1
|
Shariati A, Khani P, Nasri F, Afkhami H, Khezrpour A, Kamrani S, Shariati F, Alavimanesh S, Modarressi MH. mRNA cancer vaccines from bench to bedside: a new era in cancer immunotherapy. Biomark Res 2024; 12:157. [PMID: 39696625 DOI: 10.1186/s40364-024-00692-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Accepted: 11/15/2024] [Indexed: 12/20/2024] Open
Abstract
Harnessing the power of the immune system to target cancer cells is one of the most appealing approaches for cancer therapy. Among these immunotherapies, messenger ribonucleic acid (mRNA) cancer vaccines are worthy of consideration, as they have demonstrated promising results in clinical trials. These vaccines have proven to be safe and well-tolerated. They can be easily mass-produced in a relatively short time and induce a systemic immune response effective against both the primary tumor and metastases. Transcripts encoding immunomodulatory molecules can also be incorporated into the mRNA, enhancing its efficacy. On the other hand, there are some challenges associated with their application, including mRNA instability, insufficient uptake by immune cells, and intrinsic immunogenicity, which can block mRNA translation. Many innovations have been suggested to overcome these obstacles, including structural modification (such as 5' cap modification), optimizing delivery vehicles (especially dendritic cells (DCs) and nanoparticles), and using antigens that can enhance immunogenicity by circumventing tolerance mechanisms. A popular approach is to combine mRNA cancer vaccines with traditional and novel cancer treatments like chemotherapy, radiotherapy, and immune checkpoint blockade (ICB). They are most efficacious when combined with other therapies like ICBs. There is still a long way to go before these vaccines enter the standard of care for cancer patients, but with the incredible pace of development in this field, their clinical application will soon be witnessed. This review highlights the recent advances and challenges of mRNA cancer vaccines. Finally, some of the most prominent clinical applications of these vaccines will be reviewed.
Collapse
Affiliation(s)
- Alireza Shariati
- School of Medicine, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Pouria Khani
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Farzad Nasri
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Hamed Afkhami
- Cellular and Molecular Research Center, Qom University of Medical Sciences, Qom, Iran
- Nervous System Stem Cells Research Center, Semnan University of Medical Sciences, Semnan, Iran
- Department of Medical Microbiology, Faculty of Medicine, Shahed University, Tehran, Iran
| | - Arya Khezrpour
- School of Medicine, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Sina Kamrani
- Department of Orthopedic, Faculty of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Fatemeh Shariati
- Department of Genetics, North Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Sajad Alavimanesh
- Student Research Committee, Shahrekord University of Medical Sciences, Shahrekord, Iran.
- Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran.
| | - Mohammad Hossein Modarressi
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences (TUMS), Tehran, Iran.
| |
Collapse
|
2
|
Oelkrug C. Analysis of physical and biological delivery systems for DNA cancer vaccines and their translation to clinical development. Clin Exp Vaccine Res 2024; 13:73-82. [PMID: 38752006 PMCID: PMC11091436 DOI: 10.7774/cevr.2024.13.2.73] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 07/17/2023] [Accepted: 03/30/2024] [Indexed: 05/18/2024] Open
Abstract
DNA cancer vaccines as an approach in tumor immunotherapy are still being investigated in preclinical and clinical settings. Nevertheless, only a small number of clinical studies have been published so far and are still active. The investigated vaccines show a relatively stable expression in in-vitro transfected cells and may be favorable for developing an immunologic memory in patients. Therefore, DNA vaccines could be suitable as a prophylactic or therapeutic approach against cancer. Due to the low efficiency of these vaccines, the administration technique plays an important role in the vaccine design and its efficacy. These DNA cancer vaccine delivery systems include physical, biological, and non-biological techniques. Although the pre-clinical studies show promising results in the application of the different delivery systems, further studies in clinical trials have not yet been successfully proven.
Collapse
|
3
|
Bhagat A, Lyerly HK, Morse MA, Hartman ZC. CEA vaccines. Hum Vaccin Immunother 2023; 19:2291857. [PMID: 38087989 PMCID: PMC10732609 DOI: 10.1080/21645515.2023.2291857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 12/02/2023] [Indexed: 12/18/2023] Open
Abstract
Carcinoembryonic antigen (CEA) is a glycosylated cell surface oncofetal protein involved in adhesion, proliferation, and migration that is highly upregulated in multiple carcinomas and has long been a promising target for cancer vaccination. This review summarizes the progress to date in the development of CEA vaccines, examining both pre-clinical and clinical studies across a variety of vaccine platforms that in aggregate, begin to reveal some critical insights. These studies demonstrate the ability of CEA vaccines to break immunologic tolerance and elicit CEA-specific immunity, which associates with improved clinical outcomes in select individuals. Approaches that have combined replicating viral vectors, with heterologous boosting and different adjuvant strategies have been particularly promising but, these early clinical trial results will require confirmatory studies. Collectively, these studies suggest that clinical efficacy likely depends upon harnessing a potent vaccine combination in an appropriate clinical setting to fully realize the potential of CEA vaccination.
Collapse
Affiliation(s)
- Anchit Bhagat
- Department of Surgery, Division of Surgical Sciences, Duke University, Durham, NC, USA
| | - Herbert K. Lyerly
- Department of Surgery, Division of Surgical Sciences, Duke University, Durham, NC, USA
- Department of Pathology, Duke University, Durham, NC, USA
- Department of Integrative Immunobiology, Duke University, Durham, NC, USA
| | - Michael A. Morse
- Department of Surgery, Division of Surgical Sciences, Duke University, Durham, NC, USA
- Department of Medicine, Duke University, Durham, NC, USA
| | - Zachary C. Hartman
- Department of Surgery, Division of Surgical Sciences, Duke University, Durham, NC, USA
- Department of Pathology, Duke University, Durham, NC, USA
- Department of Integrative Immunobiology, Duke University, Durham, NC, USA
| |
Collapse
|
4
|
He Q, Gao H, Tan D, Zhang H, Wang JZ. mRNA cancer vaccines: Advances, trends and challenges. Acta Pharm Sin B 2022; 12:2969-2989. [PMID: 35345451 PMCID: PMC8942458 DOI: 10.1016/j.apsb.2022.03.011] [Citation(s) in RCA: 75] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Revised: 02/21/2022] [Accepted: 02/25/2022] [Indexed: 12/12/2022] Open
Abstract
Patients exhibit good tolerance to messenger ribonucleic acid (mRNA) vaccines, and the choice of encoded molecules is flexible and diverse. These vaccines can be engineered to express full-length antigens containing multiple epitopes without major histocompatibility complex (MHC) restriction, are relatively easy to control and can be rapidly mass produced. In 2021, the U.S. Food and Drug Administration (FDA) approved the first mRNA-based coronavirus disease 2019 (COVID-19) vaccine produced by Pfizer and BioNTech, which has generated enthusiasm for mRNA vaccine research and development. Based on the above characteristics and the development of mRNA vaccines, mRNA cancer vaccines have become a research hotspot and have undergone rapid development, especially in the last five years. This review analyzes the advances in mRNA cancer vaccines from various perspectives, including the selection and expression of antigens/targets, the application of vectors and adjuvants, different administration routes, and preclinical evaluation, to reflect the trends and challenges associated with these vaccines.
Collapse
|
5
|
Zhang D, Xu X, Ye Q. Metabolism and immunity in breast cancer. Front Med 2020; 15:178-207. [PMID: 33074528 DOI: 10.1007/s11684-020-0793-6] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Accepted: 04/17/2020] [Indexed: 12/12/2022]
Abstract
Breast cancer is one of the most common malignancies that seriously threaten women's health. In the process of the malignant transformation of breast cancer, metabolic reprogramming and immune evasion represent the two main fascinating characteristics of cancer and facilitate cancer cell proliferation. Breast cancer cells generate energy through increased glucose metabolism. Lipid metabolism contributes to biological signal pathways and forms cell membranes except energy generation. Amino acids act as basic protein units and metabolic regulators in supporting cell growth. For tumor-associated immunity, poor immunogenicity and heightened immunosuppression cause breast cancer cells to evade the host's immune system. For the past few years, the complex mechanisms of metabolic reprogramming and immune evasion are deeply investigated, and the genes involved in these processes are used as clinical therapeutic targets for breast cancer. Here, we review the recent findings related to abnormal metabolism and immune characteristics, regulatory mechanisms, their links, and relevant therapeutic strategies.
Collapse
Affiliation(s)
- Deyu Zhang
- Department of Medical Molecular Biology, Beijing Institute of Biotechnology, Beijing, 100850, China
| | - Xiaojie Xu
- Department of Medical Molecular Biology, Beijing Institute of Biotechnology, Beijing, 100850, China.
| | - Qinong Ye
- Department of Medical Molecular Biology, Beijing Institute of Biotechnology, Beijing, 100850, China.
| |
Collapse
|
6
|
Focaccetti C, Benvenuto M, Ciuffa S, Fazi S, Scimeca M, Nardi A, Miele MT, Battisti A, Bonanno E, Modesti A, Masuelli L, Bei R. Curcumin Enhances the Antitumoral Effect Induced by the Recombinant Vaccinia Neu Vaccine (rV- neuT) in Mice with Transplanted Salivary Gland Carcinoma Cells. Nutrients 2020; 12:1417. [PMID: 32423101 PMCID: PMC7284625 DOI: 10.3390/nu12051417] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 05/11/2020] [Accepted: 05/11/2020] [Indexed: 12/13/2022] Open
Abstract
The survival rate for head and neck cancer patients has not substantially changed in the last two decades. We previously showed that two rV-neuT intratumoral injections induced an efficient antitumor response and rejection of transplanted Neu (rat ErbB2/neu oncogene-encoded protein)-overexpressing salivary gland tumor cells in BALB-neuT mice (BALB/c mice transgenic for the rat ErbB2/neu oncogene). However, reiterated poxviral vaccinations increase neutralizing antibodies to viral proteins in humans that prevent immune response against the recombinant antigen expressed by the virus. Curcumin (CUR) is a polyphenol with antineoplastic and immunomodulatory properties. The aim of this study was to employ CUR administration to boost the anti-Neu immune response and anticancer activity induced by one rV-neuT intratumoral vaccination in BALB-neuT mice. Here, we demonstrated that the combined rV-neuT+CUR treatment was more effective at reducing tumor growth and increasing mouse survival, anti-Neu humoral response, and IFN-γ/IL-2 T-cell release in vitro than the individual treatment. rV-neuT+CUR-treated mice showed an increased infiltration of CD4+/CD8+ T lymphocytes within the tumor as compared to those that received the individual treatment. Overall, CUR enhanced the antitumoral effect and immune response to Neu induced by the rV-neuT vaccine in mice. Thus, the combined treatment might represent a successful strategy to target ErbB2/Neu-overexpressing tumors.
Collapse
Affiliation(s)
- Chiara Focaccetti
- Department of Human Science and Promotion of the Quality of Life, San Raffaele University Rome, Via di Val Cannuta 247, 00166 Rome, Italy; (C.F.); (M.S.)
- Department of Clinical Sciences and Translational Medicine, University of Rome “Tor Vergata”, Via Montpellier 1, 00133 Rome, Italy; (M.B.); (S.C.); (A.M.)
| | - Monica Benvenuto
- Department of Clinical Sciences and Translational Medicine, University of Rome “Tor Vergata”, Via Montpellier 1, 00133 Rome, Italy; (M.B.); (S.C.); (A.M.)
- Saint Camillus International University of Health and Medical Sciences, via di Sant’Alessandro 8, 00131 Rome, Italy
| | - Sara Ciuffa
- Department of Clinical Sciences and Translational Medicine, University of Rome “Tor Vergata”, Via Montpellier 1, 00133 Rome, Italy; (M.B.); (S.C.); (A.M.)
| | - Sara Fazi
- Department of Experimental Medicine, “Sapienza” University of Rome, Viale Regina Elena 324, 00161 Rome, Italy; (S.F.); (L.M.)
| | - Manuel Scimeca
- Department of Human Science and Promotion of the Quality of Life, San Raffaele University Rome, Via di Val Cannuta 247, 00166 Rome, Italy; (C.F.); (M.S.)
- Saint Camillus International University of Health and Medical Sciences, via di Sant’Alessandro 8, 00131 Rome, Italy
- Department of Biomedicine and Prevention, University of Rome “Tor Vergata”, Via Montpellier 1, 00133 Rome, Italy;
- Fondazione Umberto Veronesi (FUV), Piazza Velasca 5, 20122 Milano, Italy
| | - Alessandra Nardi
- Department of Mathematics, University of Rome “Tor Vergata”, Via della Ricerca Scientifica 1, 00133 Rome, Italy;
| | - Martino Tony Miele
- Department of Experimental Medicine, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy;
| | - Andrea Battisti
- Maxillo Facial Oncologic and Reconstructive Unit, “Sapienza” University of Rome, Policlinico Umberto I, 00161 Rome, Italy;
| | - Elena Bonanno
- Department of Biomedicine and Prevention, University of Rome “Tor Vergata”, Via Montpellier 1, 00133 Rome, Italy;
- Neuromed Group, ‘Diagnostica Medica’ & ‘Villa dei Platani’, 83100 Avellino, Italy
| | - Andrea Modesti
- Department of Clinical Sciences and Translational Medicine, University of Rome “Tor Vergata”, Via Montpellier 1, 00133 Rome, Italy; (M.B.); (S.C.); (A.M.)
| | - Laura Masuelli
- Department of Experimental Medicine, “Sapienza” University of Rome, Viale Regina Elena 324, 00161 Rome, Italy; (S.F.); (L.M.)
| | - Roberto Bei
- Department of Clinical Sciences and Translational Medicine, University of Rome “Tor Vergata”, Via Montpellier 1, 00133 Rome, Italy; (M.B.); (S.C.); (A.M.)
| |
Collapse
|
7
|
Florescu-Ţenea RM, Kamal AM, Mitruţ P, Mitruţ R, Ilie DS, Nicolaescu AC, Mogoantă L. Colorectal Cancer: An Update on Treatment Options and Future Perspectives. CURRENT HEALTH SCIENCES JOURNAL 2019; 45:134-141. [PMID: 31624639 PMCID: PMC6778294 DOI: 10.12865/chsj.45.02.02] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 05/18/2019] [Indexed: 12/24/2022]
Abstract
Throughout the years, colorectal cancer has steadily become a global health problem. While other types of cancers have seen a decline in cases because of screening and vaccination programs, colorectal cancer has risen become the third most diagnosed cancer worldwide and, more worryingly, the second leading cancer-related cause of death. The introduction of targeted therapy has been widely considered a major paradigm shift in the treatment of colorectal cancer, which agents such as bevacizumab and cetuximab quickly becoming mainstay options in the treatment of locally advanced or metastatic disease. However, this type of treatment has also shown its limitations, with limited or no benefit for a large portion of the patients. With more and more knowledge being gathered on the molecular mechanisms which govern the malignant phenotype presented by colorectal cancer, scientists are engaged in a continuous effort to develop new therapies based on these discoveries.
Collapse
Affiliation(s)
- R M Florescu-Ţenea
- PhD Student, Department of Histology, University of Medicine and Pharmacy of Craiova, Romania
| | - A M Kamal
- Department of Internal Medicine, University of Medicine and Pharmacy of Craiova, Romania
| | - P Mitruţ
- Department of Gastroenterology, "Renaşterea" Medical Center, Craiova, Romania
- Department of Semiology, University of Medicine and Pharmacy of Craiova, Romania
| | - R Mitruţ
- PhD Student, Department of Histology, University of Medicine and Pharmacy of Craiova, Romania
| | - D S Ilie
- PhD Student, Department of Histology, University of Medicine and Pharmacy of Craiova, Romania
| | - A C Nicolaescu
- PhD Student, Department of Surgery, University of Medicine and Pharmacy of Craiova, Romania
| | - L Mogoantă
- Department of Histology, University of Medicine and Pharmacy of Craiova, Romania
| |
Collapse
|
8
|
Addressing cancer immunotherapy research in Iran: adoptive cell therapy on the horizon. Cytotherapy 2018; 20:1227-1237. [DOI: 10.1016/j.jcyt.2018.08.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2018] [Revised: 07/04/2018] [Accepted: 08/14/2018] [Indexed: 12/15/2022]
|
9
|
Goyvaerts C, Breckpot K. The Journey of in vivo Virus Engineered Dendritic Cells From Bench to Bedside: A Bumpy Road. Front Immunol 2018; 9:2052. [PMID: 30254636 PMCID: PMC6141723 DOI: 10.3389/fimmu.2018.02052] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Accepted: 08/20/2018] [Indexed: 12/13/2022] Open
Abstract
Dendritic cells (DCs) are recognized as highly potent antigen-presenting cells that are able to stimulate cytotoxic T lymphocyte (CTL) responses with antitumor activity. Consequently, DCs have been explored as cellular vaccines in cancer immunotherapy. To that end, DCs are modified with tumor antigens to enable presentation of antigen-derived peptides to CTLs. In this review we discuss the use of viral vectors for in situ modification of DCs, focusing on their clinical applications as anticancer vaccines. Among the viral vectors discussed are those derived from viruses belonging to the families of the Poxviridae, Adenoviridae, Retroviridae, Togaviridae, Paramyxoviridae, and Rhabdoviridae. We will further shed light on how the combination of viral vector-based vaccination with T-cell supporting strategies will bring this strategy to the next level.
Collapse
|
10
|
MacNeill AL, Weishaar KM, Séguin B, Powers BE. Safety of an Oncolytic Myxoma Virus in Dogs with Soft Tissue Sarcoma. Viruses 2018; 10:v10080398. [PMID: 30060548 PMCID: PMC6115854 DOI: 10.3390/v10080398] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 07/25/2018] [Accepted: 07/27/2018] [Indexed: 12/21/2022] Open
Abstract
Many oncolytic viruses that are efficacious in murine cancer models are ineffective in humans. The outcomes of oncolytic virus treatment in dogs with spontaneous tumors may better predict human cancer response and improve treatment options for dogs with cancer. The objectives of this study were to evaluate the safety of treatment with myxoma virus lacking the serp2 gene (MYXVΔserp2) and determine its immunogenicity in dogs. To achieve these objectives, dogs with spontaneous soft tissue sarcomas were treated with MYXVΔserp2 intratumorally (n = 5) or post-operatively (n = 5). In dogs treated intratumorally, clinical scores were recorded and tumor biopsies and swabs (from the mouth and virus injection site) were analyzed for viral DNA at multiple time-points. In all dogs, blood, urine, and feces were frequently collected to evaluate organ function, virus distribution, and immune response. No detrimental effects of MYXVΔserp2 treatment were observed in any canine cancer patients. No clinically significant changes in complete blood profiles, serum chemistry analyses, or urinalyses were measured. Viral DNA was isolated from one tumor swab, but viral dissemination was not observed. Anti-MYXV antibodies were occasionally detected. These findings provide needed safety information to advance clinical trials using MYXVΔserp2 to treat patients with cancer.
Collapse
Affiliation(s)
- Amy L MacNeill
- Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA.
| | - Kristen M Weishaar
- Department of Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA.
| | - Bernard Séguin
- Department of Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA.
| | - Barbara E Powers
- Veterinary Diagnostic Laboratories, Colorado State University, Fort Collins, CO 80523, USA.
| |
Collapse
|
11
|
Therapeutic cancer vaccines: From initial findings to prospects. Immunol Lett 2018; 196:11-21. [DOI: 10.1016/j.imlet.2018.01.011] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Revised: 12/30/2017] [Accepted: 01/24/2018] [Indexed: 12/15/2022]
|
12
|
Abstract
Multiple myeloma (MM) is a clonal malignancy of plasma cells that is newly diagnosed in ~30,000 patients in the US each year. While recently developed therapies have improved the prognosis for MM patients, relapse rates remain unacceptably high. To overcome this challenge, researchers have begun to investigate the therapeutic potential of oncolytic viruses as a novel treatment option for MM. Preclinical work with these viruses has demonstrated that their infection can be highly specific for MM cells and results in impressive therapeutic efficacy in a variety of preclinical models. This has led to the recent initiation of several human trials. This review summarizes the current state of oncolytic therapy as a therapeutic option for MM and highlights a variety of areas that need to be addressed as the field moves forward.
Collapse
Affiliation(s)
- Eric Bartee
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC, USA
| |
Collapse
|
13
|
Immunotherapy for cervical cancer: Can it do another lung cancer? Curr Probl Cancer 2018; 42:148-160. [PMID: 29500076 DOI: 10.1016/j.currproblcancer.2017.12.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Accepted: 12/10/2017] [Indexed: 02/04/2023]
Abstract
Cervical cancer, although preventable, is still the second most common cancer among women worldwide. In developing countries like India, where screening for cervical cancer is virtually absent, most women seek treatment only at advanced stages of the disease. Although standard treatment is curative in more than 90% of women during the early stages, for stage IIIb and above this rate drops to 50% or less. Hence, novel therapeutic adjuvants are required to improve survival at advanced stages. Lung cancer has shown the way forward with the use of Immunotherapeutic interventions as standard line of treatment in advanced stages. In this review, we provide an overview of mechanisms of immune evasion, strategies that can be employed to boost the immune system in order to improve the overall survival of the patients and summarize briefly the clinical trials that have been completed or that are underway to bring therapeutic vaccines for cervical cancer to the clinics.
Collapse
|
14
|
|
15
|
Heery CR, Palena C, McMahon S, Donahue RN, Lepone LM, Grenga I, Dirmeier U, Cordes L, Marté J, Dahut W, Singh H, Madan RA, Fernando RI, Hamilton DH, Schlom J, Gulley JL. Phase I Study of a Poxviral TRICOM-Based Vaccine Directed Against the Transcription Factor Brachyury. Clin Cancer Res 2017; 23:6833-6845. [PMID: 28855356 DOI: 10.1158/1078-0432.ccr-17-1087] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2017] [Revised: 06/11/2017] [Accepted: 08/24/2017] [Indexed: 12/18/2022]
Abstract
Purpose: The transcription factor brachyury has been shown in preclinical studies to be a driver of the epithelial-to-mesenchymal transition (EMT) and resistance to therapy of human tumor cells. This study describes the characterization of a Modified Vaccinia Ankara (MVA) vector-based vaccine expressing the transgenes for brachyury and three human costimulatory molecules (B7.1, ICAM-1, and LFA-3, designated TRICOM) and a phase I study with this vaccine.Experimental Design: Human dendritic cells (DC) were infected with MVA-brachyury-TRICOM to define their ability to activate brachyury-specific T cells. A dose-escalation phase I study (NCT02179515) was conducted in advanced cancer patients (n = 38) to define safety and to identify brachyury-specific T-cell responses.Results: MVA-brachyury-TRICOM-infected human DCs activated CD8+ and CD4+ T cells specific against the self-antigen brachyury in vitro No dose-limiting toxicities were observed due to vaccine in cancer patients at any of the three dose levels. One transient grade 3 adverse event (AE) possibly related to vaccine (diarrhea) resolved without intervention and did not recur with subsequent vaccine. All other AEs related to vaccine were transient and ≤grade 2. Brachyury-specific T-cell responses were observed at all dose levels and in most patients.Conclusions: The MVA-brachyury-TRICOM vaccine directed against a transcription factor known to mediate EMT can be administered safely in patients with advanced cancer and can activate brachyury-specific T cells in vitro and in patients. Further studies of this vaccine in combination therapies are warranted and planned. Clin Cancer Res; 23(22); 6833-45. ©2017 AACR.
Collapse
Affiliation(s)
- Christopher R Heery
- Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Claudia Palena
- Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Sheri McMahon
- Genitourinary Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Renee N Donahue
- Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Lauren M Lepone
- Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Italia Grenga
- Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | | | - Lisa Cordes
- Genitourinary Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Jenn Marté
- Genitourinary Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - William Dahut
- Genitourinary Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Harpreet Singh
- Genitourinary Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Ravi A Madan
- Genitourinary Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Romaine I Fernando
- Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Duane H Hamilton
- Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Jeffrey Schlom
- Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - James L Gulley
- Genitourinary Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland.
| |
Collapse
|
16
|
Zhang T, Suryawanshi YR, Woyczesczyk HM, Essani K. Targeting Melanoma with Cancer-Killing Viruses. Open Virol J 2017; 11:28-47. [PMID: 28567163 PMCID: PMC5420172 DOI: 10.2174/1874357901711010028] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Revised: 01/05/2017] [Accepted: 01/17/2017] [Indexed: 12/20/2022] Open
Abstract
Melanoma is the deadliest skin cancer with ever-increasing incidence. Despite the development in diagnostics and therapies, metastatic melanoma is still associated with significant morbidity and mortality. Oncolytic viruses (OVs) represent a class of novel therapeutic agents for cancer by possessing two closely related properties for tumor reduction: virus-induced lysis of tumor cells and induction of host anti-tumor immune responses. A variety of viruses, either in "natural" or in genetically modified forms, have exhibited a remarkable therapeutic efficacy in regressing melanoma in experimental and/or clinical studies. This review provides a comprehensive summary of the molecular and cellular mechanisms of action of these viruses, which involve manipulating and targeting the abnormalities of melanoma, and can be categorized as enhancing viral tropism, targeting the tumor microenvironment and increasing the innate and adaptive antitumor responses. Additionally, this review describes the "biomarkers" and deregulated pathways of melanoma that are responsible for melanoma initiation, progression and metastasis. Advances in understanding these abnormalities of melanoma have resulted in effective targeted and immuno-therapies, and could potentially be applied for engineering OVs with enhanced oncolytic activity in future.
Collapse
Affiliation(s)
- Tiantian Zhang
- Laboratory of Virology, Department of Biological Sciences, Western Michigan University, Kalamazoo, MI, 49008, U.S.A
| | - Yogesh R. Suryawanshi
- Laboratory of Virology, Department of Biological Sciences, Western Michigan University, Kalamazoo, MI, 49008, U.S.A
| | - Helene M. Woyczesczyk
- Laboratory of Virology, Department of Biological Sciences, Western Michigan University, Kalamazoo, MI, 49008, U.S.A
| | - Karim Essani
- Laboratory of Virology, Department of Biological Sciences, Western Michigan University, Kalamazoo, MI, 49008, U.S.A
| |
Collapse
|
17
|
Chaurasiya S, Warner S. Viroimmunotherapy for Colorectal Cancer: Clinical Studies. Biomedicines 2017; 5:E11. [PMID: 28536354 PMCID: PMC5423497 DOI: 10.3390/biomedicines5010011] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Accepted: 03/02/2017] [Indexed: 12/31/2022] Open
Abstract
Colorectal cancer is a leading cause of cancer incidence and death. Therapies for those with unresectable or recurrent disease are not considered curative at present. More effective and less toxic therapies are desperately needed. Historically, the immune system was thought to be an enemy to oncolytic viral therapy. Thinking that oncolysis would be the only mechanism for cell death, oncolytic virologists theorized that immune clearance was a detriment to oncolysis. Recent advances in our understanding of the tumor microenvironment, and the interplay of tumor survival and a patient's immune system have called into question our understanding of both arenas. It remains unclear what combination of restrictions or enhancements of innate and/or cell-mediated immunity can yield the highest likelihood of viral efficacy. This article reviews the variety of mechanisms explored for viruses such as immunotherapy for colorectal cancer.
Collapse
Affiliation(s)
- Shyambabu Chaurasiya
- Beckman Research Institute, City of Hope National Medical Center, Duarte 91010, CA, USA.
| | - Susanne Warner
- Beckman Research Institute, City of Hope National Medical Center, Duarte 91010, CA, USA.
| |
Collapse
|
18
|
Zhang T, Suryawanshi YR, Kordish DH, Woyczesczyk HM, Jeng D, Essani K. Tanapoxvirus lacking a neuregulin-like gene regresses human melanoma tumors in nude mice. Virus Genes 2017; 53:52-62. [PMID: 27738905 PMCID: PMC5300959 DOI: 10.1007/s11262-016-1402-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Accepted: 10/06/2016] [Indexed: 10/25/2022]
Abstract
Neuregulin (NRG), an epidermal growth factor is known to promote the growth of various cell types, including human melanoma cells through ErbB family of tyrosine kinases receptors. Tanapoxvirus (TPV)-encoded protein TPV-15L, a functional mimic of NRG, also acts through ErbB receptors. Here, we show that the TPV-15L protein promotes melanoma proliferation. TPV recombinant generated by deleting the 15L gene (TPVΔ15L) showed replication ability similar to that of wild-type TPV (wtTPV) in owl monkey kidney cells, human lung fibroblast (WI-38) cells, and human melanoma (SK-MEL-3) cells. However, a TPV recombinant with both 15L and the thymidine kinase (TK) gene 66R ablated (TPVΔ15LΔ66R) replicated less efficiently compared to TPVΔ15L and the parental virus. TPVΔ15L exhibited more robust tumor regression in the melanoma-bearing nude mice compared to other TPV recombinants. Our results indicate that deletion of TPV-15L gene product which facilitates the growth of human melanoma cells can be an effective strategy to enhance the oncolytic potential of TPV for the treatment of melanoma.
Collapse
Affiliation(s)
- Tiantian Zhang
- Laboratory of Virology, Department of Biological Sciences, Western Michigan University, Kalamazoo, MI, 49008, USA
| | - Yogesh R Suryawanshi
- Laboratory of Virology, Department of Biological Sciences, Western Michigan University, Kalamazoo, MI, 49008, USA
| | - Dennis H Kordish
- Laboratory of Virology, Department of Biological Sciences, Western Michigan University, Kalamazoo, MI, 49008, USA
| | - Helene M Woyczesczyk
- Laboratory of Virology, Department of Biological Sciences, Western Michigan University, Kalamazoo, MI, 49008, USA
| | - David Jeng
- Laboratory of Virology, Department of Biological Sciences, Western Michigan University, Kalamazoo, MI, 49008, USA
| | - Karim Essani
- Laboratory of Virology, Department of Biological Sciences, Western Michigan University, Kalamazoo, MI, 49008, USA.
| |
Collapse
|
19
|
Berry J, Vreeland T, Trappey A, Hale D, Peace K, Tyler J, Walker A, Brown R, Herbert G, Yi F, Jackson D, Clifton G, Peoples GE. Cancer vaccines in colon and rectal cancer over the last decade: lessons learned and future directions. Expert Rev Clin Immunol 2016; 13:235-245. [PMID: 27552944 DOI: 10.1080/1744666x.2016.1226132] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
INTRODUCTION Great advances have been made in screening for and treatment of colorectal cancer (CRC), but recurrence rates remain high and additional therapies are needed. There is great excitement around the field of immunotherapy and many attempts have been made to bring immunotherapy to CRC through a cancer vaccine. Areas covered: This is a detailed review of the last decade's significant CRC vaccine trials. Expert commentary: Monotherapy with a CRC vaccine is likely best suited for adjuvant therapy in disease free patients. Vaccine therapy elicits crucial tumor infiltrating lymphocytes, which are lacking in microsatellite-stable tumors, and therefore may be better suited for these patients. The combination of CRC vaccines with checkpoint inhibitors may unlock the potential of immunotherapy for a much broader range of patients. Future studies should focus on vaccine monotherapy in correctly selected patients and combination therapy in more advanced disease.
Collapse
Affiliation(s)
- John Berry
- a Department of Colorectal Surgery , Washington University School of Medicine , St. Louis , MO , USA.,b Cancer Vaccine Development Program San Antonio , TX , USA
| | - Timothy Vreeland
- b Cancer Vaccine Development Program San Antonio , TX , USA.,c Department of Surgery , Womack Army Medical Center, Fort Bragg , NC , USA
| | - Alfred Trappey
- d Departmentof Surgery , San Antonio Military Medical Center, Fort Sam Houston , TX , USA
| | - Diane Hale
- b Cancer Vaccine Development Program San Antonio , TX , USA.,d Departmentof Surgery , San Antonio Military Medical Center, Fort Sam Houston , TX , USA
| | - Kaitlin Peace
- d Departmentof Surgery , San Antonio Military Medical Center, Fort Sam Houston , TX , USA
| | - Joshua Tyler
- e Department of Surgery , Keesler Air Force Medical Center, Keesler AFB , MS , USA
| | - Avery Walker
- f Department of Surgery , Brian Allgood Army Community Hospital , Seoul , South Korea
| | - Ramon Brown
- e Department of Surgery , Keesler Air Force Medical Center, Keesler AFB , MS , USA
| | - Garth Herbert
- d Departmentof Surgery , San Antonio Military Medical Center, Fort Sam Houston , TX , USA
| | - Fia Yi
- d Departmentof Surgery , San Antonio Military Medical Center, Fort Sam Houston , TX , USA
| | - Doreen Jackson
- b Cancer Vaccine Development Program San Antonio , TX , USA.,d Departmentof Surgery , San Antonio Military Medical Center, Fort Sam Houston , TX , USA
| | - Guy Clifton
- b Cancer Vaccine Development Program San Antonio , TX , USA.,d Departmentof Surgery , San Antonio Military Medical Center, Fort Sam Houston , TX , USA.,g Department of Surgery , MD Anderson Cancer Center , Houston , TX , USA
| | | |
Collapse
|
20
|
Combined expression of miR-34a and Smac mediated by oncolytic vaccinia virus synergistically promote anti-tumor effects in Multiple Myeloma. Sci Rep 2016; 6:32174. [PMID: 27552933 PMCID: PMC5001249 DOI: 10.1038/srep32174] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Accepted: 08/03/2016] [Indexed: 02/07/2023] Open
Abstract
Despite great progress made in the treatment of multiple myeloma (MM), it is still incurable. Promising phase II clinical results have been reported recently for oncolytic vaccinia virus (OVV) clinic therapeutics. One reason for this has focused on the critical therapeutic importance of the immune response raised by these viruses. However, few studies have performed their applications as an optimal delivery system for therapeutic gene, especially miRNA in MM. In this study, we constructed two novel OVVs (TK deletion) that express anti-tumor genes, miR-34a and Smac, respectively, in MM cell lines and xenograft model. The results demonstrated that the novel OVV can effectively infect MM cell lines, and forcefully enhance the exogenous gene (miR-34a or Smac) expression. Furthermore, utilization of VV-miR-34a combined with VV-Smac synergistically inhibited tumor growth and induced apoptosis in vitro and in vivo. The underlying mechanism is proposed that blocking of Bcl-2 by VV-miR-34a increases the release of cytochrome c from mitochondria and then synergistically amplifies the antitumor effects of Smac-induced cell apoptosis. Our study is the first to utilize OVV as the vector for miR-34a or Smac expression to treat MM, and lays the groundwork for future clinical therapy for MM.
Collapse
|
21
|
Noguchi M, Koga N, Moriya F, Itoh K. Immunotherapy in prostate cancer: challenges and opportunities. Immunotherapy 2016; 8:69-77. [DOI: 10.2217/imt.15.101] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Although treatment options for castration-resistant prostate cancer (CRPC) have increased over the last decade, there remains a need for strategies that can provide durable disease control and long-term benefit. Recently, immunotherapy has emerged as a viable and attractive strategy for the treatment of CRPC. To date, there are multiple strategies to target the immune system, and several approaches including therapeutic cancer vaccines and immune checkpoint inhibitors have been most successful in clinical trials. With regard to this, we report the results of the most recent clinical trials investigating immunotherapy in CRPC and discuss the future development of immunotherapy for CRPC, as well as the potential importance of biomarkers in the future progress of this field.
Collapse
Affiliation(s)
- Masanori Noguchi
- Division of Clinical Research, Research Center for Innovative Cancer Therapy, Kurume University School of Medicine, 67 Asahi-machi, Kurume 830-0011, Japan
- Cancer Vaccine Center, Kurume University School of Medicine, Kurume, Japan
| | - Noriko Koga
- Division of Clinical Research, Research Center for Innovative Cancer Therapy, Kurume University School of Medicine, 67 Asahi-machi, Kurume 830-0011, Japan
| | - Fukuko Moriya
- Department of Pathology, Kurume University School of Medicine, Kurume, Japan
| | - Kyogo Itoh
- Cancer Vaccine Center, Kurume University School of Medicine, Kurume, Japan
| |
Collapse
|
22
|
Tagliamonte M, Petrizzo A, Tornesello ML, Buonaguro FM, Buonaguro L. Antigen-specific vaccines for cancer treatment. Hum Vaccin Immunother 2015; 10:3332-46. [PMID: 25483639 DOI: 10.4161/21645515.2014.973317] [Citation(s) in RCA: 114] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Vaccines targeting pathogens are generally effective and protective because based on foreign non-self antigens which are extremely potent in eliciting an immune response. On the contrary, efficacy of therapeutic cancer vaccines is still disappointing. One of the major reasons for such poor outcome, among others, is the difficulty of identifying tumor-specific target antigens which should be unique to the tumors or, at least, overexpressed on the tumors as compared to normal cells. Indeed, this is the only option to overcome the peripheral immune tolerance and elicit a non toxic immune response. New and more potent strategies are now available to identify specific tumor-associated antigens for development of cancer vaccine approaches aiming at eliciting targeted anti-tumor cellular responses. In the last years this aspect has been addressed and many therapeutic vaccination strategies based on either whole tumor cells or specific antigens have been and are being currently evaluated in clinical trials. This review summarizes the current state of cancer vaccines, mainly focusing on antigen-specific approaches.
Collapse
Key Words
- APCs, antigen-presenting cell
- BCG, Bacille Calmette-Guerin
- BCR, B-cell receptor
- CDCA1, cell division cycle associated 1
- CRC, colorectal cancer
- CT, Cancer-testis
- CTL, cytotoxic T-lympocites
- DCs, dendritic cells
- EGT, electro-gene-transfer
- FDA, Food & drug administration
- GB, glioblastoma
- GM-CSF, granulocyte macrophage-colony stimulating factor
- HER2, human epidermal growth factor receptor 2
- HLA, human leukocyte antigen
- HPV, human papillomavirus
- HSPs, stress/heat shock proteins
- IFNg, interferon gamma
- Ig Id, immunoglobulin idiotype
- LPs, long peptides
- MAGE-A1, Melanoma-associated antigen 1
- MHC, major histocompatibility complex
- MS, mass spectrometry
- MVA, modified vaccinia strain Ankara
- NSCLC, non-small-cell lung carcinoma
- PAP, prostatic acid phosphatase
- PRRs, Pattern Recognition Receptors
- PSA, Prostate-specific antigen
- RCR, renal cell cancer
- SSX-2, Synovial sarcoma X breakpoint 2
- TAAs, tumor-associated antigens
- TACAs, Tumor-associated carbohydrate antigens
- TARP, T-cell receptor gamma alternate reading frame protein
- TLRs, Toll-Like Receptors
- TPA, transporter associated with antigen processing
- WES, whole exome sequencing
- WGS, whole genome sequencing
- cancer vaccine
- clinical trials
- epitopes
- hTERT, human Telomerase reverse transcriptase
- immunotherapeutics
- mCRPC, metastatic castrate-resistant prostate cancer
- tumor-associated antigens
Collapse
Affiliation(s)
- Maria Tagliamonte
- a Laboratory of Molecular Biology and Viral Oncology; Department of Experimental Oncology; Istituto Nazionale per lo Studio e la Cura dei Tumori; "Fondazione Pascale" - IRCCS ; Naples , Italy
| | | | | | | | | |
Collapse
|
23
|
Sánchez-Sampedro L, Perdiguero B, Mejías-Pérez E, García-Arriaza J, Di Pilato M, Esteban M. The evolution of poxvirus vaccines. Viruses 2015; 7:1726-803. [PMID: 25853483 PMCID: PMC4411676 DOI: 10.3390/v7041726] [Citation(s) in RCA: 133] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Revised: 03/16/2015] [Accepted: 03/27/2015] [Indexed: 02/07/2023] Open
Abstract
After Edward Jenner established human vaccination over 200 years ago, attenuated poxviruses became key players to contain the deadliest virus of its own family: Variola virus (VARV), the causative agent of smallpox. Cowpox virus (CPXV) and horsepox virus (HSPV) were extensively used to this end, passaged in cattle and humans until the appearance of vaccinia virus (VACV), which was used in the final campaigns aimed to eradicate the disease, an endeavor that was accomplished by the World Health Organization (WHO) in 1980. Ever since, naturally evolved strains used for vaccination were introduced into research laboratories where VACV and other poxviruses with improved safety profiles were generated. Recombinant DNA technology along with the DNA genome features of this virus family allowed the generation of vaccines against heterologous diseases, and the specific insertion and deletion of poxvirus genes generated an even broader spectrum of modified viruses with new properties that increase their immunogenicity and safety profile as vaccine vectors. In this review, we highlight the evolution of poxvirus vaccines, from first generation to the current status, pointing out how different vaccines have emerged and approaches that are being followed up in the development of more rational vaccines against a wide range of diseases.
Collapse
MESH Headings
- Animals
- History, 18th Century
- History, 19th Century
- History, 20th Century
- History, 21st Century
- Humans
- Poxviridae/immunology
- Poxviridae/isolation & purification
- Smallpox/prevention & control
- Smallpox Vaccine/history
- Smallpox Vaccine/immunology
- Smallpox Vaccine/isolation & purification
- Vaccines, Attenuated/history
- Vaccines, Attenuated/immunology
- Vaccines, Attenuated/isolation & purification
- Vaccines, Synthetic/history
- Vaccines, Synthetic/immunology
- Vaccines, Synthetic/isolation & purification
Collapse
Affiliation(s)
- Lucas Sánchez-Sampedro
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CSIC), Madrid-28049, Spain.
| | - Beatriz Perdiguero
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CSIC), Madrid-28049, Spain.
| | - Ernesto Mejías-Pérez
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CSIC), Madrid-28049, Spain
| | - Juan García-Arriaza
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CSIC), Madrid-28049, Spain
| | - Mauro Di Pilato
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CSIC), Madrid-28049, Spain.
| | - Mariano Esteban
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CSIC), Madrid-28049, Spain.
| |
Collapse
|
24
|
Singh BH, Gulley JL. Immunotherapy and therapeutic vaccines in prostate cancer: an update on current strategies and clinical implications. Asian J Androl 2014; 16:364-71. [PMID: 24435055 PMCID: PMC4023361 DOI: 10.4103/1008-682x.122585] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
In recent years, immunotherapy has emerged as a viable and attractive strategy for the treatment of prostate cancer. While there are multiple ways to target the immune system, therapeutic cancer vaccines and immune checkpoint inhibitors have been most successful in late-stage clinical trials. The landmark Food and Drug Administration approval of sipuleucel-T for asymptomatic or minimally symptomatic metastatic prostate cancer set the stage for ongoing phase III trials with the cancer vaccine PSA-TRICOM and the immune checkpoint inhibitor ipilimumab. A common feature of these immune-based therapies is the appearance of improved overall survival without short-term changes in disease progression. This class effect appears to be due to modulation of tumor growth rate kinetics, in which the activated immune system exerts constant immunologic pressure that slows net tumor growth. Emerging data suggest that the ideal population for clinical trials of cancer vaccines is patients with lower tumor volume and less aggressive disease. Combination strategies that combine immunotherapy with standard therapies have been shown to augment both immune response and clinical benefit.
Collapse
Affiliation(s)
| | - James L Gulley
- Medical Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 10 Center Drive, Bethesda, Maryland, USA
| |
Collapse
|
25
|
Choi M, Thakur A. Identifying Appropriate Colorectal Cancer-Associated Antigens for the Clinical Trials. CURRENT COLORECTAL CANCER REPORTS 2014. [DOI: 10.1007/s11888-014-0256-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
26
|
Singh BH, Gulley JL. Therapeutic vaccines as a promising treatment modality against prostate cancer: rationale and recent advances. THERAPEUTIC ADVANCES IN VACCINES 2014; 2:137-48. [PMID: 25177493 DOI: 10.1177/2051013614539478] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Cancer immunotherapy was deemed the medical breakthrough of 2013, in part because it can induce a rapid, durable, self-propagating and adaptable immune response. Specifically in prostate cancer, immunotherapy has emerged as a viable and attractive treatment strategy. To date, therapeutic cancer vaccines and immune checkpoint inhibitors are the two classes of immunotherapy that have demonstrated improvements in overall survival in patients with advanced tumors. The 2010 Food and Drug Administration approval of sipuleucel-T for asymptomatic or minimally symptomatic metastatic prostate cancer set the stage for ongoing phase III trials with the cancer vaccine PSA-TRICOM and the immune checkpoint inhibitor ipilimumab. A class effect of these approved immune-based therapies is a benefit in overall survival without short-term changes in disease progression, apparently due to modulation of tumor growth rate kinetics, in which the activated immune system exerts constant immunologic pressure that slows net tumor growth. A growing body of evidence suggests that the ideal population for clinical trials of cancer vaccines as monotherapy is patients with lower tumor volume and less aggressive disease. Combination strategies include immunotherapy with standard therapies or with other immunotherapies. Here we review emerging data on immunotherapy for patients with prostate cancer.
Collapse
Affiliation(s)
- B Harpreet Singh
- Genitourinary Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - James L Gulley
- Chief, Genitourinary Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 10 Center Drive, 12N226, Bethesda, MD 20892, USA
| |
Collapse
|
27
|
Abstract
Recent clinical data have emphatically shown the capacity of our immune systems to eradicate even advanced cancers. Although oncolytic viruses (OVs) were originally designed to function as tumour-lysing therapeutics, they have now been clinically shown to initiate systemic antitumour immune responses. Cell signalling pathways that are activated and promote the growth of tumour cells also favour the growth and replication of viruses within the cancer. The ability to engineer OVs that express immune-stimulating 'cargo', the induction of immunogenic tumour cell death by OVs and the selective targeting of OVs to tumour beds suggests that they are the ideal reagents to enhance antitumour immune responses. Coupling of OV therapy with tumour antigen vaccination, immune checkpoint inhibitors and adoptive cell therapy seems to be ready to converge towards a new generation of multimodal therapeutics to improve outcomes for cancer patients.
Collapse
Affiliation(s)
- Brian D Lichty
- Department of Pathology and Molecular Medicine, McMaster Immunology Research Centre, Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario L8S4K1, Canada
| | | | - David F Stojdl
- Apoptosis Research Centre, Children's Hospital of Eastern Ontario (CHEO) Research Institute, Ottawa, Ontario K1H 8L1, Canada
| | - John C Bell
- Centre for Innovative Cancer Therapeutics, Ottawa Hospital Research Institute, Ottawa, Ontario K1H 8L6, Canada; and the Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, Canada
| |
Collapse
|
28
|
Masuelli L, Fantini M, Benvenuto M, Sacchetti P, Giganti MG, Tresoldi I, Lido P, Lista F, Cavallo F, Nanni P, Schlom J, Modesti A, Bei R. Intratumoral delivery of recombinant vaccinia virus encoding for ErbB2/Neu inhibits the growth of salivary gland carcinoma cells. J Transl Med 2014; 12:122. [PMID: 24886178 PMCID: PMC4029891 DOI: 10.1186/1479-5876-12-122] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2014] [Accepted: 05/05/2014] [Indexed: 11/18/2022] Open
Abstract
Background The antitumor activity induced by intratumoral vaccination with poxvirus expressing a tumor antigen was shown to be superior to that induced by subcutaneous vaccination. Salivary gland carcinomas overexpress ErbB2. Trastuzumab, a monoclonal antibody to ErbB2, was proposed for salivary gland tumors treatment. We explored the effectiveness of intratumoral vaccination with the recombinant vaccinia virus ErbB2/Neu (rV-neuT) vaccine in hampering the growth of transplanted Neu-overexpressing BALB-neuT salivary gland cancer cells (SALTO) in BALB-neuT mice. Methods BALB-neuT male mice were subcutaneously injected with SALTO tumor cells and intratumorally vaccinated twice with different doses of either rV-neuT or V-wt (wild-type). Tumors were measured weekly. The presence of anti-ErbB2/Neu antibodies was assayed by ELISA, immunoprecipitation or indirect immunofluorescence. Biological activity of immune sera was investigated by analyzing antibody-dependent cellular cytotoxicity (ADCC), SALTO cells proliferation and apoptosis, ErbB2/Neu receptor down regulation and ERK1/2 phosphorylation. Anti-Neu T cell immunity was investigated by determining the release of IL-2 and IFN-gamma in T cells supernatant. Survival curves were determined using the Kaplan-Meier method and compared using the log-rank test. Differences in tumor volumes, number of apoptotic cells, titer of the serum, percentage of ADCC were evaluated through a two-tailed Student’s t-test. Results rV-neuT intratumoral vaccination was able to inhibit the growth of SALTO cancer cells in a dose-dependent manner. The anti-Neu serum titer paralleled in vivo antitumor activity of rV-neuT vaccinated mice. rV-neuT immune serum was able to mediate ADCC, inhibition of SALTO cells proliferation, down regulation of the ErbB2/Neu receptor, inhibition of ERK1/2 phosphorylation and induction of apoptosis, thus suggesting potential mechanisms of in vivo tumor growth interference. In addition, spleen T cells of rV-neuT vaccinated mice released IFN-gamma and IL-2 upon in vitro stimulation with several Neu-specific peptides located in the extracellular domain of Neu sequence. Conclusions rV-neuT intratumoral vaccination could be employed to induce an efficient antitumor response and reject transplanted salivary gland tumors. Our findings may have important implications for the design of cancer vaccine protocols for the treatment of salivary gland tumors and other accessible tumors using intratumoral injection of recombinant vaccinia virus.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | - Roberto Bei
- Department of Clinical Sciences and Translational Medicine, University of Rome "Tor Vergata", Rome, Italy.
| |
Collapse
|
29
|
Kaufman HL, Kim DW, Kim-Schulze S, DeRaffele G, Jagoda MC, Broucek JR, Zloza A. Results of a randomized phase I gene therapy clinical trial of nononcolytic fowlpox viruses encoding T cell costimulatory molecules. Hum Gene Ther 2014; 25:452-60. [PMID: 24484178 DOI: 10.1089/hum.2013.217] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Oncolytic viruses have shown promise as gene delivery vehicles in the treatment of cancer; however, their efficacy may be inhibited by the induction of anti-viral antibody titers. Fowlpox virus is a nonreplicating and nononcolytic vector that has been associated with lesser humoral but greater cell-mediated immunity in animal tumor models. To test whether fowlpox virus gene therapy is safe and can elicit immune responses in patients with cancer, we conducted a randomized phase I clinical trial of two recombinant fowlpox viruses encoding human B7.1 or a triad of costimulatory molecules (B7.1, ICAM-1, and LFA-3; TRICOM). Twelve patients (10 with melanoma and 2 with colon adenocarcinoma) enrolled in the trial and were randomized to rF-B7.1 or rF-TRICOM administered in a dose escalation manner (~3.7×10(7) or ~3.7×10(8) plaque-forming units) by intralesional injection every 4 weeks. The therapy was well tolerated, with only four patients experiencing grade 1 fever or injection site pain, and there were no serious adverse events. All patients developed anti-viral antibody titers after vector delivery, and posttreatment anti-carcinoembryonic antigen antibody titers were detected in the two patients with colon cancer. All patients developed CD8(+) T cell responses against fowlpox virus, but few responses against defined tumor-associated antigens were observed. This is the first clinical trial of direct (intratumoral) gene therapy with a nononcolytic fowlpox virus. Treatment was well tolerated in patients with metastatic cancer; all subjects exhibited anti-viral antibody responses, but limited tumor-specific T cell responses were detected. Nononcolytic fowlpox viruses are safe and induce limited T cell responses in patients with cancer. Further development may include prime-boost strategies using oncolytic viruses for initial priming.
Collapse
Affiliation(s)
- Howard L Kaufman
- 1 Rutgers Cancer Institute of New Jersey, Rutgers University , New Brunswick, NJ 08903
| | | | | | | | | | | | | |
Collapse
|
30
|
Ardiani A, Gameiro SR, Palena C, Hamilton DH, Kwilas A, King TH, Schlom J, Hodge JW. Vaccine-mediated immunotherapy directed against a transcription factor driving the metastatic process. Cancer Res 2014; 74:1945-57. [PMID: 24520078 DOI: 10.1158/0008-5472.can-13-2045] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Numerous reports have now demonstrated that the epithelial-to-mesenchymal transition (EMT) process is involved in solid tumor progression, metastasis, and drug resistance. Several transcription factors have been implicated as drivers of EMT and metastatic progression, including Twist. Overexpression of Twist has been shown to be associated with poor prognosis and drug resistance for many carcinomas and other tumor types. The role of Twist in experimental cancer metastases has been principally studied in the 4T1 mammary tumor model, where silencing of Twist in vitro has been shown to greatly reduce in vivo metastatic spread. Transcription factors such as Twist are generally believed to be "undruggable" because of their nuclear location and lack of a specific groove for tight binding of a small molecule inhibitor. An alternative approach to drug therapy targeting transcription factors driving the metastatic process is T-cell-mediated immunotherapy. A therapeutic vaccine platform that has been previously characterized consists of heat-killed recombinant Saccharomyces cerevisiae (yeast) capable of expressing tumor-associated antigen protein. We report here the construction and characterization of a recombinant yeast expressing the entire Twist protein, which is capable of inducing both CD8(+) and CD4(+) Twist-specific T-cell responses in vivo. Vaccination of mice reduced the size of primary transplanted 4T1 tumors and had an even greater antitumor effect on lung metastases of the same mice, which was dependent on Twist-specific CD8(+) T cells. These studies provide the rationale for vaccine-induced T-cell-mediated therapy of transcription factors involved in driving the metastatic process.
Collapse
Affiliation(s)
- Andressa Ardiani
- Authors' Affiliations: Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland; and GlobeImmune Inc., Louisville, Colorado
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Guo C, Manjili MH, Subjeck JR, Sarkar D, Fisher PB, Wang XY. Therapeutic cancer vaccines: past, present, and future. Adv Cancer Res 2014; 119:421-75. [PMID: 23870514 DOI: 10.1016/b978-0-12-407190-2.00007-1] [Citation(s) in RCA: 373] [Impact Index Per Article: 33.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Therapeutic vaccines represent a viable option for active immunotherapy of cancers that aim to treat late stage disease by using a patient's own immune system. The promising results from clinical trials recently led to the approval of the first therapeutic cancer vaccine by the U.S. Food and Drug Administration. This major breakthrough not only provides a new treatment modality for cancer management but also paves the way for rationally designing and optimizing future vaccines with improved anticancer efficacy. Numerous vaccine strategies are currently being evaluated both preclinically and clinically. This review discusses therapeutic cancer vaccines from diverse platforms or targets as well as the preclinical and clinical studies employing these therapeutic vaccines. We also consider tumor-induced immune suppression that hinders the potency of therapeutic vaccines, and potential strategies to counteract these mechanisms for generating more robust and durable antitumor immune responses.
Collapse
Affiliation(s)
- Chunqing Guo
- Department of Human and Molecular Genetics, Virginia Commonwealth University School of Medicine, Richmond, Virginia, USA
| | | | | | | | | | | |
Collapse
|
32
|
A randomized phase II study of immunization with dendritic cells modified with poxvectors encoding CEA and MUC1 compared with the same poxvectors plus GM-CSF for resected metastatic colorectal cancer. Ann Surg 2014; 258:879-86. [PMID: 23657083 DOI: 10.1097/sla.0b013e318292919e] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
OBJECTIVE To determine whether 1 of 2 vaccines based on dendritic cells (DCs) and poxvectors encoding CEA (carcinoembryonic antigen) and MUC1 (PANVAC) would lengthen survival in patients with resected metastases of colorectal cancer (CRC). BACKGROUND Recurrences after complete resections of metastatic CRC remain frequent. Immune responses to CRC are associated with fewer recurrences, suggesting a role for cancer vaccines as adjuvant therapy. Both DCs and poxvectors are potent stimulators of immune responses against cancer antigens. METHODS Patients, disease-free after CRC metastasectomy and perioperative chemotherapy (n = 74), were randomized to injections of autologous DCs modified with PANVAC (DC/PANVAC) or PANVAC with per injection GM-CSF (granulocyte-macrophage colony-stimulating factor). Endpoints were recurrence-free survival overall survival, and rate of CEA-specific immune responses. Clinical outcome was compared with that of an unvaccinated, contemporary group of patients who had undergone CRC metastasectomy, received similar perioperative therapy, and would have otherwise been eligible for the study. RESULTS Recurrence-free survival at 2 years was similar (47% and 55% for DC/PANVAC and PANVAC/GM-CSF, respectively) (χ P = 0.48). At a median follow-up of 35.7 months, there were 2 of 37 deaths in the DC/PANVAC arm and 5 of 37 deaths in the PANVAC/GM-CSF arm. The rate and magnitude of T-cell responses against CEA was statistically similar between study arms. As a group, vaccinated patients had superior survival compared with the contemporary unvaccinated group. CONCLUSIONS Both DC and poxvector vaccines have similar activity. Survival was longer for vaccinated patients than for a contemporary unvaccinated group, suggesting that a randomized trial of poxvector vaccinations compared with standard follow-up after metastasectomy is warranted. (NCT00103142).
Collapse
|
33
|
Curigliano G, Spitaleri G, Dettori M, Locatelli M, Scarano E, Goldhirsch A. Vaccine immunotherapy in breast cancer treatment: promising, but still early. Expert Rev Anticancer Ther 2014; 7:1225-41. [PMID: 17892423 DOI: 10.1586/14737140.7.9.1225] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Cancer vaccine-based immunotherapy should potentiate immunosurveillance function, preventing and protecting against growing tumors. Tumor cells usually activate the immune system, including T lymphocytes and natural killer cells, which are able to eliminate the transformed cells. Immunosubversion mechanisms related to tumor cells antigenic immunoediting induces mechanisms of tolerance and immunoescape. This condition impairs not only host-generated immunosurveillance, but also attempts to harness the immune response for therapeutic purposes. Most trials evaluating breast cancer vaccines have been carried out in patients in the metastatic and adjuvant setting. The aim of this review is to analyze the activity of vaccination strategies in current clinical trials. We summarize the differential approaches, protein-based and cell-based vaccines, focusing on vaccines targeting HER2/neu protein. Another focus of the review is to provide the reader with future challenges in the field, taking into account both the immunological and clinical aspects to better target the goal.
Collapse
Affiliation(s)
- Giuseppe Curigliano
- European Institute of Oncology, Department of Medicine, Division of Medical Oncology, Via Ripamonti 435, 20141 Milan, Italy.
| | | | | | | | | | | |
Collapse
|
34
|
Fraser CK, Brown MP, Diener KR, Hayball JD. Unravelling the complexity of cancer–immune system interplay. Expert Rev Anticancer Ther 2014; 10:917-34. [DOI: 10.1586/era.10.66] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
35
|
|
36
|
Mittendorf EA, Alatrash G, Xiao H, Clifton GT, Murray JL, Peoples GE. Breast cancer vaccines: ongoing National Cancer Institute-registered clinical trials. Expert Rev Vaccines 2014; 10:755-74. [DOI: 10.1586/erv.11.59] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
37
|
Riccardo F, Bolli E, Macagno M, Arigoni M, Cavallo F, Quaglino E. Chimeric DNA Vaccines: An Effective Way to Overcome Immune Tolerance. Curr Top Microbiol Immunol 2014; 405:99-122. [PMID: 25294003 DOI: 10.1007/82_2014_426] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The fact that cancer immunotherapy is considered to be a safe and successful weapon for use in combination with surgery, radiation, and chemotherapy treatments means that it has recently been chosen as Breakthrough of the Year 2013 by Science editors. Anticancer vaccines have been extensively tested, in this field, both in preclinical cancer models and in the clinic. However, tumor-associated antigens (TAAs) are often self-tolerated molecules and cancer patients suffer from strong immunosuppressive effects, meaning that the triggering of an effective anti-tumor immune response is difficult. One possible means to overcome immunological tolerance to self-TAAs is of course the use of vaccines that code for xenogeneic proteins. However, a low-affinity antibody response against the self-homologous protein expressed by cancer cells is generally induced by xenovaccination. This issue becomes extremely limiting when working with tumors in which the contribution of the humoral rather than the cellular immune response is required if tumor growth is to be hampered. A possible way to avoid this problem is to use hybrid vaccines which code for chimeric proteins that include both homologous and xenogeneic moieties. In fact, a superior protective anti-tumor immune response against ErbB2+ transplantable and autochthonous mammary tumors was observed over plasmids that coded for the fully rat or fully human proteins when hybrid plasmids that coded for chimeric rat/human ErbB2 protein were tested in ErbB2 transgenic mice. In principle, these findings may become the basis for a new rational means of designing effective vaccines against TAAs.
Collapse
Affiliation(s)
- Federica Riccardo
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Torino, via Nizza 52, 10126, Torino, Italy
| | - Elisabetta Bolli
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Torino, via Nizza 52, 10126, Torino, Italy
| | - Marco Macagno
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Torino, via Nizza 52, 10126, Torino, Italy
| | - Maddalena Arigoni
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Torino, via Nizza 52, 10126, Torino, Italy
| | - Federica Cavallo
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Torino, via Nizza 52, 10126, Torino, Italy
| | - Elena Quaglino
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Torino, via Nizza 52, 10126, Torino, Italy.
| |
Collapse
|
38
|
Schlom J, Hodge JW, Palena C, Tsang KY, Jochems C, Greiner JW, Farsaci B, Madan RA, Heery CR, Gulley JL. Therapeutic cancer vaccines. Adv Cancer Res 2014; 121:67-124. [PMID: 24889529 PMCID: PMC6324585 DOI: 10.1016/b978-0-12-800249-0.00002-0] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Therapeutic cancer vaccines have the potential of being integrated in the therapy of numerous cancer types and stages. The wide spectrum of vaccine platforms and vaccine targets is reviewed along with the potential for development of vaccines to target cancer cell "stemness," the epithelial-to-mesenchymal transition (EMT) phenotype, and drug-resistant populations. Preclinical and recent clinical studies are now revealing how vaccines can optimally be used with other immune-based therapies such as checkpoint inhibitors, and so-called nonimmune-based therapeutics, radiation, hormonal therapy, and certain small molecule targeted therapies; it is now being revealed that many of these traditional therapies can lyse tumor cells in a manner as to further potentiate the host immune response, alter the phenotype of nonlysed tumor cells to render them more susceptible to T-cell lysis, and/or shift the balance of effector:regulatory cells in a manner to enhance vaccine efficacy. The importance of the tumor microenvironment, the appropriate patient population, and clinical trial endpoints is also discussed in the context of optimizing patient benefit from vaccine-mediated therapy.
Collapse
Affiliation(s)
- Jeffrey Schlom
- Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA.
| | - James W Hodge
- Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Claudia Palena
- Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Kwong-Yok Tsang
- Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Caroline Jochems
- Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - John W Greiner
- Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Benedetto Farsaci
- Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Ravi A Madan
- Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Christopher R Heery
- Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - James L Gulley
- Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
39
|
Rausch S, Schwentner C, Stenzl A, Bedke J. mRNA vaccine CV9103 and CV9104 for the treatment of prostate cancer. Hum Vaccin Immunother 2014; 10:3146-52. [PMID: 25483661 PMCID: PMC4514038 DOI: 10.4161/hv.29553] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2014] [Revised: 06/01/2014] [Accepted: 06/11/2014] [Indexed: 12/22/2022] Open
Abstract
Among currently available vaccine strategies for cancer, nucleotide-based vaccination is an appealing treatment modality. Curevacs' mRNA containing vaccines (RNActive®) combine the beneficial properties of sufficient antigen-expression, autologous immune-stimulation and a high flexibility with respect to production and application. CV9103 and CV9104 are novel RNActive®-derived anticancer vaccines for the treatment of patients with prostate cancer. After successful phase I/II studies with documentation of good tolerability and favorable immune-activation of CV9103, the vaccine CV9104 is currently undergoing clinical testing in specific clinical settings such as castration resistant prostate cancer and as a neoadjuvant agent in men with high risk prostate cancer prior to surgery. This review discusses the available preclinical and clinical data on the anticancer vaccination treatment with RNActive®-derived anticancer-vaccines CV9103 and CV9104.
Collapse
Affiliation(s)
- Steffen Rausch
- Department of Urology; Eberhard Karls University Tübingen; Tübingen, Germany
| | | | - Arnulf Stenzl
- Department of Urology; Eberhard Karls University Tübingen; Tübingen, Germany
- German Cancer Consortium (DKTK); Partnerstandort Tübingen; German Cancer Research Center (DKFZ); Heidelberg, Germany
| | - Jens Bedke
- Department of Urology; Eberhard Karls University Tübingen; Tübingen, Germany
- German Cancer Consortium (DKTK); Partnerstandort Tübingen; German Cancer Research Center (DKFZ); Heidelberg, Germany
| |
Collapse
|
40
|
Viral Vector Vaccines To Treat Colorectal Cancer. CURRENT COLORECTAL CANCER REPORTS 2013. [DOI: 10.1007/s11888-013-0185-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
41
|
|
42
|
Cheng WF, Chang MC, Sun WZ, Jen YW, Liao CW, Chen YY, Chen CA. Fusion protein vaccines targeting two tumor antigens generate synergistic anti-tumor effects. PLoS One 2013; 8:e71216. [PMID: 24058440 PMCID: PMC3772923 DOI: 10.1371/journal.pone.0071216] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2013] [Accepted: 06/27/2013] [Indexed: 11/26/2022] Open
Abstract
Introduction Human papillomavirus (HPV) has been consistently implicated in causing several kinds of malignancies, and two HPV oncogenes, E6 and E7, represent two potential target antigens for cancer vaccines. We developed two fusion protein vaccines, PE(ΔIII)/E6 and PE(ΔIII)/E7 by targeting these two tumor antigens to test whether a combination of two fusion proteins can generate more potent anti-tumor effects than a single fusion protein. Materials and Methods Invivo antitumor effects including preventive, therapeutic, and antibody depletion experiments were performed. Invitro assays including intracellular cytokine staining and ELISA for Ab responses were also performed. Results PE(ΔIII)/E6+PE(ΔIII)/E7 generated both stronger E6 and E7-specific immunity. Only 60% of the tumor protective effect was observed in the PE(ΔIII)/E6 group compared to 100% in the PE(ΔIII)/E7 and PE(ΔIII)/E6+PE(ΔIII)/E7 groups. Mice vaccinated with the PE(ΔIII)/E6+PE(ΔIII)/E7 fusion proteins had a smaller subcutaneous tumor size than those vaccinated with PE(ΔIII)/E6 or PE(ΔIII)/E7 fusion proteins alone. Conclusion Fusion protein vaccines targeting both E6 and E7 tumor antigens generated more potent immunotherapeutic effects than E6 or E7 tumor antigens alone. This novel strategy of targeting two tumor antigens together can promote the development of cancer vaccines and immunotherapy in HPV-related malignancies.
Collapse
Affiliation(s)
- Wen-Fang Cheng
- Departments of Obstetrics and Gynecology, College of Medicine, National Taiwan University, Taipei, Taiwan
- Graduate Institute of Oncology, College of Medicine, National Taiwan University, Taipei, Taiwan
- Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Ming-Cheng Chang
- Departments of Obstetrics and Gynecology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Wei-Zen Sun
- Department of Anesthesiology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Yu-Wei Jen
- Departments of Obstetrics and Gynecology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | | | - Yun-Yuan Chen
- Departments of Obstetrics and Gynecology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Chi-An Chen
- Departments of Obstetrics and Gynecology, College of Medicine, National Taiwan University, Taipei, Taiwan
- * E-mail:
| |
Collapse
|
43
|
Status of Active Specific Immunotherapy for Stage II, Stage III, and Resected Stage IV Colon Cancer. CURRENT COLORECTAL CANCER REPORTS 2013. [DOI: 10.1007/s11888-013-0182-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
44
|
Improved cytotoxic T-lymphocyte immune responses to a tumor antigen by vaccines co-expressing the SLAM-associated adaptor EAT-2. Cancer Gene Ther 2013; 20:564-75. [PMID: 23949283 DOI: 10.1038/cgt.2013.53] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2013] [Revised: 07/09/2013] [Accepted: 07/11/2013] [Indexed: 01/21/2023]
Abstract
The signaling lymphocytic activation molecule-associated adaptor Ewing's sarcoma's-activated transcript 2 (EAT-2) is primarily expressed in dendritic cells, macrophages and natural killer cells. Including EAT-2 in a vaccination regimen enhanced innate and adaptive immune responses toward pathogen-derived antigens, even in the face of pre-existing vaccine immunity. Herein, we investigate whether co-vaccinations with two recombinant Ad5 (rAd5) vectors, one expressing the carcinoembryonic antigen (CEA) and one expressing EAT-2, can induce more potent CEA-specific cytotoxic T lymphocyte (CTL) and antitumor activity in the therapeutic CEA-expressing MC-38 tumor model. Our results suggest that inclusion of EAT-2 significantly alters the kinetics of Th1-biasing proinflammatory cytokine and chemokine responses, and enhances anti-CEA-specific CTL responses. As a result, rAd5-EAT2-augmented rAd5-CEA vaccinations are more efficient in eliminating CEA-expressing target cells as measured by an in vivo CTL assay. Administration of rAd5-EAT2 vaccines also reduced the rate of growth of MC-38 tumor growth in vivo. Also, an increase in MC-38 tumor cell apoptosis (as measured by hematoxylin and eosin staining, active caspase-3 and granzyme B levels within the tumors) was observed. These data provide evidence that more efficient, CEA-specific effector T cells are generated by rAd5 vaccines expressing CEA, when augmented by rAd5 vaccines expressing EAT-2, and this regimen may be a promising approach for cancer immunotherapy in general.
Collapse
|
45
|
Magee MS, Snook AE, Marszalowicz GP, Waldman SA. Immunotherapeutic strategies to target prognostic and predictive markers of cancer. Biomark Med 2013; 7:23-35. [PMID: 23387482 DOI: 10.2217/bmm.12.110] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Throughout the last century medical advances in cancer treatment in the fields of surgery, radiation therapy and chemotherapy have greatly impacted patients' survival rates. Nevertheless, cancer remains a significant cause of mortality, with an estimated 7.6 million deaths worldwide in 2008, reflecting the inability of existing therapies to effectively cure disease. The emergence of vaccines and their successes in preventing the spread of infectious diseases has demonstrated the unique specificity and therapeutic potential of the immune system. This potential has driven the development of novel cancer immunotherapeutics. This review focuses on the current status of the use of immunologic effectors to target known biomarkers in cancer.
Collapse
Affiliation(s)
- Michael S Magee
- Department of Pharmacology & Experimental Therapeutics, Thomas Jefferson University, Philadelphia, 132 South 10th Street, 1170 Main, Philadelphia, PA 19107, USA
| | | | | | | |
Collapse
|
46
|
Abstract
The targets for the immune system are antigens present on cancer cells; however, many are not cancer-specific and may also be found on normal tissues. These antigens are often products of mutated cellular genes, aberrantly expressed normal genes, or genes encoding viral proteins. Vaccines constitute an active and specific immunotherapy designed to stimulate the intrinsic antitumor immune response by presenting tumor-associated antigens expressed on normal tissues that are overexpressed on tumor cells.
Collapse
|
47
|
Laheru D, Biedrzycki B, Jaffee EM. Development of a cytokine-modified allogeneic whole cell pancreatic cancer vaccine. Methods Mol Biol 2013; 980:175-203. [PMID: 23359154 DOI: 10.1007/978-1-62703-287-2_9] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Management of patients with pancreatic cancer is a multidisciplinary approach that presents enormous challenges to the clinician. Overall 5-year survival for all patients remains <3%. Symptoms of early pancreas cancer are nonspecific. As such, only a fraction of patients are candidates for surgery. While surgical resection provides the only curative option, most patients will develop tumor recurrence and die of their disease. To date, the clinical benefits of chemotherapy and radiation therapy have been important but have led to modest improvements. Tumor vaccines have the potential to specifically target the needle of pancreas cancer cells amidst the haystack of normal tissue. The discovery of pancreas tumor-specific antigens and the subsequent ability to harness this technology has become an area of intense interest for tumor immunologists and clinicians alike. Without knowledge of specific antigen targets, the whole tumor cell represents the best source of immunizing antigens. This chapter will focus on the development of whole tumor cell vaccine strategies for pancreas cancer.
Collapse
Affiliation(s)
- Dan Laheru
- The Sidney Kimmel Cancer Center, the Skip Viragh Clinical Pancreatic Cancer Center, Johns Hopkins Medical Institutions, Baltimore, MD, USA.
| | | | | |
Collapse
|
48
|
Choi Y, Chang J. Viral vectors for vaccine applications. Clin Exp Vaccine Res 2013; 2:97-105. [PMID: 23858400 PMCID: PMC3710930 DOI: 10.7774/cevr.2013.2.2.97] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2013] [Revised: 04/26/2013] [Accepted: 05/09/2013] [Indexed: 12/16/2022] Open
Abstract
Traditional approach of inactivated or live-attenuated vaccine immunization has resulted in impressive success in the reduction and control of infectious disease outbreaks. However, many pathogens remain less amenable to deal with the traditional vaccine strategies, and more appropriate vaccine strategy is in need. Recent discoveries that led to increased understanding of viral molecular biology and genetics has rendered the used of viruses as vaccine platforms and as potential anti-cancer agents. Due to their ability to effectively induce both humoral and cell-mediated immune responses, viral vectors are deemed as an attractive alternative to the traditional platforms to deliver vaccine antigens as well as to specifically target and kill tumor cells. With potential targets ranging from cancers to a vast number of infectious diseases, the benefits resulting from successful application of viral vectors to prevent and treat human diseases can be immense.
Collapse
Affiliation(s)
- Youngjoo Choi
- College of Pharmacy, Ewha Womans University, Seoul, Korea
| | | |
Collapse
|
49
|
Affiliation(s)
- Rachel Lubong Sabado
- NYU Langone Medical Center Cancer Institute; New York University School of Medicine, New York; New York
| | - Nina Bhardwaj
- NYU Langone Medical Center Cancer Institute; New York University School of Medicine, New York; New York
| |
Collapse
|
50
|
Madan RA, Gulley JL, Kantoff PW. Demystifying immunotherapy in prostate cancer: understanding current and future treatment strategies. Cancer J 2013; 19:50-8. [PMID: 23337757 PMCID: PMC3556901 DOI: 10.1097/ppo.0b013e31828160a9] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Immunotherapy has emerged as a viable therapeutic option for patients with prostate cancer. There are multiple potential strategies that use the immune system, including therapeutic cancer vaccines that are designed to stimulate immune cells to target antigens expressed by cancer cells. Sipuleucel-T is a vaccine currently approved for the treatment of minimally symptomatic metastatic prostate cancer, whereas the vaccine PSA-TRICOM and the immune-checkpoint inhibitor ipilimumab are in phase III testing. Although there are no short-term changes in disease progression or available biomarkers to assess response, these agents appear to improve survival. One hypothesis suggests that this apparent paradox can be explained by the growth-moderating effects of these treatments, which do not cause tumor size to diminish, but rather stall or slow their growth rate over time. For this reason, the use of immunotherapy earlier in the disease process is being investigated. Another approach is to block immune-regulatory mechanisms mediated by the molecules cytotoxic T lymphocyte antigen 4 and programmed cell death protein 1. Additional future strategies will combine immunotherapy with other standard therapies, potentially enhancing the latter's clinical impact and thereby improving both time to progression and overall survival due to the combined effects of both treatments. Prospective trials are currently evaluating these hypotheses and will ultimately serve to optimize immunotherapy in the treatment of prostate cancer.
Collapse
Affiliation(s)
- Ravi A. Madan
- Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - James L. Gulley
- Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Philip W. Kantoff
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|