, First Affiliated Hospital, Fujian Medical University, Fujian Province 350005, China
| | | | | | | | | | | | | |
Collapse
|
27
|
Su C, Rybalchenko N, Schreihofer DA, Singh M, Abbassi B, Cunningham RL. Cell Models for the Study of Sex Steroid Hormone Neurobiology. ACTA ACUST UNITED AC 2012; S2. [PMID: 22860237 DOI: 10.4172/2157-7536.s2-003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
To date many aspects of neurons and glia biology remain elusive, due in part to the cellular and molecular complexity of the brain. In recent decades, cell models from different brain areas have been established and proven invaluable toward understanding this complexity. In the field of steroid hormone neurobiology, an important question is: what is the profile of steroid hormone receptor expression in these specific cell lines? Currently, a clear summary of such receptor profiling is lacking. For this reason, we summarized in this review the expression of estrogen, progesterone, and androgen receptors in several widely used cell lines (glial and neuronal) derived from the forebrain and midbrain, based on our own data and that from the literature. Such information will aid in the selection of specific cell lines used to test hypotheses related to the biology of estrogens, progestins, and/or androgens.
Collapse
Affiliation(s)
- Chang Su
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center at Fort Worth, Fort Worth, TX 76107 USA
| | | | | | | | | | | |
Collapse
|
28
|
Tao Q, Fan X, Li T, Tang Y, Yang D, Le W. Gender segregation in gene expression and vulnerability to oxidative stress induced injury in ventral mesencephalic cultures of dopamine neurons. J Neurosci Res 2012; 90:167-178. [PMID: 21919034 DOI: 10.1002/jnr.22729] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2011] [Revised: 05/25/2011] [Accepted: 06/02/2011] [Indexed: 11/05/2022]
Abstract
Parkinson's disease (PD) is a progressive neurodegenerative disorder characterized by loss of dopamine (DA) neurons in the substantia nigra pars compacta (SNC). Most epidemiologic studies have demonstrated that PD has a higher prevalence in males than in females. Both hormones and genetic factors have been considered to be contributors to this phenomenon. In the present study, we used primary cultures of ventral mesencephalic (VM) neurons from E13.5 Balb/C mice to investigate whether there were any gender differences in gene expression and cell sensitivity to oxidative stress in sex segregated cultures. We also investigated the role of SRY, the sex-determining region on the Y chromosome, and the female hormone estrogen in the gender dimorphism. We measured the expression levels of genes that previously were thought to be related to PD or DA neuron development and functions by real-time PCR, and found six of them, ATP13A2, ERβ, MAO-A, D2, DAT, and Pitx3, showing significantly differential expression between males and females in the normal physiological state or under stress conditions. Furthermore, we demonstrated that male VM neurons are more vulnerable than female neurons to rotenone-induced cytotoxicity and that 17β-estrogen has a moderate protective effect in both male and female VM neurons. Moreover, we document that SRY can upregulate monoamine oxidase A and downregulate estrogen receptor-β, and SRY-overexpressing N2A cells enhance the resistance to oxidative stress-induced cell injury. Our results suggest that gender indeed influences several PD-related gene expressions in VM neurons, and SRY and estrogen are involved in the different responses to oxidative stress in culture.
Collapse
Affiliation(s)
- Qingqing Tao
- Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | | | | | | | | | | |
Collapse
|
29
|
Rodriguez-Perez AI, Valenzuela R, Villar-Cheda B, Guerra MJ, Labandeira-Garcia JL. Dopaminergic neuroprotection of hormonal replacement therapy in young and aged menopausal rats: role of the brain angiotensin system. Brain 2011; 135:124-38. [PMID: 22189567 DOI: 10.1093/brain/awr320] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
There is a lack of consensus about the effects of the type of menopause (surgical or natural) and of oestrogen replacement therapy on Parkinson's disease. The effects of the timing of replacement therapy and the female's age may explain the observed differences in such effects. However, the mechanisms involved are poorly understood. The renin-angiotensin system mediates the beneficial effects of oestrogen in several tissues, and we have previously shown that dopaminergic cell loss is enhanced by angiotensin via type 1 receptors, which is activated by ageing. In rats, we compared the effects of oestrogen replacement therapy on 6-hydroxydopamine-induced dopaminergic degeneration, nigral renin-angiotensin system activity, activation of the nicotinamide adenine dinucleotide phosphate oxidase complex and levels of the proinflammatory cytokine interleukin-1β in young (surgical) menopausal rats and aged menopausal rats. In young surgically menopausal rats, the renin-angiotensin system activity was higher (i.e. higher angiotensin converting enzyme activity, higher angiotensin type-1 receptor expression and lower angiotensin type-2 receptor expression) than in surgically menopausal rats treated with oestrogen; the nicotinamide adenine dinucleotide phosphate oxidase activity and interleukin-1β expression were also higher in the first group than in the second group. In aged menopausal rats, the levels of nigral renin-angiotensin and nicotinamide adenine dinucleotide phosphate oxidase activity were similar to those observed in surgically menopausal rats. However, oestrogen replacement therapy significantly reduced 6-hydroxydopamine-induced dopaminergic cell loss in young menopausal rats but not in aged rats. Treatment with oestrogen also led to a more marked reduction in nigral renin-angiotensin and nicotinamide adenine dinucleotide phosphate oxidase activity in young surgically menopausal rats (treated either immediately or after a period of hypo-oestrogenicity) than in aged menopausal rats. Interestingly, treatment with the angiotensin type-1 receptor antagonist candesartan led to remarkable reduction in renin-angiotensin system activity and dopaminergic neuron loss in both groups of menopausal rats. This suggests that manipulation of the brain renin-angiotensin system may be an efficient approach for the prevention or treatment of Parkinson's disease in oestrogen-deficient females, together with or instead of oestrogen replacement therapy.
Collapse
Affiliation(s)
- Ana I Rodriguez-Perez
- Laboratory of Neuroanatomy and Experimental Neurology, Department of Morphological Sciences, Faculty of Medicine, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | | | | | | | | |
Collapse
|
30
|
Suzuki T, Miki Y, Nakamura Y, Ito K, Sasano H. Steroid sulfatase and estrogen sulfotransferase in human carcinomas. Mol Cell Endocrinol 2011; 340:148-53. [PMID: 21073915 DOI: 10.1016/j.mce.2010.11.001] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2009] [Revised: 10/06/2010] [Accepted: 11/01/2010] [Indexed: 01/23/2023]
Abstract
Estrogens are closely involved in the development of hormone-dependent carcinomas. Estrone is locally produced from circulating inactive estrone sulfate by steroid sulfatase (STS), while estrone is inversely inactivated into estrone sulfate by estrogen sulfotransferase (EST). Recent studies suggested importance of this STS pathway in various human carcinomas. Therefore, in this review, we summarized recent results of STS and EST in several estrogen-dependent carcinomas. STS and EST expressions were detected in the breast and endometrial carcinomas, and activation of STS pathway due to increment in STS and/or decrement in EST expressions plays important role in their estrogen-dependent growth. STS expression was also reported in the ovarian and prostate carcinomas. STS/EST status was associated with intratumoral estrogen level in the colon carcinoma, and STS-negative/EST-positive colon carcinoma patients had longer survival. Therefore, STS pathway and estrogen actions may play an important role in the development of these carcinomas, and further investigations are required.
Collapse
Affiliation(s)
- Takashi Suzuki
- Department of Pathology and Histotechnology, Tohoku University, Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan.
| | | | | | | | | |
Collapse
|
31
|
Hall DA, Berry-Kravis E, Zhang W, Tassone F, Spector E, Zerbe G, Hagerman PJ, Ouyang B, Leehey MA. FMR1 gray-zone alleles: association with Parkinson's disease in women? Mov Disord 2011; 26:1900-6. [PMID: 21567456 DOI: 10.1002/mds.23755] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2010] [Revised: 03/15/2011] [Accepted: 03/21/2011] [Indexed: 11/09/2022] Open
Abstract
Carriers of fragile X mental retardation 1 repeat expansions in the premutation range (55-200 CGG repeats), especially males, often develop tremor, ataxia, and parkinsonism. These neurological signs are believed to be a result of elevated levels of expanded CGG-repeat fragile X mental retardation 1 mRNA. The purpose of this study was to determine the prevalence of fragile X mental retardation 1 repeat expansions in a movement disorder population comprising subjects with all types of tremor, ataxia, and parkinsonism. We screened 335 consecutive patients with tremor, ataxia, or parkinsonism and 273 controls confirmed to have no movement disorders. There was no difference in fragile X mental retardation 1 premutation size expansions in the cases compared with controls. Eleven percent of the women with Parkinson's disease had fragile X mental retardation 1 gray-zone expansions compared with 4.4% of female controls (odds ratio of 3.2; 95% confidence interval, 1.2-8.7). Gray-zone expansions in patients with other phenotypes were not overrepresented in comparison with controls. Fragile X mental retardation 1 premutation range expansions are not more common in a mixed movement disorder population compared with controls. Our results, however, suggest that fragile X mental retardation 1 gray-zone alleles may be associated with Parkinson's disease in women.
Collapse
Affiliation(s)
- Deborah A Hall
- Department of Neurological Sciences, Rush University, 1725 West Harrison St., Suite 755, Chicago, IL 60611, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
32
|
McArthur S, Gillies GE. Peripheral vs. Central Sex Steroid Hormones in Experimental Parkinson's Disease. Front Endocrinol (Lausanne) 2011; 2:82. [PMID: 22649388 PMCID: PMC3355917 DOI: 10.3389/fendo.2011.00082] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2011] [Accepted: 11/10/2011] [Indexed: 01/01/2023] Open
Abstract
The nigrostriatal dopaminergic (NSDA) pathway degenerates in Parkinson's disease (PD), which occurs with approximately twice the incidence in men than women. Studies of the influence of systemic estrogens in females suggest sex hormones contribute to these differences. In this review we analyze the evidence revealing great complexity in the response of the healthy and injured NSDA system to hormonal influences, and emphasize the importance of centrally generated estrogens. At physiological levels, circulating estrogen (in females) or estrogen precursors (testosterone in males, aromatized to estrogen centrally) have negligible effects on dopaminergic neuron survival in experimental PD, but can modify striatal dopamine levels via actions on the activity or adaptive responses of surviving cells. However, these effects are sexually dimorphic. In females, estradiol promotes adaptive responses in the partially injured NSDA pathway, preserving striatal dopamine, whereas in males gonadal steroids and exogenous estradiol have a negligible or even suppressive effect, effectively exacerbating dopamine loss. On balance, the different effects of gonadal factors in males and females contribute to sex differences in experimental PD. Fundamental sex differences in brain organization, including the sexually dimorphic networks regulating NSDA activity are likely to underpin these responses. In contrast, estrogen generated locally appears to preserve striatal dopamine in both sexes. The available data therefore highlight the need to understand the biological basis of sex-specific responses of the NSDA system to peripheral hormones, so as to realize the potential for sex-specific, hormone-based therapies in PD. Furthermore, they suggest that targeting central steroid generation could be equally effective in preserving striatal dopamine in both sexes. Clarification of the relative roles of peripheral and central sex steroid hormones is thus an important challenge for future studies.
Collapse
Affiliation(s)
- Simon McArthur
- Department of Medicine, Centre for Neuroscience, Imperial College LondonLondon, UK
- *Correspondence: Simon McArthur, Department of Medicine, Centre for Neuroscience, Imperial College London, London SW7 2AZ, UK. e-mail:
| | - Glenda E. Gillies
- Department of Medicine, Centre for Neuroscience, Imperial College LondonLondon, UK
| |
Collapse
|
33
|
Reid G, Kirschner MB, van Zandwijk N. Circulating microRNAs: Association with disease and potential use as biomarkers. Crit Rev Oncol Hematol 2010; 92:1071-7. [PMID: 21145252 DOI: 10.1002/jnr.23377] [Citation(s) in RCA: 106] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2013] [Revised: 01/21/2014] [Accepted: 02/12/2014] [Indexed: 12/17/2022] Open
Abstract
The control of gene expression by microRNAs influences many cellular processes and has been implicated in the control of many (patho)physiological states. Recently, microRNAs have been detected in serum and plasma, and circulating microRNA profiles have now been associated with a range of different tumour types, diseases such as stroke and heart disease, as well as altered physiological states such as pregnancy. Here we review the disease-specific profiles of circulating microRNAs, and the methodologies used for their detection and quantification. We also discuss possible functions of circulating microRNAs and their potential as non-invasive biomarkers.
Collapse
Affiliation(s)
- Glen Reid
- Asbestos Diseases Research Institute (ADRI), Bernie Banton Centre, University of Sydney, Concord, Australia.
| | | | | |
Collapse
|
34
|
Gardener H, Gao X, Chen H, Schwarzschild MA, Spiegelman D, Ascherio A. Prenatal and early life factors and risk of Parkinson's disease. Mov Disord 2010; 25:1560-7. [PMID: 20740569 PMCID: PMC3132935 DOI: 10.1002/mds.23339] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Few studies have investigated the relation between early life factors and risk of Parkinson's disease (PD), although a potential role of exposures during pregnancy and childhood has been hypothesized. The study population comprised participants in two prospective cohorts: the Nurses' Health Study (121,701 female nurses followed up from 1976-2002) and the Health Professionals Follow-up Study (51,529 male health professionals followed up from 1986-2002). PD risk was examined in relation to season of birth, birthweight, parental age at birth, preterm birth, multiple birth, ever having been breast-fed, and handedness. We identified 659 incident PD cases. No significant relation with PD was observed for birthweight, paternal age, preterm birth, multiple birth, and having been breast-fed. A modest nonsignificant association was suggested for season of birth (30% higher risk of PD associated with spring versus winter birth) and for older maternal age at birth (75% increased risk among those with mothers aged 30 years and older versus younger than 20 years). Left-handedness was associated with a 62% increased risk of PD in women but not in men. Further investigation of the relation between prenatal, perinatal, or neonatal factors and PD in other study populations is suggested.
Collapse
Affiliation(s)
- Hannah Gardener
- Department of Epidemiology, Harvard School of Public Health, Boston, Massachusetts, USA.
| | | | | | | | | | | |
Collapse
|
35
|
Lam K, Li M, Mok V, Hui A, Woo J. A case control study on bone mineral density in Chinese patients with Parkinson’s disease. Parkinsonism Relat Disord 2010; 16:471-4. [DOI: 10.1016/j.parkreldis.2010.05.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2009] [Revised: 03/12/2010] [Accepted: 05/07/2010] [Indexed: 11/25/2022]
|
36
|
Rodriguez-Perez AI, Valenzuela R, Villar-Cheda B, Guerra MJ, Lanciego JL, Labandeira-Garcia JL. Estrogen and angiotensin interaction in the substantia nigra. Relevance to postmenopausal Parkinson's disease. Exp Neurol 2010; 224:517-26. [PMID: 20580712 DOI: 10.1016/j.expneurol.2010.05.015] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2010] [Revised: 05/11/2010] [Accepted: 05/18/2010] [Indexed: 02/07/2023]
Abstract
Epidemiological studies have reported that the incidence of Parkinson's disease (PD) is higher in postmenopausal than in premenopausal women of similar age. Several laboratory observations have revealed that estrogen has protective effects against dopaminergic toxins. The mechanism by which estrogen protects dopaminergic neurons has not been clarified, although estrogen-induced attenuation of the neuroinflammatory response plays a major role. We have recently shown that activation of the nigral renin-angiotensin system (RAS), via type 1 (AT1) receptors, leads to NADPH complex and microglial activation and induces dopaminergic neuron death. In the present study we investigated the effect of ovariectomy and estrogen replacement on the nigral RAS and on dopaminergic degeneration induced by intrastriatal injection of 6-OHDA. We observed a marked loss of dopaminergic neurons in ovariectomized rats treated with 6-OHDA, which was significantly reduced by estrogen replacement or treatment with the AT1 receptor antagonist candesartan. We also observed that estrogen replacement induces significant downregulation of the activity of the angiotensin converting enzyme as well as downregulation of AT1 receptors, upregulation of AT2 receptors and downregulation of the NADPH complex activity in the substantia nigra in comparison with ovariectomized rats. The present results suggest that estrogen-induced down-regulation of RAS and NADPH activity may be associated with the reduced risk of PD in premenopausal women, and increased risk in conditions causing early reduction in endogenous estrogen, and that manipulation of brain RAS system may be an efficient approach for the prevention or coadjutant treatment of PD in estrogen-deficient women.
Collapse
Affiliation(s)
- Ana I Rodriguez-Perez
- Laboratory of Neuroanatomy and Experimental Neurology, Department of Morphological Sciences, Faculty of Medicine, University of Santiago de Compostela, Santiago de Compostela, Spain
| | | | | | | | | | | |
Collapse
|
37
|
Misiak M, Beyer C, Arnold S. Gender-specific role of mitochondria in the vulnerability of 6-hydroxydopamine-treated mesencephalic neurons. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2010; 1797:1178-88. [PMID: 20416276 DOI: 10.1016/j.bbabio.2010.04.009] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2010] [Revised: 03/31/2010] [Accepted: 04/13/2010] [Indexed: 02/05/2023]
Abstract
Many neurodegenerative diseases, such as Morbus Parkinson, exhibit a gender-dependency showing a higher incidence in men than women. Most of the neurodegenerative disorders involve either causally or consequently a dysfunction of mitochondria. Therefore, neuronal mitochondria may demonstrate a gender-specificity with respect to structural and functional characteristics of these organelles during toxic and degenerative processes. The application of 6-OHDA (6-hydroxydopamine) in vitro and in vivo represents a well-accepted experimental model of Parkinson's disease causing Parkinsonian symptoms. Besides the known effects of 6-OHDA on mitochondria and neuronal survivability, we aimed to demonstrate that the mitochondrial neurotoxin affects the morphology and survival of primary dopaminergic and non-dopaminergic neurons in the mesencephalon in a gender-specific manner by influencing the transcription of mitochondrial genes, ATP and reactive oxygen species production. Our data suggest that cell death in response to 6-OHDA is primarily caused due to increased oxidative stress which is more pronounced in male than in female mesencephalic neurons.
Collapse
Affiliation(s)
- Magdalena Misiak
- Institute for Neuroanatomy, Faculty of Medicine, RWTH Aachen University, Wendlingweg 2, 52074 Aachen, Germany
| | | | | |
Collapse
|
38
|
DonCarlos LL, Azcoitia I, Garcia-Segura LM. Neuroprotective actions of selective estrogen receptor modulators. Psychoneuroendocrinology 2009; 34 Suppl 1:S113-22. [PMID: 19447561 PMCID: PMC2794899 DOI: 10.1016/j.psyneuen.2009.04.012] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2009] [Revised: 04/20/2009] [Accepted: 04/20/2009] [Indexed: 12/13/2022]
Abstract
Decreasing levels of sex hormones with aging may have a negative impact on brain function, since this decrease is associated with the progression of neurodegenerative disorders, increased depressive symptoms and other psychological disturbances. Extensive evidence from animal studies indicates that sex steroids, in particular estradiol, are neuroprotective. However, the potential benefits of estradiol therapy for the brain are counterbalanced by negative, life-threatening risks in the periphery. A potential therapeutic alternative to promote neuroprotection is the use of selective estrogen receptor modulators (SERMs), which may be designed to act with tissue selectivity as estrogen receptor agonists in the brain and not in other organs. Currently available SERMs act not only with tissue selectivity, but also with cellular selectivity within the brain and differentially modulate the activation of microglia, astroglia and neurons. Finally, SERMs may promote the interaction of estrogen receptors with the neuroprotective signaling of growth factors, such as the phosphatidylinositol 3-kinase/glycogen synthase kinase 3 pathway.
Collapse
Affiliation(s)
- Lydia L. DonCarlos
- Department of Cell Biology, Neurobiology and Anatomy, Stritch School of Medicine, Loyola University Chicago, 2160 South First Avenue, Maywood, Illinois 60153, USA. Tel: +1-7082164975; Fax: +1-7082163913; e-mail:
| | - Iñigo Azcoitia
- Departamento de Biología Celular, Facultad de Biología, Universidad Complutense, E-28040 Madrid, Spain. Tel: +34-913944861, Fax: +34-913944981 e-mail:
| | - Luis M. Garcia-Segura
- Instituto Cajal, CSIC, E-28002 Madrid, Spain. Tel:+34-915854729; Fax: +34-915854754; e-mail:
| |
Collapse
|
39
|
Estrogen increases survival in an orthotopic model of glioblastoma. J Neurooncol 2009; 95:37-48. [DOI: 10.1007/s11060-009-9904-6] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2009] [Accepted: 04/20/2009] [Indexed: 12/21/2022]
|
40
|
Bethea CL, Reddy AP, Tokuyama Y, Henderson JA, Lima FB. Protective actions of ovarian hormones in the serotonin system of macaques. Front Neuroendocrinol 2009; 30:212-38. [PMID: 19394356 PMCID: PMC2704571 DOI: 10.1016/j.yfrne.2009.04.003] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2009] [Revised: 04/14/2009] [Accepted: 04/15/2009] [Indexed: 12/19/2022]
Abstract
The serotonin neurons of the dorsal and medial raphe nuclei project to all areas of the forebrain and play a key role in mood disorders. Hence, any loss or degeneration of serotonin neurons could have profound ramifications. In a monkey model of surgical menopause with hormone replacement and no neural injury, E and P decreased gene expression in the dorsal raphe nucleus of c-jun n-terminal kinase (JNK1) and kynurenine mono-oxygenase (KMO) that promote cell death. In concert, E and P increased gene expression of superoxide dismutase (SOD1), VEGF, and caspase inhibitory proteins that promote cellular resilience in the dorsal raphe nucleus. Subsequently, we showed that ovarian steroids inhibit pivotal genes in the caspase-dependent and caspase-independent pathways in laser-captured serotonin neurons including apoptosis activating factor (Apaf1), apoptosis-inducing factor (AIF) and second mitochondria-derived activator of caspases (Smac/Diablo). SOD1 was also increased specifically in laser-captured serotonin neurons. Examination of protein expression in the dorsal raphe block revealed that JNK1, phosphoJNK1, AIF and the translocation of AIF from the mitochondria to the nucleus decreased with hormone therapy, whereas pivotal execution proteins in the caspase pathway were unchanged. In addition, cyclins A, B, D1 and E were inhibited, which would prevent re-entry into the cell cycle and catastrophic death. These data indicated that in the absence of gross injury to the midbrain, ovarian steroids inhibit the caspase-independent pathway and cell cycle initiation in serotonin neurons. To determine if these molecular actions prevented cellular vulnerability or death, we examined DNA fragmentation in the dorsal raphe nucleus with the TUNEL assay (terminal deoxynucleotidyl transferase nick end labeling). Ovarian steroids significantly decreased the number of TUNEL-positive cells in the dorsal raphe. Moreover, TUNEL staining prominently colocalized with TPH immunostaining, a marker for serotonin neurons. In summary, ovarian steroids increase the cellular resilience of serotonin neurons and may prevent serotonin neuron death in women facing decades of life after menopause. The survival of serotonin neurons would support cognition and mental health.
Collapse
Affiliation(s)
- Cynthia L Bethea
- Divisions of Reproductive Sciences, Oregon National Primate Research Center, Beaverton, OR 97006, United States.
| | | | | | | | | |
Collapse
|
41
|
Dzaja A, Wehrle R, Lancel M, Pollmächer T. Elevated estradiol plasma levels in women with restless legs during pregnancy. Sleep 2009; 32:169-74. [PMID: 19238803 DOI: 10.1093/sleep/32.2.169] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
STUDY OBJECTIVES Pregnant women have an increased risk of experiencing restless legs syndrome (RLS). Aim of this study was to elucidate the relationship between pregnancy-related hormonal and metabolic changes and RLS symptomatology. DESIGN Blood measurements and overnight polysomnography were performed during the third trimester of pregnancy and again 3 months after delivery. We investigated blood hormonal levels (estradiol, prolactin, progesterone, testosterone, follicle-stimulating hormone [FSH], luteinizing hormone [LH], iron, ferritin, hemoglobin) and polysomnographic sleep parameters. Subjective sleep quality and RLS symptoms were evaluated using the Pittsburgh Sleep Quality Index (PSQI) and the International RLS study group (IRLSSG) rating scale. SETTING Sleep laboratory. PARTICIPANTS Ten pregnant women fulfilling the IRLSSG criteria for RLS diagnosis and 9 pregnant healthy controls underwent the protocol. INTERVENTIONS N/A. RESULTS Women with RLS showed higher levels of estradiol during pregnancy compared to controls (34,211 +/- 6397 pg/mL vs. 25,475 +/- 7990 pg/mL, P<0.05). Patients also showed more periodic limb movements (PLMs) before and after delivery, particularly during sleep stage 1 and wakefulness (P<0.05). PLMs decreased postpartum in subjects with RLS only (P<0.05); sleep efficiency increased in women without RLS and remained unchanged in patients (P<0.05). No significant differences were found between groups before or after delivery in plasma concentrations of prolactin, progesterone, testosterone, FSH, LH, iron, ferritin or hemoglobin. CONCLUSIONS RLS in pregnant women goes along with transiently increased estradiol levels and PLM indices suggesting that estrogens play a pathophysiological role for triggering RLS symptoms during pregnancy.
Collapse
Affiliation(s)
- Andrea Dzaja
- Max Planck Institute of Psychiatry, Munich, Germany
| | | | | | | |
Collapse
|
42
|
Hirohata M, Ono K, Morinaga A, Ikeda T, Yamada M. Anti-aggregation and fibril-destabilizing effects of sex hormones on alpha-synuclein fibrils in vitro. Exp Neurol 2009; 217:434-9. [PMID: 19289119 DOI: 10.1016/j.expneurol.2009.03.003] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2008] [Revised: 02/19/2009] [Accepted: 03/05/2009] [Indexed: 10/21/2022]
Abstract
The alpha-synuclein aggregation in the brain is the hallmark of Lewy body diseases, including Parkinson's disease and dementia with Lewy bodies, and multiple system atrophy. Some epidemiological studies have revealed that estrogen therapy reduces the risk of Parkinson's disease in females. We examined the effects of estriol, estradiol, estrone, androstenedione, and testosterone on the formation and destabilization of alpha-synuclein fibrils at pH 7.5 and 37 degrees C in vitro, using fluorescence spectroscopy with thioflavin S and electron microscopy. These sex hormones, especially estriol, significantly exert anti-aggregation and fibril-destabilizing effects; and hence, could be valuable preventive and therapeutic agents for alpha-synucleinopathies.
Collapse
Affiliation(s)
- Mie Hirohata
- Department of Neurology and Neurobiology of Aging, Kanazawa University Graduate School of Medical Science, Kanazawa 920-8640, Japan
| | | | | | | | | |
Collapse
|
43
|
D'Amelio M, Ragonese P, Sconzo G, Aridon P, Savettieri G. Parkinson's Disease and Cancer. Ann N Y Acad Sci 2009; 1155:324-34. [DOI: 10.1111/j.1749-6632.2008.03681.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
44
|
Rodríguez-Navarro JA, Solano RM, Casarejos MJ, Gomez A, Perucho J, de Yébenes JG, Mena MA. Gender differences and estrogen effects in parkin null mice. J Neurochem 2008; 106:2143-57. [PMID: 18643794 DOI: 10.1111/j.1471-4159.2008.05569.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Estrogens are considered neurotrophic for dopamine neurons. Parkinson's disease is more frequent in males than in females, and more prevalent in females with short reproductive life. Estrogens are neuroprotective against neurotoxic agents for dopamine neurons in vivo and in vitro. Here, we have investigated the role of estrogens in wild-type (WT) and parkin null mice (PK-/-). WT mice present sexual dimorphisms in neuroprotective mechanisms (Bcl-2/Bax, chaperones, and GSH), but some of these inter-sex differences disappear in PK-/-. Tyrosine hydroxylase (TH) protein and TH+ cells decreased earlier and more severely in female than in male PK-/- mice. Neuronal cultures from midbrain of WT and PK-/- mice were treated with estradiol from 10 min to 48 h. Short-term treatments activated the mitogen-activated protein kinase pathway of WT and PK-/- neurons and the phosphatidylinositol 3'-kinase/AKT/glycogen synthase kinase-3 pathway of WT but not of PK-/- cultures. Long-term treatments with estradiol increased the number of TH+ neurons, the TH expression, and the extension of neurites, and decreased the level of apoptosis, the expression of glial fibrillary acidic protein, and the number of microglial cells in WT but not in PK-/- cultures. The levels of estrogen receptor-alpha were elevated in midbrain cultures and in the striatum of adult PK-/- male mice, suggesting that suppression of parkin changes the estrogen receptor-alpha turnover. From our data, it appears that parkin participates in the cellular estrogen response which could be of interest in the management of parkin-related Parkinson's disease patients.
Collapse
|
45
|
Rhodes SL, Ritz B. Genetics of iron regulation and the possible role of iron in Parkinson's disease. Neurobiol Dis 2008; 32:183-95. [PMID: 18675357 DOI: 10.1016/j.nbd.2008.07.001] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2008] [Revised: 07/01/2008] [Accepted: 07/02/2008] [Indexed: 12/21/2022] Open
Abstract
Parkinson's disease (PD) is acknowledged as the second most common neurodegenerative disorder after Alzheimer's Disease. Older age may be the only unequivocal risk factor for PD although the male to female ratio is consistently greater than 1 in populations of European ancestry. Characteristic features of PD include dopaminergic neuron death in the substantia nigra (SN) pars compacta, accumulation of alpha-synuclein inclusions known as Lewy bodies in the SN, and brain iron accumulation beyond that observed in non-PD brains of a similar age. In this review article, we will provide an overview of human and animal studies investigating the contributions of iron in PD, a summary of human studies of iron-related genes in PD, a review of the literature on the genetics of iron metabolism, and some hypotheses on possible roles for iron in the pathogenic processes of PD including potential interactions between iron and other factors associated with Parkinson's disease.
Collapse
Affiliation(s)
- Shannon L Rhodes
- Medical Genetics Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA.
| | | |
Collapse
|
46
|
Tokuyama Y, Reddy AP, Bethea CL. Neuroprotective actions of ovarian hormones without insult in the raphe region of rhesus macaques. Neuroscience 2008; 154:720-31. [PMID: 18486349 DOI: 10.1016/j.neuroscience.2008.03.056] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2007] [Revised: 02/11/2008] [Accepted: 03/12/2008] [Indexed: 11/17/2022]
Abstract
Using a nonhuman primate model of surgical menopause, our laboratory has shown that ovarian hormone treatment (HT) improves 5-HT neural function in the dorsal raphe nucleus (DRN). We further hypothesize that HT may increase 5-HT neuronal resilience. Recent data from microarray analysis indicated that HT regulates gene expression in pathways that lead to apoptosis. In this study, we questioned whether HT alters protein expression in caspase-dependent and independent pathways. Ovariectomized monkeys received Silastic implants containing placebo (empty), estrogen (E) or E+ progesterone (P). A small block of the midbrain containing the DRN was dissected and subjected to subcellular fractionation, yielding cytosolic, nuclear and mitochondrial fractions (n=4/group). The pro-apoptotic protein, c-jun n-terminal kinase (JNK1) and its phosphorylation were decreased by E+P treatment in the cytosolic fraction. Downstream of JNK are proteins in the caspase-dependent and -independent pathways. First, in the caspase-dependent pathway, cytoplasmic and mitochondrial fractions were immunoblotted for Bcl-2 family members, cytochrome c, Apaf1 and XIAP. However, the expression of these proteins did not differ among treatments. Pro-caspase 3 was decreased by E+P, but there was no evidence of active caspase in any group. Then, we examined the involvement of a protein in the caspase-independent pathway, called apoptosis-inducing factor (AIF). AIF mRNA (n=3/group) and AIF mitochondrial protein tended to decrease with hormone treatment. However, AIF protein in the nuclear fraction in E+P treated monkeys was significantly reduced. This indicates that HT is reducing the translocation of AIF from mitochondria to nucleus, thus inhibiting AIF-mediated apoptosis. AIF was immunocytochemically localized to large 5-HT-like neurons of the dorsal raphe. These data suggest that in the absence of global trauma or ischemia, HT may act through the caspase-independent pathway to promote neuroprotection in the 5-HT system.
Collapse
Affiliation(s)
- Y Tokuyama
- Division of Reproductive Sciences, Oregon National Primate Research Center, Beaverton, OR 97006, USA
| | | | | |
Collapse
|
47
|
Quesada A, Lee BY, Micevych PE. PI3 kinase/Akt activation mediates estrogen and IGF-1 nigral DA neuronal neuroprotection against a unilateral rat model of Parkinson's disease. Dev Neurobiol 2008; 68:632-44. [PMID: 18278798 PMCID: PMC2667142 DOI: 10.1002/dneu.20609] [Citation(s) in RCA: 150] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Recently, using the medial forebrain bundle (MFB) 6-hydroxydopmaine (6-OHDA) lesion rat model of Parkinson's disease (PD), we have demonstrated that blockade of central IGF-1 receptors (IGF-1R) attenuated estrogen neuroprotection of substantia nigra pars compacta (SNpc) DA neurons, but exacerbated 6-OHDA lesions in IGF-1 only treated rats (Quesada and Micevych [2004]: J Neurosci Res 75:107-116). This suggested that the IGF-1 system is a central mechanism through which estrogen acts to protect the nigrostriatal DA system. Moreover, these results also suggest that IGF-1R-induced intracellular signaling pathways are involved in the estrogen mechanism that promotes neuronal survival. In vitro, two convergent intracellular signaling pathways used by estrogen and IGF-1, the mitogen-activated protein kinase (MAPK/ERK), and phosphatidyl-inositol-3-kinase/Akt (PI3K/Akt), have been demonstrated to be neuroprotective. Continuous central infusions of MAPK/ERK and PI3K/Akt inhibitors were used to test the hypothesis that one or both of these signal transduction pathways mediates estrogen and/or IGF-1 neuroprotection of SNpc DA neurons after a unilateral administration of 6-OHDA into the MFB of rats. Motor behavior tests and tyrosine hydroxylase immunoreactivity revealed that the inhibitor of the PI3K/Akt pathway (LY294002) blocked the survival effects of both estrogen and IGF-1, while an inhibitor of the MAPK/ERK signaling (PD98059) was ineffective. Western blot analyses showed that estrogen and IGF-1 treatments increased PI3K/Akt activation in the SN; however, MAPK/ERK activation was decreased in the SN. Indeed, continuous infusions of inhibitors blocked phosphorylation of PI3K/Akt and MAPK/ERK. These findings indicate that estrogen and IGF-1-mediated SNpc DA neuronal protection is dependent on PI3K/Akt signaling, but not on the MAPK/ERK pathway.
Collapse
Affiliation(s)
- Arnulfo Quesada
- Department of Neurobiology, Brain Research Institute, David Geffen School of Medicine, UCLA, Los Angeles, California, USA.
| | | | | |
Collapse
|
48
|
Dohi O, Hatori M, Suzuki T, Ono K, Hosaka M, Akahira JI, Miki Y, Nagasaki S, Itoi E, Sasano H. Sex steroid receptors expression and hormone-induced cell proliferation in human osteosarcoma. Cancer Sci 2008; 99:518-23. [PMID: 18081879 PMCID: PMC11159424 DOI: 10.1111/j.1349-7006.2007.00673.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2007] [Revised: 10/28/2007] [Accepted: 11/04/2007] [Indexed: 11/26/2022] Open
Abstract
Sex steroid receptors including estrogen receptors (ER), progesterone receptors (PR), and androgen receptors (AR) have been sporadically reported in human osteosarcoma or its cell lines. Therefore, sex steroids have been considered to play some roles in human osteosarcoma, but no systematic and detailed studies regarding the correlation between the status of these receptors in sarcoma cells and clinicopathological parameters have been reported. We examined the existence of ER, PR and AR in 28 cases of osteosarcoma using immunohistochemistry. We then characterized the potential influence of sex steroids on cell proliferation of osteosarcoma cells using MG-63 human osteosarcoma cell line, which expressed all of these receptors. ER-beta and PR were detected in the great majority of the cases (23 and 24 cases, respectively) but ER-alpha and aromatase were not detected in all the cases, and AR was detected only in eight cases. There was a significant positive correlation between ER-beta and Ki-67 (MIB1) labeling indexes. The absence of aromatase in tumors also suggests the relative importance of concentrations of circulating sex steroids. Proliferation of MG-63 cells was significantly stimulated by estradiol, progesterone, and 5 alpha-dihydrotestosterone (DHT), and was significantly suppressed by the addition of fulvestrant (ICI), mifepristone (RU), and hydroxiflutamide, blockers for ER, PR and AR, respectively. Sex steroids, particularly estrogen and progesterone, are considered to play important roles in the regulation of cell proliferation in human osteosarcoma. In addition, these data suggest the potential for a novel endocrine therapy in osteosarcoma using clinically available inhibitors of progesterone and estrogen actions.
Collapse
MESH Headings
- Adolescent
- Adult
- Aged
- Aged, 80 and over
- Bone Neoplasms/genetics
- Bone Neoplasms/metabolism
- Case-Control Studies
- Cell Line, Tumor
- Cell Proliferation/drug effects
- Child
- Child, Preschool
- Dihydrotestosterone/pharmacology
- Estradiol/pharmacology
- Female
- Gonadal Steroid Hormones/pharmacology
- Humans
- Immunohistochemistry
- Male
- Middle Aged
- Osteosarcoma/genetics
- Osteosarcoma/metabolism
- Progesterone/pharmacology
- Receptors, Androgen/genetics
- Receptors, Androgen/metabolism
- Receptors, Estrogen/genetics
- Receptors, Estrogen/metabolism
- Receptors, Progesterone/genetics
- Receptors, Progesterone/metabolism
- Receptors, Steroid/metabolism
Collapse
Affiliation(s)
- Osamu Dohi
- Department of Orthopaedic Surgery, Tohoku Kosai Hospital, 2-3-11 Kokubuncho, Aoba-ku, Sendai, Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|