1
|
Janardhan HP, Wachter BT, Trivedi CM. Lymphatic System Development and Function. Curr Cardiol Rep 2024; 26:1209-1219. [PMID: 39172295 DOI: 10.1007/s11886-024-02120-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/13/2024] [Indexed: 08/23/2024]
Abstract
PURPOSE OF REVIEW This review delves into recent advancements in understanding generalized and organ-specific lymphatic development. It emphasizes the distinct characteristics and critical anomalies that can impair lymphatic function. By exploring developmental mechanisms, the review seeks to illuminate the profound impact of lymphatic malformations on overall health and disease progression. RECENT FINDINGS The introduction of genome sequencing, single-cell transcriptomic analysis, and advanced imaging technologies has significantly enhanced our ability to identify and characterize developmental defects within the lymphatic system. As a result, a wide range of lymphatic anomalies have been uncovered, spanning from congenital abnormalities present at birth to conditions that can become life-threatening in adulthood. Additionally, recent research highlights the heterogeneity of lymphatics, revealing organ-specific developmental pathways, unique molecular markers, and specialized physiological functions specific to each organ. A deeper understanding of the unique characteristics of lymphatic cell populations in an organ-specific context is essential for guiding future research into lymphatic disease processes. An integrated approach to translational research could revolutionize personalized medicine, where treatments are precisely tailored to individual lymphatic profiles, enhancing effectiveness and minimizing side effects.
Collapse
Affiliation(s)
- Harish P Janardhan
- Division of Cardiovascular Medicine, UMass Chan Medical School, Worcester, MA, 01605, USA
- Department of Medicine, UMass Chan Medical School, Worcester, MA, 01605, USA
| | - Brianna T Wachter
- Division of Cardiovascular Medicine, UMass Chan Medical School, Worcester, MA, 01605, USA
- Department of Medicine, UMass Chan Medical School, Worcester, MA, 01605, USA
- MD-PhD Program, Morningside Graduate School of Biomedical Sciences, UMass Chan Medical School, Worcester, MA, 01605, USA
| | - Chinmay M Trivedi
- Division of Cardiovascular Medicine, UMass Chan Medical School, Worcester, MA, 01605, USA.
- Department of Medicine, UMass Chan Medical School, Worcester, MA, 01605, USA.
- MD-PhD Program, Morningside Graduate School of Biomedical Sciences, UMass Chan Medical School, Worcester, MA, 01605, USA.
- Department of Molecular, Cell, and Cancer Biology, UMass Chan Medical School, Worcester, MA, 01605, USA.
| |
Collapse
|
2
|
Zhang X, Ma L, Xue M, Sun Y, Wang Z. Advances in lymphatic metastasis of non-small cell lung cancer. Cell Commun Signal 2024; 22:201. [PMID: 38566083 PMCID: PMC10986052 DOI: 10.1186/s12964-024-01574-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Accepted: 03/16/2024] [Indexed: 04/04/2024] Open
Abstract
Lung cancer is a deeply malignant tumor with high incidence and mortality. Despite the rapid development of diagnosis and treatment technology, abundant patients with lung cancer are still inevitably faced with recurrence and metastasis, contributing to death. Lymphatic metastasis is the first step of distant metastasis and an important prognostic indicator of non-small cell lung cancer. Tumor-induced lymphangiogenesis is involved in the construction of the tumor microenvironment, except promoting malignant proliferation and metastasis of tumor cells, it also plays a crucial role in individual response to treatment, especially immunotherapy. Thus, this article reviews the current research status of lymphatic metastasis in non-small cell lung cancer, in order to provide some insights for the basic research and clinical and translational application in this field.
Collapse
Affiliation(s)
- Xiaofei Zhang
- Cancer Medical Center, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, 210011, China
| | - Li Ma
- Cancer Medical Center, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, 210011, China
| | - Man Xue
- Cancer Medical Center, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, 210011, China
| | - Yanning Sun
- Cancer Medical Center, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, 210011, China
| | - Zhaoxia Wang
- Cancer Medical Center, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, 210011, China.
| |
Collapse
|
3
|
Pal S, Bagchi AK, Stolarz AJ. Real-Time Evaluation of Absolute, Cytosolic, Free Ca2+ and Corresponding Contractility in Isolated, Pressurized Lymph Vessels. J Vis Exp 2024:10.3791/66535. [PMID: 38587372 PMCID: PMC11164129 DOI: 10.3791/66535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/09/2024] Open
Abstract
The lymphatic vasculature, now often referred to as "the third circulation," is located in many vital organ systems. A principal mechanical function of the lymphatic vasculature is to return fluid from extracellular spaces back to the central venous ducts. Lymph transport is mediated by spontaneous rhythmic contractions of lymph vessels (LVs). LV contractions are largely regulated by the cyclic rise and fall of cytosolic, free calcium ([Ca2+]i). This paper presents a method to concurrently calculate changes in absolute concentrations of [Ca2+]i and vessel contractility/rhythmicity in real time in isolated, pressurized LVs. Using isolated rat mesenteric LVs, we studied changes in [Ca2+]i and contractility/rhythmicity in response to drug addition. Isolated LVs were loaded with the ratiometric Ca2+-sensing indicator Fura-2AM, and video microscopy coupled with edge-detection software was used to capture [Ca2+]i and diameter measurements continuously in real time. The Fura-2AM signal from each LV was calibrated to the minimum and maximum signal for each vessel and used to calculate absolute [Ca2+]i. Diameter measurements were used to calculate contractile parameters (amplitude, end diastolic diameter, end systolic diameter, calculated flow) and rhythmicity (frequency, contraction time, relaxation time) and correlated with absolute [Ca2+]i measurements.
Collapse
Affiliation(s)
- Soumiya Pal
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences
| | - Ashim K Bagchi
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences
| | - Amanda J Stolarz
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences;
| |
Collapse
|
4
|
Trivedi A, Lu TM, Summers B, Kim K, Rhee AJ, Houghton S, Byers DE, Lis R, Reed HO. Lung lymphatic endothelial cells undergo inflammatory and prothrombotic changes in a model of chronic obstructive pulmonary disease. Front Cell Dev Biol 2024; 12:1344070. [PMID: 38440076 PMCID: PMC10910060 DOI: 10.3389/fcell.2024.1344070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 01/29/2024] [Indexed: 03/06/2024] Open
Abstract
The lymphatic vasculature regulates lung homeostasis through drainage of fluid and trafficking of immune cells and plays a key role in the response to lung injury in several disease states. We have previously shown that lymphatic dysfunction occurs early in the pathogenesis of chronic obstructive pulmonary disease (COPD) caused by cigarette smoke (CS) and that this is associated with increased thrombin and fibrin clots in lung lymph. However, the direct effects of CS and thrombin on lymphatic endothelial cells (LECs) in COPD are not entirely clear. Studies of the blood vasculature have shown that COPD is associated with increased thrombin after CS exposure that causes endothelial dysfunction characterized by changes in the expression of coagulation factors and leukocyte adhesion proteins. Here, we determined whether similar changes occur in LECs. We used an in vitro cell culture system and treated human lung microvascular lymphatic endothelial cells with cigarette smoke extract (CSE) and/or thrombin. We found that CSE treatment led to decreased fibrinolytic activity in LECs, which was associated with increased expression of plasminogen activator inhibitor 1 (PAI-1). LECs treated with both CSE and thrombin together had a decreased expression of tissue factor pathway inhibitor (TFPI) and increased expression of adhesion molecules. RNA sequencing of lung LECs isolated from mice exposed to CS also showed upregulation of prothrombotic and inflammatory pathways at both acute and chronic exposure time points. Analysis of publicly available single-cell RNA sequencing of LECs as well as immunohistochemical staining of lung tissue from COPD patients supported these data and showed increased expression of inflammatory markers in LECs from COPD patients compared to those from controls. These studies suggest that in parallel with blood vessels, the lymphatic endothelium undergoes inflammatory changes associated with CS exposure and increased thrombin in COPD. Further research is needed to unravel the mechanisms by which these changes affect lymphatic function and drive tissue injury in COPD.
Collapse
Affiliation(s)
- Anjali Trivedi
- Department of Medicine, Division of Pulmonary and Critical Care, Weill Cornell Medicine, New York, NY, United States
| | - Tyler M. Lu
- Ansary Stem Cell Institute, Division of Regenerative Medicine, Department of Medicine, Weill Cornell Medicine, New York, NY, United States
- Ronald O. Perelman and Claudia Cohen Center for Reproductive Medicine, Weill Cornell Medicine, New York, NY, United States
- Molecular and Cellular Biology Program, SUNY Downstate School of Graduate Studies, Brooklyn, NY, United States
| | - Barbara Summers
- Department of Medicine, Division of Pulmonary and Critical Care, Weill Cornell Medicine, New York, NY, United States
| | - Kihwan Kim
- Department of Medicine, Division of Pulmonary and Critical Care, Weill Cornell Medicine, New York, NY, United States
| | - Alexander J. Rhee
- Ansary Stem Cell Institute, Division of Regenerative Medicine, Department of Medicine, Weill Cornell Medicine, New York, NY, United States
| | - Sean Houghton
- Ansary Stem Cell Institute, Division of Regenerative Medicine, Department of Medicine, Weill Cornell Medicine, New York, NY, United States
| | - Derek E. Byers
- Department of Medicine, Division of Pulmonary and Critical Care, Washington University School of Medicine, St. Louis, MO, United States
| | - Raphaël Lis
- Ansary Stem Cell Institute, Division of Regenerative Medicine, Department of Medicine, Weill Cornell Medicine, New York, NY, United States
- Ronald O. Perelman and Claudia Cohen Center for Reproductive Medicine, Weill Cornell Medicine, New York, NY, United States
| | - Hasina Outtz Reed
- Department of Medicine, Division of Pulmonary and Critical Care, Weill Cornell Medicine, New York, NY, United States
- Department of Cell and Developmental Biology, Weill Cornell Medicine, New York, NY, United States
| |
Collapse
|
5
|
Chakraborty A, Kim A, AlAbdullatif S, Campbell JD, Alekseyev YO, Kaplan U, Dambal V, Ligresti G, Trojanowska M. Endothelial Erg Regulates Expression of Pulmonary Lymphatic Junctional and Inflammation Genes in Mouse Lungs Impacting Lymphatic Transport. RESEARCH SQUARE 2024:rs.3.rs-3808970. [PMID: 38343832 PMCID: PMC10854286 DOI: 10.21203/rs.3.rs-3808970/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/22/2024]
Abstract
The ETS transcription factor ERG is a master regulator of endothelial gene specificity and highly enriched in the capillary, vein, and arterial endothelial cells. ERG expression is critical for endothelial barrier function, permeability, and vascular inflammation. A dysfunctional vascular endothelial ERG has been shown to impair lung capillary homeostasis, contributing to pulmonary fibrosis as previously observed in IPF lungs. Our preliminary observations indicate that lymphatic endothelial cells (LEC) in the human IPF lung also lack ERG. To understand the role of ERG in pulmonary LECs, we developed LEC-specific inducible Erg-CKO and Erg-GFP-CKO conditional knockout (CKO) mice under Prox1 promoter. Whole lung microarray analysis, flow cytometry, and qPCR confirmed an inflammatory and pro-lymphvasculogenic predisposition in Erg-CKO lung. FITC-Dextran tracing analysis showed an increased pulmonary interstitial lymphatic fluid transport from the lung to the axial lymph node. Single-cell transcriptomics confirmed that genes associated with cell junction integrity were downregulated in Erg-CKO pre-collector and collector LECs. Integrating Single-cell transcriptomics and CellChatDB helped identify LEC specific communication pathways contributing to pulmonary inflammation, trans-endothelial migration, inflammation, and Endo-MT in Erg-CKO lung. Our findings suggest that downregulation of lymphatic Erg crucially affects LEC function, LEC permeability, pulmonary LEC communication pathways and lymphatic transcriptomics.
Collapse
Affiliation(s)
- Adri Chakraborty
- Arthritis & Autoimmune Diseases Research Centre, Department of Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Alex Kim
- Arthritis & Autoimmune Diseases Research Centre, Department of Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Salam AlAbdullatif
- Division of Computational Biomedicine, Department of Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Joshua D Campbell
- Division of Computational Biomedicine, Department of Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Yuriy O Alekseyev
- Department of Pathology and Laboratory Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Ulas Kaplan
- Arthritis & Autoimmune Diseases Research Centre, Department of Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Vrinda Dambal
- Arthritis & Autoimmune Diseases Research Centre, Department of Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Giovanni Ligresti
- Arthritis & Autoimmune Diseases Research Centre, Department of Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Maria Trojanowska
- Arthritis & Autoimmune Diseases Research Centre, Department of Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| |
Collapse
|
6
|
Trivedi A, Reed HO. The lymphatic vasculature in lung function and respiratory disease. Front Med (Lausanne) 2023; 10:1118583. [PMID: 36999077 PMCID: PMC10043242 DOI: 10.3389/fmed.2023.1118583] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 02/23/2023] [Indexed: 03/18/2023] Open
Abstract
The lymphatic vasculature maintains tissue homeostasis via fluid drainage in the form of lymph and immune surveillance due to migration of leukocytes through the lymphatics to the draining lymph nodes. Lymphatic endothelial cells (LECs) form the lymphatic vessels and lymph node sinuses and are key players in shaping immune responses and tolerance. In the healthy lung, the vast majority of lymphatic vessels are found along the bronchovascular structures, in the interlobular septa, and in the subpleural space. Previous studies in both mice and humans have shown that the lymphatics are necessary for lung function from the neonatal period through adulthood. Furthermore, changes in the lymphatic vasculature are observed in nearly all respiratory diseases in which they have been analyzed. Recent work has pointed to a causative role for lymphatic dysfunction in the initiation and progression of lung disease, indicating that these vessels may be active players in pathologic processes in the lung. However, the mechanisms by which defects in lung lymphatic function are pathogenic are understudied, leaving many unanswered questions. A more comprehensive understanding of the mechanistic role of morphological, functional, and molecular changes in the lung lymphatic endothelium in respiratory diseases is a promising area of research that is likely to lead to novel therapeutic targets. In this review, we will discuss our current knowledge of the structure and function of the lung lymphatics and the role of these vessels in lung homeostasis and respiratory disease.
Collapse
Affiliation(s)
- Anjali Trivedi
- Weill Cornell Medical Center, New York, NY, United States
| | - Hasina Outtz Reed
- Weill Cornell Medical Center, New York, NY, United States
- Graduate School of Medical Sciences, Weill Cornell Medicine, New York, NY, United States
- *Correspondence: Hasina Outtz Reed,
| |
Collapse
|
7
|
Ashworth ET, Burrowes KS, Clark AR, Ebrahimi BSS, Tawhai MH. An in silico approach to understanding the interaction between cardiovascular and pulmonary lymphatic dysfunction. Am J Physiol Heart Circ Physiol 2023; 324:H318-H329. [PMID: 36607796 DOI: 10.1152/ajpheart.00591.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The lung is extremely sensitive to interstitial fluid balance, yet the role of pulmonary lymphatics in lung fluid homeostasis and its interaction with cardiovascular pressures is poorly understood. In health, there is a fine balance between fluid extravasated from the pulmonary capillaries into the interstitium and the return of fluid to the circulation via the lymphatic vessels. This balance is maintained by an extremely interdependent system governed by pressures in the fluids (air and blood) and tissue (interstitium), lung motion during breathing, and the permeability of the tissues. Chronic elevation in left atrial pressure (LAP) due to left heart disease increases the capillary blood pressure. The consequent fluid accumulation in the delicate lung tissue increases its weight, decreases its compliance, and impairs gas exchange. This interdependent system is difficult, if not impossible, to study experimentally. Computational modeling provides a unique perspective to analyze fluid movement in the cardiopulmonary vasculature in health and disease. We have developed an initial in silico model of pulmonary lymphatic function using an anatomically structured model to represent ventilation and perfusion and underlying biophysical laws governing fluid transfer at the interstitium. This novel model was tested against increased LAP and noncardiogenic effects (increased permeability). The model returned physiologically reasonable values for all applications, predicting pulmonary edema when LAP reached 25 mmHg and with increased permeability.NEW & NOTEWORTHY This model presents a novel approach to understanding the interaction between cardiac dysfunction and pulmonary lymphatic function, using anatomically structured models and biophysical equations to estimate regional variation in fluid transport from blood to interstitial and lymphatic flux. This fluid transport model brings together advanced models of ventilation, perfusion, and lung mechanics to produce a detailed model of fluid transport in health and various altered pathological conditions.
Collapse
Affiliation(s)
- E T Ashworth
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand
| | - K S Burrowes
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand
| | - A R Clark
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand
| | | | - M H Tawhai
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand
| |
Collapse
|
8
|
Zhou Y, Du J, Ma C, Zhao F, Li H, Ping G, Wang W, Luo J, Chen L, Zhang K, Zhang S. Mathematical models for intraoperative prediction of metastasis to regional lymph nodes in patients with clinical stage I non-small cell lung cancer. Medicine (Baltimore) 2022; 101:e30362. [PMID: 36281188 PMCID: PMC9592279 DOI: 10.1097/md.0000000000030362] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
It remains challenging to determine the regions of metastasis to lymph nodes during operation for clinical stage I non-small cell lung cancer (NSCLC). This study aimed to establish intraoperative mathematical models with nomograms for predicting the hilar-intrapulmonary node metastasis (HNM) and the mediastinal node metastasis (MNM) in patients with clinical stage I NSCLC. The clinicopathological variables of 585 patients in a derivation cohort who underwent thoracoscopic lobectomy with complete lymph node dissection were retrospectively analyzed for their association with the HNM or the MNM. After analyzing the variables, we developed multivariable logistic models with nomograms to estimate the risk of lymph node metastasis in different regions. The predictive efficacy was then validated in a validation cohort of 418 patients. It was confirmed that carcinoembryonic antigen (>5.75 ng/mL), CYFRA211 (>2.85 ng/mL), the maximum diameter of tumor (>2.75 cm), tumor differentiation (grade III), bronchial mucosa and cartilage invasion, and vascular invasion were predictors of HNM, and carcinoembryonic antigen (>8.25 ng/mL), CYFRA211 (>2.95 ng/mL), the maximum diameter of tumor (>2.75 cm), tumor differentiation (grade III), bronchial mucosa and cartilage invasion, vascular invasion, and visceral pleural invasion were predictors of MNM. The validation of the prediction models based on the above results demonstrated good discriminatory power. Our predictive models are helpful in the decision-making process of specific therapeutic strategies for the regional lymph node metastasis in patients with clinical stage I NSCLC.
Collapse
Affiliation(s)
- Yue Zhou
- Department of Thoracic and Cardiovascular Surgery, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Junjie Du
- Department of Thoracic and Cardiovascular Surgery, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Changhui Ma
- Department of Thoracic and Cardiovascular Surgery, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Fei Zhao
- Department of Thoracic and Cardiovascular Surgery, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Hai Li
- Department of Pathology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Guoqiang Ping
- Department of Pathology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Wei Wang
- Department of Thoracic and Cardiovascular Surgery, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Jinhua Luo
- Department of Thoracic and Cardiovascular Surgery, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Liang Chen
- Department of Thoracic and Cardiovascular Surgery, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Kai Zhang
- Pancreas Center, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Shijiang Zhang
- Department of Thoracic and Cardiovascular Surgery, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
- *Correspondence: Shijiang Zhang, No. 300 Guangzhou Road, Nanjing 210029, China (e-mail: )
| |
Collapse
|
9
|
Janardhan HP, Dresser K, Hutchinson L, Trivedi CM. Pathological MAPK activation-mediated lymphatic basement membrane disruption causes lymphangiectasia that is treatable with ravoxertinib. JCI Insight 2022; 7:153033. [PMID: 36073544 PMCID: PMC9536262 DOI: 10.1172/jci.insight.153033] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 07/27/2022] [Indexed: 11/17/2022] Open
Abstract
Lymphangiectasia, an anomalous dilation of lymphatic vessels first described in the 17th century, is frequently associated with chylous effusion, respiratory failure, and high mortality in young patients, yet the underlying molecular pathogenesis and effective treatments remain elusive. Here, we identify an unexpected causal link between MAPK activation and defective development of the lymphatic basement membrane that drives lymphangiectasia. Human pathological tissue samples from patients diagnosed with lymphangiectasia revealed sustained MAPK activation within lymphatic endothelial cells. Endothelial KRASG12D-mediated sustained MAPK activation in newborn mice caused severe pulmonary and intercostal lymphangiectasia, accumulation of chyle in the pleural space, and complete lethality. Pathological activation of MAPK in murine vasculature inhibited the Nfatc1-dependent genetic program required for laminin interactions, collagen crosslinking, and anchoring fibril formation, driving defective development of the lymphatic basement membrane. Treatment with ravoxertinib, a pharmacological inhibitor of MAPK, reverses nuclear-to-cytoplasmic localization of Nfatc1, basement membrane development defects, lymphangiectasia, and chyle accumulation, ultimately improving survival of endothelial KRAS mutant neonatal mice. These results reveal defective lymphatic basement membrane assembly and composition as major causes of thoracic lymphangiectasia and provide a potential treatment.
Collapse
Affiliation(s)
| | | | | | - Chinmay M Trivedi
- Division of Cardiovascular Medicine.,Department of Medicine.,Department of Molecular, Cell, and Cancer Biology, and.,Li-Weibo Institute for Rare Diseases Research, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| |
Collapse
|
10
|
Lu M, Cavazzoni E, Selvadurai H, Burren JM. Paediatric acute respiratory distress syndrome: consider the role of lymphatics. BMJ Case Rep 2022; 15:e245543. [PMID: 35896306 PMCID: PMC9335033 DOI: 10.1136/bcr-2021-245543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/10/2022] [Indexed: 11/04/2022] Open
Abstract
We present a case of a 7-day-old male infant with severe respiratory disease requiring venoarterial extracorporeal membrane oxygenation therapy with evidence of lymphangiectasia on lung biopsy. Differentiating primary versus secondary lymphangiectasis in this patient remains a riddle despite extensive investigations including an infective screen, lung biopsy and whole-genome sequencing. In addition to the standard therapies used in paediatric acute respiratory distress syndrome, such as lung-protective ventilation, permissive hypoxaemia and hypercarbia, nursing in the prone position, early use of muscle relaxants, rescue intravenous corticosteroids and broad-spectrum antibiotics, the patient was also given octreotide despite the absence of a chylothorax based on the theoretical benefit of altering the lymphatic flow. His case raises an interesting discussion around the role of lymphatics in the pathophysiology of paediatric and adult respiratory distress syndrome and prompts the exploration of novel agents which may affect lymphatic vessels used as an adjunctive therapy.
Collapse
Affiliation(s)
- Mimi Lu
- Respiratory and Sleep Department, Children's Hospital at Westmead, Westmead, New South Wales, Australia
- The University of Sydney Discipline of Child and Adolescent Health, Westmead, New South Wales, Australia
| | - Elena Cavazzoni
- Paediatric Intensive Care Unit, Children's Hospital at Westmead, Westmead, New South Wales, Australia
| | - Hiran Selvadurai
- Respiratory and Sleep Department, Children's Hospital at Westmead, Westmead, New South Wales, Australia
- The University of Sydney Discipline of Child and Adolescent Health, Westmead, New South Wales, Australia
| | - Juerg Martin Burren
- Paediatric Intensive Care Unit, Children's Hospital at Westmead, Westmead, New South Wales, Australia
| |
Collapse
|
11
|
Summers BD, Kim K, Clement CC, Khan Z, Thangaswamy S, McCright J, Maisel K, Zamora S, Quintero S, Racanelli AC, Redmond D, D'Armiento J, Yang J, Kuang A, Monticelli L, Kahn ML, Choi AMK, Santambrogio L, Reed HO. Lung lymphatic thrombosis and dysfunction caused by cigarette smoke exposure precedes emphysema in mice. Sci Rep 2022; 12:5012. [PMID: 35322079 PMCID: PMC8943143 DOI: 10.1038/s41598-022-08617-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 03/09/2022] [Indexed: 11/21/2022] Open
Abstract
The lymphatic vasculature is critical for lung function, but defects in lymphatic function in the pathogenesis of lung disease is understudied. In mice, lymphatic dysfunction alone is sufficient to cause lung injury that resembles human emphysema. Whether lymphatic function is disrupted in cigarette smoke (CS)-induced emphysema is unknown. In this study, we investigated the effect of CS on lung lymphatic function. Analysis of human lung tissue revealed significant lung lymphatic thrombosis in patients with emphysema compared to control smokers that increased with disease severity. In a mouse model, CS exposure led to lung lymphatic thrombosis, decreased lymphatic drainage, and impaired leukocyte trafficking that all preceded the development of emphysema. Proteomic analysis demonstrated an increased abundance of coagulation factors in the lymph draining from the lungs of CS-exposed mice compared to control mice. In addition, in vitro assays demonstrated a direct effect of CS on lymphatic endothelial cell integrity. These data show that CS exposure results in lung lymphatic dysfunction and a shift in thoracic lymph towards a prothrombic state. Furthermore, our data suggest that lymphatic dysfunction is due to effects of CS on the lymphatic vasculature that precede emphysema. These studies demonstrate a novel component of CS-induced lung injury that occurs early in the pathogenesis of emphysema.
Collapse
Affiliation(s)
| | - Kihwan Kim
- Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Cristina C Clement
- Department of Radiation Oncology and Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Zohaib Khan
- Department of Radiation Oncology and Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Sangeetha Thangaswamy
- Department of Radiation Oncology and Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Jacob McCright
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, USA
| | - Katharina Maisel
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, USA
| | - Sofia Zamora
- Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | | | | | - David Redmond
- Ansary Stem Cell Institute, Division of Regenerative Medicine, Department of Medicine, Weill Cornell Medicine, New York, USA
| | - Jeanine D'Armiento
- Department of Medicine in Anesthesiology, Columbia University, New York, NY, USA
| | - Jisheng Yang
- Department of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Amy Kuang
- Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | | | - Mark L Kahn
- Department of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | | | - Laura Santambrogio
- Department of Radiation Oncology and Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Hasina Outtz Reed
- Department of Medicine, Weill Cornell Medicine, New York, NY, USA.
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Weill Cornell Medicine, 1300 York Ave, Room 323, New York, NY, 10065, USA.
| |
Collapse
|
12
|
Rockson SG. Comorbidity and Lymphatic Disease: The Lymphatic Continuum Re-Examined. Lymphat Res Biol 2021; 19:17-19. [PMID: 33625889 DOI: 10.1089/lrb.2021.0001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
It has now been ∼20 years since the original Lymphatic Continuum conference was convened, and this continuum has transitioned from a compelling concept to a reality. The explosive growth in our comprehension of lymphatic genetics, development, and function has expanded and modified our traditional views regarding what is, and is not, lymphatic disease. Groundbreaking investigations over the past decade have now defined a large and growing list of pathological conditions in which morphological or function lymphatic alterations can be identified. This list includes atherosclerosis and dyslipidemia, hypertension and other cardiovascular diseases, inflammation and inflammatory bowel disease, obesity, narrow angle glaucoma, and, most recently and compellingly, neurodegenerative disease. The sometimes overlapping but largely disparate nature of these various aforementioned disease categories suggests that the presence, or absence, of structural or functional lymphatic derangements may represent a previously unrecognized unifying influence in the maintenance of health and the promotion of disease. Future investigation of lymphatic mechanisms in disease will likely continue to elucidate the influences of lymphatic dysfunction, perhaps subtle, that can invest other, seemingly unrelated, diseases. In future, such discoveries will provide mechanistic insights and may potentiate the development of a new lymphatic-based approach to human disease diagnosis and therapeutics.
Collapse
Affiliation(s)
- Stanley G Rockson
- Department of Cardiovascular Medicine, Stanford Center for Lymphatic and Venous Disorders, Stanford University School of Medicine, Stanford, CA, USA
| |
Collapse
|
13
|
Burr AC, Velazquez JV, Ulu A, Kamath R, Kim SY, Bilg AK, Najera A, Sultan I, Botthoff JK, Aronson E, Nair MG, Nordgren TM. Lung Inflammatory Response to Environmental Dust Exposure in Mice Suggests a Link to Regional Respiratory Disease Risk. J Inflamm Res 2021; 14:4035-4052. [PMID: 34456580 PMCID: PMC8387588 DOI: 10.2147/jir.s320096] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 08/06/2021] [Indexed: 12/16/2022] Open
Abstract
PURPOSE The Salton Sea, California's largest lake, is designated as an agricultural drainage reservoir. In recent years, the lake has experienced shrinkage due to reduced water sources, increasing levels of aerosolized dusts in surrounding regions. Communities surrounding the Salton Sea have increased asthma prevalence versus the rest of California; however, a connection between dust inhalation and lung health impacts has not been defined. METHODS We used an established intranasal dust exposure murine model to study the lung inflammatory response following single or repetitive (7-day) exposure to extracts of dusts collected in regions surrounding the Salton Sea (SSDE), complemented with in vitro investigations assessing SSDE impacts on the airway epithelium. RESULTS In these investigations, single or repetitive SSDE exposure induced significant lung inflammatory cytokine release concomitant with neutrophil influx. Repetitive SSDE exposure led to significant lung eosinophil recruitment and altered expression of genes associated with allergen-mediated immune response, including Clec4e. SSDE treatment of human bronchial epithelial cells (BEAS-2B) induced inflammatory cytokine production at 5- and 24-hours post-treatment. When BEAS-2B were exposed to protease activity-depleted SSDE (PDSSDE) or treated with SSDE in the context of protease-activated receptor-1 and -2 antagonism, inflammatory cytokine release was decreased. Furthermore, repetitive exposure to PDSSDE led to decreased neutrophil and eosinophilic influx and IL-6 release in mice compared to SSDE-challenged mice. CONCLUSION These investigations demonstrate potent lung inflammatory responses and tissue remodeling in response to SSDE, in part due to environmental proteases found within the dusts. These studies provide the first evidence supporting a link between environmental dust exposure, protease-mediated immune activation, and respiratory disease in the Salton Sea region.
Collapse
Affiliation(s)
- Abigail C Burr
- Division of Biomedical Sciences, University of California Riverside, Riverside, CA, 92521, USA
| | - Jalene V Velazquez
- Division of Biomedical Sciences, University of California Riverside, Riverside, CA, 92521, USA
| | - Arzu Ulu
- Division of Biomedical Sciences, University of California Riverside, Riverside, CA, 92521, USA
| | - Rohan Kamath
- Division of Biomedical Sciences, University of California Riverside, Riverside, CA, 92521, USA
| | - Sang Yong Kim
- Division of Biomedical Sciences, University of California Riverside, Riverside, CA, 92521, USA
| | - Amanpreet K Bilg
- Division of Biomedical Sciences, University of California Riverside, Riverside, CA, 92521, USA
| | - Aileen Najera
- Division of Biomedical Sciences, University of California Riverside, Riverside, CA, 92521, USA
| | - Iman Sultan
- Division of Biomedical Sciences, University of California Riverside, Riverside, CA, 92521, USA
| | - Jon K Botthoff
- Center for Conservation Biology, University of California Riverside, Riverside, CA, 92521, USA
| | - Emma Aronson
- Department of Plant Pathology and Microbiology, University of California Riverside, Riverside, CA, 92521, USA
| | - Meera G Nair
- Division of Biomedical Sciences, University of California Riverside, Riverside, CA, 92521, USA
| | - Tara M Nordgren
- Division of Biomedical Sciences, University of California Riverside, Riverside, CA, 92521, USA
| |
Collapse
|
14
|
The Role of Hydrogen Sulfide in Respiratory Diseases. Biomolecules 2021; 11:biom11050682. [PMID: 34062820 PMCID: PMC8147381 DOI: 10.3390/biom11050682] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 04/27/2021] [Accepted: 04/27/2021] [Indexed: 02/08/2023] Open
Abstract
Respiratory diseases are leading causes of death and disability around the globe, with a diverse range of health problems. Treatment of respiratory diseases and infections has been verified to be thought-provoking because of the increasing incidence and mortality rate. Hydrogen sulfide (H2S) is one of the recognized gaseous transmitters involved in an extensive range of cellular functions, and physiological and pathological processes in a variety of diseases, including respiratory diseases. Recently, the therapeutic potential of H2S for respiratory diseases has been widely investigated. H2S plays a vital therapeutic role in obstructive respiratory disease, pulmonary fibrosis, emphysema, pancreatic inflammatory/respiratory lung injury, pulmonary inflammation, bronchial asthma and bronchiectasis. Although the therapeutic role of H2S has been extensively studied in various respiratory diseases, a concrete literature review will have an extraordinary impact on future therapeutics. This review provides a comprehensive overview of the effective role of H2S in respiratory diseases. Besides, we also summarized H2S production in the lung and its metabolism processes in respiratory diseases.
Collapse
|
15
|
Specialized Pro-Resolving Mediators and the Lymphatic System. Int J Mol Sci 2021; 22:ijms22052750. [PMID: 33803130 PMCID: PMC7963193 DOI: 10.3390/ijms22052750] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 02/26/2021] [Accepted: 03/04/2021] [Indexed: 12/21/2022] Open
Abstract
Diminished lymphatic function and abnormal morphology are common in chronic inflammatory diseases. Recent studies are investigating whether it is possible to target chronic inflammation by promoting resolution of inflammation, in order to enhance lymphatic function and attenuate disease. Resolution of inflammation is an active process regulated by bioactive lipids known as specialized pro-resolving mediators (SPMs). SPMs can modulate leukocyte migration and function, alter cytokine/chemokine release, modify autophagy, among other immune-related activities. Here, we summarize the role of the lymphatics in resolution of inflammation and lymphatic impairment in chronic inflammatory diseases. Furthermore, we discuss the current literature describing the connection between SPMs and the lymphatics, and the possibility of targeting the lymphatics with innovative SPM therapy to promote resolution of inflammation and mitigate disease.
Collapse
|
16
|
Hwang I, Kim JW, Ylaya K, Chung EJ, Kitano H, Perry C, Hanaoka J, Fukuoka J, Chung JY, Hewitt SM. Tumor-associated macrophage, angiogenesis and lymphangiogenesis markers predict prognosis of non-small cell lung cancer patients. J Transl Med 2020; 18:443. [PMID: 33228719 PMCID: PMC7686699 DOI: 10.1186/s12967-020-02618-z] [Citation(s) in RCA: 155] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Accepted: 11/11/2020] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND The tumor microenvironment (TME) is a critical player in tumor progression, metastasis and therapy outcomes. Tumor-associated macrophages (TAMs) are a well-recognized core element of the TME and generally characterized as M2-like macrophages. TAMs are believed to contribute to tumor progression, but the mechanism behind this remains unclear. We aimed to investigate the clinical, angiogenic, and lymphangiogenic significance of TAMs in non-small cell lung cancer (NSCLC). METHODS Utilizing combined immunohistochemistry and digital image analysis, we assessed CD68, CD163, VEGF-A, and VEGF-C expression in 349 patients with NSCLC. Subsequently, the potential association between M2 TAMs and angiogenic VEGF-A and/or lymphangiogenic VEGF-C was evaluated for its prognostic value. Furthermore, the effects of M2 TAMs on angiogenesis and lymphangiogenesis were explored via an in vitro co-culture system. RESULTS CD68 and CD163 expression were found to directly correlate with VEGF-A and/or VEGF-C expression (all p < 0.001). Furthermore, elevated M2 ratio (CD163+/CD68+) was significantly associated with poor overall survival (p = 0.023). Dual expression of M2 ratiohigh and VEGF-Chigh (M2 ratiohighVEGF-Chigh) was correlated with worse overall survival (p = 0.033). Multivariate analysis revealed that M2 ratiohigh [HR (95% CI) = 1.53 (1.01-2.33), p = 0.046] and combined M2 ratiohighVEGF-Chigh expression [HR (95% CI) = 2.01 (1.28-3.16), p = 0.003] were independent predictors of poor overall survival. Notably, we confirmed that M2 macrophages significantly enhanced the protein and mRNA expression of both VEGF-A and VEGF-C, while M1 macrophages induced only mRNA expression of VEGF-A in A549 cells. CONCLUSIONS This study suggests that TAMs are significantly associated with angiogenesis and lymphangiogenesis, contributing to the progression of NSCLC. Furthermore, elevated M2 ratio, similar to combined high M2 ratio and high VEGF-C expression, is a strong indicator of poor prognosis in patients with NSCLC, providing insight for future TAM-based immunotherapy strategies.
Collapse
Affiliation(s)
- Ilseon Hwang
- Experimental Pathology Laboratory, Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, MSC1500, Bethesda, MD, 20892, USA.,Department of Pathology, Keimyung University Scholl of Medicine and Institute for Cancer Research, Dongsan Medical Center, Daegu, 42601, Republic of Korea
| | - Jeong Won Kim
- Experimental Pathology Laboratory, Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, MSC1500, Bethesda, MD, 20892, USA.,Department of Pathology, Kangnam Sacred Heart Hospital, Hallym University College of Medicine, Seoul, 07441, Republic of Korea
| | - Kris Ylaya
- Experimental Pathology Laboratory, Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, MSC1500, Bethesda, MD, 20892, USA
| | - Eun Joo Chung
- Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Haruhisa Kitano
- Department of Thoracic Surgery, Vories Memorial Hospital, Shiga, 523-0806, Japan.,Department of Thoracic Surgery, Shiga University of Medical Science, Otsu, 520-2192, Japan
| | - Candice Perry
- Advanced Biomedical Computational Science, Biomedical Informatics and Data Science, Leidos Biomedical Research, Inc., Frederick, MD, 21702, USA
| | - Jun Hanaoka
- Department of Thoracic Surgery, Shiga University of Medical Science, Otsu, 520-2192, Japan
| | - Junya Fukuoka
- Department of Pathology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, 852-8523, Japan
| | - Joon-Yong Chung
- Experimental Pathology Laboratory, Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, MSC1500, Bethesda, MD, 20892, USA.
| | - Stephen M Hewitt
- Experimental Pathology Laboratory, Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, MSC1500, Bethesda, MD, 20892, USA.
| |
Collapse
|
17
|
Abstract
BACKGROUND Establishing lung lymphatic drainage is thought to be important for successful lung transplantation. To date, there has been a complete absence of knowledge of how lymphatic connections are reestablished after lung transplant, despite evidence suggesting that this does indeed occur. The present study aimed to elucidate whether and how lymphatic anastomosis occurs after lung transplant. METHODS An orthotopic murine model of lung transplant using lymphatic reporter mice and whole mount immunohistochemistry was used to evaluate the lymphatic vasculature and donor-host connections after lung transplantation. RESULTS Immunohistochemistry of transplanted lungs demonstrated robust lymphatic vessels, and functional assays demonstrated lymphatic drainage in the transplanted lung that was comparable with that in native lungs. Lymphatic vessels in the donor lung exhibited active sprouting toward the host at the anastomosis within the first 3 days after lung transplantation, with more numerous and complex lymphatic sprouting developing thereafter. Donor lymphatic vessels were numerous at the site of anastomosis by day 14 after lung transplantation and formed physical connections with host lymphatic vessels, demonstrating a mechanism by which lymphatic drainage is reestablished in the transplanted lung. CONCLUSIONS Lymphatic drainage after lung transplantation is established by active sprouting of donor lymphatic vessels towards the host and the formation of donor-host lymphatic connections at the level of the transplant anastomosis.
Collapse
|
18
|
Emond EC, Bousse A, Brusaferri L, Hutton BF, Thielemans K. Improved PET/CT Respiratory Motion Compensation by Incorporating Changes in Lung Density. IEEE TRANSACTIONS ON RADIATION AND PLASMA MEDICAL SCIENCES 2020. [DOI: 10.1109/trpms.2020.3001094] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
19
|
Briguglio M, Bona A, Porta M, Dell'Osso B, Pregliasco FE, Banfi G. Disentangling the Hypothesis of Host Dysosmia and SARS-CoV-2: The Bait Symptom That Hides Neglected Neurophysiological Routes. Front Physiol 2020; 11:671. [PMID: 32581854 PMCID: PMC7292028 DOI: 10.3389/fphys.2020.00671] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 05/26/2020] [Indexed: 12/20/2022] Open
Abstract
The respiratory condition COVID-19 arises in a human host upon the infection with SARS-CoV-2, a coronavirus that was first acknowledged in Wuhan, China, at the end of December 2019 after its outbreak of viral pneumonia. The full-blown COVID-19 can lead, in susceptible individuals, to premature death because of the massive viral proliferation, hypoxia, misdirected host immunoresponse, microthrombosis, and drug toxicities. Alike other coronaviruses, SARS-CoV-2 has a neuroinvasive potential, which may be associated with early neurological symptoms. In the past, the nervous tissue of patients infected with other coronaviruses was shown to be heavily infiltrated. Patients with SARS-CoV-2 commonly report dysosmia, which has been related to the viral access in the olfactory bulb. However, this early symptom may reflect the nasal proliferation that should not be confused with the viral access in the central nervous system of the host, which can instead be allowed by means of other routes for spreading in most of the neuroanatomical districts. Axonal, trans-synaptic, perineural, blood, lymphatic, or Trojan routes can gain the virus multiples accesses from peripheral neuronal networks, thus ultimately invading the brain and brainstem. The death upon respiratory failure may be also associated with the local inflammation- and thrombi-derived damages to the respiratory reflexes in both the lung neuronal network and brainstem center. Beyond the infection-associated neurological symptoms, long-term neuropsychiatric consequences that could occur months after the host recovery are not to be excluded. While our article does not attempt to fully comprehend all accesses for host neuroinvasion, we aim at stimulating researchers and clinicians to fully consider the neuroinvasive potential of SARS-CoV-2, which is likely to affect the peripheral nervous system targets first, such as the enteric and pulmonary nervous networks. This acknowledgment may shed some light on the disease understanding further guiding public health preventive efforts and medical therapies to fight the pandemic that directly or indirectly affects healthy isolated individuals, quarantined subjects, sick hospitalized, and healthcare workers.
Collapse
Affiliation(s)
- Matteo Briguglio
- IRCCS Orthopedic Institute Galeazzi, Scientific Direction, Milan, Italy
| | - Alberto Bona
- Department of Neurosurgery, ICCS Istituto Clinico Città Studi, Milan, Italy
| | - Mauro Porta
- IRCCS Orthopedic Institute Galeazzi, Movement Disorder Center, Milan, Italy
| | - Bernardo Dell'Osso
- Department of Clinical and Biomedical Sciences Luigi Sacco, ASST Fatebenefratelli-Sacco, University of Milan, Ospedale Sacco Polo Universitario, Milan, Italy
- “Aldo Ravelli” Center for Neurotechnology and Brain Therapeutic, University of Milan, Milan, Italy
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, United States
| | - Fabrizio Ernesto Pregliasco
- IRCCS Orthopedic Institute Galeazzi, Health Management, Milan, Italy
- Department of Biomedical Sciences for Health, University of Milan, Milan, Italy
| | - Giuseppe Banfi
- IRCCS Orthopedic Institute Galeazzi, Scientific Direction, Milan, Italy
- Faculty of Medicine and Surgery, Vita-Salute San Raffaele University, Milan, Italy
| |
Collapse
|
20
|
Shaikh R, Biko DM, Lee EY. MR Imaging Evaluation of Pediatric Lymphatics:: Overview of Techniques and Imaging Findings. Magn Reson Imaging Clin N Am 2019; 27:373-385. [PMID: 30910103 DOI: 10.1016/j.mric.2019.01.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Recent advances in understanding lymphatic disorders have significantly improved noninvasive imaging of the lymphatic circulation, especially in pediatric patients. The ability to obtain high-quality MR imaging using 3-dimensional reconstruction has transformed the display of the lymph vessels and substantially enhanced the ability to diagnose various pediatric lymphatic disorders. Real-time dynamic imaging adds functional information to the assessment. MR imaging is increasingly used, not only to assess but also as a follow-up after lymphatic disorder treatment. This article discusses up-to-date imaging techniques and clinical applications of dynamic magnetic resonance lymphangiography for assessing central conducting lymphatic anomalies.
Collapse
Affiliation(s)
- Raja Shaikh
- Division of Interventional Radiology, Department of Radiology, Boston Children's Hospital, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA.
| | - David M Biko
- Department of Radiology, Children's Hospital of Philadelphia, University of Pennsylvania Perelman School of Medicine, 3401 Civic Center Boulevard, Philadelphia, PA 19104, USA
| | - Edward Y Lee
- Division of Thoracic Imaging, Department of Radiology, Boston Children's Hospital, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA
| |
Collapse
|
21
|
Wen MD, Jiang Y, Huang J, Al-Hawwas M, Dan QQ, Yang RA, Yuan B, Zhao XM, Jiang L, Zhong MM, Xiong LL, Zhang YH. A Novel Role of VEGFC in Cerebral Ischemia With Lung Injury. Front Neurosci 2019; 13:479. [PMID: 31191213 PMCID: PMC6540825 DOI: 10.3389/fnins.2019.00479] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Accepted: 04/26/2019] [Indexed: 02/05/2023] Open
Abstract
Cerebral ischemia (CI) is a severe brain injury resulting in a variety of motor impairments combined with secondary injury in remote organs, especially the lung. This condition occurs due to insufficient blood supply to the brain during infancy. However, it has a molecular linkage that needs to be thoroughly covered. Here, we report on the role of vascular endothelial growth factor C (VEGFC) in lung injury induced by CI. The middle cerebral artery occlusion (MCAO) was depended to establish the animal model of CI. Rats were used and brain ischemia was confirmed through TTC staining. Serum was used for protein chip analysis to study the proteomic interaction. Immunohistochemistry analyses were used to quantify and locate the VEGFC in the lung and brain. The role of VEGFC was detected by siVEGFC technology in SY5Y, HUCEV, and A549 cell lines, under normal and oxygen glucose deprivation (OGD) conditions in vitro. As a result, the TTC staining demonstrated that the model of brain ischemia was successfully established, and MPO experiments reported that lung damage was induced in MCAO rats. VEGFC levels were up-regulated in serum. On the other hand, immunohistochemistry showed that VEGFC increased significantly in the cytoplasm of neurons, the endothelium of small trachea and the lung cells of CI animals. On a functional level, siVEGFC effectively inhibited the proliferation of SY5Y cells and decreased the viability of HUVEC cells in normal cell lines. But under OGD conditions, siVEGFC decreased the growth of HUVEC and increased the viability of A549 cells, while no effect was noticed on SYSY cells. Therefore, we confirmed the different role of VEGFC played in neurons and lung cells in cerebral ischemia-reperfusion injury. These findings may contribute to the understanding the molecular linkage of brain ischemia and lung injury, which therefore provides a new idea for the therapeutic approach to cerebral ischemia-reperfusion.
Collapse
Affiliation(s)
- Mu-Dong Wen
- Department of Respiration, The First People's Hospital of Yunnan Province, Kunming, China
| | - Ya Jiang
- Laboratory Zoology Department, Institute of Neuroscience, Kunming Medical University, Kunming, China
| | - Jin Huang
- Laboratory Zoology Department, Institute of Neuroscience, Kunming Medical University, Kunming, China
| | - Mohammed Al-Hawwas
- School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, SA, Australia
| | - Qi-Qin Dan
- Institute of Neurological Disease, Translational Neuroscience Center, West China Hospital, Sichuan University, Chengdu, China
| | - Rui-An Yang
- Department of Respiration, The First People's Hospital of Yunnan Province, Kunming, China
| | - Bing Yuan
- Department of Respiration, The First People's Hospital of Yunnan Province, Kunming, China
| | - Xiao-Ming Zhao
- Institute of Neurological Disease, Translational Neuroscience Center, West China Hospital, Sichuan University, Chengdu, China
| | - Ling Jiang
- Institute of Neurological Disease, Translational Neuroscience Center, West China Hospital, Sichuan University, Chengdu, China
| | - Ming-Mei Zhong
- Department of Respiration, The First People's Hospital of Yunnan Province, Kunming, China
| | - Liu-Lin Xiong
- Department of Anesthesiology, National Traditional Chinese Medicine Clinical Research Base and Western Medicine Translational Medicine Research Center, Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, China.,School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, SA, Australia
| | - Yun-Hui Zhang
- Department of Respiration, The First People's Hospital of Yunnan Province, Kunming, China
| |
Collapse
|
22
|
Norman TA, Gower AC, Chen F, Fine A. Transcriptional landscape of pulmonary lymphatic endothelial cells during fetal gestation. PLoS One 2019; 14:e0216795. [PMID: 31083674 PMCID: PMC6513083 DOI: 10.1371/journal.pone.0216795] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Accepted: 04/29/2019] [Indexed: 02/06/2023] Open
Abstract
The genetic programs responsible for pulmonary lymphatic maturation prior to birth are not known. To address this gap in knowledge, we developed a novel cell sorting strategy to collect fetal pulmonary lymphatic endothelial cells (PLECs) for global transcriptional profiling. We identified PLECs based on their unique cell surface immunophenotype (CD31+/Vegfr3+/Lyve1+/Pdpn+) and isolated them from murine lungs during late gestation (E16.5, E17.5, E18.5). Gene expression profiling was performed using whole-genome microarrays, and 1,281 genes were significantly differentially expressed with respect to time (FDR q < 0.05) and grouped into six clusters. Two clusters containing a total of 493 genes strongly upregulated at E18.5 were significantly enriched in genes with functional annotations corresponding to innate immune response, positive regulation of angiogenesis, complement & coagulation cascade, ECM/cell-adhesion, and lipid metabolism. Gene Set Enrichment Analysis identified several pathways coordinately upregulated during late gestation, the strongest of which was the type-I IFN-α/β signaling pathway. Upregulation of canonical interferon target genes was confirmed by qRT-PCR and in situ hybridization in E18.5 PLECs. We also identified transcriptional events consistent with a prenatal PLEC maturation program. This PLEC-specific program included individual genes (Ch25h, Itpkc, Pcdhac2 and S1pr3) as well as a set of chemokines and genes containing an NF-κB binding site in their promoter. Overall, this work reveals transcriptional insights into the genes, signaling pathways and biological processes associated with pulmonary lymphatic maturation in the fetal lung.
Collapse
Affiliation(s)
- Timothy A Norman
- Pulmonary Center, Boston University School of Medicine, Boston, Massachusetts, United States of America
- Pathology & Laboratory Medicine, Boston University School of Medicine, Boston, Massachusetts, United States of America
| | - Adam C Gower
- Clinical and Translational Science Institute, Boston University School of Medicine, Boston, Massachusetts, United States of America
| | - Felicia Chen
- Pulmonary Center, Boston University School of Medicine, Boston, Massachusetts, United States of America
| | - Alan Fine
- Pulmonary Center, Boston University School of Medicine, Boston, Massachusetts, United States of America
- Boston Veteran's Hospital, West Roxbury, Massachusetts, United States of America
| |
Collapse
|
23
|
Reed HO, Wang L, Sonett J, Chen M, Yang J, Li L, Aradi P, Jakus Z, D'Armiento J, Hancock WW, Kahn ML. Lymphatic impairment leads to pulmonary tertiary lymphoid organ formation and alveolar damage. J Clin Invest 2019; 129:2514-2526. [PMID: 30946031 DOI: 10.1172/jci125044] [Citation(s) in RCA: 82] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The lung is a specialized barrier organ that must tightly regulate interstitial fluid clearance and prevent infection in order to maintain effective gas exchange. Lymphatic vessels are important for these functions in other organs, but their roles in the lung have not been fully defined. In the present study, we addressed how the lymphatic vasculature participates in lung homeostasis. Studies using mice carrying a lymphatic reporter allele revealeded that, in contrast to other organs, lung lymphatic collecting vessels lack smooth muscle cells entirely, suggesting that forward lymph flow is highly dependent on movement and changes in pressure associated with respiration. Functional studies using CLEC2-deficient mice in which lymph flow is impaired due to loss of lympho-venous hemostasis or using inducible lung-specific ablation of lymphatic endothelial cells in a lung transplant model revealeded that loss of lymphatic function leads to an inflammatory state characterized by the formation of tertiary lymphoid organs (TLOs). In addition, impaired lymphatic flow in mice resulteds in hypoxia and features of lung injury that resemble emphysema. These findings reveal both a lung-specific mechanism of lymphatic physiology and a lung-specific consequence of lymphatic dysfunction that may contribute to chronic lung diseases that arise in association with TLO formation.
Collapse
Affiliation(s)
- Hasina Outtz Reed
- Department of Medicine and Division of Pulmonary and Critical Care.,Department of Medicine and Cardiovascular Institute, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Liqing Wang
- Department of Pathology and Laboratory Medicine, Division of Transplant Immunology, Children's Hospital of Philadelphia and University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Jarrod Sonett
- Department of Anesthesiology, Center for Molecular Pulmonary Disease, College of Physicians and Surgeons, Columbia University, New York, New York, USA
| | - Mei Chen
- Department of Medicine and Cardiovascular Institute, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Jisheng Yang
- Department of Medicine and Cardiovascular Institute, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Larry Li
- Department of Medicine and Cardiovascular Institute, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Petra Aradi
- Department of Physiology, Semmelweis University School of Medicine, Budapest, Hungary.,MTA-SE "Lendület" Lymphatic Physiology Research Group of the Hungarian Academy of Sciences and the Semmelweis University, Budapest, Hungary
| | - Zoltan Jakus
- Department of Physiology, Semmelweis University School of Medicine, Budapest, Hungary.,MTA-SE "Lendület" Lymphatic Physiology Research Group of the Hungarian Academy of Sciences and the Semmelweis University, Budapest, Hungary
| | - Jeanine D'Armiento
- Department of Anesthesiology, Center for Molecular Pulmonary Disease, College of Physicians and Surgeons, Columbia University, New York, New York, USA
| | - Wayne W Hancock
- Department of Pathology and Laboratory Medicine, Division of Transplant Immunology, Children's Hospital of Philadelphia and University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Mark L Kahn
- Department of Medicine and Cardiovascular Institute, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
24
|
Ichikawa T, Panariti A, Audusseau S, Mogas AK, Olivenstein R, Chakir J, Laviolette M, Allakhverdi Z, Al Heialy S, Martin JG, Hamid Q. Effect of bronchial thermoplasty on structural changes and inflammatory mediators in the airways of subjects with severe asthma. Respir Med 2019; 150:165-172. [PMID: 30961946 DOI: 10.1016/j.rmed.2019.03.005] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 03/14/2019] [Accepted: 03/15/2019] [Indexed: 12/20/2022]
Abstract
BACKGROUND Bronchial thermoplasty (BT) is a novel technique used in the treatment of subjects with severe refractory asthma. Radiofrequency is provided to airway walls during bronchoscopy in order to reduce airway remodeling. Several clinical studies have reported an improvement in subjects' symptoms following BT. However, how BT affects the airway architectures and inflammatory mediators in the airways has not been yet fully elucidated. METHODS Fourteen subjects with severe asthma were recruited in this study according to the criteria of ATS severe asthma definition. The study subjects undertook bronchial biopsy during the bronchoscopy procedure at baseline and 6 weeks after the initial BT treatment. The obtained samples were stained with antibodies for α-smooth muscle actin (α-SMA); protein gene product (PGP) 9.5, a specific nerve marker; von Willebrand factor (vWF), a marker for blood vessels; interleukin-17A (IL-17A) and transforming growth factor-β1 (TGF-β1). RESULTS The expression of α-SMA and PGP9.5 were significantly reduced post-BT. There was no significant difference in the number of blood vessels between baseline and post-BT. In addition, BT did not affect the production of IL-17A and TGF-β1 in the airways. The changes in the expression of α-SMA and PGP9.5 had no significant correlation with the improvement of pulmonary function. CONCLUSION and Clinical Relevance: This study suggests that BT reduces airway smooth muscle mass and the airway innervation without affecting vasculature and the production of inflammatory mediators in the airways of subjects with severe asthma.
Collapse
Affiliation(s)
- Tomohiro Ichikawa
- Meakins-Christie Laboratories, Research Institute of the McGill University Health Center, Montreal, Quebec, Canada; Department of Respiratory Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Alice Panariti
- Meakins-Christie Laboratories, Research Institute of the McGill University Health Center, Montreal, Quebec, Canada
| | - Severine Audusseau
- Meakins-Christie Laboratories, Research Institute of the McGill University Health Center, Montreal, Quebec, Canada
| | - Andrea Karen Mogas
- Meakins-Christie Laboratories, Research Institute of the McGill University Health Center, Montreal, Quebec, Canada
| | - Ronald Olivenstein
- Meakins-Christie Laboratories, Research Institute of the McGill University Health Center, Montreal, Quebec, Canada
| | - Jamila Chakir
- Institut universitaire de cardiologie et de pneumologie de Quebec, Université Laval, Quebec, Quebec, Canada
| | - Michel Laviolette
- Institut universitaire de cardiologie et de pneumologie de Quebec, Université Laval, Quebec, Quebec, Canada
| | - Zoulfia Allakhverdi
- Meakins-Christie Laboratories, Research Institute of the McGill University Health Center, Montreal, Quebec, Canada
| | - Saba Al Heialy
- College of Medicine, Mohammed bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates
| | - James G Martin
- Meakins-Christie Laboratories, Research Institute of the McGill University Health Center, Montreal, Quebec, Canada
| | - Qutayba Hamid
- College of Medicine, University of Sharjah, Sharjah, United Arab Emirates; Meakins-Christie Laboratories, Research Institute of the McGill University Health Center, Montreal, Quebec, Canada.
| |
Collapse
|
25
|
Wong BW, Zecchin A, García-Caballero M, Carmeliet P. Emerging Concepts in Organ-Specific Lymphatic Vessels and Metabolic Regulation of Lymphatic Development. Dev Cell 2018; 45:289-301. [PMID: 29738709 DOI: 10.1016/j.devcel.2018.03.021] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Revised: 12/12/2017] [Accepted: 03/26/2018] [Indexed: 02/08/2023]
Abstract
The lymphatic system has been less well characterized than the blood vascular system; however, work in recent years has uncovered novel regulators and non-venous lineages that contribute to lymphatic formation in various organs. Further, the identification of organ-specific lymphatic beds underscores their potential interaction with organ development and function, and highlights the possibility of targeting these organ-specific lymphatics beds in disease. This review focuses on newly described metabolic and epigenetic regulators of lymphangiogenesis and the interplay between lymphatic development and function in a number of major organ systems.
Collapse
Affiliation(s)
- Brian W Wong
- Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology, Leuven Cancer Institute, KU Leuven, Herestraat 49 - B912, Leuven 3000, Belgium; Laboratory of Angiogenesis and Vascular Metabolism, VIB-KU Leuven Center for Cancer Biology, VIB, Leuven 3000, Belgium
| | - Annalisa Zecchin
- Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology, Leuven Cancer Institute, KU Leuven, Herestraat 49 - B912, Leuven 3000, Belgium; Laboratory of Angiogenesis and Vascular Metabolism, VIB-KU Leuven Center for Cancer Biology, VIB, Leuven 3000, Belgium
| | - Melissa García-Caballero
- Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology, Leuven Cancer Institute, KU Leuven, Herestraat 49 - B912, Leuven 3000, Belgium; Laboratory of Angiogenesis and Vascular Metabolism, VIB-KU Leuven Center for Cancer Biology, VIB, Leuven 3000, Belgium
| | - Peter Carmeliet
- Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology, Leuven Cancer Institute, KU Leuven, Herestraat 49 - B912, Leuven 3000, Belgium; Laboratory of Angiogenesis and Vascular Metabolism, VIB-KU Leuven Center for Cancer Biology, VIB, Leuven 3000, Belgium.
| |
Collapse
|
26
|
Weber E, Sozio F, Borghini A, Sestini P, Renzoni E. Pulmonary lymphatic vessel morphology: a review. Ann Anat 2018; 218:110-117. [PMID: 29679722 DOI: 10.1016/j.aanat.2018.02.011] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Revised: 02/07/2018] [Accepted: 02/28/2018] [Indexed: 01/02/2023]
Abstract
Our understanding of lymphatic vessels has been advanced by the recent identification of relatively specific lymphatic endothelium markers, including Prox-1, VEGFR3, podoplanin and LYVE-1. The use of lymphatic markers has led to the observation that, contrary to previous assumptions, human lymphatic vessels extend deep inside the pulmonary lobule, either in association with bronchioles, intralobular arterioles or small pulmonary veins. Pulmonary lymphatic vessels may thus be classified into pleural, interlobular (in interlobular septa) and intralobular. Intralobular lymphatic vessels may be further subdivided in: bronchovascular (associated with a bronchovascular bundle), perivascular (associated with a blood vessel), peribronchiolar (associated with a bronchiole), and interalveolar (in interalveolar septa). Most of the intralobular lymphatic vessels are in close contact with a blood vessel, either alone or within a bronchovascular bundle. A minority is associated with a bronchiole, and small lymphatics are occasionally present even in interalveolar septa, seemingly independent of blood vessels or bronchioles. The lymphatics of the interlobular septa often contain valves, are usually associated with the pulmonary veins, and connect with the pleural lymphatics. The large lymphatics associated with bronchovascular bundles have similar characteristics to pleural and interlobular lymphatics and may be considered conducting vessels. The numerous small perivascular lymphatics and the few peribronchiolar ones that are found inside the lobule are probably the absorbing compartment of the lung responsible for maintaining the alveolar interstitium relatively dry in order to provide a minimal thickness of the air-blood barrier and thus optimize gas diffusion. These lymphatic populations could be differentially involved in the pathogenesis of diseases preferentially involving distinct lung compartments.
Collapse
Affiliation(s)
- E Weber
- Dept. of Molecular and Developmental Medicine, University of Siena, via A.Moro 2, 53100 Siena, Italy
| | - F Sozio
- Dept. of Molecular and Developmental Medicine, University of Siena, via A.Moro 2, 53100 Siena, Italy
| | - A Borghini
- Dept. of Molecular and Developmental Medicine, University of Siena, via A.Moro 2, 53100 Siena, Italy
| | - P Sestini
- Dept. of Medicine, Surgery and Neuroscience, University of Siena, viale Bracci 16, 53100 Siena, Italy
| | - E Renzoni
- ILD Unit Royal Brompton Hpospital,Sydney Street SW3 6LR, London, UK.
| |
Collapse
|
27
|
Cuplov V, Holman BF, McClelland J, Modat M, Hutton BF, Thielemans K. Issues in quantification of registered respiratory gated PET/CT in the lung. ACTA ACUST UNITED AC 2017; 63:015007. [DOI: 10.1088/1361-6560/aa950b] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
28
|
Kropski JA, Richmond BW, Gaskill CF, Foronjy RF, Majka SM. Deregulated angiogenesis in chronic lung diseases: a possible role for lung mesenchymal progenitor cells (2017 Grover Conference Series). Pulm Circ 2017; 8:2045893217739807. [PMID: 29040010 PMCID: PMC5731726 DOI: 10.1177/2045893217739807] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Chronic lung disease (CLD), including pulmonary fibrosis (PF) and chronic obstructive pulmonary disease (COPD), is the fourth leading cause of mortality worldwide. Both are debilitating pathologies that impede overall tissue function. A common co-morbidity in CLD is vasculopathy, characterized by deregulated angiogenesis, remodeling, and loss of microvessels. This substantially worsens prognosis and limits survival, with most current therapeutic strategies being largely palliative. The relevance of angiogenesis, both capillary and lymph, to the pathophysiology of CLD has not been resolved as conflicting evidence depicts angiogenesis as both reparative or pathologic. Therefore, we must begin to understand and model the underlying pathobiology of pulmonary vascular deregulation, alone and in response to injury induced disease, to define cell interactions necessary to maintain normal function and promote repair. Capillary and lymphangiogenesis are deregulated in both PF and COPD, although the mechanisms by which they co-regulate and underlie early pathogenesis of disease are unknown. The cell-specific mechanisms that regulate lung vascular homeostasis, repair, and remodeling represent a significant gap in knowledge, which presents an opportunity to develop targeted therapies. We have shown that that ABCG2pos multipotent adult mesenchymal stem or progenitor cells (MPC) influence the function of the capillary microvasculature as well as lymphangiogenesis. A balance of both is required for normal tissue homeostasis and repair. Our current models suggest that when lymph and capillary angiogenesis are out of balance, the non-equivalence appears to support the progression of disease and tissue remodeling. The angiogenic regulatory mechanisms underlying CLD likely impact other interstitial lung diseases, tuberous sclerosis, and lymphangioleiomyomatosis.
Collapse
Affiliation(s)
- Jonathan A Kropski
- 1 12328 Department of Medicine, Division of Allergy, Pulmonary and Critical Care Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Bradley W Richmond
- 1 12328 Department of Medicine, Division of Allergy, Pulmonary and Critical Care Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Christa F Gaskill
- 1 12328 Department of Medicine, Division of Allergy, Pulmonary and Critical Care Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Robert F Foronjy
- 3 5718 Department of Medicine, Vanderbilt University, Nashville, TN, USA
| | - Susan M Majka
- 1 12328 Department of Medicine, Division of Allergy, Pulmonary and Critical Care Medicine, Vanderbilt University Medical Center, Nashville, TN, USA.,2 74498 Department of Medicine, Division of Pulmonary and Critical Care Medicine, SUNY Downstate Medical Center, Brooklyn, NY, USA
| |
Collapse
|
29
|
Kitano H, Chung JY, Noh KH, Lee YH, Kim TW, Lee SH, Eo SH, Cho HJ, Choi CH, Inoue S, Hanaoka J, Fukuoka J, Hewitt SM. Synaptonemal complex protein 3 is associated with lymphangiogenesis in non-small cell lung cancer patients with lymph node metastasis. J Transl Med 2017. [PMID: 28623914 PMCID: PMC5473978 DOI: 10.1186/s12967-017-1241-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Background The interaction of vascular endothelial growth factor-C (VEGF-C)/VEGF-D/VEGF receptor-3 is considered to be a major driver of lymphangiogenesis, however the mechanism of this process remains unclear. We aimed to investigate the possible lymphangiogenic significance of synaptonemal complex protein 3 (SCP3) in non-small cell lung cancer (NSCLC). Methods The expression of SCP3, VEGF-C, and VEGF-D were measured and examined a correlation between SCP3 and VEGF-C or VEGF-D in various human lung cancer cell lines. Subsequently, we assessed SCP3, VEGF-A, VEGF-B, VEGF-C, and VEGF-D expression in archival tumor tissues from 89 NSCLC patients with lymph node (LN) metastasis by combined immunohistochemistry with quantitative digital image analysis. Results Positive correlations between SCP3 and VEGF-C expression (R2 = 0.743) and VEGF-D expression (R2 = 0.932) were detected in various human lung cancer cell lines. The high expression of SCP3, VEGF-A, VEGF-B, VEGF-C, and VEGF-D were detected in 24 (27.0%), 22 (24.7%), 27 (30.3%), 27 (30.3%), and 24 cases (27.0%), respectively. Notably, SCP3 positively correlated with VEGF-C and VEGF-D expression (for both, P < 0.001) and negatively correlated with VEGF-A and VEGF-B expression (P = 0.029 and P = 0.026, respectively). In multivariate analysis of patients with LN metastasis, SCP3 expression predicted worse overall survival (hazard ratio = 1.86, P = 0.008). Conclusions SCP3 is associated with lymphangiogenesis and provides insight into the SCP3-VEGF-C/VEGF-D axis based cancer therapy strategy. Electronic supplementary material The online version of this article (doi:10.1186/s12967-017-1241-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Haruhisa Kitano
- Experimental Pathology Laboratory, Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA.,Department of Pathology, Nagasaki University Graduate School of Biomedical Sciences, 1-12-4, Sakamoto, Nagasaki, 852-8523, Japan
| | - Joon-Yong Chung
- Experimental Pathology Laboratory, Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Kyung Hee Noh
- Department of Biomedical Sciences, Graduate School of Medicine, Korea University, Seoul, 136-701, Korea.,Department of Biochemistry & Molecular Biology, Korea University College of Medicine, Seoul, 136-701, Korea
| | - Young-Ho Lee
- Department of Biomedical Sciences, Graduate School of Medicine, Korea University, Seoul, 136-701, Korea.,Department of Biochemistry & Molecular Biology, Korea University College of Medicine, Seoul, 136-701, Korea
| | - Tae Woo Kim
- Department of Biomedical Sciences, Graduate School of Medicine, Korea University, Seoul, 136-701, Korea.,Department of Biochemistry & Molecular Biology, Korea University College of Medicine, Seoul, 136-701, Korea
| | - Seok Hyung Lee
- Department of Statistics, Korea University, Seoul, 136-701, Korea
| | - Soo-Heang Eo
- Department of Statistics, Korea University, Seoul, 136-701, Korea
| | - Hyung Jun Cho
- Department of Statistics, Korea University, Seoul, 136-701, Korea
| | - Chel Hun Choi
- Experimental Pathology Laboratory, Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA.,Department of Obstetrics and Gynecology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, 135-710, Korea
| | - Shuhei Inoue
- Department of Thoracic Surgery, National Hospital Organization Higashi-Ohmi General Medical Center, Higashi-Oumi, 527-8505, Japan
| | - Jun Hanaoka
- Department of Thoracic Surgery, Shiga University of Medical Science, Otsu, 520-2192, Japan
| | - Junya Fukuoka
- Department of Pathology, Nagasaki University Graduate School of Biomedical Sciences, 1-12-4, Sakamoto, Nagasaki, 852-8523, Japan.
| | - Stephen M Hewitt
- Experimental Pathology Laboratory, Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA.
| |
Collapse
|
30
|
Colby JK, Abdulnour REE, Sham HP, Dalli J, Colas RA, Winkler JW, Hellmann J, Wong B, Cui Y, El-Chemaly S, Petasis NA, Spite M, Serhan CN, Levy BD. Resolvin D3 and Aspirin-Triggered Resolvin D3 Are Protective for Injured Epithelia. THE AMERICAN JOURNAL OF PATHOLOGY 2016; 186:1801-1813. [PMID: 27171898 DOI: 10.1016/j.ajpath.2016.03.011] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Revised: 01/21/2016] [Accepted: 03/01/2016] [Indexed: 12/26/2022]
Abstract
Acute lung injury is a life-threatening condition caused by disruption of the alveolar-capillary barrier leading to edema, influx of inflammatory leukocytes, and impaired gas exchange. Specialized proresolving mediators biosynthesized from essential fatty acids, such as docosahexaenoic acid, have tissue protective effects in acute inflammation. Herein, we found that the docosahexaenoic acid-derived mediator resolvin D3 (RvD3): 4S,11R,17S-trihydroxydocosa-5Z,7E,9E,13Z,15E,19Z-hexaenoic acid was present in uninjured lungs, and increased significantly 24 to 72 hours after hydrochloric acid-initiated injury. Because of its delayed enzymatic degradation, we used aspirin-triggered (AT)-RvD3: 4S,11R,17R-trihydroxydocosa-5Z,7E,9E,13Z,15E,19Z-hexaenoic acid, a 17R-epimer of RvD3, for in vivo experiments. Histopathological correlates of acid injury (alveolar wall thickening, edema, and leukocyte infiltration) were reduced in mice receiving AT-RvD3 1 hour after injury. AT-RvD3-treated mice had significantly reduced edema, as demonstrated by lower wet/dry weight ratios, increased epithelial sodium channel γ expression, and more lymphatic vessel endothelial hyaluronan receptor 1-positive vascular endothelial growth factor receptor 3-positive lymphatic vessels. Evidence for counterregulation of NF-κB by RvD3 and AT-RvD3 was seen in vitro and by AT-RvD3 in vivo. Increases in lung epithelial cell proliferation and bronchoalveolar lavage fluid levels of keratinocyte growth factor were observed with AT-RvD3, which also promoted cutaneous re-epithelialization. Together, these data demonstrate protective actions of RvD3 and AT-RvD3 for injured mucosa that accelerated restoration of epithelial barrier and function.
Collapse
Affiliation(s)
- Jennifer K Colby
- Pulmonary and Critical Care Medicine Division, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Raja-Elie E Abdulnour
- Pulmonary and Critical Care Medicine Division, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Ho Pan Sham
- Pulmonary and Critical Care Medicine Division, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Jesmond Dalli
- Department of Anesthesiology, Perioperative and Pain Medicine, Center for Experimental Therapeutics and Reperfusion Injury, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Romain A Colas
- Department of Anesthesiology, Perioperative and Pain Medicine, Center for Experimental Therapeutics and Reperfusion Injury, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Jeremy W Winkler
- Department of Anesthesiology, Perioperative and Pain Medicine, Center for Experimental Therapeutics and Reperfusion Injury, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Jason Hellmann
- Department of Anesthesiology, Perioperative and Pain Medicine, Center for Experimental Therapeutics and Reperfusion Injury, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Blenda Wong
- Department of Anesthesiology, Perioperative and Pain Medicine, Center for Experimental Therapeutics and Reperfusion Injury, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Ye Cui
- Pulmonary and Critical Care Medicine Division, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Souheil El-Chemaly
- Pulmonary and Critical Care Medicine Division, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Nicos A Petasis
- Department of Chemistry, Loker Hydrocarbon Research Institute, University of Southern California, Los Angeles, California
| | - Matthew Spite
- Department of Anesthesiology, Perioperative and Pain Medicine, Center for Experimental Therapeutics and Reperfusion Injury, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Charles N Serhan
- Department of Anesthesiology, Perioperative and Pain Medicine, Center for Experimental Therapeutics and Reperfusion Injury, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Bruce D Levy
- Pulmonary and Critical Care Medicine Division, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts.
| |
Collapse
|
31
|
Lorusso B, Falco A, Madeddu D, Frati C, Cavalli S, Graiani G, Gervasi A, Rinaldi L, Lagrasta C, Maselli D, Gnetti L, Silini EM, Quaini E, Ampollini L, Carbognani P, Quaini F. Isolation and Characterization of Human Lung Lymphatic Endothelial Cells. BIOMED RESEARCH INTERNATIONAL 2015; 2015:747864. [PMID: 26137493 PMCID: PMC4475539 DOI: 10.1155/2015/747864] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/23/2014] [Revised: 12/24/2014] [Accepted: 01/12/2015] [Indexed: 12/21/2022]
Abstract
Characterization of lymphatic endothelial cells from the respiratory system may be crucial to investigate the role of the lymphatic system in the normal and diseased lung. We describe a simple and inexpensive method to harvest, isolate, and expand lymphatic endothelial cells from the human lung (HL-LECs). Fifty-five samples of healthy lung selected from patients undergoing lobectomy were studied. A two-step purification tool, based on paramagnetic sorting with monoclonal antibodies to CD31 and Podoplanin, was employed to select a pure population of HL-LECs. The purity of HL-LECs was assessed by morphologic criteria, immunocytochemistry, flow cytometry, and functional assays. Interestingly, these cells retain in vitro several receptor tyrosine kinases (RTKs) implicated in cell survival and proliferation. HL-LECs represent a clinically relevant cellular substrate to study lymphatic biology, lymphoangiogenesis, interaction with microbial agents, wound healing, and anticancer therapy.
Collapse
Affiliation(s)
- Bruno Lorusso
- Department of Clinical and Experimental Medicine, University Hospital of Parma, 43126 Parma, Italy
| | - Angela Falco
- Department of Clinical and Experimental Medicine, University Hospital of Parma, 43126 Parma, Italy
| | - Denise Madeddu
- Department of Clinical and Experimental Medicine, University Hospital of Parma, 43126 Parma, Italy
| | - Caterina Frati
- Department of Clinical and Experimental Medicine, University Hospital of Parma, 43126 Parma, Italy
| | - Stefano Cavalli
- Department of Clinical and Experimental Medicine, University Hospital of Parma, 43126 Parma, Italy
| | - Gallia Graiani
- Department of Clinical and Experimental Medicine, University Hospital of Parma, 43126 Parma, Italy
| | - Andrea Gervasi
- Department of Clinical and Experimental Medicine, University Hospital of Parma, 43126 Parma, Italy
| | - Laura Rinaldi
- Department of Clinical and Experimental Medicine, University Hospital of Parma, 43126 Parma, Italy
| | - Costanza Lagrasta
- Department of Biomedical, Biotechnological, and Translational Sciences (S.Bi.Bi.T.), University Hospital of Parma, 43126 Parma, Italy
| | - Davide Maselli
- Department of Clinical and Experimental Medicine, University Hospital of Parma, 43126 Parma, Italy
| | - Letizia Gnetti
- Department of Biomedical, Biotechnological, and Translational Sciences (S.Bi.Bi.T.), University Hospital of Parma, 43126 Parma, Italy
| | - Enrico M. Silini
- Department of Biomedical, Biotechnological, and Translational Sciences (S.Bi.Bi.T.), University Hospital of Parma, 43126 Parma, Italy
| | - Eugenio Quaini
- Cardiovascular Department, Humanitas Clinical and Research Centre, 20089 Milan, Italy
| | - Luca Ampollini
- Department of Surgical Sciences, University Hospital of Parma, 43126 Parma, Italy
| | - Paolo Carbognani
- Department of Surgical Sciences, University Hospital of Parma, 43126 Parma, Italy
| | - Federico Quaini
- Department of Clinical and Experimental Medicine, University Hospital of Parma, 43126 Parma, Italy
| |
Collapse
|
32
|
Abstract
The main function of the lymphatic system is to control and maintain fluid homeostasis, lipid transport, and immune cell trafficking. In recent years, the pathological roles of lymphangiogenesis, the generation of new lymphatic vessels from preexisting ones, in inflammatory diseases and cancer progression are beginning to be elucidated. Sphingosine-1-phosphate (S1P), a bioactive lipid, mediates multiple cellular events, such as cell proliferation, differentiation, and trafficking, and is now known as an important mediator of inflammation and cancer. In this review, we will discuss recent findings showing the emerging role of S1P in lymphangiogenesis, in inflammation, and in cancer.
Collapse
|
33
|
Baluk P, Adams A, Phillips K, Feng J, Hong YK, Brown MB, McDonald DM. Preferential lymphatic growth in bronchus-associated lymphoid tissue in sustained lung inflammation. THE AMERICAN JOURNAL OF PATHOLOGY 2014; 184:1577-92. [PMID: 24631179 DOI: 10.1016/j.ajpath.2014.01.021] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2013] [Revised: 12/09/2013] [Accepted: 01/07/2014] [Indexed: 01/19/2023]
Abstract
Lymphatics proliferate, become enlarged, or regress in multiple inflammatory lung diseases in humans. Lymphatic growth and remodeling is known to occur in the mouse trachea in sustained inflammation, but whether intrapulmonary lymphatics exhibit similar plasticity is unknown. We examined the time course, distribution, and dependence on vascular endothelial growth factor receptor (VEGFR)-2/VEGFR-3 signaling of lung lymphatics in sustained inflammation. Lymphatics in mouse lungs were examined under baseline conditions and 3 to 28 days after Mycoplasma pulmonis infection, using prospero heomeobox 1-enhanced green fluorescence protein and VEGFR-3 as markers. Sprouting lymphangiogenesis was evident at 7 days. Lymphatic growth was restricted to regions of bronchus-associated lymphoid tissue (BALT), where VEGF-C-producing cells were scattered in T-cell zones. Expansion of lung lymphatics after infection was reduced 68% by blocking VEGFR-2, 83% by blocking VEGFR-3, and 99% by blocking both receptors. Inhibition of VEGFR-2/VEGFR-3 did not prevent the formation of BALT. Treatment of established infection with oxytetracycline caused BALT, but not the lymphatics, to regress. We conclude that robust lymphangiogenesis occurs in mouse lungs after M. pulmonis infection through a mechanism involving signaling of both VEGFR-2 and VEGFR-3. Expansion of the lymphatic network is restricted to regions of BALT, but lymphatics do not regress when BALT regresses after antibiotic treatment. The lung lymphatic network can thus expand in sustained inflammation, but the expansion is not as reversible as the accompanying inflammation.
Collapse
Affiliation(s)
- Peter Baluk
- Department of Anatomy, the Cardiovascular Research Institute, and the Comprehensive Cancer Center, University of California, San Francisco, California.
| | - Alicia Adams
- Department of Anatomy, the Cardiovascular Research Institute, and the Comprehensive Cancer Center, University of California, San Francisco, California
| | - Keeley Phillips
- Department of Anatomy, the Cardiovascular Research Institute, and the Comprehensive Cancer Center, University of California, San Francisco, California
| | - Jennifer Feng
- Department of Anatomy, the Cardiovascular Research Institute, and the Comprehensive Cancer Center, University of California, San Francisco, California
| | - Young-Kwon Hong
- Departments of Surgery, Biochemistry, and Molecular Biology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Mary B Brown
- Department of Infectious Diseases and Pathology, College of Veterinary Medicine, University of Florida, Gainesville, Florida
| | - Donald M McDonald
- Department of Anatomy, the Cardiovascular Research Institute, and the Comprehensive Cancer Center, University of California, San Francisco, California
| |
Collapse
|
34
|
Yao LC, Testini C, Tvorogov D, Anisimov A, Vargas SO, Baluk P, Pytowski B, Claesson-Welsh L, Alitalo K, McDonald DM. Pulmonary lymphangiectasia resulting from vascular endothelial growth factor-C overexpression during a critical period. Circ Res 2014; 114:806-22. [PMID: 24429550 DOI: 10.1161/circresaha.114.303119] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
RATIONALE Lymphatic vessels in the respiratory tract normally mature into a functional network during the neonatal period, but under some pathological conditions they can grow as enlarged, dilated sacs that result in the potentially lethal condition of pulmonary lymphangiectasia. OBJECTIVE We sought to determine whether overexpression of the lymphangiogenic growth factor (vascular endothelial growth factor-C [VEGF-C]) can promote lymphatic growth and maturation in the respiratory tract. Unexpectedly, perinatal overexpression of VEGF-C in the respiratory epithelium led to a condition resembling human pulmonary lymphangiectasia, a life-threatening disorder of the newborn characterized by respiratory distress and the presence of widely dilated lymphatics. METHODS AND RESULTS Administration of doxycycline to Clara cell secretory protein-reverse tetracycline-controlled transactivator/tetracycline operator-VEGF-C double-transgenic mice during a critical period from embryonic day 15.5 to postnatal day 14 was accompanied by respiratory distress, chylothorax, pulmonary lymphangiectasia, and high mortality. Enlarged sac-like lymphatics were abundant near major airways, pulmonary vessels, and visceral pleura. Side-by-side comparison revealed morphological features similar to pulmonary lymphangiectasia in humans. The condition was milder in mice given doxycycline after age postnatal day 14 and did not develop after postnatal day 35. Mechanistic studies revealed that VEGF recptor (VEGFR)-3 alone drove lymphatic growth in adult mice, but both VEGFR-2 and VEGFR-3 were required for the development of lymphangiectasia in neonates. VEGFR-2/VEGFR-3 heterodimers were more abundant in the dilated lymphatics, consistent with the involvement of both receptors. Despite the dependence of lymphangiectasia on VEGFR-2 and VEGFR-3, the condition was not reversed by blocking both receptors together or by withdrawing VEGF-C. CONCLUSIONS The findings indicate that VEGF-C overexpression can induce pulmonary lymphangiectasia during a critical period in perinatal development.
Collapse
Affiliation(s)
- Li-Chin Yao
- From the Department of Anatomy, Cardiovascular Research Institute, Comprehensive Cancer Center, University of California, San Francisco (L.-C.Y., P.B., D.M.M.); Department of Immunology, Genetics, and Pathology, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden (C.T., L.C.-W.); Wihuri Research Institute and Translational Cancer Biology Program, Biomedicum Helsinki and University of Helsinki, Helsinki, Finland (D.T., A.A., K.A.); Department of Pathology, Boston Children's Hospital, Harvard University, MA (S.O.V.), and Department of Cell Biology, ImClone Systems, Eli Lilly and Company, New York (B.P.)
| | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Xu C, Tian H, Chen X. Pulmonary Drugs and Genes Delivery Systems for Lung Disease Treatment. CHINESE J CHEM 2014. [DOI: 10.1002/cjoc.201300741] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
36
|
Yao LC, McDonald DM. Plasticity of airway lymphatics in development and disease. ADVANCES IN ANATOMY, EMBRYOLOGY, AND CELL BIOLOGY 2014; 214:41-54. [PMID: 24276885 DOI: 10.1007/978-3-7091-1646-3_4] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The dynamic nature of lymphatic vessels is reflected by structural and functional modifications that coincide with changes in their environment. Lymphatics in the respiratory tract undergo rapid changes around birth, during adaptation to air breathing, when lymphatic endothelial cells develop button-like intercellular junctions specialized for efficient fluid uptake and transport. In inflammatory conditions, lymphatic vessels proliferate and undergo remodeling to accommodate greater plasma leakage and immune cell trafficking. However, the newly formed lymphatics are abnormal, and resolution of inflammation is not accompanied by complete reversal of the lymphatic vessel changes back to the baseline. As the understanding of lymphatic plasticity advances, approaches for eliminating the abnormal vessels and improving the functionality of those that remain move closer to reality. This chapter provides an overview of what is known about lymphatic vessel growth, remodeling, and other forms of plasticity that occur during development or inflammation, with an emphasis on the respiratory tract. Also addressed is the limited reversibility of changes in lymphatics during the resolution of inflammation.
Collapse
Affiliation(s)
- Li-Chin Yao
- Department of Anatomy, Comprehensive Cancer Center, Cardiovascular Research Institute, University of California-San Francisco, San Francisco, CA, 94143, USA
| | | |
Collapse
|
37
|
Darwiche K, Zarogoulidis P, Karamanos NK, Domvri K, Chatzaki E, Constantinidis TC, Kakolyris S, Zarogoulidis K. Efficacy versus safety concerns for aerosol chemotherapy in non-small-cell lung cancer: a future dilemma for micro-oncology. Future Oncol 2013; 9:505-25. [PMID: 23560374 DOI: 10.2217/fon.12.205] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Inhaled chemotherapy was first used more than 30 years ago. Since then, numerous chemotherapeutic agents have been used in either in vitro or in vivo studies. Several aspects of the methodology of the drug administration have been thoroughly demonstrated and explained. However, the safety concerns of these studies were not thoroughly investigated and different results regarding the same drug formulations have been reported. There are cases where the studies failed to demonstrate the long-term effects of the chemotherapeutic drug formulations to the lung parenchyma. Acute and latent effects observed in a small number of human trial studies are still under investigation of inhaled chemotherapy administration. This review provides data regarding all up-to-date inhaled chemotherapy studies and presents the methodological parameters of the safety measures incorporated. In addition, a commentary regarding the safety concerns for the medical staff participating in these studies will be presented.
Collapse
Affiliation(s)
- Kaid Darwiche
- University Pulmonary Department-Interventional Unit, Ruhrland Clinic, University of Duisburg-Essen, Essen, Germany
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Abstract
PURPOSE OF REVIEW The mechanisms of tolerance induction and maintenance remain incompletely understood and have yet to be translated to clinical practice. Advances in imaging techniques have allowed precise examination of cell interactions in the lymph node, often in real time. Herein we review evidence that lymph node structure is dynamic and controls the character of the immune response in a multistep, multiplayer dance. T-cell responses in particular can be initiated or influenced in regions beyond the canonical T-cell zone. We propose that the cortical ridge is one such region required for induction and maintenance of tolerance. RECENT FINDINGS Lymph node domains are more complex than T-cell and B-cell zones. Different domains are important for different types of immune responses. These domains are in part defined by dynamic, malleable physical structures that guide cell interactions and influence immune outcomes. SUMMARY Further probing as to how lymph node stromal cells and fibers interact with and determine the character of immune responses should yield fundamental insights into tolerance and immunity. Manipulation of lymph node structure and associated unique cell types and molecules may allow therapeutic interventions in the tolerogenic process.
Collapse
|
39
|
Neurokinin-1 receptor, a new modulator of lymphangiogenesis in obese-asthma phenotype. Life Sci 2013; 93:169-77. [PMID: 23792204 DOI: 10.1016/j.lfs.2013.06.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2013] [Revised: 06/05/2013] [Accepted: 06/10/2013] [Indexed: 12/28/2022]
Abstract
AIMS Obesity and asthma are widely prevalent and associated disorders. Recent studies of our group revealed that Substance P (SP) is involved in pathophysiology of obese-asthma phenotype in mice through its selective NK1 receptor (NK1-R). Lymphangiogenesis is impaired in asthma and obesity, and SP activates contractile and inflammatory pathways in lymphatics. Our aim was to study whether NK1-R expression was involved in lymphangiogenesis on visceral (VAT) and subcutaneous (SAT) adipose tissues and in the lungs, in obese-allergen sensitized mice. MAIN METHODS Diet-induced obese and ovalbumin (OVA)-sensitized Balb/c mice were treated with a selective NK1-R antagonist (CJ 12,255, Pfizer Inc., USA) or placebo. Lymphatic structures (LYVE-1+) and NK1-R expression were analyzed by immunohistochemistry. A semi-quantitative score methodology was used for NK1-R expression. KEY FINDINGS Obesity and allergen-sensitization together increased the number of LYVE-1+ lymphatics in VAT and decreased it in SAT and lungs. NK1-R was mainly expressed on adipocyte membranes of VAT, blood vessel areas of SAT, and in lung epithelium. Obesity and allergen-sensitization combined increased the expression of NK1-R in VAT, SAT and lungs. NK1-R antagonist treatment reversed the effects observed in lymphangiogenesis in those tissues. SIGNIFICANCE The obese-asthma phenotype in mice is accompanied by increased expression of NK1-R on adipose tissues and lung epithelium, reflecting that SP released during inflammation may act directly on these tissues. Blocking NK1-R affects lymphangiogenesis, implying a role of SP, with opposite physiological consequences in VAT, and in SAT and lungs. Our results provide a clue for a novel SP role in the obese-asthma phenotype.
Collapse
|
40
|
Mori M, Andersson CK, Graham GJ, Löfdahl CG, Erjefält JS. Increased number and altered phenotype of lymphatic vessels in peripheral lung compartments of patients with COPD. Respir Res 2013; 14:65. [PMID: 23758732 PMCID: PMC3728038 DOI: 10.1186/1465-9921-14-65] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2013] [Accepted: 06/05/2013] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND De novo lymphatic vessel formation has recently been observed in lungs of patients with moderate chronic obstructive pulmonary disease (COPD). However, the distribution of lymphatic vessel changes among the anatomical compartments of diseased lungs is unknown. Furthermore, information regarding the nature of lymphatic vessel alterations across different stages of COPD is missing. This study performs a detailed morphometric characterization of lymphatic vessels in major peripheral lung compartments of patients with different severities of COPD and investigates the lymphatic expression of molecules involved in immune cell trafficking. METHODS Peripheral lung resection samples obtained from patients with mild (GOLD stage I), moderate-severe (GOLD stage II-III), and very severe (GOLD stage IV) COPD were investigated for podoplanin-immunopositive lymphatic vessels in distinct peripheral lung compartments: bronchioles, pulmonary blood vessels and alveolar walls. Control subjects with normal lung function were divided into never smokers and smokers. Lymphatics were analysed by multiple morphological parameters, as well as for their expression of CCL21 and the chemokine scavenger receptor D6. RESULTS The number of lymphatics increased by 133% in the alveolar parenchyma in patients with advanced COPD compared with never-smoking controls (p < 0.05). In patchy fibrotic lesions the number of alveolar lymphatics increased 20-fold from non-fibrotic parenchyma in the same COPD patients. The absolute number of lymphatics per bronchiole and artery was increased in advanced COPD, but numbers were not different after normalization to tissue area. Increased numbers of CCL21- and D6-positive lymphatics were observed in the alveolar parenchyma in advanced COPD compared with controls (p < 0.01). Lymphatic vessels also displayed increased mean levels of immunoreactivity for CCL21 in the wall of bronchioles (p < 0.01) and bronchiole-associated arteries (p < 0.05), as well as the alveolar parenchyma (p < 0.001) in patients with advanced COPD compared with never-smoking controls. A similar increase in lymphatic D6 immunoreactivity was observed in bronchioles (p < 0.05) and alveolar parenchyma (p < 0.01). CONCLUSIONS This study shows that severe stages of COPD is associated with increased numbers of alveolar lymphatic vessels and a change in lymphatic vessel phenotype in major peripheral lung compartments. This novel histopathological feature is suggested to have important implications for distal lung immune cell traffic in advanced COPD.
Collapse
Affiliation(s)
- Michiko Mori
- Unit of Airway Inflammation and Immunology, Department of Experimental Medical Sciences, Lund University, Lund, Sweden
| | - Cecilia K Andersson
- Department of Respiratory Medicine and Allergology, Skåne University Hospital, Lund University, Lund, Sweden
| | - Gerard J Graham
- Institute of Infection, Immunity and Inflammation, Glasgow Biomedical Research Centre, University of Glasgow, Glasgow, UK
| | - Claes-Göran Löfdahl
- Department of Respiratory Medicine and Allergology, Skåne University Hospital, Lund University, Lund, Sweden
| | - Jonas S Erjefält
- Unit of Airway Inflammation and Immunology, Department of Experimental Medical Sciences, Lund University, Lund, Sweden
- Department of Respiratory Medicine and Allergology, Skåne University Hospital, Lund University, Lund, Sweden
| |
Collapse
|
41
|
Key molecular mechanisms in lung cancer invasion and metastasis: a comprehensive review. Crit Rev Oncol Hematol 2013; 87:1-11. [PMID: 23332547 DOI: 10.1016/j.critrevonc.2012.12.007] [Citation(s) in RCA: 124] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2012] [Revised: 12/05/2012] [Accepted: 12/19/2012] [Indexed: 01/02/2023] Open
Abstract
Lung cancer remains one of the most common and malignant cancers worldwide. It is most often diagnosed at late stages, when it has already presented local invasion and distal metastases. The basic stages of invasion and metastasis involve the detachment of tumor cells from the extracellular matrix, invasion of surrounding tissues and basal lamina, intravasation into the blood stream, survival and transport through the blood stream, migration, arrest and extravasation at a distal site and formation of a metastatic lesion. These steps require fundamental mechanisms such as angiogenesis, degradation of matrix barriers, disruption of cell-cell and cell-matrix adhesion and inducement of cellular motility. Genes that regulate functions like unlimited growth potential, survival, genomic instability, angiogenesis, epithelial to mesenchymal transition and apoptosis evasion, are involved in giving lung cancer tumors invasive and metastatic competence. Improving of understanding of the underlying molecular and cellular mechanisms remains an urgent and essential issue, in order to develop new more effective strategies in preventing and treating lung cancer.
Collapse
|
42
|
Critical Role of VEGF-C/VEGFR-3 Signaling in Innate and Adaptive Immune Responses in Experimental Obliterative Bronchiolitis. THE AMERICAN JOURNAL OF PATHOLOGY 2012; 181:1607-20. [DOI: 10.1016/j.ajpath.2012.07.021] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2011] [Revised: 05/31/2012] [Accepted: 07/11/2012] [Indexed: 01/13/2023]
|
43
|
Porter DW, Wu N, Hubbs AF, Mercer RR, Funk K, Meng F, Li J, Wolfarth MG, Battelli L, Friend S, Andrew M, Hamilton R, Sriram K, Yang F, Castranova V, Holian A. Differential mouse pulmonary dose and time course responses to titanium dioxide nanospheres and nanobelts. Toxicol Sci 2012; 131:179-93. [PMID: 22956629 DOI: 10.1093/toxsci/kfs261] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Three anatase titanium dioxide (TiO(2)) nanoparticles (NPs) were prepared; nanospheres (NSs), short nanobelts (NB1), and long nanobelts (NB2). These NPs were used to investigate the effect of NP shape and length on lung toxicity. Mice were exposed (0-30 µg per mouse) by pharyngeal aspiration and pulmonary toxicity was assessed over a 112-day time course. Whole lung lavage data indicated that NB1- and NB2-exposed mice, but not NS-exposed mice, had significant dose- and time-dependent pulmonary inflammation and damage. Histopathological analyses at 112 days postexposure determined no interstitial fibrosis in any NS-exposed mice, an increased incidence in 30 µg NB1-exposed mice, and significant interstitial fibrosis in 30 µg NB2-exposed mice. At 112 days postexposure, lung burden of NS was decreased by 96.4% and NB2 by 80.5% from initial deposition levels. At 112 days postexposure, enhanced dark field microscopy determined that alveolar macro- phages were the dominant deposition site, but a fraction of NB1 and NB2 was observed in the alveolar interstitial spaces. For the 30 µg exposure groups at 112 days postexposure, confocal micro- scopy and immunofluorescent staining demonstrated that retained NB2 but not NS were present in the interstitium subjacent to the terminal bronchiole near the normal location of the smallest lymphatic capillaries in the lung. These lymphatic capillaries play a critical role in particle clearance, and the accumulation of NB2, but not NS, suggests possible impaired lymphatic clearance by the high aspect ratio particles. In summary, our data indicate that TiO(2) NP shape alters pulmonary responses, with severity of responses being ranked as NS < NB1 < NB2.
Collapse
Affiliation(s)
- Dale W Porter
- National Institute for Occupational Safety and Health, Morgantown, West Virginia 26505, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Zarogouldis P, Karamanos NK, Porpodis K, Domvri K, Huang H, Hohenforst-Schimdt W, Goldberg EP, Zarogoulidis K. Vectors for inhaled gene therapy in lung cancer. Application for nano oncology and safety of bio nanotechnology. Int J Mol Sci 2012; 13:10828-10862. [PMID: 23109824 PMCID: PMC3472716 DOI: 10.3390/ijms130910828] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2012] [Revised: 08/21/2012] [Accepted: 08/22/2012] [Indexed: 12/15/2022] Open
Abstract
Novel aerosol therapeutic modalities have been investigated for lung cancer. Inhaled gene therapy has presented safety and effectiveness previously in cystic fibrosis. However, safety concerns have been raised regarding the safety of non-viral vectors for inhaled gene therapy in lung cancer, and therefore small steps have been made towards this multifunctional treatment modality. During the last decade, numerous new nanocomplexes have been created and investigated as a safe gene delivery nano-vehicle. These formulations are multifunctional; they can be used as either local therapy or carrier for an effective inhaled gene therapy for lung cancer. Herein, we present current and future perspectives of nanocomplexes for inhaled gene therapy treatment in lung cancer.
Collapse
Affiliation(s)
- Paul Zarogouldis
- Pulmonary Department-Oncology Unit, “G. Papanikolaou” General Hospital, Aristotle University of Thessaloniki, Thessaloniki 57010, Greece; E-Mails: (K.P.); (K.D.); (K.Z.)
- Pulmonary Department-Interventional Unit, “Ruhrland Klinik”, University of Essen, Essen 45239, Germany
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +30-697-727-1974; Fax: +30-231-099-2433
| | - Nikos K. Karamanos
- Laboratory of Biochemistry, University of Patras, Patras 25200, Greece; E-Mail:
| | - Konstantinos Porpodis
- Pulmonary Department-Oncology Unit, “G. Papanikolaou” General Hospital, Aristotle University of Thessaloniki, Thessaloniki 57010, Greece; E-Mails: (K.P.); (K.D.); (K.Z.)
| | - Kalliopi Domvri
- Pulmonary Department-Oncology Unit, “G. Papanikolaou” General Hospital, Aristotle University of Thessaloniki, Thessaloniki 57010, Greece; E-Mails: (K.P.); (K.D.); (K.Z.)
| | - Haidong Huang
- Department of Respiratory diseases, Changhai hospital, Second Military Medical University, Shanghai 200433, China; E-Mail:
| | | | - Eugene P. Goldberg
- Biomaterials Science & Engineering, Department of Materials Science & Engineering, University of Florida, FL 32611, USA; E-Mail:
| | - Konstantinos Zarogoulidis
- Pulmonary Department-Oncology Unit, “G. Papanikolaou” General Hospital, Aristotle University of Thessaloniki, Thessaloniki 57010, Greece; E-Mails: (K.P.); (K.D.); (K.Z.)
| |
Collapse
|
45
|
Yao LC, Baluk P, Srinivasan RS, Oliver G, McDonald DM. Plasticity of button-like junctions in the endothelium of airway lymphatics in development and inflammation. THE AMERICAN JOURNAL OF PATHOLOGY 2012; 180:2561-75. [PMID: 22538088 DOI: 10.1016/j.ajpath.2012.02.019] [Citation(s) in RCA: 149] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 10/19/2011] [Revised: 02/03/2012] [Accepted: 02/09/2012] [Indexed: 12/14/2022]
Abstract
Endothelial cells of initial lymphatics have discontinuous button-like junctions (buttons), unlike continuous zipper-like junctions (zippers) of collecting lymphatics and blood vessels. Buttons are thought to act as primary valves for fluid and cell entry into lymphatics. To learn when and how buttons form during development and whether they change in disease, we examined the appearance of buttons in mouse embryos and their plasticity in sustained inflammation. We found that endothelial cells of lymph sacs at embryonic day (E)12.5 and tracheal lymphatics at E16.5 were joined by zippers, not buttons. However, zippers in initial lymphatics decreased rapidly just before birth, as buttons appeared. The proportion of buttons increased from only 6% at E17.5 and 12% at E18.5 to 35% at birth, 50% at postnatal day (P)7, 90% at P28, and 100% at P70. In inflammation, zippers replaced buttons in airway lymphatics at 14 and 28 days after Mycoplasma pulmonis infection of the respiratory tract. The change in lymphatic junctions was reversed by dexamethasone but not by inhibition of vascular endothelial growth factor receptor-3 signaling by antibody mF4-31C1. Dexamethasone also promoted button formation during early postnatal development through a direct effect involving glucocorticoid receptor phosphorylation in lymphatic endothelial cells. These findings demonstrate the plasticity of intercellular junctions in lymphatics during development and inflammation and show that button formation can be promoted by glucocorticoid receptor signaling in lymphatic endothelial cells.
Collapse
Affiliation(s)
- Li-Chin Yao
- Department of Anatomy, Cardiovascular Research Institute, and the Comprehensive Cancer Center, University of California, San Francisco, CA 94143, USA
| | | | | | | | | |
Collapse
|
46
|
Dynamics of airway blood vessels and lymphatics: lessons from development and inflammation. Ann Am Thorac Soc 2012; 8:504-7. [PMID: 22052927 DOI: 10.1513/pats.201102-022mw] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Blood vessels and lymphatic vessels in the respiratory tract play key roles in inflammation. By undergoing adaptive remodeling and growth, blood vessels undergo changes that enable the extravasation of plasma and leukocytes into inflamed tissues, and lymphatic vessels adjust to the increased fluid clearance and cell traffic involved in immune responses. Blood vessels and lymphatics in adult airways are strikingly different from those of late-stage embryos. Before birth, blood vessels in mouse airways make up a primitive plexus similar to that of the yolk sac. This plexus undergoes rapid and extensive remodeling at birth. In the early neonatal period, parts of the plexus regress. Capillaries then rapidly regrow, and with arterioles and venules form the characteristic adult vascular pattern. Lymphatic vessels of the airways also undergo rapid changes around birth, when lymphatic endothelial cells develop button-like intercellular junctions specialized for efficient fluid uptake. Among the mechanisms that underlie the onset of rapid vascular remodeling at birth, changes in tissue oxygen tension and mechanical forces associated with breathing are likely to be involved, along with growth factors that promote the growth and maturation of blood vessels and lymphatics. Whatever the mechanisms, the dynamic nature of airway blood vessels and lymphatics during perinatal development foretells the extraordinary vascular plasticity found in many diseases.
Collapse
|
47
|
Sozio F, Rossi A, Weber E, Abraham DJ, Nicholson AG, Wells AU, Renzoni EA, Sestini P. Morphometric analysis of intralobular, interlobular and pleural lymphatics in normal human lung. J Anat 2012; 220:396-404. [PMID: 22283705 DOI: 10.1111/j.1469-7580.2011.01473.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
In spite of their presumed relevance in maintaining interalveolar septal fluid homeostasis, the knowledge of the anatomy of human lung lymphatics is still incomplete. The recent discovery of reliable markers specific for lymphatic endothelium has led to the observation that, contrary to previous assumptions, human lymphatic vessels extend deep inside the pulmonary lobule in association with bronchioles, intralobular arterioles or small pulmonary veins. The aim of this study was to provide a morphometric characterization of lymphatic vessels in the periphery of the human lung. Human lung sections were immunolabelled with the lymphatic marker D2-40, followed by blood vessel staining with von Willebrand Factor. Lymphatic vessels were classified into: intralobular (including those associated with bronchovascular bundles, perivascular, peribronchiolar and interalveolar), pleural (in the connective tissue of the visceral pleura), and interlobular (in interlobular septa). The percentage area occupied by the lymphatic lumen was much greater in the interlobular septa and in the subpleural space than in the lobule. Most of the intralobular lymphatic vessels were in close contact with a blood vessel, either alone or within a bronchovascular bundle, whereas 7% were associated with a bronchiole and < 1% were not connected to blood vessels or bronchioles (interalveolar). Intralobular lymphatic size progressively decreased from bronchovascular through to peribronchiolar, perivascular and interalveolar lymphatics. Lymphatics associated with bronchovascular bundles had similar morphometric characteristics to pleural and interlobular lymphatics. Shape factors were similar across lymphatic populations, except that peribronchiolar lymphatics had a marginally increased roundness and circularity, suggesting a more regular shape due to increased filling, and interlobular lymphatics had greater elongation, due to a greater proportion of conducting lymphatics cut longitudinally. Unsupervised cluster analysis confirmed a marked heterogeneity of lymphatic vessels both within and between groups, with a cluster of smaller vessels specifically represented in perivascular and interalveolar lymphatics within the alveolar interstitium. Our data indicate that intralobular lymphatics are a heterogeneous population, including vessels surrounding the bronchovascular bundle analogous to the conducting vessels present in the pleural and interlobular septa, many small perivascular lymphatics responsible for maintaining fluid balance in the alveolar interstitium, and a minority of intermediate lymphatics draining the peripheral airways. These lymphatic populations could be differentially involved in the pathogenesis of diseases preferentially involving distinct lung compartments.
Collapse
Affiliation(s)
- Francesca Sozio
- Department of Neuroscience, Molecular Medicine Section, University of Siena, Siena, Italy
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Hardavella G, Tzortzaki EG, Siozopoulou V, Galanis P, Vlachaki E, Avgousti M, Stefanou D, Siafakas NM. Lymphangiogenesis in COPD: another link in the pathogenesis of the disease. Respir Med 2011; 106:687-93. [PMID: 22154125 DOI: 10.1016/j.rmed.2011.11.011] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2011] [Revised: 11/13/2011] [Accepted: 11/14/2011] [Indexed: 11/30/2022]
Abstract
BACKGROUND New lymphatic vessels are associated with tissue injury and repair. Recent studies have shown increased lymphatic follicles formation in the lungs of COPD patients. We hypothesized that lymphatic vascular remodeling could be part of COPD pathogenesis. AIM To investigate the lymphangiogenetic process in COPD we measured the lymphatic microvessel density (LMVD), the lymphatic invasion (L.I), and their correlation with clinical and laboratory parameters. METHODS Lung tissue from 20 COPD patients and 20 non-COPD smokers was immunohistochemically stained for D2-40 (lymphatic endothelial cell marker), and LYVE-1 (lymphatic endothelial hyaluronan receptor 1). Both groups had similar age and smoking history. RESULTS D2-40 and LYVE-1 were expressed in all specimens. Lymphatic invasion was presented only in COPD specimens. Lymphatic microvessel density (LMVD) as revealed by D2-40 and LYVE-1 markers was statistically significantly higher in COPD patients when compared with non-COPD smokers. Both markers (D2-40, LYVE-1) were correlated with FEV1 (% pred) (R(2) = 0.415, R(2) = 0.605, respectively). CONCLUSIONS We report for the first time high lymphatic microvessel density and lymphatic invasion in COPD patients, related to the degree of airway obstruction. Our findings could provide novel insights in the pathogenesis of the disease.
Collapse
Affiliation(s)
- Georgia Hardavella
- Department of Respiratory Medicine, Medical School, University of Ioannina, Ioannina, Greece
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Yin N, Zhang N, Lal G, Xu J, Yan M, Ding Y, Bromberg JS. Lymphangiogenesis is required for pancreatic islet inflammation and diabetes. PLoS One 2011; 6:e28023. [PMID: 22132197 PMCID: PMC3223214 DOI: 10.1371/journal.pone.0028023] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2011] [Accepted: 10/30/2011] [Indexed: 11/18/2022] Open
Abstract
Lymphangiogenesis is a common phenomenon observed during inflammation and engraftment of transplants, but its precise role in the immune response and underlying mechanisms of regulation remain poorly defined. Here we showed that in response to injury and autoimmunity, lymphangiogenesis occurred around islets and played a key role in the islet inflammation in mice. Vascular endothelial growth factors receptor 3 (VEGFR3) is specifically involved in lymphangiogenesis, and blockade of VEGFR3 potently inhibited lymphangiogenesis in both islets and the draining LN during multiple low-dose streptozotocin (MLDS) induced autoimmune insulitis, which resulted in less T cell infiltration, preservation of islets and prevention of the onset of diabetes. In addition to their well-known conduit function, lymphatic endothelial cells (LEC) also produced chemokines in response to inflammation. These LEC attracted two distinct CX3CR1hi and LYVE-1+ macrophage subsets to the inflamed islets and CX3CR1hi cells were influenced by LEC to differentiate into LYVE-1+ cells closely associated with lymphatic vessels. These observations indicate a linkage among lymphangiogenesis and myeloid cell inflammation during insulitis. Thus, inhibition of lymphangiogenesis holds potential for treating insulitis and autoimmune diabetes.
Collapse
Affiliation(s)
- Na Yin
- Center for Vascular and Inflammatory Diseases, University of Maryland, Baltimore, Maryland, United States of America
- * E-mail: (JSB); (NY)
| | - Nan Zhang
- Department of Surgery, Marshall University, Huntington, West Virginia, United States of America
| | - Girdhari Lal
- Center for Vascular and Inflammatory Diseases, University of Maryland, Baltimore, Maryland, United States of America
- Departments of Surgery and Microbiology and Immunology, University of Maryland, Baltimore, Maryland, United States of America
| | - Jiangnan Xu
- Center for Vascular and Inflammatory Diseases, University of Maryland, Baltimore, Maryland, United States of America
- Departments of Surgery and Microbiology and Immunology, University of Maryland, Baltimore, Maryland, United States of America
| | - Minhong Yan
- Department of Tumor Biology and Angiogenesis, Division of Research, Genentech Inc., South San Francisco, California, United States of America
| | - Yaozhong Ding
- Center for Vascular and Inflammatory Diseases, University of Maryland, Baltimore, Maryland, United States of America
- Departments of Surgery and Microbiology and Immunology, University of Maryland, Baltimore, Maryland, United States of America
| | - Jonathan S. Bromberg
- Center for Vascular and Inflammatory Diseases, University of Maryland, Baltimore, Maryland, United States of America
- Departments of Surgery and Microbiology and Immunology, University of Maryland, Baltimore, Maryland, United States of America
- * E-mail: (JSB); (NY)
| |
Collapse
|
50
|
Perros F, Dorfmüller P, Montani D, Hammad H, Waelput W, Girerd B, Raymond N, Mercier O, Mussot S, Cohen-Kaminsky S, Humbert M, Lambrecht BN. Pulmonary lymphoid neogenesis in idiopathic pulmonary arterial hypertension. Am J Respir Crit Care Med 2011; 185:311-21. [PMID: 22108206 DOI: 10.1164/rccm.201105-0927oc] [Citation(s) in RCA: 222] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
RATIONALE Patients with idiopathic pulmonary arterial hypertension (IPAH) present circulating autoantibodies against vascular wall components. Pathogenic antibodies may be generated in tertiary (ectopic) lymphoid tissues (tLTs). OBJECTIVES To assess the frequency of tLTs in IPAH lungs, as compared with control subjects and flow-induced PAH in patients with Eisenmenger syndrome, and to identify local mechanisms responsible for their formation, perpetuation, and function. METHODS tLT composition and structure were studied by multiple immunostainings. Cytokine/chemokine and growth factor expression was quantified by real-time polymerase chain reaction and localized by immunofluorescence. The systemic mark of pulmonary lymphoid neogenesis was investigated by flow cytometry analyses of circulating lymphocytes. MEASUREMENTS AND MAIN RESULTS As opposed to lungs from control subjects and patients with Eisenmenger syndrome, IPAH lungs contained perivascular tLTs, comprising B- and T-cell areas with high endothelial venules and dendritic cells. Lymphocyte survival factors, such as IL-7 and platelet-derived growth factor-A, were expressed in tLTs as well as the lymphorganogenic cytokines/chemokines, lymphotoxin-α/-β, CCL19, CCL20, CCL21, and CXCL13, which might explain the depletion of circulating CCR6(+) and CXCR5(+) lymphocytes. tLTs were connected with remodeled vessels via an ER-TR7(+) stromal network and supplied by lymphatic channels. The presence of germinal center centroblasts, follicular dendritic cells, activation-induced cytidine deaminase, and IL-21(+)PD1(+) follicular helper T cells in tLTs together with CD138(+) plasma cell accumulation around remodeled vessels in areas of immunoglobulin deposition argued for local immunoglobulin class switching and ongoing production. CONCLUSIONS We highlight the main features of lymphoid neogenesis specifically in the lungs of patients with IPAH, providing new evidence of immunological mechanisms in this severe condition.
Collapse
Affiliation(s)
- Frédéric Perros
- Laboratory of Immunoregulation, University Hospital of Ghent, Belgium.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|