1
|
Ayoub S, Arabi M, Al-Najjar Y, Laswi I, Outeiro TF, Chaari A. Glycation in Alzheimer's Disease and Type 2 Diabetes: The Prospect of Dual Drug Approaches for Therapeutic Interventions. Mol Neurobiol 2025:10.1007/s12035-025-05051-9. [PMID: 40402411 DOI: 10.1007/s12035-025-05051-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Accepted: 05/07/2025] [Indexed: 05/23/2025]
Abstract
As global life expectancy increases, the prevalence of neurodegenerative diseases like Alzheimer's disease (AD) continues to rise. Since therapeutic options are minimal, a deeper understanding of the pathophysiology is essential for improved diagnosis and treatments. AD is marked by the aggregation of Aβ proteins, tau hyperphosphorylation, and progressive neuronal loss, though its precise origins remain poorly understood. Meanwhile, type 2 diabetes mellitus (T2DM) is characterized by chronic hyperglycemia, leading to the formation of advanced glycation end products (AGEs), which are implicated in tissue damage and neurotoxicity. These AGEs can be resistant to proteolysis and, therefore, accumulate, exacerbating AD pathology and accelerating neurodegeneration. Insulin resistance, a hallmark of T2DM, further complicates AD pathogenesis by promoting tau hyperphosphorylation and Aβ plaque accumulation. Additionally, gut microbiome dysbiosis in T2DM fosters AGE accumulation and neuroinflammation, underscoring the intricate relationship between metabolic disorders, gut health, and neurodegenerative processes. This complex interplay presents both a challenge and a potential avenue for therapeutic intervention. Emerging evidence suggests that antidiabetic medications may offer cognitive benefits in AD, as well as in other neurodegenerative conditions, pointing to a shared pathophysiology. Thus, we posit that targeting AGEs, insulin signaling, and gut microbiota dynamics presents promising opportunities for innovative treatment approaches in AD and T2DM.
Collapse
Affiliation(s)
- Sama Ayoub
- Weill Cornell Medicine-Qatar, Qatar Foundation, Education City, P.O. Box 24144, Doha, Qatar
| | - Maryam Arabi
- Weill Cornell Medicine-Qatar, Qatar Foundation, Education City, P.O. Box 24144, Doha, Qatar
| | - Yousef Al-Najjar
- Weill Cornell Medicine-Qatar, Qatar Foundation, Education City, P.O. Box 24144, Doha, Qatar
| | - Ibrahim Laswi
- Department of Internal Medicine, Yale New Haven Hospital, New Haven, CT, USA
| | - Tiago F Outeiro
- Department of Experimental Neurodegeneration, Center for Biostructural Imaging of Neurodegeneration, University Medical Center Göttingen, Göttingen, Germany
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Framlington Place, Newcastle Upon Tyne, Newcastle, NE2 4HH, UK
- Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
- Scientific Employee With an Honorary Contract at Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), Von-Siebold-Straße 3a, 37075, Göttingen, Germany
| | - Ali Chaari
- Weill Cornell Medicine-Qatar, Qatar Foundation, Education City, P.O. Box 24144, Doha, Qatar.
| |
Collapse
|
2
|
Khanna S, Kumar S, Sharma P, Daksh R, Nandakumar K, Shenoy RR. Flavonoids regulating NLRP3 inflammasome: a promising approach in alleviating diabetic peripheral neuropathy. Inflammopharmacology 2025:10.1007/s10787-025-01729-7. [PMID: 40205269 DOI: 10.1007/s10787-025-01729-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Accepted: 01/25/2025] [Indexed: 04/11/2025]
Abstract
A common and serious side effect of diabetes is diabetic peripheral neuropathy (DPN), which is characterised by gradual nerve damage brought on by oxidative stress, chronic inflammation, and prolonged hyperglycemia. Studies identify NLRP3 inflammasome as a key mediator in the pathogenesis of DPN, connecting neuroinflammation and neuronal damage to metabolic failure. Because of their strong anti-inflammatory and antioxidant qualities, flavonoids, a broad class of naturally occurring polyphenols, have drawn interest as potential treatments for DPN. The various ways that flavonoids affect the NLRP3 inflammasome and their potential as a treatment for DPN are examined in this review. It has been demonstrated that flavonoids prevent NLRP3 activation, which lowers the release of pro-inflammatory cytokines including IL-1β and IL-18 and causes neuroinflammation. Flavonoids work mechanistically by reducing oxidative stress, altering important signalling pathways, and blocking the activities of NF-κB and caspase-1, which are both essential for the activation of the NLRP3 inflammasome. Preclinical research has shown that flavonoids have strong neuroprotective benefits, and few clinical evidence also points to the potential of flavonoids to improve nerve function and lessen neuropathic pain in diabetic patients. The current review emphasises how flavonoids may be used as a treatment strategy to target inflammation in DPN caused by the NLRP3 inflammasome. By targeting important inflammatory pathways, flavonoids provide a new way to slow the progression of this debilitating illness. Further investigation into the mechanisms, clinical translation, and novel drug delivery techniques could enhance the therapeutic efficacy of diabetic peripheral neuropathy.
Collapse
Affiliation(s)
- Saumya Khanna
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India, 576104
| | - Sachindra Kumar
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India, 576104
| | - Pratyasha Sharma
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India, 576104
| | - Rajni Daksh
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India, 576104
| | - Krishnadas Nandakumar
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India, 576104
| | - Rekha Raghuveer Shenoy
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India, 576104.
| |
Collapse
|
3
|
Guo Z, Li H, Jiang S, Rahmati M, Su J, Yang S, Wu Y, Li Y, Deng Z. The role of AGEs in muscle ageing and sarcopenia. Bone Joint Res 2025; 14:185-198. [PMID: 40036085 PMCID: PMC11878473 DOI: 10.1302/2046-3758.143.bjr-2024-0252.r1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/06/2025] Open
Abstract
Sarcopenia is an ageing-related disease featured by the loss of skeletal muscle quality and function. Advanced glycation end-products (AGEs) are a complex set of modified proteins or lipids by non-enzymatic glycosylation and oxidation. The formation of AGEs is irreversible, and they accumulate in tissues with increasing age. Currently, AGEs, as a biomarker of ageing, are viewed as a risk factor for sarcopenia. AGE accumulation could cause harmful effects in the human body such as elevated inflammation levels, enhanced oxidative stress, and targeted glycosylation of proteins inside and outside the cells. Several studies have illustrated the pathogenic role of AGEs in sarcopenia, which includes promoting skeletal muscle atrophy, impairing muscle regeneration, disrupting the normal structure of skeletal muscle extracellular matrix, and contributing to neuromuscular junction lesion and vascular disorders. This article reviews studies focused on the pathogenic role of AGEs in sarcopenia and the potential mechanisms of the detrimental effects, aiming to provide new insights into the pathogenesis of sarcopenia and develop novel methods for the prevention and therapy of sarcopenia.
Collapse
Affiliation(s)
- Zhaojing Guo
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, China
- Xiangya School of Medicine, Central South University, Changsha, China
| | - Hengzhen Li
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Shide Jiang
- The Central Hospital of Yongzhou, Yongzhou, China
| | - Masoud Rahmati
- Department of Physical Education and Sport Sciences, Faculty of Literature and Human Sciences, Lorestan University, Khorramabad, Iran
- Department of Physical Education and Sport Sciences, Faculty of Literature and Humanities, Vali-E-Asr University of Rafsanjan, Rafsanjan, Iran
| | - Jingyue Su
- Department of Orthopedics, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- Geriatrics Center, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Shengwu Yang
- Department of Orthopedics, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- Geriatrics Center, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yuxiang Wu
- Department of Health and Physical Education, Jianghan University, Wuhan, China
| | - Yusheng Li
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Zhenhan Deng
- Department of Orthopedics, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- Geriatrics Center, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
4
|
Anwar L, Ali SA, Khan S, Uzairullah MM, Mustafa N, Ali UA, Siddiqui F, Bhatti HA, Rehmani SJ, Abbas G. Fenugreek seed ethanolic extract inhibited formation of advanced glycation end products via scavenging reactive carbonyl intermediates. Heliyon 2023; 9:e16866. [PMID: 37484294 PMCID: PMC10360956 DOI: 10.1016/j.heliyon.2023.e16866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 05/17/2023] [Accepted: 05/31/2023] [Indexed: 07/25/2023] Open
Abstract
Senescence is a natural phenomenon of growing old. It accelerates under certain conditions like diabetes mellitus resulting in early decline of bodily functions, which can be avoided by many claimed functional foods. The present study aims to investigate the anti-aging ability of Fenugreek seeds (Trigonellafoenum-graecum); a common ingredient of Indo-Pak cuisines. Briefly, the Fenugreek seeds extract (FgSE) in concentrationsof0.1, 0.5 and 1 mg/ml inhibited the formation of Advanced Glycation End products (AGEs) and fructosamine adducts in Bovine serum albumin (BSA)/fructose model in vitro. The BSA conformational analysis via Circular Dichorism and Congo red assays showed that it preserves secondary structure of BSA in aforementioned model. Although mechanistic studies revealed insignificant lysine blocking ability of Fenugreek by OPA assay, however carbonyl entrapping was found to be 24%, 34% and 42% at 0.1, 0.5 and 1 mg/ml, respectively. In vivo model of High Fructose diet (HFD) induced glycation, FgSE treatment in doses of 10, 25 & 50 mg/kg markedly improved Escape latency (p < 0.01) and preserved cognition in Morris Water Maze. Our data further exhibits significant decrease of CML (Nε-carboxymethyl lysine) levels in serum and hippocampus byFgSE treatment in comparison with HFD group. Therefore, we deduced that FgSE prevents glycation-induced memory decline via entrapping the reactive carbonyl intermediates, formed during production of AGEs. Hence, as a promising functional food it slows down the harmful process of glycation and aging associated morbidities.
Collapse
Affiliation(s)
- Laila Anwar
- H.E.J. Research Institute of Chemistry, ICCBS, University of Karachi, Karachi, Pakistan
- Faculty of Pharmacy, Hamdard University, Karachi, Pakistan
| | - Syed Abid Ali
- H.E.J. Research Institute of Chemistry, ICCBS, University of Karachi, Karachi, Pakistan
| | - Sana Khan
- H.E.J. Research Institute of Chemistry, ICCBS, University of Karachi, Karachi, Pakistan
| | | | - Nazish Mustafa
- Dr. Panjwani Center for Molecular Medicine & Drug Research, ICCBS, University of Karachi, Karachi, Pakistan
| | | | | | - Huma Aslam Bhatti
- H.E.J. Research Institute of Chemistry, ICCBS, University of Karachi, Karachi, Pakistan
| | | | - Ghulam Abbas
- Department of Pharmacology, Faculty of Pharmacy, Ziauddin University, Karachi, Pakistan
| |
Collapse
|
5
|
Balkrishna A, Pathak R, Bhatt S, Arya V. Molecular Insights of Plant Phytochemicals Against Diabetic Neuropathy. Curr Diabetes Rev 2023; 19:e250822207994. [PMID: 36028963 DOI: 10.2174/1573399819666220825124510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 04/23/2022] [Accepted: 04/26/2022] [Indexed: 11/22/2022]
Abstract
Diabetes and its associated complications including diabetic neuropathy have become a menacing headache for health workers and scientists all over the world. The number of diabetic individuals has been growing exponentially every day while the entire medical fraternity feels crippled and unable to handle such an enormous and anarchical scenario. The disease also demonstrates itself in the patients in numerous ways ranging from a little discomfort to death. Diabetic neuropathy has a poor prognosis since it might go unnoticed for years after the onset of diabetes. The etiology of the disease has been linked to oxidative stress caused by increased free radical production. Hyperglycemia causes multiple metabolic pathways to be activated, as well as significant oxidative stress, which becomes the major cause of cell death, culminating in Diabetic Neuropathy. So, it is the need of the hour to find out permanent treatment for this life-threatening disease. The primary goal of this study is to emphasize the potential importance of numerous processes and pathways in the development of diabetic neuropathy as well as the possible role of plant metabolites to control the disease at a molecular level. A possible mechanism was also summarized in the study about scavenging the reactive oxygen species by a flavonoid component. The study also covered the in vivo data of various plants and some of the flavonoid compounds actively studied against Diabetic Neuropathy by inhibiting or reducing the contributing factors such as proinflammatory cytokines, ROS, RNS inhibition, and upregulating the various cellular antioxidants such as GSH, SOD, and CAT.
Collapse
Affiliation(s)
- Acharya Balkrishna
- Department of Patanjali Herbal Research, Patanjali Research Institute, Haridwar-249405, Uttarakhand, India
| | - Rakshit Pathak
- Department of Patanjali Herbal Research, Patanjali Research Institute, Haridwar-249405, Uttarakhand, India
| | - Shalini Bhatt
- Department of Patanjali Herbal Research, Patanjali Research Institute, Haridwar-249405, Uttarakhand, India
| | - Vedpriya Arya
- Department of Patanjali Herbal Research, Patanjali Research Institute, Haridwar-249405, Uttarakhand, India
| |
Collapse
|
6
|
Juranek J, Mukherjee K, Kordas B, Załęcki M, Korytko A, Zglejc-Waszak K, Szuszkiewicz J, Banach M. Role of RAGE in the Pathogenesis of Neurological Disorders. Neurosci Bull 2022; 38:1248-1262. [PMID: 35729453 PMCID: PMC9554177 DOI: 10.1007/s12264-022-00878-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Accepted: 03/03/2022] [Indexed: 11/30/2022] Open
Abstract
This review reflects upon our own as well as other investigators' studies on the role of receptor for advanced glycation end-products (RAGE), bringing up the latest information on RAGE in physiology and pathology of the nervous system. Over the last ten years, major progress has been made in uncovering many of RAGE-ligand interactions and signaling pathways in nervous tissue; however, the translation of these discoveries into clinical practice has not come to fruition yet. This is likely, in part to be the result of our incomplete understanding of this crucial signaling pathway. Clinical trials examining the therapeutic efficacy of blocking RAGE-external ligand interactions by genetically engineered soluble RAGE or an endogenous RAGE antagonist, has not stood up to its promise; however, other trials with different blocking agents are being considered with hope for therapeutic success in diseases of the nervous system.
Collapse
Affiliation(s)
- Judyta Juranek
- Department of Human Physiology and Pathophysiology, School of Medicine, University of Warmia and Mazury, 10-085, Olsztyn, Poland.
| | - Konark Mukherjee
- Fralin Biomedical Research Institute at VTC, Virginia Tech, Blacksburg, VA, 24016, USA
| | - Bernard Kordas
- Department of Human Physiology and Pathophysiology, School of Medicine, University of Warmia and Mazury, 10-085, Olsztyn, Poland
| | - Michał Załęcki
- Department of Animal Anatomy, Faculty of Veterinary Medicine, University of Warmia and Mazury, 10-719, Olsztyn, Poland
| | - Agnieszka Korytko
- Department of Human Physiology and Pathophysiology, School of Medicine, University of Warmia and Mazury, 10-085, Olsztyn, Poland
| | - Kamila Zglejc-Waszak
- Department of Human Physiology and Pathophysiology, School of Medicine, University of Warmia and Mazury, 10-085, Olsztyn, Poland
| | - Jarosław Szuszkiewicz
- Department of Materials and Machines Technology, Faculty of Technical Sciences, University of Warmia and Mazury, 10-719, Olsztyn, Poland
| | - Marta Banach
- Department of Neurology, Collegium Medicum, Jagiellonian University, 31-008, Kraków, Poland.
| |
Collapse
|
7
|
Busa P, Kuthati Y, Huang N, Wong CS. New Advances on Pathophysiology of Diabetes Neuropathy and Pain Management: Potential Role of Melatonin and DPP-4 Inhibitors. Front Pharmacol 2022; 13:864088. [PMID: 35496279 PMCID: PMC9039240 DOI: 10.3389/fphar.2022.864088] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 03/14/2022] [Indexed: 12/14/2022] Open
Abstract
Pre-diabetes and diabetes are growing threats to the modern world. Diabetes mellitus (DM) is associated with comorbidities such as hypertension (83.40%), obesity (90.49%), and dyslipidemia (93.43%), creating a substantial burden on patients and society. Reductive and oxidative (Redox) stress level imbalance and inflammation play an important role in DM progression. Various therapeutics have been investigated to treat these neuronal complications. Melatonin and dipeptidyl peptidase IV inhibitors (DPP-4i) are known to possess powerful antioxidant and anti-inflammatory properties and have garnered significant attention in the recent years. In this present review article, we have reviewed the recently published reports on the therapeutic efficiency of melatonin and DPP-4i in the treatment of DM. We summarized the efficacy of melatonin and DPP-4i in DM and associated complications of diabetic neuropathy (DNP) and neuropathic pain. Furthermore, we discussed the mechanisms of action and their efficacy in the alleviation of oxidative stress in DM.
Collapse
Affiliation(s)
- Prabhakar Busa
- Department of Anesthesiology, Cathay General Hospital, Taipei, Taiwan
| | - Yaswanth Kuthati
- Department of Anesthesiology, Cathay General Hospital, Taipei, Taiwan
| | - Niancih Huang
- Department of Anesthesiology, Tri-Service General Hospital, Taipei, Taiwan
- Grauate Institute of Medical Sciences, National Defense Medical Center, Taipei, Taiwan
| | - Chih-Shung Wong
- Department of Anesthesiology, Cathay General Hospital, Taipei, Taiwan
- Department of Anesthesiology, Tri-Service General Hospital, Taipei, Taiwan
- Grauate Institute of Medical Sciences, National Defense Medical Center, Taipei, Taiwan
| |
Collapse
|
8
|
Raghav A, Singh M, Jeong GB, Giri R, Agarwal S, Kala S. New horizons of biomaterials in treatment of nerve damage in diabetes mellitus: A translational prospective review. Front Endocrinol (Lausanne) 2022; 13:1036220. [PMID: 36387914 PMCID: PMC9647066 DOI: 10.3389/fendo.2022.1036220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Accepted: 09/28/2022] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Peripheral nerve injury is a serious concern that leads to loss of neuronal communication that impairs the quality of life and, in adverse conditions, causes permanent disability. The limited availability of autografts with associated demerits shifts the paradigm of researchers to use biomaterials as an alternative treatment approach to recover nerve damage. PURPOSE The purpose of this study is to explore the role of biomaterials in translational treatment approaches in diabetic neuropathy. STUDY DESIGN The present study is a prospective review study. METHODS Published literature on the role of biomaterials in therapeutics was searched for. RESULTS Biomaterials can be implemented with desired characteristics to overcome the problem of nerve regeneration. Biomaterials can be further exploited in the treatment of nerve damage especially associated with PDN. These can be modified, customized, and engineered as scaffolds with the potential of mimicking the extracellular matrix of nerve tissue along with axonal regeneration. Due to their beneficial biological deeds, they can expedite tissue repair and serve as carriers of cellular and pharmacological treatments. Therefore, the emerging research area of biomaterials-mediated treatment of nerve damage provides opportunities to explore them as translational biomedical treatment approaches. CONCLUSIONS Pre-clinical and clinical trials in this direction are needed to establish the effective role of several biomaterials in the treatment of other human diseases.
Collapse
Affiliation(s)
- Alok Raghav
- Multidisciplinary Research Unit, Department of Health Research, Ganesh Shankar Vidyarthi Memorial (GSVM) Medical College, Kanpur, India
- *Correspondence: Alok Raghav,
| | - Manish Singh
- Multidisciplinary Research Unit, Department of Health Research, Ganesh Shankar Vidyarthi Memorial (GSVM) Medical College, Kanpur, India
- Department of Neurosurgery, Ganesh Shankar Vidyarthi Memorial (GSVM) Medical College, Kanpur, India
| | - Goo-Bo Jeong
- Department of Anatomy and Cell Biology, College of Medicine, Gachon University, Incheon, South Korea
| | - Richa Giri
- Multidisciplinary Research Unit, Department of Health Research, Ganesh Shankar Vidyarthi Memorial (GSVM) Medical College, Kanpur, India
- Kamlapat Singhania (KPS) Institute of Medicine, Ganesh Shankar Vidyarthi Memorial (GSVM) Medical College, Kanpur, India
| | - Saurabh Agarwal
- Multidisciplinary Research Unit, Department of Health Research, Ganesh Shankar Vidyarthi Memorial (GSVM) Medical College, Kanpur, India
- Kamlapat Singhania (KPS) Institute of Medicine, Ganesh Shankar Vidyarthi Memorial (GSVM) Medical College, Kanpur, India
| | - Sanjay Kala
- Department of Surgery, Ganesh Shankar Vidyarthi Memorial (GSVM) Medical College, Kanpur, India
| |
Collapse
|
9
|
Yorek M. Treatment for Diabetic Peripheral Neuropathy: What have we Learned from Animal Models? Curr Diabetes Rev 2022; 18:e040521193121. [PMID: 33949936 PMCID: PMC8965779 DOI: 10.2174/1573399817666210504101609] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Revised: 01/07/2021] [Accepted: 02/13/2021] [Indexed: 11/22/2022]
Abstract
INTRODUCTION Animal models have been widely used to investigate the etiology and potential treatments for diabetic peripheral neuropathy. What we have learned from these studies and the extent to which this information has been adapted for the human condition will be the subject of this review article. METHODS A comprehensive search of the PubMed database was performed, and relevant articles on the topic were included in this review. RESULTS Extensive study of diabetic animal models has shown that the etiology of diabetic peripheral neuropathy is complex, with multiple mechanisms affecting neurons, Schwann cells, and the microvasculature, which contribute to the phenotypic nature of this most common complication of diabetes. Moreover, animal studies have demonstrated that the mechanisms related to peripheral neuropathy occurring in type 1 and type 2 diabetes are likely different, with hyperglycemia being the primary factor for neuropathology in type 1 diabetes, which contributes to a lesser extent in type 2 diabetes, whereas insulin resistance, hyperlipidemia, and other factors may have a greater role. Two of the earliest mechanisms described from animal studies as a cause for diabetic peripheral neuropathy were the activation of the aldose reductase pathway and increased non-enzymatic glycation. However, continuing research has identified numerous other potential factors that may contribute to diabetic peripheral neuropathy, including oxidative and inflammatory stress, dysregulation of protein kinase C and hexosamine pathways, and decreased neurotrophic support. In addition, recent studies have demonstrated that peripheral neuropathy-like symptoms are present in animal models, representing pre-diabetes in the absence of hyperglycemia. CONCLUSION This complexity complicates the successful treatment of diabetic peripheral neuropathy, and results in the poor outcome of translating successful treatments from animal studies to human clinical trials.
Collapse
Affiliation(s)
- Mark Yorek
- Department of Internal Medicine, University of Iowa, Iowa City, IA, 52242 USA
- Department of Veterans Affairs Iowa City Health Care System, Iowa City, IA, 52246 USA
- Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, IA, 52242 USA
| |
Collapse
|
10
|
Yu MX, Lei B, Song X, Huang YM, Ma XQ, Hao CX, Yang WH, Pan ML. Compound XiongShao Capsule ameliorates streptozotocin-induced diabetic peripheral neuropathy in rats via inhibiting apoptosis, oxidative - nitrosative stress and advanced glycation end products. JOURNAL OF ETHNOPHARMACOLOGY 2021; 268:113560. [PMID: 33161027 DOI: 10.1016/j.jep.2020.113560] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 10/09/2020] [Accepted: 11/02/2020] [Indexed: 06/11/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Compound XiongShao Capsule (CXSC), a traditional herb formula, has been approved for using to treat diabetic peripheral neuropathy (DPN) by the Shanghai Food and Drug Administration, with significant efficacy in clinic. AIM OF THE STUDY This study aimed to investigate the multidimensional pharmacological mechanisms and synergism of CXSC against DPN in rats. METHODS The quality analysis of CXSC was performed by high-performance liquid chromatography (HPLC) and thin-layer chromatography. Rats with DPNinduced by streptozotocin/high-fat diet for 4 weeks were treated with CXSC at three doses (1.2 g/kg, 0.36 g/kg, and 0.12 g/kg), or epalrestat (15 mg/kg) daily for 8 weeks continuously. During the treatment period, body weight, serum glucose levels, and nerve function, including nerve conduction velocity (NCV), and mechanical and thermal hyperalgesia were tested and assessed every 4 weeks. In the 13th week, the histopathological examination in the sciatic nerve was performed using a transmission electron microscope. The expression of apoptosis-related proteins of BAX, BCL2, and caspase-3 in the sciatic nerve was examined using hematoxylin and eosin staining. The serum levels of advanced glycation end products (AGEs), oxidative-nitrosative stress biomarkers of superoxide dismutase (SOD), and nitric oxide synthase (NOS) were measured using a rat-specific ELISA kit. RESULTS CXSC had no significant effect on body weight or serum glucose levels (P > 0.05), but it significantly improved mechanical hyperalgesia (F5,36 = 18.24, P < 0.0001), thermal hyperalgesia (F5,36 = 8.45, P < 0.0001), and NCV (motor NCV: F5,36 = 7.644, P < 0.0001, sensory NCV: F5,36 = 12.83, P < 0.0001). Besides, it maintained myelin and axonal structure integrity, downregulated the expression of apoptosis-related proteins in the sciatic nerve tissue, reduced AGEs and NOS levels, and enhanced antioxidant enzyme SOD activities in the serum. CONCLUSION CXSC exerted neuroprotective effects against rats with DPN through multidimensional pharmacological mechanisms including antiapoptotic activity in the sciatic nerve and downregulation of the level of serum NOS, SOD and AGEs.
Collapse
Affiliation(s)
- Mei-Xiang Yu
- Department of Pharmacy, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200025, China
| | - Bo Lei
- Center of Pharmacological Evaluation and Research, Shanghai Institute of Pharmaceutical Industry, Shanghai, 200025, China
| | - Xin Song
- Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 201100, China
| | - Yong-Mei Huang
- Jinshan Hospital, Shanghai Fudan University School of Medicine, Shanghai, 201508, China
| | - Xiao-Qin Ma
- Department of Pharmacy, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200025, China
| | - Chen-Xia Hao
- Department of Pharmacy, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200025, China
| | - Wan-Hua Yang
- Department of Pharmacy, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200025, China.
| | - Man-Li Pan
- Center of Pharmacological Evaluation and Research, Shanghai Institute of Pharmaceutical Industry, Shanghai, 200025, China.
| |
Collapse
|
11
|
Early Detection of Diabetic Peripheral Neuropathy: A Focus on Small Nerve Fibres. Diagnostics (Basel) 2021; 11:diagnostics11020165. [PMID: 33498918 PMCID: PMC7911433 DOI: 10.3390/diagnostics11020165] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 01/14/2021] [Accepted: 01/20/2021] [Indexed: 02/07/2023] Open
Abstract
Diabetic peripheral neuropathy (DPN) is the most common complication of both type 1 and 2 diabetes. As a result, neuropathic pain, diabetic foot ulcers and lower-limb amputations impact drastically on quality of life, contributing to the individual, societal, financial and healthcare burden of diabetes. DPN is diagnosed at a late, often pre-ulcerative stage due to a lack of early systematic screening and the endorsement of monofilament testing which identifies advanced neuropathy only. Compared to the success of the diabetic eye and kidney screening programmes there is clearly an unmet need for an objective reliable biomarker for the detection of early DPN. This article critically appraises research and clinical methods for the diagnosis or screening of early DPN. In brief, functional measures are subjective and are difficult to implement due to technical complexity. Moreover, skin biopsy is invasive, expensive and lacks diagnostic laboratory capacity. Indeed, point-of-care nerve conduction tests are convenient and easy to implement however questions are raised regarding their suitability for use in screening due to the lack of small nerve fibre evaluation. Corneal confocal microscopy (CCM) is a rapid, non-invasive, and reproducible technique to quantify small nerve fibre damage and repair which can be conducted alongside retinopathy screening. CCM identifies early sub-clinical DPN, predicts the development and allows staging of DPN severity. Automated quantification of CCM with AI has enabled enhanced unbiased quantification of small nerve fibres and potentially early diagnosis of DPN. Improved screening tools will prevent and reduce the burden of foot ulceration and amputations with the primary aim of reducing the prevalence of this common microvascular complication.
Collapse
|
12
|
Wang X, Li Q, Han X, Gong M, Yu Z, Xu B. Electroacupuncture Alleviates Diabetic Peripheral Neuropathy by Regulating Glycolipid-Related GLO/AGEs/RAGE Axis. Front Endocrinol (Lausanne) 2021; 12:655591. [PMID: 34295304 PMCID: PMC8290521 DOI: 10.3389/fendo.2021.655591] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 05/19/2021] [Indexed: 01/04/2023] Open
Abstract
Diabetic peripheral neuropathy (DPN) is one of the most common complications of diabetes mellitus (DM) and affects over one-third of all patients. Neuropathic pain and nerve dysfunction induced by DM is related to the increase of advanced glycation end products (AGEs) produced by reactive dicarbonyl compounds in a hyperglycemia environment. AGEs induce the expression of pro-inflammatory cytokines via the main receptor (RAGE), which has been documented to play a crucial role in the pathogenesis of diabetic peripheral neuropathy. Electroacupuncture (EA) has been reported to have a positive effect on paralgesia caused by various diseases, but the mechanism is unclear. In this study, we used high-fat-fed low-dose streptozotocin-induced rats as a model of type 2 diabetes (T2DM). Persistent metabolic disorder led to mechanical and thermal hyperalgesia, as well as intraepidermal nerve fiber density reduction and nerve demyelination. EA improved neurological hyperalgesia, decreased the pro-inflammatory cytokines, reduced the generation of AGEs and RAGE, and regulated the glyoxalase system in the EA group. Taken together, our study suggested that EA plays a role in the treatment of T2DM-induced DPN, and is probably related to the regulation of metabolism and the secondary influence on the GLO/AGE/RAGE axis.
Collapse
Affiliation(s)
| | | | | | | | - Zhi Yu
- *Correspondence: Zhi Yu, ; Bin Xu,
| | - Bin Xu
- *Correspondence: Zhi Yu, ; Bin Xu,
| |
Collapse
|
13
|
Etiological Aspects for the Occurrence of Diabetic Neuropathy and the Suggested Measures. NEUROPHYSIOLOGY+ 2020. [DOI: 10.1007/s11062-020-09865-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
14
|
Identify the Key Active Ingredients and Pharmacological Mechanisms of Compound XiongShao Capsule in Treating Diabetic Peripheral Neuropathy by Network Pharmacology Approach. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2019; 2019:5801591. [PMID: 31210774 PMCID: PMC6532326 DOI: 10.1155/2019/5801591] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 03/20/2019] [Accepted: 04/15/2019] [Indexed: 02/07/2023]
Abstract
Compound XiongShao Capsule (CXSC), a traditional herb mixture, has shown significant clinical efficacy against diabetic peripheral neuropathy (DPN). However, its multicomponent and multitarget features cause difficulty in deciphering its molecular mechanisms. Our study aimed to identify the key active ingredients and potential pharmacological mechanisms of CXSC in treating DPN by network pharmacology and provide scientific evidence of its clinical efficacy. CXSC active ingredients were identified from both the Traditional Chinese Medicine Systems Pharmacology database, with parameters of oral bioavailability ≥ 30% and drug-likeness ≥ 0.18, and the Herbal Ingredients' Targets (HIT) database. The targets of those active ingredients were identified using ChemMapper based on 3D-structure similarity and using HIT database. DPN-related genes were acquired from microarray dataset GSE95849 and five widely used databases (TTD, Drugbank, KEGG, DisGeNET, and OMIM). Next, we obtained candidate targets with therapeutic effects against DPN by mapping active ingredient targets and DPN-related genes and identifying the proteins interacting with those candidate targets using STITCH 5.0. We constructed an “active ingredients-candidate targets-proteins” network using Cytoscape 3.61 and identified key active ingredients and key targets in the network. We identified 172 active ingredients in CXSC, 898 targets of the active ingredients, 110 DPN-related genes, and 38 candidate targets with therapeutic effects against DPN. Three key active ingredients, namely, quercetin, kaempferol, and baicalein, and 25 key targets were identified. Next, we input all key targets into ClueGO plugin for KEGG enrichment and molecular function analyses. The AGE-RAGE signaling pathway in diabetic complications and MAP kinase activity were determined as the main KEGG pathway and molecular function involved, respectively. We determined quercetin, kaempferol, and baicalein as the key active ingredients of CXSC and the AGE-RAGE signaling pathway and MAP kinase activity as the main pharmacological mechanisms of CXSC against DPN, proving the clinical efficacy of CXSC against DPN.
Collapse
|
15
|
Stochelski MA, Wilmanski T, Walters M, Burgess JR. D3T acts as a pro-oxidant in a cell culture model of diabetes-induced peripheral neuropathy. Redox Biol 2019; 21:101078. [PMID: 30593978 PMCID: PMC6306693 DOI: 10.1016/j.redox.2018.101078] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 12/08/2018] [Accepted: 12/11/2018] [Indexed: 12/27/2022] Open
Abstract
Diabetes mellitus is one of the most common chronic diseases in the United States and peripheral neuropathy (PN) affects at least 50% of diabetic patients. Medications available for patients ameliorate symptoms (pain), but do not protect against cellular damage and come with severe side effects, leading to discontinued use. Our research group uses differentiated SH-SY5Y cells treated with advanced glycation end products (AGE) as a model to mimic diabetic conditions and to study the mechanisms of oxidative stress mediated cell damage and antioxidant protection. N-acetylcysteine (NAC), a common antioxidant supplement, was previously shown by our group to fully protect against AGE-induced damage. We have also shown that 3H-1,2-dithiole-3-thione (D3T), a cruciferous vegetable constituent and potent inducer of nuclear factor (erythroid-derived 2)- like 2 (Nrf2), can significantly increase cellular GSH concentrations and protect against oxidant species-induced cell death. Paradoxically, D3T conferred no protection against AGE-induced cell death or neurite degeneration. In the present study we establish a mechanism for this paradox by showing that D3T in combination with AGE increased oxidant species generation and depleted GSH via inhibition of glutathione reductase (GR) activity and increased expression of the NADPH generating enzyme glucose-6-phosphate dehydrogenase (G6PD). Blocking NADPH generation with the G6PD inhibitor dehydroepiandrosterone was found to protect against AGE-induced oxidant species generation, loss of viability, and neurite degeneration. It further reversed the D3T potentiation effect under AGE-treated conditions. Collectively, these results suggest that strategies aimed at combating oxidative stress that rely on upregulation of the endogenous antioxidant defense system via Nrf2 may backfire and promote further damage in diabetic PN.
Collapse
Affiliation(s)
- Mateusz A Stochelski
- Department of Nutrition Science, Purdue University, West Lafayette, IN 47907, United States
| | - Tomasz Wilmanski
- Department of Nutrition Science, Purdue University, West Lafayette, IN 47907, United States
| | - Mitchell Walters
- Department of Nutrition Science, Purdue University, West Lafayette, IN 47907, United States
| | - John R Burgess
- Department of Nutrition Science, Purdue University, West Lafayette, IN 47907, United States.
| |
Collapse
|
16
|
Nabi R, Alvi SS, Saeed M, Ahmad S, Khan MS. Glycation and HMG-CoA Reductase Inhibitors: Implication in Diabetes and Associated Complications. Curr Diabetes Rev 2019; 15:213-223. [PMID: 30246643 DOI: 10.2174/1573399814666180924113442] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Revised: 07/17/2018] [Accepted: 09/19/2018] [Indexed: 02/06/2023]
Abstract
INTRODUCTION Diabetes Mellitus (DM) acts as an absolute mediator of cardiovascular risk, prompting the prolonged occurrence, size and intricacy of atherosclerotic plaques via enhanced Advanced Glycation Endproducts (AGEs) formation. Moreover, hyperglycemia is associated with enhanced glyco-oxidized and oxidized Low-Density Lipoprotein (LDL) possessing greater atherogenicity and decreased the ability to regulate HMG-CoA reductase (HMG-R). Although aminoguanidine (AG) prevents the AGE-induced protein cross-linking due to its anti-glycation potential, it exerts several unusual pharmaco-toxicological effects thus restraining its desirable therapeutic effects. HMG-R inhibitors/ statins exhibit a variety of beneficial impacts in addition to the cholesterol-lowering effects. OBJECTIVE Inhibition of AGEs interaction with receptor for AGEs (RAGE) and glyco-oxidized-LDL by HMG-R inhibitors could decrease LDL uptake by LDL-receptor (LDL-R), regulate cholesterol synthesis via HMG-R, decrease oxidative and inflammatory stress to improve the diabetes-associated complications. CONCLUSION Current article appraises the pathological AGE-RAGE concerns in diabetes and its associated complications, mainly focusing on the phenomenon of both circulatory AGEs and those accumulating in tissues in diabetic nephropathy, diabetic neuropathy, and diabetic retinopathy, discussing the potential protective role of HMG-R inhibitors against diabetic complications.
Collapse
Affiliation(s)
- Rabia Nabi
- Clinical Biochemistry & Natural Product Research Lab, Department of Biosciences, Integral University, Lucknow, 226026, U.P, India
| | - Sahir Sultan Alvi
- Clinical Biochemistry & Natural Product Research Lab, Department of Biosciences, Integral University, Lucknow, 226026, U.P, India
| | - Mohammad Saeed
- Department of Clinical Lab. Sciences, College of Applied Medical Sciences, University of Hail, Hail, Saudi Arabia
| | - Saheem Ahmad
- Laboratory of Glycation Biology and Metabolic Disorders, Department of Biosciences, Integral University Lucknow, 226026, U.P, India
| | - Mohammad Salman Khan
- Clinical Biochemistry & Natural Product Research Lab, Department of Biosciences, Integral University, Lucknow, 226026, U.P, India
| |
Collapse
|
17
|
Noh SU, Lee WY, Kim WS, Lee YT, Yoon KJ. Expression of macrophage migration inhibitory factor in footpad skin lesions with diabetic neuropathy. Mol Pain 2018; 14:1744806918775482. [PMID: 29690804 PMCID: PMC5968664 DOI: 10.1177/1744806918775482] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Background Diabetic neuropathy originating in distal lower extremities is associated
with pain early in the disease course, overwhelming in the feet. However,
the pathogenesis of diabetic neuropathy remains unclear. Macrophage
migration inhibitory factor has been implicated in the onset of neuropathic
pain and the development of diabetes. Objective of this study was to observe
pain syndromes elicited in the footpad of diabetic neuropathy rat model and
to assess the contributory role of migration inhibitory factor in the
pathogenesis of diabetic neuropathy. Methods Diabetic neuropathy was made in Sprague Dawley rats by streptozotocin. Pain
threshold was evaluated using von Frey monofilaments for 24 weeks. On
comparable experiment time after streptozotocin injection, all footpads were
prepared for following procedures; glutathione assay, terminal
deoxynucleotidyl transferase-mediated biotinylated UTP nick end labeling
staining, immunohistochemistry staining, real-time reverse transcription
polymerase chain reaction, and Western blot. Additionally, human HaCaT skin
keratinocytes were treated with methylglyoxal, transfected with migration
inhibitory factor/control small interfering RNA, and prepared for real-time
reverse transcription polymerase chain reaction and Western blot. Results As compared to sham group, pain threshold was significantly reduced in
diabetic neuropathy group, and glutathione was decreased in footpad skin,
simultaneously, cell death was increased. Over-expression of migration
inhibitory factor, accompanied by low expression of glyoxalase-I and
intraepidermal nerve fibers, was shown on the footpad skin lesions of
diabetic neuropathy. But, there was no significance in expression of
neurotransmitters and inflammatory mediators such as transient receptor
potential vanilloid 1, mas-related G protein coupled receptor D, nuclear
factor kappa B, tumor necrosis factor-alpha, and interleukin-6 between
diabetic neuropathy group and sham group. Intriguingly, small interfering
RNA-transfected knockdown of the migration inhibitory factor gene in
methylglyoxal-treated skin keratinocytes increased expression of
glyoxalase-I and intraepidermal nerve fibers in comparison with control
small interfering RNA-transfected cells, which was decreased by induction of
methylglyoxal. Conclusions Our findings suggest that migration inhibitory factor can aggravate diabetic
neuropathy by suppressing glyoxalase-I and intraepidermal nerve fibers on
the footpad skin lesions and provoke pain. Taken together, migration
inhibitory factor might offer a pharmacological approach to alleviate pain
syndromes in diabetic neuropathy.
Collapse
Affiliation(s)
- Sun Up Noh
- 1 Medical Research Institute, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Republic of Korea
| | - Won-Young Lee
- 1 Medical Research Institute, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Republic of Korea.,2 Division of Endocrinology and Metabolism, Department of Internal Medicine, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Republic of Korea
| | - Won-Serk Kim
- 1 Medical Research Institute, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Republic of Korea.,3 Department of Dermatology, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Republic of Korea
| | - Yong-Taek Lee
- 1 Medical Research Institute, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Republic of Korea.,4 Department of Physical and Rehabilitation Medicine, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Republic of Korea
| | - Kyung Jae Yoon
- 1 Medical Research Institute, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Republic of Korea.,4 Department of Physical and Rehabilitation Medicine, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Republic of Korea
| |
Collapse
|
18
|
Prabodha LBL, Sirisena ND, Dissanayake VHW. Susceptible and Prognostic Genetic Factors Associated with Diabetic Peripheral Neuropathy: A Comprehensive Literature Review. Int J Endocrinol 2018; 2018:8641942. [PMID: 29736170 PMCID: PMC5875044 DOI: 10.1155/2018/8641942] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Accepted: 01/29/2018] [Indexed: 02/07/2023] Open
Abstract
Type 2 diabetes mellitus (T2D) is a disorder of glucose metabolism. It is a complex process involving the regulation of insulin secretion, insulin sensitivity, gluconeogenesis, and glucose uptake at the cellular level. Diabetic peripheral neuropathy (DPN) is one of the debilitating complications that is present in approximately 50% of diabetic patients. It is the primary cause of diabetes-related hospital admissions and nontraumatic foot amputations. The pathogenesis of diabetic neuropathy is a complex process that involves hyperglycemia-induced oxidative stress and altered polyol metabolism that changes the nerve microvasculature, altered growth factor support, and deregulated lipid metabolism. Recent literature has reported that there are several heterogeneous groups of susceptible genetic loci which clearly contribute to the development of DPN. Several studies have reported that some patients with prediabetes develop neuropathic complications, whereas others demonstrated little evidence of neuropathy even after long-standing diabetes. There is emerging evidence that genetic factors may contribute to the development of DPN. This paper aims to provide an up-to-date review of the susceptible and prognostic genetic factors associated with DPN. An extensive survey of the scientific literature published in PubMed using the search terms "Diabetic peripheral neuropathy/genetics" and "genome-wide association study" was carried out, and the most recent and relevant literature were included in this review.
Collapse
Affiliation(s)
- L. B. L. Prabodha
- Human Genetics Unit, Faculty of Medicine, University of Colombo, Colombo, Sri Lanka
| | - N. D. Sirisena
- Human Genetics Unit, Faculty of Medicine, University of Colombo, Colombo, Sri Lanka
| | - V. H. W. Dissanayake
- Human Genetics Unit, Faculty of Medicine, University of Colombo, Colombo, Sri Lanka
| |
Collapse
|
19
|
Khan SA, Haider A, Mahmood W, Roome T, Abbas G. Gamma-linolenic acid ameliorated glycation-induced memory impairment in rats. PHARMACEUTICAL BIOLOGY 2017; 55:1817-1823. [PMID: 28545346 PMCID: PMC7012036 DOI: 10.1080/13880209.2017.1331363] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/17/2016] [Revised: 03/15/2017] [Accepted: 05/12/2017] [Indexed: 06/07/2023]
Abstract
CONTEXT γ-Linolenic acid (GLA) is an important constituent of anti-ageing supplements. OBJECTIVE The current study investigates the anti-ageing effect of GLA in Sprague-Dawley rats. MATERIALS AND METHODS GLA (0.1, 0.2, 0.4, 2, 10, 20 and 24 μM) was initially evaluated for its effect on the formation of advanced glycation end products (AGEs) in vitro. For in vivo assessment (1, 5 or 15 mg/kg), the rat model of accelerated ageing was developed using d-fructose (1000 mg/kg (i.p.) plus 10% in drinking water for 40 days). Morris water maze was used to evaluate impairment in learning and memory. The blood of treated animals was used to measure glycosylated haemoglobin (HbA1c) levels. The interaction of GLA with active residues of receptor of AGE (RAGE) was analyzed using AutoDock Vina. RESULTS Our data showed that GLA inhibited the production of AGEs (IC50 = 1.12 ± 0.05 μM). However, this effect was more significant at lower tested doses. A similar pattern was also observed in in vivo experiments, where the effect of fructose was reversed by GLA only at lowest tested dose of 1 mg/kg. The HbA1c levels also revealed significant reduction at lower doses (1 and 5 mg/kg). The in silico data exhibited promising interaction of GLA with active residues (Try72, Arg77 and Gln67) of RAGE. CONCLUSION The GLA, at lower doses, possesses therapeutic potential against glycation-induced memory decline.
Collapse
Affiliation(s)
- Shahab Ali Khan
- Department of Pharmacy, COMSATS Institute of Information Technology, Abbottabad, K.P.K., Pakistan
| | - Ali Haider
- Department of Pharmacy, COMSATS Institute of Information Technology, Abbottabad, K.P.K., Pakistan
| | - Wajahat Mahmood
- Department of Pharmacy, COMSATS Institute of Information Technology, Abbottabad, K.P.K., Pakistan
| | - Talat Roome
- Department of Pathology, Dow International Medical College, Dow University of Health Sciences, Karachi, Pakistan
| | - Ghulam Abbas
- Pharmacology Section, H.E.J. Research Institute of Chemistry, International Center for Chemical & Biological Sciences, University of Karachi, Karachi, Pakistan
| |
Collapse
|
20
|
Gasparotto J, Girardi CS, Somensi N, Ribeiro CT, Moreira JCF, Michels M, Sonai B, Rocha M, Steckert AV, Barichello T, Quevedo J, Dal-Pizzol F, Gelain DP. Receptor for advanced glycation end products mediates sepsis-triggered amyloid-β accumulation, Tau phosphorylation, and cognitive impairment. J Biol Chem 2017; 293:226-244. [PMID: 29127203 DOI: 10.1074/jbc.m117.786756] [Citation(s) in RCA: 85] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Revised: 11/09/2017] [Indexed: 11/06/2022] Open
Abstract
Patients recovering from sepsis have higher rates of CNS morbidities associated with long-lasting impairment of cognitive functions, including neurodegenerative diseases. However, the molecular etiology of these sepsis-induced impairments is unclear. Here, we investigated the role of the receptor for advanced glycation end products (RAGE) in neuroinflammation, neurodegeneration-associated changes, and cognitive dysfunction arising after sepsis recovery. Adult Wistar rats underwent cecal ligation and perforation (CLP), and serum and brain (hippocampus and prefrontal cortex) samples were obtained at days 1, 15, and 30 after the CLP. We examined these samples for systemic and brain inflammation; amyloid-β peptide (Aβ) and Ser-202-phosphorylated Tau (p-TauSer-202) levels; and RAGE, RAGE ligands, and RAGE intracellular signaling. Serum markers associated with the acute proinflammatory phase of sepsis (TNFα, IL-1β, and IL-6) rapidly increased and then progressively decreased during the 30-day period post-CLP, concomitant with a progressive increase in RAGE ligands (S100B, Nϵ-[carboxymethyl]lysine, HSP70, and HMGB1). In the brain, levels of RAGE and Toll-like receptor 4, glial fibrillary acidic protein and neuronal nitric-oxide synthase, and Aβ and p-TauSer-202 also increased during that time. Of note, intracerebral injection of RAGE antibody into the hippocampus at days 15, 17, and 19 post-CLP reduced Aβ and p-TauSer-202 accumulation, Akt/mechanistic target of rapamycin signaling, levels of ionized calcium-binding adapter molecule 1 and glial fibrillary acidic protein, and behavioral deficits associated with cognitive decline. These results indicate that brain RAGE is an essential factor in the pathogenesis of neurological disorders following acute systemic inflammation.
Collapse
Affiliation(s)
- Juciano Gasparotto
- Centro de Estudos em Estresse Oxidativo, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre 90035-003 RS, Brazil
| | - Carolina S Girardi
- Centro de Estudos em Estresse Oxidativo, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre 90035-003 RS, Brazil
| | - Nauana Somensi
- Centro de Estudos em Estresse Oxidativo, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre 90035-003 RS, Brazil
| | - Camila T Ribeiro
- Centro de Estudos em Estresse Oxidativo, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre 90035-003 RS, Brazil
| | - José C F Moreira
- Centro de Estudos em Estresse Oxidativo, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre 90035-003 RS, Brazil
| | - Monique Michels
- Laboratório de Fisiopatologia Experimental, Instituto Nacional de Ciência e Tecnologia Translacional em Medicina, Criciúma 88806-000 SC, Brazil
| | - Beatriz Sonai
- Laboratório de Fisiopatologia Experimental, Instituto Nacional de Ciência e Tecnologia Translacional em Medicina, Criciúma 88806-000 SC, Brazil
| | - Mariane Rocha
- Laboratório de Fisiopatologia Experimental, Instituto Nacional de Ciência e Tecnologia Translacional em Medicina, Criciúma 88806-000 SC, Brazil
| | - Amanda V Steckert
- Laboratório de Neurociências at Programa de Pós-GraduaçΔo em Ciências da Saúde, Unidade Acadêmica de Ciências da Saúde, Universidade do Extremo Sul Catarinense-Criciúma, Criciúma 88806-000 SC, Brazil; Translational Psychiatry Program, University of Texas Health Science Center at Houston, Houston, Texas 77030; Center of Excellence on Mood Disorders at Department of Psychiatry and Behavioral Sciences, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, Texas 77030; Neuroscience Graduate Program, University of Texas Graduate School of Biomedical Sciences at Houston, Houston, Texas 77030
| | - Tatiana Barichello
- Laboratório de Neurociências at Programa de Pós-GraduaçΔo em Ciências da Saúde, Unidade Acadêmica de Ciências da Saúde, Universidade do Extremo Sul Catarinense-Criciúma, Criciúma 88806-000 SC, Brazil; Translational Psychiatry Program, University of Texas Health Science Center at Houston, Houston, Texas 77030; Center of Excellence on Mood Disorders at Department of Psychiatry and Behavioral Sciences, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, Texas 77030; Neuroscience Graduate Program, University of Texas Graduate School of Biomedical Sciences at Houston, Houston, Texas 77030
| | - JoΔo Quevedo
- Laboratório de Neurociências at Programa de Pós-GraduaçΔo em Ciências da Saúde, Unidade Acadêmica de Ciências da Saúde, Universidade do Extremo Sul Catarinense-Criciúma, Criciúma 88806-000 SC, Brazil; Translational Psychiatry Program, University of Texas Health Science Center at Houston, Houston, Texas 77030; Center of Excellence on Mood Disorders at Department of Psychiatry and Behavioral Sciences, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, Texas 77030; Neuroscience Graduate Program, University of Texas Graduate School of Biomedical Sciences at Houston, Houston, Texas 77030
| | - Felipe Dal-Pizzol
- Laboratório de Fisiopatologia Experimental, Instituto Nacional de Ciência e Tecnologia Translacional em Medicina, Criciúma 88806-000 SC, Brazil
| | - Daniel P Gelain
- Centro de Estudos em Estresse Oxidativo, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre 90035-003 RS, Brazil.
| |
Collapse
|
21
|
Macrophage-derived HMGB1 as a Pain Mediator in the Early Stage of Acute Pancreatitis in Mice: Targeting RAGE and CXCL12/CXCR4 Axis. J Neuroimmune Pharmacol 2017; 12:693-707. [DOI: 10.1007/s11481-017-9757-2] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Accepted: 07/20/2017] [Indexed: 12/11/2022]
|
22
|
Gasparotto J, Ribeiro CT, Bortolin RC, Somensi N, Fernandes HS, Teixeira AA, Guasselli MOR, Agani CAJO, Souza NC, Grings M, Leipnitz G, Gomes HM, de Bittencourt Pasquali MA, Dunkley PR, Dickson PW, Moreira JCF, Gelain DP. Anti-RAGE antibody selectively blocks acute systemic inflammatory responses to LPS in serum, liver, CSF and striatum. Brain Behav Immun 2017; 62:124-136. [PMID: 28088642 DOI: 10.1016/j.bbi.2017.01.008] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Revised: 01/10/2017] [Accepted: 01/10/2017] [Indexed: 12/15/2022] Open
Abstract
Systemic inflammation induces transient or permanent dysfunction in the brain by exposing it to soluble inflammatory mediators. The receptor for advanced glycation endproducts (RAGE) binds to distinct ligands mediating and increasing inflammatory processes. In this study we used an LPS-induced systemic inflammation model in rats to investigate the effect of blocking RAGE in serum, liver, cerebrospinal fluid (CSF) and brain (striatum, prefrontal cortex, ventral tegmental area and substantia nigra). Intraperitoneal injection of RAGE antibody (50μg/kg) was followed after 1h by a single LPS (5mg/kg) intraperitoneal injection. Twenty-four hours later, tissues were isolated for analysis. RAGE antibody reduced LPS-induced inflammatory effects in both serum and liver; the levels of proinflammatory cytokines (TNF-α, IL-1β) were decreased and the phosphorylation/activation of RAGE downstream targets (ERK1/2, IκB and p65) in liver were significantly attenuated. RAGE antibody prevented LPS-induced effects on TNF-α and IL-1β in CSF. In striatum, RAGE antibody inhibited increases in IL-1β, Iba-1, GFAP, phospho-ERK1/2 and phospho-tau (ser202), as well as the decrease in synaptophysin levels. These effects were caused by systemic RAGE inhibition, as RAGE antibody did not cross the blood-brain barrier. RAGE antibody also prevented striatal lipoperoxidation and activation of mitochondrial complex II. In conclusion, blockade of RAGE is able to inhibit inflammatory responses induced by LPS in serum, liver, CSF and brain.
Collapse
Affiliation(s)
- Juciano Gasparotto
- Centro de Estudos em Estresse Oxidativo, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Camila Tiefensee Ribeiro
- Centro de Estudos em Estresse Oxidativo, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Rafael Calixto Bortolin
- Centro de Estudos em Estresse Oxidativo, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Nauana Somensi
- Centro de Estudos em Estresse Oxidativo, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Henrique Schaan Fernandes
- Centro de Estudos em Estresse Oxidativo, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Alexsander Alves Teixeira
- Centro de Estudos em Estresse Oxidativo, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Marcelo Otavio Rodrigues Guasselli
- Centro de Estudos em Estresse Oxidativo, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Crepin Aziz Jose O Agani
- Centro de Estudos em Estresse Oxidativo, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Natália Cabral Souza
- Centro de Tecnologia e Recursos Naturais, Universidade Federal de Campina Grande, Campina Grande, PB, Brazil
| | - Mateus Grings
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Guilhian Leipnitz
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Henrique Mautone Gomes
- Centro de Estudos em Estresse Oxidativo, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | | | - Peter R Dunkley
- School of Biomedical Sciences and Pharmacy and Hunter Medical Research Institute, University of Newcastle, Australia
| | - Phillip W Dickson
- School of Biomedical Sciences and Pharmacy and Hunter Medical Research Institute, University of Newcastle, Australia
| | - José Claudio Fonseca Moreira
- Centro de Estudos em Estresse Oxidativo, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Daniel Pens Gelain
- Centro de Estudos em Estresse Oxidativo, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil.
| |
Collapse
|
23
|
Feldman EL, Nave KA, Jensen TS, Bennett DLH. New Horizons in Diabetic Neuropathy: Mechanisms, Bioenergetics, and Pain. Neuron 2017; 93:1296-1313. [PMID: 28334605 PMCID: PMC5400015 DOI: 10.1016/j.neuron.2017.02.005] [Citation(s) in RCA: 604] [Impact Index Per Article: 75.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Revised: 02/02/2017] [Accepted: 02/02/2017] [Indexed: 12/13/2022]
Abstract
Pre-diabetes and diabetes are a global epidemic, and the associated neuropathic complications create a substantial burden on both the afflicted patients and society as a whole. Given the enormity of the problem and the lack of effective therapies, there is a pressing need to understand the mechanisms underlying diabetic neuropathy (DN). In this review, we present the structural components of the peripheral nervous system that underlie its susceptibility to metabolic insults and then discuss the pathways that contribute to peripheral nerve injury in DN. We also discuss systems biology insights gleaned from the recent advances in biotechnology and bioinformatics, emerging ideas centered on the axon-Schwann cell relationship and associated bioenergetic crosstalk, and the rapid expansion of our knowledge of the mechanisms contributing to neuropathic pain in diabetes. These recent advances in our understanding of DN pathogenesis are paving the way for critical mechanism-based therapy development.
Collapse
Affiliation(s)
- Eva L Feldman
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109, USA.
| | - Klaus-Armin Nave
- Department of Neurogenetics, Max Planck Institute for Experimental Medicine, 37075 Göttingen, Germany
| | - Troels S Jensen
- Department of Neurology and Danish Pain Research Center, Aarhus University, 8000 Aarhus C, Denmark
| | - David L H Bennett
- Nuffield Department of Clinical Neuroscience, University of Oxford, Oxford OX3 9DU, UK
| |
Collapse
|
24
|
Han AR, Nam MH, Lee KW. Plantamajoside Inhibits UVB and Advanced Glycation End Products-Induced MMP-1 Expression by Suppressing the MAPK and NF-κB Pathways in HaCaT Cells. Photochem Photobiol 2016; 92:708-19. [DOI: 10.1111/php.12615] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2016] [Accepted: 05/22/2016] [Indexed: 01/13/2023]
Affiliation(s)
- Ah-Ram Han
- Department of Biotechnology; College of Life Science & Biotechnology; Korea University; Seoul Korea
| | - Mi-Hyun Nam
- Department of Biotechnology; College of Life Science & Biotechnology; Korea University; Seoul Korea
| | - Kwang-Won Lee
- Department of Biotechnology; College of Life Science & Biotechnology; Korea University; Seoul Korea
| |
Collapse
|
25
|
Receptor for advanced glycation end products (RAGE) knockout reduces fetal dysmorphogenesis in murine diabetic pregnancy. Reprod Toxicol 2016; 62:62-70. [DOI: 10.1016/j.reprotox.2016.04.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Revised: 03/07/2016] [Accepted: 04/18/2016] [Indexed: 01/06/2023]
|
26
|
Brederson JD, Strakhova M, Mills C, Barlow E, Meyer A, Nimmrich V, Leddy M, Simler G, Schmidt M, Jarvis M, Lacy S. A monoclonal antibody against the receptor for advanced glycation end products attenuates inflammatory and neuropathic pain in the mouse. Eur J Pain 2015; 20:607-14. [PMID: 26392119 DOI: 10.1002/ejp.775] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/24/2015] [Indexed: 01/11/2023]
Abstract
BACKGROUND The receptor for advanced glycation end products (RAGE) is a multi-ligand receptor in the immunoglobulin superfamily. RAGE is localized throughout ascending sensory pathways (skin, peripheral nerve, dorsal root ganglion, spinal cord), and in cell types interacting with sensory neurons (endothelial cells, smooth muscle cells, monocytes and macrophages). Neuronal RAGE expression increases in pathological pain states in humans and rodents, and soluble RAGE attenuates thermal hypoalgesia in diabetic mice. The objective of the present study was to investigate whether pharmacological modulation of RAGE could attenuate mechanical allodynia in rodent pain models. METHODS We developed an anti-RAGE monoclonal antibody (11E6) that binds to the C2 immunoglobulin domain of human RAGE, binds to mouse RAGE, and presumably to the same domain in mouse RAGE. The antinociceptive activity of 11E6 was investigated in mouse models of inflammatory (complete Freund's adjuvant) and neuropathic (chronic constriction injury of the sciatic nerve) pain. Mice were dosed intraperitoneally with 11E6 or IgG (negative control). RESULTS Increased mechanical thresholds were observed following a single dose of 11E6 in both inflammatory and neuropathic pain models. Similar treatment with IgG did not alter nociceptive sensitivity. Repeated dosing with 11E6 significantly attenuated established mechanical hypersensitivity in a neuropathic pain model in a dose-related fashion. CONCLUSIONS These data demonstrate that specific modulation of RAGE effectively attenuates nociceptive sensitivity associated with chronic inflammatory and neuropathic pain states.
Collapse
Affiliation(s)
- J-D Brederson
- AbbVie, Inc., Neuroscience Research, North Chicago, USA
| | - M Strakhova
- AbbVie, Inc., Neuroscience Research, North Chicago, USA
| | - C Mills
- AbbVie, Inc., Neuroscience Research, North Chicago, USA
| | - E Barlow
- AbbVie Bioresearch Center, Global Biologics, 100 Research Drive, Worcester, USA
| | - A Meyer
- Neuroscience Discovery, Abbvie Deutschland GmbH & Co. KG Ludwigshafen, Germany
| | - V Nimmrich
- Neuroscience Discovery, Abbvie Deutschland GmbH & Co. KG Ludwigshafen, Germany
| | - M Leddy
- AbbVie Bioresearch Center, Global Biologics, 100 Research Drive, Worcester, USA
| | - G Simler
- AbbVie, Inc., Neuroscience Research, North Chicago, USA
| | - M Schmidt
- AbbVie Bioresearch Center, Global Biologics, 100 Research Drive, Worcester, USA
| | - M Jarvis
- AbbVie, Inc., Neuroscience Research, North Chicago, USA
| | - S Lacy
- AbbVie Bioresearch Center, Global Biologics, 100 Research Drive, Worcester, USA
| |
Collapse
|
27
|
Bekircan-Kurt CE, Tan E, Erdem Özdamar S. The Activation of RAGE and NF-KB in Nerve Biopsies of Patients with Axonal and Vasculitic Neuropathy. Noro Psikiyatr Ars 2015; 52:279-282. [PMID: 28360724 DOI: 10.5152/npa.2015.8801] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2014] [Accepted: 06/28/2014] [Indexed: 01/25/2023] Open
Abstract
INTRODUCTION The receptor for advanced glycation end products (RAGE) is a pattern recognition receptor expressed in tissues and cells, which plays a role in immunity. The activation of RAGE results in the translocation of nuclear factor kappa B (NF-κB) to the nucleus for expression of proinflammatory molecules. The role of the RAGE pathway in the pathogenesis of diabetic complications is well determined. We aimed to investigate the role of the RAGE pathway in axonal and vasculitic neuropathy. METHODS We immunoreacted nerve biopsy samples from 17 axonal neuropathy (AN), 11 vasculitic neuropathy (VN) and 12 hereditary neuropathy (as a control group) with liability to pressure palsy (HNPP) patients with antibodies to NF-κB and RAGE. Subsequently, we performed double staining with the antibodies to NF-κB or RAGE and T cells, macrophages and Schwann cells. RESULTS RAGE and NF-κB immunoreactivities were higher in the perivascular cuff and in endoneurial cells in VN than in AN and HNPP. Although there is no significant difference, nerve biopsies with AN showed higher NFκB and RAGE immunoreactivities than HNPP. The colocalization study showed that most of the NFκB- and RAGE-positive cells were CD8 (+) T cells in VN. In AN, all NFκB- and RAGE-positive cells were macrophages, whereas all NFκB- and RAGE-positive cells were Schwann cells in HNPP. CONCLUSION The activation of the RAGE pathway predominant in CD8 (+) T cells underscores its role in VN. In AN patients, the immunoreactivity to NFκB and RAGE in macrophages may support their role in axonal degeneration without inflammatory milieu.
Collapse
Affiliation(s)
| | - Ersin Tan
- Department of Neurology, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | - Sevim Erdem Özdamar
- Department of Neurology, Hacettepe University Faculty of Medicine, Ankara, Turkey
| |
Collapse
|
28
|
Yorek MA. Vascular Impairment of Epineurial Arterioles of the Sciatic Nerve: Implications for Diabetic Peripheral Neuropathy. Rev Diabet Stud 2015; 12:13-28. [PMID: 26676659 PMCID: PMC5397981 DOI: 10.1900/rds.2015.12.13] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Accepted: 04/30/2015] [Indexed: 12/11/2022] Open
Abstract
This article reviews the impact of diabetes and its treatment on vascular function with a focus on the reactivity of epineurial arterioles, blood vessels that provide circulation to the sciatic nerve. Another focus is the relationship between the dysregulation of neurovascular function and diabetic peripheral neuropathy. Diabetic peripheral neuropathy is a debilitating disorder that occurs in more than 50 percent of patients with diabetes. The etiology involves metabolic, vascular, and immunologic pathways besides neurohormonal growth factor deficiency and extracellular matrix remodeling. In the light of this complex etiology, an effective treatment for diabetic peripheral neuropathy has not yet been identified. Current opinion postulates that any effective treatment for diabetic peripheral neuropathy will require a combination of life style and therapeutic interventions. However, a more comprehensive understanding of the factors contributing to neurovascular and neural dysfunction in diabetes is needed before such a treatment strategy can be developed. After reading this review, the reader should have gained insight into the complex regulation of vascular function and blood flow to the sciatic nerve, and the impact of diabetes on numerous elements of vascular reactivity of epineurial arterioles of the sciatic nerve.
Collapse
Affiliation(s)
- Mark A Yorek
- Department of Veterans Affairs Iowa City Health Care System, Iowa City, IA 52246, USA
| |
Collapse
|
29
|
Van Puyvelde K, Mets T, Njemini R, Beyer I, Bautmans I. Effect of advanced glycation end product intake on inflammation and aging: a systematic review. Nutr Rev 2014; 72:638-50. [PMID: 25231200 DOI: 10.1111/nure.12141] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Aging is associated with a chronic low-grade inflammatory status that contributes to chronic diseases such as age-related muscle wasting, kidney disease, and diabetes mellitus. Since advanced glycation end products (AGEs) are known to be proinflammatory, this systematic review examined the relation between the dietary intake of AGEs and inflammatory processes. The PubMed and Web of Science databases were screened systematically. Seventeen relevant studies in humans or animals were included. The intervention studies in humans showed mainly a decrease in inflammation in subjects on a low-AGE diet, while an increase in inflammation in subjects on a high-AGE diet was less apparent. About half of the observational studies found a relationship between inflammatory processes and AGEs in food. When the results are considered together, the dietary intake of AGEs appears to be related to inflammatory status and the level of circulating AGEs. Moreover, limiting AGE intake may lead to a decrease in inflammation and chronic diseases related to inflammatory status. Most of the trials were conducted in patients with chronic kidney disease or diabetes, and thus additional studies in healthy individuals are needed. Further investigation is needed to elucidate the effects of lifetime exposure of dietary AGEs on aging and health.
Collapse
Affiliation(s)
- Katrien Van Puyvelde
- Frailty in Ageing (FRIA) Research Group and Gerontology Department, Vrije Universiteit Brussel, Brussels, Belgium; Department of Geriatric Medicine, Universitair Ziekenhuis Brussel, Brussels, Belgium
| | | | | | | | | |
Collapse
|
30
|
Gasparotto J, Somensi N, Bortolin RC, Girardi CS, Kunzler A, Rabelo TK, Schnorr CE, Moresco KS, Bassani VL, Yatsu FKJ, Vizzotto M, Raseira MDCB, Zanotto-Filho A, Moreira JCF, Gelain DP. Preventive supplementation with fresh and preserved peach attenuates CCl4-induced oxidative stress, inflammation and tissue damage. J Nutr Biochem 2014; 25:1282-95. [PMID: 25287815 DOI: 10.1016/j.jnutbio.2014.07.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2013] [Revised: 05/12/2014] [Accepted: 07/16/2014] [Indexed: 02/07/2023]
Abstract
The present study was elaborated to comparatively evaluate the preventive effect of different peach-derived products obtained from preserved fruits (Syrup and Preserve Pulp Peach [PPP]) and from fresh peels and pulps (Peel and Fresh Pulp Peach [FPP]) in a model of liver/renal toxicity and inflammation induced by carbon tetrachloride (CCl4) in rats. Tissue damage (carbonyl, thiobarbituric acid reactive species and sulfhydril), antioxidant enzymes activity (catalase and superoxide dismutase) and inflammatory parameters [tumor necrosis factor (TNF)-α and interleukin (IL)-1β levels, and receptor for advanced glycation end-products (RAGE) and nuclear factor (NF)κB-p65 immunocontent] were investigated. Our findings demonstrated that Peel, PPP and FPP (200 or 400 mg/kg) daily administration by oral gavage for 30 days conferred a significant protection against CCl4-induced antioxidant enzymes activation and, most importantly, oxidative damage to lipids and proteins as well as blocked induction of inflammatory mediators such as TNF-α, IL-1β, RAGE and NFκB. This antioxidant/anti-inflammatory effect seems to be associated with the abundance of carotenoids and polyphenols present in peach-derived products, which are enriched in fresh-fruit-derived preparations (Peel and FPP) but are also present in PPP. The Syrup - which was the least enriched in antioxidants - displayed no protective effect in our experiments. These effects cumulated in decreased levels of transaminases and lactate dehydrogenase leakage into serum and maintenance of organ architecture. Therefore, the herein presented results show evidence that supplementation with peach products may be protective against organ damage caused by oxidative stress, being interesting candidates for production of antioxidant-enriched functional foods.
Collapse
Affiliation(s)
- Juciano Gasparotto
- Centro de Estudos em Estresse Oxidativo, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS) Brazil.
| | - Nauana Somensi
- Centro de Estudos em Estresse Oxidativo, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS) Brazil
| | - Rafael Calixto Bortolin
- Centro de Estudos em Estresse Oxidativo, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS) Brazil
| | - Carolina Saibro Girardi
- Centro de Estudos em Estresse Oxidativo, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS) Brazil
| | - Alice Kunzler
- Centro de Estudos em Estresse Oxidativo, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS) Brazil
| | - Thallita Kelly Rabelo
- Centro de Estudos em Estresse Oxidativo, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS) Brazil
| | - Carlos Eduardo Schnorr
- Centro de Estudos em Estresse Oxidativo, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS) Brazil
| | - Karla Suzana Moresco
- Centro de Estudos em Estresse Oxidativo, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS) Brazil
| | - Valquiria Linck Bassani
- Programa de Pós-Graduação em Ciências Farmacêuticas, Faculdade de Farmácia, Universidade Federal Rio Grande do Sul (UFRGS) Brazil
| | - Francini Kiyono Jorge Yatsu
- Programa de Pós-Graduação em Ciências Farmacêuticas, Faculdade de Farmácia, Universidade Federal Rio Grande do Sul (UFRGS) Brazil
| | - Márcia Vizzotto
- Embrapa Clima Temperado, Empresa Brasileira de Pesquisa Agropecuária, Pelotas/RS Brazil
| | | | - Alfeu Zanotto-Filho
- Centro de Estudos em Estresse Oxidativo, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS) Brazil
| | - José Claudio Fonseca Moreira
- Centro de Estudos em Estresse Oxidativo, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS) Brazil
| | - Daniel Pens Gelain
- Centro de Estudos em Estresse Oxidativo, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS) Brazil
| |
Collapse
|
31
|
Abstract
Neuropathy is the most common complication of diabetes. As a consequence of longstanding hyperglycemia, a downstream metabolic cascade leads to peripheral nerve injury through an increased flux of the polyol pathway, enhanced advanced glycation end‐products formation, excessive release of cytokines, activation of protein kinase C and exaggerated oxidative stress, as well as other confounding factors. Although these metabolic aberrations are deemed as the main stream for the pathogenesis of diabetic microvascular complications, organ‐specific histological and biochemical characteristics constitute distinct mechanistic processes of neuropathy different from retinopathy or nephropathy. Extremely long axons originating in the small neuronal body are vulnerable on the most distal side as a result of malnutritional axonal support or environmental insults. Sparse vascular supply with impaired autoregulation is likely to cause hypoxic damage in the nerve. Such dual influences exerted by long‐term hyperglycemia are critical for peripheral nerve damage, resulting in distal‐predominant nerve fiber degeneration. More recently, cellular factors derived from the bone marrow also appear to have a strong impact on the development of peripheral nerve pathology. As evident from such complicated processes, inhibition of single metabolic factors might not be sufficient for the treatment of neuropathy, but a combination of several inhibitors might be a promising approach to overcome this serious disorder. (J Diabetes Invest, doi: 10.1111/j.2040‐1124.2010.00070.x, 2010)
Collapse
Affiliation(s)
| | | | - Kazuhiro Sugimoto
- Laboratory Medicine, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| |
Collapse
|
32
|
Bekircan-Kurt CE, Üçeyler N, Sommer C. Cutaneous activation of rage in nonsystemic vasculitic and diabetic neuropathy. Muscle Nerve 2014; 50:377-83. [DOI: 10.1002/mus.24164] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2013] [Revised: 12/20/2013] [Accepted: 01/02/2014] [Indexed: 12/25/2022]
Affiliation(s)
- Can Ebru Bekircan-Kurt
- Department of Neurology; University of Würzburg; Josef-Schneider-Str. 11 97080 Würzburg Germany
| | - Nurcan Üçeyler
- Department of Neurology; University of Würzburg; Josef-Schneider-Str. 11 97080 Würzburg Germany
| | - Claudia Sommer
- Department of Neurology; University of Würzburg; Josef-Schneider-Str. 11 97080 Würzburg Germany
| |
Collapse
|
33
|
Bladder pain relief by HMGB1 neutralization and soluble thrombomodulin in mice with cyclophosphamide-induced cystitis. Neuropharmacology 2014; 79:112-8. [DOI: 10.1016/j.neuropharm.2013.11.003] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2013] [Revised: 09/28/2013] [Accepted: 11/05/2013] [Indexed: 02/07/2023]
|
34
|
Abstract
Despite new and effective drug therapies, insulin resistance (IR), type 2 diabetes mellitus (T2D) and its complications remain major medical challenges. It is accepted that IR, often associated with over-nutrition and obesity, results from chronically elevated oxidant stress (OS) and chronic inflammation. Less acknowledged is that a major cause for this inflammation is excessive consumption of advanced glycation end products (AGEs) with the standard western diet. AGEs, which were largely thought as oxidative derivatives resulting from diabetic hyperglycemia, are increasingly seen as a potential risk for islet β-cell injury, peripheral IR and diabetes. Here we discuss the relationships between exogenous AGEs, chronic inflammation, IR, and T2D. We propose that under chronic exogenous oxidant AGE pressure the depletion of innate defense mechanisms is an important factor, which raises susceptibility to inflammation, IR, T2D and its complications. Finally we review evidence on dietary AGE restriction as a nonpharmacologic intervention, which effectively lowers AGEs, restores innate defenses and improves IR, thus, offering new perspectives on diabetes etiology and therapy.
Collapse
Affiliation(s)
- Helen Vlassara
- Department of Geriatrics, Mount Sinai School of Medicine, New York, NY
- Department of Medicine, Mount Sinai School of Medicine, New York, NY
| | - Jaime Uribarri
- Department of Medicine, Mount Sinai School of Medicine, New York, NY
| |
Collapse
|
35
|
Wilkinson ID, Selvarajah D, Greig M, Shillo P, Boland E, Gandhi R, Tesfaye S. Magnetic resonance imaging of the central nervous system in diabetic neuropathy. Curr Diab Rep 2013; 13:509-16. [PMID: 23728721 DOI: 10.1007/s11892-013-0394-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Diabetic 'peripheral' neuropathy (DPN) is one of the common sequelae to the development of both type-1 and type-2 diabetes mellitus. Neuropathy has a major negative impact on quality of life. Abnormalities in both peripheral vasculature and nerve function are well documented and, in addition, evidence is emerging regarding changes within the central nervous system (CNS) that are concomitant with the presence of DPN. The often-resistant nature of DPN to medical treatment highlights the need to understand the role of the CNS in neuropathic symptomatology and progression, as this may modulate therapeutic approaches. Advanced neuroimaging techniques, especially those that can provide quantitative measures of structure and function, can provide objective markers of CNS status. With that comes great potential for not only furthering our understanding of involvement of the CNS in neuropathic etiology but also most importantly aiding the development of new and more effective, targeted, analgesic interventions.
Collapse
Affiliation(s)
- Iain D Wilkinson
- Academic Radiology, University of Sheffield, C-Floor, Royal Hallamshire Hospital, Glossop Road, Sheffield, S10 2JF, UK.
| | | | | | | | | | | | | |
Collapse
|
36
|
Karayannis G, Giamouzis G, Cokkinos DV, Skoularigis J, Triposkiadis F. Diabetic cardiovascular autonomic neuropathy: clinical implications. Expert Rev Cardiovasc Ther 2013; 10:747-65. [PMID: 22894631 DOI: 10.1586/erc.12.53] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Diabetic cardiovascular autonomic neuropathy (DCAN), the impairment of the autonomic balance of the cardiovascular system in the setting of diabetes mellitus (DM), is frequently observed in both Type 1 and 2 DM, has detrimental effects on the quality of life and portends increased mortality. Clinical manifestations include: resting heart rate disorders, exercise intolerance, intraoperative cardiovascular lability, orthostatic alterations in heart rate and blood pressure, QT-interval prolongation, abnormal diurnal and nocturnal blood pressure variation, silent myocardial ischemia and diabetic cardiomyopathy. Clinical tests for autonomic nervous system evaluation, heart rate variability analysis, autonomic innervation imaging techniques, microneurography and baroreflex analysis are the main diagnostic tools for DCAN detection. Aldose reductase inhibitors and antioxidants may be helpful in DCAN therapy, but a regular, more generalized and multifactorial approach should be adopted with inclusion of lifestyle modifications, strict glycemic control and treatment of concomitant traditional cardiovascular risk factors, in order to achieve the best therapeutic results. In the present review, the authors provide aspects of DCAN pathophysiology, clinical presentation, diagnosis and an algorithm regarding the evaluation and management of DCAN in DM patients.
Collapse
|
37
|
Zhu P, Ren M, Yang C, Hu YX, Ran JM, Yan L. Involvement of RAGE, MAPK and NF-κB pathways in AGEs-induced MMP-9 activation in HaCaT keratinocytes. Exp Dermatol 2012; 21:123-9. [PMID: 22229442 DOI: 10.1111/j.1600-0625.2011.01408.x] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Advanced glycation end products (AGEs) exert divergent effects on the pathogenesis of diabetes complications. Excessive expression of matrix metalloproteinases-9 (MMP-9) is deleterious to the cutaneous wound-healing process in the context of diabetes. However, the effect of AGEs on MMP-9 induction in skin cells and the exact molecular mechanisms involved are still poorly understood. In this study, we investigated the effect of AGEs on the production of MMP-9 in HaCaT keratinocytes and characterized the signal transduction pathways activated by AGEs that are involved in MMP-9 regulation. We showed that AGE-BSA increased MMP-9 expression in HaCaT cells at both the protein and mRNA levels. The stimulatory effect of AGE-BSA on MMP-9 was attenuated by inhibitors of extracellular-signal-regulated kinase (ERK1/2, U0126), p38 mitogen-activated protein kinase (MAPK, SB203580) and NF-κB, but not c-Jun N-terminal kinase. Furthermore, receptor for advanced glycation end products (RAGE) was expressed in keratinocytes, and incubation with AGE-BSA resulted in a significant upregulation of RAGE expression in a dose-dependent manner. Silencing of the RAGE gene prevented AGE-BSA-induced MMP-9 activation and the phosphorylation of ERK1/2 and p38 MAPK. We also observed the involvement of NF-κB in AGE-BSA-induced MMP-9 activation, which was not blocked by U0126 and SB203580. These results suggest that AGEs may play an important role in the impairment of diabetic wound healing by upregulating MMP-9 expression in keratinocytes via the RAGE, ERK1/2 and p38 MAPK pathways; activation of NF-κB is also involved in this process. These pathways may represent potential targets for drug interventions to improve diabetic wound healing, a process in which MMP-9 plays a critical role.
Collapse
Affiliation(s)
- Ping Zhu
- Department of Endocrinology, Guangzhou Red Cross Hospital, The Fourth Affiliated Hospital, Ji'nan University, Guangzhou, China
| | | | | | | | | | | |
Collapse
|
38
|
Jack M, Wright D. Role of advanced glycation endproducts and glyoxalase I in diabetic peripheral sensory neuropathy. Transl Res 2012; 159:355-65. [PMID: 22500508 PMCID: PMC3329218 DOI: 10.1016/j.trsl.2011.12.004] [Citation(s) in RCA: 96] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2011] [Revised: 12/06/2011] [Accepted: 12/08/2011] [Indexed: 12/30/2022]
Abstract
Diabetic neuropathy is the most common and debilitating complication of diabetes mellitus with more than half of all patients developing altered sensation as a result of damage to peripheral sensory neurons. Hyperglycemia results in altered nerve conduction velocities, loss of epidermal innervation, and development of painful or painless signs and symptoms in the feet and hands. Current research has been unable to determine whether a patient will develop insensate or painful neuropathy or be protected from peripheral nerve damage all together. One mechanism that has been recognized to have a role in the pathogenesis of sensory neuron damage is the process of reactive dicarbonyls forming advanced glycation endproducts (AGEs) as a direct result of hyperglycemia. The glyoxalase system, composed of the enzymes glyoxalase I (GLO1) and glyoxalase II, is the main detoxification pathway involved in breaking down toxic reactive dicarbonyls before producing carbonyl stress and forming AGEs on proteins, lipids, or nucleic acids. This review discusses AGEs, GLO1, their role in diabetic neuropathy, and potential therapeutic targets of the AGE pathway.
Collapse
Affiliation(s)
- Megan Jack
- Department of Anatomy and Cell Biology, University of Kansas Medical Center, School of Medicine, Kansas City, KS 66160, USA
| | | |
Collapse
|
39
|
Hur J, Sullivan KA, Pande M, Hong Y, Sima AAF, Jagadish HV, Kretzler M, Feldman EL. The identification of gene expression profiles associated with progression of human diabetic neuropathy. ACTA ACUST UNITED AC 2011; 134:3222-35. [PMID: 21926103 DOI: 10.1093/brain/awr228] [Citation(s) in RCA: 123] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Diabetic neuropathy is a common complication of diabetes. While multiple pathways are implicated in the pathophysiology of diabetic neuropathy, there are no specific treatments and no means to predict diabetic neuropathy onset or progression. Here, we identify gene expression signatures related to diabetic neuropathy and develop computational classification models of diabetic neuropathy progression. Microarray experiments were performed on 50 samples of human sural nerves collected during a 52-week clinical trial. A series of bioinformatics analyses identified differentially expressed genes and their networks and biological pathways potentially responsible for the progression of diabetic neuropathy. We identified 532 differentially expressed genes between patient samples with progressing or non-progressing diabetic neuropathy, and found these were functionally enriched in pathways involving inflammatory responses and lipid metabolism. A literature-derived co-citation network of the differentially expressed genes revealed gene subnetworks centred on apolipoprotein E, jun, leptin, serpin peptidase inhibitor E type 1 and peroxisome proliferator-activated receptor gamma. The differentially expressed genes were used to classify a test set of patients with regard to diabetic neuropathy progression. Ridge regression models containing 14 differentially expressed genes correctly classified the progression status of 92% of patients (P < 0.001). To our knowledge, this is the first study to identify transcriptional changes associated with diabetic neuropathy progression in human sural nerve biopsies and describe their potential utility in classifying diabetic neuropathy. Our results identifying the unique gene signature of patients with progressive diabetic neuropathy will facilitate the development of new mechanism-based diagnostics and therapies.
Collapse
Affiliation(s)
- Junguk Hur
- Bioinformatics Program, University of Michigan, Ann Arbor, MI 48109, USA
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Treatment of diabetic neuropathy with baicalein: intervention at multiple sites. Exp Neurol 2011; 232:105-9. [PMID: 21907195 DOI: 10.1016/j.expneurol.2011.08.017] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2011] [Revised: 08/10/2011] [Accepted: 08/18/2011] [Indexed: 01/03/2023]
|
41
|
Gelain DP, de Bittencourt Pasquali MA, Caregnato FF, Moreira JCF. Vitamin A (retinol) up-regulates the receptor for advanced glycation endproducts (RAGE) through p38 and Akt oxidant-dependent activation. Toxicology 2011; 289:38-44. [PMID: 21807062 DOI: 10.1016/j.tox.2011.07.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2011] [Revised: 07/11/2011] [Accepted: 07/13/2011] [Indexed: 12/01/2022]
Abstract
Retinol (vitamin A) is believed to exert preventive/protective effects against malignant, neurodegenerative and cardiovascular diseases by acting as an antioxidant. However, later clinical and experimental data show a pro-oxidant action of retinol and other retinoids at specific conditions. The receptor for advanced glycation endproducts (RAGE) is a pattern recognition receptor, being activated by different ligands such as S100 proteins, HMGB1 (amphoterin), β-amyloid peptide and advanced glycation endproducts (AGE). RAGE activation influences a wide range of pathological conditions such as diabetes, pro-inflammatory states and neurodegenerative processes. Here, we investigated the involvement of different mitogen-activated protein kinases (MAPK: ERK1/2, p38 and JNK), PKC, PKA and Akt in the up-regulation of RAGE by retinol. As previously reported, we observed that the increase in RAGE immunocontent by retinol is reversed by antioxidant co-treatment, indicating the involvement of oxidative stress in this process. Furthermore, the p38 inhibitor SB203580 and the Akt inhibitor LY294002 also decreased the effect of retinol on RAGE levels, suggesting the involvement of these protein kinases in such effect. Both p38 and Akt phosphorylation were increased by treatment with pro-oxidant concentrations of retinol, and the antioxidant co-treatment blocked this effect, indicating that activation of p38 and Akt during retinol treatment is dependent on reactive species production. The 2',7'-dichlorohydrofluorescein diacetate (DCFH) assay also indicated that retinol treatment enhances cellular reactive species production. Altogether, these data indicate that RAGE up-regulation by retinol is mediated by the free radical-dependent activation of p38 and Akt.
Collapse
Affiliation(s)
- Daniel Pens Gelain
- Centro de Estudos em Estresse Oxidativo, Departamento de Bioquímica, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.
| | | | | | | |
Collapse
|
42
|
Abstract
Neuropathic pain continues to be a difficult and challenging clinical issue to deal with effectively. Painful diabetic polyneuropathy is a complex pain condition that occurs with reasonable frequency in the population and it may be extremely difficult for clinicians to provide patients with effective analgesia. Chronic neuropathic pain may occur in approximately one of every four diabetic patients. The pain may be described as burning or a deep-seated ache with sporadic paroxysms of lancinating painful exacerbations. The pain is often constant, moderate to severe in intensity, usually primarily involves the feet and generally tends to worsen at night. Treatment may be multimodal but largely involves pharmacological approaches. Pharmacological therapeutic options include antidepressants (tricyclic antidepressants, serotonin-norepinephrine reuptake inhibitors), α2δ ligands and topical (5%) lidocaine patch. Other agents may be different antiepileptic drugs (carbamazepine, lamotrigine, topiramate), topical capsaicin, tramadol and other opioids. Progress continues with respect to understanding various mechanisms that may contribute to painful diabetic neuropathy. Agents that may hold some promise include neurotrophic factors, growth factors, immunomodulators, gene therapy and poly (adenosine diphosphate-ribose) polymerase inhibitors. It is hoped that in the future clinicians will be able to assess patient pathophysiology, which may help them to match optimal therapeutic agents to target individual patient aberrant mechanisms.
Collapse
Affiliation(s)
- Howard S Smith
- Albany Medical College, Department of Anesthesiology, Albany, New York 12208, USA.
| | | |
Collapse
|
43
|
Shimizu F, Sano Y, Haruki H, Kanda T. Advanced glycation end-products induce basement membrane hypertrophy in endoneurial microvessels and disrupt the blood-nerve barrier by stimulating the release of TGF-β and vascular endothelial growth factor (VEGF) by pericytes. Diabetologia 2011; 54:1517-26. [PMID: 21409414 DOI: 10.1007/s00125-011-2107-7] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2010] [Accepted: 02/07/2011] [Indexed: 10/18/2022]
Abstract
AIMS/HYPOTHESIS The breakdown of the blood-nerve barrier (BNB) is considered to be a key step in diabetic neuropathy. Although basement membrane hypertrophy and breakdown of the BNB are characteristic features of diabetic neuropathy, the underlying pathogenesis remains unclear. The purpose of the present study was to identify the possible mechanisms responsible for inducing the hypertrophy of basement membrane and the disruption of the BNB after exposure to AGEs. METHODS The newly established human peripheral nerve microvascular endothelial cell (PnMEC) and pericyte cell lines were used to elucidate which cell types constituting the BNB regulate the basement membrane and to investigate the effect of AGEs on the basement membrane of the BNB using western blot analysis. RESULTS Fibronectin, collagen type IV and tissue inhibitor of metalloproteinase (TIMP-1) protein were produced mainly by peripheral nerve pericytes, indicating that the basement membrane of the BNB is regulated mainly by these cells. AGEs reduced the production of claudin-5 in PnMECs by increasing autocrine signalling through vascular endothelial growth factor (VEGF) secreted by the PnMECs themselves. Furthermore, AGEs increased the amount of fibronectin, collagen type IV and TIMP-1 in pericytes through a similar upregulation of autocrine VEGF and transforming growth factor (TGF)-β released by pericytes. CONCLUSIONS/INTERPRETATION These results indicate that pericytes may be the main regulators of the basement membrane at the BNB. AGEs induce basement membrane hypertrophy and disrupt the BNB by increasing autocrine VEGF and TGF-β signalling by pericytes under diabetic conditions.
Collapse
Affiliation(s)
- F Shimizu
- Department of Neurology and Clinical Neuroscience, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami kogushi, Ube, Yamaguchi 7558505, Japan
| | | | | | | |
Collapse
|
44
|
Luevano-Contreras C, Chapman-Novakofski K. Dietary advanced glycation end products and aging. Nutrients 2010; 2:1247-65. [PMID: 22254007 PMCID: PMC3257625 DOI: 10.3390/nu2121247] [Citation(s) in RCA: 263] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2010] [Revised: 11/30/2010] [Accepted: 12/10/2010] [Indexed: 02/06/2023] Open
Abstract
Advanced glycation end products (AGEs) are a heterogeneous, complex group of compounds that are formed when reducing sugar reacts in a non-enzymatic way with amino acids in proteins and other macromolecules. This occurs both exogenously (in food) and endogenously (in humans) with greater concentrations found in older adults. While higher AGEs occur in both healthy older adults and those with chronic diseases, research is progressing to both quantify AGEs in food and in people, and to identify mechanisms that would explain why some human tissues are damaged, and others are not. In the last twenty years, there has been increased evidence that AGEs could be implicated in the development of chronic degenerative diseases of aging, such as cardiovascular disease, Alzheimer’s disease and with complications of diabetes mellitus. Results of several studies in animal models and humans show that the restriction of dietary AGEs has positive effects on wound healing, insulin resistance and cardiovascular diseases. Recently, the effect of restriction in AGEs intake has been reported to increase the lifespan in animal models. This paper will summarize the work that has been published for both food AGEs and in vivo AGEs and their relation with aging, as well as provide suggestions for future research.
Collapse
Affiliation(s)
- Claudia Luevano-Contreras
- Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.
| | | |
Collapse
|
45
|
Münch G, Westcott B, Menini T, Gugliucci A. Advanced glycation endproducts and their pathogenic roles in neurological disorders. Amino Acids 2010; 42:1221-36. [DOI: 10.1007/s00726-010-0777-y] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2010] [Accepted: 09/03/2010] [Indexed: 01/11/2023]
|
46
|
Winkler G, Kempler P. [Pathomechanism of diabetic neuropathy: background of the pathogenesis-oriented therapy]. Orv Hetil 2010; 151:971-81. [PMID: 20519180 DOI: 10.1556/oh.2010.28898] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The pathomechanism of diabetic neuropathy remains still poorly understood, however, a broad spectrum of novel findings associated with therapeutic consequences emerged during the last decades. Both disturbed function of primary hemostasis and increased activity of coagulation system contribute to the reduced endoneurial blood flow. Increased superoxide anion production induced by hyperglycemia leads to decreased activity of glycerinaldehid-3-phosphate dehydrogenase and to consequential increased activity of alternative pathways, including the polyol-, hexosamine-, diacilglycerol protein kinase-C- and advanced glycation pathways. Advanced glycation endproducts increase the activity of the nuclear-factor kappa-B, as well as the production of vasoactive factors and cytokines (interleukin-1, -6, tumor necrosis factor alpha). The aim of pathogenetic oriented treatment is to slow down, stop or reverse the progression of neuropathy. Components of pathogenetic oriented treatment are glycaemic control, management of risk factors, benfotiamine and alpha-lipoic acid. On one hand, transketolase-activator benfotiamine inhibits alternative pathways induced by hyperglycemia (the polyol-, hexosamine-, diacilglycerol protein kinase-C-, and advanced glycation pathways), while, on the other hand, it increases the activity of the pentose-phosphate-shunt. The clinical effectiveness of benfotiamine has been shown in many international and Hungarian trials. Alpha-lipoic acid as a powerful antioxidant decreases oxidative stress and this way increases the activity of glycerinaldehid-3-phosphate dehydrogenase. Alpha-lipoic acid administered in infusion or oral treatment decreases both symptoms of neuropathy and neuropathic deficit. In conclusion, the case of diabetic neuropathy illustrates well, how widening of our knowledge on pathogenesis might contribute to successful therapy.
Collapse
Affiliation(s)
- Gábor Winkler
- Szent János Kórház, II. Belgyógyászati Osztály, Budapest.
| | | |
Collapse
|