1
|
Wang MX, Liao CS, Wei XQ, Xie YQ, Han PF, Yu YH. Research and analysis of differential gene expression in CD34 hematopoietic stem cells in myelodysplastic syndromes. PLoS One 2025; 20:e0315408. [PMID: 40073065 PMCID: PMC11902259 DOI: 10.1371/journal.pone.0315408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Accepted: 11/25/2024] [Indexed: 03/14/2025] Open
Abstract
OBJECTIVE This study aims to investigate and analyze the differentially expressed genes (DEGs) in CD34 + hematopoietic stem cells (HSCs) from patients with myelodysplastic syndromes (MDS) through bioinformatics analysis, with the ultimate goal of uncovering the potential molecular mechanisms underlying pathogenesis of MDS. The findings of this study are expected to provide novel insights into clinical treatment strategies for MDS. METHODS Initially, we downloaded three datasets, GSE81173, GSE4619, and GSE58831, from the public Gene Expression Omnibus (GEO) database as our training sets, and selected the GSE19429 dataset as the validation set. To ensure data consistency and comparability, we standardized the training sets and removed batch effects using the ComBat algorithm, thereby integrating them into a unified gene expression dataset. Subsequently, we conducted differential expression analysis to identify genes with significant changes in expression levels across different disease states. In order to enhance prediction accuracy, we incorporated six common predictive models and trained them based on the filtered differential gene expression dataset. After comprehensive evaluation, we ultimately selected three algorithms-Lasso regression, random forest, and support vector machine (SVM)-as our core predictive models. To more precisely pinpoint genes closely related to disease characteristics, we utilized the aforementioned three machine learning methods for prediction and took the intersection of these prediction results, yielding a more robust list of genes associated with disease features. Following this, we conducted in-depth analysis of these key genes in the training set and validated the results independently using the GSE19429 dataset. Furthermore, we performed differential analysis of gene groups, co-expression analysis, and enrichment analysis to delve deeper into the mechanisms underlying the roles of these genes in disease initiation and progression. Through these analyses, we aim to provide new insights and foundations for disease diagnosis and treatment. Figure illustrates the data preprocessing and analysis workflow of this study. RESULTS Our analysis of differentially expressed genes (DEGs) in CD34+ hematopoietic stem cells (HSCs) from patients with myelodysplastic syndromes (MDS) revealed significant differences in gene expression patterns compared to the control group (individuals without MDS). Specifically, the expression levels of two key genes, IRF4 and ELANE, were notably downregulated in CD34+ HSCs of MDS patients, indicating their downregulatory roles in the pathological process of MDS. CONCLUSION This study sheds light on the potential molecular mechanisms underlying MDS, with a particular focus on the pivotal roles of IRF4 and ELANE as key pathogenic genes. Our findings provide a novel perspective for understanding the complexity of MDS and exploring therapeutic strategies. They may also guide the development of precise and effective treatments, such as targeted interventions directed against these genes.
Collapse
Affiliation(s)
- Min-xiao Wang
- Department of Hematology, Heping Hospital Affiliated to Changzhi Medical College, Changzhi Medical College, Changzhi, Shanxi, China
- Department of Graduate School, Graduate Student Department of Changzhi Medical College, Changzhi, Shanxi, China
- The Stem Cell and Tissue Engineering Research Center, Changzhi Medical College, Changzhi, Shanxi, China
| | - Chang-sheng Liao
- Department of Graduate School, Graduate Student Department of Changzhi Medical College, Changzhi, Shanxi, China
- Department of Orthopedics, Heping Hospital Affiliated to Changzhi Medical College, Changzhi, Shanxi, China
| | - Xue-qin Wei
- Department of Hematology, Heping Hospital Affiliated to Changzhi Medical College, Changzhi Medical College, Changzhi, Shanxi, China
- Department of Graduate School, Graduate Student Department of Changzhi Medical College, Changzhi, Shanxi, China
| | - Yu-qin Xie
- Department of Hematology, Heping Hospital Affiliated to Changzhi Medical College, Changzhi Medical College, Changzhi, Shanxi, China
- Department of Graduate School, Graduate Student Department of Changzhi Medical College, Changzhi, Shanxi, China
| | - Peng-fei Han
- Department of Orthopedics, Heping Hospital Affiliated to Changzhi Medical College, Changzhi, Shanxi, China
| | - Yan-hui Yu
- Department of Hematology, Heping Hospital Affiliated to Changzhi Medical College, Changzhi Medical College, Changzhi, Shanxi, China
- The Stem Cell and Tissue Engineering Research Center, Changzhi Medical College, Changzhi, Shanxi, China
| |
Collapse
|
2
|
Amanda S, Tan TK, Iida S, Sanda T. Lineage- and Stage-specific Oncogenicity of IRF4. Exp Hematol 2022; 114:9-17. [PMID: 35908629 DOI: 10.1016/j.exphem.2022.07.300] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 07/22/2022] [Accepted: 07/25/2022] [Indexed: 11/04/2022]
Abstract
Dysregulation of transcription factor genes represents a unique molecular etiology of hematological malignancies. A number of transcription factors that play a role in hematopoietic cell development, lymphocyte activation or their maintenance have been identified as oncogenes or tumor suppressors. Many of them exert oncogenic abilities in a context-dependent manner by governing the key transcriptional program unique to each cell type. IRF4, a member of the interferon regulatory factor (IRF) family, acts as an essential regulator of the immune system and is a prime example of a stage-specific oncogene. The expression and oncogenicity of IRF4 are restricted to mature lymphoid neoplasms, while IRF4 potentially serves as a tumor suppressor in other cellular contexts. This is in marked contrast to its immediate downstream target, MYC, which can cause cancers in a variety of tissues. In this review article, we provide an overview of the roles of IRF4 in the development of the normal immune system and lymphoid neoplasms and discuss the potential mechanisms of lineage- and stage-specific oncogenicity of IRF4.
Collapse
Affiliation(s)
- Stella Amanda
- Cancer Science Institute of Singapore, National University of Singapore, 117599, Singapore
| | - Tze King Tan
- Cancer Science Institute of Singapore, National University of Singapore, 117599, Singapore
| | - Shinsuke Iida
- Department of Hematology and Oncology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Aichi, 467-8601 Japan
| | - Takaomi Sanda
- Cancer Science Institute of Singapore, National University of Singapore, 117599, Singapore; Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, 117599, Singapore..
| |
Collapse
|
3
|
Cumbo C, Tarantini F, Anelli L, Zagaria A, Redavid I, Minervini CF, Coccaro N, Tota G, Ricco A, Parciante E, Conserva MR, Specchia G, Musto P, Albano F. IRF4 expression is low in Philadelphia negative myeloproliferative neoplasms and is associated with a worse prognosis. Exp Hematol Oncol 2021; 10:58. [PMID: 34952638 PMCID: PMC8705160 DOI: 10.1186/s40164-021-00253-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 12/18/2021] [Indexed: 11/21/2022] Open
Abstract
Interferon regulatory factor 4 (IRF4) is involved in the pathogenesis of various hematologic malignancies. Its expression has been related to the negative regulation of myeloid-derived suppressor cells (MDSCs) and the polarization of anti-inflammatory M2 macrophages, thereby altering immunosurveillance and inflammatory mechanisms. An abnormal inflammatory status in the bone marrow microenvironment of myeloproliferative neoplasms (MPNs) has recently been demonstrated; moreover, in chronic myeloid leukemia a downregulated expression of IRF4 has been found. In this context, we evaluated the IRF4 expression in 119 newly diagnosed consecutive Philadelphia negative MPNs (Ph- MPNs), showing a low expression among the MPNs phenotypes with a more significant decrease in primary myelofibrosis patients. Lower IRF4 levels were associated with JAK2 + and triple negatives cases carrying the worst prognosis. Furthermore, the IRF4 levels were related to leukemic transformation and a shorter leukemia-free survival; moreover, the risk of myelofibrosis transformation in polycythemia vera and essential thrombocythemia patients was more frequent in cases with lower IRF4 levels. Overall, our study demonstrates an IRF4 dysregulated expression in MPNs patients and its association with a worse prognosis. Further studies could validate these data, to improve our knowledge of the MPNs pathogenesis and confirm the IRF4 role as a new prognostic factor.
Collapse
Affiliation(s)
- Cosimo Cumbo
- Department of Emergency and Organ Transplantation (D.E.T.O.), Hematology and Stem Cell Transplantation Unit, University of Bari "Aldo Moro", P.Zza G. Cesare, 11, 70124, Bari, Italy
| | - Francesco Tarantini
- Department of Emergency and Organ Transplantation (D.E.T.O.), Hematology and Stem Cell Transplantation Unit, University of Bari "Aldo Moro", P.Zza G. Cesare, 11, 70124, Bari, Italy
| | - Luisa Anelli
- Department of Emergency and Organ Transplantation (D.E.T.O.), Hematology and Stem Cell Transplantation Unit, University of Bari "Aldo Moro", P.Zza G. Cesare, 11, 70124, Bari, Italy
| | - Antonella Zagaria
- Department of Emergency and Organ Transplantation (D.E.T.O.), Hematology and Stem Cell Transplantation Unit, University of Bari "Aldo Moro", P.Zza G. Cesare, 11, 70124, Bari, Italy
| | - Immacolata Redavid
- Department of Emergency and Organ Transplantation (D.E.T.O.), Hematology and Stem Cell Transplantation Unit, University of Bari "Aldo Moro", P.Zza G. Cesare, 11, 70124, Bari, Italy
| | - Crescenzio Francesco Minervini
- Department of Emergency and Organ Transplantation (D.E.T.O.), Hematology and Stem Cell Transplantation Unit, University of Bari "Aldo Moro", P.Zza G. Cesare, 11, 70124, Bari, Italy
| | - Nicoletta Coccaro
- Department of Emergency and Organ Transplantation (D.E.T.O.), Hematology and Stem Cell Transplantation Unit, University of Bari "Aldo Moro", P.Zza G. Cesare, 11, 70124, Bari, Italy
| | - Giuseppina Tota
- Department of Emergency and Organ Transplantation (D.E.T.O.), Hematology and Stem Cell Transplantation Unit, University of Bari "Aldo Moro", P.Zza G. Cesare, 11, 70124, Bari, Italy
| | - Alessandra Ricco
- Department of Emergency and Organ Transplantation (D.E.T.O.), Hematology and Stem Cell Transplantation Unit, University of Bari "Aldo Moro", P.Zza G. Cesare, 11, 70124, Bari, Italy
| | - Elisa Parciante
- Department of Emergency and Organ Transplantation (D.E.T.O.), Hematology and Stem Cell Transplantation Unit, University of Bari "Aldo Moro", P.Zza G. Cesare, 11, 70124, Bari, Italy
| | - Maria Rosa Conserva
- Department of Emergency and Organ Transplantation (D.E.T.O.), Hematology and Stem Cell Transplantation Unit, University of Bari "Aldo Moro", P.Zza G. Cesare, 11, 70124, Bari, Italy
| | - Giorgina Specchia
- School of Medicine, University of Bari "Aldo Moro", 70124, Bari, Italy
| | - Pellegrino Musto
- Department of Emergency and Organ Transplantation (D.E.T.O.), Hematology and Stem Cell Transplantation Unit, University of Bari "Aldo Moro", P.Zza G. Cesare, 11, 70124, Bari, Italy
| | - Francesco Albano
- Department of Emergency and Organ Transplantation (D.E.T.O.), Hematology and Stem Cell Transplantation Unit, University of Bari "Aldo Moro", P.Zza G. Cesare, 11, 70124, Bari, Italy.
| |
Collapse
|
4
|
Huang X, Ma T, Zhu Y, Jiao B, Yu S, Wang K, Mi JQ, Ren R. IRF4 and IRF8 expression are associated with clinical phenotype and clinico-hematological response to hydroxyurea in essential thrombocythemia. Front Med 2021; 16:403-415. [PMID: 34331664 DOI: 10.1007/s11684-021-0858-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 04/08/2021] [Indexed: 01/17/2023]
Abstract
The morbidity and mortality of myeloproliferative neoplasms (MPNs) are primarily caused by arterial and venous complications, progression to myelofibrosis, and transformation to acute leukemia. However, identifying molecular-based biomarkers for risk stratification of patients with MPNs remains a challenge. We have previously shown that interferon regulatory factor-8 (IRF8) and IRF4 serve as tumor suppressors in myeloid cells. In this study, we evaluated the expression of IRF4 and IRF8 and the JAK2V617F mutant allele burden in patients with MPNs. Patients with decreased IRF4 expression were correlated with a more developed MPN phenotype in myelofibrosis (MF) and secondary AML (sAML) transformed from MPNs versus essential thrombocythemia (ET). Negative correlations between the JAK2V617F allele burden and the expression of IRF8 (P < 0.05) and IRF4 (P < 0.001) and between white blood cell (WBC) count and IRF4 expression (P < 0.05) were found in ET patients. IRF8 expression was negatively correlated with the JAK2V617F allele burden (P < 0.05) in polycythemia vera patients. Complete response (CR), partial response (PR), and no response (NR) were observed in 67.5%,10%, and 22.5% of ET patients treated with hydroxyurea (HU), respectively, in 12 months. At 3 months, patients in the CR group showed high IRF4 and IRF8 expression compared with patients in the PR and NR groups. In the 12-month therapy period, low IRF4 and IRF8 expression were independently associated with the unfavorable response to HU and high WBC count. Our data indicate that the expression of IRF4 and IRF8 was associated with the MPN phenotype, which may serve as biomarkers for the response to HU in ET.
Collapse
Affiliation(s)
- Xiao Huang
- Shanghai Institute of Hematology, State Key Laboratory for Medical Genomics, Collaborative Innovation Center of Hematology, National Research Center for translational Medicine (Shanghai), Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Tingting Ma
- Shanghai Institute of Hematology, State Key Laboratory for Medical Genomics, Collaborative Innovation Center of Hematology, National Research Center for translational Medicine (Shanghai), Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Yongmei Zhu
- Shanghai Institute of Hematology, State Key Laboratory for Medical Genomics, Collaborative Innovation Center of Hematology, National Research Center for translational Medicine (Shanghai), Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Bo Jiao
- Shanghai Institute of Hematology, State Key Laboratory for Medical Genomics, Collaborative Innovation Center of Hematology, National Research Center for translational Medicine (Shanghai), Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Shanhe Yu
- Shanghai Institute of Hematology, State Key Laboratory for Medical Genomics, Collaborative Innovation Center of Hematology, National Research Center for translational Medicine (Shanghai), Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Kankan Wang
- Shanghai Institute of Hematology, State Key Laboratory for Medical Genomics, Collaborative Innovation Center of Hematology, National Research Center for translational Medicine (Shanghai), Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| | - Jian-Qing Mi
- Shanghai Institute of Hematology, State Key Laboratory for Medical Genomics, Collaborative Innovation Center of Hematology, National Research Center for translational Medicine (Shanghai), Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| | - Ruibao Ren
- Shanghai Institute of Hematology, State Key Laboratory for Medical Genomics, Collaborative Innovation Center of Hematology, National Research Center for translational Medicine (Shanghai), Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| |
Collapse
|
5
|
Yanai H, Negishi H, Taniguchi T. The IRF family of transcription factors: Inception, impact and implications in oncogenesis. Oncoimmunology 2021; 1:1376-1386. [PMID: 23243601 PMCID: PMC3518510 DOI: 10.4161/onci.22475] [Citation(s) in RCA: 196] [Impact Index Per Article: 49.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Members of the interferon-regulatory factor (IRF) proteins family were originally identified as transcriptional regulators of the Type I interferon system. Thanks to consistent advances made in our understanding of the immunobiology of innate receptors, it is now clear that several IRFs are critical for the elicitation of innate pattern recognition receptors, and—as a consequence—for adaptive immunity. In addition, IRFs have attracted great attentions as they modulate cellular responses that are involved in tumorigenesis. The regulation of oncogenesis by IRFs has important implications for understanding the host susceptibility to several Types of cancers, their progression, as well as the potential for therapeutic interventions.
Collapse
Affiliation(s)
- Hideyuki Yanai
- Department of Molecular Immunology; Institute of Industrial Science; The University of Tokyo; Tokyo, Japan ; Core Research for Evolution Science and Technology; Japan Science and Technology Agency; Chiyoda-ku, Tokyo, Japan
| | | | | |
Collapse
|
6
|
Tian WL, Guo R, Wang F, Jiang ZX, Tang P, Huang YM, Sun L. The IRF9-SIRT1-P53 axis is involved in the growth of human acute myeloid leukemia. Exp Cell Res 2018; 365:185-193. [PMID: 29501566 DOI: 10.1016/j.yexcr.2018.02.036] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Revised: 02/23/2018] [Accepted: 02/27/2018] [Indexed: 12/13/2022]
Abstract
Acute myeloid leukemia (AML) is a highly heterogeneous disease, with biologically and prognostically different subtypes. Although a growing number of distinct AML subsets have been increasingly characterized, patient management has remained disappointingly uniform. The molecular mechanism underlying AML needs to be further investigated. Here we identify IRF9 as a negative regulator of human AML. We show that IRF9 mRNA and protein levels are down-regulated in human AML samples compared with samples from healthy donors. IRF9 knockdown promotes proliferation, colony formation and survival of OCI/AML-2 and OCI/AML-3 cells, whereas IRF9 overexpression obtains oppose results. Mechanism analysis shows that IRF9 binds SIRT1 promoter and represses SIRT1 expression in OCI/AML-2 and OCI/AML-3 cells. In AML samples, the expression of SIRT1 is up-regulated and negatively correlated with IRF9 level. IRF9 also increases the acetylation of p53, a deacetylation substrate of SIRT1, and promotes the expression of p53 target genes. Knockdown of p53 blocks the effects of IRF9 on cell survival and growth in vitro. These findings provide evidence that IRF9 serves as an important regulator in human AML by repressing SIRT1-p53 pathway and that IRF9 may be a potential target for AML treatment.
Collapse
Affiliation(s)
- Wen-Liang Tian
- Department of Hematology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province 450052, China
| | - Rong Guo
- Department of Hematology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province 450052, China
| | - Fang Wang
- Department of Hematology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province 450052, China
| | - Zhong-Xing Jiang
- Department of Hematology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province 450052, China
| | - Ping Tang
- Department of Hematology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province 450052, China
| | - Yu-Min Huang
- Department of Hematology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province 450052, China
| | - Ling Sun
- Department of Hematology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province 450052, China.
| |
Collapse
|
7
|
Qian Y, Du Z, Xing Y, Zhou T, Chen T, Shi M. Interferon regulatory factor 4 (IRF4) is overexpressed in human non‑small cell lung cancer (NSCLC) and activates the Notch signaling pathway. Mol Med Rep 2017; 16:6034-6040. [PMID: 28849037 PMCID: PMC5865806 DOI: 10.3892/mmr.2017.7319] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Accepted: 07/25/2017] [Indexed: 12/16/2022] Open
Abstract
The transcription factor, interferon regulatory factor 4 (IRF4), serves an essential role in the regulation of immune responses, and has been reported to act as a diagnostic and prognostic marker for various hematological malignancies. The present study aimed to investigate whether IRF4 could exert effects on human non-small cell lung cancer (NSCLC) and to explore the underlying mechanism. The mRNA and protein expression of IRF4 was detected in NSCLC tissues using reverse-transcription quantitative polymerase chain reaction and western blotting, respectively. In the in vitro experiment, IRF4 expression was knocked down or overexpressed using lentivirus in human lung adenocarcinoma A549 and lung squamous cell carcinoma LC-AI cell lines. Cell proliferation and colony number were analyzed using MTT and colony formation assays, respectively. The expression levels of IRF4 mRNA and protein were significantly higher in NSCLC tissues (n=54) compared with that in adjacent non-tumor tissues. Similarly, the expression levels of Notch1 and Notch2 mRNA were significantly higher in NSCLC tissues. Furthermore, the expression level of IRF4 mRNA was positively correlated with the levels of Notch1 and Notch2 mRNA in NSCLC tissues. Consequently, using NSCLC cell lines, it was demonstrated that the knockdown of IRF4 expression significantly reduced the cell proliferation rate and colony formation, whereas IRF4-overexpression significantly increased them. Notably, the IRF4 knockdown significantly decreased the expression levels of Notch1 and Notch2 mRNA, and phosphorylated protein kinase B (AKT), whereas IRF4 overexpression resulted in the opposite. The results of the present study indicate that IRF4 is overexpressed and serves as a tumor promoter in human NSCLC, at least partially, through activating the Notch-Akt signaling pathway.
Collapse
Affiliation(s)
- Yajuan Qian
- Department of Respiration, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215004, P.R. China
| | - Ziyan Du
- Department of Respiration, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215004, P.R. China
| | - Yufei Xing
- Department of Respiration, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215004, P.R. China
| | - Tong Zhou
- Department of Respiration, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215004, P.R. China
| | - Ting Chen
- Department of Respiration, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215004, P.R. China
| | - Minhua Shi
- Department of Respiration, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215004, P.R. China
| |
Collapse
|
8
|
Heidari N, Abroun S, Bertacchini J, Vosoughi T, Rahim F, Saki N. Significance of Inactivated Genes in Leukemia: Pathogenesis and Prognosis. CELL JOURNAL 2017; 19:9-26. [PMID: 28580304 PMCID: PMC5448318 DOI: 10.22074/cellj.2017.4908] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/26/2016] [Accepted: 02/14/2017] [Indexed: 11/04/2022]
Abstract
Epigenetic and genetic alterations are two mechanisms participating in leukemia, which can inactivate genes involved in leukemia pathogenesis or progression. The purpose of this review was to introduce various inactivated genes and evaluate their possible role in leukemia pathogenesis and prognosis. By searching the mesh words "Gene, Silencing AND Leukemia" in PubMed website, relevant English articles dealt with human subjects as of 2000 were included in this study. Gene inactivation in leukemia is largely mediated by promoter's hypermethylation of gene involving in cellular functions such as cell cycle, apoptosis, and gene transcription. Inactivated genes, such as ASPP1, TP53, IKZF1 and P15, may correlate with poor prognosis in acute lymphoid leukemia (ALL), chronic lymphoid leukemia (CLL), chronic myelogenous leukemia (CML) and acute myeloid leukemia (AML), respectively. Gene inactivation may play a considerable role in leukemia pathogenesis and prognosis, which can be considered as complementary diagnostic tests to differentiate different leukemia types, determine leukemia prognosis, and also detect response to therapy. In general, this review showed some genes inactivated only in leukemia (with differences between B-ALL, T-ALL, CLL, AML and CML). These differences could be of interest as an additional tool to better categorize leukemia types. Furthermore; based on inactivated genes, a diverse classification of Leukemias could represent a powerful method to address a targeted therapy of the patients, in order to minimize side effects of conventional therapies and to enhance new drug strategies.
Collapse
Affiliation(s)
- Nazanin Heidari
- Health Research Institute, Thalassemia and Hemoglobinopathy Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Saeid Abroun
- Department of Hematology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Jessika Bertacchini
- Signal Transduction Unit, Department of Surgery, Medicine, Dentistry and Morphology, University of Modena and Reggio Emilia, Modena, Italy
| | - Tina Vosoughi
- Health Research Institute, Thalassemia and Hemoglobinopathy Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Fakher Rahim
- Health Research Institute, Thalassemia and Hemoglobinopathy Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Najmaldin Saki
- Health Research Institute, Thalassemia and Hemoglobinopathy Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
9
|
Nam S, Kang K, Cha JS, Kim JW, Lee HG, Kim Y, Yang Y, Lee MS, Lim JS. Interferon regulatory factor 4 (IRF4) controls myeloid-derived suppressor cell (MDSC) differentiation and function. J Leukoc Biol 2016; 100:1273-1284. [DOI: 10.1189/jlb.1a0215-068rr] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Revised: 08/09/2016] [Accepted: 08/12/2016] [Indexed: 02/02/2023] Open
|
10
|
Liu D, Chen J, Zhang H, Hu M, Lou H, Liu Q, Zhang S, Hu G. Interferon regulatory factor 4b (IRF4b) in Japanese flounder, Paralichthys olivaceus: Sequencing, ubiquitous tissue distribution and inducible expression by poly(I:C) and DNA virus. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2016; 62:127-133. [PMID: 27084058 DOI: 10.1016/j.dci.2016.04.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Revised: 04/10/2016] [Accepted: 04/10/2016] [Indexed: 06/05/2023]
Abstract
Interferon regulatory factor 4 (IRF4) in mammals is known to be critical in regulation of development and functions of lymphomyeloid cell lineages. Recent studies have demonstrated its involvement in immune responses to bacterial and viral challenges in teleosts. In this study, an IRF4 gene was cloned from Japanese flounder (Paralichthys olivaceus) and its expression in response to polyinosinic:polycytidylic acid [poly(I:C)] and lymphocystis disease virus (LCDV) stimulations was studied in vivo. The cloned gene spans over 5.9 kb, comprises eight exons and seven introns and encodes a putative protein of 456 amino acids. The deduced amino acid sequence possesses a conserved DNA-binding domain (DBD), an IRF-association domain (IAD) and a nuclear localization signal (NLS). Phylogenetic analysis clustered it into the teleost IRF4b clade and, thus, it was named Paralichthys olivaceus (Po)IRF4b. The constitutive expression of PoIRF4b transcripts was detectable in all examined organs, with highest levels found in lymphomyeloid-rich tissues. They were induced by both poly(I:C) and LCDV with a similar inducibility in immune or non-immune organs. Two waves of induced expression of PoIRF4b were observed with the two stimuli during a 7-day time course in the immune organs, with the early-phase induction being stronger. The maximum increases of PoIRF4b transcript levels ranged from 1.3 to 4.0-fold and appeared at day 1-5 post-injection depending on different organs and stimuli. In both stimulation cases, the strongest induction was detected in spleen and the weakest in muscle. These results indicate that PoIRF4b may participate in regulation of immune responses of flounders to both RNA and DNA virus infections.
Collapse
Affiliation(s)
- Dahai Liu
- First Institute of Oceanography, State Oceanic Administration of China, Qingdao 266061, China
| | - Jinjing Chen
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Haiyan Zhang
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Mengzhu Hu
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Huimin Lou
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Qiuming Liu
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Shicui Zhang
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China; Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266003, China
| | - Guobin Hu
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China; Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266003, China.
| |
Collapse
|
11
|
Schmidt M, Hagner N, Marco A, König-Merediz SA, Schroff M, Wittig B. Design and Structural Requirements of the Potent and Safe TLR-9 Agonistic Immunomodulator MGN1703. Nucleic Acid Ther 2015; 25:130-40. [PMID: 25826686 PMCID: PMC4440985 DOI: 10.1089/nat.2015.0533] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Single-stranded oligodeoxynucleotides (ODN), containing nonmethylated cytosine–guanine motifs (CpG ODN), are recognized by the innate immune system as “danger signals.” CpG ODN are efficacious immunomodulators but require phosphorothioate (PT) or other backbone modifications for metabolic stability, which cause toxicities in mice and primates. We therefore designed a covalently closed DNA molecule (dSLIM®) where two single-stranded loops containing CG motifs are connected through a double-stranded stem in the absence of any nonnatural DNA component. The most promising immunomodulator, MGN1703, comprises two loops of 30 nucleotides containing three CG motifs each, and a connecting stem stem of 28 base pairs. MGN1703 stimulates cytokine secretion [interferon (IFN)-α, IFN-γ, interleukin (IL)-12, IL-6, and IL-2] and activates immune cells by increased expression of CD80, CD40, human leukocyte antigen (HLA)-DR and ICAM-1. Efficacy of immunomodulation strictly depends on the descriptive dumbbell shape and size of the molecule. Variations in stem length and loop size lead to reduced potency of the respective members of the dSLIM® class. In a representative mouse model, toxicities from injections of high amounts of a CpG ODN-PT and of MGN1703 were evaluated. The CpG ODN-PT group showed severe organ damage, whereas no such or other pathologies were found in the MGN1703 group. Oncological clinical trials of MGN1703 already confirmed our design.
Collapse
Affiliation(s)
| | - Nicole Hagner
- 2Foundation Institute Molecular Biology and Bioinformatics, Freie Universitaet, Berlin, Germany
| | - Alberto Marco
- 3Department of Animal Health and Anatomy, Universidad Autonoma de Barcelona, Barcelona, Spain
| | | | | | - Burghardt Wittig
- 2Foundation Institute Molecular Biology and Bioinformatics, Freie Universitaet, Berlin, Germany
| |
Collapse
|
12
|
Talpaz M, Mercer J, Hehlmann R. The interferon-alpha revival in CML. Ann Hematol 2015; 94 Suppl 2:S195-207. [PMID: 25814086 DOI: 10.1007/s00277-015-2326-y] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2014] [Accepted: 01/29/2015] [Indexed: 01/22/2023]
Abstract
Interferon-alpha (IFNα) was once the standard of frontline treatment for chronic myeloid leukemia (CML). Its pleiotropic mechanism of action in CML includes immune activation and specific targeting of CML stem cells. Early studies of IFNα in CML demonstrated that patients in chronic phase could attain extremely stable remissions, which correlated with long-term survival. Some patients even sustained their remission after discontinuing therapy, but the mechanism underlying this phenomenon is not well understood. Today, BCR-ABL tyrosine kinase inhibitors (TKIs), such as imatinib, induce remarkable responses in CML patients and have become the mainstay of CML therapy. Although TKIs target the pathogenic BCR-ABL protein in CML, they cannot fully eradicate CML stem cells. Some of the clinical trials testing IFNα plus imatinib combination therapy suggest that addition of IFNα increases the speed and rate of responses with imatinib therapy. However, the undesirable side effects of IFNα can make this therapy difficult to deliver, and the optimal therapeutic window for using IFNα in combination therapy is unknown. Further studies are needed to clarify the best niche for IFNα use in CML.
Collapse
Affiliation(s)
- Moshe Talpaz
- Department of Internal Medicine, Division of Hematology Oncology, University of Michigan Comprehensive Cancer Center, 1500 E. Medical Center Drive, Comprehensive Cancer Center Room 4302, Ann Arbor, MI, 48109-5936, USA,
| | | | | |
Collapse
|
13
|
Abstract
The oncomir microRNA-125b (miR-125b) is upregulated in a variety of human neoplastic blood disorders and constitutive upregulation of miR-125b in mice can promote myeloid and B-cell leukemia. We found that miR-125b promotes myeloid and B-cell neoplasm by inducing tumorigenesis in hematopoietic progenitor cells. Our study demonstrates that miR-125b induces myeloid leukemia by enhancing myeloid progenitor output from stem cells as well as inducing immortality, self-renewal, and tumorigenesis in myeloid progenitors. Through functional and genetic analyses, we demonstrated that miR-125b induces myeloid and B-cell leukemia by inhibiting interferon regulatory factor 4 (IRF4) but through distinct mechanisms; it induces myeloid leukemia through repressing IRF4 at the messenger RNA (mRNA) level without altering the genomic DNA and induces B-cell leukemia via genetic deletion of the gene encoding IRF4.
Collapse
|
14
|
Adamaki M, Lambrou GI, Athanasiadou A, Tzanoudaki M, Vlahopoulos S, Moschovi M. Implication of IRF4 aberrant gene expression in the acute leukemias of childhood. PLoS One 2013; 8:e72326. [PMID: 23977280 PMCID: PMC3744475 DOI: 10.1371/journal.pone.0072326] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2013] [Accepted: 07/08/2013] [Indexed: 12/13/2022] Open
Abstract
The most frequent targets of genetic alterations in human leukemias are transcription factor genes with essential functions in normal blood cell development. The Interferon Regulatory Factor 4 (IRF4) gene encodes a transcription factor important for key developmental stages of hematopoiesis, with known oncogenic implications in multiple myeloma, adult leukemias and lymphomas. Very few studies have reported an association of IRF4 with childhood malignancy, whereas high transcript levels have been observed in the more mature immunophenotype of ALL. Our aim was to investigate the expression levels of IRF4 in the diagnostic samples of pediatric leukemias and compare them to those of healthy controls, in order to determine aberrant gene expression and whether it extends to leukemic subtypes other than the relatively mature ALL subpopulation. Quantitative real-time RT-PCR methodology was used to investigate IRF4 expression in 58 children with acute leukemias, 4 leukemic cell lines and 20 healthy children. We show that aberrant IRF4 gene expression is implicated in a variety of leukemic subtypes; higher transcript levels appear in the more immature B-common ALL subtype and in T-cell than in B-cell leukemias, with the highest expression levels appearing in the AML group. Interestingly, we show that childhood leukemia, irrespective of subtype or cell maturation stage, is characterised by a minimum of approximately twice the amount of IRF4 gene expression encountered in healthy children. A statistically significant correlation also appeared to exist between high IRF4 expression and relapse. Our results show that ectopic expression of IRF4 follows the reverse expression pattern of what is encountered in normal B-cell development and that there might be a dose-dependency of childhood leukemia for aberrantly expressed IRF4, a characteristic that could be explored therapeutically. It is also suggested that high IRF4 expression might be used as an additional prognostic marker of relapse at diagnosis.
Collapse
MESH Headings
- Adolescent
- Case-Control Studies
- Cell Line, Tumor
- Child
- Child, Preschool
- Female
- Gene Expression Regulation, Leukemic
- Humans
- Infant
- Infant, Newborn
- Interferon Regulatory Factors/genetics
- Leukemia, B-Cell/genetics
- Leukemia, B-Cell/mortality
- Leukemia, B-Cell/pathology
- Leukemia, T-Cell/genetics
- Leukemia, T-Cell/mortality
- Leukemia, T-Cell/pathology
- Male
- Precursor B-Cell Lymphoblastic Leukemia-Lymphoma/genetics
- Precursor B-Cell Lymphoblastic Leukemia-Lymphoma/mortality
- Precursor B-Cell Lymphoblastic Leukemia-Lymphoma/pathology
- Precursor Cell Lymphoblastic Leukemia-Lymphoma/genetics
- Precursor Cell Lymphoblastic Leukemia-Lymphoma/mortality
- Precursor Cell Lymphoblastic Leukemia-Lymphoma/pathology
- Recurrence
- Survival Analysis
Collapse
Affiliation(s)
- Maria Adamaki
- Pediatric Hematology/Oncology Unit, First Department of Pediatrics, University of Athens, Aghia Sofia Children's Hospital, Athens, Greece.
| | | | | | | | | | | |
Collapse
|
15
|
Jo SH, Ren R. IRF-4 suppresses BCR/ABL transformation of myeloid cells in a DNA binding-independent manner. J Biol Chem 2011; 287:1770-8. [PMID: 22110133 DOI: 10.1074/jbc.m111.289728] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Interferon regulatory factor 4 (IRF-4) is essential for B and T cell development and immune response regulation, and has both nuclear and cytoplasmic functions. IRF-4 was originally identified as a proto-oncogene resulting from a t(6;14) chromosomal translocation in multiple myeloma and its expression was shown to be essential for multiple myeloma cell survival. However, we have previously shown that IRF-4 functions as a tumor suppressor in the myeloid lineage and in early stages of B cell development. In this study, we found that IRF-4 suppresses BCR/ABL transformation of myeloid cells. To gain insight into the molecular pathways that mediate IRF-4 tumor suppressor function, we performed a structure-function analysis of IRF-4 as a suppressor of BCR/ABL transformation. We found that the DNA binding domain deletion mutant of IRF-4, which is localized only in the cytoplasm, is still able to inhibit BCR/ABL transformation of myeloid cells. IRF-4 also functions as a tumor suppressor in bone marrow cells deficient in MyD88, an IRF-4-interacting protein found in the cytoplasm. However, IRF-4 tumor suppressor activity is lost in IRF association domain (IAD) deletion mutants. These results demonstrate that IRF-4 suppresses BCR/ABL transformation by a novel cytoplasmic function involving its IAD domain.
Collapse
Affiliation(s)
- Seung-Hee Jo
- Rosenstiel Basic Medical Sciences Research Center and Department of Biology, Brandeis University, Waltham, Massachusetts 02454, USA
| | | |
Collapse
|
16
|
Yamamoto M, Kato T, Hotta C, Nishiyama A, Kurotaki D, Yoshinari M, Takami M, Ichino M, Nakazawa M, Matsuyama T, Kamijo R, Kitagawa S, Ozato K, Tamura T. Shared and distinct functions of the transcription factors IRF4 and IRF8 in myeloid cell development. PLoS One 2011; 6:e25812. [PMID: 22003407 PMCID: PMC3189223 DOI: 10.1371/journal.pone.0025812] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2011] [Accepted: 09/11/2011] [Indexed: 01/04/2023] Open
Abstract
Interferon regulatory factor (IRF) 8 and IRF4 are structurally-related, hematopoietic cell-specific transcription factors that cooperatively regulate the differentiation of dendritic cells and B cells. Whilst in myeloid cells IRF8 is known to modulate growth and differentiation, the role of IRF4 is poorly understood. In this study, we show that IRF4 has activities similar to IRF8 in regulating myeloid cell development. The ectopic expression of IRF4 in myeloid progenitor cells in vitro inhibits cell growth, promotes macrophages, but hinders granulocytic cell differentiation. We also show that IRF4 binds to and activates transcription through the IRF-Ets composite sequence (IECS). Furthermore, we demonstrate that Irf8-/-Irf4-/- mice exhibit a more severe chronic myeloid leukemia (CML)-like disease than Irf8-/- mice, involving a disproportionate expansion of granulocytes at the expense of monocytes/macrophages. Irf4-/- mice, however, display no obvious abnormality in myeloid cell development, presumably because IRF4 is expressed at a much lower level than IRF8 in granulocyte-macrophage progenitors. Our results also suggest that IRF8 and IRF4 have not only common but also specific activities in myeloid cells. Since the expression of both the IRF8 and IRF4 genes is downregulated in CML patients, these results may add to our understanding of CML pathogenesis.
Collapse
MESH Headings
- Animals
- Cell Cycle Checkpoints
- Cell Differentiation
- Cell Proliferation
- DNA/genetics
- DNA/metabolism
- Gene Expression Regulation
- Humans
- Immunity, Innate
- Interferon Regulatory Factors/deficiency
- Interferon Regulatory Factors/genetics
- Interferon Regulatory Factors/metabolism
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/immunology
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/metabolism
- Macrophages/cytology
- Macrophages/immunology
- Macrophages/metabolism
- Mice
- Myeloid Cells/cytology
- Myeloid Cells/immunology
- Myeloid Cells/metabolism
- Neutrophils/cytology
- Neutrophils/immunology
- Neutrophils/metabolism
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Substrate Specificity
- Transcription, Genetic
Collapse
Affiliation(s)
- Michio Yamamoto
- Department of Immunology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Takayuki Kato
- Department of Physiology, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Chie Hotta
- Department of Immunology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Akira Nishiyama
- Department of Immunology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Daisuke Kurotaki
- Department of Immunology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Masahiro Yoshinari
- Department of Immunology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Masamichi Takami
- Department of Biochemistry, School of Dentistry, Showa University, Tokyo, Japan
| | - Motohide Ichino
- Department of Immunology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Masatoshi Nakazawa
- Department of Experimental Animal Science, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Toshifumi Matsuyama
- Department of Molecular Microbiology and Immunology, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Ryutaro Kamijo
- Department of Biochemistry, School of Dentistry, Showa University, Tokyo, Japan
| | - Seiichi Kitagawa
- Department of Physiology, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Keiko Ozato
- Program in Genomics of Differentiation, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Tomohiko Tamura
- Department of Immunology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
- Department of Physiology, Osaka City University Graduate School of Medicine, Osaka, Japan
- Program in Genomics of Differentiation, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, United States of America
- * E-mail:
| |
Collapse
|
17
|
Abstract
MUM1/IRF4 protein is a member of the interferon regulatory factor (IRF) family of transcriptional factors initially described as downstream regulators of interferon signaling. The quantity of this factor varies within the hematopoietic system in a lineage and stage-specific way. It is considered to be a key regulator of several steps in lymphoid, myeloid, and dendritic cell differentiation and maturation. MUM1/IRF4 expression is observed in many lymphoid and myeloid malignancies, and may be a promising target for the treatment of some of these neoplasms. We reviewed the literature on MUM1/IRF4, with emphasis on the pathologic aspects of this marker in reactive and malignant hematologic and nonhematologic conditions.
Collapse
|
18
|
Cooperation between deficiencies of IRF-4 and IRF-8 promotes both myeloid and lymphoid tumorigenesis. Blood 2010; 116:2759-67. [PMID: 20585039 DOI: 10.1182/blood-2009-07-234559] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Interferon regulatory factor 4 (IRF-4) plays important functions in B- and T-cell development and immune response regulation and was originally identified as the product of a proto-oncogene involved in chromosomal translocations in multiple myeloma. Although IRF-4 is expressed in myeloid cells, its function in that lineage is not known. The closely related family member IRF-8 is a critical regulator of myelopoiesis, which when deleted in mice results in a syndrome highly similar to human chronic myelogenous leukemia. In early lymphoid development, we have shown previously that IRF-4 and IRF-8 can function redundantly. We therefore investigated the effects of a combined loss of IRF-4 and IRF-8 on hematologic tumorigenesis. We found that mice deficient in both IRF-4 and IRF-8 develop from a very early age a more aggressive chronic myelogenous leukemia-like disease than mice deficient in IRF-8 alone, correlating with a greater expansion of granulocyte-monocyte progenitors. Although these results demonstrate, for the first time, that IRF-4 can function as tumor suppressor in myeloid cells, interestingly, all mice deficient in both IRF-4 and IRF-8 eventually develop and die of a B-lymphoblastic leukemia/lymphoma. Combined losses of IRF-4 and IRF-8 therefore can cooperate in the development of both myeloid and lymphoid tumors.
Collapse
|
19
|
Savitsky D, Tamura T, Yanai H, Taniguchi T. Regulation of immunity and oncogenesis by the IRF transcription factor family. Cancer Immunol Immunother 2010; 59:489-510. [PMID: 20049431 PMCID: PMC11030943 DOI: 10.1007/s00262-009-0804-6] [Citation(s) in RCA: 240] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2009] [Accepted: 12/01/2009] [Indexed: 02/06/2023]
Abstract
Nine interferon regulatory factors (IRFs) compose a family of transcription factors in mammals. Although this family was originally identified in the context of the type I interferon system, subsequent studies have revealed much broader functions performed by IRF members in host defense. In this review, we provide an update on the current knowledge of their roles in immune responses, immune cell development, and regulation of oncogenesis.
Collapse
Affiliation(s)
- David Savitsky
- Department of Immunology, Faculty of Medicine, Graduate School of Medicine, The University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo, 113-0033 Japan
| | - Tomohiko Tamura
- Department of Immunology, Faculty of Medicine, Graduate School of Medicine, The University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo, 113-0033 Japan
| | - Hideyuki Yanai
- Department of Immunology, Faculty of Medicine, Graduate School of Medicine, The University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo, 113-0033 Japan
| | - Tadatsugu Taniguchi
- Department of Immunology, Faculty of Medicine, Graduate School of Medicine, The University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo, 113-0033 Japan
| |
Collapse
|
20
|
Heltzer ML, Coffin SE, Maurer K, Bagashev A, Zhang Z, Orange JS, Sullivan KE. Immune dysregulation in severe influenza. J Leukoc Biol 2009; 85:1036-43. [PMID: 19276177 PMCID: PMC2698588 DOI: 10.1189/jlb.1108710] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2008] [Revised: 02/09/2009] [Accepted: 02/14/2009] [Indexed: 11/24/2022] Open
Abstract
Among previously healthy children with severe influenza, the mechanisms leading to increased pathology are not understood. We hypothesized that children with severe influenza would have high levels of circulating cytokines. To examine this, we recruited patients with severe influenza and examined plasma cytokine levels as well as the ability of peripheral blood cells to respond to stimuli. Ten patients with severe influenza were enrolled during the 2005-2007 influenza seasons. We evaluated plasma cytokine levels, circulating NK cells, and responses to TLR ligands during the illness. We compared these patients with five patients with moderate influenza, six patients with respiratory syncytial virus (RSV), and 24 noninfected controls. Patients with influenza showed depressed responses to TLR ligands when compared with RSV patients and healthy controls (P<0.05). These normalized when retested during a convalescent phase. Plasma levels of IL-6, IL-12, and IFN- were elevated in influenza patients compared with controls (P<0.05). A compromised ability to produce TNF- was reproduced by in vitro infection, and the magnitude of the effect correlated with the multiplicity of infection and induction of IFN regulatory factor 4 expression. Aberrant, systemic, innate responses to TLR ligands during influenza infection may be a consequence of specific viral attributes such as a high inoculum or rapid replication and may underlie the known susceptibility of influenza-infected patients to secondary bacterial infections.
Collapse
Affiliation(s)
- Meredith L Heltzer
- Divisions of Allergy and Immunology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | | | | | | | | | | | | |
Collapse
|
21
|
Wang SS, Purdue MP, Cerhan JR, Zheng T, Menashe I, Armstrong BK, Lan Q, Hartge P, Kricker A, Zhang Y, Morton LM, Vajdic CM, Holford TR, Severson RK, Grulich A, Leaderer BP, Davis S, Cozen W, Yeager M, Chanock SJ, Chatterjee N, Rothman N. Common gene variants in the tumor necrosis factor (TNF) and TNF receptor superfamilies and NF-kB transcription factors and non-Hodgkin lymphoma risk. PLoS One 2009; 4:e5360. [PMID: 19390683 PMCID: PMC2669130 DOI: 10.1371/journal.pone.0005360] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2008] [Accepted: 03/18/2009] [Indexed: 02/02/2023] Open
Abstract
BACKGROUND A promoter polymorphism in the pro-inflammatory cytokine tumor necrosis factor (TNF) (TNF G-308A) is associated with increased non-Hodgkin lymphoma (NHL) risk. The protein product, TNF-alpha, activates the nuclear factor kappa beta (NF-kappaB) transcription factor, and is critical for inflammatory and apoptotic responses in cancer progression. We hypothesized that the TNF and NF-kappaB pathways are important for NHL and that gene variations across the pathways may alter NHL risk. METHODOLOGY/PRINCIPAL FINDINGS We genotyped 500 tag single nucleotide polymorphisms (SNPs) from 48 candidate gene regions (defined as 20 kb 5', 10 kb 3') in the TNF and TNF receptor superfamilies and the NF-kappaB and related transcription factors, in 1946 NHL cases and 1808 controls pooled from three independent population-based case-control studies. We obtained a gene region-level summary of association by computing the minimum p-value ("minP test"). We used logistic regression to compute odds ratios and 95% confidence intervals for NHL and four major NHL subtypes in relation to SNP genotypes and haplotypes. For NHL, the tail strength statistic supported an overall relationship between the TNF/NF-kappaB pathway and NHL (p = 0.02). We confirmed the association between TNF/LTA on chromosome 6p21.3 with NHL and found the LTA rs2844484 SNP most significantly and specifically associated with the major subtype, diffuse large B-cell lymphoma (DLBCL) (p-trend = 0.001). We also implicated for the first time, variants in NFKBIL1 on chromosome 6p21.3, associated with NHL. Other gene regions identified as statistically significantly associated with NHL included FAS, IRF4, TNFSF13B, TANK, TNFSF7 and TNFRSF13C. Accordingly, the single most significant SNPs associated with NHL were FAS rs4934436 (p-trend = 0.0024), IRF4 rs12211228 (p-trend = 0.0026), TNFSF13B rs2582869 (p-trend = 0.0055), TANK rs1921310 (p-trend = 0.0025), TNFSF7 rs16994592 (p-trend = 0.0024), and TNFRSF13C rs6002551 (p-trend = 0.0074). All associations were consistent in each study with no apparent specificity for NHL subtype. CONCLUSIONS/SIGNIFICANCE Our results provide consistent evidence that variation in the TNF superfamily of genes and specifically within chromosome 6p21.3 impacts lymphomagenesis. Further characterization of these susceptibility loci and identification of functional variants are warranted.
Collapse
Affiliation(s)
- Sophia S Wang
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Department of Health and Human Services, Rockville, Maryland, United States of America.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Acquaviva J, Chen X, Ren R. IRF-4 functions as a tumor suppressor in early B-cell development. Blood 2008; 112:3798-806. [PMID: 18713947 PMCID: PMC2572804 DOI: 10.1182/blood-2007-10-117838] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2007] [Accepted: 07/19/2008] [Indexed: 12/25/2022] Open
Abstract
Interferon regulatory factor-4 (IRF-4) is a hematopoietic cell-restricted transcription factor important for hematopoietic development and immune response regulation. It was also originally identified as the product of a proto-oncogene involved in chromosomal translocations in multiple myeloma. In contrast to its oncogenic function in late stages of B lymphopoiesis, expression of IRF-4 is down-regulated in certain myeloid and early B-lymphoid malignancies. In this study, we found that the IRF-4 protein levels are increased in lymphoblastic cells transformed by the BCR/ABL oncogene in response to BCR/ABL tyrosine kinase inhibitor imatinib. We further found that IRF-4 deficiency enhances BCR/ABL transformation of B-lymphoid progenitors in vitro and accelerates disease progression of BCR/ABL-induced acute B-lymphoblastic leukemia (B-ALL) in mice, whereas forced expression of IRF-4 potently suppresses BCR/ABL transformation of B-lymphoid progenitors in vitro and BCR/ABL-induced B-ALL in vivo. Further analysis showed that IRF-4 inhibits growth of BCR/ABL+ B lymphoblasts primarily through negative regulation of cell-cycle progression. These results demonstrate that IRF-4 functions as tumor suppressor in early B-cell development and may allow elucidation of new molecular pathways significant to the lymphoid leukemogenesis by BCR/ABL. The context dependent roles of IRF-4 in oncogenesis should be an important consideration in developing cancer therapies targeting IRF-4.
Collapse
Affiliation(s)
- Jaime Acquaviva
- Rosenstiel Basic Medical Sciences Research Center and Department of Biology, Brandeis University, Waltham, MA 02454-9110, USA
| | | | | |
Collapse
|
23
|
Tamura T, Yanai H, Savitsky D, Taniguchi T. The IRF family transcription factors in immunity and oncogenesis. Annu Rev Immunol 2008; 26:535-84. [PMID: 18303999 DOI: 10.1146/annurev.immunol.26.021607.090400] [Citation(s) in RCA: 996] [Impact Index Per Article: 58.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The interferon regulatory factor (IRF) family, consisting of nine members in mammals, was identified in the late 1980s in the context of research into the type I interferon system. Subsequent studies over the past two decades have revealed the versatile and critical functions performed by this transcription factor family. Indeed, many IRF members play central roles in the cellular differentiation of hematopoietic cells and in the regulation of gene expression in response to pathogen-derived danger signals. In particular, the advances made in understanding the immunobiology of Toll-like and other pattern-recognition receptors have recently generated new momentum for the study of IRFs. Moreover, the role of several IRF family members in the regulation of the cell cycle and apoptosis has important implications for understanding susceptibility to and progression of several cancers.
Collapse
Affiliation(s)
- Tomohiko Tamura
- Department of Immunology, Graduate School of Medicine and Faculty of Medicine, University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo 113-0033, Japan
| | | | | | | |
Collapse
|
24
|
Takaoka A, Tamura T, Taniguchi T. Interferon regulatory factor family of transcription factors and regulation of oncogenesis. Cancer Sci 2008; 99:467-78. [PMID: 18190617 PMCID: PMC11159419 DOI: 10.1111/j.1349-7006.2007.00720.x] [Citation(s) in RCA: 118] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2007] [Revised: 11/21/2007] [Accepted: 11/25/2007] [Indexed: 01/03/2023] Open
Abstract
A family of transcription factors, the interferon regulatory factors (IRF), was identified originally in the context of the regulation of the type I interferon (IFN)-alpha/beta system. The IRF family has now expanded to nine members, and gene-disruption studies have revealed the critical involvement of these members in multiple facets of host defense systems, such as innate and adaptive immune responses and tumor suppression. In the present review article, we aim at summarizing our current knowledge of the roles of IRF in host defense, with special emphasis on their involvement in the regulation of oncogenesis.
Collapse
Affiliation(s)
- Akinori Takaoka
- Department of Immunology, Graduate School of Medicine and Faculty of Medicine, University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo 113-0033, Japan
| | | | | |
Collapse
|
25
|
Wittnebel S, Bourhis JH, Caignard A. Chronic myeloid leukemia and allogeneic natural killer cells: a surprising dialogue. Expert Rev Clin Immunol 2006; 2:627-37. [PMID: 20477618 DOI: 10.1586/1744666x.2.4.627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Chronic myeloid leukemia (CML) is a clonal multilineage myeloproliferative disease of stem cell origin characterized by the presence of the Bcr/Abl oncoprotein, a constitutively active tyrosine kinase. The actual treatment of CML patients in chronic phase is the specific abl kinase inhibitor imatinib mesylate that induces 90% of cytogenetic responses in early-phase patients. However, resistance in long-term treated patients occurs and the allogeneic stem cell transplantation remains the only curative treatment in resistant patients. Despite recent reports outlining the role of allogeneic natural killer (NK) cells as potent antileukemic effectors, the mechanisms controlling the leukemic target recognition and lysis by activated NK cells have not been well identified. The authors' experimental data obtained on appropriate cellular models identify diverse mechanisms that could explain the increased NK-cell susceptibility of Bcr/Abl targets to NK-mediated lysis. They further delineate unexpected effects of the inhibition of the tyrosine kinase activity on the cross-talk between NK and CML leukemic cells. The consequences of such discoveries are discussed in the context of combined treatments with antikinases as well as adoptive cellular therapy approaches in myeloid leukemia patients.
Collapse
|
26
|
Ortmann CA, Burchert A, Hölzle K, Nitsche A, Wittig B, Neubauer A, Schmidt M. Down-regulation of interferon regulatory factor 4 gene expression in leukemic cells due to hypermethylation of CpG motifs in the promoter region. Nucleic Acids Res 2005; 33:6895-905. [PMID: 16396836 PMCID: PMC1310901 DOI: 10.1093/nar/gki1001] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Although the bcr-abl translocation has been shown to be the causative genetic aberration in chronic myeloid leukemia (CML), there is mounting evidence that the deregulation of other genes, such as the transcription factor interferon regulatory factor 4 (IRF-4), is also implicated in the pathogenesis of CML. Promoter methylation of CpG target sites or direct deletions/insertions of genes are mechanisms of a reversible or permanent silencing of gene expression, respectively. Therefore, we investigated whether IRF-4 promoter methylation or mutation may be involved in the regulation of IRF-4 expression in leukemia cells. Whereas promoter mutations or structural rearrangements could be excluded as a cause of altered IRF-4 expression in hematopoietic cells, the IRF-4 promoter methylation status was found to significantly influence IRF-4 transcription. First, treatment of IRF-4-negative lymphoid, myeloid and monocytic cell lines with the methylation-inhibitor 5-aza-2-deoxycytidine resulted in a time- and concentration-dependent increase of IRF-4 mRNA and protein levels. Second, using a restriction-PCR-assay and bisulfite-sequencing we identified specifically methylated CpG sites in IRF-4-negative but not in IRF-4-positive cells. Third, we clearly determined promoter methylation as a mechanism for IRF-4 down-regulation via reporter gene assays, but did not detect an association of methylational status and mRNA expression of DNA methyltransferases or methyl-CpG-binding proteins. Together, these data suggest CpG site-specific IRF-4 promoter methylation as a putative mechanism of down-regulated IRF-4 expression in leukemia.
Collapse
Affiliation(s)
| | | | | | | | - Burghardt Wittig
- MOLOGEN AGBerlin, Germany
- Abteilung Molekularbiologie und Bioinformatik, Universitätsmedizin BerlinCharité–Campus Benjamin Franklin, Berlin, Germany
| | | | - Manuel Schmidt
- MOLOGEN AGBerlin, Germany
- To whom correspondence should be addressed. Tel: +49 30 8417 156; Fax: +49 30 8445 1516;
| |
Collapse
|
27
|
Abstract
Chronic myelogenous leukemia (CML) was the first human malignancy where a consistent chromosomal abnormality, the BCR-ABL translocation, was identified as the causative genetic aberration. There is a mounting body of evidence suggesting that CML cells are particularly good targets for immunological surveillance mechanisms, the most intriguing being the curative effect of allogeneic donor lymphocyte infusion given in relapsed disease after allogeneic bone marrow transplantation. Likewise, interferon alpha (IFN alpha), which has long been considered as the standard conservative therapy in CML, may exert its life-prolonging effect by activating immunological effector functions. This review will focus on the recent advances in the understanding of the contribution of IFN alpha in eliciting T-cell responses against self-antigens in CML.
Collapse
Affiliation(s)
- Andreas Burchert
- Klinikum der Philipps Universität Marburg, Klinik für Hämatologie, Onkologie und Immunologie, Marburg, Germany
| | | |
Collapse
|
28
|
Mamane Y, Loignon M, Palmer J, Hernandez E, Césaire R, Alaoui-Jamali M, Hiscott J. Repression of DNA repair mechanisms in IRF-4-expressing and HTLV-I-infected T lymphocytes. J Interferon Cytokine Res 2005; 25:43-51. [PMID: 15684621 DOI: 10.1089/jir.2005.25.43] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Human T cell leukemia virus (HTLV) is the causative agent of adult T cell leukemia (ATL), an aggressive and fatal leukemia of CD4+ T lymphocytes in which interferon regulatory factor-4 (IRF-4) becomes constitutively expressed, concomitant with major alterations in host gene expression. When constitutively expressed in uninfected T lymphocytes, IRF-4 caused reduced expression of critical DNA repair genes, including Rad51, XRCC1, Ung1, RPA, and proliferative cell nuclear antigen (PCNA), a transcriptional phenotype with striking similarities to the profile observed in HTLV-infected T lymphocytes. Concomitant with the inhibition of gene expression and defects in the DNA repair pathways, increased sensitivity of T lymphocytes to various genotoxic stresses that challenged all major DNA repair pathways were detected. Together, these results support a role for IRF- 4 in the repression of DNA repair activity and an increase in the risk of mutations. IRF-4 may thus represent a previously unidentified endogenous transcriptional repressor of DNA repair mechanisms.
Collapse
Affiliation(s)
- Yaël Mamane
- Lady Davis Institute for Medical Research, McGill University, Montreal, Canada
| | | | | | | | | | | | | |
Collapse
|
29
|
Cebo C, Voutsadakis IA, Da Rocha S, Bourhis JH, Jalil A, Azzarone B, Turhan AG, Chelbi-Alix M, Chouaib S, Caignard A. Altered IFNγ Signaling and Preserved Susceptibility to Activated Natural Killer Cell–Mediated Lysis of BCR/ABL Targets. Cancer Res 2005; 65:2914-20. [PMID: 15805294 DOI: 10.1158/0008-5472.can-04-1932] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Previous studies have shown that BCR/ABL oncogene, the molecular counterpart of the Ph1 chromosome, could represent a privileged target to natural killer (NK) cells. In the present study, we showed that activated peripheral NK cells killed high-level BCR/ABL transfectant UT-7/9 derived from the pluripotent hematopoietic cell line UT-7 with a high efficiency. To further define the mechanisms controlling BCR/ABL target susceptibility to NK-mediated lysis, we studied the effect of IFNgamma, a key cytokine secreted by activated NK cells, on the lysis of these targets. Treatment of UT-7, UT-7/neo, and low BCR/ABL transfectant UT-7/E8 cells with IFNgamma resulted in a dramatic induction of human leukocyte antigen class I (HLA-I) molecules and subsequently in their reduced susceptibility to NK-mediated cytolysis likely as a consequence of inhibitory NK receptors engagement. In contrast, such treatment neither affected HLA-I expression on transfectants expressing high level of BCR/ABL (UT-7/9) nor modulated their lysis by NK cells. Our data further show that the high-level BCR/ABL in UT-7/9 cells display an altered IFNgamma signaling, as evidenced by a decrease in IFN regulatory factor-1 (IRF-1) and signal transducers and activators of transcription (STAT) 1 induction and activation in response to IFNgamma, whereas this pathway is normal in UT-7 and UT-7/E8 cells. A decreased HLA-I induction and nuclear phospho-STAT1 nuclear translocation were also observed in blasts from most chronic myelogenous leukemia patients in response to IFNgamma. These results outline the crucial role of IFNgamma in the control of target cell susceptibility to lysis by activated NK cells and indicate that the altered response to IFNgamma in BCR/ABL targets may preserve these cells from the cytokine-induced negative regulatory effect on their susceptibility to NK-mediated lysis.
Collapse
MESH Headings
- Benzamides
- Cell Nucleus/metabolism
- Fusion Proteins, bcr-abl/biosynthesis
- Fusion Proteins, bcr-abl/genetics
- Fusion Proteins, bcr-abl/immunology
- HLA Antigens/immunology
- Hematopoietic Stem Cells/cytology
- Hematopoietic Stem Cells/immunology
- Hematopoietic Stem Cells/physiology
- Humans
- Imatinib Mesylate
- Immunotherapy, Adoptive
- Interferon-alpha/pharmacology
- Interferon-gamma/immunology
- Killer Cells, Natural/immunology
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/blood
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/immunology
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/metabolism
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/therapy
- Piperazines/pharmacology
- Pyrimidines/pharmacology
- Signal Transduction
- Transfection
Collapse
Affiliation(s)
- Christelle Cebo
- Institut National de la Sante et de la Recherche Medicale U487, Villejuif, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Ito K, Tanaka H, Ito T, Sultana TA, Kyo T, Imanaka F, Ohmoto Y, Kimura A. Initial expression of interferon alpha receptor 2 (IFNAR2) on CD34-positive cells and its down-regulation correlate with clinical response to interferon therapy in chronic myelogenous leukemia. Eur J Haematol 2004; 73:191-205. [PMID: 15287917 DOI: 10.1111/j.1600-0609.2004.00275.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
In order to investigate the mechanism of interferon-alpha (IFNalpha) action in the treatment of chronic myelogenous leukemia (CML), we examined surface expressions of both type I interferon receptor 1 (IFNAR1) and 2 (IFNAR2) subunits on CD34-positive cells in bone marrow (BM) in a total of 57 CML patients. Initial cell-surface IFNAR2 expression at diagnosis assessed by flow cytometry widely distributed but showed overall significantly higher expression in CML patients when compared with normal controls. In 15 fresh patients who subsequently received IFNalpha therapy, IFNAR2 expression at diagnosis was significantly higher in cytogenetic good responders than in poor responders. Down-regulation of IFNAR2 expression during IFNalpha therapy was observed only in good responders but not in poor responders. In addition to protein level, both initial high IFNAR2c mRNA expression level and its down-regulation during IFNalpha therapy, in purified CD34-positive cells, were also observed only in good responders. In contrast to IFNAR2, cell-surface IFNAR1 expression was generally lower than IFNAR2, and correlation between either the pretreatment level or down-regulation of IFNAR1 and clinical response was not evident. With in vitro IFNalpha stimulation, CD34-positive cells showed down-regulations of cell-surface IFNAR2, and IFNAR1 to a lesser extent, in one good-responder patient, but not in one poor-responder patient. Serum soluble interferon receptor (sIFNR) was higher in untreated CML patients than in normal controls, without any correlation with clinical response to IFNalpha. Thus, the pretreatment protein and mRNA expression levels of IFNAR2 and their down-regulations during IFNalpha therapy correlate well with IFNalpha response in CML patients.
Collapse
MESH Headings
- Adult
- Aged
- Antigens, CD34
- Bone Marrow Cells/chemistry
- Down-Regulation/drug effects
- Female
- Flow Cytometry
- Humans
- Interferon-alpha/pharmacology
- Interferon-alpha/therapeutic use
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/metabolism
- Male
- Membrane Proteins
- Middle Aged
- RNA, Messenger/drug effects
- Receptor, Interferon alpha-beta
- Receptors, Interferon/analysis
- Receptors, Interferon/biosynthesis
- Receptors, Interferon/genetics
- Treatment Outcome
Collapse
Affiliation(s)
- Kinro Ito
- Department of Hematology and Oncology, Division of Clinical and Experimental Oncology, Research Institute for Radiation Biology and Medicine, Hiroshima University, Japan
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Lauta VM. Chronic myelogenous leukemia: elements of conventional chemotherapy and an overview of autografting in the treatment of the chronic phase. Med Oncol 2003; 20:95-116. [PMID: 12835513 DOI: 10.1385/mo:20:2:95] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2002] [Accepted: 12/12/2002] [Indexed: 11/11/2022]
Abstract
Chronic myelogenous leukemia (CML) consists of a clonal malignancy that arises from a pluripotent hematopoietic stem call. In most cases, neoplastic cells are characterized by the formation of a shortened chromosome 22 called the Philadelphia chromosome. It results from a reciprocal translocation between long arms of chromosomes 9 and 22. A rearranged gene (bcr-abl) is the consequence of this translocation, and it may be considered as the first step toward leukemic transformation. Conventional chemotherapy of CML in the chronic phase is unable to suppress the Ph+ leukemic clone. The treatment with the IFNalpha may induce an overall cytogenetic response rate of 40-50% of patients. Autografting for patients with CML in chronic phase may induce a 53% overall cytogenetic response rate with a duration of disease-free time and survival from the autograft ranging, respectively, from 4 to 24 mo and from 8 to 40 mo.
Collapse
MESH Headings
- Clinical Trials as Topic
- Humans
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/mortality
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/therapy
- Peripheral Blood Stem Cell Transplantation
- Randomized Controlled Trials as Topic
- Survival Rate
- Transplantation, Autologous
Collapse
Affiliation(s)
- Vito Michele Lauta
- Department of Biomedical Sciences and Human Oncology, Section of Internal Medicine and Clinical Oncology, University of Bari Medical School, Policlinico, Piazza Giulio Cesare 11, 70124 Bari, Italy
| |
Collapse
|
32
|
Lehtonen A, Lund R, Lahesmaa R, Julkunen I, Sareneva T, Matikainen S. IFN-α and IL-12 activate IFN regulatory factor 1 (IRF-1), IRF-4, and IRF-8 gene expression in human NK and T cells. Cytokine 2003; 24:81-90. [PMID: 14581002 DOI: 10.1016/j.cyto.2003.07.001] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
IFN-alpha and IL-12 are macrophage-derived cytokines that enhance innate and Th1 immune responses. However, there is little information regarding IFN-alpha and IL-12 target genes that would be involved in mediating the immunostimulatory effects of these cytokines. The interferon regulatory factor (IRF) family of transcription factors is known to be involved in controlling lymphocyte differentiation and functions. In this work we have studied the effect of IFN-alpha and IL-12 on the expression of IRF transcription factors in human NK and T cells. Both IFN-alpha and IL-12 strongly up-regulated IRF-1, IRF-4, and IRF-8 mRNA and protein expression. The binding of IRF-4 and IRF-8 to the lambdaB gene enhancer sequence was also increased following IFN-alpha- and IL-12-treatment of NK and T cells. A GAS element from the promoter region of the IRF-4 gene was identified. Following stimulation of cells with IFN-alpha or IL-12, Stat4 was found to bind to this IRF-4 GAS element, as detected by EMSA and DNA affinity binding, implying that the IRF-4 gene is directly activated by both cytokines. Our results suggest that IFN-alpha and IL-12 may enhance innate and Th1 immune responses by inducing IRF-1, IRF-4, and IRF-8 gene expression.
Collapse
Affiliation(s)
- Anne Lehtonen
- Department of Microbiology, National Public Health Institute, Mannerheimintie 166, FIN-00300 Helsinki, Finland.
| | | | | | | | | | | |
Collapse
|
33
|
Garcia-Manero G, Faderl S, O'Brien S, Cortes J, Talpaz M, Kantarjian HM. Chronic myelogenous leukemia: a review and update of therapeutic strategies. Cancer 2003; 98:437-57. [PMID: 12879460 DOI: 10.1002/cncr.11520] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Guillermo Garcia-Manero
- Department of Leukemia, The University of Texas M. D. Anderson Cancer Center, Houston, Texas.
| | | | | | | | | | | |
Collapse
|
34
|
Burchert A, Wölfl S, Schmidt M, Brendel C, Denecke B, Cai D, Odyvanova L, Lahaye T, Müller MC, Berg T, Gschaidmeier H, Wittig B, Hehlmann R, Hochhaus A, Neubauer A. Interferon-alpha, but not the ABL-kinase inhibitor imatinib (STI571), induces expression of myeloblastin and a specific T-cell response in chronic myeloid leukemia. Blood 2003; 101:259-64. [PMID: 12393722 DOI: 10.1182/blood-2002-02-0659] [Citation(s) in RCA: 106] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Chronic myeloid leukemia (CML) is a clonal disease of hematopoietic stem cells caused by a reciprocal translocation of the long arms of chromosomes 9 and 22. In human leukocyte antigen A*0201(+) (HLA-A*0201(+)) individuals, response after interferon-alpha (IFN-alpha) was shown to be associated with the emergence of CML-specific cytotoxic T cells that recognize PR-1, a myeloblastin (MBN)-derived nonapeptide. In contrast, imatinib potently induces remissions from CML by specific inhibition of the ABL tyrosine kinase. Here, we explored molecular regulations associated with CML responses under different treatment forms using cDNA-array. Expression of MBN was found to be down-regulated in remission under imatinib therapy (0 of 7 MBN(+) patients). In contrast, MBN transcription was readily detectable in the peripheral blood in 8 of 8 tested IFN-alpha patients in complete remission (P =.0002). IFN-alpha-dependent MBN transcription was confirmed in vitro by stimulation of peripheral blood mononuclear cells (PBMCs) with IFN-alpha and by IFN-alpha-mediated activation of the MBN promoter in reporter gene assays. Finally, with the use of HLA-A*0201-restricted, MBN-specific tetrameric complexes, it was demonstrated that all of 4 IFN-alpha-treated patients (100%), but only 2 of 11 imatinib patients (19%), in complete hematological or cytogenetic remission developed MBN-specific cytotoxic T cells (P =.011). Together, the induction of MBN expression by IFN-alpha, but not imatinib, may contribute to the specific ability of IFN-alpha to induce an MBN-specific T-cell response in CML patients. This also implies that the character of remissions achieved with either drug may not be equivalent and therefore a therapy modality combining IFN-alpha and imatinib may be most effective.
Collapse
Affiliation(s)
- Andreas Burchert
- Klinikum der Philipps Universität Marburg, Klinik für Hämatologie, Onkologie und Immunologie, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Mamane Y, Grandvaux N, Hernandez E, Sharma S, Innocente SA, Lee JM, Azimi N, Lin R, Hiscott J. Repression of IRF-4 target genes in human T cell leukemia virus-1 infection. Oncogene 2002; 21:6751-65. [PMID: 12360402 DOI: 10.1038/sj.onc.1205843] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2002] [Revised: 06/26/2002] [Accepted: 07/05/2002] [Indexed: 11/10/2022]
Abstract
The human T cell leukemia/lymphotropic virus-1 (HTLV-I) is the etiologic agent of adult T cell leukemia (ATL), an aggressive and fatal leukemia of CD4+ T lymphocytes. Interferon regulatory factor-4 (IRF-4) was shown previously to be constitutively expressed in T cells infected with HTLV-1. In this study, we investigated the role of IRF-4 gene regulation in the context of HTLV-1 infection using gene array technology and IRF-4 expressing T cells. Many potential IRF-4 regulated genes were identified, the vast majority of which were repressed by IRF-4 expression. Cyclin B1, a G2-M checkpoint protein identified as an IRF-4 repressed gene in the array, was further characterized in the context of HTLV-1 infection. All HTLV-1 infected cell lines and ATL patient lymphocytes demonstrated a dramatic decrease in cyclin B1 levels; subsequent analysis of the cyclin B1 promoter identified two sites important in IRF-4 binding and repression of cyclin B1 expression. Furthermore, IRF-4-mediated repression of cyclin B1 led to a significant decrease in CDC2 kinase activity in HTLV-1 infected T cells. IRF-4 expression in HTLV-1 infected T cells also downregulated other genes implicated in the mitotic checkpoint as well as genes involved in actin cytoskeletal rearrangement, DNA repair, apoptosis, metastasis and immune recognition. Several of the identified genes are dysregulated in ATL and may provide important mechanistic information concerning pathways critical to the emergence of ATL.
Collapse
Affiliation(s)
- Yaël Mamane
- Terry Fox Molecular Oncology Group, Lady Davis Institute for Medical Research, and Department of Microbiology and Immunology, McGill University, Montreal, Canada H3T 1E2
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Recent publications in hematological oncology. Hematol Oncol 2001. [PMID: 11438977 DOI: 10.1002/hon.672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
In order to keep subscribers up-to-date with the latest developments in their field, John Wiley & Sons are providing a current awareness service in each issue of the journal. The bibliography contains newly published material in the field of hematological oncology. Each bibliography is divided into 14 sections: 1 Books, Reviews & Symposia; 2 General; Leukemias: 3 Lymphoblastic; 4 Myeloid & Myelodysplastic Syndromes; 5 Chronic; 6 Others; Lymphomas: 7 Hodgkin's; 8 Non-Hodgkin's; 9 Plasmacytomas/Multiple Myelomas; 10 Others; 11 Bone Marrow Transplantation; 12 Cytokines; 13 Diagnosis; 14 Cytogenetics. Within each section, articles are listed in alphabetical order with respect to author. If, in the preceding period, no publications are located relevant to any one of these headings, that section will be omitted.
Collapse
|
37
|
Barthe C, Mahon FX, Gharbi MJ, Fabères C, Bilhou-Nabéra C, Hochhaus A, Reiffers J, Marit G. Expression of interferon-α (IFN-α) receptor 2c at diagnosis is associated with cytogenetic response in IFN-α–treated chronic myeloid leukemia. Blood 2001; 97:3568-73. [PMID: 11369652 DOI: 10.1182/blood.v97.11.3568] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
For the management of chronic myeloid leukemia (CML), prediction or early determination of the response to interferon-alpha (IFN-α) treatment is important for identifying nonresponder patients to whom alternative therapy may be proposed. In this study, the levels of expression of both BCR-ABL and subunit 2c of IFN-α receptor (IFN-αR2c) genes were analyzed at diagnosis in 74 patients with chronic phase CML treated with an IFN-α monotherapy. By using blood samples, real-time quantitative polymerase chain reaction was performed to quantify BCR-ABL, IFN-αR2c, and G6PDH mRNA as external control. The results were compared with hematologic and cytogenetic responses to IFN-α. A wide variation in the BCR-ABL/G6PDH ratio was observed at diagnosis (median, 6.68%; range, 0.18%-41.31%), but no significant association with response to IFN-α was observed. In contrast, the variation of IFN-αR2c/G6PDH ratio at diagnosis was significantly associated with the achievement of major cytogenetic response (MCR; 34% or lower Ph+metaphases). Median values of IFN-αR2c/G6PDH ratio for patients achieving MCR and for those who did not achieve it were 110.75% (range, 9.47%-612.30%) and 64.42% (range, 5.96%-425.40%), respectively (P = .037). In addition, this novel molecular factor, combined with the achievement of complete hematologic response at 3 months, makes it possible to predict MCR achievement with high probability by Kaplan-Meier analysis (91% ± 17% at 24 months; P = .0001).
Collapse
MESH Headings
- Adult
- Aged
- Cytogenetic Analysis
- Female
- Fusion Proteins, bcr-abl/genetics
- Gene Expression
- Glucosephosphate Dehydrogenase/genetics
- Humans
- Interferon-alpha/therapeutic use
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/blood
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy
- Male
- Middle Aged
- Polymerase Chain Reaction
- RNA, Messenger/analysis
- RNA, Messenger/blood
- Receptors, Interferon/genetics
- Sensitivity and Specificity
- Tumor Cells, Cultured
Collapse
Affiliation(s)
- C Barthe
- Laboratoire Universitaire d'Hématologie, Université Victor Segalen Bordeaux, 146, Rue Léo Saignat, 33076 Bordeaux cedex, France
| | | | | | | | | | | | | | | |
Collapse
|