1
|
Gu T, Raval R, Bashkin Z, Zhou C, Ko S, Kong N, Hong S, Bhaskara A, Shah S, Joshi A, Thellakal S, Rim K, Marimuthu A, Venkatesan S, Wang E, Li S, Jayabalan A, Tao A, Fang Y, Xia L, Chui A, Shu E, Zhang T, Chen Z, Njoo E. Synthesis, antiproliferative activity, and biological profiling of C-19 trityl and silyl ether andrographolide analogs in colon cancer and breast cancer cells. Bioorg Med Chem Lett 2025; 121:130163. [PMID: 40043819 DOI: 10.1016/j.bmcl.2025.130163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 02/08/2025] [Accepted: 02/28/2025] [Indexed: 03/10/2025]
Abstract
Andrographolide, a labdane diterpenoid isolated from Andrographis paniculata, putatively functions through covalent inhibition of NF-κB, a transcription factor that modulates tumor survival and metastasis. Previous studies have found that functionalization of the C-19 hydroxyl alters the primary mode of action from inhibition of NF-κB to the modulation of the Wnt1/β-catenin signaling pathway. Here, we synthesized a series of twelve C-19 trityl and silyl ether analogs, including three novel substituted trityl analogs and four novel substituted silyl analogs of andrographolide. MTT assays revealed cell line selectivity between colorectal and breast cancer cells, which is consistent with known mechanisms of β-catenin-driven cell proliferation in colorectal cancer cell lines. Most compounds exhibited cell line specific antiproliferative activity in HCT-116 and HT-29 colorectal cancer cell lines. Specifically, within 24 h, C-19 analogs of andrographolide exhibit far more limited antiproliferative activity in MCF-7 breast cancer cells compared to HCT-116, HT-29, and MDA-MB-231 cells. Through in vitro TNF-α-dependent NF-κB reporter and Wnt1-dependent luciferase reporter assays, we observed that several analogs generally exhibit greater inhibitory activity compared to andrographolide. Fluorescence imaging demonstrated that cells treated with andrographolide and its C-19 analogs retained similar distributions of active β-catenin, but notable differences in antiproliferative potency upon co-delivery with GSK-3β inhibitor CHIR99021 indicate that several lead compounds exhibit attenuated biological activity selectively in HT-29 cells. Collectively, this work indicates that modest structural modifications at C-19 of andrographolide can have profound implications for its biological activity in mechanisms connected to its anticancer activity.
Collapse
Affiliation(s)
- Tiffany Gu
- Department of Chemistry, Aspiring Scholars Directed Research Program, USA
| | - Rushika Raval
- Department of Chemistry, Aspiring Scholars Directed Research Program, USA
| | - Zachary Bashkin
- Department of Chemistry, Aspiring Scholars Directed Research Program, USA
| | - Carina Zhou
- Department of Chemistry, Aspiring Scholars Directed Research Program, USA
| | - Sanghyuk Ko
- Department of Chemistry, Aspiring Scholars Directed Research Program, USA
| | - Natalie Kong
- Department of Chemistry, Aspiring Scholars Directed Research Program, USA
| | - Seoyeon Hong
- Department of Chemistry, Aspiring Scholars Directed Research Program, USA
| | - Aditya Bhaskara
- Department of Biological and Life Sciences, Aspiring Scholars Directed Research Program, USA
| | - Samarth Shah
- Department of Biological and Life Sciences, Aspiring Scholars Directed Research Program, USA
| | - Aditi Joshi
- Department of Biological and Life Sciences, Aspiring Scholars Directed Research Program, USA
| | - Samahith Thellakal
- Department of Biological and Life Sciences, Aspiring Scholars Directed Research Program, USA
| | - Kaitlyn Rim
- Department of Biological and Life Sciences, Aspiring Scholars Directed Research Program, USA
| | - Anushree Marimuthu
- Department of Chemistry, Aspiring Scholars Directed Research Program, USA
| | - Srishti Venkatesan
- Department of Chemistry, Aspiring Scholars Directed Research Program, USA
| | - Emma Wang
- Department of Computer Science & Engineering, Aspiring Scholars Directed Research Program, USA
| | - Sophia Li
- Department of Computer Science & Engineering, Aspiring Scholars Directed Research Program, USA
| | - Aditi Jayabalan
- Department of Biological and Life Sciences, Aspiring Scholars Directed Research Program, USA
| | - Alice Tao
- Department of Chemistry, Aspiring Scholars Directed Research Program, USA
| | - Yilin Fang
- Department of Chemistry, Aspiring Scholars Directed Research Program, USA
| | - Lorelei Xia
- Department of Chemistry, Aspiring Scholars Directed Research Program, USA
| | - Aidan Chui
- Department of Biological and Life Sciences, Aspiring Scholars Directed Research Program, USA
| | - Emily Shu
- Department of Chemistry, Aspiring Scholars Directed Research Program, USA
| | - Tracy Zhang
- Department of Biological and Life Sciences, Aspiring Scholars Directed Research Program, USA
| | - Zhan Chen
- Department of Biological and Life Sciences, Aspiring Scholars Directed Research Program, USA
| | - Edward Njoo
- Department of Chemistry, Aspiring Scholars Directed Research Program, USA.
| |
Collapse
|
2
|
Zhong Y, Wang Y, Wang C, Cao K, Wang X, Xu X, Yang M, Zhang G, Liu H, Lu J. Targeting mesothelin-CD24 axis repolarizes tumor-associated macrophages to potentiate PD-1 blockade therapy in high-grade serous ovarian cancer. J Immunother Cancer 2025; 13:e011230. [PMID: 40010770 PMCID: PMC11873354 DOI: 10.1136/jitc-2024-011230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Accepted: 02/03/2025] [Indexed: 02/28/2025] Open
Abstract
BACKGROUND High-grade serous ovarian cancer (HGSOC) is a highly aggressive malignancy marked by an immunosuppressive tumor microenvironment that hinders effective immune responses. A key feature of this environment is the extensive infiltration of myeloid cells, which contributes to immune evasion. This study explored how mesothelin (MSLN), a tumor-associated antigen, modulates the expression of CD24, an emerging target for immune modulation, and its role in promoting immune evasion in HGSOC. Understanding these underlying mechanisms is crucial for enhancing the efficacy of immune checkpoint blockade (ICB) therapies and improving outcomes in patients with HGSOC. METHODS We analyzed the expression of MSLN in HGSOC samples and examined its correlation with clinical outcome. In vitro and in vivo models were used to explore how MSLN influences CD24 expression and the polarization of tumor-associated macrophages (TAMs). We also investigated the role of MSLN in the activation of Wnt/β-catenin signaling and its impact on T-cell function and antitumor immunity. The effects of Msln knockdown on CD24 expression and the response to anti-programmed cell death protein-1 (PD-1) therapy were evaluated in syngeneic mouse models. RESULTS MSLN expression was found to be significantly elevated in HGSOC, with high MSLN levels correlating with poor prognosis and resistance to ICB. MSLN upregulated CD24 and promoted the protumorigenic polarization of TAMs, contributing to T-cell dysfunction. Mechanistically, MSLN activated Wnt/β-catenin signaling, which in turn enhanced CD24 expression. This activation forms a positive feedback loop that further promotes MSLN transcription. In contrast, Msln knockdown reduced CD24 expression, relieved cytotoxic T-cell suppression, and significantly improved the efficacy of anti-PD-1 therapy in syngeneic models. CONCLUSIONS This study elucidates the critical role of MSLN in immune evasion in HGSOC and its underlying mechanisms. Targeting MSLN in combination with ICB is a promising strategy to enhance the efficacy of immunotherapy and improve patient outcomes in HGSOC.
Collapse
Affiliation(s)
- Yujing Zhong
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
| | - Yiying Wang
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
- Department of Gynecology, Obstetrics and Gynecology Hospital, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
| | - Chenyang Wang
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
| | - Kankan Cao
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
| | - Xueling Wang
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
| | - Xuyao Xu
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
| | - Moran Yang
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
- Department of Gynecology, Obstetrics and Gynecology Hospital, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
| | - Guodong Zhang
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
- Department of Gynecology, Obstetrics and Gynecology Hospital, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
| | - Haiou Liu
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
- Department of Gynecology, Obstetrics and Gynecology Hospital, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
| | - Jiaqi Lu
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
- Department of Gynecology, Obstetrics and Gynecology Hospital, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
| |
Collapse
|
3
|
Gila F, Khoddam S, Jamali Z, Ghasemian M, Shakeri S, Dehghan Z, Fallahi J. Personalized medicine in colorectal cancer: a comprehensive study of precision diagnosis and treatment. Per Med 2025; 22:59-81. [PMID: 39924822 DOI: 10.1080/17410541.2025.2459050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 01/23/2025] [Indexed: 02/11/2025]
Abstract
Colorectal cancer is a common and fatal disease that affects many people globally. CRC is classified as the third most prevalent cancer among males and the second most frequent cancer among females worldwide. The purpose of this article is to examine how personalized medicine might be used to treat colorectal cancer. The classification of colorectal cancer based on molecular profiling, including the detection of significant gene mutations, genomic instability, and gene dysregulation, is the main topic of this discussion. Advanced technologies and biomarkers are among the detection methods that are explored, demonstrating their potential for early diagnosis and precise prognosis. In addition, the essay explores the world of treatment possibilities by providing light on FDA-approved personalized medicine solutions that provide individualized and precise interventions based on patient characteristics. This article assesses targeted treatments like cetuximab and nivolumab, looks at the therapeutic usefulness of biomarkers like microsatellite instability (MSI) and circulating tumor DNA (ctDNA), and investigates new approaches to combat resistance. Through this, our review provides a thorough overview of personalized medicine in the context of colorectal cancer, ultimately highlighting its potential to revolutionize the field and improve patient care.
Collapse
Affiliation(s)
- Fatemeh Gila
- Department of Medical Genetics, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Somayeh Khoddam
- Department of Medical Genetics, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Zahra Jamali
- Department of Medical Genetics, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohmmad Ghasemian
- Department of Medical Genetics, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Shayan Shakeri
- Department of Medical Genetics, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Zeinab Dehghan
- Department of Comparative Biomedical Sciences, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
- Autoimmune Diseases Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Jafar Fallahi
- Department of Molecular Medicine, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
4
|
Abdelmaksoud-Dammak R, Ammous-Boukhris N, Guidara S, Kamoun H, Gdoura H, Barkia B, Boudabbous M, Tahri N, Ameur HB, Boujelbene S, Gargouri RM. Gardner syndrome in a Tunisian family: Identification of a rare APC mutation through targeted NGS. Gene 2025; 935:149065. [PMID: 39486663 DOI: 10.1016/j.gene.2024.149065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 09/30/2024] [Accepted: 10/29/2024] [Indexed: 11/04/2024]
Abstract
Gardner syndrome (GS) is a subtype of familial adenomatous polyposis (FAP) characterized by colorectal polyps, multiple osteomas, soft tissue tumors, and specific oral manifestations, such as jaw osteomas. GS is caused by mutations in the APC gene, resulting in a nonfunctional protein. This study reports a comprehensive clinical evaluation and genetic analysis of a Tunisian family affected by GS. Targeted exome sequencing and Sanger sequencing techniques were employed to identify and validate mutations in the APC gene. Clinical observations of the patient revealed multiple sebaceous cysts, frontal and maxillary osteomas, and several gastrointestinal polyps. Genetic analysis revealed a pathogenic variant (c.4652-4655del) in the APC gene, leading to a truncated protein. Additionally, genetic testing of the patient's child indicated that the child does not carry the APC pathogenic variant. In conclusion, our study highlights the importance of genetic testing in raising awareness of GS among clinicians to ensure early diagnosis and effective management, thereby reducing the risk of development and progression of colorectal cancer.
Collapse
Affiliation(s)
- Rania Abdelmaksoud-Dammak
- Center of Biotechnology of Sfax, Laboratory of Eukaryotes Molecular Biotechnology. University of Sfax, Tunisia
| | - Nihel Ammous-Boukhris
- Center of Biotechnology of Sfax, Laboratory of Eukaryotes Molecular Biotechnology. University of Sfax, Tunisia
| | - Souhir Guidara
- Department of Human Genetics, Hedi Chaker Hospital, University of Sfax, Tunisia
| | - Hassen Kamoun
- Department of Human Genetics, Hedi Chaker Hospital, University of Sfax, Tunisia
| | - Hela Gdoura
- Department of Gastroenterology, Hedi Chaker Hospital, University of Sfax, Tunisia
| | - Baha Barkia
- Department of Gastroenterology, Hedi Chaker Hospital, University of Sfax, Tunisia
| | - Mouna Boudabbous
- Department of Gastroenterology, Hedi Chaker Hospital, University of Sfax, Tunisia
| | - Nabil Tahri
- Department of Gastroenterology, Hedi Chaker Hospital, University of Sfax, Tunisia
| | - Hazem Ben Ameur
- Department of Surgery, Habib Bourguiba Hospital, University of Sfax, Tunisia
| | - Salah Boujelbene
- Department of Surgery, Habib Bourguiba Hospital, University of Sfax, Tunisia
| | - Raja Mokdad Gargouri
- Center of Biotechnology of Sfax, Laboratory of Eukaryotes Molecular Biotechnology. University of Sfax, Tunisia.
| |
Collapse
|
5
|
Sigler S, Abdel-Halim M, Fathalla RK, Da Silva LM, Keeton AB, Maxuitenko YY, Berry KL, Zhou G, Engel M, Abadi AH, Piazza GA. Novel Celecoxib Derivative, RF26, Blocks Colon Cancer Cell Growth by Inhibiting PDE5, Activating cGMP/PKG Signaling, and Suppressing β-catenin-dependent Transcription. Anticancer Agents Med Chem 2025; 25:52-62. [PMID: 39225209 DOI: 10.2174/0118715206318802240821114353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 07/14/2024] [Accepted: 07/24/2024] [Indexed: 09/04/2024]
Abstract
BACKGROUND Previous studies have reported that the cGMP-specific PDE5 isozyme is overexpressed in colon adenomas and adenocarcinomas and essential for colon cancer cell proliferation, while PDE5 selective inhibitors (e.g., sildenafil) have been reported to have cancer chemopreventive activity. AIM This study aimed to determine the anticancer activity of a novel PDE5 inhibitor, RF26, using colorectal cancer (CRC) cells and the role of PDE5 in CRC tumor growth in vivo. OBJECTIVE The objective of this study was to characterize the anticancer activity of a novel celecoxib derivative, RF26, in CRC cells previously reported to lack COX-2 inhibition but have potent PDE5 inhibitory activity. METHODS Anticancer activity of RF26 was studied using human CRC cell lines. Effects on cell growth, cGMPdependent protein kinase (PKG) activity, β-catenin levels, TCF/LEF transcriptional activity, cell cycle distribution, and apoptosis were measured. CRISPR/cas9 PDE5 knockout techniques were used to determine if PDE5 mediates the anticancer activity of RF26 and validate PDE5 as a cancer target. RESULTS RF26 was appreciably more potent than celecoxib and sildenafil to suppress CRC cell growth and was effective at concentrations that activated PKG signaling. RF26 suppressed β-catenin levels and TCF/LEF transcriptional activity and induced G1 cell cycle arrest and apoptosis within the same concentration range. CRISPR/cas9 PDE5 knockout CRC cells displayed reduced sensitivity to RF26, proliferated slower than parental cells, and failed to establish tumors in mice. CONCLUSION Further evaluation of RF26 for the prevention or treatment of cancer and studying the role of PDE5 in tumorigenesis are warranted.
Collapse
Affiliation(s)
- Sara Sigler
- Department of Pharmacology, Drug Discovery Research Center, Mitchell Cancer Institute, University of South Alabama, Mobile, AL, 36608, USA
| | - Mohammad Abdel-Halim
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo 11835, Egypt
| | - Reem K Fathalla
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo 11835, Egypt
| | - Luciana Madeira Da Silva
- Department of Pharmacology, Drug Discovery Research Center, Mitchell Cancer Institute, University of South Alabama, Mobile, AL, 36608, USA
| | - Adam B Keeton
- Department of Drug Discovery and Development, Harrison College of Pharmacy, Auburn University, Auburn, Alabama, 36832, United States
| | - Yulia Y Maxuitenko
- Department of Drug Discovery and Development, Harrison College of Pharmacy, Auburn University, Auburn, Alabama, 36832, United States
| | - Kristy L Berry
- Department of Drug Discovery and Development, Harrison College of Pharmacy, Auburn University, Auburn, Alabama, 36832, United States
| | - Gang Zhou
- Georgia Cancer Center, Department of Medicine, Medical College of Georgia, Augusta University, GA 30912, United States
| | - Matthias Engel
- Pharmaceutical and Medicinal Chemistry, Saarland University, Campus C2.3, D-66123 Saarbrücken, Germany
| | - Ashraf H Abadi
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo 11835, Egypt
| | - Gary A Piazza
- Department of Drug Discovery and Development, Harrison College of Pharmacy, Auburn University, Auburn, Alabama, 36832, United States
| |
Collapse
|
6
|
Jin S, Zhong W, Li B, Wang K, Lai D. Multidimensional analysis of the impact of Gemmatimonas, Rhodothermus, and Sutterella on drug and treatment response in colorectal cancer. Front Cell Infect Microbiol 2024; 14:1457461. [PMID: 39439901 PMCID: PMC11493733 DOI: 10.3389/fcimb.2024.1457461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Accepted: 09/19/2024] [Indexed: 10/25/2024] Open
Abstract
Background Colorectal cancer is the third most prevalent cancer across the globe. Despite a diversity of treatment methods, the recurrence and mortality rates of the disease remain high. Recent studies have revealed a close association of the gut microbiota with the occurrence, development, treatment response, and prognosis of colorectal cancer. Objective This study aims to integrate transcriptome and microbiome data to identify colorectal cancer subtypes associated with different gut microbiota and evaluate their roles in patient survival prognosis, tumor microenvironment (TME), and drug treatment response. Methods An integrated analysis of microbiome data was conducted on samples of colorectal cancer from public databases. Based on this, two tumor subtypes (C1 and C2) closely associated with patient survival prognosis were identified and a risk score model was constructed. The survival status, clinical parameters, immune scores, and other features were analyzed in-depth, and the sensitivity of various potential drugs was examined. Results A thorough examination of microbiome information obtained from colorectal cancer patients led to the identification of two primary tumor clusters (C1 and C2), exhibiting notable variations in survival outcomes. Patients with the C1 subtype were closely associated with better prognosis, while those with the C2 subtype had higher gut microbial richness and poorer survival prognosis. A predictive model utilizing the microbiome data was developed to accurately forecast the survival outcome of patients with colorectal cancer. The TME scores provided a biological basis for risk assessment in high-risk (similar to the C2 subtype) patient cohorts. Evaluation of the sensitivity of different subtypes to various potential drugs, indicated the critical importance of personalized treatment. Further analysis showed good potential of the developed risk-scoring model in predicting immune checkpoint functions and treatment response of patients, which may be crucial in guiding the selection of immunotherapy strategies for patients with colorectal cancer. Conclusion This study, through a comprehensive analysis of colorectal cancer microbiome, immune microenvironment, and drug sensitivity, enhances the current understanding of the multidimensional interactions of colorectal cancer and provides important clinical indications for improving future treatment strategies. The findings offer a new perspective on improving treatment response and long-term prognosis of patients with CRC through the regulation of microbiota or the utilization of biomarkers provided by it.
Collapse
Affiliation(s)
- Shaowen Jin
- Department of Gastrointestinal Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Wa Zhong
- Department of Gastrointestinal Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Bo Li
- Department of Orthopedics, Beijing Luhe Hospital, Capital Medical University, Beijing, China
| | - Kaimei Wang
- Department of Pediatrics, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Dongming Lai
- Department of Gastrointestinal Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
- Department of Gastrointestinal Surgery, Shenshan Medical Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Shanwei, China
| |
Collapse
|
7
|
Song P, Gao Z, Bao Y, Chen L, Huang Y, Liu Y, Dong Q, Wei X. Wnt/β-catenin signaling pathway in carcinogenesis and cancer therapy. J Hematol Oncol 2024; 17:46. [PMID: 38886806 PMCID: PMC11184729 DOI: 10.1186/s13045-024-01563-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Accepted: 05/31/2024] [Indexed: 06/20/2024] Open
Abstract
The Wnt/β-catenin signaling pathway plays a crucial role in various physiological processes, encompassing development, tissue homeostasis, and cell proliferation. Under normal physiological conditions, the Wnt/β-catenin signaling pathway is meticulously regulated. However, aberrant activation of this pathway and downstream target genes can occur due to mutations in key components of the Wnt/β-catenin pathway, epigenetic modifications, and crosstalk with other signaling pathways. Consequently, these dysregulations contribute significantly to tumor initiation and progression. Therapies targeting the Wnt/β-catenin signaling transduction have exhibited promising prospects and potential for tumor treatment. An increasing number of medications targeting this pathway are continuously being developed and validated. This comprehensive review aims to summarize the latest advances in our understanding of the role played by the Wnt/β-catenin signaling pathway in carcinogenesis and targeted therapy, providing valuable insights into acknowledging current opportunities and challenges associated with targeting this signaling pathway in cancer research and treatment.
Collapse
Affiliation(s)
- Pan Song
- Department of Urology, Institute of Urology, West China Hospital of Sichuan University, Chengdu, Sichuan Province, 610041, China
| | - Zirui Gao
- Laboratory of Aging Research and Cancer Agent Target, State Key Laboratory of Biotherapy, Cancer Center, West China Hospital, National Clinical Research Center for Geriatrics, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan, 610041, P.R. China
| | - Yige Bao
- Department of Urology, Institute of Urology, West China Hospital of Sichuan University, Chengdu, Sichuan Province, 610041, China
| | - Li Chen
- Laboratory of Aging Research and Cancer Agent Target, State Key Laboratory of Biotherapy, Cancer Center, West China Hospital, National Clinical Research Center for Geriatrics, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan, 610041, P.R. China
| | - Yuhe Huang
- Laboratory of Aging Research and Cancer Agent Target, State Key Laboratory of Biotherapy, Cancer Center, West China Hospital, National Clinical Research Center for Geriatrics, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan, 610041, P.R. China
| | - Yanyan Liu
- Laboratory of Aging Research and Cancer Agent Target, State Key Laboratory of Biotherapy, Cancer Center, West China Hospital, National Clinical Research Center for Geriatrics, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan, 610041, P.R. China
| | - Qiang Dong
- Department of Urology, Institute of Urology, West China Hospital of Sichuan University, Chengdu, Sichuan Province, 610041, China.
| | - Xiawei Wei
- Laboratory of Aging Research and Cancer Agent Target, State Key Laboratory of Biotherapy, Cancer Center, West China Hospital, National Clinical Research Center for Geriatrics, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan, 610041, P.R. China.
| |
Collapse
|
8
|
Zhang H, Li Q, Guo X, Wu H, Hu C, Liu G, Yu T, Hu X, Qiu Q, Guo G, She J, Chen Y. MGMT activated by Wnt pathway promotes cisplatin tolerance through inducing slow-cycling cells and nonhomologous end joining in colorectal cancer. J Pharm Anal 2024; 14:100950. [PMID: 39027911 PMCID: PMC11255892 DOI: 10.1016/j.jpha.2024.02.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 01/31/2024] [Accepted: 02/07/2024] [Indexed: 07/20/2024] Open
Abstract
Chemotherapy resistance plays a pivotal role in the prognosis and therapeutic failure of patients with colorectal cancer (CRC). Cisplatin (DDP)-resistant cells exhibit an inherent ability to evade the toxic chemotherapeutic drug effects which are characterized by the activation of slow-cycle programs and DNA repair. Among the elements that lead to DDP resistance, O 6-methylguanine (O 6-MG)-DNA-methyltransferase (MGMT), a DNA-repair enzyme, performs a quintessential role. In this study, we clarify the significant involvement of MGMT in conferring DDP resistance in CRC, elucidating the underlying mechanism of the regulatory actions of MGMT. A notable upregulation of MGMT in DDP-resistant cancer cells was found in our study, and MGMT repression amplifies the sensitivity of these cells to DDP treatment in vitro and in vivo. Conversely, in cancer cells, MGMT overexpression abolishes their sensitivity to DDP treatment. Mechanistically, the interaction between MGMT and cyclin dependent kinase 1 (CDK1) inducing slow-cycling cells is attainted via the promotion of ubiquitination degradation of CDK1. Meanwhile, to achieve nonhomologous end joining, MGMT interacts with XRCC6 to resist chemotherapy drugs. Our transcriptome data from samples of 88 patients with CRC suggest that MGMT expression is co-related with the Wnt signaling pathway activation, and several Wnt inhibitors can repress drug-resistant cells. In summary, our results point out that MGMT is a potential therapeutic target and predictive marker of chemoresistance in CRC.
Collapse
Affiliation(s)
- Haowei Zhang
- Department of General Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
- Center for Gut Microbiome Research, Med-X Institute, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Qixin Li
- Department of General Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
- Center for Gut Microbiome Research, Med-X Institute, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Xiaolong Guo
- Center for Gut Microbiome Research, Med-X Institute, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Hong Wu
- Department of General Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Chenhao Hu
- Department of General Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
- Department of High Talent, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Gaixia Liu
- Department of General Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
- Center for Gut Microbiome Research, Med-X Institute, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Tianyu Yu
- Department of General Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
- Center for Gut Microbiome Research, Med-X Institute, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Xiake Hu
- Department of General Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
- Center for Gut Microbiome Research, Med-X Institute, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Quanpeng Qiu
- Department of General Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
- Center for Gut Microbiome Research, Med-X Institute, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Gang Guo
- Center for Gut Microbiome Research, Med-X Institute, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
- Department of High Talent, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Junjun She
- Department of General Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
- Center for Gut Microbiome Research, Med-X Institute, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
- Department of High Talent, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Yinnan Chen
- Center for Gut Microbiome Research, Med-X Institute, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
- Department of High Talent, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| |
Collapse
|
9
|
Falsetti I, Palmini G, Iantomasi T, Brandi ML, Tonelli F. Mechanisms of Action of Phytoestrogens and Their Role in Familial Adenomatous Polyposis. Pharmaceutics 2024; 16:640. [PMID: 38794302 PMCID: PMC11125335 DOI: 10.3390/pharmaceutics16050640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 04/30/2024] [Accepted: 05/02/2024] [Indexed: 05/26/2024] Open
Abstract
Familial adenomatous polyposis (FAP) is a rare disease characterized by the development of adenomatous polyps in the colon and rectum already in adolescence. If left untreated, patients develop colorectal cancer (CRC) with a 100% probability. To date, the gold standard of FAP management is surgery, which is associated with morbidity and mortality. A chemopreventive agent capable of delaying, preventing and reversing the development of CRC has been sought. Several classes of drugs have been used but to date no chemopreventive drug has been found for the management of this disease. In recent years, the importance of estrogen receptors in FAP and CRC, particularly the β subtype, has emerged. Indeed, the expression of the latter is strongly reduced in adenomatous polyps and CRC and is inversely correlated with the aggressiveness of the disease. Since phytoestrogens have a high affinity for this receptor, they have been suggested for use as chemopreventive agents in FAP and CRC. A combination of phytoestrogens and insoluble fibres has proved particularly effective. In this review, the various mechanisms of action of phytoestrogens were analyzed and the effectiveness of using phytoestrogens as an effective chemopreventive strategy was discussed.
Collapse
Affiliation(s)
- Irene Falsetti
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, 50139 Florence, Italy; (I.F.); (T.I.)
| | - Gaia Palmini
- Fondazione Italiana Ricerca sulle Malattie dell’Osso (FIRMO Onlus), 50129 Florence, Italy; (G.P.); (M.L.B.)
| | - Teresa Iantomasi
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, 50139 Florence, Italy; (I.F.); (T.I.)
| | - Maria Luisa Brandi
- Fondazione Italiana Ricerca sulle Malattie dell’Osso (FIRMO Onlus), 50129 Florence, Italy; (G.P.); (M.L.B.)
| | - Francesco Tonelli
- Fondazione Italiana Ricerca sulle Malattie dell’Osso (FIRMO Onlus), 50129 Florence, Italy; (G.P.); (M.L.B.)
| |
Collapse
|
10
|
Su G, Wang D, Yang Q, Kong L, Ju X, Yang Q, Zhu Y, Zhang S, Li Y. Cepharanthine suppresses APC-mutant colorectal cancers by down-regulating the expression of β-catenin. NATURAL PRODUCTS AND BIOPROSPECTING 2024; 14:18. [PMID: 38421454 PMCID: PMC10904711 DOI: 10.1007/s13659-024-00443-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 02/23/2024] [Indexed: 03/02/2024]
Abstract
The aberrant activation of the Wnt/β-catenin signaling pathway is closely associated with the development of various carcinomas, especially colorectal cancers (CRCs), where adenomatous colorectal polyposis (APC) mutations are the most frequently observed, which limits the anti-tumor efficiency of inhibitors targeting the upstream of Wnt/β-catenin pathway. The anti-tumor activity of the naturally occurring alkaloid cepharanthine (CEP) extracted from the plant Stephania cepharantha Hayata has been reported in various types of tumors. We previously observed that its derivatives inhibited the Wnt/β-catenin signaling in liver cancer; however, the specific mechanism remains unknown. In this study, we confirmed CEP can effectively inhibit APC-mutant CRC cell lines (SW480, SW620, LoVo) through disturbing of the Wnt/β-catenin signaling and elucidated the underlying mechanisms. Here, we demonstrate that CEP attenuates the Wnt/β-catenin signaling by decreasing the β-catenin, subsequently impeding the proliferation of APC-mutant CRCs. Moreover, CEP induced β-catenin transcription inhibition rather than the instability of β-catenin protein and mRNA contributes to reduction of β-catenin. Taken together, our findings identify CEP as the first β-catenin transcriptional inhibitor in the modulation of Wnt/β-catenin signaling and indicate CEP as a potential therapeutic option for the treatment of APC-mutated CRCs.
Collapse
Affiliation(s)
- Guifeng Su
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, People's Republic of China
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Key Laboratory of Research and Development for Natural Products, School of Pharmacy, Yunnan University, Kunming, 650500, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Dan Wang
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Key Laboratory of Research and Development for Natural Products, School of Pharmacy, Yunnan University, Kunming, 650500, People's Republic of China
| | - Qianqing Yang
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Key Laboratory of Research and Development for Natural Products, School of Pharmacy, Yunnan University, Kunming, 650500, People's Republic of China
| | - Lingmei Kong
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Key Laboratory of Research and Development for Natural Products, School of Pharmacy, Yunnan University, Kunming, 650500, People's Republic of China
| | - Xiaoman Ju
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Qihong Yang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Yiying Zhu
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Key Laboratory of Research and Development for Natural Products, School of Pharmacy, Yunnan University, Kunming, 650500, People's Republic of China
| | - Shaohua Zhang
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Key Laboratory of Research and Development for Natural Products, School of Pharmacy, Yunnan University, Kunming, 650500, People's Republic of China
| | - Yan Li
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Key Laboratory of Research and Development for Natural Products, School of Pharmacy, Yunnan University, Kunming, 650500, People's Republic of China.
| |
Collapse
|
11
|
Song H, Qiu J, Hua K. USP14 promotes the proliferation of cervical cancer via upregulating β-catenin. ENVIRONMENTAL TOXICOLOGY 2024; 39:1031-1043. [PMID: 38069565 DOI: 10.1002/tox.23990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 08/24/2023] [Accepted: 09/21/2023] [Indexed: 01/09/2024]
Abstract
In recent years, the ubiquitin-proteasome system (UPS) has become a hot spot in medical research in cervical cancer (CC) and has received extensive attention. Among them, ubiquitin-specific protease 14 (USP14) is involved in a wide variety of typical cell signaling pathways and is recognized to be involved in the progression of most known tumors. However, the expression and significance of USP14 in CC have not been directly studied. Through database analysis, we found that USP14 was overexpressed in CC, which influenced the FIGO stage and prognosis of CC patients, and it was positively correlated with the expression level of β-catenin. In this study, USP14 promoted the G1-S phase transition of Hela and Siha cells and inhibited cell apoptosis, thereby promoting the proliferation, migration, and invasion of CC cells. In addition, USP14 also significantly promoted the growth of subcutaneous tumor in nude mice. We also found that overexpression of USP14 significantly upregulated β-catenin expression and increased the activity of Wnt/β-catenin signaling pathway. While knockdown of USP14 resulted in the opposite. These results suggest that USP14 may promote the proliferation of CC by up-regulating the expression of β-catenin, contributing to a deeper understanding of the mechanisms of CC and providing a potential therapeutic target.
Collapse
Affiliation(s)
- Han Song
- Department of Gynecology, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China
| | - Junjun Qiu
- Department of Gynecology, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China
| | - Keqin Hua
- Department of Gynecology, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China
| |
Collapse
|
12
|
Chakraborty B, Agarwal S, Kori S, Das R, Kashaw V, Iyer AK, Kashaw SK. Multiple Protein Biomarkers and Different Treatment Strategies for Colorectal Carcinoma: A Comprehensive Prospective. Curr Med Chem 2024; 31:3286-3326. [PMID: 37151060 DOI: 10.2174/0929867330666230505165031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 02/20/2023] [Accepted: 02/24/2023] [Indexed: 05/09/2023]
Abstract
In this review, we emphasized important biomarkers, pathogenesis, and newly developed therapeutic approaches in the treatment of colorectal cancer (CRC). This includes a complete description of small-molecule inhibitors, phytopharmaceuticals with antiproliferative potential, monoclonal antibodies for targeted therapy, vaccinations as immunotherapeutic agents, and many innovative strategies to intervene in the interaction of oncogenic proteins. Many factors combine to determine the clinical behavior of colorectal cancer and it is still difficult to comprehend the molecular causes of a person's vulnerability to CRC. It is also challenging to identify the causes of the tumor's onset, progression, and responsiveness or resistance to antitumor treatment. Current recommendations for targeted medications are being updated by guidelines throughout the world in light of the growing number of high-quality clinical studies. So, being concerned about the aforementioned aspects, we have tried to present a summarized pathogenic view, including a brief description of biomarkers and an update of compounds with their underlying mechanisms that are currently under various stages of clinical testing. This will help to identify gaps or shortfalls that can be addressed in upcoming colorectal cancer research.
Collapse
Affiliation(s)
- Biswadip Chakraborty
- Integrated Drug Discovery Research Laboratory, Department of Pharmaceutical Sciences, Dr. Harisingh Gour University (A Central University), Sagar (MP), India
| | - Shivangi Agarwal
- Integrated Drug Discovery Research Laboratory, Department of Pharmaceutical Sciences, Dr. Harisingh Gour University (A Central University), Sagar (MP), India
| | - Shivam Kori
- Integrated Drug Discovery Research Laboratory, Department of Pharmaceutical Sciences, Dr. Harisingh Gour University (A Central University), Sagar (MP), India
| | - Ratnesh Das
- Department of Chemistry, ISF College of Pharmacy, Moga-Punjab, India
| | - Varsha Kashaw
- Sagar Institute of Pharmaceutical Sciences, Sagar (M.P.), India
| | - Arun K Iyer
- Use-inspired Biomaterials & Integrated Nano Delivery (U-BiND) Systems Laboratory, Department of Pharmaceutical Sciences, Wayne State University, Detroit, Michigan, USA
- Molecular Imaging Program, Karmanos Cancer Institute, Detroit, Michigan, USA
| | - Sushil Kumar Kashaw
- Integrated Drug Discovery Research Laboratory, Department of Pharmaceutical Sciences, Dr. Harisingh Gour University (A Central University), Sagar (MP), India
| |
Collapse
|
13
|
Cheng LZ, Huang DL, Tang ZR, Zhang JH, Xiong T, Zhou C, Zhang NX, Fu R, Cheng YX, Wu ZQ. Pharmacological targeting of Axin2 suppresses cell growth and metastasis in colorectal cancer. Br J Pharmacol 2023; 180:3071-3091. [PMID: 37461816 DOI: 10.1111/bph.16193] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 04/26/2023] [Accepted: 07/02/2023] [Indexed: 08/20/2023] Open
Abstract
BACKGROUND AND PURPOSE The scaffold molecule Axin2 is constitutively activated in colorectal cancer (CRC) and functions as a potent promoter of CRC behaviour. Pharmacological targeting of Axin2 may therefore exert a therapeutic effect in patients with CRC. Here, we discovered a potent small-molecule inhibitor of Axin2, based on the mechanism by which Axin2 is regulated post-translationally, and investigated its antitumour effects. EXPERIMENTAL APPROACH Compound discovery and its inhibitory action on Axin2 protein were revealed by microscale thermophoresis, in vitro kinase assay, quantitative kinetic assay, immunoblotting/immunoprecipitation, RT-qPCR and cycloheximide pulse-chase assay. Compound antitumour effects and the underlying mechanisms were evaluated in multiple cell-based assays and mouse models. KEY RESULTS We discovered that glycogen synthase kinase 3β (GSK3β) phosphorylates Axin2 at two consensus motifs and coupled Axin2 phosphorylation to its ubiquitination (mediated by the E3 ligase β-Trcp2) and proteasomal degradation. The binding of Axin2 to GSK3β in CRC cells is faint, which enables most of the Axin2 protein to maintain an unphosphorylated status and thereby permits the cells to preserve high levels of Axin2. Importantly, we identified a small-molecule compound CW85319 that enhances Axin2's interaction with GSK3β via forming a high affinity for Axin2. Treatment of CRC cells with CW85319 enhanced Axin2 binding with GSK3β, thereby promoting Axin2 phosphorylation, subsequent ubiquitination, and degradation. Furthermore, we demonstrated that CW85319 efficiently suppressed Axin2-driven CRC growth and metastasis, without eliciting side toxicity. CONCLUSIONS AND IMPLICATIONS These findings suggest that pharmacological targeting of Axin2 by CW85319 may provide therapeutic benefits against certain human cancers, especially CRC.
Collapse
Affiliation(s)
- Li-Zhi Cheng
- State Key Laboratory of Natural Medicines, Department of Pharmacology, School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Dan-Ling Huang
- Institute for Inheritance-Based Innovation of Chinese Medicine, School of Pharmaceutical Sciences, Shenzhen University Health Science Center, Shenzhen, China
| | - Zhang-Rui Tang
- State Key Laboratory of Natural Medicines, Department of Pharmacology, School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Jia-Hao Zhang
- State Key Laboratory of Natural Medicines, Department of Pharmacology, School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Ting Xiong
- State Key Laboratory of Natural Medicines, Department of Pharmacology, School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Chen Zhou
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Nai-Xia Zhang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Rong Fu
- State Key Laboratory of Natural Medicines, Department of Pharmacology, School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Yong-Xian Cheng
- Institute for Inheritance-Based Innovation of Chinese Medicine, School of Pharmaceutical Sciences, Shenzhen University Health Science Center, Shenzhen, China
| | - Zhao-Qiu Wu
- State Key Laboratory of Natural Medicines, Department of Pharmacology, School of Pharmacy, China Pharmaceutical University, Nanjing, China
| |
Collapse
|
14
|
Moslehian MS, Shabkhizan R, Asadi MR, Bazmani A, Mahdipour M, Haiaty S, Rahbarghazi R, Sakhinia E. Interaction of lncRNAs with mTOR in colorectal cancer: a systematic review. BMC Cancer 2023; 23:512. [PMID: 37280524 DOI: 10.1186/s12885-023-11008-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 05/25/2023] [Indexed: 06/08/2023] Open
Abstract
Colorectal cancer (CRC) is the third most widespread cancer and the fourth leading lethal disease among different societies. It is thought that CRC accounts for about 10% of all newly diagnosed cancer cases with high-rate mortality. lncRNAs, belonging to non-coding RNAs, are involved in varied cell bioactivities. Emerging data have confirmed a significant alteration in lncRNA transcription under anaplastic conditions. This systematic review aimed to assess the possible influence of abnormal mTOR-associated lncRNAs in the tumorigenesis of colorectal tissue. In this study, the PRISMA guideline was utilized based on the systematic investigation of published articles from seven databases. Of the 200 entries, 24 articles met inclusion criteria and were used for subsequent analyses. Of note, 23 lncRNAs were prioritized in association with the mTOR signaling pathway with up-regulation (79.16%) and down-regulation (20.84%) trends. Based on the obtained data, mTOR can be stimulated or inhibited during CRC by the alteration of several lncRNAs. Determining the dynamic activity of mTOR and relevant signaling pathways via lncRNAs can help us progress novel molecular therapeutics and medications.
Collapse
Affiliation(s)
- Marziyeh Sadat Moslehian
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Roya Shabkhizan
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Reza Asadi
- Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ahad Bazmani
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Pathobiology, Faculty of Veterinary Medicine, Ferdowsi University Of Mashhad, Mashhad, Iran
| | - Mahdi Mahdipour
- Stem Cell Research Center, Tabriz University of Medical Sciences, Imam Reza St., Golgasht St, Tabriz, Iran
| | - Sanya Haiaty
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
- Department of Biochemistry and Clinical Laboratories, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Reza Rahbarghazi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Imam Reza St., Golgasht St, Tabriz, Iran.
- Department of Applied Cell Sciences, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Ebrahim Sakhinia
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
- Tabriz Genetic Analysis Centre (TGAC), Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
15
|
Cao W, Liu J, Jiang Z, Tao Y, Wang H, Li J, Ni J, Wu X. Tumor Suppressor Adenomatous Polyposis Coli Sustains Dendritic Cell Tolerance through IL-10 in a β-Catenin-Dependent Manner. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2023; 210:1589-1597. [PMID: 37000474 DOI: 10.4049/jimmunol.2300046] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 03/08/2023] [Indexed: 05/03/2023]
Abstract
Dendritic cells (DC) play important roles in balancing immunity and tolerance, in which β-catenin signaling plays an important role, yet the underlying mechanisms remain elusive. In this study, we investigated the functions of the tumor suppressor adenomatous polyposis coli (APC), also a key component of the β-catenin upstream destruction complex in DC. APC depletion in DC does not alter DC and T cell homeostasis under resting conditions. However, APC deficiency in DC leads to attenuated antitumor immunity in mice, which exhibit fewer CD8+ T cells and more Foxp3+ regulatory T cells in tumor and draining lymph nodes. Loss of APC in DC does not affect the expression levels of costimulatory molecules. However, APC-deficient DC produce more IL-10 and exhibit a higher ability of inducing regulatory T cells but a lower ability of priming CD8+ T cells, both of which can be reversed by IL-10 inhibition. Lastly, β-catenin depletion in APC-deficient DC rescues their antitumor immunity and reverses elevated IL-10 production. Taken together, our results identify that APC drives DC tolerance via the β-catenin/IL-10 axis.
Collapse
Affiliation(s)
- Wei Cao
- Center for Immune-Related Diseases at Shanghai Institute of Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Hongqiao International Institute of Medicine, Shanghai Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China; and Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jiamin Liu
- Center for Immune-Related Diseases at Shanghai Institute of Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Hongqiao International Institute of Medicine, Shanghai Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China; and Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhenyan Jiang
- Center for Immune-Related Diseases at Shanghai Institute of Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Hongqiao International Institute of Medicine, Shanghai Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China; and Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuexiao Tao
- Center for Immune-Related Diseases at Shanghai Institute of Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Hongqiao International Institute of Medicine, Shanghai Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China; and Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Huizi Wang
- Center for Immune-Related Diseases at Shanghai Institute of Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Hongqiao International Institute of Medicine, Shanghai Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China; and Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jia Li
- Center for Immune-Related Diseases at Shanghai Institute of Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Hongqiao International Institute of Medicine, Shanghai Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China; and Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jun Ni
- Center for Immune-Related Diseases at Shanghai Institute of Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Hongqiao International Institute of Medicine, Shanghai Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China; and Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xuefeng Wu
- Center for Immune-Related Diseases at Shanghai Institute of Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Hongqiao International Institute of Medicine, Shanghai Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China; and Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
16
|
Kim H, Villareal LB, Liu Z, Haneef M, Falcon DM, Martin DR, Lee H, Dame MK, Attili D, Chen Y, Varani J, Spence JR, Kovbasnjuk O, Colacino JA, Lyssiotis CA, Lin HC, Shah YM, Xue X. Transferrin Receptor-Mediated Iron Uptake Promotes Colon Tumorigenesis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2207693. [PMID: 36703617 PMCID: PMC10074045 DOI: 10.1002/advs.202207693] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Indexed: 05/17/2023]
Abstract
Transferrin receptor (TFRC) is the major mediator for iron entry into a cell. Under excessive iron conditions, TFRC is expected to be reduced to lower iron uptake and toxicity. However, the mechanism whereby TFRC expression is maintained at high levels in iron-enriched cancer cells and the contribution of TFRC to cancer development are enigmatic. Here the work shows TFRC is induced by adenomatous polyposis coli (APC) gene loss-driven β-catenin activation in colorectal cancer, whereas TFRC-mediated intratumoral iron accumulation potentiates β-catenin signaling by directly enhancing the activity of tankyrase. Disruption of TFRC leads to a reduction of colonic iron levels and iron-dependent tankyrase activity, which caused stabilization of axis inhibition protein 2 (AXIN2) and subsequent repression of the β-catenin/c-Myc/E2F Transcription Factor 1/DNA polymerase delta1 (POLD1) axis. POLD1 knockdown, iron chelation, and TFRC disruption increase DNA replication stress, DNA damage response, apoptosis, and reduce colon tumor growth. Importantly, a combination of iron chelators and DNA damaging agents increases DNA damage response and reduces colon tumor cell growth. TFRC-mediated iron import is at the center of a novel feed-forward loop that facilitates colonic epithelial cell survival. This discovery may provide novel strategies for colorectal cancer therapy.
Collapse
Affiliation(s)
- Hyeoncheol Kim
- Department of Biochemistry and Molecular BiologyUniversity of New MexicoAlbuquerqueNM87131USA
| | - Luke B Villareal
- Department of Biochemistry and Molecular BiologyUniversity of New MexicoAlbuquerqueNM87131USA
| | - Zhaoli Liu
- Department of Biochemistry and Molecular BiologyUniversity of New MexicoAlbuquerqueNM87131USA
| | - Mohammad Haneef
- Department of Biochemistry and Molecular BiologyUniversity of New MexicoAlbuquerqueNM87131USA
| | - Daniel M Falcon
- Department of Biochemistry and Molecular BiologyUniversity of New MexicoAlbuquerqueNM87131USA
| | - David R Martin
- Department of PathologyUniversity of New MexicoAlbuquerqueNM87131USA
| | - Ho‐Joon Lee
- Department of Molecular and Integrative PhysiologyUniversity of MichiganAnn ArborMI48109USA
| | - Michael K Dame
- Department of Internal MedicineDivision of GastroenterologyUniversity of MichiganAnn ArborMI48109USA
| | - Durga Attili
- Department of PathologyThe University of Michigan Medical SchoolAnn ArborMI48109USA
| | - Ying Chen
- Center for clinical research and translational medicineYangpu hospitalTongji University School of MedicineShanghai200090China
| | - James Varani
- Department of PathologyThe University of Michigan Medical SchoolAnn ArborMI48109USA
| | - Jason R. Spence
- Department of Internal MedicineDivision of GastroenterologyUniversity of MichiganAnn ArborMI48109USA
| | - Olga Kovbasnjuk
- Division of Gastroenterology and HepatologyDepartment of Medicinethe University of New MexicoAlbuquerqueNM87131USA
| | - Justin A Colacino
- Department of Environmental Health SciencesUniversity of MichiganAnn ArborMI48109USA
| | - Costas A. Lyssiotis
- Department of Molecular and Integrative PhysiologyUniversity of MichiganAnn ArborMI48109USA
| | - Henry C Lin
- Section of GastroenterologyMedicine ServiceNew Mexico VA Health Care SystemAlbuquerqueNM87108USA
| | - Yatrik M Shah
- Department of Molecular and Integrative PhysiologyUniversity of MichiganAnn ArborMI48109USA
| | - Xiang Xue
- Department of Biochemistry and Molecular BiologyUniversity of New MexicoAlbuquerqueNM87131USA
| |
Collapse
|
17
|
Mata R, Nakkala JR, Sadras SR. Therapeutic role of biogenic silver and gold nanoparticles against a DMH-induced colon cancer model. BIOMATERIALS ADVANCES 2023; 146:213279. [PMID: 36708685 DOI: 10.1016/j.bioadv.2023.213279] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 12/12/2022] [Accepted: 01/02/2023] [Indexed: 06/18/2023]
Abstract
Colorectal cancer (CRC) ranks third among fatal diseases afflicting mankind globally due to the shortage of primary detection methods and appropriate choice of drugs. Moreover, current treatments such as chemo drugs and radiotherapies create adverse effects and lead to drug resistance. In this context, recent advances in nanomedicine offer novel clinical solutions for colon cancer therapy. The current study denotes the therapeutic roles of biogenic Abutilon indicum silver and gold nanoparticles (AIAgNPs and AIAuNPs) against a 1, 2-dimethyl hydrazine (DMH)-induced CRC in Wistar rats. Following treatment of nanoparticles (NPs), the CRC rats showed great localization of AIAgNPs and AIAuNPs in colon tumors shown by ICP-OES, indicating their bioavailability. The AIAgNPs and AIAuNPs significantly enhanced cellular antioxidant enzyme levels including catalase, SOD, GSH, GPx and reduced lipid peroxidation (LPO) compared to the standard drug paclitaxel. AIAgNPs and AIAuNPs revealed significant protection against metastasis compared to paclitaxel shown in the histopathological study. The important CRC signaling molecules of the Wnt pathway, the β-catenin and Tcf-4 levels were significantly downregulated in AIAgNPs and AIAuNPs treated CRC rats compared to paclitaxel. Furthermore, the expression levels of cleaved apoptotic caspase-9, -8, and - 3 and lamins were significantly upregulated in AIAgNPs and AIAuNPs treated CRC rats compared to paclitaxel. This preclinical study provides substantial insights into the anti-colon cancer roles of biogenic NPs and gives an idea for targeting different cancers.
Collapse
Affiliation(s)
- Rani Mata
- Department of Biochemistry and Molecular Biology, School of Life Sciences, Pondicherry University, Puducherry 605014, India.
| | - Jayachandra Reddy Nakkala
- Department of Biochemistry and Molecular Biology, School of Life Sciences, Pondicherry University, Puducherry 605014, India; College of Pharmacy, The University of Rhode Island, Kingston, RI 02881, United States of America.
| | - Sudha Rani Sadras
- Department of Biochemistry and Molecular Biology, School of Life Sciences, Pondicherry University, Puducherry 605014, India.
| |
Collapse
|
18
|
Sin SH, Yoon JH, Kim SW, Park WS, Chae HS. A Case of Sporadic Multiple Colonic Polyps in a Young Woman. Curr Oncol 2023; 30:1293-1299. [PMID: 36826061 PMCID: PMC9955090 DOI: 10.3390/curroncol30020100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 01/11/2023] [Accepted: 01/15/2023] [Indexed: 01/19/2023] Open
Abstract
Sporadic colorectal cancer arises from an adenoma. As mutations in the adenomatous polyposis coli (APC) tumor suppressor gene have been frequently detected in colorectal adenomas, the APC gene is considered a gatekeeper in colorectal carcinogenesis. Here, we report a case of sporadic multiple colonic adenomas that were accompanied by an APC-truncating mutation. A 25-year-old Korean woman presented with dozens of incidentally found colonic polyps. There was no family history of colorectal polyposis or colon cancer in her first or second-degree relatives. All the polyps were removed endoscopically at once, and their pathological examination revealed tubular adenoma. Mutational analysis showed a 2-bp deletion mutation at codon 443, which generates a premature stop codon at codon 461 of the APC gene, and Western blot analysis demonstrated both wild-type and truncated APC proteins in adenoma tissue. This study suggests that a single truncating mutation of the APC gene may initiate adenoma formation.
Collapse
Affiliation(s)
- Seung Ho Sin
- Department of Internal Medicine, Uijeongbu St. Mary’s Hospital, 271, Cheonbo-ro, Uijeongbu-si 11765, Gyeonggi-do, Republic of Korea
| | - Jung Hwan Yoon
- Department of Pathology and Functional RNomics Research Center, College of Medicine, The Catholic University of Korea, 222 Banpo-daero, Seocho-gu, Seoul 06591, Republic of Korea
| | - Sang Woo Kim
- Department of Internal Medicine, Uijeongbu St. Mary’s Hospital, 271, Cheonbo-ro, Uijeongbu-si 11765, Gyeonggi-do, Republic of Korea
| | - Won Sang Park
- Department of Pathology and Functional RNomics Research Center, College of Medicine, The Catholic University of Korea, 222 Banpo-daero, Seocho-gu, Seoul 06591, Republic of Korea
| | - Hiun Suk Chae
- Department of Internal Medicine, Uijeongbu St. Mary’s Hospital, 271, Cheonbo-ro, Uijeongbu-si 11765, Gyeonggi-do, Republic of Korea
| |
Collapse
|
19
|
Strong Hereditary Predispositions to Colorectal Cancer. Genes (Basel) 2022; 13:genes13122326. [PMID: 36553592 PMCID: PMC9777620 DOI: 10.3390/genes13122326] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 12/01/2022] [Accepted: 12/05/2022] [Indexed: 12/14/2022] Open
Abstract
Cancer is one of the most common causes of death worldwide. A strong predisposition to cancer is generally only observed in colorectal cancer (5% of cases) and breast cancer (2% of cases). Colorectal cancer is the most common cancer with a strong genetic predisposition, but it includes dozens of various syndromes. This group includes familial adenomatous polyposis, attenuated familial adenomatous polyposis, MUTYH-associated polyposis, NTHL1-associated polyposis, Peutz-Jeghers syndrome, juvenile polyposis syndrome, Cowden syndrome, Lynch syndrome, and Muir-Torre syndrome. The common symptom of all these diseases is a very high risk of colorectal cancer, but depending on the condition, their course is different in terms of age and range of cancer occurrence. The rate of cancer development is determined by its conditioning genes, too. Hereditary predispositions to cancer of the intestine are a group of symptoms of heterogeneous diseases, and their proper diagnosis is crucial for the appropriate management of patients and their successful treatment. Mutations of specific genes cause strong colorectal cancer predispositions. Identifying mutations of predisposing genes will support proper diagnosis and application of appropriate screening programs to avoid malignant neoplasm.
Collapse
|
20
|
Banerjee S, Chaturvedi R, Singh A, Kushwaha HR. Putting human Tid-1 in context: an insight into its role in the cell and in different disease states. Cell Commun Signal 2022; 20:109. [PMID: 35854300 PMCID: PMC9297570 DOI: 10.1186/s12964-022-00912-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 05/20/2022] [Indexed: 12/24/2022] Open
Abstract
Background Tumorous imaginal disc 1 (hTid-1) or DnaJ homolog subfamily A member 3 (DNAJA3), is a part of the heat shock protein (Hsp) 40 family and is predominantly found to reside in the mitochondria. hTid-1 has two mRNA splicing variants, hTid-1S and hTid-1L of 40 and 43 kDa respectively in the cytosol which are later processed upon import into the mitochondrial matrix. hTid-1 protein is a part of the DnaJ family of proteins which are co-chaperones and specificity factors for DnaK proteins of the Hsp70 family, and bind to Hsp70, thereby activating its ATPase activity. hTid-1 has been found to be critical for a lot of important cellular processes such as proliferation, differentiation, growth, survival, senescence, apoptosis, and movement and plays key roles in the embryo and skeletal muscle development.
Main body hTid-1 participates in several protein–protein interactions in the cell, which mediate different processes such as proteasomal degradation and autophagy of the interacting protein partners. hTid-1 also functions as a co-chaperone and participates in interactions with several different viral oncoproteins. hTid-1 also plays a critical role in different human diseases such as different cancers, cardiomyopathies, and neurodegenerative disorders. Conclusion This review article is the first of its kind presenting consolidated information on the research findings of hTid-1 to date. This review suggests that the current knowledge of the role of hTid-1 in disorders like cancers, cardiomyopathies, and neurodegenerative diseases can be correlated with the findings of its protein–protein interactions that can provide a deep insight into the pathways by which hTid-1 affects disease pathogenesis and it can be stated that hTid-1 may serve as an important therapeutic target for these disorders. Graphical Abstract ![]()
Video Abstract
Supplementary Information The online version contains supplementary material available at 10.1186/s12964-022-00912-5.
Collapse
Affiliation(s)
- Sagarika Banerjee
- School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
| | - Rupesh Chaturvedi
- School of Biotechnology, Jawaharlal Nehru University, New Delhi, India.,School of Biotechnology and Special Centre for Systems Medicine, Jawaharlal Nehru University, New Delhi, India
| | - Anu Singh
- School of Biotechnology, Jawaharlal Nehru University, New Delhi, India.
| | - Hemant R Kushwaha
- School of Biotechnology, Jawaharlal Nehru University, New Delhi, India. .,School of Biotechnology and Special Centre for Systems Medicine, Jawaharlal Nehru University, New Delhi, India.
| |
Collapse
|
21
|
Shailes H, Tse WY, Freitas MO, Silver A, Martin SA. Statin Treatment as a Targeted Therapy for APC-Mutated Colorectal Cancer. Front Oncol 2022; 12:880552. [PMID: 35712511 PMCID: PMC9197185 DOI: 10.3389/fonc.2022.880552] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 05/02/2022] [Indexed: 11/13/2022] Open
Abstract
Background Mutations in the tumor suppressor gene Adenomatous Polyposis Coli (APC) are found in 80% of sporadic colorectal cancer (CRC) tumors and are also responsible for the inherited form of CRC, Familial adenomatous polyposis (FAP). Methods To identify novel therapeutic strategies for the treatment of APC mutated CRC, we generated a drug screening platform that incorporates a human cellular model of APC mutant CRC using CRISPR-cas9 gene editing and performed an FDA-approved drug screen targeting over 1000 compounds. Results We have identified the group of HMG-CoA Reductase (HMGCR) inhibitors known as statins, which cause a significantly greater loss in cell viability in the APC mutated cell lines and in in vivo APC mutated patient derived xenograft (PDX) models, compared to wild-type APC cells. Mechanistically, our data reveals this new synthetic lethal relationship is a consequence of decreased Wnt signalling and, ultimately, a reduction in the level of expression of the anti-apoptotic protein Survivin, upon statin treatment in the APC-mutant cells only. This mechanism acts via a Rac1 mediated control of beta-catenin. Conclusion Significantly, we have identified a novel synthetic lethal dependence between APC mutations and statin treatment, which could potentially be exploited for the treatment of APC mutated cancers.
Collapse
Affiliation(s)
- Hannah Shailes
- Centre for Cancer Cell and Molecular Biology, Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
| | - Wai Yiu Tse
- Centre for Cancer Cell and Molecular Biology, Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
| | - Marta O. Freitas
- Centre for Cancer Cell and Molecular Biology, Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
| | - Andrew Silver
- Centre for Genomics and Child Health, Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Sarah A. Martin
- Centre for Cancer Cell and Molecular Biology, Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
- *Correspondence: Sarah A. Martin,
| |
Collapse
|
22
|
An Atypical Case of Very Early-onset Familial Adenomatous Polyposis Associated With Focal Cortical Dysplasia. J Pediatr Hematol Oncol 2022; 44:e743-e746. [PMID: 34310467 DOI: 10.1097/mph.0000000000002256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 06/01/2021] [Indexed: 11/26/2022]
Abstract
We describe a female toddler with rectal bleeding from extensive colonic polyposis, and diagnosed with familial adenomatous polyposis. She has epilepsy from infancy attributed to focal cortical dysplasia. Hepatoblastoma was diagnosed at 13 months of age. Germline testing detected a pathogenic APC (adenomatous polyposis coli gene) variant. We discuss the anecdotal management of this case, including the clinical utility of genetic confirmation. We review the genotype-phenotype correlation of the APC mutational spectrum, and the existing evidence supporting the hypothesis that cortical dysplasia is part of the APC-related spectrum.
Collapse
|
23
|
Krishnamurthy K, Urioste SN, Cusnir M, Schwartz M, Alghamdi S, Sriganeshan V, Poppiti R. The mutational landscape of upper gastrointestinal adenocarcinomas- A study of similarities and differences. Pathol Res Pract 2022; 232:153830. [DOI: 10.1016/j.prp.2022.153830] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Revised: 02/13/2022] [Accepted: 02/24/2022] [Indexed: 12/14/2022]
|
24
|
Martin M, Mundade R, Hartley AV, Jiang G, Jin J, Sun S, Safa A, Sandusky G, Liu Y, Lu T. Using VBIM Technique to Discover ARMC4/ODAD2 as a Novel Negative Regulator of NF-κB and a New Tumor Suppressor in Colorectal Cancer. Int J Mol Sci 2022; 23:ijms23052732. [PMID: 35269880 PMCID: PMC8910849 DOI: 10.3390/ijms23052732] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 02/24/2022] [Accepted: 02/27/2022] [Indexed: 01/27/2023] Open
Abstract
Since nuclear factor (NF) κB plays pivotal roles in inflammation and cancer, understanding its regulation holds great promise for disease therapy. Using the powerful validation-based insertional mutagenesis (VBIM) technique established by us previously, we discovered armadillo repeat-containing protein 4 (ARMC4)/outer dynein arm docking complex subunit 2 (ODAD2), a rarely studied protein known to date, as a novel negative regulator of NF-κB in colorectal cancer (CRC). High expression of ARMC4 downregulated the expression of NF-κB-dependent genes, dramatically reduced NF-κB activity, cellular proliferation, anchorage-independent growth, and migratory ability in vitro, and significantly decreased xenograft tumor growth in vivo. Co-immunoprecipitation experiments demonstrated that ARMC4 forms a complex with NF-κB. Importantly, the lower ARMC4 expression in patient tumors than normal tissues indicates its potential tumor suppressor function in CRC. Collectively, we uncovered a completely new facet of ARMC4 function by identifying it as a novel NF-κB negative regulator, thus uncovering ARMC4 as a potential new therapeutic target in CRC.
Collapse
Affiliation(s)
- Matthew Martin
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, 635 Barnhill Drive, Indianapolis, IN 46202, USA; (M.M.); (R.M.); (A.-V.H.); (J.J.); (S.S.); (A.S.)
| | - Rasika Mundade
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, 635 Barnhill Drive, Indianapolis, IN 46202, USA; (M.M.); (R.M.); (A.-V.H.); (J.J.); (S.S.); (A.S.)
| | - Antja-Voy Hartley
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, 635 Barnhill Drive, Indianapolis, IN 46202, USA; (M.M.); (R.M.); (A.-V.H.); (J.J.); (S.S.); (A.S.)
| | - Guanglong Jiang
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, 975 West Walnut Street, Medical Research and Library Building, IB 130, Indianapolis, IN 46202, USA; (G.J.); (Y.L.)
| | - Jiamin Jin
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, 635 Barnhill Drive, Indianapolis, IN 46202, USA; (M.M.); (R.M.); (A.-V.H.); (J.J.); (S.S.); (A.S.)
| | - Steven Sun
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, 635 Barnhill Drive, Indianapolis, IN 46202, USA; (M.M.); (R.M.); (A.-V.H.); (J.J.); (S.S.); (A.S.)
| | - Ahmad Safa
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, 635 Barnhill Drive, Indianapolis, IN 46202, USA; (M.M.); (R.M.); (A.-V.H.); (J.J.); (S.S.); (A.S.)
| | - George Sandusky
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, 340 West 10th Street, Fairbanks Hall, Suite 6200, Indianapolis, IN 46202, USA;
| | - Yunlong Liu
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, 975 West Walnut Street, Medical Research and Library Building, IB 130, Indianapolis, IN 46202, USA; (G.J.); (Y.L.)
| | - Tao Lu
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, 635 Barnhill Drive, Indianapolis, IN 46202, USA; (M.M.); (R.M.); (A.-V.H.); (J.J.); (S.S.); (A.S.)
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, 975 West Walnut Street, Medical Research and Library Building, IB 130, Indianapolis, IN 46202, USA; (G.J.); (Y.L.)
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, 635 Barnhill Drive, Indianapolis, IN 46202, USA
- Indiana University Melvin and Bren Simon Comprehensive Cancer Center, Indiana University School of Medicine, 535 Barnhill Dr, Indianapolis, IN 46202, USA
- Correspondence:
| |
Collapse
|
25
|
Lee JK, Kwon WK, Hong SN, Chang DK, Kim HC, Jang JH, Kim JW. Necessity of Multiplex Ligation Probe Amplification in Genetic Tests: Germline variant analysis of the APC gene in familial adenomatous polyposis patients. Cancer Genet 2022; 262-263:95-101. [DOI: 10.1016/j.cancergen.2022.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 01/10/2022] [Accepted: 02/09/2022] [Indexed: 11/02/2022]
|
26
|
Wnt/β-catenin signalling: function, biological mechanisms, and therapeutic opportunities. Signal Transduct Target Ther 2022; 7:3. [PMID: 34980884 PMCID: PMC8724284 DOI: 10.1038/s41392-021-00762-6] [Citation(s) in RCA: 1076] [Impact Index Per Article: 358.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 06/28/2021] [Accepted: 07/07/2021] [Indexed: 02/06/2023] Open
Abstract
The Wnt/β-catenin pathway comprises a family of proteins that play critical roles in embryonic development and adult tissue homeostasis. The deregulation of Wnt/β-catenin signalling often leads to various serious diseases, including cancer and non-cancer diseases. Although many articles have reviewed Wnt/β-catenin from various aspects, a systematic review encompassing the origin, composition, function, and clinical trials of the Wnt/β-catenin signalling pathway in tumour and diseases is lacking. In this article, we comprehensively review the Wnt/β-catenin pathway from the above five aspects in combination with the latest research. Finally, we propose challenges and opportunities for the development of small-molecular compounds targeting the Wnt signalling pathway in disease treatment.
Collapse
|
27
|
Gaafer OU, Zimmers TA. Nutrition challenges of cancer cachexia. JPEN J Parenter Enteral Nutr 2021; 45:16-25. [PMID: 34897740 DOI: 10.1002/jpen.2287] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 10/13/2021] [Accepted: 10/19/2021] [Indexed: 12/11/2022]
Abstract
Cancer cachexia, or progressive weight loss, often despite adequate nutrition contributes greatly to cancer morbidity and mortality. Cachexia is metabolically distinct from starvation or protein malnutrition, although many patients with cancer and cachexia exhibit lowered appetite and food consumption. Tumors affect neural mechanisms that regulate appetite and energy expenditure, while promoting wasting of peripheral tissues via catabolism of cardiac and skeletal muscle, adipose, and bone. These multimodal actions of tumors on the host suggest a need for multimodal interventions. However, multiple recent consensus guidelines for management of cancer cachexia differ in treatment recommendations, highlighting the lack of effective, available therapies. Challenges to defining appropriate nutrition or other interventions for cancer cachexia include lack of consensus on definitions, low strength of evidence from clinical trials, and a scarcity of robust, rigorous, and mechanistic studies. However, efforts to diagnose, stage, and monitor cachexia are increasing along with clinical trial activity. Furthermore, preclinical models for cancer cachexia are growing more sophisticated, encompassing a greater number of tumor types in organ-appropriate contexts and for metastatic disease to model the clinical condition more accurately. It is expected that continued growth, investment, and coordination of research in this topic will ultimately yield robust biomarkers, clinically useful classification and staging algorithms, targetable pathways, pivotal clinical trials, and ultimately, cures. Here, we provide an overview of the clinical and scientific knowledge and its limitations around cancer cachexia.
Collapse
Affiliation(s)
- Omnia U Gaafer
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Teresa A Zimmers
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana, USA.,Department of Surgery, Indiana University School of Medicine, Indianapolis, Indiana, USA.,Department of Anatomy, Cell Biology & Physiology, Indiana University School of Medicine, Indianapolis, Indiana, USA.,Indiana University Melvin and Bren Simon Comprehensive Cancer Center, Indianapolis, Indiana, USA.,Indiana Center for Musculoskeletal Health, Indianapolis, Indiana, USA.,Richard L. Roudebush Veterans Administration Medical Center, Indianapolis, Indiana, USA
| |
Collapse
|
28
|
Paul S, Roy D, Pati S, Sa G. The Adroitness of Andrographolide as a Natural Weapon Against Colorectal Cancer. Front Pharmacol 2021; 12:731492. [PMID: 34795581 PMCID: PMC8592893 DOI: 10.3389/fphar.2021.731492] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 09/28/2021] [Indexed: 12/15/2022] Open
Abstract
The conventional carcinoma treatment generally encompasses the employment of radiotherapy, chemotherapy, surgery or use of cytotoxic drugs. However, recent advances in pharmacological research have divulged the importance of traditional treatments in cancer. The aim of the present review is to provide an overview of the importance of one such medicinal herb of Chinese and Indian origin: Andrographis paniculate on colorectal cancer with special emphasis on its principal bioactive component andrographolide (AGP) and its underlying mechanisms of action. AGP has long been known to possess medicinal properties. Studies led by numerous groups of researchers shed light on its molecular mechanism of action. AGP has been shown to act in a multi-faceted manner in context of colorectal cancer by targeting matrix metalloproteinase-9, Toll-like receptor or NFκB signaling pathways. In this review, we highlighted the recent studies that show that AGP can act as an effective immunomodulator by harnessing effective anti-tumor immune response. Recent studies strongly recommend further research on this compound and its analogues, especially under in-vivo condition to assess its actual potential as a prospective and efficient candidate against colorectal cancer. The current review deals with the roles of this phytomedicine in context of colorectal cancer and briefly describes its perspectives to emerge as an essential anti-cancer drug candidate. Finally, we also point out the drawbacks and difficulties in administration of AGP and indicate the use of nano-formulations of this phytomedicine for better therapeutic efficacy.
Collapse
Affiliation(s)
- Silpita Paul
- Division of Molecular Medicine, Bose Institute, Kolkata, India
| | - Dia Roy
- Division of Molecular Medicine, Bose Institute, Kolkata, India
| | - Subhadip Pati
- Division of Molecular Medicine, Bose Institute, Kolkata, India
| | - Gaurisankar Sa
- Division of Molecular Medicine, Bose Institute, Kolkata, India
| |
Collapse
|
29
|
VALD-3 inhibits proliferation and induces apoptosis of colorectal cancer cells via upregulating tumor suppressor activity of p53 to inhibit Wnt/β-catenin signal pathway. Anticancer Drugs 2021; 32:1046-1057. [PMID: 34419958 DOI: 10.1097/cad.0000000000001116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Colorectal cancer is the third most common malignant tumor and a leading cause of cancer death. Currently lacks effective therapies available to improve the prognosis. In the present study, VALD-3, an important Schiff base ligand from o-vanillin derivatives was evaluated for its anti-cancer activity in vitro and in vivo against colorectal cancer. The effect of VALD-3 on colorectal cancer cells proliferation was assessed using MTT assay and the cell migration was evaluated using wound healing scratch assay. The appearance of apoptotic colorectal cancer cells was detected by flowcytometry analysis. Morphological changes caused by VALD-3 induced apoptosis were also observed by Hoechst 33258 staining. The flow cytometry assay was also used to measure cell cycle arrest. The expression levels of TP53 and Bad were analyzed using quantitative real-time PCR. Protein expression of P53, Wnt/β-catenin signaling pathway proteins, apoptosis proteins and cell cycle-related protein were viewed by Western blotting. In addition, HT-29 cells xenograft tumor model was used for the study in vivo. Immunohistochemistry (IHC) staining was employed to detect the P53 protein expression. The results showed that VALD-3 obviously inhibited the proliferation and migration for colorectal cancer cells. In addition, flow cytometry analysis demonstrated that VALD-3 markedly increased early and late apoptosis on colorectal cancer cells, respectively. VALD-3 induced cell cycle arrest at the G0/G1 phase. Most importantly, tumor growth in HT-29 xenograft mice was suppressed by VALD-3, but no significant change in body weight. As confirmed by IHC staining from tumor tissue, the P53 proteins expression increased. These results suggested that VALD-3 represses cell proliferation and induces apoptosis associated with upregulating tumor suppressor activity of p53 to inhibit Wnt/β-catenin signal pathway, and it is a potential anticancer agent for colorectal cancer.
Collapse
|
30
|
Chadha S, Kumar A, Srivastava SA, Behl T, Ranjan R. Inulin as a Delivery Vehicle for Targeting Colon-Specific Cancer. Curr Drug Deliv 2021; 17:651-674. [PMID: 32459607 DOI: 10.2174/1567201817666200527133719] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 03/11/2020] [Accepted: 04/01/2020] [Indexed: 12/12/2022]
Abstract
Natural polysaccharides, as well as biopolymers, are now days widely developed for targeting colon cancer using various drug delivery systems. Currently, healing conformations are being explored that can efficiently play a multipurpose role. Owing to the capability of extravagance colonic diseases with the least adverse effects, biopolymers for site specific colon delivery have developed an increased curiosity over the past decades. Inulin (INU) was explored for its probable application as an entrapment material concerning its degradation by enzymes in the colonic microflora and its drug release behavior in a sustained and controlled manner. INU is a polysaccharide and it consists of 2 to 1 linkage having an extensive array of beneficial uses such as a carrier for delivery of therapeutic agents as an indicative/investigative utensil or as a dietary fiber with added well-being aids. In the main, limited research, as well as information, is available on the delivery of therapeutic agents using inulin specifically for colon cancer because of its capability to subsist in the stomach's acidic medium. This exceptional steadiness and robustness properties are exploited in numerous patterns to target drugs securely for the management of colonic cancer, where they effectively act and kills colonic tumor cells easily. In this review article, recent efforts and inulin-based nano-technological approaches for colon cancer targeting are presented and discussed.
Collapse
Affiliation(s)
- Swati Chadha
- Department of Pharmaceutics, Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Arun Kumar
- Department of Pharmaceutics, Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | | | - Tapan Behl
- Department of Pharmaceutics, Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Rishu Ranjan
- Department of Pharmaceutics, Chitkara College of Pharmacy, Chitkara University, Punjab, India
| |
Collapse
|
31
|
Zhu L, Li X, Yuan Y, Dong C, Yang M. APC Promoter Methylation in Gastrointestinal Cancer. Front Oncol 2021; 11:653222. [PMID: 33968756 PMCID: PMC8103321 DOI: 10.3389/fonc.2021.653222] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 03/30/2021] [Indexed: 12/30/2022] Open
Abstract
The adenomatous polyposis coli (APC) gene, known as tumor suppressor gene, has the two promoters 1A and 1B. Researches on APC have usually focused on its loss-of-function variants causing familial adenomatous polyposis. Hypermethylation, however, which is one of the key epigenetic alterations of the APC CpG sequence, is also associated with carcinogenesis in various cancers. Accumulating studies have successively explored the role of APC hypermethylation in gastrointestinal (GI) tumors, such as in esophageal, colorectal, gastric, pancreatic, and hepatic cancer. In sporadic colorectal cancer, the hypermethylation of CpG island in APC is even considered as one of the primary causative factors. In this review, we systematically summarized the distribution of APC gene methylation in various GI tumors, and attempted to provide an improved general understanding of DNA methylation in GI tumors. In addition, we included a robust overview of demethylating agents available for both basic and clinical researches. Finally, we elaborated our findings and perspectives on the overall situation of APC gene methylation in GI tumors, aiming to explore the potential research directions and clinical values.
Collapse
Affiliation(s)
- Lila Zhu
- Department of Medical Oncology, Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xinyu Li
- Department of Medical Oncology, Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Ying Yuan
- Department of Medical Oncology, Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Cancer Institute, Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Caixia Dong
- Department of Medical Oncology, Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Mengyuan Yang
- Department of Medical Oncology, Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Cancer Institute, Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
32
|
Preisler L, Habib A, Shapira G, Kuznitsov-Yanovsky L, Mayshar Y, Carmel-Gross I, Malcov M, Azem F, Shomron N, Kariv R, Hershkovitz D, Ben-Yosef D. Heterozygous APC germline mutations impart predisposition to colorectal cancer. Sci Rep 2021; 11:5113. [PMID: 33664379 PMCID: PMC7933349 DOI: 10.1038/s41598-021-84564-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 02/04/2021] [Indexed: 12/24/2022] Open
Abstract
Familial adenomatous polyposis (FAP) is an inherited syndrome caused by a heterozygous adenomatous polyposis coli (APC) germline mutation, associated with a profound lifetime risk for colorectal cancer. While it is well accepted that tumorigenic transformation is initiated following acquisition of a second mutation and loss of function of the APC gene, the role of heterozygous APC mutation in this process is yet to be discovered. This work aimed to explore whether a heterozygous APC mutation induces molecular defects underlying tumorigenic transformation and how different APC germline mutations predict disease severity. Three FAP-human embryonic stem cell lines (FAP1/2/3-hESC lines) carrying germline mutations at different locations of the APC gene, and two control hESC lines free of the APC mutation, were differentiated into colon organoids and analyzed by immunohistochemistry and RNA sequencing. In addition, data regarding the genotype and clinical phenotype of the embryo donor parents were collected from medical records. FAP-hESCs carrying a complete loss-of-function of a single APC allele (FAP3) generated complex and molecularly mature colon organoids, which were similar to controls. In contrast, FAP-hESCs carrying APC truncation mutations (FAP1 and FAP2) generated only few cyst-like structures and cell aggregates of various shape, occasionally with luminal parts, which aligned with their failure to upregulate critical differentiation genes early in the process, as shown by RNA sequencing. Abnormal disease phenotype was shown also in non-pathological colon of FAP patients by the randomly distribution of proliferating cells throughout the crypts, compared to their focused localization in the lower part of the crypt in healthy/non-FAP patients. Genotype/phenotype analysis revealed correlations between the colon organoid maturation potential and FAP severity in the carrier parents. In conclusion, this study suggest that a single truncated APC allele is sufficient to initiate early molecular tumorigenic activity. In addition, the results hint that patient-specific hESC-derived colon organoids can probably predict disease severity among FAP patients.
Collapse
Affiliation(s)
- Livia Preisler
- Wolfe PGD-Stem Cell Laboratory, Racine IVF Unit, Lis Maternity Hospital, Tel-Aviv Sourasky Medical Center, 64239, Tel-Aviv, Israel.,Department of Cell and Developmental Biology, Sackler Faculty of Medicine, Sagol School of Neuroscience, Tel-Aviv University, Tel-Aviv, Israel
| | - Aline Habib
- Wolfe PGD-Stem Cell Laboratory, Racine IVF Unit, Lis Maternity Hospital, Tel-Aviv Sourasky Medical Center, 64239, Tel-Aviv, Israel.,Department of Cell and Developmental Biology, Sackler Faculty of Medicine, Sagol School of Neuroscience, Tel-Aviv University, Tel-Aviv, Israel
| | - Guy Shapira
- Department of Cell and Developmental Biology, Sackler Faculty of Medicine, Sagol School of Neuroscience, Tel-Aviv University, Tel-Aviv, Israel
| | - Liron Kuznitsov-Yanovsky
- Wolfe PGD-Stem Cell Laboratory, Racine IVF Unit, Lis Maternity Hospital, Tel-Aviv Sourasky Medical Center, 64239, Tel-Aviv, Israel.,Department of Cell and Developmental Biology, Sackler Faculty of Medicine, Sagol School of Neuroscience, Tel-Aviv University, Tel-Aviv, Israel
| | - Yoav Mayshar
- Wolfe PGD-Stem Cell Laboratory, Racine IVF Unit, Lis Maternity Hospital, Tel-Aviv Sourasky Medical Center, 64239, Tel-Aviv, Israel.,Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Ilana Carmel-Gross
- Wolfe PGD-Stem Cell Laboratory, Racine IVF Unit, Lis Maternity Hospital, Tel-Aviv Sourasky Medical Center, 64239, Tel-Aviv, Israel
| | - Mira Malcov
- Wolfe PGD-Stem Cell Laboratory, Racine IVF Unit, Lis Maternity Hospital, Tel-Aviv Sourasky Medical Center, 64239, Tel-Aviv, Israel
| | - Foad Azem
- Wolfe PGD-Stem Cell Laboratory, Racine IVF Unit, Lis Maternity Hospital, Tel-Aviv Sourasky Medical Center, 64239, Tel-Aviv, Israel
| | - Noam Shomron
- Department of Cell and Developmental Biology, Sackler Faculty of Medicine, Sagol School of Neuroscience, Tel-Aviv University, Tel-Aviv, Israel
| | - Revital Kariv
- Department of Gastroenterology, Tel-Aviv Sourasky Medical Center, Tel-Aviv, Israel
| | - Dov Hershkovitz
- Institute of Pathology, Tel-Aviv Sourasky Medical Center, Tel-Aviv, Israel
| | - Dalit Ben-Yosef
- Wolfe PGD-Stem Cell Laboratory, Racine IVF Unit, Lis Maternity Hospital, Tel-Aviv Sourasky Medical Center, 64239, Tel-Aviv, Israel. .,Department of Cell and Developmental Biology, Sackler Faculty of Medicine, Sagol School of Neuroscience, Tel-Aviv University, Tel-Aviv, Israel.
| |
Collapse
|
33
|
Caspi M, Wittenstein A, Kazelnik M, Shor-Nareznoy Y, Rosin-Arbesfeld R. Therapeutic targeting of the oncogenic Wnt signaling pathway for treating colorectal cancer and other colonic disorders. Adv Drug Deliv Rev 2021; 169:118-136. [PMID: 33346022 DOI: 10.1016/j.addr.2020.12.010] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 12/10/2020] [Accepted: 12/14/2020] [Indexed: 02/08/2023]
Abstract
The canonical Wnt pathway is one of the key cellular signaling cascades that regulates, via the transcriptional co-activator β-catenin, numerous embryogenic developmental processes, as well as tissue homeostasis. It is therefore not surprising that misregulation of the Wnt/β-catenin pathway has been implicated in carcinogenesis. Aberrant Wnt signaling has been reported in a variety of malignancies, and its role in both hereditary and sporadic colorectal cancer (CRC), has been the subject of intensive study. Interestingly, the vast majority of colorectal tumors harbor mutations in the tumor suppressor gene adenomatous polyposis coli (APC). The Wnt pathway is complex, and despite decades of research, the mechanisms that underlie its functions are not completely known. Thus, although the Wnt cascade is an attractive target for therapeutic intervention against CRC, one of the malignancies with the highest morbidity and mortality rates, achieving efficacy and safety is yet extremely challenging. Here, we review the current knowledge of the Wnt different epistatic signaling components and the mechanism/s by which the signal is transduced in both health and disease, focusing on CRC. We address some of the important questions in the field and describe various therapeutic strategies designed to combat unregulated Wnt signaling, the development of targeted therapy approaches and the emerging challenges that are associated with these advanced methods.
Collapse
|
34
|
EP4 receptor as a novel promising therapeutic target in colon cancer. Pathol Res Pract 2020; 216:153247. [PMID: 33190014 DOI: 10.1016/j.prp.2020.153247] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 10/06/2020] [Accepted: 10/08/2020] [Indexed: 01/17/2023]
Abstract
The most prevalent malignancy that can occur in the gastrointestinal tract is colon cancer. The current treatment options for colon cancer patients include chemotherapy, surgery, radiotherapy, immunotherapy, and targeted therapy. Although the chance of curing the disease in the early stages is high, there is no cure for almost all patients with advanced and metastatic disease. It has been found that over-activation of cyclooxygenase 2 (COX-2), followed by the production of prostaglandin E2 (PGE2) in patients with colon cancer are significantly increased. The tumorigenic function of COX-2 is mainly due to its role in the production of PGE2. PGE2, as a main generated prostanoid, has an essential role in growth and survival of colon cancer cell's. PGE2 exerts various effects in colon cancer cells including enhanced expansion, angiogenesis, survival, invasion, and migration. The signaling of PGE2 via the EP4 receptor has been shown to induce colon tumorigenesis. Moreover, the expression levels of the EP4 receptor significantly affect tumor growth and development. Overexpression of EP4 by various mechanisms increases survival and tumor vasculature in colon cancer cells. It seems that the pathway starting with COX2, continuing with PGE2, and ending with EP4 can promote the spread and growth of colon cancer. Therefore, targeting the COX-2/PGE2/EP4 axis can be considered as a worthy therapeutic approach to treat colon cancer. In this review, we have examined the role and different mechanisms that the EP4 receptor is involved in the development of colon cancer.
Collapse
|
35
|
Birtwell D, Luebeck G, Maley CC. The evolution of metapopulation dynamics and the number of stem cells in intestinal crypts and other tissue structures in multicellular bodies. Evol Appl 2020; 13:1771-1783. [PMID: 32821281 PMCID: PMC7428809 DOI: 10.1111/eva.13069] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 07/08/2020] [Accepted: 07/09/2020] [Indexed: 12/04/2022] Open
Abstract
Carcinogenesis is a process of somatic evolution. Previous models of stem and transient amplifying cells in epithelial proliferating units like colonic crypts showed that intermediate numbers of stem cells in a crypt should optimally prevent progression to cancer. If a stem cell population is too small, it is easy for a mutator mutation to drift to fixation. If it is too large, it is easy for selection to drive cell fitness enhancing carcinogenic mutations to fixation. Here, we show that a multiscale microsimulation, that captures both within-crypt and between-crypt evolutionary dynamics, leads to a different conclusion. Epithelial tissues are metapopulations of crypts. We measured time to initiation of a neoplasm, implemented as inactivation of both alleles of a tumor suppressor gene. In our model, time to initiation is dependent on the spread of mutator clones in the crypts. The proportion of selectively beneficial and deleterious mutations in somatic cells is unknown and so was explored with a parameter. When the majority of non-neutral mutations are deleterious, the fitness of mutator clones tends to decline. When crypts are maintained by few stem cells, intercrypt competition tends to remove crypts with fixed mutators. When there are many stem cells within a crypt, there is virtually no crypt turnover, but mutator clones are suppressed by within-crypt competition. If the majority of non-neutral mutations are beneficial to the clone, then these results are reversed and intermediate-sized crypts provide the most protection against initiation. These results highlight the need to understand the dynamics of turnover and the mechanisms that control homeostasis, both at the level of stem cells within proliferative units and at the tissue level of competing proliferative units. Determining the distribution of fitness effects of somatic mutations will also be crucial to understanding the dynamics of tumor initiation and progression.
Collapse
Affiliation(s)
- David Birtwell
- Norris Comprehensive Cancer CenterUniversity of Southern CaliforniaLos AngelesCAUSA
| | - Georg Luebeck
- Public Health Sciences DivisionFred Hutchinson Cancer Research CenterSeattleWAUSA
| | - Carlo C. Maley
- Arizona Cancer Evolution CenterBiodesign Institute and School of Life SciencesArizona State UniversityTempeAZUSA
| |
Collapse
|
36
|
ARMCX Family Gene Expression Analysis and Potential Prognostic Biomarkers for Prediction of Clinical Outcome in Patients with Gastric Carcinoma. BIOMED RESEARCH INTERNATIONAL 2020; 2020:3575038. [PMID: 32685472 PMCID: PMC7345962 DOI: 10.1155/2020/3575038] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 05/20/2020] [Indexed: 01/04/2023]
Abstract
Armadillo gene subfamily members (ARMCX1-6) are well-known to regulate protein-protein interaction involved in nuclear transport, cellular connection, and transcription activation. Moreover, ARMCX signals on cell pathways also implicated in carcinogenesis and tumor progression. However, little is known about the associations of the ARMCX subfamily members with gastric carcinoma. This study investigated the prognostic value of ARMCX subfamily mRNA expression levels with the prognosis of gastric carcinoma (GC). We retrieved the data of a total of 351 GC patients from TCGA database. Survival and gene set enrichment analyses were employed to explore the predictive value and underlying mechanism of ARMCX genes in GC. The multivariate survival analysis revealed that individually low expressions of ARMCX1 (adjusted P = 0.006, HR = 0.620, CI = 0.440 - 0.874) and ARMCX2 (adjusted P = 0.005, HR = 0.610, 95%CI = 0.432-0.861) were related to preferable overall survival (OS). The joint-effects analysis shown that combinations of low level expression of ARMCX1 and ARMCX2 were correlated with favorable OS (adjusted P = 0.003, HR = 0.563, 95%CI = 0.384-0.825). ARMCX1 and ARMCX2 were implicated in WNT and NF-kappaB pathways, and biological processes including cell cycle, apoptosis, RNA modification, DNA replication, and damage response. Our results suggest that mRNA expression levels of ARMCX subfamily are potential prognostic markers of GC.
Collapse
|
37
|
The impact of APC polymorphisms on the transition from polyps to colorectal cancer (CRC). Gene 2020; 740:144486. [PMID: 32087273 DOI: 10.1016/j.gene.2020.144486] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Revised: 02/17/2020] [Accepted: 02/18/2020] [Indexed: 11/24/2022]
Abstract
OBJECTIVE The purpose of this study was to investigate the function of APC polymorphisms (D1822V and E1317Q) on the transition from polyps to colorectal cancer (CRC). METHODS 259 patients with polyps were included in the study. APC polymorphisms were genotyped via polymerase chain reaction (PCR) and subsequent sequencing. χ2 test was performed to analyze the relationship of APC polymorphisms or CRC occurrence with clinical features. COX regression was used to find out risk factors for CRC. Hazard ratio (HR) and 95% confidence interval (CI) represented the risk of CRC. RESULTS Clinical information on sex, regular physical activity, smoking history, alcohol use and polyps types was recorded. Neither D1822V nor E1317Q polymorphism was associated with these factors. In following analysis, we found significant difference in the frequency of males between CRC and non-CRC patients (87.4% vs. 58.7%, P < 0.001). Distinct difference in the distribution of D1822V polymorphism was also observed between CRC and non-CRC patients (P = 0.001). In COX analysis, sex was identified as a risk factor for transition from polyps to CRC (HR = 2.442, 95%CI = 1.281-4.654). D1822V polymorphism tended to inhibit the transition process (HR = 0.286, 95%CI = 0.170-0.480). However, E1317Q seemed to have no significant effect on this process (HR = 1.042, 95%CI = 0.676-1.606). CONCLUSION In a word, APC D1822V polymorphism has strong effect on the transition from polyps to CRC.
Collapse
|
38
|
Engel C, Ahadova A, Seppälä TT, Aretz S, Bigirwamungu-Bargeman M, Bläker H, Bucksch K, Büttner R, de Vos Tot Nederveen Cappel WT, Endris V, Holinski-Feder E, Holzapfel S, Hüneburg R, Jacobs MAJM, Koornstra JJ, Langers AM, Lepistö A, Morak M, Möslein G, Peltomäki P, Pylvänäinen K, Rahner N, Renkonen-Sinisalo L, Schulmann K, Steinke-Lange V, Stenzinger A, Strassburg CP, van de Meeberg PC, van Kouwen M, van Leerdam M, Vangala DB, Vecht J, Verhulst ML, von Knebel Doeberitz M, Weitz J, Zachariae S, Loeffler M, Mecklin JP, Kloor M, Vasen HF. Associations of Pathogenic Variants in MLH1, MSH2, and MSH6 With Risk of Colorectal Adenomas and Tumors and With Somatic Mutations in Patients With Lynch Syndrome. Gastroenterology 2020; 158:1326-1333. [PMID: 31926173 DOI: 10.1053/j.gastro.2019.12.032] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2019] [Revised: 12/05/2019] [Accepted: 12/24/2019] [Indexed: 01/07/2023]
Abstract
BACKGROUND & AIMS Lynch syndrome is caused by variants in DNA mismatch repair (MMR) genes and associated with an increased risk of colorectal cancer (CRC). In patients with Lynch syndrome, CRCs can develop via different pathways. We studied associations between Lynch syndrome-associated variants in MMR genes and risks of adenoma and CRC and somatic mutations in APC and CTNNB1 in tumors in an international cohort of patients. METHODS We combined clinical and molecular data from 3 studies. We obtained clinical data from 2747 patients with Lynch syndrome associated with variants in MLH1, MSH2, or MSH6 from Germany, the Netherlands, and Finland who received at least 2 surveillance colonoscopies and were followed for a median time of 7.8 years for development of adenomas or CRC. We performed DNA sequence analyses of 48 colorectal tumors (from 16 patients with mutations in MLH1, 29 patients with mutations in MSH2, and 3 with mutations in MSH6) for somatic mutations in APC and CTNNB1. RESULTS Risk of advanced adenoma in 10 years was 17.8% in patients with pathogenic variants in MSH2 vs 7.7% in MLH1 (P < .001). Higher proportions of patients with pathogenic variants in MLH1 or MSH2 developed CRC in 10 years (11.3% and 11.4%) than patients with pathogenic variants in MSH6 (4.7%) (P = .001 and P = .003 for MLH1 and MSH2 vs MSH6, respectively). Somatic mutations in APC were found in 75% of tumors from patients with pathogenic variants in MSH2 vs 11% in MLH1 (P = .015). Somatic mutations in CTNNB1 were found in 50% of tumors from patients with pathogenic variants in MLH1 vs 7% in MSH2 (P = .002). None of the 3 tumors with pathogenic variants in MSH6 had a mutation in CTNNB1, but all had mutations in APC. CONCLUSIONS In an analysis of clinical and DNA sequence data from patients with Lynch syndrome from 3 countries, we associated pathogenic variants in MMR genes with risk of adenoma and CRC, and somatic mutations in APC and CTNNB1 in colorectal tumors. If these findings are confirmed, surveillance guidelines might be adjusted based on MMR gene variants.
Collapse
Affiliation(s)
- Christoph Engel
- Institute for Medical Informatics, Statistics and Epidemiology, University of Leipzig, Leipzig, Germany.
| | - Aysel Ahadova
- Department of Applied Tumour Biology, Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany; Cooperation Unit Applied Tumour Biology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Toni T Seppälä
- Department of Surgery, Helsinki University Central Hospital, Helsinki, Finland; University of Helsinki, Helsinki, Finland; Johns Hopkins University, Surgical Oncology, Baltimore, Maryland
| | - Stefan Aretz
- Institute of Human Genetics, University of Bonn, Bonn, Germany; National Center for Hereditary Tumor Syndromes, University Hospital Bonn, Bonn, Germany
| | | | - Hendrik Bläker
- Institute of Pathology, University Hospital Leipzig, Leipzig, Germany
| | - Karolin Bucksch
- Institute for Medical Informatics, Statistics and Epidemiology, University of Leipzig, Leipzig, Germany
| | | | | | - Volker Endris
- Department of General Pathology, Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany
| | - Elke Holinski-Feder
- Medizinische Klinik und Poliklinik IV, Campus Innenstadt, Klinikum der Universität München, Munich, Germany; Center of Medical Genetics, Munich, Germany
| | - Stefanie Holzapfel
- Institute of Human Genetics, University of Bonn, Bonn, Germany; National Center for Hereditary Tumor Syndromes, University Hospital Bonn, Bonn, Germany
| | - Robert Hüneburg
- National Center for Hereditary Tumor Syndromes, University Hospital Bonn, Bonn, Germany; Department of Internal Medicine I, University Hospital Bonn, Bonn, Germany
| | - Maarten A J M Jacobs
- Department of Gastroenterology & Hepatology, Amsterdam University Medical Center, Amsterdam, The Netherlands
| | - Jan J Koornstra
- Department of Gastroenterology & Hepatology, University Medical Centre Groningen, University of Groningen, Groningen, The Netherlands
| | - Alexandra M Langers
- Department of Gastroenterology & Hepatology, Leiden University Medical Center, Leiden, The Netherlands
| | - Anna Lepistö
- Department of Surgery, Helsinki University Central Hospital, Helsinki, Finland; Research Programs Unit, Genome-Scale Biology, University of Helsinki, Helsinki, Finland
| | - Monika Morak
- Medizinische Klinik und Poliklinik IV, Campus Innenstadt, Klinikum der Universität München, Munich, Germany; Center of Medical Genetics, Munich, Germany
| | - Gabriela Möslein
- Center for Hereditary Tumors, HELIOS Klinikum Wuppertal, University Witten-Herdecke, Wuppertal, Germany
| | - Päivi Peltomäki
- Department of Medical and Clinical Genetics, University of Helsinki, Helsinki, Finland
| | - Kirsi Pylvänäinen
- Department of Education and Science, Central Finland Hospital District, Jyväskylä, Finland
| | - Nils Rahner
- Institute of Human Genetics, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Laura Renkonen-Sinisalo
- Department of Surgery, Helsinki University Central Hospital, Helsinki, Finland; Research Programs Unit, Genome-Scale Biology, University of Helsinki, Helsinki, Finland
| | - Karsten Schulmann
- Department of Hematology and Oncology, Klinikum Hochsauerland, Meschede, Germany; MVZ Arnsberg, Medical Practice for Hematology and Oncology, Arnsberg, Germany
| | - Verena Steinke-Lange
- Medizinische Klinik und Poliklinik IV, Campus Innenstadt, Klinikum der Universität München, Munich, Germany; Center of Medical Genetics, Munich, Germany
| | - Albrecht Stenzinger
- Department of General Pathology, Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany
| | - Christian P Strassburg
- National Center for Hereditary Tumor Syndromes, University Hospital Bonn, Bonn, Germany; Department of Internal Medicine I, University Hospital Bonn, Bonn, Germany
| | - Paul C van de Meeberg
- Department of Gastroenterology & Hepatology, Slingeland Hospital, Doetinchem, The Netherlands
| | - Mariette van Kouwen
- Department of Gastroenterology & Hepatology, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Monique van Leerdam
- Department of Gastroenterology & Hepatology, Leiden University Medical Center, Leiden, The Netherlands
| | - Deepak B Vangala
- Department of Medicine, Knappschaftskrankenhaus, Ruhr-University Bochum, Bochum, Germany
| | - Juda Vecht
- Department of Gastroenterology & Hepatology, Isala Zwolle, Zwolle, The Netherlands
| | - Marie-Louise Verhulst
- Department of Gastroenterology & Hepatology, Maxima Medical Centre, Eindhoven, The Netherlands
| | - Magnus von Knebel Doeberitz
- Department of Applied Tumour Biology, Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany; Cooperation Unit Applied Tumour Biology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Jürgen Weitz
- Department of Visceral, Thoracic and Vascular Surgery, University Hospital Carl Gustav Carus of the Technical University Dresden, Dresden, Germany
| | - Silke Zachariae
- Institute for Medical Informatics, Statistics and Epidemiology, University of Leipzig, Leipzig, Germany
| | - Markus Loeffler
- Institute for Medical Informatics, Statistics and Epidemiology, University of Leipzig, Leipzig, Germany
| | - Jukka-Pekka Mecklin
- Department of Surgery, Central Finland Central Hospital, Jyväskylä, Finland; Faculty of Sport and Health Sciences, University of Jyväskylä, Jyväskylä, Finland
| | - Matthias Kloor
- Department of Applied Tumour Biology, Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany; Cooperation Unit Applied Tumour Biology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Hans F Vasen
- Department of Gastroenterology & Hepatology, Leiden University Medical Center, Leiden, The Netherlands
| | | | | |
Collapse
|
39
|
Cruz-Correa MR, Sala AC, Cintrón B, Hernández J, Olivera M, Cora A, Moore CM, Luciano CA, Soto-Salgado M, Giardiello FM, Hooper SR. Ubiquitous neurocognitive dysfunction in familial adenomatous polyposis: proof-of-concept of the role of APC protein in neurocognitive function. Hered Cancer Clin Pract 2020; 18:4. [PMID: 32123549 PMCID: PMC7041079 DOI: 10.1186/s13053-020-0135-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Accepted: 01/26/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Familial adenomatous polyposis (FAP) is an autosomal dominant disorder caused by germline mutations in the APC gene. Patients with FAP have multiple extraintestinal manifestations that follow a genotype-phenotype pattern; however, few data exist characterizing their cognitive abilities. Given the role of the APC protein in development of the central nervous system, we hypothesized that patients with FAP would show differences in cognitive functioning compared to controls. METHODS Matched case-control study designed to evaluate cognitive function using the Test of Nonverbal Intelligence-4, the Bateria III Woodcock-Munoz, and the Behavior Rating Inventory of Executive Functions-Adult. Twenty-six individuals with FAP (mean age = 34.2 ± 15.0 years) and 25 age-gender and educational level matched controls (mean age = 32.7 ± 13.8 years) were evaluated. RESULTS FAP-cases had significantly lower IQ (p = 0.005). Across all tasks of the Batería III Woodcock-Muñoz, FAP-cases performed significantly lower than controls, with all of the summary scores falling in the bottom quartile compared to controls (p < 0.0001). Patients with FAP scored within the deficient range for Long-Term Retrieval and Cognitive Fluency. CONCLUSION APC protein has an important role in neurocognitive function. The pervasive nature of the observed cognitive dysfunction suggests that loss or dysfunction of the APC protein impacts processes in cortical and subcortical brain regions. Additional studies examining larger ethnically diverse cohorts with FAP are warranted.
Collapse
Affiliation(s)
- Marcia Roxana Cruz-Correa
- Department of Medicine, University of Puerto Rico School of Medicine, UPR Medical Sciences Campus, PO BOX 365067, San Juan, 00936 Puerto Rico
- Department of Biochemistry, University of Puerto Rico School of Medicine, San Juan, Puerto Rico
- Division of Cancer Biology, University of Puerto Rico Comprehensive Cancer Center, San Juan, Puerto Rico
- Division of Gastroenterology, School of Medicine, Johns Hopkins University, Baltimore, MD USA
| | - Ana Cecilia Sala
- Department of Medicine, University of Puerto Rico School of Medicine, UPR Medical Sciences Campus, PO BOX 365067, San Juan, 00936 Puerto Rico
| | - Beatriz Cintrón
- Department of Medicine, University of Puerto Rico School of Medicine, UPR Medical Sciences Campus, PO BOX 365067, San Juan, 00936 Puerto Rico
| | - Jessica Hernández
- Department of Medicine, University of Puerto Rico School of Medicine, UPR Medical Sciences Campus, PO BOX 365067, San Juan, 00936 Puerto Rico
| | - Myrta Olivera
- Department of Medicine, University of Puerto Rico School of Medicine, UPR Medical Sciences Campus, PO BOX 365067, San Juan, 00936 Puerto Rico
| | - Adrian Cora
- Department of Medicine, University of Puerto Rico School of Medicine, UPR Medical Sciences Campus, PO BOX 365067, San Juan, 00936 Puerto Rico
| | | | - Carlos A. Luciano
- Department of Medicine, Neurology Section, University of Puerto Rico School of Medicine, San Juan, Puerto Rico
| | - Marievelisse Soto-Salgado
- Department of Medicine, University of Puerto Rico School of Medicine, UPR Medical Sciences Campus, PO BOX 365067, San Juan, 00936 Puerto Rico
| | - Francis M. Giardiello
- Division of Gastroenterology, School of Medicine, Johns Hopkins University, Baltimore, MD USA
| | - Stephen R. Hooper
- Department of Allied Health Sciences, School of Medicine, University of North Carolina-Chapel Hill, Chapel Hill, NC USA
| |
Collapse
|
40
|
Dento-osseous anomalies in patients with familial adenomatous polyposis: A follow-up study. Clin Oral Investig 2020; 24:3501-3511. [DOI: 10.1007/s00784-020-03220-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Accepted: 01/22/2020] [Indexed: 01/29/2023]
|
41
|
Deng M, Chen Z, Tan J, Liu H. Down-regulation of SLC35C1 induces colon cancer through over-activating Wnt pathway. J Cell Mol Med 2020; 24:3079-3090. [PMID: 31961998 PMCID: PMC7077602 DOI: 10.1111/jcmm.14969] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 12/18/2019] [Accepted: 12/22/2019] [Indexed: 01/20/2023] Open
Abstract
The canonical Wnt signalling pathway is a critical pathway involved in the proliferation of cells. It has been well-established that it plays the central role during colorectal carcinogenesis and development. Yet the exact molecular mechanism of how the canonical Wnt pathway is fine-tuned remains elusive. We found that SLC35C1, a GDP-fucose transporter, negatively regulates the Wnt signalling pathway. We show here that SLC35C1 is reduced in all colon cancer by both immunohistochemistry images and TCGA data, whereas β-catenin is increased. Down-regulation of SLC35C1 is also detected by real-time PCR in stage 3 and stage 4 colorectal cancer tissues. Moreover, analysing the TCGA database with cBioPortal reveals the negative correlation of SLC35C1 mRNA level to the expression of β-catenin. Reduced SLC35C1 significantly promotes cell proliferation and colony formation of HEK293 cells. Meanwhile, in HEK293 cells silencing SLC35C1 activates canonical Wnt pathway, whereas overexpressing SLC35C1 inhibits it. Consistently, the reduction of SLC35C1 in HEK293 cells also elevated the mRNA level of Wnt target genes C-myc, Axin2 and Cyclin D1, as well as the secretion of Wnt3a. In conclusion, we identified SLC35C1 as a negative regulator of the Wnt signalling pathway in colon cancer. Decreased SLC35C1 may cause over-activation of Wnt signalling in colorectal cancer.
Collapse
Affiliation(s)
- Minzi Deng
- Department of Gastroenterology, The Third Xiangya Hospital of Central South University, Changsha, China.,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Changsha, China
| | - Zhihong Chen
- Department of Pathology, The People's Hospital of Hunan Province, Changsha, China
| | - Jieqiong Tan
- Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, China
| | - Heli Liu
- Department of Gastrointestinal Surgery, Xiangya Hospital of Central South University, Changsha, China
| |
Collapse
|
42
|
Reynolds IS, O'Connell E, Fichtner M, McNamara DA, Kay EW, Prehn JHM, Furney SJ, Burke JP. Mucinous adenocarcinoma of the colon and rectum: A genomic analysis. J Surg Oncol 2019; 120:1427-1435. [PMID: 31729037 DOI: 10.1002/jso.25764] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Accepted: 11/04/2019] [Indexed: 12/12/2022]
Abstract
BACKGROUND AND OBJECTIVES Mucinous adenocarcinoma is a distinct subtype of colorectal cancer (CRC) with a worse prognosis when compared with non-mucinous adenocarcinoma. The aim of this study was to compare somatic mutations and copy number alteration (CNA) between mucinous and non-mucinous CRC. METHODS Data from The Cancer Genome Atlas-colon adenocarcinoma and rectum adenocarcinoma projects were utilized. Mucinous and non-mucinous CRC were compared with regard to microsatellite status, overall mutation rate, the most frequently mutated genes, mutations in genes coding for mismatch repair (MMR) proteins and genes coding for mucin glycoproteins. CNA analysis and pathway analysis was undertaken. RESULTS Mucinous CRC was more likely to be microsatellite instability-high (MSI-H) and hypermutated. When corrected for microsatellite status the single-nucleotide variation and insertion-deletion rate was similar between the two cohorts. Mucinous adenocarcinoma was more likely to have mutations in genes coding for MMR proteins and mucin glycoproteins. Pathway analysis revealed further differences between the two histological subtypes in the cell cycle, RTK-RAS, transforming growth factor-β, and TP53 pathways. CONCLUSIONS Mucinous CRC has some distinct genomic aberrations when compared with non-mucinous adenocarcinoma, many of which are driven by the increased frequency of MSI-H tumors. These genomic aberrations may play an important part in the difference seen in response to treatment and prognosis in mucinous adenocarcinoma.
Collapse
Affiliation(s)
- Ian S Reynolds
- Department of Colorectal Surgery, Beaumont Hospital, Dublin, Ireland.,Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Emer O'Connell
- Department of Colorectal Surgery, Beaumont Hospital, Dublin, Ireland.,Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Michael Fichtner
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Deborah A McNamara
- Department of Colorectal Surgery, Beaumont Hospital, Dublin, Ireland.,Department of Surgery, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Elaine W Kay
- Department of Pathology, Beaumont Hospital, Dublin, Ireland
| | - Jochen H M Prehn
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin, Ireland.,Centre for Systems Medicine, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Simon J Furney
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin, Ireland.,Centre for Systems Medicine, Royal College of Surgeons in Ireland, Dublin, Ireland.,Genomic Oncology Research Group, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - John P Burke
- Department of Colorectal Surgery, Beaumont Hospital, Dublin, Ireland
| |
Collapse
|
43
|
Siraj AK, Kumar Parvathareddy S, Pratheeshkumar P, Padmaja Divya S, Ahmed SO, Melosantos R, Begum R, Concepcion RMJA, Al-Sanea N, Ashari LH, Abduljabbar A, Al-Dayel F, Al-Kuraya KS. APC truncating mutations in Middle Eastern Population: Tankyrase inhibitor is an effective strategy to sensitize APC mutant CRC To 5-FU chemotherapy. Biomed Pharmacother 2019; 121:109572. [PMID: 31704613 DOI: 10.1016/j.biopha.2019.109572] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 10/16/2019] [Accepted: 10/24/2019] [Indexed: 02/07/2023] Open
Abstract
Colorectal Cancer (CRC) is highly heterogeneous for which prognosis is dependent mainly on clinical staging. There is a need to stratify subpopulations of CRC on molecular basis to better predict outcome and therapy response. Truncating mutations in adenomatous polyposis coli (APC) are well-described events in CRC carcinogenesis. Clinical and genotypic characterization of Middle Eastern CRC based on presence and type of APC was determined in 412 CRC tumors using modern next generation sequencing. APC truncating mutations were identified in 58.2% (240/412) of CRCs. Overall, mutation was significant predictor of superior overall survival. Further, the type of APC mutations (short or long) did not have impact on clinical outcome. However, in vitro analysis showed difference between CRC cell lines carrying short truncating APC vs CRC cells that carry long truncating APC mutation in response to 5-flourouracil (5-FU). Importantly, we were able to overcome the resistance to 5-FU seen in CRC cells carrying short APC by tankyrase inhibitor, XAV939, thereby inhibiting Wnt/β-catenin signaling cascade. Overall, our results showed that APC mutation status plays an important role in predicting overall survival in Middle Eastern population. Furthermore, in vitro data showed that selective targeting of APC mutated CRC by tankyrase inhibitor can be an effective strategy to overcome 5-FU resistance in CRC cells.
Collapse
Affiliation(s)
- Abdul K Siraj
- Human Cancer Genomic Research, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | | | - Poyil Pratheeshkumar
- Human Cancer Genomic Research, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Sasidharan Padmaja Divya
- Human Cancer Genomic Research, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Saeeda Omer Ahmed
- Human Cancer Genomic Research, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Roxanne Melosantos
- Human Cancer Genomic Research, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Rafia Begum
- Human Cancer Genomic Research, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | | | - Nasser Al-Sanea
- Department of Surgery, Colorectal Unit, Riyadh, Saudi Arabia
| | - Luai H Ashari
- Department of Surgery, Colorectal Unit, Riyadh, Saudi Arabia
| | | | - Fouad Al-Dayel
- Department of Pathology, King Faisal Specialist Hospital and Research Centre, P.O. Box 3354, Riyadh, 11211, Saudi Arabia
| | - Khawla S Al-Kuraya
- Human Cancer Genomic Research, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia.
| |
Collapse
|
44
|
Suman S, Kallakury BVS, Fornace AJ, Datta K. Fractionated and Acute Proton Radiation Show Differential Intestinal Tumorigenesis and DNA Damage and Repair Pathway Response in Apc Min/+ Mice. Int J Radiat Oncol Biol Phys 2019; 105:525-536. [PMID: 31271826 DOI: 10.1016/j.ijrobp.2019.06.2532] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2019] [Revised: 05/08/2019] [Accepted: 06/24/2019] [Indexed: 11/26/2022]
Abstract
PURPOSE Proton radiation is a major component of the radiation field in outer space and is used clinically in radiation therapy of resistant cancers. Although epidemiologic studies in atom bomb survivors and radiologic workers have established radiation as a risk factor for colorectal cancer (CRC), we have yet to determine the risk of CRC posed by proton radiation owing to a lack of sufficient human or animal data. The purpose of the current study was to quantitatively and qualitatively characterize differential effects of acute and fractionated high-energy protons on colorectal carcinogenesis. METHODS AND MATERIALS We used ApcMin/+ mice, a well-studied CRC model, to examine acute versus fractionated proton radiation-induced differences in intestinal tumorigenesis and associated signaling pathways. Mice were exposed to 1.88 Gy of proton radiation delivered in a single fraction or in 4 equal daily fractions (0.47 Gy × 4). Intestinal tumor number and grade were scored 100 to 110 days after irradiation, and tumor and tumor-adjacent normal tissues were harvested to assess proliferative β-catenin/Akt pathways and DNA damage response and repair pathways relevant to colorectal carcinogenesis. RESULTS Significantly higher intestinal tumor number and grade, along with decreased differentiation, were observed after acute radiation relative to fractionated radiation. Acute protons induced upregulation of β-catenin and Akt pathways with increased proliferative marker phospho-histone H3. Increased DNA damage along with decreased DNA repair factors involved in mismatch repair and nonhomologous end joining were also observed after exposure to acute protons. CONCLUSIONS We show increased γH2AX, 53BP1, and 8-oxo-dG, suggesting that increased ongoing DNA damage along with decreased DNA repair factors and increased proliferative responses could be triggering a higher number of intestinal tumors after acute relative to fractionated proton exposures in ApcMin/+ mice. Taken together, our data suggest greater carcinogenic potential of acute relative to fractionated proton radiation.
Collapse
Affiliation(s)
- Shubhankar Suman
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University Medical Center, Washington, DC; Department of Oncology, Georgetown University Medical Center, Washington, DC
| | | | - Albert J Fornace
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University Medical Center, Washington, DC; Department of Oncology, Georgetown University Medical Center, Washington, DC
| | - Kamal Datta
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University Medical Center, Washington, DC; Department of Oncology, Georgetown University Medical Center, Washington, DC; Department of Pathology, Georgetown University Medical Center, Washington, DC.
| |
Collapse
|
45
|
Utility of Genetic Testing in Persons With Multiple Colorectal Polyps. Clin Gastroenterol Hepatol 2019; 17:1942-1944. [PMID: 30876960 DOI: 10.1016/j.cgh.2019.03.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 03/04/2019] [Accepted: 03/05/2019] [Indexed: 02/07/2023]
|
46
|
Petersen CH, Mahmood B, Badsted C, Dahlby T, Rasmussen HB, Hansen MB, Bindslev N. Possible predisposition for colorectal carcinogenesis due to altered gene expressions in normal appearing mucosa from patients with colorectal neoplasia. BMC Cancer 2019; 19:643. [PMID: 31253108 PMCID: PMC6599319 DOI: 10.1186/s12885-019-5833-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Accepted: 06/13/2019] [Indexed: 12/28/2022] Open
Abstract
Background Investigations of colorectal carcinogenesis have mainly focused on examining neoplastic tissue. With our aim of identifying potentially cancer-predisposing molecular compositions, we chose a different approach by examining endoscopically normal appearing colonic mucosa of patients with and without colorectal neoplasia (CRN). Directed by this focus, we selected 18 genes that were previously found with altered expression in colorectal cancer affected mucosa. Methods Biopsies of colonic mucosa were sampled from 27 patients referred for colonoscopy on suspicion of colorectal disease. Of these, 14 patients had present or previous CRN and the remaining 13 patients served as controls. Using qPCR and Western blot technique, we investigated mRNA and protein expressions. Expressions were investigated for selected kinases in the extracellular signal-regulated kinase/mitogen activated protein kinase (ERK/MAPK), the phosphoinositide 3-kinase/Akt, and the Wnt/β-catenin pathways as well as for selected phosphatases and several entities associated with prostaglandin E2 (PGE2) signaling. Colonic mucosal contents of PGE2 and PGE2 metabolites were determined by use of ELISA. Results We found up-regulation of ERK1, ERK2, Akt1, Akt2, PLA2G4A, prostanoid receptor EP3 and phosphatase scaffold subunit PPP2R1B mRNA expression in normal appearing colonic mucosa of CRN patients compared to controls. Conclusion Present study supports that even normal appearing mucosa of CRN patients differs from that of non-CRN patients at a molecular level. Especially expression of ERK1 mRNA was increased (p = 0.007) in CRN group. ERK1 may therefore be considered a potential candidate gene as predictive biomarker for developing CRN. Further validation in larger cohorts are required to determine such predictive use in translational medicine and clinics.
Collapse
Affiliation(s)
| | - Badar Mahmood
- Digestive Disease Center K, Bispebjerg Hospital, DK-2400, Copenhagen, Denmark
| | - Christoffer Badsted
- Department of Biomedical Sciences, Faculty of Health Sciences, University of Copenhagen, DK-2200, Copenhagen, Denmark
| | - Tina Dahlby
- Department of Biomedical Sciences, Faculty of Health Sciences, University of Copenhagen, DK-2200, Copenhagen, Denmark
| | - Hanne Borger Rasmussen
- Department of Biomedical Sciences, Faculty of Health Sciences, University of Copenhagen, DK-2200, Copenhagen, Denmark
| | - Mark Berner Hansen
- Digestive Disease Center K, Bispebjerg Hospital, DK-2400, Copenhagen, Denmark
| | - Niels Bindslev
- Department of Biomedical Sciences, Faculty of Health Sciences, University of Copenhagen, DK-2200, Copenhagen, Denmark
| |
Collapse
|
47
|
Kelleher M, Singh R, O'Driscoll CM, Melgar S. Carcinoembryonic antigen (CEACAM) family members and Inflammatory Bowel Disease. Cytokine Growth Factor Rev 2019; 47:21-31. [PMID: 31133507 DOI: 10.1016/j.cytogfr.2019.05.008] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Accepted: 05/15/2019] [Indexed: 02/07/2023]
Abstract
Inflammatory bowel disease (IBD), encompassing Crohn's disease (CD) and ulcerative colitis (UC), is a chronic intestinal inflammatory condition with increasing incidence worldwide and whose pathogenesis remains largely unknown. The collected evidence indicates that genetic, environmental and microbial factors and a dysregulated immune response are responsible for the disease. IBD has an early onset and long term sufferers present a higher risk of developing colitis associated cancer (CAC). The carcinoembryonic antigen-related adhesion molecules (CEACAM) are a subgroup of the CEA family, found in a range of different cell types and organs including epithelial cells in the intestine. They can act as intercellular adhesions molecules for e.g. bacteria and soluble antigens. CEACAMs are involved in a number of different processes including cell adhesion, proliferation, differentiation and tumour suppression. Some CEACAMs such as CEACAM1, CEACAM5 and CEACAM6 are highly associated with cancer and are even recognised as valid clinical markers for certain cancer forms. However, their role in IBD pathogenesis is less understood. The purpose of this review is to provide a comprehensive summary of published literature on CEACAMs and intestinal inflammation (IBD). The interactions between CEACAMs and bacteria adhesion in relation to IBD pathophysiology will be addressed and potential new therapeutic and diagnostic opportunities will be identified.
Collapse
Affiliation(s)
- Maebh Kelleher
- APC Microbiome Ireland, University College Cork, Cork, T12YT20, Ireland; Pharmacodelivery Group, School of Pharmacy, University College Cork, Cork, T12YT20, Ireland.
| | - Raminder Singh
- APC Microbiome Ireland, University College Cork, Cork, T12YT20, Ireland; Department of Medicine, University College Cork, Cork, T12YT20, Ireland.
| | - Caitriona M O'Driscoll
- Pharmacodelivery Group, School of Pharmacy, University College Cork, Cork, T12YT20, Ireland.
| | - Silvia Melgar
- APC Microbiome Ireland, University College Cork, Cork, T12YT20, Ireland.
| |
Collapse
|
48
|
Wang W, Zhang L, Morlock L, Williams NS, Shay JW, De Brabander JK. Design and Synthesis of TASIN Analogues Specifically Targeting Colorectal Cancer Cell Lines with Mutant Adenomatous Polyposis Coli (APC). J Med Chem 2019; 62:5217-5241. [PMID: 31070915 DOI: 10.1021/acs.jmedchem.9b00532] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Despite advances in targeted anticancer therapies, there are still no small-molecule-based therapies available that specifically target colorectal cancer (CRC) development and progression, the second leading cause of cancer deaths. We previously disclosed the discovery of truncating adenomatous polyposis coli (APC)-selective inhibitor 1 (TASIN-1), a small molecule that specifically targets colorectal cancer cells lines with truncating mutations in the adenomatous polyposis coli (APC) tumor suppressor gene through inhibition of cholesterol biosynthesis. Here, we report a medicinal chemistry evaluation of a collection of TASIN analogues and activity against colon cancer cell lines and an isogenic cell line pair reporting on the status of APC-dependent selectivity. A number of potent and selective analogues were identified, including compounds with good metabolic stability and pharmacokinetic properties. The compounds reported herein represent a first-in-class genotype-selective series that specifically target apc mutations present in the majority of CRC patients and serve as a translational platform toward a targeted therapy for colon cancer.
Collapse
|
49
|
Expression and Manipulation of the APC-β-Catenin Pathway During Peripheral Neuron Regeneration. Sci Rep 2018; 8:13197. [PMID: 30181617 PMCID: PMC6123411 DOI: 10.1038/s41598-018-31167-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Accepted: 08/03/2018] [Indexed: 02/07/2023] Open
Abstract
Molecules and pathways that suppress growth are expressed in postmitotic neurons, a potential advantage in mature neural networks, but a liability during regeneration. In this work, we probed the APC (adenomatous polyposis coli)-β-catenin partner pathway in adult peripheral sensory neurons during regeneration. APC had robust expression in the cytoplasm and perinuclear region of adult DRG sensory neurons both before and after axotomy injury. β-catenin was expressed in neuronal nuclei, neuronal cytoplasm and also in perineuronal satellite cells. In injured dorsal root ganglia (DRG) sensory neurons and their axons, we observed paradoxical APC upregulation, despite its role as an inhibitor of growth whereas β-catenin was downregulated. Inhibition of APC in adult sensory neurons and activation of β-catenin, LEF/TCF transcriptional factors were associated with increased neuronal plasticity in vitro. Local knockdown of APC, at the site of sciatic nerve crush injury enhanced evidence for electrophysiological, behavioural and structural regeneration in vivo. This was accompanied by upregulation of β-catenin. Collectively, the APC-β-catenin-LEF/TCF transcriptional pathway impacts intrinsic mechanisms of axonal regeneration and neuronal plasticity after injury, offering new options for addressing axon regeneration.
Collapse
|
50
|
Li D, Song H, Mei H, Fang E, Wang X, Yang F, Li H, Chen Y, Huang K, Zheng L, Tong Q. Armadillo repeat containing 12 promotes neuroblastoma progression through interaction with retinoblastoma binding protein 4. Nat Commun 2018; 9:2829. [PMID: 30026490 PMCID: PMC6053364 DOI: 10.1038/s41467-018-05286-2] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Accepted: 06/25/2018] [Indexed: 12/18/2022] Open
Abstract
Recent studies suggest the emerging roles of armadillo (ARM) family proteins in tumor progression. However, the functions and underlying mechanisms of ARM members in tumorigenesis and aggressiveness of neuroblastoma (NB) remain to be determined. Herein, we identify armadillo repeat containing 12 (ARMC12) as an ARM member associated with NB progression. ARMC12 promotes the growth and aggressiveness of NB cell lines. Mechanistically, ARMC12 physically interacts with retinoblastoma binding protein 4 (RBBP4) to facilitate the formation and activity of polycomb repressive complex 2, resulting in transcriptional repression of tumor suppressive genes. Blocking the interaction between ARMC12 and RBBP4 by cell-penetrating inhibitory peptide activates the downstream gene expression and suppresses the tumorigenesis and aggressiveness of NB cells. Both ARMC12 and RBBP4 are upregulated in NB tissues, and are associated with unfavorable outcome of patients. These findings suggest the crucial roles of ARMC12 in tumor progression and a potential therapeutic approach for NB. Armadillo (ARM) family proteins can act as oncogenes or tumor suppressors. Here, the authors show that a new ARM protein (ARMC12) is upregulated in neuroblastoma, binds the PRC2 component RBBP4, and inhibits transcription of tumor suppressive genes.
Collapse
Affiliation(s)
- Dan Li
- Department of Pediatric Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, 430022, Wuhan, Hubei Province, P.R. China
| | - Huajie Song
- Department of Pediatric Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, 430022, Wuhan, Hubei Province, P.R. China
| | - Hong Mei
- Department of Pediatric Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, 430022, Wuhan, Hubei Province, P.R. China
| | - Erhu Fang
- Department of Pediatric Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, 430022, Wuhan, Hubei Province, P.R. China
| | - Xiaojing Wang
- Department of Pediatric Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, 430022, Wuhan, Hubei Province, P.R. China
| | - Feng Yang
- Department of Pediatric Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, 430022, Wuhan, Hubei Province, P.R. China
| | - Huanhuan Li
- Department of Pediatric Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, 430022, Wuhan, Hubei Province, P.R. China
| | - Yajun Chen
- Department of Pathology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, 430022, Wuhan, Hubei Province, P.R. China
| | - Kai Huang
- Clinical Center of Human Genomic Research, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, 430022, Wuhan, Hubei Province, P.R. China
| | - Liduan Zheng
- Department of Pathology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, 430022, Wuhan, Hubei Province, P.R. China. .,Clinical Center of Human Genomic Research, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, 430022, Wuhan, Hubei Province, P.R. China.
| | - Qiangsong Tong
- Department of Pediatric Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, 430022, Wuhan, Hubei Province, P.R. China. .,Clinical Center of Human Genomic Research, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, 430022, Wuhan, Hubei Province, P.R. China.
| |
Collapse
|