1
|
Pinela E, Schnürer A, Neubeck A, Moestedt J, Westerholm M. Impact of additives on syntrophic propionate and acetate enrichments under high-ammonia conditions. Appl Microbiol Biotechnol 2024; 108:433. [PMID: 39110235 PMCID: PMC11306274 DOI: 10.1007/s00253-024-13263-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 07/17/2024] [Accepted: 07/20/2024] [Indexed: 08/10/2024]
Abstract
High ammonia concentrations in anaerobic degradation systems cause volatile fatty acid accumulation and reduced methane yield, which often derive from restricted activity of syntrophic acid-oxidising bacteria and hydrogenotrophic methanogens. Inclusion of additives that facilitate the electron transfer or increase cell proximity of syntrophic species by flocculation can be a suitable strategy to counteract these problems, but its actual impact on syntrophic interactions has yet to be determined. In this study, microbial cultivation and molecular and microscopic analysis were performed to evaluate the impact of conductive (graphene, iron oxide) and non-conductive (zeolite) additives on the degradation rate of acetate and propionate to methane by highly enriched ammonia-tolerant syntrophic cultures derived from a biogas process. All additives had a low impact on the lag phase but resulted in a higher rate of acetate (except graphene) and propionate degradation. The syntrophic bacteria 'Candidatus Syntrophopropionicum ammoniitolerans', Syntrophaceticus schinkii and a novel hydrogenotrophic methanogen were found in higher relative abundance and higher gene copy numbers in flocculating communities than in planktonic communities in the cultures, indicating benefits to syntrophs of living in close proximity to their cooperating partner. Microscopy and element analysis showed precipitation of phosphates and biofilm formation in all batches except on the graphene batches, possibly enhancing the rate of acetate and propionate degradation. Overall, the concordance of responses observed in both acetate- and propionate-fed cultures highlight the suitability of the addition of iron oxide or zeolites to enhance acid conversion to methane in high-ammonia biogas processes. KEY POINTS: • All additives promoted acetate (except graphene) and propionate degradation. • A preference for floc formation by ammonia-tolerant syntrophs was revealed. • Microbes colonised the surfaces of iron oxide and zeolite, but not graphene.
Collapse
Affiliation(s)
- Eduardo Pinela
- Department of Molecular Sciences, Swedish University of Agricultural Sciences, 750 07, Uppsala, Sweden
| | - Anna Schnürer
- Department of Molecular Sciences, Swedish University of Agricultural Sciences, 750 07, Uppsala, Sweden
| | - Anna Neubeck
- Department of Earth Sciences, Uppsala University, 752 36, Uppsala, Sweden
| | - Jan Moestedt
- Department of Molecular Sciences, Swedish University of Agricultural Sciences, 750 07, Uppsala, Sweden
- Department of Biogas R & D, Tekniska Verken I Linköping AB (Publ.), Box 1500, 581 15, Linköping, Sweden
- Department of Thematic Studies - Environmental Change, Linköping University, 581 83, Linköping, Sweden
| | - Maria Westerholm
- Department of Molecular Sciences, Swedish University of Agricultural Sciences, 750 07, Uppsala, Sweden.
| |
Collapse
|
2
|
Wen M, Zhang Q, Li Y, Cui Y, Shao J, Liu Y. Influence of dissolved organic matter on the anaerobic biotransformation of roxarsone accompanying microbial community response. CHEMOSPHERE 2024; 362:142606. [PMID: 38876324 DOI: 10.1016/j.chemosphere.2024.142606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 05/30/2024] [Accepted: 06/12/2024] [Indexed: 06/16/2024]
Abstract
Roxarsone (ROX), commonly employed as a livestock feed additive, largely remains unmetabolized and is subsequently excreted via feces. ROX could cause serious environmental risks due to its rapid transformation and high mobility in the anaerobic subsurface environment. Dissolved organic matter (DOM) is an important constituent of fecal organics in livestock waste and could affect the ROX biotransformation. Nonetheless, the underlying mechanisms governing the interaction between DOM and ROX biotransformation have not yet been elucidated in the anaerobic environment. In this study, the changes of ROX, metabolites, and microbial biomass in the solutions with varying DOM concentrations (0, 50, 100, 200, and 400 mg/L) under anaerobic environments were investigated during the ROX (200 mg/L) degradation. EEM-PARAFAC and metagenomic sequencing were combined to identify the dynamic shifts of DOM components and the functional microbial populations responsible for ROX degradation. Results indicated that DOM facilitated the anaerobic biotransformation of ROX and 200 mg/L ROX could be degraded completely in 28 h. The tryptophan-like within DOM functioned as a carbon source to promote the growth of microorganisms, thus accelerating the degradation of ROX. The mixed microflora involved in ROX anaerobic degrading contained genes associated with arsenic metabolism (arsR, arsC, acr3, arsA, nfnB, and arsB), and arsR, arsC, acr3 exhibited high microbial diversity. Variations in DOM concentrations significantly impacted the population dynamics of microorganisms involved in arsenic metabolism (Proteiniclasticum, Exiguobacterium, Clostridium, Proteiniphilum, Alkaliphilus, and Corynebacterium spp.), which in turn affected the transformation of ROX and its derivatives. This study reveals the mechanism of ROX degradation influenced by the varying concentrations of DOM under anaerobic environments, which is important for the prevention of arsenic contamination with elevated levels of organic matter.
Collapse
Affiliation(s)
- Mengtuo Wen
- School of Water Resources and Environment, China University of Geosciences (Beijing), Beijing, 100083, China; Key Laboratory of Water and Soil Resources Conservation and Restoration in the Middle and Lower Reaches of Yellow River Basin, MNR, Zhengzhou, 450016, China; Fujian Provincial Key Laboratory of Water Cycling and Eco-Geological Processes, Institute of Hydrogeology and Environmental Geology, Chinese Academy of Geological Sciences, Xiamen, 361000, China
| | - Qiulan Zhang
- School of Water Resources and Environment, China University of Geosciences (Beijing), Beijing, 100083, China
| | - Yasong Li
- Fujian Provincial Key Laboratory of Water Cycling and Eco-Geological Processes, Institute of Hydrogeology and Environmental Geology, Chinese Academy of Geological Sciences, Xiamen, 361000, China
| | - Yali Cui
- School of Water Resources and Environment, China University of Geosciences (Beijing), Beijing, 100083, China
| | - Jingli Shao
- School of Water Resources and Environment, China University of Geosciences (Beijing), Beijing, 100083, China
| | - Yaci Liu
- Key Laboratory of Water and Soil Resources Conservation and Restoration in the Middle and Lower Reaches of Yellow River Basin, MNR, Zhengzhou, 450016, China; Fujian Provincial Key Laboratory of Water Cycling and Eco-Geological Processes, Institute of Hydrogeology and Environmental Geology, Chinese Academy of Geological Sciences, Xiamen, 361000, China.
| |
Collapse
|
3
|
Ma JW, Liu GW, Zhai JY, Zhao KQ, Wu YQ, Yu RL, Hu GR, Yan Y. Roxarsone biotransformation by a nitroreductase and an acetyltransferase in Pseudomonas chlororaphis, a bacterium isolated from soil. CHEMOSPHERE 2023; 345:140558. [PMID: 37898462 DOI: 10.1016/j.chemosphere.2023.140558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 10/25/2023] [Accepted: 10/26/2023] [Indexed: 10/30/2023]
Abstract
Roxarsone (3-nitro-4-hydroxyphenylarsonic acid, Rox), a widely used organoarsenical feed additive, can enter soils and be further biotransformed into various arsenic species that pose human health and ecological risks. However, the pathway and molecular mechanism of Rox biotransformation by soil microbes are not well studied. Therefore, in this study, we isolated a Rox-transforming bacterium from manure-fertilized soil and identified it as Pseudomonas chlororaphis through morphological analysis and 16S rRNA gene sequencing. Pseudomonas chlororaphis was able to biotransform Rox to 3-amino-4-hydroxyphenylarsonic acid (3-AHPAA), N-acetyl-4-hydroxy-m-arsanilic acid (N-AHPAA), arsenate [As(V)], arsenite [As(III)], and dimethylarsenate [DMAs(V)]. The complete genome of Pseudomonas chlororaphis was sequenced. PcmdaB, encoding a nitroreductase, and PcnhoA, encoding an acetyltransferase, were identified in the genome of Pseudomonas chlororaphis. Expression of PcmdaB and PcnhoA in E. coli Rosetta was shown to confer Rox(III) and 3-AHPAA(III) resistance through Rox nitroreduction and 3-AHPAA acetylation, respectively. The PcMdaB and PcNhoA enzymes were further purified and functionally characterized in vitro. The kinetic data of both PcMdaB and PcNhoA were well fit to the Michaelis-Menten equation, and nitroreduction catalyzed by PcMdaB is the rate-limiting step for Rox transformation. Our results provide new insights into the environmental risk assessment and bioremediation of Rox(V)-contaminated soils.
Collapse
Affiliation(s)
- Jie-Wen Ma
- Department of Environmental Science and Engineering, Huaqiao University, Xiamen, 361021, China.
| | - Gui-Wen Liu
- Department of Environmental Science and Engineering, Huaqiao University, Xiamen, 361021, China.
| | - Jia-Yu Zhai
- Department of Environmental Science and Engineering, Huaqiao University, Xiamen, 361021, China.
| | - Ke-Qian Zhao
- Department of Environmental Science and Engineering, Huaqiao University, Xiamen, 361021, China.
| | - Ya-Qing Wu
- Instrumental Analysis Center of Huaqiao University, Huaqiao University, Xiamen, 361021, China.
| | - Rui-Lian Yu
- Department of Environmental Science and Engineering, Huaqiao University, Xiamen, 361021, China.
| | - Gong-Ren Hu
- Department of Environmental Science and Engineering, Huaqiao University, Xiamen, 361021, China
| | - Yu Yan
- Department of Environmental Science and Engineering, Huaqiao University, Xiamen, 361021, China.
| |
Collapse
|
4
|
Bitencourt JAP, Chequer LPT, Waite CC, Oliveira G, Oliveira AMS, Pereira DC, Crapez MAC. Biomass and enzymatic activities of marine bacteria in the presence of multiple metals. Braz J Microbiol 2023; 54:1523-1532. [PMID: 37212983 PMCID: PMC10485232 DOI: 10.1007/s42770-023-00993-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 04/25/2023] [Indexed: 05/23/2023] Open
Abstract
Marine environments are a repository for metals, and humans have enhanced this phenomenon over the years. Heavy metals are notoriously toxic due to their ability to biomagnify in the food chain and interact with cellular components. Nevertheless, some bacteria have physiological mechanisms that enable them to survive in impacted environments. This characteristic makes them important as biotechnological tools for environmental remediation. Thus, we isolated a bacterial consortium in Guanabara Bay (Brazil), a place with a long metal pollution history. To test the growth efficiency of this consortium in Cu-Zn-Pb-Ni-Cd medium, we measured the activity of key enzymes of microbial activity (esterases and dehydrogenase) under acidic (4.0) and neutral pH conditions, as well as the number of living cells, biopolymer production, and changes in microbial composition during metal exposure. Additionally, we calculated the predicted physiology based on microbial taxonomy. During the assay, a slight modification in bacterial composition was observed, with low abundance changes and little production of carbohydrates. Oceanobacillus chironomi, Halolactibacillus miurensis, and Alkaliphilus oremlandii were predominant in pH 7, despite O. chironomi and Tissierella creatinophila in pH 4, and T. creatinophila in Cu-Zn-Pb-Ni-Cd treatment. The metabolism represented by esterases and dehydrogenase enzymes suggested bacterial investment in esterases to capture nutrients and meet the energy demand in an environment with metal stress. Their metabolism potentially shifted to chemoheterotrophy and recycling nitrogenous compounds. Moreover, concomitantly, bacteria produced more lipids and proteins, suggesting extracellular polymeric substance production and growth in a metal-stressed environment. The isolated consortium showed promise for bioremediation of multimetal contamination and could be a valuable tool in future bioremediation programs.
Collapse
Affiliation(s)
| | - L P T Chequer
- Departamento de Biologia Marinha, Programa de Pós-Graduação Em Biologia Marinha E Ambientes Costeiros, Universidade Federal Fluminense, Niterói, RJ, CEP 24020-150, Brazil
| | - C C Waite
- Departamento de Biologia Marinha, Programa de Pós-Graduação Em Biologia Marinha E Ambientes Costeiros, Universidade Federal Fluminense, Niterói, RJ, CEP 24020-150, Brazil
| | - G Oliveira
- Departamento de Biologia Marinha, Programa de Pós-Graduação Em Biologia Marinha E Ambientes Costeiros, Universidade Federal Fluminense, Niterói, RJ, CEP 24020-150, Brazil
- School of Earth and Environmental Sciences, University of Queensland, St. Lucia, Brisbane, QLD, 4072, Australia
| | - A M S Oliveira
- Instituto Tecnológico Vale, Belém, PA, CEP 66055-090, Brazil
| | - D C Pereira
- Departamento de Biologia Marinha, Programa de Pós-Graduação Em Biologia Marinha E Ambientes Costeiros, Universidade Federal Fluminense, Niterói, RJ, CEP 24020-150, Brazil
| | - M A C Crapez
- Departamento de Biologia Marinha, Programa de Pós-Graduação Em Biologia Marinha E Ambientes Costeiros, Universidade Federal Fluminense, Niterói, RJ, CEP 24020-150, Brazil
| |
Collapse
|
5
|
Ma JW, Wu YQ, Xu CL, Luo ZX, Yu RL, Hu GR, Yan Y. Inhibitory effect of polyethylene microplastics on roxarsone degradation in soils. JOURNAL OF HAZARDOUS MATERIALS 2023; 454:131483. [PMID: 37116328 DOI: 10.1016/j.jhazmat.2023.131483] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 04/20/2023] [Accepted: 04/22/2023] [Indexed: 05/19/2023]
Abstract
Roxarsone (3-nitro-4-hydroxyphenylarsonic acid, Rox(V)), an extensively used organoarsenical feed additive, enters soils through the application of Rox(V)-containing manure and further degrades to highly toxic arsenicals. Microplastics, as emerging contaminants, are also frequently detected in soils. However, the effects of microplastics on soil Rox(V) degradation are unknown. A microcosm experiment was conducted to investigate soil Rox(V) degradation responses to polyethylene (PE) microplastics and the underlying mechanisms. PE microplastics inhibited soil Rox(V) degradation, with the main products being 3-amino-4-hydroxyphenylarsonic acid [3-AHPAA(V)], N-acetyl-4-hydroxy-m-arsanilic acid [N-AHPAA(V)], arsenate [As(V)], and arsenite [As(III)]. This inhibition was likely driven by the decline in soil pH by PE microplastic addition, which may directly enhance Rox(V) sorption in soils. The decreased soil pH further suppressed the nfnB gene related to nitroreduction of Rox(V) to 3-AHPAA(V) and nhoA gene associated with acetylation of 3-AHPAA(V) to N-AHPAA(V), accompanied by a decrease in the relative abundance of possible Rox(V)-degrading bacteria (e.g., Pseudomonadales), although the diversity, composition, network complexity, and assembly of soil bacterial communities were largely influenced by Rox(V) rather than PE microplastics. Our study emphasizes microplastic-induced inhibition of Rox(V) degradation in soils and the need to consider the role of microplastics in better risk assessment and remediation of Rox(V)-contaminated soils.
Collapse
Affiliation(s)
- Jie-Wen Ma
- Department of Environmental Science and Engineering, Huaqiao University, Xiamen 361021, China
| | - Ya-Qing Wu
- Instrumental Analysis Center of Huaqiao University, Huaqiao University, Xiamen 361021, China
| | - Chen-Lu Xu
- Department of Environmental Science and Engineering, Huaqiao University, Xiamen 361021, China
| | - Zhuan-Xi Luo
- Department of Environmental Science and Engineering, Huaqiao University, Xiamen 361021, China
| | - Rui-Lian Yu
- Department of Environmental Science and Engineering, Huaqiao University, Xiamen 361021, China
| | - Gong-Ren Hu
- Department of Environmental Science and Engineering, Huaqiao University, Xiamen 361021, China
| | - Yu Yan
- Department of Environmental Science and Engineering, Huaqiao University, Xiamen 361021, China.
| |
Collapse
|
6
|
Zeng XC, Xu Y, Liu Z, Chen X, Wu Y. Comparisons of four As(V)-respiring bacteria from contaminated aquifers: activities to respire soluble As(V) and to reductively mobilize solid As(V). WATER RESEARCH 2022; 224:119097. [PMID: 36148700 DOI: 10.1016/j.watres.2022.119097] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 09/07/2022] [Accepted: 09/08/2022] [Indexed: 06/16/2023]
Abstract
It was shown that dissimilatory arsenate[As(V)]-respiring prokaryotes (DARPs) play important roles in driving the formation of arsenic-contaminated groundwater. However, because it is tough to isolate cultivable DARPs, the physiological and functional features of DARPs have not been fully elucidated yet; this impedes a deep understanding of the mechanisms for the dynamic fluctuations of As concentrations in contaminated groundwater. Here, four new DARPs were isolated from As-contaminated aquifers using the microbial enrichment technique, which were referred to as Bacillus sp Z01, Bacillus sp. Z02. Achromobacter sp. Z03 and Intrasporangium sp. Z04. We found that the presence of As(V) significantly inhibited the growth of Z03 and Z04, but promoted the growth of Z01 and Z02. The four strains possess significant As(V)-, NO3-- and Fe(III)-respiring activities; however, their activities and preferred electron donors differ greatly. NO3- was finally reduced to NO2- by Z01 and Z02, and to N2O and N2 by Z03 and Z04. The optimal pH value for their As(V)-respiring activity was 5 for Z01, and 4 for Z02, Z03 and Z04, whereas their optimal temperature varied between 30 and 37 °C. Microcosm assays with As-contaminated sediments and scorodite suggested that the four DARP strains had highly differential activities to reduce and mobilize solid As(V) under anaerobic conditions. Although the four DARPs have high soluble As(V)-respiring activities, their activities to mobilize solid As are negligibly low, accounting for only 0.006-0.484% of their each corresponding soluble As(V)-respiring activity. Moreover, extreme inconsistency between the size orders of their activities to respire soluble As(V) and to catalyze As reductive mobilization was observed. It is interesting to see that Z04 had high As(V)-respiring activity, but had little ability to catalyze the reductive mobilization of As and Fe. These observations suggest that As(V)-respiring activity is required, but not enough to catalyze the reductive mobilization of solid As(V). These findings provide new knowledge about the physiological and functional features of DARPs, and are helpful for a better understanding of the roles of DARPs in reductive mobilization and release of As from solid phase into groundwater.
Collapse
Affiliation(s)
- Xian-Chun Zeng
- State Key Laboratory of Biogeology and Environmental Geology & School of Environmental Studies, China University of Geosciences (Wuhan), Wuhan, Peoples' Republic of China.
| | - Yifan Xu
- State Key Laboratory of Biogeology and Environmental Geology & School of Environmental Studies, China University of Geosciences (Wuhan), Wuhan, Peoples' Republic of China
| | - Ziwei Liu
- State Key Laboratory of Biogeology and Environmental Geology & School of Environmental Studies, China University of Geosciences (Wuhan), Wuhan, Peoples' Republic of China
| | - Xiaoming Chen
- State Key Laboratory of Biogeology and Environmental Geology & School of Environmental Studies, China University of Geosciences (Wuhan), Wuhan, Peoples' Republic of China
| | - Yan Wu
- State Key Laboratory of Biogeology and Environmental Geology & School of Environmental Studies, China University of Geosciences (Wuhan), Wuhan, Peoples' Republic of China
| |
Collapse
|
7
|
Environmental Behavior and Remediation Methods of Roxarsone. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12157591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Roxarsone (ROX) is used extensively in the broiler chicken industry, and most is excreted in poultry litter. ROX degradation produces inorganic arsenic, which causes arsenic contamination of soil and aquatic environment. Furthermore, elevated arsenic concentrations are found in livers of chickens fed ROX. Microorganisms, light, and ions are the main factors that promote ROX degradation in the environment. The adsorption of ROX on different substances and its influencing factors have also been studied extensively. Additionally, the remediation method, combining adsorption and degradation, can effectively restore ROX contamination. Based on this, the review reports the ecological hazards, discussed the transformation and adsorption of ROX in environmental systems, documents the biological response to ROX, and summarizes the remediation methods of ROX contamination. Most previous studies of ROX have been focused on identifying the mechanisms involved under theoretical conditions, but more attention should be paid to the behavior of ROX under real environmental conditions, including the fate and transport of ROX in the real environment. ROX remediation methods at real contaminated sites should also be assessed and verified. The summary of previous studies on the environmental behavior and remediation methods of ROX is helpful for further research in the future.
Collapse
|
8
|
Zhang Y, O'Loughlin EJ, Kwon MJ. Antimony redox processes in the environment: A critical review of associated oxidants and reductants. JOURNAL OF HAZARDOUS MATERIALS 2022; 431:128607. [PMID: 35359101 DOI: 10.1016/j.jhazmat.2022.128607] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 02/16/2022] [Accepted: 02/27/2022] [Indexed: 06/14/2023]
Abstract
The environmental behavior of antimony (Sb) has recently received greater attention due to the increasing global use of Sb in a range of industrial applications. Although present at trace levels in most natural systems, elevated Sb concentrations in aquatic and terrestrial environments may result from anthropogenic activities. The mobility and toxicity of Sb largely depend on its speciation, which is dependent to a large extent on its oxidation state. To a certain extent, our understanding of the environmental behavior of Sb has been informed by studies of the environmental behavior of arsenic (As), as Sb and As have somewhat similar chemical properties. However, recently it has become evident that the speciation of Sb and As, especially in the context of redox reactions, may be fundamentally different. Therefore, it is crucial to study the biogeochemical processes impacting Sb redox transformations to understand the behavior of Sb in natural and engineered environments. Currently, there is a growing body of literature involving the speciation, mobility, toxicity, and remediation of Sb, and several reviews on these general topics are available; however, a comprehensive review focused on Sb environmental redox chemistry is lacking. This paper provides a review of research conducted within the past two decades examining the redox chemistry of Sb in aquatic and terrestrial environments and identifies knowledge gaps that need to be addressed to develop a better understanding of Sb biogeochemistry for improved management of Sb in natural and engineered systems.
Collapse
Affiliation(s)
- Yidan Zhang
- Department of Earth and Environmental Sciences, Korea University, Seoul 02841, Republic of Korea
| | | | - Man Jae Kwon
- Department of Earth and Environmental Sciences, Korea University, Seoul 02841, Republic of Korea.
| |
Collapse
|
9
|
Li DH, Abuduaini R, Du MX, Wang YJ, Chen HH, Zhou N, Zhu HZ, Lu Y, Yu PJ, Yang YP, Jiang CY, Sun Q, Liu C, Liu SJ. Alkaliphilus flagellatus sp. nov., Butyricicoccus intestinisimiae sp. nov., Clostridium mobile sp. nov., Clostridium simiarum sp. nov., Dysosmobacter acutus sp. nov., Paenibacillus brevis sp. nov., Peptoniphilus ovalis sp. nov. and Tissierella simiarum sp. nov., isolated from monkey faeces. Int J Syst Evol Microbiol 2022; 72. [PMID: 35258450 PMCID: PMC9558573 DOI: 10.1099/ijsem.0.005276] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Non-human primates harbour diverse microbiomes in their guts. As a part of the China Microbiome Initiatives, we cultivated and characterized the gut microbiome of cynomolgus monkeys (Macaca fascicularis). In this report, we communicate the characterization and taxonomy of eight bacterial strains that were obtained from faecal samples of captive cynomolgus monkeys. The results revealed that they represented eight novel bacterial species. The proposed names of the eight novel species are Alkaliphilus flagellatus (type strain MSJ-5T=CGMCC 1.45007T=KCTC 15974T), Butyricicoccus intestinisimiae MSJd-7T (MSJd-7T=CGMCC 1.45013T=KCTC 25112T), Clostridium mobile (MSJ-11T=CGMCC 1.45009T=KCTC 25065T), Clostridium simiarum (MSJ-4T=CGMCC 1.45006T=KCTC 15975T), Dysosmobacter acutus (MSJ-2T=CGMCC 1.32896T=KCTC 15976T), Paenibacillus brevis MSJ-6T (MSJ-6T=CGMCC 1.45008T=KCTC 15973T), Peptoniphilus ovalis (MSJ-1T=CGMCC 1.31770T=KCTC 15977T) and Tissierella simiarum (MSJ-40T=CGMCC 1.45012T=KCTC 25071T).
Collapse
Affiliation(s)
- Dan-Hua Li
- State Key Laboratory of Microbial Resources and Environmental Microbiology Research Center at Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, PR China
| | - Rexiding Abuduaini
- University of Chinese Academy of Sciences, Beijing 100049, PR China
- State Key Laboratory of Microbial Resources and Environmental Microbiology Research Center at Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, PR China
| | - Meng-Xuan Du
- State Key Laboratory of Microbial Resources and Environmental Microbiology Research Center at Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, PR China
| | - Yu-Jing Wang
- University of Chinese Academy of Sciences, Beijing 100049, PR China
- State Key Laboratory of Microbial Resources and Environmental Microbiology Research Center at Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, PR China
| | - Hong-He Chen
- State Key Laboratory of Microbial Resources and Environmental Microbiology Research Center at Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, PR China
| | - Nan Zhou
- State Key Laboratory of Microbial Resources and Environmental Microbiology Research Center at Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, PR China
| | - Hai-Zhen Zhu
- State Key Laboratory of Microbial Resources and Environmental Microbiology Research Center at Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, PR China
| | - Yong Lu
- Institute of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, State Key Laboratory of Neuroscience, CAS Key Laboratory of Primate Neurobiology, Chinese Academy of Sciences, 200031, Shanghai, PR China
| | - Pei-Jun Yu
- Institute of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, State Key Laboratory of Neuroscience, CAS Key Laboratory of Primate Neurobiology, Chinese Academy of Sciences, 200031, Shanghai, PR China
- University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Yun-Peng Yang
- Institute of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, State Key Laboratory of Neuroscience, CAS Key Laboratory of Primate Neurobiology, Chinese Academy of Sciences, 200031, Shanghai, PR China
| | - Cheng-Ying Jiang
- Institute of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, State Key Laboratory of Neuroscience, CAS Key Laboratory of Primate Neurobiology, Chinese Academy of Sciences, 200031, Shanghai, PR China
- University of Chinese Academy of Sciences, Beijing 100049, PR China
- State Key Laboratory of Microbial Resources and Environmental Microbiology Research Center at Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, PR China
| | - Qiang Sun
- Institute of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, State Key Laboratory of Neuroscience, CAS Key Laboratory of Primate Neurobiology, Chinese Academy of Sciences, 200031, Shanghai, PR China
| | - Chang Liu
- State Key Laboratory of Microbial Resources and Environmental Microbiology Research Center at Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, PR China
| | - Shuang-Jiang Liu
- State Key Laboratory of Microbial Resources and Environmental Microbiology Research Center at Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, PR China
- State Key Laboratory of Microbial Biotechnology, Shandong University, Qingdao 266237, PR China
- University of Chinese Academy of Sciences, Beijing 100049, PR China
| |
Collapse
|
10
|
Braga Nan L, Trably E, Santa-Catalina G, Bernet N, Delgenes JP, Escudie R. Microbial community redundance in biomethanation systems lead to faster recovery of methane production rates after starvation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 804:150073. [PMID: 34517312 DOI: 10.1016/j.scitotenv.2021.150073] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 08/11/2021] [Accepted: 08/28/2021] [Indexed: 06/13/2023]
Abstract
The Power-to-Gas concept corresponds to the use of the electric energy surplus to produce H2 by water electrolysis, that can be further converted to methane by biomethanation. However, the fluctuant production of renewable energy sources can lead to discontinuous H2 injections into the reactors, that may interfere with the adaptation of the microbial community to high H2 partial pressures. In this study, the response of the microbial community to H2 and organic feed starvation was evaluated in in-situ and ex-situ biomethanation. The fed-batch reactors were fed with acetate or glucose and H2, and one or four weeks of starvation periods were investigated. Methane productivity was mostly affected by the four-week starvation period. However, both in-situ and ex-situ biomethanation reactors recovered their methane production rate after starvation within approximately one-week of normal operation, while the anaerobic digestion (AD) reactors did not recover their performances even after 3 weeks of normal operation. The recovery failure of the AD reactors was probably related to a slow growth of the syntrophic and methanogen microorganisms, that led to a VFA accumulation. On the contrary, the faster recovery of both biomethanation reactors was related to the replacement of Methanoculleus sp. by Methanobacterium sp., restoring the methane production in the in-situ and ex-situ biomethanation reactors. This study has shown that biomethanation processes can respond favourably to the intermittent H2 addition without compromising their CH4 production performance.
Collapse
Affiliation(s)
- L Braga Nan
- INRAE, Univ. Montpellier, LBE, 102 AV. des Etangs, 11100 Narbonne, France
| | - E Trably
- INRAE, Univ. Montpellier, LBE, 102 AV. des Etangs, 11100 Narbonne, France
| | - G Santa-Catalina
- INRAE, Univ. Montpellier, LBE, 102 AV. des Etangs, 11100 Narbonne, France
| | - N Bernet
- INRAE, Univ. Montpellier, LBE, 102 AV. des Etangs, 11100 Narbonne, France
| | - J-P Delgenes
- INRAE, Univ. Montpellier, LBE, 102 AV. des Etangs, 11100 Narbonne, France
| | - R Escudie
- INRAE, Univ. Montpellier, LBE, 102 AV. des Etangs, 11100 Narbonne, France.
| |
Collapse
|
11
|
Wang Y, Wei D, Li P, Jiang Z, Liu H, Qing C, Wang H. Diversity and arsenic-metabolizing gene clusters of indigenous arsenate-reducing bacteria in high arsenic groundwater of the Hetao Plain, Inner Mongolia. ECOTOXICOLOGY (LONDON, ENGLAND) 2021; 30:1680-1688. [PMID: 33196984 DOI: 10.1007/s10646-020-02305-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 10/27/2020] [Indexed: 06/11/2023]
Abstract
Dissimilatory arsenate reduction from arsenic (As)-bearing minerals into highly mobile arsenite is one of the key mechanisms of As release into groundwater. To detect the microbial diversity and As-metabolizing gene clusters of indigenous arsenate-reducing bacteria in high As groundwater in the Hetao Plain of Inner Mongolia, China, three anaerobic arsenate-reducing bacteria were isolated and arrA and arsC gene-based clone libraries of four in situ groundwater samples were constructed. The strains IMARCUG-11(G-11), IMARCUG-C1(G-C1) and IMARCUG-12(G-12) were phylogenetically belonged to genera Paraclostridium, Citrobacter and Klebsiella, respectively. They could reduce >99% of 1 mM arsenate under anoxic conditions with lactate as a carbon source in 60 h, 72 h and 84 h, respectively. As far as we know, this was the first report of arsenate reduction by genus Paraclostridium. Compared with strain G-11 (arsC) and G-C1 (arsRBC), strain G-12 contained two incomplete ars operons (operon1: arsABC, operon2: arsBC), indicating that these strains might present different strategies to resist As toxicity. Phylogenetic analysis illuminating by the arrA genes showed that in situ arsenate-reducing bacterial communities were diverse and mainly composed of Desulfobacterales (53%, dominated by Geobacter), Betaproteobacteria (12%), and unidentified groups (35%). Based on the arsC gene analysis, the indigenous arsenate-reducing bacterial communities were mainly affiliated with Omnitrophica (88%) and Deltaproteobacteria (11%, dominated by Geobacter and Syntrophobacterales). Results of this study expanded our understanding of indigenous arsenic-reducing bacteria in high As groundwater aquifers.
Collapse
Affiliation(s)
- Yanhong Wang
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, 430074, PR China
| | - Dazhun Wei
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, 430074, PR China
| | - Ping Li
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, 430074, PR China.
| | - Zhou Jiang
- School of Environmental Studies, China University of Geosciences, Wuhan, 430074, PR China
| | - Han Liu
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, 430074, PR China
| | - Chun Qing
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, 430074, PR China
| | - Helin Wang
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, 430074, PR China
| |
Collapse
|
12
|
Mondal S, Pramanik K, Ghosh SK, Pal P, Mondal T, Soren T, Maiti TK. Unraveling the role of plant growth-promoting rhizobacteria in the alleviation of arsenic phytotoxicity: A review. Microbiol Res 2021; 250:126809. [PMID: 34166969 DOI: 10.1016/j.micres.2021.126809] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 06/09/2021] [Accepted: 06/11/2021] [Indexed: 10/21/2022]
Abstract
The toxic metalloid arsenic (As), is a major pollutant of soil and water, imposing severe health concerns on human lives. It enters the food chain mainly through As-contaminated crops. The uptake, translocation and accumulation of As in plant tissue are often controlled by certain soil-inhabiting microbial communities. Among them, indigenous, free-living As-resistant plant growth-promoting rhizobacteria (PGPR) plays a pivotal role in As-immobilization. Besides, the plant's inability to withstand As after a threshold level is actively managed by these PGPR increasing As-tolerance in host plants by a synergistic plant-microbe interaction. The dual functionality of As-resistant PGPR i.e., phytostimulation and minimization of As-induced phytotoxic damages are one of the main focal points of this review article. It is known that such PGPR having the functional arsenic-resistant genes (in ars operon) including As-transporters, As-transforming genes contributed to the As accumulation and detoxification/transformation respectively. Apart from assisting in nutrient acquisition and modulating phytohormone levels, As-resistant PGPR also influences the antioxidative defense system in plants by maneuvering multiple enzymatic and non-enzymatic antioxidants. Furthermore, they are effective in reducing membrane damage and electrolyte leakage in plant cells. As-induced photosynthetic damage is also found to be salvaged by As-resistant PGPR. Briefly, the eco-physiological, biochemical and molecular mechanisms of As-resistant PGPR are thus elaborated here with regard to the As-exposed crops.
Collapse
Affiliation(s)
- Sayanta Mondal
- Microbiology Laboratory, Department of Botany, The University of Burdwan, Golapbag, Purba Bardhaman, P.O.-Rajbati, PIN-713104, West Bengal, India.
| | - Krishnendu Pramanik
- Mycology and Plant Pathology Laboratory, Department of Botany, Siksha Bhavana, Visva-Bharati, Santiniketan, Birbhum, PIN-731235, West Bengal, India.
| | - Sudip Kumar Ghosh
- Microbiology Laboratory, Department of Botany, The University of Burdwan, Golapbag, Purba Bardhaman, P.O.-Rajbati, PIN-713104, West Bengal, India.
| | - Priyanka Pal
- Microbiology Laboratory, Department of Botany, The University of Burdwan, Golapbag, Purba Bardhaman, P.O.-Rajbati, PIN-713104, West Bengal, India.
| | - Tanushree Mondal
- Microbiology Laboratory, Department of Botany, The University of Burdwan, Golapbag, Purba Bardhaman, P.O.-Rajbati, PIN-713104, West Bengal, India.
| | - Tithi Soren
- Microbiology Laboratory, Department of Botany, The University of Burdwan, Golapbag, Purba Bardhaman, P.O.-Rajbati, PIN-713104, West Bengal, India.
| | - Tushar Kanti Maiti
- Microbiology Laboratory, Department of Botany, The University of Burdwan, Golapbag, Purba Bardhaman, P.O.-Rajbati, PIN-713104, West Bengal, India.
| |
Collapse
|
13
|
Hage H, Rosso MN, Tarrago L. Distribution of methionine sulfoxide reductases in fungi and conservation of the free-methionine-R-sulfoxide reductase in multicellular eukaryotes. Free Radic Biol Med 2021; 169:187-215. [PMID: 33865960 DOI: 10.1016/j.freeradbiomed.2021.04.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 04/06/2021] [Accepted: 04/09/2021] [Indexed: 12/17/2022]
Abstract
Methionine, either as a free amino acid or included in proteins, can be oxidized into methionine sulfoxide (MetO), which exists as R and S diastereomers. Almost all characterized organisms possess thiol-oxidoreductases named methionine sulfoxide reductase (Msr) enzymes to reduce MetO back to Met. MsrA and MsrB reduce the S and R diastereomers of MetO, respectively, with strict stereospecificity and are found in almost all organisms. Another type of thiol-oxidoreductase, the free-methionine-R-sulfoxide reductase (fRMsr), identified so far in prokaryotes and a few unicellular eukaryotes, reduces the R MetO diastereomer of the free amino acid. Moreover, some bacteria possess molybdenum-containing enzymes that reduce MetO, either in the free or protein-bound forms. All these Msrs play important roles in the protection of organisms against oxidative stress. Fungi are heterotrophic eukaryotes that colonize all niches on Earth and play fundamental functions, in organic matter recycling, as symbionts, or as pathogens of numerous organisms. However, our knowledge on fungal Msrs is still limited. Here, we performed a survey of msr genes in almost 700 genomes across the fungal kingdom. We show that most fungi possess one gene coding for each type of methionine sulfoxide reductase: MsrA, MsrB, and fRMsr. However, several fungi living in anaerobic environments or as obligate intracellular parasites were devoid of msr genes. Sequence inspection and phylogenetic analyses allowed us to identify non-canonical sequences with potentially novel enzymatic properties. Finaly, we identified several ocurences of msr horizontal gene transfer from bacteria to fungi.
Collapse
Affiliation(s)
- Hayat Hage
- Biodiversité et Biotechnologie Fongiques, UMR1163, INRAE, Aix Marseille Université, Marseille, France
| | - Marie-Noëlle Rosso
- Biodiversité et Biotechnologie Fongiques, UMR1163, INRAE, Aix Marseille Université, Marseille, France
| | - Lionel Tarrago
- Biodiversité et Biotechnologie Fongiques, UMR1163, INRAE, Aix Marseille Université, Marseille, France.
| |
Collapse
|
14
|
Muturi SM, Muthui LW, Njogu PM, Onguso JM, Wachira FN, Opiyo SO, Pelle R. Metagenomics survey unravels diversity of biogas microbiomes with potential to enhance productivity in Kenya. PLoS One 2021; 16:e0244755. [PMID: 33395690 PMCID: PMC7781671 DOI: 10.1371/journal.pone.0244755] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 12/16/2020] [Indexed: 12/27/2022] Open
Abstract
The obstacle to optimal utilization of biogas technology is poor understanding of biogas microbiomes diversities over a wide geographical coverage. We performed random shotgun sequencing on twelve environmental samples. Randomized complete block design was utilized to assign the twelve treatments to four blocks, within eastern and central regions of Kenya. We obtained 42 million paired-end reads that were annotated against sixteen reference databases using two ENVO ontologies, prior to β-diversity studies. We identified 37 phyla, 65 classes and 132 orders. Bacteria dominated and comprised 28 phyla, 42 classes and 92 orders, conveying substrate's versatility in the treatments. Though, Fungi and Archaea comprised 5 phyla, the Fungi were richer; suggesting the importance of hydrolysis and fermentation in biogas production. High β-diversity within the taxa was largely linked to communities' metabolic capabilities. Clostridiales and Bacteroidales, the most prevalent guilds, metabolize organic macromolecules. The identified Cytophagales, Alteromonadales, Flavobacteriales, Fusobacteriales, Deferribacterales, Elusimicrobiales, Chlamydiales, Synergistales to mention but few, also catabolize macromolecules into smaller substrates to conserve energy. Furthermore, δ-Proteobacteria, Gloeobacteria and Clostridia affiliates syntrophically regulate PH2 and reduce metal to provide reducing equivalents. Methanomicrobiales and other Methanomicrobia species were the most prevalence Archaea, converting formate, CO2(g), acetate and methylated substrates into CH4(g). Thermococci, Thermoplasmata and Thermoprotei were among the sulfur and other metal reducing Archaea that contributed to redox balancing and other metabolism within treatments. Eukaryotes, mainly fungi were the least abundant guild, comprising largely Ascomycota and Basidiomycota species. Chytridiomycetes, Blastocladiomycetes and Mortierellomycetes were among the rare species, suggesting their metabolic and substrates limitations. Generally, we observed that environmental and treatment perturbations influenced communities' abundance, β-diversity and reactor performance largely through stochastic effect. Understanding diversity of biogas microbiomes over wide environmental variables and its' productivity provided insights into better management strategies that ameliorate biochemical limitations to effective biogas production.
Collapse
Affiliation(s)
- Samuel Mwangangi Muturi
- Department of Biological Sciences, University of Eldoret, Eldoret, Kenya
- Institute for Bioteschnology Research, Jomo Kenyatta University of Agriculture and Technology, Juja, Kenya
| | - Lucy Wangui Muthui
- Biosciences Eastern and Central Africa—International Livestock Research Institute (BecA-ILRI) Hub, Nairobi, Kenya
| | - Paul Mwangi Njogu
- Institute for Energy and Environmental Technology, Jomo Kenyatta University of Agriculture and Technology, Juja, Kenya
| | - Justus Mong’are Onguso
- Institute for Bioteschnology Research, Jomo Kenyatta University of Agriculture and Technology, Juja, Kenya
| | | | - Stephen Obol Opiyo
- OARDC, Molecular and Cellular Imaging Center-Columbus, Ohio State University, Columbus, Ohio, United States of America
- The University of Sacread Heart, Gulu, Uganda
| | - Roger Pelle
- Biosciences Eastern and Central Africa—International Livestock Research Institute (BecA-ILRI) Hub, Nairobi, Kenya
| |
Collapse
|
15
|
Chen J, Rosen BP. The Pseudomonas putida NfnB nitroreductase confers resistance to roxarsone. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 748:141339. [PMID: 32810805 PMCID: PMC7606800 DOI: 10.1016/j.scitotenv.2020.141339] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 07/07/2020] [Accepted: 07/27/2020] [Indexed: 05/04/2023]
Abstract
Roxarsone (3-nitro-4-hydroxyphenylarsonic acid, Rox) has been used for decades as an antimicrobial growth promoter for poultry and swine. Roxarsone is excreted in chicken manure unchanged and can be microbially transformed into a variety of arsenic-containing compounds such as 3-amino-4-hydroxyphenylarsonic acid (HAPA(V)) that contaminate the environment and present a potential health hazard. To cope with arsenic toxicity, nearly every prokaryote has an ars (arsenic resistance) operon, some of which confer resistance to roxarsone. Pseudomonas putida KT2440 is a robust environmental isolate capable of metabolizing many aromatic compounds and is used as a model organism for biodegradation of aromatic compounds. Here we report that P. putida KT2440 (ΔΔars) in which the two ars operons had been deleted retains resistance to highly toxic trivalent Rox(III), the likely active form of roxarsone. In this study, a genomic library constructed from P. putida KT2440 (ΔΔars) was used to screen for resistance to Rox(III) in Escherichia coli. One gene, termed, PpnfnB, was identified that encodes a putative 6,7-dihydropteridine reductase. Cells expressing PpnfnB reduce the nitro group of Rox(III), and purified NfnB catalyzes FMN-NADPH-dependent nitroreduction of Rox(III) to less toxic HAPA(III). This identifies a key step in the breakdown of synthetic aromatic arsenicals.
Collapse
Affiliation(s)
- Jian Chen
- Department of Cellular Biology and Pharmacology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL 33199, United States; Research Center for Soil Contamination and Environmental Remediation, Southwest Forestry University, Kunming, Yunnan 650224, China
| | - Barry P Rosen
- Department of Cellular Biology and Pharmacology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL 33199, United States.
| |
Collapse
|
16
|
Xu X, Zhang W, Gu X, Guo Z, Song J, Zhu D, Liu Y, Liu Y, Xue G, Li X, Makinia J. Stabilizing lactate production through repeated batch fermentation of food waste and waste activated sludge. BIORESOURCE TECHNOLOGY 2020; 300:122709. [PMID: 31901771 DOI: 10.1016/j.biortech.2019.122709] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 12/25/2019] [Accepted: 12/27/2019] [Indexed: 06/10/2023]
Abstract
Bio-valorization of organic waste streams, such as food waste and waste activated sludge, to lactic acid (LA) has recently drawn much attention. It offers an opportunity for resource recovery, alleviates environmental issues and potentially turns a profit. In this study, both stable and high LA yield (0.72 ± 0.15 g/g total chemical oxygen demand) and productivity rate (0.53 g/L•h) were obtained through repeated batch fermentation. Moreover, stable solubilization and increase in the critical hydrolase activities were achieved. Depletions of ammonia and phosphorus were correlated with the LA production. The relative abundance of the key LA bacteria genera (i.e., Alkaliphilus, Dysgonomonas, Enterococcus and Bifidobacterium) stabilized in the repeated batch reactor at a higher level (44.5 ± 2.53%) in comparison with the batch reactor (26.2 ± 4.74%). This work show a practical way for the sustainable valorization of organic wastes to LA by applying the repeated batch mode during biological treatment.
Collapse
Affiliation(s)
- Xianbao Xu
- College of Environmental Science and Engineering, Donghua University, 2999 North Renmin Road, Shanghai 201620, China
| | - Wenjuan Zhang
- College of Environmental Science and Engineering, Donghua University, 2999 North Renmin Road, Shanghai 201620, China
| | - Xia Gu
- College of Environmental Science and Engineering, Donghua University, 2999 North Renmin Road, Shanghai 201620, China
| | - Zhichao Guo
- College of Environmental Science and Engineering, Donghua University, 2999 North Renmin Road, Shanghai 201620, China
| | - Jian Song
- College of Environmental Science and Engineering, Donghua University, 2999 North Renmin Road, Shanghai 201620, China
| | - Daan Zhu
- College of Environmental Science and Engineering, Donghua University, 2999 North Renmin Road, Shanghai 201620, China
| | - Yanbiao Liu
- College of Environmental Science and Engineering, Donghua University, 2999 North Renmin Road, Shanghai 201620, China
| | - Yanan Liu
- College of Environmental Science and Engineering, Donghua University, 2999 North Renmin Road, Shanghai 201620, China
| | - Gang Xue
- College of Environmental Science and Engineering, Donghua University, 2999 North Renmin Road, Shanghai 201620, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Xiang Li
- College of Environmental Science and Engineering, Donghua University, 2999 North Renmin Road, Shanghai 201620, China.
| | - Jacek Makinia
- Faculty of Civil and Environmental Engineering, Gdansk University of Technology, ul. Narutowicza 11/12, 80-233 Gdansk, Poland
| |
Collapse
|
17
|
Li Y, Liu Y, Zhang Z, Fei Y, Tian X, Cao S. Identification of an anaerobic bacterial consortium that degrades roxarsone. Microbiologyopen 2020; 9:e1003. [PMID: 32053294 PMCID: PMC7142373 DOI: 10.1002/mbo3.1003] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2019] [Revised: 01/07/2020] [Accepted: 01/14/2020] [Indexed: 02/01/2023] Open
Abstract
The degradation of roxarsone, an extensively used organoarsenic feed additive, occurs quickly under anaerobic conditions with microorganisms playing an important role in its degradation. Here, an anaerobic bacterial consortium that effectively degraded roxarsone was isolated, and its degradation efficiency and community changes along a roxarsone concentration gradient under anaerobic conditions were assessed. We used batch experiments to determine the roxarsone degradation rates, as well as the bacterial community structure and diversity, at initial roxarsone concentrations of 50, 100, 200, and 400 mg/kg. The results showed that roxarsone was degraded completely within 28, 28, 36, and 44 hr at concentrations of 50, 100, 200, and 400 mg/kg, respectively. The anaerobic bacterial consortium displayed considerable potential to degrade roxarsone, as the degradation rate increased with increasing roxarsone concentrations. Roxarsone promoted microbial growth, and in turn, the microorganisms degraded the organoarsenic compound, with the functional bacterial community varying between different roxarsone concentrations. Lysinibacillus, Alkaliphilus, and Proteiniclasticum were the main genera composing the roxarsone‐degrading bacterial community.
Collapse
Affiliation(s)
- Yasong Li
- Institute of Hydrogeology and Environmental Geology, Chinese Academy of Geological Sciences, Shijiazhuang, China.,Key Laboratory of Groundwater Remediation of Hebei Province and China Geological Survey, Shijiazhuang, China
| | - Yaci Liu
- Institute of Hydrogeology and Environmental Geology, Chinese Academy of Geological Sciences, Shijiazhuang, China.,Key Laboratory of Groundwater Remediation of Hebei Province and China Geological Survey, Shijiazhuang, China
| | - Zhaoji Zhang
- Institute of Hydrogeology and Environmental Geology, Chinese Academy of Geological Sciences, Shijiazhuang, China
| | - Yuhong Fei
- Institute of Hydrogeology and Environmental Geology, Chinese Academy of Geological Sciences, Shijiazhuang, China.,Key Laboratory of Groundwater Remediation of Hebei Province and China Geological Survey, Shijiazhuang, China
| | - Xia Tian
- Institute of Hydrogeology and Environmental Geology, Chinese Academy of Geological Sciences, Shijiazhuang, China.,Key Laboratory of Groundwater Remediation of Hebei Province and China Geological Survey, Shijiazhuang, China
| | - Shengwei Cao
- Institute of Hydrogeology and Environmental Geology, Chinese Academy of Geological Sciences, Shijiazhuang, China.,Key Laboratory of Groundwater Remediation of Hebei Province and China Geological Survey, Shijiazhuang, China
| |
Collapse
|
18
|
N-Hydroxyarylamine O-Acetyltransferases Catalyze Acetylation of 3-Amino-4-Hydroxyphenylarsonic Acid in the 4-Hydroxy-3-Nitrobenzenearsonic Acid Transformation Pathway of Enterobacter sp. Strain CZ-1. Appl Environ Microbiol 2020; 86:AEM.02050-19. [PMID: 31676473 DOI: 10.1128/aem.02050-19] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Accepted: 10/19/2019] [Indexed: 11/20/2022] Open
Abstract
The organoarsenical feed additive 4-hydroxy-3-nitrobenzenearsonic acid (roxarsone [ROX]) is widely used and released into the environment. We previously showed a two-step pathway of ROX transformation by Enterobacter sp. strain CZ-1 involving the reduction of ROX to 3-amino-4-hydroxyphenylarsonic acid (3-AHPAA) and the acetylation of 3-AHPAA to N-acetyl-4-hydroxy-m-arsanilic acid (N-AHPAA) (K. Huang, H. Peng, F. Gao, Q. Liu, et al., Environ Pollut 247:482-487, 2019, https://doi.org/10.1016/j.envpol.2019.01.076). In this study, we identified two nhoA genes (nhoA1 and nhoA2), encoding N-hydroxyarylamine O-acetyltransferases, as responsible for 3-AHPAA acetylation in Enterobacter sp. strain CZ-1. The results of genetic disruption and complementation showed that both nhoA genes are involved in ROX biotransformation and that nhoA1 is the major 3-AHPAA acetyltransferase gene. Quantitative reverse transcription-PCR analysis showed that the relative expression level of nhoA1 was 3-fold higher than that of nhoA2 Each of the recombinant NhoAs was overexpressed in Escherichia coli BL21 and homogenously purified as a dimer by affinity chromatography. Both purified NhoAs catalyzed acetyl coenzyme A-dependent 3-AHPAA acetylation. The Km values of 3-AHPAA for NhoA1 and NhoA2 were 151.5 and 428.3 μM, respectively. Site-directed mutagenesis experiments indicated that two conserved arginine and cysteine residues of each NhoA were necessary for their enzyme activities.IMPORTANCE Roxarsone (ROX) is an organoarsenic feed additive that has been widely used in poultry industries for growth promotion, coccidiosis control, and meat pigmentation improvement for more than 70 years. Most ROX is excreted in the litter and dispersed into the environment, where it is transformed by microbes into different arsenic-containing compounds. A major product of ROX transformation is N-acetyl-4-hydroxy-m-arsanilic acid (N-AHPAA), which is also used as a clinical drug for treating refractory bacterial vaginosis. Here, we report the cloning and functional characterization of two genes encoding N-hydroxyarylamine O-acetyltransferases, NhoA1 and NhoA2, in Enterobacter sp. strain CZ-1, which catalyze the acetylation of 3-amino-4-hydroxyphenylarsonic acid (3-AHPAA) formed by the reduction of ROX to N-AHPAA. This study provides new insights into the function of N-hydroxyarylamine O-acetyltransferase in the transformation of an important organoarsenic compound.
Collapse
|
19
|
Yan Y, Chen J, Galván AE, Garbinski LD, Zhu YG, Rosen BP, Yoshinaga M. Reduction of Organoarsenical Herbicides and Antimicrobial Growth Promoters by the Legume Symbiont Sinorhizobium meliloti. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:13648-13656. [PMID: 31682413 DOI: 10.1021/acs.est.9b04026] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Massive amounts of methyl [e.g., methylarsenate, MAs(V)] and aromatic arsenicals [e.g., roxarsone (4-hydroxy-3-nitrophenylarsonate, Rox(V)] have been utilized as herbicides for weed control and growth promotors for poultry and swine, respectively. The majority of these organoarsenicals degrade into more toxic inorganic species. Here, we demonstrate that the legume symbiont Sinorhizobium meliloti both reduces MAs(V) to MAs(III) and catalyzes sequential two-step reduction of nitro and arsenate groups in Rox(V), producing the highly toxic trivalent amino aromatic derivative 4-hydroxy-3-aminophenylarsenite (HAPA(III)). The existence of this process suggests that S. meliloti possesses the ability to transform pentavalent methyl and aromatic arsenicals into antibiotics to provide a competitive advantage over other microbes, which would be a critical process for the synthetic aromatic arsenicals to function as antimicrobial growth promoters. The activated trivalent aromatic arsenicals are degraded into less-toxic inorganic species by an MAs(III)-demethylating aerobe, suggesting that environmental aromatic arsenicals also undergo a multiple-step degradation pathway, in analogy with the previously reported demethylation pathway of the methylarsenate herbicide. We further show that an FAD-NADPH-dependent nitroreductase encoded by mdaB gene catalyzes nitroreduction of roxarsone both in vivo and in vitro. Our results demonstrate that environmental organoarsenicals trigger competition between members of microbial communities, resulting in gradual degradation of organoarsenicals and contamination by inorganic arsenic.
Collapse
Affiliation(s)
- Yu Yan
- Department of Environmental Science and Engineering , Huaqiao University , Xiamen 361021 , Fujian , China
- Department of Cellular Biology and Pharmacology, Herbert Wertheim College of Medicine , Florida International University , Miami 33199 , Florida , United States
| | - Jian Chen
- Department of Cellular Biology and Pharmacology, Herbert Wertheim College of Medicine , Florida International University , Miami 33199 , Florida , United States
| | - Adriana E Galván
- Department of Cellular Biology and Pharmacology, Herbert Wertheim College of Medicine , Florida International University , Miami 33199 , Florida , United States
| | - Luis D Garbinski
- Department of Cellular Biology and Pharmacology, Herbert Wertheim College of Medicine , Florida International University , Miami 33199 , Florida , United States
| | - Yong-Guan Zhu
- Key Lab of Urban Environment and Health, Institute of Urban Environment , Chinese Academy of Sciences , Xiamen 361021 , Fujian , China
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environ-mental Sciences , Chinese Academy of Sciences , Beijing 100085 , Hebei , China
| | - Barry P Rosen
- Department of Cellular Biology and Pharmacology, Herbert Wertheim College of Medicine , Florida International University , Miami 33199 , Florida , United States
| | - Masafumi Yoshinaga
- Department of Cellular Biology and Pharmacology, Herbert Wertheim College of Medicine , Florida International University , Miami 33199 , Florida , United States
| |
Collapse
|
20
|
Hu Y, Cheng H, Tao S, Schnoor JL. China's Ban on Phenylarsonic Feed Additives, A Major Step toward Reducing the Human and Ecosystem Health Risk from Arsenic. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:12177-12187. [PMID: 31590491 PMCID: PMC7050832 DOI: 10.1021/acs.est.9b04296] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Phenylarsonic feed additives were once widely used in poultry and swine production around the world, which brought significant and unnecessary health risk to consumers due to elevated residues of arsenic species in animal tissues. They also increased the risk to ecosystems via releases of inorganic arsenic through their environmental transformation. Out of concern for the negative impacts on human and ecosystem health, China, one of the world's largest poultry and swine producing countries, recently banned the use of phenylarsonic feed additives in food animal production. This ban, if fully enforced, will result in reduction of approximately 1160 cancer cases per year from the consumption of chicken meat alone, and avoid an annual economic loss of nearly 0.6 billion CNY according to our risk analysis. Furthermore, the inventory of anthropogenic arsenic emissions in China will be cut by approximately one-third with the phase-out of phenylarsonic feed additives. This ban is also expected to lead to significant reduction in the accumulation of arsenic in the soils of farmlands fertilized by poultry and swine wastes and, consequently, lower the accumulation of arsenic in food crops grown on them, which could have even greater public health benefits. But effective enforcement of the ban is crucial, and it will require detailed supervision of veterinary drug production and distribution, and enhanced surveillance of animal feeds and food products. Furthermore, control of other major anthropogenic sources of arsenic is also necessary to better protect human health and the environment.
Collapse
Affiliation(s)
- Yuanan Hu
- MOE Laboratory of Groundwater Circulation and Evolution, School of Water Resources and Environment, China University of Geosciences (Beijing), Beijing 100083, China
| | - Hefa Cheng
- MOE Key Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University Beijing 100871, China
- Corresponding Author: Phone: (+86) 10 6276 1070; fax: (+86) 10 6276 7921;
| | - Shu Tao
- MOE Key Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University Beijing 100871, China
| | - Jerald L. Schnoor
- Department of Civil and Environmental Engineering, University of Iowa, Iowa City, Iowa 52242, United States
| |
Collapse
|
21
|
Mohsin H, Asif A, Rehman Y. Anoxic growth optimization for metal respiration and photobiological hydrogen production by arsenic-resistant Rhodopseudomonas and Rhodobacter species. J Basic Microbiol 2019; 59:1208-1216. [PMID: 31613006 DOI: 10.1002/jobm.201900100] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 08/26/2019] [Accepted: 09/20/2019] [Indexed: 11/09/2022]
Abstract
The current research focuses on anaerobic respiration of arsenic and other toxic metals by purple nonsulfur bacteria (PNSB). Among the optimization assays performed were carbon utilization, cross metal resistance, and metal respiration, along with a comparison of each assay in photoheterotrophic and chemoheterotrophic growth. The bacteria were identified by the classification of 16S ribosomal RNA gene sequences. Rhodobacter sp. PI3 proved to be more versatile in carbon source utilization (acetate, lactate, citrate, and oxalate), whereas Rhodopseudomonas palustris PI5 proved to be more versatile in metal resistance (arsenate, arsenite, cobalt, lead, selenium, and nickel). Both the strains were found to be positive for photofermentative hydrogen production along with arsenic respiration. This study reveals that anaerobic conditions are more appropriate for better efficiency of PNSB. Our study demonstrates that R. palustris PI5 and Rhodobacter sp. PI3 can be promising candidates for the biohydrogen production along with metal detoxification using heavy metal-polluted effluents as a substrate.
Collapse
Affiliation(s)
- Hareem Mohsin
- Department of Microbiology and Molecular Genetics, University of the Punjab, Lahore, Pakistan
| | - Azka Asif
- Department of Microbiology and Molecular Genetics, University of the Punjab, Lahore, Pakistan
| | - Yasir Rehman
- Department of Microbiology and Molecular Genetics, University of the Punjab, Lahore, Pakistan.,Department of Life Sciences, School of Science, University of Management and Technology, Lahore, Pakistan
| |
Collapse
|
22
|
Huang K, Peng H, Gao F, Liu Q, Lu X, Shen Q, Le XC, Zhao FJ. Biotransformation of arsenic-containing roxarsone by an aerobic soil bacterium Enterobacter sp. CZ-1. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 247:482-487. [PMID: 30703681 DOI: 10.1016/j.envpol.2019.01.076] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2018] [Revised: 01/03/2019] [Accepted: 01/21/2019] [Indexed: 06/09/2023]
Abstract
Roxarsone (3-nitro-4-hydroxyphenylarsonic acid, ROX) is an arsenic-containing compound widely used as a feed additive in poultry industries. ROX excreted in chicken manure can be transformed by microbes to different arsenic species in the environment. To date, most of the studies on microbial transformation of ROX have focused on anaerobic microorganisms. Here, we isolated a pure cultured aerobic ROX-transforming bacterial strain, CZ-1, from an arsenic-contaminated paddy soil. On the basis of 16S rRNA gene sequence, strain CZ-1 was classified as a member of the genus Enterobacter. During ROX biotransformation by strain CZ-1, five metabolites including arsenate (As[V]), arsenite (As[III]), N-acetyl-4-hydroxy-m-arsanilic acid (N-AHPAA), 3-amino-4-hydroxyphenylarsonic acid (3-AHPAA) and a novel sulfur-containing arsenic species (AsC9H13N2O6S) were detected and identified based on high-performance liquid chromatography-inductively coupled plasma mass spectrometry (HPLC-ICP-MS), HPLC-ICP-MS/electrospray ionization mass spectrometry (ESI-MS) and HPLC-electrospray ionization hybrid quadrupole time-of-flight mass spectrometry (ESI-qTOF-MS) analyses. N-AHPAA and 3-AHPAA were the main products, and 3-AHPAA could also be transformed to N-AHPAA. Based on the results, we propose a novel ROX biotransformation pathway by Enterobacter. sp CZ-1, in which the nitro group of ROX is first reduced to amino group (3-AHPAA) and then acetylated to N-AHPAA.
Collapse
Affiliation(s)
- Ke Huang
- Jiangsu Key Laboratory for Organic Waste Utilization, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Hanyong Peng
- Division of Analytical and Environmental Toxicology, Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, Alberta, T6G 2G3, Canada
| | - Fan Gao
- Jiangsu Key Laboratory for Organic Waste Utilization, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - QingQing Liu
- Division of Analytical and Environmental Toxicology, Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, Alberta, T6G 2G3, Canada
| | - Xiufen Lu
- Division of Analytical and Environmental Toxicology, Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, Alberta, T6G 2G3, Canada
| | - Qirong Shen
- Jiangsu Key Laboratory for Organic Waste Utilization, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - X Chris Le
- Division of Analytical and Environmental Toxicology, Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, Alberta, T6G 2G3, Canada
| | - Fang-Jie Zhao
- Jiangsu Key Laboratory for Organic Waste Utilization, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
23
|
Isolation and characterization of aerobic, culturable, arsenic-tolerant bacteria from lead-zinc mine tailing in southern China. World J Microbiol Biotechnol 2018; 34:177. [PMID: 30446973 DOI: 10.1007/s11274-018-2557-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Accepted: 11/07/2018] [Indexed: 10/27/2022]
Abstract
Bioremediation of arsenic (As) pollution is an important environmental issue. The present investigation was carried out to isolate As-resistant novel bacteria and characterize their As transformation and tolerance ability. A total of 170 As-resistant bacteria were isolated from As-contaminated soils at the Kangjiawan lead-zinc tailing mine, located in Hunan Province, southern China. Thirteen As-resistant isolates were screened by exposure to 260 mM Na2HAsO4·7H2O, most of which showed a very high level of resistance to As5+ (MIC ≥ 600 mM) and As3+ (MIC ≥ 10 mM). Sequence analysis of 16S rRNA genes indicated that the 13 isolates tested belong to the phyla Firmicutes, Proteobacteria and Actinobacteria, and these isolates were assigned to eight genera, Bacillus, Williamsia, Citricoccus, Rhodococcus, Arthrobacter, Ochrobactrum, Pseudomonas and Sphingomonas. Genes involved in As resistance were present in 11 of the isolates. All 13 strains transformed As (1 mM); the oxidation and reduction rates were 5-30% and 10-51.2% within 72 h, respectively. The rates of oxidation by Bacillus sp. Tw1 and Pseudomonas spp. Tw224 peaked at 42.48 and 34.94% at 120 h, respectively. For Pseudomonas spp. Tw224 and Bacillus sp. Tw133, the highest reduction rates were 52.01% at 48 h and 48.66% at 144 h, respectively. Our findings will facilitate further research into As metabolism and bioremediation of As pollution by genome sequencing and genes modification.
Collapse
|
24
|
Yan G, Chen X, Du S, Deng Z, Wang L, Chen S. Genetic mechanisms of arsenic detoxification and metabolism in bacteria. Curr Genet 2018; 65:329-338. [PMID: 30349994 DOI: 10.1007/s00294-018-0894-9] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Revised: 09/25/2018] [Accepted: 10/13/2018] [Indexed: 02/06/2023]
Abstract
Arsenic, distributed pervasively in the natural environment, is an extremely toxic substance which can severely impair the normal functions of living cells. Research on the genetic mechanisms of arsenic metabolism is of great importance for remediating arsenic-contaminated environments. Many organisms, including bacteria, have developed various strategies to tolerate arsenic, by either detoxifying this harmful element or utilizing it for energy generation. This review summarizes arsenic detoxification as well as arsenic respiratory metabolic pathways in bacteria and discusses novel arsenic resistance pathways in various bacterial strains. This knowledge provides insights into the mechanisms of arsenic biotransformation in bacteria. Multiple detoxification strategies among bacteria imply possible functional relationships among different arsenic detoxification/metabolism pathways. In addition, this review sheds light on the bioremediation of arsenic-contaminated environments and prevention of antibiotic resistance.
Collapse
Affiliation(s)
- Ge Yan
- Ministry of Education Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, School of Pharmaceutical Sciences, Zhongnan Hospital, Wuhan University, Wuhan, 430071, Hubei, China.,Taihe Hospital, Hubei University of Medicine, Shiyan, 442000, Hubei, China
| | - Xingxiang Chen
- Ministry of Education Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, School of Pharmaceutical Sciences, Zhongnan Hospital, Wuhan University, Wuhan, 430071, Hubei, China
| | - Shiming Du
- Taihe Hospital, Hubei University of Medicine, Shiyan, 442000, Hubei, China
| | - Zixin Deng
- Ministry of Education Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, School of Pharmaceutical Sciences, Zhongnan Hospital, Wuhan University, Wuhan, 430071, Hubei, China
| | - Lianrong Wang
- Ministry of Education Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, School of Pharmaceutical Sciences, Zhongnan Hospital, Wuhan University, Wuhan, 430071, Hubei, China
| | - Shi Chen
- Ministry of Education Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, School of Pharmaceutical Sciences, Zhongnan Hospital, Wuhan University, Wuhan, 430071, Hubei, China. .,Taihe Hospital, Hubei University of Medicine, Shiyan, 442000, Hubei, China.
| |
Collapse
|
25
|
Fei J, Wang T, Zhou Y, Wang Z, Min X, Ke Y, Hu W, Chai L. Aromatic organoarsenic compounds (AOCs) occurrence and remediation methods. CHEMOSPHERE 2018; 207:665-675. [PMID: 29857198 DOI: 10.1016/j.chemosphere.2018.05.145] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 05/24/2018] [Accepted: 05/24/2018] [Indexed: 06/08/2023]
Abstract
Many researchers at home and abroad have made a body of researches and have gained great achievements on the environmental occurrence, fate, and toxicity of inorganic arsenic. But there is less research on the use of aromatic organoarsenic compounds (AOCs), which are common feed additives for livestock in the poultry industry. In this review, we outline the current state of knowledge acquired on the occurrence and remediation of AOCs, respectively. We also identify knowledge gaps and research needs, including the elucidation of the environmental fate of AOCs, metabolic pathway, the impact of metabolic modification on toxicity, and advanced analytical or repaired methods that allows for monitoring, identification or removal of the degradation products.
Collapse
Affiliation(s)
- Jiangchi Fei
- School of Metallurgy and Environment, Central South University, Changsha, 410083, China
| | - Ting Wang
- College of Resources and Environment, Hunan Agricultural University, Changsha 410128, China
| | - Yaoyu Zhou
- College of Resources and Environment, Hunan Agricultural University, Changsha 410128, China.
| | - Zhenxing Wang
- South China Institute of Environmental Sciences, Ministry of Environmental Protection, Guangzhou 510655, China
| | - Xiaobo Min
- School of Metallurgy and Environment, Central South University, Changsha, 410083, China.
| | - Yong Ke
- School of Metallurgy and Environment, Central South University, Changsha, 410083, China
| | - Wenyong Hu
- School of Metallurgy and Environment, Central South University, Changsha, 410083, China
| | - Liyuan Chai
- School of Metallurgy and Environment, Central South University, Changsha, 410083, China
| |
Collapse
|
26
|
Limited carbon source retards inorganic arsenic release during roxarsone degradation in Shewanella oneidensis microbial fuel cells. Appl Microbiol Biotechnol 2018; 102:8093-8106. [DOI: 10.1007/s00253-018-9212-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 06/25/2018] [Accepted: 06/30/2018] [Indexed: 11/26/2022]
|
27
|
Liu Q, Lu X, Peng H, Popowich A, Tao J, Uppal JS, Yan X, Boe D, Le XC. Speciation of arsenic – A review of phenylarsenicals and related arsenic metabolites. Trends Analyt Chem 2018. [DOI: 10.1016/j.trac.2017.10.006] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
28
|
Hu J, Lu K, Dong S, Huang Q, Mao L. Inactivation of Laccase by the Attack of As (III) Reaction in Water. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:2945-2952. [PMID: 29405708 DOI: 10.1021/acs.est.7b05650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Laccase is a multicopper oxidase containing four coppers as reaction sites, including one type 1, one type 2, and two type 3. We here provide the first experimental data showing that As (III) can be effectively removed from water and transformed to As (V) through reactions mediated by laccase with the presence of oxygen. To this end, the As (III) removal, As (V) yields, total protein, active laccase, and copper concentrations in the aqueous phase were determined, respectively. Additionally, electron paramagnetic resonance spectra and UV-vis spectra were applied to probe possible structural changes of the laccase during the reaction. The data offer the first evidence that laccase can be inactivated by As (III) attack thus leading to the release of type 2 copper. The released copper has no reactivity with the As (III). These findings provide new ideas into a significant pathway likely to master the environmental transformation of arsenite, and advance the understanding of laccase inactivation mechanisms, thus providing a foundation for optimization of enzyme-based processes and potential development for removal and remediation of arsenite contamination in the environment.
Collapse
Affiliation(s)
- Jinyuan Hu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment , Nanjing University , Nanjing 210093 , P. R. China
| | - Kun Lu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment , Nanjing University , Nanjing 210093 , P. R. China
| | - Shipeng Dong
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment , Nanjing University , Nanjing 210093 , P. R. China
| | - Qingguo Huang
- College of Agricultural and Environmental Sciences, Department of Crop and Soil Sciences , University of Georgia , Griffin , Georgia 30223 , United States
| | - Liang Mao
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment , Nanjing University , Nanjing 210093 , P. R. China
| |
Collapse
|
29
|
Dahlawi S, Naeem A, Iqbal M, Farooq MA, Bibi S, Rengel Z. Opportunities and challenges in the use of mineral nutrition for minimizing arsenic toxicity and accumulation in rice: A critical review. CHEMOSPHERE 2018; 194:171-188. [PMID: 29202269 DOI: 10.1016/j.chemosphere.2017.11.149] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Revised: 11/21/2017] [Accepted: 11/25/2017] [Indexed: 06/07/2023]
Abstract
Growing rice on arsenic (As)-contaminated soil or irrigating with As-contaminated water leads to significant accumulation of As in grains. Moreover, rice accumulates more As into grains than other cereal crops. Thus, rice consumption has been identified as a major route of human exposure to As in many countries. Inorganic As species are carcinogenic and could pose a considerable health risk to humans even at low dietary concentration. Genotypic variation and concentration of nutrients such as iron, manganese, phosphate, sulfur and silicon are the two main factors that affect As accumulation in rice grains. Therefore, in addition to better growth and yield of plants, application of specific nutrients in optimum quantities offers an added benefit of decreasing As content in rice grains. These nutrient elements influence speciation of As in rhizosphere, compete with As for root uptake and interfere with As translocations to the shoot and ultimately accumulation in grains. This papers critically appraises the methods, forms and rate of application, mechanisms and extent of efficiency of different mineral nutrients in decreasing As accumulation in rice grains.
Collapse
Affiliation(s)
- Saad Dahlawi
- Department of Environmental Health, College of Public Health, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia; Institute for Research and Medical Consultation (IRMC), Imam Abdulrehman Bin Faisal University, P.O. Box 1982, Dammam, 31441, Saudi Arabia
| | - Asif Naeem
- Institute of Soil and Environmental Sciences, University of Agriculture, Faisalabad, Pakistan; Nuclear Institute of Agriculture and Biology, Jhang Road, Faisalabad, Pakistan
| | - Muhammad Iqbal
- Department of Botany, Jamia Hamdard (Hamdard University), New Delhi, India
| | - Muhammad Ansar Farooq
- Institute of Soil and Environmental Sciences, University of Agriculture, Faisalabad, Pakistan
| | - Sadia Bibi
- Institute of Soil and Environmental Sciences, University of Agriculture, Faisalabad, Pakistan
| | - Zed Rengel
- School of Agriculture and Environment, University of Western Australia, 35 Stirling Highway, Perth, WA, 6009, Australia
| |
Collapse
|
30
|
Wang L, Ye L, Yu Y, Jing C. Antimony Redox Biotransformation in the Subsurface: Effect of Indigenous Sb(V) Respiring Microbiota. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:1200-1207. [PMID: 29313683 DOI: 10.1021/acs.est.7b04624] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Anaerobic microbiological antimonate [Sb(V)] respiration is a newly discovered process regulating the Sb redox transformation in soils. However, little is known about the role microbiological Sb(V) respiration plays in the fate of Sb in the subsurface, especially in the presence of sulfate and electron shuttles. Herein, we successfully enriched a Sb(V) reducing microbiota (SbRM) from the subsurface near an active Sb mine. SbRM was dominated by genus Alkaliphilus (18-36%), Clostridiaceae (17-18%), Tissierella (24-27%), and Lysinibacillus (16-37%). The incubation results showed that SbRM reduced 88% of dissolved Sb(V) to Sb(III), but the total Sb mobility remained the same as in the abiotic control, indicating that SbRM alone did not increase the total Sb release but regulated the Sb speciation in the subsurface. Micro X-ray fluorescence (μ-XRF) analysis suggested the association of Sb and Fe, and electron shuttles such as anthraquinone-2,6-disulfonic disodium salt (AQDS) markedly enhanced the Sb release due to its ability to facilitate Fe mineral dissolution. Sb L-edge and S K-edge X-ray absorption near edge structure (XANES) results demonstrated that indigenous SbRM immobilized Sb via Sb2S3 formation, especially in a sulfur-rich environment. The insights gained from this study shed new light on Sb mobilization and its risk assessment in the subsurface environment.
Collapse
Affiliation(s)
- Liying Wang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences , Beijing 100085, China
- University of Chinese Academy of Sciences , Beijing 100049, China
| | - Li Ye
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences , Beijing 100085, China
- University of Chinese Academy of Sciences , Beijing 100049, China
| | - Yaqin Yu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences , Beijing 100085, China
- University of Chinese Academy of Sciences , Beijing 100049, China
| | - Chuanyong Jing
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences , Beijing 100085, China
- University of Chinese Academy of Sciences , Beijing 100049, China
| |
Collapse
|
31
|
Westerholm M, Müller B, Singh A, Karlsson Lindsjö O, Schnürer A. Detection of novel syntrophic acetate-oxidizing bacteria from biogas processes by continuous acetate enrichment approaches. Microb Biotechnol 2017; 11:680-693. [PMID: 29239113 PMCID: PMC6011928 DOI: 10.1111/1751-7915.13035] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Revised: 11/11/2017] [Accepted: 11/12/2017] [Indexed: 11/27/2022] Open
Abstract
To enrich syntrophic acetate‐oxidizing bacteria (SAOB), duplicate chemostats were inoculated with sludge from syntrophic acetate oxidation (SAO)‐dominated systems and continuously supplied with acetate (0.4 or 7.5 g l−1) at high‐ammonia levels. The chemostats were operated under mesophilic (37°C) or thermophilic (52°C) temperature for about six hydraulic retention times (HRT 28 days) and were sampled over time. Irrespective of temperature, a methane content of 64–69% and effluent acetate level of 0.4–1.0 g l−1 were recorded in chemostats fed high acetate. Low methane production in the low‐acetate chemostats indicated that the substrate supply was below the threshold for methanization of acetate via SAO. Novel representatives within the family Clostridiales and genus Syntrophaceticus (class Clostridia) were identified to represent putative SAOB candidates in mesophilic and thermophilic conditions respectively. Known SAOB persisted at low relative abundance in all chemostats. The hydrogenotrophic methanogens Methanoculleus bourgensis (mesophilic) and Methanothermobacter thermautotrophicus (thermophilic) dominated archaeal communities in the high‐acetate chemostats. In line with the restricted methane production in the low‐acetate chemostats, methanogens persisted at considerably lower abundance in these chemostats. These findings strongly indicate involvement in SAO and tolerance to high ammonia levels of the species identified here, and have implications for understanding community function in stressed anaerobic processes.
Collapse
Affiliation(s)
- Maria Westerholm
- Uppsala BioCenter, Department of Molecular Sciences, Swedish University of Agricultural Sciences, Box 7025, SE-750 07, Uppsala, Sweden
| | - Bettina Müller
- Uppsala BioCenter, Department of Molecular Sciences, Swedish University of Agricultural Sciences, Box 7025, SE-750 07, Uppsala, Sweden
| | - Abhijeet Singh
- Uppsala BioCenter, Department of Molecular Sciences, Swedish University of Agricultural Sciences, Box 7025, SE-750 07, Uppsala, Sweden
| | - Oskar Karlsson Lindsjö
- Uppsala BioCenter, Department of Molecular Sciences, Swedish University of Agricultural Sciences, Box 7025, SE-750 07, Uppsala, Sweden
| | - Anna Schnürer
- Uppsala BioCenter, Department of Molecular Sciences, Swedish University of Agricultural Sciences, Box 7025, SE-750 07, Uppsala, Sweden
| |
Collapse
|
32
|
Gnanaprakasam ET, Lloyd JR, Boothman C, Ahmed KM, Choudhury I, Bostick BC, van Geen A, Mailloux BJ. Microbial Community Structure and Arsenic Biogeochemistry in Two Arsenic-Impacted Aquifers in Bangladesh. mBio 2017; 8:e01326-17. [PMID: 29184025 PMCID: PMC5705915 DOI: 10.1128/mbio.01326-17] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Accepted: 10/19/2017] [Indexed: 11/20/2022] Open
Abstract
Long-term exposure to trace levels of arsenic (As) in shallow groundwater used for drinking and irrigation puts millions of people at risk of chronic disease. Although microbial processes are implicated in mobilizing arsenic from aquifer sediments into groundwater, the precise mechanism remains ambiguous. The goal of this work was to target, for the first time, a comprehensive suite of state-of-the-art molecular techniques in order to better constrain the relationship between indigenous microbial communities and the iron and arsenic mineral phases present in sediments at two well-characterized arsenic-impacted aquifers in Bangladesh. At both sites, arsenate [As(V)] was the major species of As present in sediments at depths with low aqueous As concentrations, while most sediment As was arsenite [As(III)] at depths with elevated aqueous As concentrations. This is consistent with a role for the microbial As(V) reduction in mobilizing arsenic. 16S rRNA gene analysis indicates that the arsenic-rich sediments were colonized by diverse bacterial communities implicated in both dissimilatory Fe(III) and As(V) reduction, while the correlation analyses involved phylogenetic groups not normally associated with As mobilization. Findings suggest that direct As redox transformations are central to arsenic fate and transport and that there is a residual reactive pool of both As(V) and Fe(III) in deeper sediments that could be released by microbial respiration in response to hydrologic perturbation, such as increased groundwater pumping that introduces reactive organic carbon to depth.IMPORTANCE The consumption of arsenic in waters collected from tube wells threatens the lives of millions worldwide and is particularly acute in the floodplains and deltas of southern Asia. The cause of arsenic mobilization from natural sediments within these aquifers to groundwater is complex, with recent studies suggesting that sediment-dwelling microorganisms may be the cause. In the absence of oxygen at depth, specialist bacteria are thought able to use metals within the sediments to support their metabolism. Via these processes, arsenic-contaminated iron minerals are transformed, resulting in the release of arsenic into the aquifer waters. Focusing on a field site in Bangladesh, a comprehensive, multidisciplinary study using state-of-the-art geological and microbiological techniques has helped better understand the microbes that are present naturally in a high-arsenic aquifer and how they may transform the chemistry of the sediment to potentially lethal effect.
Collapse
Affiliation(s)
- Edwin T Gnanaprakasam
- School of Earth and Environmental Sciences and Williamson Research Centre for Molecular Environmental Science, the University of Manchester, Manchester, United Kingdom
| | - Jonathan R Lloyd
- School of Earth and Environmental Sciences and Williamson Research Centre for Molecular Environmental Science, the University of Manchester, Manchester, United Kingdom
| | - Christopher Boothman
- School of Earth and Environmental Sciences and Williamson Research Centre for Molecular Environmental Science, the University of Manchester, Manchester, United Kingdom
| | | | | | - Benjamin C Bostick
- Lamont-Doherty Earth Observatory, Columbia University, Palisades, New York, USA
| | - Alexander van Geen
- Lamont-Doherty Earth Observatory, Columbia University, Palisades, New York, USA
| | - Brian J Mailloux
- Environmental Science Department, Barnard College, New York, New York, USA
| |
Collapse
|
33
|
Uhrynowski W, Debiec K, Sklodowska A, Drewniak L. The role of dissimilatory arsenate reducing bacteria in the biogeochemical cycle of arsenic based on the physiological and functional analysis of Aeromonas sp. O23A. THE SCIENCE OF THE TOTAL ENVIRONMENT 2017; 598:680-689. [PMID: 28454040 DOI: 10.1016/j.scitotenv.2017.04.137] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Revised: 03/16/2017] [Accepted: 04/19/2017] [Indexed: 06/07/2023]
Abstract
Dissimilatory arsenate reducing bacteria (DARB) are known to contribute to the mobilization of arsenic and other elements from minerals. Despite this, metabolic capabilities of only a few DARB strains have been thoroughly investigated so far, and the influence of these bacteria on the bioavailability of arsenic in the environment is still a topic for discussion. In this study, Aeromonas sp. O23A, one of the dominant DARB strains found in the Zloty Stok mine (SW Poland), was subjected to a detailed physiological and functional analysis aimed to identify the actual environmental impact of this strain. Physiological analyses revealed that O23A is a facultative anaerobe, capable of utilizing arsenate as a respiratory substrate and acetate, citrate and lactate as electron donors. Arsenate reduction was observed within the first 24h of culturing. The strain shows high resistance to arsenic and several other heavy metals (i.a. Cu, Fe, Ni and Zn) as well tolerance to a broad range of physico-chemical conditions. Metabolic preferences of O23A were thoroughly investigated using Biolog™ MicroArray assay. The strain was found to produce hydroxamate siderophores, potentially involved in the mobilization of iron and co-occurring heavy metals from minerals. On the other hand, O23A showed high adherence abilities, and its involvement in biofilm formation may lead to the entrapment of dissolved arsenic species and other toxic ions. The results shed light on the importance of arsenic respiration and resistance in the overall metabolism of Aeromonas sp. O23A and confirmed its key role in the biogeochemical cycle of arsenic, also in the context of self-purification of heavy-metal-contaminated waters.
Collapse
Affiliation(s)
- Witold Uhrynowski
- Laboratory of Environmental Pollution Analysis, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096 Warsaw, Poland.
| | - Klaudia Debiec
- Laboratory of Environmental Pollution Analysis, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096 Warsaw, Poland.
| | - Aleksandra Sklodowska
- Laboratory of Environmental Pollution Analysis, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096 Warsaw, Poland.
| | - Lukasz Drewniak
- Laboratory of Environmental Pollution Analysis, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096 Warsaw, Poland.
| |
Collapse
|
34
|
Pawitwar SS, Nadar VS, Kandegedara A, Stemmler TL, Rosen BP, Yoshinaga M. Biochemical Characterization of ArsI: A Novel C-As Lyase for Degradation of Environmental Organoarsenicals. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2017; 51:11115-11125. [PMID: 28936873 PMCID: PMC5870903 DOI: 10.1021/acs.est.7b03180] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Organoarsenicals such as the methylarsenical methylarsenate (MAs(V)) and aromatic arsenicals including roxarsone (4-hydroxy-3-nitrobenzenearsenate or Rox(V)) have been extensively used as an herbicide and growth enhancers in animal husbandry, respectively. They undergo environmental degradation to more toxic inorganic arsenite (As(III)) that contaminates crops and drinking water. We previously identified a bacterial gene (arsI) responsible for aerobic demethylation of methylarsenite (MAs(III)). The gene product, ArsI, is an Fe(II)-dependent extradiol dioxygenase that cleaves the carbon-arsenic (C-As) bond in MAs(III) and in trivalent aromatic arsenicals. The objective of this study was to elucidate the ArsI mechanism. Using isothermal titration calorimetry, we determined the dissociation constants and ligand-to-protein stoichiometry of ArsI for Fe(II), MAs(III), and aromatic phenylarsenite. Using a combination of methods including chemical modification, site-directed mutagenesis, and fluorescent spectroscopy, we demonstrated that amino acid residues predicted to participate in Fe(II)-binding (His5-His62-Glu115) and substrate binding (Cys96-Cys97) are involved in catalysis. Finally, the products of Rox(III) degradation were identified as As(III) and 2-nitrohydroquinone, demonstrating that ArsI is a dioxygenase that incorporates one oxygen atom from dioxygen into the carbon and the other to the arsenic to catalyze cleavage of the C-As bond. These results augment our understanding of the mechanism of this novel C-As lyase.
Collapse
Affiliation(s)
- Shashank S. Pawitwar
- Department of Cellular Biology and Pharmacology, Herbert Wertheim College of Medicine, Florida International University, Miami, Florida 33199, United States
| | - Venkadesh S. Nadar
- Department of Cellular Biology and Pharmacology, Herbert Wertheim College of Medicine, Florida International University, Miami, Florida 33199, United States
| | - Ashoka Kandegedara
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, Michigan 48201, United States
| | - Timothy L. Stemmler
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, Michigan 48201, United States
| | - Barry P. Rosen
- Department of Cellular Biology and Pharmacology, Herbert Wertheim College of Medicine, Florida International University, Miami, Florida 33199, United States
| | - Masafumi Yoshinaga
- Department of Cellular Biology and Pharmacology, Herbert Wertheim College of Medicine, Florida International University, Miami, Florida 33199, United States
- Corresponding Author: Phone: 305-348-1489; fax: 305-348-0651; ; http://orcid.org/0000-0002-7243-1761
| |
Collapse
|
35
|
Liu Y, Zhang Z, Li Y, Wen Y, Fei Y. Response of soil microbial communities to roxarsone pollution along a concentration gradient. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART A, TOXIC/HAZARDOUS SUBSTANCES & ENVIRONMENTAL ENGINEERING 2017; 52:819-827. [PMID: 28276888 DOI: 10.1080/10934529.2017.1281687] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The extensive use of roxarsone (3-nitro-4-hydroxyphenylarsonic acid) as a feed additive in the broiler poultry industry can lead to environmental arsenic contamination. This study was conducted to reveal the response of soil microbial communities to roxarsone pollution along a concentration gradient. To explore the degradation process and degradation kinetics of roxarsone concentration gradients in soil, the concentration shift of roxarsone at initial concentrations of 0, 50, 100, and 200 mg/kg, as well as that of the arsenic derivatives, was detected. The soil microbial community composition and structure accompanying roxarsone degradation were investigated by high-throughput sequencing. The results showed that roxarsone degradation was inhibited by a biological inhibitor, confirming that soil microbes were absolutely essential to its degradation. Moreover, soil microbes had considerable potential to degrade roxarsone, as a high initial concentration of roxarsone resulted in a substantially increased degradation rate. The concentrations of the degradation products HAPA (3-amino-4-hydroxyphenylarsonic acid), AS(III), and AS(V) in soils were significantly positively correlated. The soil microbial community composition and structure changed significantly across the roxarsone contamination gradient, and the addition of roxarsone decreased the microbial diversity. Some bacteria tended to be inhibited by roxarsone, while Bacillus, Paenibacillus, Arthrobacter, Lysobacter, and Alkaliphilus played important roles in roxarsone degradation. Moreover, HAPA, AS(III), and AS(V) were significantly positively correlated with Symbiobacterium, which dominated soils containing roxarsone, and their abundance increased with increasing initial roxarsone concentration. Accordingly, Symbiobacterium could serve as indicator of arsenic derivatives released by roxarsone as well as the initial roxarsone concentration. This is the first investigation of microbes closely related to roxarsone degradation.
Collapse
Affiliation(s)
- Yaci Liu
- a Institute of Hydrogeology and Environmental Geology, Chinese Academy of Geological Sciences , Shijiazhuang , China
- b Key Laboratory of Groundwater Remediation of Hebei Province and China Geological Survey , Shijiazhuang, Hebei , China
| | - Zhaoji Zhang
- a Institute of Hydrogeology and Environmental Geology, Chinese Academy of Geological Sciences , Shijiazhuang , China
| | - Yasong Li
- a Institute of Hydrogeology and Environmental Geology, Chinese Academy of Geological Sciences , Shijiazhuang , China
- c CSIRO Land and Water , Urrbrae , South Australia , Australia
| | - Yi Wen
- d Department of Water Environmental Planning , Chinese Academy for Environmental Planning , Beijing , China
| | - Yuhong Fei
- a Institute of Hydrogeology and Environmental Geology, Chinese Academy of Geological Sciences , Shijiazhuang , China
| |
Collapse
|
36
|
Alkaliphilus namsaraevii sp. nov., an alkaliphilic iron- and sulfur-reducing bacterium isolated from a steppe soda lake. Int J Syst Evol Microbiol 2017. [DOI: 10.1099/ijsem.0.001904] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
37
|
Edwardson CF, Hollibaugh JT. Metatranscriptomic analysis of prokaryotic communities active in sulfur and arsenic cycling in Mono Lake, California, USA. ISME JOURNAL 2017; 11:2195-2208. [PMID: 28548659 PMCID: PMC5607362 DOI: 10.1038/ismej.2017.80] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Revised: 04/04/2017] [Accepted: 04/18/2017] [Indexed: 11/09/2022]
Abstract
This study evaluates the transcriptionally active, dissimilatory sulfur- and arsenic-cycling components of the microbial community in alkaline, hypersaline Mono Lake, CA, USA. We sampled five depths spanning the redox gradient (10, 15, 18, 25 and 31 m) during maximum thermal stratification. We used custom databases to identify transcripts of genes encoding complex iron-sulfur molybdoenzyme (CISM) proteins, with a focus on arsenic (arrA, aioA and arxA) and sulfur cycling (dsrA, aprA and soxB), and assigned them to taxonomic bins. We also report on the distribution of transcripts related to the ars arsenic detoxification pathway. Transcripts from detoxification pathways were not abundant in oxic surface waters (10 m). Arsenic cycling in the suboxic and microaerophilic zones of the water column (15 and 18 m) was dominated by arsenite-oxidizing members of the Gammaproteobacteria most closely affiliated with Thioalkalivibrio and Halomonas, transcribing arxA. We observed a transition to arsenate-reducing bacteria belonging to the Deltaproteobacteria and Firmicutes transcribing arsenate reductase (arrA) in anoxic bottom waters of the lake (25 and 31 m). Sulfur cycling at 15 and 18 m was dominated by Gammaproteobacteria (Thioalkalivibrio and Thioalkalimicrobium) oxidizing reduced S species, with a transition to sulfate-reducing Deltaproteobacteria at 25 and 31 m. Genes related to arsenic and sulfur oxidation from Thioalkalivibrio were more highly transcribed at 15 m relative to other depths. Our data highlight the importance of Thioalkalivibrio to arsenic and sulfur biogeochemistry in Mono Lake and identify new taxa that appear capable of transforming arsenic.
Collapse
Affiliation(s)
- Christian F Edwardson
- Department of Marine Sciences, University of Georgia, Athens, GA, USA.,Department of Microbiology, University of Georgia, Athens, GA, USA
| | | |
Collapse
|
38
|
Hwang C, Copeland A, Lucas S, Lapidus A, Barry K, Detter JC, Glavina Del Rio T, Hammon N, Israni S, Dalin E, Tice H, Pitluck S, Chertkov O, Brettin T, Bruce D, Han C, Schmutz J, Larimer F, Land ML, Hauser L, Kyrpides N, Mikhailova N, Ye Q, Zhou J, Richardson P, Fields MW. Complete Genome Sequence of Alkaliphilus metalliredigens Strain QYMF, an Alkaliphilic and Metal-Reducing Bacterium Isolated from Borax-Contaminated Leachate Ponds. GENOME ANNOUNCEMENTS 2016; 4:e01226-16. [PMID: 27811105 PMCID: PMC5095475 DOI: 10.1128/genomea.01226-16] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Accepted: 09/12/2016] [Indexed: 11/20/2022]
Abstract
Alkaliphilus metalliredigens strain QYMF is an anaerobic, alkaliphilic, and metal-reducing bacterium associated with phylum Firmicutes QYMF was isolated from alkaline borax leachate ponds. The genome sequence will help elucidate the role of metal-reducing microorganisms under alkaline environments, a capability that is not commonly observed in metal respiring-microorganisms.
Collapse
Affiliation(s)
- C Hwang
- Center for Biofilm Engineering, Montana State University, Bozeman, Montana, USA
| | - A Copeland
- DOE Joint Genome Institute, Walnut Creek, California, USA
| | - S Lucas
- DOE Joint Genome Institute, Walnut Creek, California, USA
| | - A Lapidus
- DOE Joint Genome Institute, Walnut Creek, California, USA
| | - K Barry
- DOE Joint Genome Institute, Walnut Creek, California, USA
| | - J C Detter
- DOE Joint Genome Institute, Walnut Creek, California, USA
| | | | - N Hammon
- DOE Joint Genome Institute, Walnut Creek, California, USA
| | - S Israni
- DOE Joint Genome Institute, Walnut Creek, California, USA
| | - E Dalin
- DOE Joint Genome Institute, Walnut Creek, California, USA
| | - H Tice
- DOE Joint Genome Institute, Walnut Creek, California, USA
| | - S Pitluck
- DOE Joint Genome Institute, Walnut Creek, California, USA
| | - O Chertkov
- DOE Joint Genome Institute, Walnut Creek, California, USA
| | - T Brettin
- DOE Joint Genome Institute, Walnut Creek, California, USA
| | - D Bruce
- DOE Joint Genome Institute, Walnut Creek, California, USA
| | - C Han
- DOE Joint Genome Institute, Walnut Creek, California, USA
| | - J Schmutz
- DOE Joint Genome Institute, Walnut Creek, California, USA
| | - F Larimer
- DOE Joint Genome Institute, Walnut Creek, California, USA
| | - M L Land
- DOE Joint Genome Institute, Walnut Creek, California, USA
| | - L Hauser
- DOE Joint Genome Institute, Walnut Creek, California, USA
| | - N Kyrpides
- DOE Joint Genome Institute, Walnut Creek, California, USA
| | - N Mikhailova
- DOE Joint Genome Institute, Walnut Creek, California, USA
| | - Q Ye
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai, China
| | - J Zhou
- University of Oklahoma, Department of Microbiology and Plant Biology, Norman, Oklahoma, USA
| | - P Richardson
- DOE Joint Genome Institute, Walnut Creek, California, USA
| | - M W Fields
- Department of Microbiology and Immunology, Montana State University, Bozeman, Montana, USA
| |
Collapse
|
39
|
Yang Z, Peng H, Lu X, Liu Q, Huang R, Hu B, Kachanoski G, Zuidhof MJ, Le XC. Arsenic Metabolites, Including N-Acetyl-4-hydroxy-m-arsanilic Acid, in Chicken Litter from a Roxarsone-Feeding Study Involving 1600 Chickens. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2016; 50:6737-6743. [PMID: 26876684 DOI: 10.1021/acs.est.5b05619] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
The poultry industry has used organoarsenicals, such as 3-nitro-4-hydroxyphenylarsonic acid (Roxarsone, ROX), to prevent disease and to promote growth. Although previous studies have analyzed arsenic species in chicken litter after composting or after application to agricultural lands, it is not clear what arsenic species were excreted by chickens before biotransformation of arsenic species during composting. We describe here the identification and quantitation of arsenic species in chicken litter repeatedly collected on days 14, 24, 28, 30, and 35 of a Roxarsone-feeding study involving 1600 chickens of two strains. High performance liquid chromatography separation with simultaneous detection by both inductively coupled plasma mass spectrometry and electrospray ionization tandem mass spectrometry provided complementary information necessary for the identification and quantitation of arsenic species. A new metabolite, N-acetyl-4-hydroxy-m-arsanilic acid (N-AHAA), was identified, and it accounted for 3-12% of total arsenic. Speciation analyses of litter samples collected from ROX-fed chickens on days 14, 24, 28, 30, and 35 showed the presence of N-AHAA, 3-amino-4-hydroxyphenylarsonic acid (3-AHPAA), inorganic arsenite (As(III)), arsenate (As(V)), monomethylarsonic acid (MMA(V)), dimethylarsinic acid (DMA(V)), and ROX. 3-AHPAA accounted for 3-19% of the total arsenic. Inorganic arsenicals (the sum of As(III) and As(V)) comprised 2-6% (mean 3.5%) of total arsenic. Our results on the detection of inorganic arsenicals, methylarsenicals, 3-AHPAA, and N-AHAA in the chicken litter support recent findings that ROX is actually metabolized by the chicken or its gut microbiome. The presence of the toxic metabolites in chicken litter is environmentally relevant as chicken litter is commonly used as fertilizer.
Collapse
Affiliation(s)
| | - Hanyong Peng
- College of Chemistry and Molecular Sciences, Wuhan University , Wuhan, China 430072
| | | | | | | | - Bin Hu
- College of Chemistry and Molecular Sciences, Wuhan University , Wuhan, China 430072
| | - Gary Kachanoski
- Department of Renewable Resources, University of Alberta , Edmonton, Alberta Canada T6G 2E3
| | - Martin J Zuidhof
- Department of Agricultural, Food and Nutritional Science, University of Alberta , Edmonton, Alberta Canada T6G 2P5
| | | |
Collapse
|
40
|
Hamilton TL, Bovee RJ, Sattin SR, Mohr W, Gilhooly WP, Lyons TW, Pearson A, Macalady JL. Carbon and Sulfur Cycling below the Chemocline in a Meromictic Lake and the Identification of a Novel Taxonomic Lineage in the FCB Superphylum, Candidatus Aegiribacteria. Front Microbiol 2016; 7:598. [PMID: 27199928 PMCID: PMC4846661 DOI: 10.3389/fmicb.2016.00598] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Accepted: 04/11/2016] [Indexed: 11/13/2022] Open
Abstract
Mahoney Lake in British Columbia is an extreme meromictic system with unusually high levels of sulfate and sulfide present in the water column. As is common in strongly stratified lakes, Mahoney Lake hosts a dense, sulfide-oxidizing phototrophic microbial community where light reaches the chemocline. Below this "plate," the euxinic hypolimnion is anoxic, eutrophic, saline, and rich in sulfide, polysulfides, elemental sulfur, and other sulfur intermediates. While much is known regarding microbial communities in sunlit portions of euxinic systems, the composition and genetic potential of organisms living at aphotic depths have rarely been studied. Metagenomic sequencing of samples from the hypolimnion and the underlying sediments of Mahoney Lake indicate that multiple taxa contribute to sulfate reduction below the chemocline and that the hypolimnion and sediments each support distinct populations of sulfate reducing bacteria (SRB) that differ from the SRB populations observed in the chemocline. After assembling and binning the metagenomic datasets, we recovered near-complete genomes of dominant populations including two Deltaproteobacteria. One of the deltaproteobacterial genomes encoded a 16S rRNA sequence that was most closely related to the sulfur-disproportionating genus Dissulfuribacter and the other encoded a 16S rRNA sequence that was most closely related to the fatty acid- and aromatic acid-degrading genus Syntrophus. We also recovered two near-complete genomes of Firmicutes species. Analysis of concatenated ribosomal protein trees suggests these genomes are most closely related to extremely alkaliphilic genera Alkaliphilus and Dethiobacter. Our metagenomic data indicate that these Firmicutes contribute to carbon cycling below the chemocline. Lastly, we recovered a nearly complete genome from the sediment metagenome which represents a new genus within the FCB (Fibrobacteres, Chlorobi, Bacteroidetes) superphylum. Consistent with the geochemical data, we found little or no evidence for organisms capable of sulfide oxidation in the aphotic zone below the chemocline. Instead, comparison of functional genes below the chemocline are consistent with recovery of multiple populations capable of reducing oxidized sulfur. Our data support previous observations that at least some of the sulfide necessary to support the dense population of phototrophs in the chemocline is supplied from sulfate reduction in the hypolimnion and sediments. These studies provide key insights regarding the taxonomic and functional diversity within a euxinic environment and highlight the complexity of biogeochemical carbon and sulfur cycling necessary to maintain euxinia.
Collapse
Affiliation(s)
- Trinity L Hamilton
- Department of Biological Sciences, University of Cincinnati Cincinnati, OH, USA
| | - Roderick J Bovee
- Department of Earth and Planetary Sciences, Harvard University Cambridge, MA, USA
| | - Sarah R Sattin
- Department of Earth and Planetary Sciences, Harvard University Cambridge, MA, USA
| | - Wiebke Mohr
- Department of Earth and Planetary Sciences, Harvard University Cambridge, MA, USA
| | - William P Gilhooly
- Department of Earth Sciences, Indiana University-Purdue University Indianapolis Indianapolis, IN, USA
| | - Timothy W Lyons
- Department of Earth Sciences, University of California Riverside, CA, USA
| | - Ann Pearson
- Department of Earth and Planetary Sciences, Harvard University Cambridge, MA, USA
| | - Jennifer L Macalady
- Penn State Astrobiology Research Center, Department of Geosciences, Pennsylvania State University University Park, TX, USA
| |
Collapse
|
41
|
Desoeuvre A, Casiot C, Héry M. Diversity and Distribution of Arsenic-Related Genes Along a Pollution Gradient in a River Affected by Acid Mine Drainage. MICROBIAL ECOLOGY 2016; 71:672-685. [PMID: 26603631 DOI: 10.1007/s00248-015-0710-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Accepted: 11/09/2015] [Indexed: 06/05/2023]
Abstract
Some microorganisms have the capacity to interact with arsenic through resistance or metabolic processes. Their activities contribute to the fate of arsenic in contaminated ecosystems. To investigate the genetic potential involved in these interactions in a zone of confluence between a pristine river and an arsenic-rich acid mine drainage, we explored the diversity of marker genes for arsenic resistance (arsB, acr3.1, acr3.2), methylation (arsM), and respiration (arrA) in waters characterized by contrasted concentrations of metallic elements (including arsenic) and pH. While arsB-carrying bacteria were representative of pristine waters, Acr3 proteins may confer to generalist bacteria the capacity to cope with an increase of contamination. arsM showed an unexpected wide distribution, suggesting biomethylation may impact arsenic fate in contaminated aquatic ecosystems. arrA gene survey suggested that only specialist microorganisms (adapted to moderately or extremely contaminated environments) have the capacity to respire arsenate. Their distribution, modulated by water chemistry, attested the specialist nature of the arsenate respirers. This is the first report of the impact of an acid mine drainage on the diversity and distribution of arsenic (As)-related genes in river waters. The fate of arsenic in this ecosystem is probably under the influence of the abundance and activity of specific microbial populations involved in different As biotransformations.
Collapse
Affiliation(s)
- Angélique Desoeuvre
- Laboratoire HydroSciences Montpellier, HSM, UMR 5569 IRD, CNRS, Université Montpellier, CC 57, 163 rue Auguste Broussonet, 34090, Montpellier, France
| | - Corinne Casiot
- Laboratoire HydroSciences Montpellier, HSM, UMR 5569 IRD, CNRS, Université Montpellier, CC 57, 163 rue Auguste Broussonet, 34090, Montpellier, France
| | - Marina Héry
- Laboratoire HydroSciences Montpellier, HSM, UMR 5569 IRD, CNRS, Université Montpellier, CC 57, 163 rue Auguste Broussonet, 34090, Montpellier, France.
| |
Collapse
|
42
|
Niu Q, Takemura Y, Kubota K, Li YY. Comparing mesophilic and thermophilic anaerobic digestion of chicken manure: Microbial community dynamics and process resilience. WASTE MANAGEMENT (NEW YORK, N.Y.) 2015; 43:114-22. [PMID: 26054964 DOI: 10.1016/j.wasman.2015.05.012] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2015] [Revised: 05/10/2015] [Accepted: 05/12/2015] [Indexed: 05/19/2023]
Abstract
While methane fermentation is considered as the most successful bioenergy treatment for chicken manure, the relationship between operational performance and the dynamic transition of archaeal and bacterial communities remains poorly understood. Two continuous stirred-tank reactors were investigated under thermophilic and mesophilic conditions feeding with 10%TS. The tolerance of thermophilic reactor on total ammonia nitrogen (TAN) was found to be 8000mg/L with free ammonia (FA) 2000mg/L compared to 16,000mg/L (FA1500mg/L) of mesophilic reactor. Biomethane production was 0.29 L/gVSin in the steady stage and decreased following TAN increase. After serious inhibition, the mesophilic reactor was recovered successfully by dilution and washing stratagem compared to the unrecoverable of thermophilic reactor. The relationship between the microbial community structure, the bioreactor performance and inhibitors such as TAN, FA, and volatile fatty acid was evaluated by canonical correspondence analysis. The performance of methanogenic activity and substrate removal efficiency were changed significantly correlating with the community evenness and phylogenetic structure. The resilient archaeal community was found even after serious inhibition in both reactors. Obvious dynamics of bacterial communities were observed in acidogenic and hydrolytic functional bacteria following TAN variation in the different stages.
Collapse
Affiliation(s)
- Qigui Niu
- Department of Civil and Environmental Engineering, Graduate School of Engineering Tohoku University, 6-6-06 Aza-Aoba, Aramaki, Aoba-ku, Sendai, Miyagi 980-8579, Japan
| | - Yasuyuki Takemura
- Department of Civil and Environmental Engineering, Graduate School of Engineering Tohoku University, 6-6-06 Aza-Aoba, Aramaki, Aoba-ku, Sendai, Miyagi 980-8579, Japan
| | - Kengo Kubota
- Department of Civil and Environmental Engineering, Graduate School of Engineering Tohoku University, 6-6-06 Aza-Aoba, Aramaki, Aoba-ku, Sendai, Miyagi 980-8579, Japan
| | - Yu-You Li
- Department of Civil and Environmental Engineering, Graduate School of Engineering Tohoku University, 6-6-06 Aza-Aoba, Aramaki, Aoba-ku, Sendai, Miyagi 980-8579, Japan; Key Lab of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an, PR China.
| |
Collapse
|
43
|
Charles CJ, Rout SP, Garratt EJ, Patel K, Laws AP, Humphreys PN. The enrichment of an alkaliphilic biofilm consortia capable of the anaerobic degradation of isosaccharinic acid from cellulosic materials incubated within an anthropogenic, hyperalkaline environment. FEMS Microbiol Ecol 2015. [PMID: 26195600 PMCID: PMC4629871 DOI: 10.1093/femsec/fiv085] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Anthropogenic hyperalkaline sites provide an environment that is analogous to proposed cementitious geological disposal facilities (GDF) for radioactive waste. Under anoxic, alkaline conditions cellulosic wastes will hydrolyze to a range of cellulose degradation products (CDP) dominated by isosaccharinic acids (ISA). In order to investigate the potential for microbial activity in a cementitious GDF, cellulose samples were incubated in the alkaline (∼pH 12), anaerobic zone of a lime kiln waste site. Following retrieval, these samples had undergone partial alkaline hydrolysis and were colonized by a Clostridia-dominated biofilm community, where hydrogenotrophic, alkaliphilic methanogens were also present. When these samples were used to establish an alkaline CDP fed microcosm, the community shifted away from Clostridia, methanogens became undetectable and a flocculate community dominated by Alishewanella sp. established. These flocs were composed of bacteria embedded in polysaccharides and proteins stabilized by extracellular DNA. This community was able to degrade all forms of ISA with >60% of the carbon flow being channelled into extracellular polymeric substance (EPS) production. This study demonstrated that alkaliphilic microbial communities can degrade the CDP associated with some radioactive waste disposal concepts at pH 11. These communities divert significant amounts of degradable carbon to EPS formation, suggesting that EPS has a central role in the protection of these communities from hyperalkaline conditions.
Collapse
Affiliation(s)
- C J Charles
- Department of Biological Sciences, School of Applied Sciences, University of Huddersfield, Queensgate, Huddersfield HD1 3DH, UK
| | - S P Rout
- Department of Biological Sciences, School of Applied Sciences, University of Huddersfield, Queensgate, Huddersfield HD1 3DH, UK
| | - E J Garratt
- Department of Biological Sciences, School of Applied Sciences, University of Huddersfield, Queensgate, Huddersfield HD1 3DH, UK
| | - K Patel
- Department of Biological Sciences, School of Applied Sciences, University of Huddersfield, Queensgate, Huddersfield HD1 3DH, UK
| | - A P Laws
- Department of Chemical Sciences, School of Applied Sciences, University of Huddersfield, Queensgate, Huddersfield HD1 3DH, UK
| | - P N Humphreys
- Department of Biological Sciences, School of Applied Sciences, University of Huddersfield, Queensgate, Huddersfield HD1 3DH, UK
| |
Collapse
|
44
|
Tian H, Shi Q, Jing C. Arsenic biotransformation in solid waste residue: comparison of contributions from bacteria with arsenate and iron reducing pathways. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2015; 49:2140-2146. [PMID: 25635348 DOI: 10.1021/es504618x] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Arsenic- and iron-reducing bacteria play an important role in regulating As redox transformation and mobility. The motivation of this study was to compare the contributions of different As- and Fe-reducing bacteria to As biotransformation. In this work, three bacteria strains with different functional genes were employed including Pantoea sp. IMH with the arsC gene, Alkaliphilus oremlandii OhILAs possessing the arrA gene, and Shewanella oneidensis MR-1, an iron reducer. The incubation results showed that Pantoea sp. IMH aerobically reduced 100% of As(V) released from waste residues, though total As release was not enhanced. Similarly, strain OhILAs anaerobically reduced dissolved As(V) but could not enhance As release. In contrast, strain MR-1 substantially enhanced As mobilization because of iron reduction, but without changing the As speciation. The formation of the secondary iron mineral pyrite in the MR-1 incubation experiments, as evidenced by the X-ray absorption near-edge spectroscopy (XANES) analysis, contributed little to the uptake of the freed As. Our results suggest that the arsC gene carriers mainly control the As speciation in the aqueous phase in aerobic environments, whereas in anaerobic conditions, the As speciation should be regulated by arrA gene carriers, and As mobility is greatly enhanced by iron reduction.
Collapse
Affiliation(s)
- Haixia Tian
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences , Beijing 100085, China
| | | | | |
Collapse
|
45
|
Purkamo L, Bomberg M, Nyyssönen M, Kukkonen I, Ahonen L, Itävaara M. Heterotrophic communities supplied by ancient organic carbon predominate in deep fennoscandian bedrock fluids. MICROBIAL ECOLOGY 2015; 69:319-332. [PMID: 25260922 DOI: 10.1007/s00248-014-0490-6] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2014] [Accepted: 08/29/2014] [Indexed: 06/03/2023]
Abstract
The deep subsurface hosts diverse life, but the mechanisms that sustain this diversity remain elusive. Here, we studied microbial communities involved in carbon cycling in deep, dark biosphere and identified anaerobic microbial energy production mechanisms from groundwater of Fennoscandian crystalline bedrock sampled from a deep drill hole in Outokumpu, Finland, by using molecular biological analyses. Carbon cycling pathways, such as carbon assimilation, methane production and methane consumption, were studied with cbbM, rbcL, acsB, accC, mcrA and pmoA marker genes, respectively. Energy sources, i.e. the terminal electron accepting processes of sulphate-reducing and nitrate-reducing communities, were assessed with detection of marker genes dsrB and narG, respectively. While organic carbon is scarce in deep subsurface, the main carbon source for microbes has been hypothesized to be inorganic carbon dioxide. However, our results demonstrate that carbon assimilation is performed throughout the Outokumpu deep scientific drill hole water column by mainly heterotrophic microorganisms such as Clostridia. The source of carbon for the heterotrophic microbial metabolism is likely the Outokumpu bedrock, mainly composed of serpentinites and metasediments with black schist interlayers. In addition to organotrophic metabolism, nitrate and sulphate are other possible energy sources. Methanogenic and methanotrophic microorganisms are scarce, but our analyses suggest that the Outokumpu deep biosphere provides niches for these organisms; however, they are not very abundant.
Collapse
Affiliation(s)
- Lotta Purkamo
- VTT Technical Research Centre of Finland, PL1000, 02044, Espoo, Finland,
| | | | | | | | | | | |
Collapse
|
46
|
Li P, Jiang D, Li B, Dai X, Wang Y, Jiang Z, Wang Y. Comparative survey of bacterial and archaeal communities in high arsenic shallow aquifers using 454 pyrosequencing and traditional methods. ECOTOXICOLOGY (LONDON, ENGLAND) 2014; 23:1878-1889. [PMID: 25142348 DOI: 10.1007/s10646-014-1316-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 08/09/2014] [Indexed: 06/03/2023]
Abstract
A survey of bacterial and archaeal community structure was carried out in 10 shallow tube wells in a high arsenic groundwater system located in Hetao Basin, Inner Mongolia by 16S rRNA gene based two-step nested PCR-DGGE, clone libraries and 454 pyrosequencing. 12 bacterial and 18 archaeal DGGE bands and 26-136 species-level OTUs were detected for all the samples. 299 bacterial and 283 archaeal 16S rRNA gene clones for two typical samples were identified by phylogenetic analysis. Most of the results from these different methods were consistent with the dominant bacterial populations. But the proportions of the microbial populations were mostly different and the bacterial communities in most of these samples from pyrosequencing were both more abundant and more diverse than those from the traditional methods. Even after quality filtering, pyrosequencing revealed some populations including Alishewanella, Sulfuricurvum, Arthrobacter, Sporosarcina and Algoriphagus which were not detected with traditional techniques. The most dominant bacterial populations in these samples identified as some arsenic, iron, nitrogen and sulfur reducing and oxidizing related populations including Acinetobacter, Pseudomonas, Flavobacterium, Brevundimonas, Massilia, Planococcus, and Aquabacterium and archaeal communities Nitrosophaera and Methanosaeta. Acinetobacter and Pseudomonas were distinctly abundant in most of these samples. Methanogens were found as the dominant archeal population with three methods. From the results of traditional methods, the dominant archaeal populations apparently changed from phylum Thaumarchaeota to Euryarchaeota with the arsenic concentrations increasing. But this structure dynamic change was not revealed with pyrosequencing. Our results imply that an integrated approach combining the traditional methods and next generation sequencing approaches to characterize the microbial communities in high arsenic groundwater is recommended.
Collapse
Affiliation(s)
- Ping Li
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, 430074, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
47
|
Hamamura N, Itai T, Liu Y, Reysenbach AL, Damdinsuren N, Inskeep WP. Identification of anaerobic arsenite-oxidizing and arsenate-reducing bacteria associated with an alkaline saline lake in Khovsgol, Mongolia. ENVIRONMENTAL MICROBIOLOGY REPORTS 2014; 6:476-482. [PMID: 25646538 DOI: 10.1111/1758-2229.12144] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Microbial arsenic transformation pathways associated with a saline lake located in northern Mongolia were examined using molecular biological and culturing approaches. Bacterial 16S rRNA gene sequences recovered from saline lake sediments and soils were affiliated with haloalkaliphiles, including Bacillus and Halomonas spp. Diverse sequences of arsenate respiratory reductase (arrA) and a new group of arsenite oxidase (arxA) genes were also identified. Pure cultures of arsenate-reducing Nitrincola strain and anaerobic arsenite-oxidizing Halomonas strain were isolated. The chemoorganotrophic Halomonas strain contains arxA gene similar to that of a chemoautotrophic arsenite-oxidizing Alkalilimnicola ehrlichii strain MLHE-1. These results revealed the diversity of arsenic transformation pathways associated with a geographically distinct saline system and the potential contribution of arx-dependent arsenite oxidation by heterotrophic bacteria.
Collapse
|
48
|
Héry M, Rizoulis A, Sanguin H, Cooke DA, Pancost RD, Polya DA, Lloyd JR. Microbial ecology of arsenic-mobilizing Cambodian sediments: lithological controls uncovered by stable-isotope probing. Environ Microbiol 2014; 17:1857-69. [PMID: 24467551 DOI: 10.1111/1462-2920.12412] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2013] [Accepted: 01/20/2014] [Indexed: 11/29/2022]
Abstract
Microbially mediated arsenic release from Holocene and Pleistocene Cambodian aquifer sediments was investigated using microcosm experiments and substrate amendments. In the Holocene sediment, the metabolically active bacteria, including arsenate-respiring bacteria, were determined by DNA stable-isotope probing. After incubation with (13) C-acetate and (13) C-lactate, active bacterial community in the Holocene sediment was dominated by different Geobacter spp.-related 16S rRNA sequences. Substrate addition also resulted in the enrichment of sequences related to the arsenate-respiring Sulfurospirillum spp. (13) C-acetate selected for ArrA related to Geobacter spp. whereas (13) C-lactate selected for ArrA which were not closely related to any cultivated organism. Incubation of the Pleistocene sediment with lactate favoured a 16S rRNA-phylotype related to the sulphate-reducing Desulfovibrio oxamicus DSM1925, whereas the ArrA sequences clustered with environmental sequences distinct from those identified in the Holocene sediment. Whereas limited As(III) release was observed in Pleistocene sediment after lactate addition, no arsenic mobilization occurred from Holocene sediments, probably because of the initial reduced state of As, as determined by X-ray Absorption Near Edge Structure. Our findings demonstrate that in the presence of reactive organic carbon, As(III) mobilization can occur in Pleistocene sediments, having implications for future strategies that aim to reduce arsenic contamination in drinking waters by using aquifers containing Pleistocene sediments.
Collapse
Affiliation(s)
- Marina Héry
- School of Earth, Atmospheric and Environmental Sciences, Williamson Research Centre for Molecular Environmental Science, University of Manchester, Manchester, UK
| | - Athanasios Rizoulis
- School of Earth, Atmospheric and Environmental Sciences, Williamson Research Centre for Molecular Environmental Science, University of Manchester, Manchester, UK
| | - Hervé Sanguin
- Faculty of Life Sciences, University of Manchester, Manchester, UK
| | - David A Cooke
- Faculty of Engineering and Environment, Northumbria University, Newcastle upon Tyne, UK
| | - Richard D Pancost
- Organic Geochemistry Unit, The Cabot Institute, Bristol Biogeochemistry Research Centre, School of Chemistry, Cantock's Close, Bristol University, Bristol, UK
| | - David A Polya
- School of Earth, Atmospheric and Environmental Sciences, Williamson Research Centre for Molecular Environmental Science, University of Manchester, Manchester, UK
| | - Jonathan R Lloyd
- School of Earth, Atmospheric and Environmental Sciences, Williamson Research Centre for Molecular Environmental Science, University of Manchester, Manchester, UK
| |
Collapse
|
49
|
Thomas JA, Chovanec P, Stolz JF, Basu P. Mapping the protein profile involved in the biotransformation of organoarsenicals using an arsenic metabolizing bacterium. Metallomics 2014; 6:1958-69. [DOI: 10.1039/c4mt00185k] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Insight into the organoarsenic metabolism of Alkaliphilus oremlandii OhILAs by comprehensive proteomic analysis.
Collapse
Affiliation(s)
- John A. Thomas
- Department of Chemistry and Biochemistry
- Duquesne University
- Pittsburgh, USA
| | - Peter Chovanec
- Department of Chemistry and Biochemistry
- Duquesne University
- Pittsburgh, USA
- Biological Sciences
- Duquesne University
| | - John F. Stolz
- Biological Sciences
- Duquesne University
- Pittsburgh, USA
| | - Partha Basu
- Department of Chemistry and Biochemistry
- Duquesne University
- Pittsburgh, USA
| |
Collapse
|
50
|
Fuller SJ, McMillan DGG, Renz MB, Schmidt M, Burke IT, Stewart DI. Extracellular electron transport-mediated Fe(III) reduction by a community of alkaliphilic bacteria that use flavins as electron shuttles. Appl Environ Microbiol 2014; 80:128-37. [PMID: 24141133 PMCID: PMC3910996 DOI: 10.1128/aem.02282-13] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2013] [Accepted: 10/09/2013] [Indexed: 11/20/2022] Open
Abstract
The biochemical and molecular mechanisms used by alkaliphilic bacterial communities to reduce metals in the environment are currently unknown. We demonstrate that an alkaliphilic (pH > 9) consortium dominated by Tissierella, Clostridium, and Alkaliphilus spp. is capable of using iron (Fe(3+)) as a final electron acceptor under anaerobic conditions. Iron reduction is associated with the production of a freely diffusible species that, upon rudimentary purification and subsequent spectroscopic, high-performance liquid chromatography, and electrochemical analysis, has been identified as a flavin species displaying properties indistinguishable from those of riboflavin. Due to the link between iron reduction and the onset of flavin production, it is likely that riboflavin has an import role in extracellular metal reduction by this alkaliphilic community.
Collapse
Affiliation(s)
- Samuel J. Fuller
- School of Civil Engineering, University of Leeds, Leeds, United Kingdom
| | | | - Marc B. Renz
- University Hospital Jena, Friedrich-Schiller University, Jena, Germany
| | - Martin Schmidt
- University Hospital Jena, Friedrich-Schiller University, Jena, Germany
| | - Ian T. Burke
- School of Earth and Environment, University of Leeds, Leeds, United Kingdom
| | | |
Collapse
|