1
|
Park JJ, Hamad SA, Stewart A, Carlino MS, Lim SY, Rizos H. PKC-independent PI3K signalling diminishes PKC inhibitor sensitivity in uveal melanoma. Oncogenesis 2024; 13:9. [PMID: 38418838 PMCID: PMC10902289 DOI: 10.1038/s41389-024-00511-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 02/07/2024] [Accepted: 02/09/2024] [Indexed: 03/02/2024] Open
Abstract
Protein kinase C (PKC) is activated downstream of gain-of-function GNAQ or GNA11 (GNAQ/GNA11) mutations in over 90% of uveal melanoma (UM). Phase I clinical trials of PKC inhibitors have shown modest response rates with no survival benefit in metastatic UM. Although PKC inhibitors actively suppress mitogen-activated protein kinase (MAPK) signalling in UM, the effect on other UM signalling cascades is not well understood. We examined the transcriptome of UM biopsies collected pre- and post-PKC inhibitor therapy and confirmed that MAPK, but not PI3K/AKT signalling, was inhibited early during treatment with the second-generation PKC inhibitor IDE196. Similarly, in GNAQ/GNA11-mutant UM cell models, PKC inhibitor monotherapy effectively suppressed MAPK activity, but PI3K/AKT signalling remained active, and thus, concurrent inhibition of PKC and PI3K/AKT signalling was required to synergistically induce cell death in a panel of GNAQ/GNA11-mutant UM cell lines. We also show that re-activation of MAPK signalling has a dominant role in regulating PKC inhibitor responses in UM and that PI3K/AKT signalling diminishes UM cell sensitivity to PKC inhibitor monotherapy. Thus, combination therapies targeting PKC and PKC-independent signalling nodes, including PI3K/AKT activity, are required to improve responses in patients with metastatic UM.
Collapse
Affiliation(s)
- John J Park
- Macquarie Medical School, Faculty of Medicine, Human and Health Sciences, Macquarie University, Sydney, NSW, Australia
- Melanoma Institute Australia, The University of Sydney, Sydney, NSW, Australia
| | - Sabine Abou Hamad
- Macquarie Medical School, Faculty of Medicine, Human and Health Sciences, Macquarie University, Sydney, NSW, Australia
- Melanoma Institute Australia, The University of Sydney, Sydney, NSW, Australia
| | - Ashleigh Stewart
- Macquarie Medical School, Faculty of Medicine, Human and Health Sciences, Macquarie University, Sydney, NSW, Australia
- Melanoma Institute Australia, The University of Sydney, Sydney, NSW, Australia
| | - Matteo S Carlino
- Melanoma Institute Australia, The University of Sydney, Sydney, NSW, Australia
- Department of Medical Oncology, Westmead and Blacktown Hospitals, Sydney, NSW, Australia
| | - Su Yin Lim
- Macquarie Medical School, Faculty of Medicine, Human and Health Sciences, Macquarie University, Sydney, NSW, Australia
- Melanoma Institute Australia, The University of Sydney, Sydney, NSW, Australia
| | - Helen Rizos
- Macquarie Medical School, Faculty of Medicine, Human and Health Sciences, Macquarie University, Sydney, NSW, Australia.
- Melanoma Institute Australia, The University of Sydney, Sydney, NSW, Australia.
| |
Collapse
|
2
|
Khan SA, Almalki WH, Arora S, Kesharwani P. Recent approaches for the treatment of uveal melanoma: Opportunities and challenges. Crit Rev Oncol Hematol 2024; 193:104218. [PMID: 38040071 DOI: 10.1016/j.critrevonc.2023.104218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 11/21/2023] [Accepted: 11/22/2023] [Indexed: 12/03/2023] Open
Abstract
Uveal melanoma (UM) is the most prevalent primary intraocular cancer in adult population. Primary methods for treatment of UM involves surgery Proton Beam Therapy (PBT), Plaque Brachytherapy, phototherapy, and Charged Particle Radiation Therapy (CPT). It has been found that approximately 50 % of patients diagnosed with UM ultimately experience development of metastatic disease. Furthermore, it has been identified that majority of the patient experience metastasis in liver with a prevalence of 95 %. Management of metastatic UM (MUM) involves various therapeutic modalities, including systemic chemotherapy, molecular targeted therapy, immunotherapy and liver directed interventions. We outline gene mutation in UM and addresses various treatment modalities, including molecular targeted therapy, miRNA-based therapy, and immunotherapy. Additionally, inclusion of ongoing clinical trials aimed at developing novel therapeutic options for management of UM are also mentioned.
Collapse
Affiliation(s)
- Sauban Ahmed Khan
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Waleed H Almalki
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Swaranjeet Arora
- Department of Finance and Management, Lal Bahadur Shastri Institute of Management, 11/07 Dwarka Sector 11, Near Metro Station, New Delhi, Delhi 110075, India
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India.
| |
Collapse
|
3
|
Pašalić D, Nikuševa-Martić T, Sekovanić A, Kaštelan S. Genetic and Epigenetic Features of Uveal Melanoma-An Overview and Clinical Implications. Int J Mol Sci 2023; 24:12807. [PMID: 37628989 PMCID: PMC10454135 DOI: 10.3390/ijms241612807] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 08/09/2023] [Accepted: 08/13/2023] [Indexed: 08/27/2023] Open
Abstract
Uveal melanoma (UM) is rare, but it is the most common primary intraocular malignancy among adults. This review represents the molecular, genetic, and immunobiological mechanisms involved in UM carcinogenesis and progression, as well as data about the association of chromosomal changes, genetic mutations, selective proteins, and biochemical biomarkers with the clinical implications of UM. Genetic analysis has the potential to identify patients with a high risk of UM metastasis, enabling management that is more effective and allowing for the follow-up of patients. Advancements in molecular characterization of UM offer opportunities to develop targeted therapeutic strategies by focusing on relevant signaling pathways. Changes in miRNA expression could be useful in the diagnosis and prognosis of UM, due to unique miRNA profiles in melanoma cells or tissue and its association with metastasis. Although liver function tests do not provide enough data on the prognosis of UM, due to the high frequency of liver metastasis, liver function tests (LFTs) might be useful indicators; however, the absence of rising LFT values cannot lead to the exclusion of liver metastases. Molecular analysis of tumor tissue will allow us to identify patients with the added benefit of new therapeutic agents and provide a better insight into melanoma pathogenesis and its biological behavior.
Collapse
Affiliation(s)
- Daria Pašalić
- Department of Medical Chemistry, Biochemistry and Clinical Chemistry, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia;
| | - Tamara Nikuševa-Martić
- Department of Biology and Genetics, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | - Ankica Sekovanić
- Institute for Medical Research and Occupational Health, 10000 Zagreb, Croatia;
| | - Snježana Kaštelan
- Department of Ophthalmology and Optometry, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia;
- Department of Ophthalmology, Clinical Hospital Dubrava, 10000 Zagreb, Croatia
| |
Collapse
|
4
|
El-Tanani M, Nsairat H, Aljabali AA, Serrano-Aroca Á, Mishra V, Mishra Y, Naikoo GA, Alshaer W, Tambuwala MM. Role of mammalian target of rapamycin (mTOR) signalling in oncogenesis. Life Sci 2023; 323:121662. [PMID: 37028545 DOI: 10.1016/j.lfs.2023.121662] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 03/07/2023] [Accepted: 03/31/2023] [Indexed: 04/09/2023]
Abstract
The signalling system known as mammalian target of rapamycin (mTOR) is believed to be required for several biological activities involving cell proliferation. The serine-threonine kinase identified as mTOR recognises PI3K-AKT stress signals. It is well established in the scientific literature that the deregulation of the mTOR pathway plays a crucial role in cancer growth and advancement. This review focuses on the normal functions of mTOR as well as its abnormal roles in cancer development.
Collapse
Affiliation(s)
- Mohamed El-Tanani
- Pharmacological and Diagnostic Research Center, Faculty of Pharmacy, Al-Ahliyya Amman University, Amman 19328, Jordan; Institute of Cancer Therapeutics, University of Bradford, Bradford, West Yorkshire BD7 1DP, United Kingdom.
| | - Hamdi Nsairat
- Pharmacological and Diagnostic Research Center, Faculty of Pharmacy, Al-Ahliyya Amman University, Amman 19328, Jordan
| | - Alaa A Aljabali
- Department of Pharmaceutics and Pharmaceutical Technology, Yarmouk University, Irbid 21163, Jordan.
| | - Ángel Serrano-Aroca
- Biomaterials and Bioengineering Laboratory, Centro de Investigación Traslacional San Alberto Magno, Universidad Católica de Valencia San Vicente Mártir, c/Guillem de Castro 94, 46001, Valencia, Spain.
| | - Vijay Mishra
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, 144411, Punjab, India
| | - Yachana Mishra
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, 144411, Punjab, India
| | - Gowhar A Naikoo
- Department of Mathematics and Sciences, College of Arts and Applied Sciences, Dhofar University, Salalah, PC 211, Oman.
| | - Walhan Alshaer
- Cell Therapy Center, the University of Jordan, Amman 11942, Jordan
| | - Murtaza M Tambuwala
- Lincoln Medical School, University of Lincoln, Brayford Pool Campus, Lincoln LN6 7TS, United Kingdom.
| |
Collapse
|
5
|
Park JJ, Stewart A, Irvine M, Pedersen B, Ming Z, Carlino MS, Diefenbach RJ, Rizos H. Protein kinase inhibitor responses in uveal melanoma reflects a diminished dependency on PKC-MAPK signaling. Cancer Gene Ther 2022; 29:1384-1393. [PMID: 35352024 PMCID: PMC9576594 DOI: 10.1038/s41417-022-00457-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 02/20/2022] [Accepted: 03/04/2022] [Indexed: 01/20/2023]
Abstract
Uveal melanoma (UM) is a rare cancer arising from melanocytes in the uveal tract of the eye. Despite effective primary treatment, there is no approved therapy for metastatic UM and prognosis and survival remain poor. Over 90% of UM are driven by mutations affecting the Gα subunits encoded by the GNAQ and GNA11 genes. These mutations activate downstream and targetable signaling pathways, including the protein kinase C (PKC) cascade. PKC inhibitors have been used in clinical trials for metastatic UM but have shown limited efficacy. In this study, we examined the signaling and functional effects of two PKC inhibitors (AEB071 and IDE196) in a panel of UM cell models. In response to PKC inhibition, all UM cell lines showed potent suppression of PKC activity, but this was not sufficient to predict PKC inhibitor sensitivity and only two UM cell lines showed substantial PKC inhibitor-induced cell death. The differences in UM cell responses to PKC inhibition were not attributable to the degree or timing of PKC suppression or inhibition of the downstream mitogen-activated protein kinase (MAPK) or phosphatidylinositol-3-kinase (PI3K) pathways. Instead, UM cell show complex, PKC-independent signaling pathways that contribute to their survival and resistance to targeted therapies.
Collapse
Affiliation(s)
- John J Park
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, Australia
- Melanoma Institute Australia, Sydney, Australia
| | - Ashleigh Stewart
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, Australia
| | - Mal Irvine
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, Australia
| | - Bernadette Pedersen
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, Australia
| | - Zizhen Ming
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, Australia
| | - Matteo S Carlino
- Melanoma Institute Australia, Sydney, Australia
- Department of Medical Oncology, Westmead and Blacktown Hospitals, Sydney, Australia
| | - Russell J Diefenbach
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, Australia
- Melanoma Institute Australia, Sydney, Australia
| | - Helen Rizos
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, Australia.
- Melanoma Institute Australia, Sydney, Australia.
| |
Collapse
|
6
|
Glinkina K, Groenewoud A, Teunisse AFAS, Snaar-Jagalska BE, Jochemsen AG. Novel Treatments of Uveal Melanoma Identified with a Synthetic Lethal CRISPR/Cas9 Screen. Cancers (Basel) 2022; 14:3186. [PMID: 35804957 PMCID: PMC9264875 DOI: 10.3390/cancers14133186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 06/21/2022] [Accepted: 06/27/2022] [Indexed: 01/30/2023] Open
Abstract
Currently, no systemic treatment is approved as the standard of care for metastatic uveal melanoma (UM). mTOR has been evaluated as a drug target in UM. However, one of the main limitations is dose reduction due to adverse effects. The combination of everolimus with another targeted agent would allow the reduction of the dose of a single drug, thus widening the therapeutic window. In our study, we aimed to identify a synergistic combination with everolimus in order to develop a novel treatment option for metastatic UM. We exploited CRISPR-Cas9 synthetic lethality screening technology to search for an efficient combination. IGF1R and PRKDC and several other genes were identified as hits in the screen. We investigated the effect of the combination of everolimus with the inhibitors targeting IGF1R and DNA-PKcs on the survival of UM cell lines. These combinations synergistically slowed down cell growth but did not induce apoptosis in UM cell lines. These combinations were tested on PDX UM in an in vivo model, but we could not detect tumor regression. However, we could find significant activity of the dual DNA-PKcs/mTOR inhibitor CC-115 on PDX UM in the in vivo model.
Collapse
Affiliation(s)
- Kseniya Glinkina
- Department of Cell and Chemical Biology, Leiden University Medical Center, 2300 RC Leiden, The Netherlands; (K.G.); (A.F.A.S.T.)
| | - Arwin Groenewoud
- Department of Molecular Cell Biology, Institute of Biology, Leiden University, 2300 RC Leiden, The Netherlands; (A.G.); (B.E.S.-J.)
| | - Amina F. A. S. Teunisse
- Department of Cell and Chemical Biology, Leiden University Medical Center, 2300 RC Leiden, The Netherlands; (K.G.); (A.F.A.S.T.)
| | - B. Ewa Snaar-Jagalska
- Department of Molecular Cell Biology, Institute of Biology, Leiden University, 2300 RC Leiden, The Netherlands; (A.G.); (B.E.S.-J.)
| | - Aart G. Jochemsen
- Department of Cell and Chemical Biology, Leiden University Medical Center, 2300 RC Leiden, The Netherlands; (K.G.); (A.F.A.S.T.)
| |
Collapse
|
7
|
Farhan M, Silva M, Xingan X, Zhou Z, Zheng W. Artemisinin Inhibits the Migration and Invasion in Uveal Melanoma via Inhibition of the PI3K/AKT/mTOR Signaling Pathway. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:9911537. [PMID: 34931134 PMCID: PMC8684509 DOI: 10.1155/2021/9911537] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 09/18/2021] [Accepted: 11/20/2021] [Indexed: 12/12/2022]
Abstract
Uveal melanoma is the most common primary ocular neoplasm in adults, with many patients ending up developing liver metastasis and facing a significant reduction of their life expectancy due to the lack of efficient treatments. Artemisinin is an antimalarial drug that has been widely used in the clinic and whose anticancer properties have also been described. Its reported safety, affordability, and ability to reach the ocular tissues point that it has a potential therapeutic agent against uveal melanoma. In the present study, we found that a subantimalaria dosage of artemisinin significantly attenuated the migration and invasion potential of uveal melanoma cells, in a concentration-dependent manner. Assessment of the mechanisms underlying artemisinin anticancer action revealed that its use dramatically reduced the phosphorylation of PI3K, AKT, and mTOR in UM cells. Further inhibition of PI3K signaling, using LY294002, or of mTOR, by rapamycin, blocked the migration and invasion of UM cells similarly to artemisinin. In contrast, AKT or mTOR activator (Sc79 and MHY1485, respectively) attenuated the inhibitory effect of artemisinin on the migration and invasion abilities of UM cells, further validating that artemisinin's anticancer effect is likely to be mediated via inhibition of the PI3K/AKT/mTOR pathway. Artemisinin also induced mitochondrial membrane potential loss and apoptosis of UM cells, having no significant toxic effect on normal retinal neuronal cells RGC-5 and epithelial cells D407. These findings and the reported safety of artemisinin's clinical dosage strongly suggest the therapeutic potential of artemisinin in the prevention and treatment of uveal melanomas.
Collapse
Affiliation(s)
- Mohd Farhan
- Cancer Center and Center of Reproduction, Development & Aging, Faculty of Health Sciences, University of Macau, Taipa, Macau SAR, China
- Institute of Translation Medicine, Faculty of Health Sciences and Ministry of Education Frontiers Science Center for Precision Oncology, University of Macau, Taipa, Macau SAR, China
| | - Marta Silva
- Cancer Center and Center of Reproduction, Development & Aging, Faculty of Health Sciences, University of Macau, Taipa, Macau SAR, China
- Institute of Translation Medicine, Faculty of Health Sciences and Ministry of Education Frontiers Science Center for Precision Oncology, University of Macau, Taipa, Macau SAR, China
| | - Xing Xingan
- Cancer Center and Center of Reproduction, Development & Aging, Faculty of Health Sciences, University of Macau, Taipa, Macau SAR, China
- Institute of Translation Medicine, Faculty of Health Sciences and Ministry of Education Frontiers Science Center for Precision Oncology, University of Macau, Taipa, Macau SAR, China
| | - Zhiwei Zhou
- Cancer Center and Center of Reproduction, Development & Aging, Faculty of Health Sciences, University of Macau, Taipa, Macau SAR, China
- Institute of Translation Medicine, Faculty of Health Sciences and Ministry of Education Frontiers Science Center for Precision Oncology, University of Macau, Taipa, Macau SAR, China
| | - Wenhua Zheng
- Cancer Center and Center of Reproduction, Development & Aging, Faculty of Health Sciences, University of Macau, Taipa, Macau SAR, China
- Institute of Translation Medicine, Faculty of Health Sciences and Ministry of Education Frontiers Science Center for Precision Oncology, University of Macau, Taipa, Macau SAR, China
| |
Collapse
|
8
|
Potential of miRNA-Based Nanotherapeutics for Uveal Melanoma. Cancers (Basel) 2021; 13:cancers13205192. [PMID: 34680340 PMCID: PMC8534265 DOI: 10.3390/cancers13205192] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 10/13/2021] [Accepted: 10/14/2021] [Indexed: 12/12/2022] Open
Abstract
Simple Summary Human uveal melanoma (UM) is the most common primary intraocular tumor with high metastatic risk in adults. Currently, no effective treatment is available for metastatic UM; therefore, new therapeutic approaches are needed to improve overall survival. Given the increased understanding of microRNAs (miRNAs) and their roles in UM tumorigenesis and metastasis, miRNA-based therapy may offer the hope of improving therapeutic outcomes. This review summarizes the actions of select miRNAs examined in preclinical studies using miRNAs as therapeutic targets in UM. The focus of this review is the application of established nanotechnology-assisted delivery systems to overcome the limitations of therapeutic miRNAs. A blend of therapeutic miRNAs and nanodelivery systems may facilitate the translation of miRNA therapies to clinical settings. Abstract Uveal melanoma (UM) is the most common adult intraocular cancer, and metastatic UM remains deadly and incurable. UM is a complex disease associated with the deregulation of numerous genes and redundant intracellular signaling pathways. As understanding of epigenetic dysregulation in the oncogenesis of UM has increased, the abnormal expression of microRNAs (miRNAs) has been found to be an epigenetic mechanism underlying UM tumorigenesis. A growing number of miRNAs are being found to be associated with aberrant signaling pathways in UM, and some have been investigated and functionally characterized in preclinical settings. This review summarizes the miRNAs with promising therapeutic potential for UM treatment, paying special attention to the therapeutic miRNAs (miRNA mimics or inhibitors) used to restore dysregulated miRNAs to their normal levels. However, several physical and physiological limitations associated with therapeutic miRNAs have prevented their translation to cancer therapeutics. With the advent of nanotechnology delivery systems, the development of effective targeted therapies for patients with UM has received great attention. Therefore, this review provides an overview of the use of nanotechnology drug delivery systems, particularly nanocarriers that can be loaded with therapeutic miRNAs for effective delivery into target cells. The development of miRNA-based therapeutics with nanotechnology-based delivery systems may overcome the barriers of therapeutic miRNAs, thereby enabling their translation to therapeutics, enabling more effective targeting of UM cells and consequently improving therapeutic outcomes.
Collapse
|
9
|
Comito F, Marchese PV, Ricci AD, Tober N, Peterle C, Sperandi F, Melotti B. Systemic and liver-directed therapies in metastatic uveal melanoma: state-of-the-art and novel perspectives. Future Oncol 2021; 17:4583-4606. [PMID: 34431316 DOI: 10.2217/fon-2021-0318] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Metastatic uveal melanoma (MUM) is the most common form of noncutaneous melanoma. It is different from its cutaneous counterpart and is characterized by a very poor prognosis. Despite groundbreaking improvements in the treatment of cutaneous melanoma, there have been few advances in the treatment of MUM, and standard treatments for MUM have not been defined. We performed a systematic review focusing our attention on all interventional studies, ongoing or already published, concerning the treatment of MUM. We present results from studies of chemotherapy, targeted therapy, immunotherapy and liver-directed therapies. Although the results in this setting have been disappointing until now, trials investigating novel immunotherapeutic strategies alone and in combination with targeted agents and liver-directed therapies are ongoing.
Collapse
Affiliation(s)
- Francesca Comito
- Division of Oncology, IRCCS Azienda Ospedaliero-Universitaria di Bologna.,Department of Experimental, Diagnostic & Specialty Medicine, S. Orsola-Malpighi University Hospital of Bologna 40138, Italy
| | - Paola Valeria Marchese
- Department of Experimental, Diagnostic & Specialty Medicine, S. Orsola-Malpighi University Hospital of Bologna 40138, Italy
| | - Angela Dalia Ricci
- Department of Experimental, Diagnostic & Specialty Medicine, S. Orsola-Malpighi University Hospital of Bologna 40138, Italy
| | - Nastassja Tober
- Department of Experimental, Diagnostic & Specialty Medicine, S. Orsola-Malpighi University Hospital of Bologna 40138, Italy
| | - Chiara Peterle
- Department of Experimental, Diagnostic & Specialty Medicine, S. Orsola-Malpighi University Hospital of Bologna 40138, Italy
| | - Francesca Sperandi
- Division of Oncology, IRCCS Azienda Ospedaliero-Universitaria di Bologna
| | - Barbara Melotti
- Division of Oncology, IRCCS Azienda Ospedaliero-Universitaria di Bologna
| |
Collapse
|
10
|
Brouwer NJ, Verdijk RM, Heegaard S, Marinkovic M, Esmaeli B, Jager MJ. Conjunctival melanoma: New insights in tumour genetics and immunology, leading to new therapeutic options. Prog Retin Eye Res 2021; 86:100971. [PMID: 34015548 DOI: 10.1016/j.preteyeres.2021.100971] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 04/18/2021] [Accepted: 04/19/2021] [Indexed: 12/14/2022]
Abstract
Recent developments in oncology have led to a better molecular and cellular understanding of cancer, and the introduction of novel therapies. Conjunctival melanoma (CoM) is a rare but potentially devastating disease. A better understanding of CoM, leading to the development of novel therapies, is urgently needed. CoM is characterized by mutations that have also been identified in cutaneous melanoma, e.g. in BRAF, NRAS and TERT. These mutations are distinct from the mutations found in uveal melanoma (UM), affecting genes such as GNAQ, GNA11, and BAP1. Targeted therapies that are successful in cutaneous melanoma may therefore be useful in CoM. A recent breakthrough in the treatment of patients with metastatic cutaneous melanoma was the development of immunotherapy. While immunotherapy is currently sparsely effective in intraocular tumours such as UM, the similarities between CoM and cutaneous melanoma (including in their immunological tumour micro environment) provide hope for the application of immunotherapy in CoM, and preliminary clinical data are indeed emerging to support this use. This review aims to provide a comprehensive overview of the current knowledge regarding CoM, with a focus on the genetic and immunologic understanding. We elaborate on the distinct position of CoM in contrast to other types of melanoma, and explain how new insights in the pathophysiology of this disease guide the development of new, personalized, treatments.
Collapse
Affiliation(s)
- Niels J Brouwer
- Department of Ophthalmology, Leiden University Medical Center, Leiden, the Netherlands.
| | - Robert M Verdijk
- Department of Ophthalmology, Leiden University Medical Center, Leiden, the Netherlands; Department of Pathology, Leiden University Medica Center, Leiden, the Netherlands; Department of Pathology, Erasmus University Medical Center, Rotterdam, the Netherlands.
| | - Steffen Heegaard
- Department of Ophthalmology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark; Department of Pathology, Eye Pathology Section, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark.
| | - Marina Marinkovic
- Department of Ophthalmology, Leiden University Medical Center, Leiden, the Netherlands.
| | - Bita Esmaeli
- Department of Plastic Surgery, Orbital Oncology and Ophthalmic Plastic Surgery, M.D. Anderson Cancer Center, Houston, TX, USA.
| | - Martine J Jager
- Department of Ophthalmology, Leiden University Medical Center, Leiden, the Netherlands.
| |
Collapse
|
11
|
BRAF Wild-type, PTEN Mutant Malignant Uveal Melanoma Arising Within a Mature Ovarian Teratoma: A Case Report and Review of the Literature. Int J Gynecol Pathol 2021; 39:321-326. [PMID: 31157687 DOI: 10.1097/pgp.0000000000000614] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Mature cystic teratomas are common in women of all ages; however, malignant transformation within them is rare and difficult to diagnosis preoperatively. Primary melanoma of the ovary is exceptionally rare and only occurs in relation to a teratoma where it can originate from sporadic somatic mutagenesis within epidermal junctional melanocytes, through malignant transformation of a benign nevus formed within the mature cystic teratoma or from other well differentiated pigment-containing structures such as the uvea. We present a case of primary malignant melanoma arising within a mature cystic teratoma in a young patient, who ultimately developed widespread metastasis necessitating systemic therapy. Our case highlights the role of molecular medicine not only in forming an understanding the origin of the melanoma, but also guiding targeted systemic therapies. Alongside the case we present a review of the literature describing the incidence of molecular aberrations within melanoma as well as the established and emerging techniques and cytotoxic agents for malignant melanoma.
Collapse
|
12
|
Masaoutis C, Kokkali S, Theocharis S. Immunotherapy in uveal melanoma: novel strategies and opportunities for personalized treatment. Expert Opin Investig Drugs 2021; 30:555-569. [PMID: 33650931 DOI: 10.1080/13543784.2021.1898587] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
INTRODUCTION Uveal melanoma (UM) is the most common intraocular cancer and represents a discrete subtype of melanoma. Metastatic disease, which occurs in half of patients, has a dismal prognosis. Immunotherapy with immune checkpoint inhibitors has produced promising results in cutaneous melanoma but has failed to show analogous efficacy in metastatic UM. This is attributable to UM's distinct genetics and its complex interaction with the immune system. Hence, more efficacious immunotherapeutic approaches are under investigation. AREAS COVERED We discuss those novel immunotherapeutic strategies in clinical and preclinical studies for advanced disease and which are thought to overcome the hurdles set by UM in terms of immune recognition. We also highlight the need to determine predictive markers in relation to these strategies to improve clinical outcomes. We used a simple narrative analysis to summarize the data. The search methodology is located in the Introduction. EXPERT OPINION Novel immunotherapeutic strategies focus on transforming immune excluded tumor microenvironment in metastatic UM to T cell inflamed. Preliminary results of approaches such as vaccines, adoptive cell transfer and other novel molecules are encouraging. Factors such as HLA compatibility and expression level of targeted antigens should be considered to optimize personalized management.
Collapse
Affiliation(s)
- Christos Masaoutis
- First Department of Pathology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Stefania Kokkali
- First Department of Pathology, Medical School, National and Kapodistrian University of Athens, Athens, Greece.,First Medical Oncology Clinic, Saint-Savvas Anticancer Hospital, Athens, Greece
| | - Stamatios Theocharis
- First Department of Pathology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
13
|
Katopodis P, Khalifa MS, Anikin V. Molecular characteristics of uveal melanoma and intraocular tumors. Oncol Lett 2021; 21:9. [PMID: 33240415 PMCID: PMC7681201 DOI: 10.3892/ol.2020.12270] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 09/28/2020] [Indexed: 12/13/2022] Open
Abstract
Malignant melanomas within the eye present different types of metabolic and metastatic behavior. Uveal melanoma (UM) affects a quarter of a million individuals in the USA; however, the molecular pathogenesis is not well understood. Although UV radiation is a risk factor in cutaneous melanomas, it is not crucial for UM progression. Apart from chromosomal abnormalities, numerous major tumorigenic signaling pathways, including the PI3K/Akt, MAPK/ERK, Ras-association domain family 1 isoform A and Yes-associated protein/transcriptional co-activator with PDZ-binding motif signaling pathways, are associated with intraocular tumors. The present review describes the current insights regarding these signaling pathways that regulate the cell cycle and apoptosis, and could be used as potential targets for the treatment of UMs.
Collapse
Affiliation(s)
- Periklis Katopodis
- College of Health, Medicine and Life Sciences, Brunel University, Uxbridge, London UB8 3PH, UK
- Division of Thoracic Surgery, The Royal Brompton and Harefield National Health Service Foundation Trust, Harefield Hospital, London UB9 6JH, UK
| | - Mohammad S. Khalifa
- College of Health, Medicine and Life Sciences, Brunel University, Uxbridge, London UB8 3PH, UK
| | - Vladimir Anikin
- College of Health, Medicine and Life Sciences, Brunel University, Uxbridge, London UB8 3PH, UK
- Division of Thoracic Surgery, The Royal Brompton and Harefield National Health Service Foundation Trust, Harefield Hospital, London UB9 6JH, UK
- Department of Oncology and Reconstructive Surgery, Sechenov First Moscow State Medical University, Moscow 119146, Russia
| |
Collapse
|
14
|
Yang C, Wang Y, Hardy P. Emerging roles of microRNAs and their implications in uveal melanoma. Cell Mol Life Sci 2021; 78:545-559. [PMID: 32783068 PMCID: PMC11072399 DOI: 10.1007/s00018-020-03612-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Revised: 07/14/2020] [Accepted: 07/30/2020] [Indexed: 12/19/2022]
Abstract
Uveal melanoma (UM) is the most common intraocular malignant tumor in adults with an extremely high mortality rate. Genetic and epigenetic dysregulation contribute to the development of UM. Recent discoveries have revealed dysregulation of the expression levels of microRNAs (miRNAs) as one of the epigenetic mechanisms underlying UM tumorigenesis. Based on their roles, miRNAs are characterized as either oncogenic or tumor suppressive. This review focuses on the roles of miRNAs in UM tumorigenesis, diagnosis, and prognosis, as well as their therapeutic potentials. Particularly, the actions of collective miRNAs are summarized with respect to their involvement in major, aberrant signaling pathways that are implicated in the development and progression of UM. Elucidation of the underlying functional mechanisms and biological aspects of miRNA dysregulation in UM is invaluable in the development of miRNA-based therapeutics, which may be used in combination with conventional treatments to improve therapeutic outcomes. In addition, the expression levels of some miRNAs are correlated with UM initiation and progression and, therefore, may be used as biomarkers for diagnosis and prognosis.
Collapse
Affiliation(s)
- Chun Yang
- Departments of Pediatrics, Pharmacology, and Physiology, University of Montréal, Montréal, Québec, H3T 1C5, Canada
| | - Yuejiao Wang
- Department of Gynecological Endocrinology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing, China
| | - Pierre Hardy
- Departments of Pediatrics, Pharmacology, and Physiology, University of Montréal, Montréal, Québec, H3T 1C5, Canada.
- Research Center of CHU Sainte-Justine, 3175 Côte-Sainte-Catherine, Room 2.17.004, Montréal, Québec, H3T 1C5, Canada.
| |
Collapse
|
15
|
Ortega MA, Fraile-Martínez O, García-Honduvilla N, Coca S, Álvarez-Mon M, Buján J, Teus MA. Update on uveal melanoma: Translational research from biology to clinical practice (Review). Int J Oncol 2020; 57:1262-1279. [PMID: 33173970 PMCID: PMC7646582 DOI: 10.3892/ijo.2020.5140] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Accepted: 09/24/2020] [Indexed: 02/06/2023] Open
Abstract
Uveal melanoma is the most common type of intraocular cancer with a low mean annual incidence of 5‑10 cases per million. Tumours are located in the choroid (90%), ciliary body (6%) or iris (4%) and of 85% are primary tumours. As in cutaneous melanoma, tumours arise in melanocytes; however, the characteristics of uveal melanoma differ, accounting for 3‑5% of melanocytic cancers. Among the numerous risk factors are age, sex, genetic and phenotypic predisposition, the work environment and dermatological conditions. Management is usually multidisciplinary, including several specialists such as ophthalmologists, oncologists and maxillofacial surgeons, who participate in the diagnosis, treatment and complex follow‑up of these patients, without excluding the management of the immense emotional burden. Clinically, uveal melanoma generates symptoms that depend as much on the affected ocular globe site as on the tumour size. The anatomopathological study of uveal melanoma has recently benefited from developments in molecular biology. In effect, disease classification or staging according to molecular profile is proving useful for the assessment of this type of tumour. Further, the improved knowledge of tumour biology is giving rise to a more targeted approach to diagnosis, prognosis and treatment development; for example, epigenetics driven by microRNAs as a target for disease control. In the present study, the main epidemiological, clinical, physiopathological and molecular features of this disease are reviewed, and the associations among all these factors are discussed.
Collapse
Affiliation(s)
- Miguel A. Ortega
- Department of Medicine and Medical Specialties, Faculty of Medicine and Health Sciences, University of Alcalá, Alcalá de Henares, 28871 Madrid
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid
- University Center for The Defense of Madrid (CUD-ACD), 28047 Madrid
| | - Oscar Fraile-Martínez
- Department of Medicine and Medical Specialties, Faculty of Medicine and Health Sciences, University of Alcalá, Alcalá de Henares, 28871 Madrid
| | - Natalio García-Honduvilla
- Department of Medicine and Medical Specialties, Faculty of Medicine and Health Sciences, University of Alcalá, Alcalá de Henares, 28871 Madrid
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid
- University Center for The Defense of Madrid (CUD-ACD), 28047 Madrid
| | - Santiago Coca
- Department of Medicine and Medical Specialties, Faculty of Medicine and Health Sciences, University of Alcalá, Alcalá de Henares, 28871 Madrid
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid
- University Center for The Defense of Madrid (CUD-ACD), 28047 Madrid
| | - Melchor Álvarez-Mon
- Department of Medicine and Medical Specialties, Faculty of Medicine and Health Sciences, University of Alcalá, Alcalá de Henares, 28871 Madrid
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid
- University Center for The Defense of Madrid (CUD-ACD), 28047 Madrid
- Internal and Oncology Service (CIBER-EHD), University Hospital Príncipe de Asturias, Alcalá de Henares, 28805 Madrid
| | - Julia Buján
- Department of Medicine and Medical Specialties, Faculty of Medicine and Health Sciences, University of Alcalá, Alcalá de Henares, 28871 Madrid
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid
- University Center for The Defense of Madrid (CUD-ACD), 28047 Madrid
| | - Miguel A. Teus
- Department of Surgery, Medical and Social Sciences, Faculty of Medicine and Health Sciences, University of Alcalá, Alcalá de Henares, 28871 Madrid
- Ophthalmology Service, University Hospital Príncipe de Asturias, Alcalá de Henares, 28805 Madrid, Spain
| |
Collapse
|
16
|
Qi Y, Cui Q, Zhang W, Yao R, Xu D, Zhang F. Long Non-Coding RNA GAS5 Targeting microRNA-21 to Suppress the Invasion and Epithelial-Mesenchymal Transition of Uveal Melanoma. Cancer Manag Res 2020; 12:12259-12267. [PMID: 33273862 PMCID: PMC7708682 DOI: 10.2147/cmar.s260866] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 07/10/2020] [Indexed: 12/19/2022] Open
Abstract
Objective Human uveal melanoma (UM) is a common ocular malignant tumor with a high risk of metastasis. Emerging evidence indicates that long non-coding RNAs (lncRNAs) are correlated with the development of UM. Here, we aimed to determine the biological significance of lncRNA growth arrest-specific transcript 5 (GAS5) in UM. Methods The expression levels of GAS5 and microRNA-21 (miR-21) in UM tissues and cells were detected by qRT-PCR analysis. CCK-8 assay was performed to investigate the viability of UM cells after cell transfections, and the migration and invasion of UM cells were determined by transwell assay. The protein expression levels were detected by Western blot assay. The relationship between miR-21 and GAS5 in UM cells was confirmed by bioinformatics prediction and luciferase report assay. Results Our experiments demonstrated that GAS5 was markedly downregulated in UM cells and clinical specimens. Overexpression of GAS5 inhibited, whereas knockdown of GAS5 promoted the viability, migration, and invasion of UM cells. The epithelial-to-mesenchymal transition (EMT) process of UM cells was also suppressed by upregulating of GAS5 and enhanced by downregulating of GAS5. Additionally, as a competitive endogenous RNA (ceRNA), GAS5 directly binded to the oncogenic miR-21 in UM cells, and overexpression of miR-21 attenuated the EMT-suppressing effect of GAS5. Conclusion Taken together, our findings suggest that GAS5/miR-21 axis is implicated in the pathogenesis of UM and might serve as a potential therapeutic target.
Collapse
Affiliation(s)
- Ying Qi
- Department of Ophthalmology, The First Affiliated Hospital of Zhengzhou University, The Laboratory for Ophthalmology and Vision Science, Henan Eye Hospital, Zhengzhou 450052, Henan, People's Republic of China
| | - Qingqing Cui
- Department of Ophthalmology, The First Affiliated Hospital of Zhengzhou University, The Laboratory for Ophthalmology and Vision Science, Henan Eye Hospital, Zhengzhou 450052, Henan, People's Republic of China
| | - Wenjing Zhang
- Department of Ophthalmology, The First Affiliated Hospital of Zhengzhou University, The Laboratory for Ophthalmology and Vision Science, Henan Eye Hospital, Zhengzhou 450052, Henan, People's Republic of China
| | - Renjie Yao
- Department of Ophthalmology, The First Affiliated Hospital of Zhengzhou University, The Laboratory for Ophthalmology and Vision Science, Henan Eye Hospital, Zhengzhou 450052, Henan, People's Republic of China
| | - Dong Xu
- Department of Ophthalmology, The First Affiliated Hospital of Zhengzhou University, The Laboratory for Ophthalmology and Vision Science, Henan Eye Hospital, Zhengzhou 450052, Henan, People's Republic of China
| | - Fengyan Zhang
- Department of Ophthalmology, The First Affiliated Hospital of Zhengzhou University, The Laboratory for Ophthalmology and Vision Science, Henan Eye Hospital, Zhengzhou 450052, Henan, People's Republic of China
| |
Collapse
|
17
|
Li Y, Shi J, Yang J, Ge S, Zhang J, Jia R, Fan X. Uveal melanoma: progress in molecular biology and therapeutics. Ther Adv Med Oncol 2020; 12:1758835920965852. [PMID: 33149769 PMCID: PMC7586035 DOI: 10.1177/1758835920965852] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Accepted: 09/16/2020] [Indexed: 12/15/2022] Open
Abstract
Uveal melanoma (UM) is the most common intraocular malignancy in adults. So far, no systemic therapy or standard treatment exists to reduce the risk of metastasis and improve overall survival of patients. With the increased knowledge regarding the molecular pathways that underlie the oncogenesis of UM, it is expected that novel therapeutic approaches will be available to conquer this disease. This review provides a summary of the current knowledge of, and progress made in understanding, the pathogenesis, genetic mutations, epigenetics, and immunology of UM. With the advent of the omics era, multi-dimensional big data are publicly available, providing an innovation platform to develop effective targeted and personalized therapeutics for UM patients. Indeed, recently, a great number of therapies have been reported specifically for UM caused by oncogenic mutations, as well as other etiologies. In this review, special attention is directed to advancements in targeted therapies. In particular, we discuss the possibilities of targeting: GNAQ/GNA11, PLCβ, and CYSLTR2 mutants; regulators of G-protein signaling; the secondary messenger adenosine diphosphate (ADP)-ribosylation factor 6 (ARF6); downstream pathways, such as those involving mitogen-activated protein kinase/MEK/extracellular signal-related kinase, protein kinase C (PKC), phosphoinositide 3-kinase/Akt/mammalian target of rapamycin (mTOR), Trio/Rho/Rac/Yes-associated protein, and inactivated BAP1; and immune-checkpoint proteins cytotoxic T-lymphocyte antigen 4 and programmed cell-death protein 1/programmed cell-death ligand 1. Furthermore, we conducted a survey of completed and ongoing clinical trials applying targeted and immune therapies for UM. Although drug combination therapy based on the signaling pathways involved in UM has made great progress, targeted therapy is still an unmet medical need.
Collapse
Affiliation(s)
- Yongyun Li
- Department of Ophthalmology, Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China
| | - Jiahao Shi
- Department of Ophthalmology, Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China
| | - Jie Yang
- Department of Ophthalmology, Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China
| | - Shengfang Ge
- Department of Ophthalmology, Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China
| | - Jianming Zhang
- National Research Center for Translational Medicine, Shanghai State Key Laboratory of Medical Genomics, Rui-Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Renbing Jia
- Department of Ophthalmology, Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Huangpu District, Shanghai 200001, China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200001, China
| | - Xianqun Fan
- Department of Ophthalmology, Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Huangpu District, Shanghai 200001, China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, 833 Zhizaoju Road, Huangpu District, Shanghai 200001, China
| |
Collapse
|
18
|
Novel Methylation Patterns Predict Outcome in Uveal Melanoma. Life (Basel) 2020; 10:life10100248. [PMID: 33092094 PMCID: PMC7589184 DOI: 10.3390/life10100248] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 10/14/2020] [Accepted: 10/16/2020] [Indexed: 12/25/2022] Open
Abstract
Uveal melanoma (UM) is the most common intraocular tumor in adults. Despite effective local treatments, 50% of patients develop metastasis. Better ways to determine prognosis are needed as well as new therapeutic targets. Epigenetic changes are important events driving cancer progression; however, few studies exist on methylation changes in UM. Our aim was to identify methylation events associated with UM prognosis. Matched clinical, genetic, and methylation data for 80 UM cases were obtained from The Cancer Genome Atlas (TCGA). Top differentially methylated loci were sorted through hierarchical clustering based on methylation patterns, and these patterns were compared to tumor characteristics, genomic aberrations, and patient outcome. Hierarchical clustering revealed two distinct groups. These classifications effectively separated high and low-risk cases, with significant differences between groups in patient survival (p < 0.0001) and correlation with known prognostic factors. Major differences in methylation of specific genes, notably NFIA, HDAC4, and IL12RB2, were also seen. The methylation patterns identified in this study indicate potential novel prognostic indicators of UM and highlight the power of methylation changes in predicting outcome. The methylation events enriched in the high-risk group suggest that epigenetic modulating drugs may be useful in reducing metastatic potential, and that specific differentially methylated loci could act as biomarkers of therapeutic response.
Collapse
|
19
|
The Role of Non-Coding RNAs in Uveal Melanoma. Cancers (Basel) 2020; 12:cancers12102944. [PMID: 33053887 PMCID: PMC7600503 DOI: 10.3390/cancers12102944] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Revised: 10/01/2020] [Accepted: 10/09/2020] [Indexed: 12/21/2022] Open
Abstract
Simple Summary The development of uveal melanoma is a multifactorial and multi-step process, in which abnormal gene expression plays a key role. Recently, several studies have highlighted the role of non-coding RNAs in the progression of uveal melanoma by affecting different signaling pathways. As important agents in the regulation of genes, non-coding RNAs have enormous potential to open up therapeutic pathways, predict response to treatment, and anticipate patient outcome for uveal melanoma. This review aims to provide a comprehensive view of what we know about ncRNAs in uveal melanoma currently. Abstract Uveal melanoma (UM) is the most common primary intraocular tumor in adulthood. Approximately 50% of patients develop metastatic disease, which typically affects the liver and is usually fatal within one year. This type of cancer is heterogeneous in nature and is divided into two broad groups of tumors according to their susceptibility to develop metastasis. In the last decade, chromosomal abnormalities and the aberrant expression of several signaling pathways and oncogenes in uveal melanomas have been described. Recently, importance has been given to the association of the mentioned deregulation with the expression of non-coding RNAs (ncRNAs). Here, we review the different classes of ncRNAs—such as long non-coding RNAs (lncRNAs) and microRNAs (miRNAs)—and their contribution to the development of UM. Special attention is given to miRNAs and their regulatory role in physiopathology and their potential as biomarkers. As important agents in gene regulation, ncRNAs have a huge potential for opening up therapeutic pathways, predicting response to treatment, and anticipating patient outcome for UM.
Collapse
|
20
|
Rodriguez-Vidal C, Fernandez-Diaz D, Fernandez-Marta B, Lago-Baameiro N, Pardo M, Silva P, Paniagua L, Blanco-Teijeiro MJ, Piñeiro A, Bande M. Treatment of Metastatic Uveal Melanoma: Systematic Review. Cancers (Basel) 2020; 12:E2557. [PMID: 32911759 PMCID: PMC7565536 DOI: 10.3390/cancers12092557] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 09/02/2020] [Accepted: 09/04/2020] [Indexed: 12/12/2022] Open
Abstract
INTRODUCTION More than 50% of patients with uveal melanoma end up developing metastases. Currently, there is no standard first-line treatment that facilitates proper management of the metastatic disease. METHODS A systematic review of the last 40 years in PubMed with an exhaustive and strict selection of studies was conducted, in which the unit of measurement was overall survival (OS) expressed in Kaplan-Meier curves or numerically. RESULTS After the selection process, 110 articles were included. Regional therapies, such as intra-arterial liver chemotherapy (OS: 2, 9-22 months), isolated liver perfusion (OS: 9, 6-27, 4 months), or selective internal radiation therapy (OS: 18 months in monotherapy and 26 months in combination with other therapies) showed some superiority when compared to systemic therapies, such as chemotherapy (OS: 4, 6-17 months), immunotherapy (OS: 5-19, 1 month), immunosuppression (OS: 11 months), or targeted therapy (OS: 6-12 months), without being significant. CONCLUSIONS The results of this review suggest that there are no important differences in OS when comparing the different current treatment modalities. Most of the differences found seem to be explained by the heterogenicity of the different studies and the presence of biases in their design, rather than actual extensions of patient survival.
Collapse
Affiliation(s)
- Cristina Rodriguez-Vidal
- Department of Ophthalmology, University Hospital of Cruces, Cruces Plaza S/N, 48903 Barakaldo-Vizcaya, Spain;
| | - Daniel Fernandez-Diaz
- Department of Ophthalmology, University Hospital of Santiago de Compostela, Ramon Baltar S/N, 15706 Santiago de Compostela, Spain; (D.F.-D.); (B.F.-M.); (M.J.B.-T.); (A.P.)
- Tumores Intraoculares en el Adulto, Instituto de Investigación Sanitaria de Santiago (IDIS), 15706 Santiago de Compostela, Spain; (M.P.); (P.S.)
| | - Beatriz Fernandez-Marta
- Department of Ophthalmology, University Hospital of Santiago de Compostela, Ramon Baltar S/N, 15706 Santiago de Compostela, Spain; (D.F.-D.); (B.F.-M.); (M.J.B.-T.); (A.P.)
| | - Nerea Lago-Baameiro
- Grupo Obesidómica, Instituto de Investigación Sanitaria de Santiago (IDIS), 15706 Santiago de Compostela, Spain;
| | - María Pardo
- Tumores Intraoculares en el Adulto, Instituto de Investigación Sanitaria de Santiago (IDIS), 15706 Santiago de Compostela, Spain; (M.P.); (P.S.)
- Grupo Obesidómica, Instituto de Investigación Sanitaria de Santiago (IDIS), 15706 Santiago de Compostela, Spain;
| | - Paula Silva
- Tumores Intraoculares en el Adulto, Instituto de Investigación Sanitaria de Santiago (IDIS), 15706 Santiago de Compostela, Spain; (M.P.); (P.S.)
- Fundación Pública Galega de Medicina Xenómica, Clinical University Hospital, SERGAS, 15705 Santiago de Compostela, Spain
| | - Laura Paniagua
- Department of Ophthalmology, University Hospital of Coruña, Praza Parrote s/n, 15006 A Coruña, Spain;
| | - María José Blanco-Teijeiro
- Department of Ophthalmology, University Hospital of Santiago de Compostela, Ramon Baltar S/N, 15706 Santiago de Compostela, Spain; (D.F.-D.); (B.F.-M.); (M.J.B.-T.); (A.P.)
- Tumores Intraoculares en el Adulto, Instituto de Investigación Sanitaria de Santiago (IDIS), 15706 Santiago de Compostela, Spain; (M.P.); (P.S.)
| | - Antonio Piñeiro
- Department of Ophthalmology, University Hospital of Santiago de Compostela, Ramon Baltar S/N, 15706 Santiago de Compostela, Spain; (D.F.-D.); (B.F.-M.); (M.J.B.-T.); (A.P.)
- Tumores Intraoculares en el Adulto, Instituto de Investigación Sanitaria de Santiago (IDIS), 15706 Santiago de Compostela, Spain; (M.P.); (P.S.)
| | - Manuel Bande
- Department of Ophthalmology, University Hospital of Santiago de Compostela, Ramon Baltar S/N, 15706 Santiago de Compostela, Spain; (D.F.-D.); (B.F.-M.); (M.J.B.-T.); (A.P.)
- Tumores Intraoculares en el Adulto, Instituto de Investigación Sanitaria de Santiago (IDIS), 15706 Santiago de Compostela, Spain; (M.P.); (P.S.)
| |
Collapse
|
21
|
Wu MY, Lai TT, Liao WT, Li CJ. Clinicopathological and prognostic significance and molecular mechanisms governing uveal melanoma. Ther Adv Med Oncol 2020; 12:1758835920917566. [PMID: 32550863 PMCID: PMC7281640 DOI: 10.1177/1758835920917566] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Accepted: 03/11/2020] [Indexed: 12/15/2022] Open
Abstract
Uveal melanoma (UM) is the most common primary intraocular malignancy in adults. Although UM and cutaneous melanoma are derived from melanocytes, UM differs clinically and biologically from its more common skin counterparts. More than half of primary UMs metastasize. However, there is currently no effective treatment for metastatic UM. Therefore, studying mutations related to the metastasis, growth, proliferation, and survival of UM can help researchers understand its pathogenesis and metastatic mechanism, thereby leading to a more effective treatment. In addition, we provide an overview of the recent basic and clinical studies to provide a strong foundation for developing novel anti-carcinogenesis targets for future interventions.
Collapse
Affiliation(s)
- Meng-Yu Wu
- Department of Emergency Medicine,
Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation,
New Taipei Department of Emergency Medicine, School of Medicine,
Tzu Chi University, Hualien
| | - Tzu-Ting Lai
- Department of Ophthalmology, Taipei
Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New
Taipei, Taiwan
| | - Wan-Ting Liao
- Institute of Medicine, Chung Shan
Medical University, Taichung Chinese Medicine Department, Show
Chwan Memorial Hospital, Changhua
| | - Chia-Jung Li
- Department of Obstetrics and
Gynecology, Kaohsiung Veterans General Hospital, No.386, Dazhong
1st Road, Zuoying District, Kaohsiung City 81362 Institute of
BioPharmaceutical sciences, National Sun Yat-sen University,
Kaohsiung
| |
Collapse
|
22
|
Abdel-Rahman MH, Sample KM, Pilarski R, Walsh T, Grosel T, Kinnamon D, Boru G, Massengill JB, Schoenfield L, Kelly B, Gordon D, Johansson P, DeBenedictis MJ, Singh A, Casadei S, Davidorf FH, White P, Stacey AW, Scarth J, Fewings E, Tischkowitz M, King MC, Hayward NK, Cebulla CM. Whole Exome Sequencing Identifies Candidate Genes Associated with Hereditary Predisposition to Uveal Melanoma. Ophthalmology 2020; 127:668-678. [PMID: 32081490 PMCID: PMC7183432 DOI: 10.1016/j.ophtha.2019.11.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 10/13/2019] [Accepted: 11/11/2019] [Indexed: 01/08/2023] Open
Abstract
PURPOSE To identify susceptibility genes associated with hereditary predisposition to uveal melanoma (UM) in patients with no detectable germline BAP1 alterations. DESIGN Retrospective case series from academic referral centers. PARTICIPANTS Cohort of 154 UM patients with high risk of hereditary cancer defined as patients with 1 or more of the following: (1) familial UM, (2) young age (<35 years) at diagnosis, (3) personal history of other primary cancers, and (4) family history of 2 or more primary cancers with no detectable mutation or deletion in BAP1 gene. METHODS Whole exome sequencing, a cancer gene panel, or both were carried out. Probands included 27 patients with familial UM, 1 patient with bilateral UM, 1 patient with congenital UM, and 125 UM patients with strong personal or family histories, or both, of cancer. Functional validation of variants was carried out by immunohistochemistry, reverse-transcriptase polymerase chain reaction, and genotyping. MAIN OUTCOME MEASURES Clinical characterization of UM patients with germline alterations in known cancer genes. RESULTS We identified actionable pathogenic variants in 8 known hereditary cancer predisposition genes (PALB2, MLH1, MSH6, CHEK2, SMARCE1, ATM, BRCA1, and CTNNA1) in 9 patients, including 3 of 27 patients (11%) with familial UM and 6 of 127 patients (4.7%) with a high risk for cancer. Two patients showed pathogenic variants in CHEK2 and PALB2, whereas variants in the other genes each occurred in 1 patient. Biallelic inactivation of PALB2 and MLH1 was observed in tumors from the respective patients. The frequencies of pathogenic variants in PALB2, MLH1, and SMARCE1 in UM patients were significantly higher than the observed frequencies in noncancer controls (PALB2: P = 0.02; odds ratio, 8.9; 95% confidence interval, 1.5-30.6; MLH1: P = 0.04; odds ratio, 25.4; 95% confidence interval, 1.2-143; SMARCE1: P = 0.001; odds ratio, 2047; 95% confidence interval, 52-4.5e15, respectively). CONCLUSIONS The study provided moderate evidence of gene and disease association of germline mutations in PALB2 and MLH1 with hereditary predisposition to UM. It also identified several other candidate susceptibility genes. The results suggest locus heterogeneity in predisposition to UM. Genetic testing for hereditary predisposition to cancer is warranted in UM patients with strong personal or family history of cancers, or both.
Collapse
Affiliation(s)
- Mohamed H Abdel-Rahman
- Department of Ophthalmology and Visual Science, Havener Eye Institute, The Ohio State University, Columbus, Ohio; Division of Human Genetics, Department of Internal Medicine, The Ohio State University, Columbus, Ohio.
| | - Klarke M Sample
- Department of Ophthalmology and Visual Science, Havener Eye Institute, The Ohio State University, Columbus, Ohio
| | - Robert Pilarski
- Division of Human Genetics, Department of Internal Medicine, The Ohio State University, Columbus, Ohio
| | - Tomas Walsh
- Department of Genome Sciences, University of Washington, Seattle, Washington
| | - Timothy Grosel
- Department of Ophthalmology and Visual Science, Havener Eye Institute, The Ohio State University, Columbus, Ohio
| | - Daniel Kinnamon
- Division of Human Genetics, Department of Internal Medicine, The Ohio State University, Columbus, Ohio
| | - Getachew Boru
- Department of Ophthalmology and Visual Science, Havener Eye Institute, The Ohio State University, Columbus, Ohio
| | - James B Massengill
- Department of Ophthalmology and Visual Science, Havener Eye Institute, The Ohio State University, Columbus, Ohio
| | - Lynn Schoenfield
- Department of Pathology, The Ohio State University, Columbus, Ohio
| | - Ben Kelly
- The Institute for Genomic Medicine, Nationwide Children's Hospital, Columbus, Ohio
| | - David Gordon
- The Institute for Genomic Medicine, Nationwide Children's Hospital, Columbus, Ohio
| | - Peter Johansson
- QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Meghan J DeBenedictis
- Department of Ophthalmic Oncology, Cole Eye Institute, Cleveland Clinic, Cleveland, Ohio
| | - Arun Singh
- Department of Ophthalmic Oncology, Cole Eye Institute, Cleveland Clinic, Cleveland, Ohio
| | - Silvia Casadei
- Department of Genome Sciences, University of Washington, Seattle, Washington
| | - Frederick H Davidorf
- Department of Ophthalmology and Visual Science, Havener Eye Institute, The Ohio State University, Columbus, Ohio
| | - Peter White
- The Institute for Genomic Medicine, Nationwide Children's Hospital, Columbus, Ohio
| | - Andrew W Stacey
- Department of Ophthalmology, University of Washington, Seattle, Washington
| | - James Scarth
- Academic Laboratory of Medical Genetics and National Institute for Health Research Cambridge Biomedical Research Centre, University of Cambridge, Cambridge, United Kingdom
| | - Ellie Fewings
- Academic Laboratory of Medical Genetics and National Institute for Health Research Cambridge Biomedical Research Centre, University of Cambridge, Cambridge, United Kingdom
| | - Marc Tischkowitz
- Academic Laboratory of Medical Genetics and National Institute for Health Research Cambridge Biomedical Research Centre, University of Cambridge, Cambridge, United Kingdom; East Anglian Medical Genetics Service, Cambridge University Hospitals, Cambridge, United Kingdom
| | - Mary-Claire King
- Department of Genome Sciences, University of Washington, Seattle, Washington; Department of Medicine, University of Washington, Seattle, Washington
| | | | - Colleen M Cebulla
- Department of Ophthalmology and Visual Science, Havener Eye Institute, The Ohio State University, Columbus, Ohio
| |
Collapse
|
23
|
Wessely A, Steeb T, Erdmann M, Heinzerling L, Vera J, Schlaak M, Berking C, Heppt MV. The Role of Immune Checkpoint Blockade in Uveal Melanoma. Int J Mol Sci 2020; 21:ijms21030879. [PMID: 32013269 PMCID: PMC7037664 DOI: 10.3390/ijms21030879] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 01/27/2020] [Accepted: 01/27/2020] [Indexed: 12/25/2022] Open
Abstract
Uveal melanoma (UM) represents the most common intraocular malignancy in adults and accounts for about 5% of all melanomas. Primary disease can be effectively controlled by several local therapy options, but UM has a high potential for metastatic spread, especially to the liver. Despite its clinical and genetic heterogeneity, therapy of metastatic UM has largely been adopted from cutaneous melanoma (CM) with discouraging results until now. The introduction of antibodies targeting CTLA-4 and PD-1 for immune checkpoint blockade (ICB) has revolutionized the field of cancer therapy and has achieved pioneering results in metastatic CM. Thus, expectations were high that patients with metastatic UM would also benefit from these new therapy options. This review provides a comprehensive and up-to-date overview on the role of ICB in UM. We give a summary of UM biology, its clinical features, and how it differs from CM. The results of several studies that have been investigating ICB in metastatic UM are presented. We discuss possible reasons for the lack of efficacy of ICB in UM compared to CM, highlight the pitfalls of ICB in this cancer entity, and explain why other immune-modulating therapies could still be an option for future UM therapies.
Collapse
Affiliation(s)
- Anja Wessely
- Department of Dermatology, Universitätsklinikum Erlangen, Friedrich Alexander University, Ulmenweg 18, 91054 Erlangen, Germany; (A.W.); (T.S.); (M.E.); (L.H.); (J.V.); (C.B.)
| | - Theresa Steeb
- Department of Dermatology, Universitätsklinikum Erlangen, Friedrich Alexander University, Ulmenweg 18, 91054 Erlangen, Germany; (A.W.); (T.S.); (M.E.); (L.H.); (J.V.); (C.B.)
| | - Michael Erdmann
- Department of Dermatology, Universitätsklinikum Erlangen, Friedrich Alexander University, Ulmenweg 18, 91054 Erlangen, Germany; (A.W.); (T.S.); (M.E.); (L.H.); (J.V.); (C.B.)
| | - Lucie Heinzerling
- Department of Dermatology, Universitätsklinikum Erlangen, Friedrich Alexander University, Ulmenweg 18, 91054 Erlangen, Germany; (A.W.); (T.S.); (M.E.); (L.H.); (J.V.); (C.B.)
| | - Julio Vera
- Department of Dermatology, Universitätsklinikum Erlangen, Friedrich Alexander University, Ulmenweg 18, 91054 Erlangen, Germany; (A.W.); (T.S.); (M.E.); (L.H.); (J.V.); (C.B.)
| | - Max Schlaak
- Department of Dermatology and Allergy, University Hospital, LMU Munich, Frauenlobstr. 9-11, 80337 Munich, Germany;
| | - Carola Berking
- Department of Dermatology, Universitätsklinikum Erlangen, Friedrich Alexander University, Ulmenweg 18, 91054 Erlangen, Germany; (A.W.); (T.S.); (M.E.); (L.H.); (J.V.); (C.B.)
| | - Markus Vincent Heppt
- Department of Dermatology, Universitätsklinikum Erlangen, Friedrich Alexander University, Ulmenweg 18, 91054 Erlangen, Germany; (A.W.); (T.S.); (M.E.); (L.H.); (J.V.); (C.B.)
- Correspondence: ; Tel.: +49-9131-85-35747
| |
Collapse
|
24
|
Conjunctival Melanoma: Genetic and Epigenetic Insights of a Distinct Type of Melanoma. Int J Mol Sci 2019; 20:ijms20215447. [PMID: 31683701 PMCID: PMC6862213 DOI: 10.3390/ijms20215447] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 10/25/2019] [Accepted: 10/28/2019] [Indexed: 12/19/2022] Open
Abstract
Conjunctival melanoma (CjM) is a rare, primary cancer of the ocular region. Genetic and epigenetic characteristics of conjunctival melanoma have not been completely elucidated yet. Conjunctival melanoma presents similarities with cutaneous melanoma, with substantial differences in the biological behavior. We reviewed the genetic and epigenetic insights of CjM involved in invasion and metastatic spread. CjM is commonly characterized by mutations of v-raf murine sarcoma viral oncogene homolog B1 (BRAF), neurofibromin 1 (NF1) and telomerase reverse transcriptase (TERT), high expression of mammalian target of rapamycin (mTOR) and heat shock protein 90 (HSP90), frequent phosphatase and tensin homolog (PTEN) loss and upregulation of specific miRNAs. These features should identify CjM as a distinct subset of melanoma with its own profile, which is more similar to cutaneous melanoma than mucosal melanoma and remarkably different from uveal melanoma.
Collapse
|
25
|
Boru G, Grosel TW, Pilarski R, Stautberg M, Massengill JB, Jeter J, Singh A, Marino MJ, McElroy JP, Davidorf FH, Cebulla CM, Abdel-Rahman MH. Germline large deletion of BAP1 and decreased expression in non-tumor choroid in uveal melanoma patients with high risk for inherited cancer. Genes Chromosomes Cancer 2019; 58:650-656. [PMID: 30883995 PMCID: PMC6612571 DOI: 10.1002/gcc.22752] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2018] [Revised: 03/09/2019] [Accepted: 03/12/2019] [Indexed: 12/12/2022] Open
Abstract
Uveal melanoma (UM) is the most common phenotype in patients with germline BAP1 mutation. This study aimed to identify selection criteria for BAP1 germline testing and assessed the role of large deletion/duplication and epigenetic inactivation. One hundred seventy-two UM patients with high risk of hereditary cancer were included. Germline variants in BAP1 were assessed by direct sequencing and large deletion/duplication by multiplex ligation-dependent probe amplification. BAP1 expression in unaffected choroid tissue from a patient with UM was assessed by quantitative RT-PCR and methylation by pyrosequencing. Twenty-eight patients had one or more germline sequence variants in BAP1; seven of these were pathogenic. One hundred forty patients were assessed for large deletion/duplication and in one BAP1 whole gene deletion was detected. In total, eight patients (4.7%) had pathogenic alterations in BAP1 with the highest frequencies of in patients with a personal/family history of ≥2 BAP1-related cancers 6/16 (38%), age of onset <35 years 4/21 (19%) and familial UM 6/34 (18%). One of 19 non-tumor choroid tissues tested showed uncharacteristically low expression as compared to the controls decrease in BAP1 RNA expression but no evidence of constitutional promotor hypermethylation was detected. UM patients with a strong personal or family history of cancers associated with BAP1, early age of onset and familial UM should be assessed for germline variants in BAP1, including large deletions.
Collapse
Affiliation(s)
- Getachew Boru
- Department of Ophthalmology and Visual Science, Havener Eye Institute, The Ohio State University Columbus, Ohio
| | - Timothy W. Grosel
- Department of Ophthalmology and Visual Science, Havener Eye Institute, The Ohio State University Columbus, Ohio
| | - Robert Pilarski
- Division of Human Genetics, Department of Internal Medicine, The Ohio State University Columbus, Ohio
| | - Meredith Stautberg
- Division of Human Genetics, Department of Internal Medicine, The Ohio State University Columbus, Ohio
| | - James B. Massengill
- Department of Ophthalmology and Visual Science, Havener Eye Institute, The Ohio State University Columbus, Ohio
| | - Joanne Jeter
- Division of Human Genetics, Department of Internal Medicine, The Ohio State University Columbus, Ohio
- Division of Medical Oncology, The Ohio State University Comprehensive Cancer Center, Columbus, Ohio
| | - Arun Singh
- Cole Eye Institute, Department of Ophthalmic Oncology, Cleveland Clinic, Cleveland, Ohio
| | - Meghan J. Marino
- Cole Eye Institute, Department of Ophthalmic Oncology, Cleveland Clinic, Cleveland, Ohio
| | - Joseph P. McElroy
- Center for Biostatistics, Department of Biomedical Informatics, The Ohio State University, Columbus, Ohio
| | - Frederick H. Davidorf
- Department of Ophthalmology and Visual Science, Havener Eye Institute, The Ohio State University Columbus, Ohio
| | - Colleen M. Cebulla
- Department of Ophthalmology and Visual Science, Havener Eye Institute, The Ohio State University Columbus, Ohio
| | - Mohamed H. Abdel-Rahman
- Department of Ophthalmology and Visual Science, Havener Eye Institute, The Ohio State University Columbus, Ohio
- Division of Human Genetics, Department of Internal Medicine, The Ohio State University Columbus, Ohio
| |
Collapse
|
26
|
Vivet-Noguer R, Tarin M, Roman-Roman S, Alsafadi S. Emerging Therapeutic Opportunities Based on Current Knowledge of Uveal Melanoma Biology. Cancers (Basel) 2019; 11:E1019. [PMID: 31330784 PMCID: PMC6678734 DOI: 10.3390/cancers11071019] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 07/09/2019] [Accepted: 07/17/2019] [Indexed: 12/16/2022] Open
Abstract
Uveal Melanoma (UM) is a rare and malignant intraocular tumor with dismal prognosis. Despite the efficient control of the primary tumor by radiation or surgery, up to 50% of patients subsequently develop metastasis, mainly in the liver. Once the tumor has spread from the eye, the treatment is challenging and the median survival is only nine months. UM represents an intriguing model of oncogenesis that is characterized by a relatively homogeneous histopathological architecture and a low burden of genetic alterations, in contrast to other melanomas. UM is driven by recurrent activating mutations in Gαq pathway, which are associated with a second mutation in BRCA1 associated protein 1 (BAP1), splicing factor 3b subunit 1 (SF3B1), or eukaryotic translation initiation factor 1A X-linked (EIF1AX), occurring in an almost mutually exclusive manner. The monosomy of chromosome 3 is also a recurrent feature that is associated with high metastatic risk. These events driving UM oncogenesis have been thoroughly investigated over the last decade. However, no efficient related therapeutic strategies are yet available and the metastatic disease remains mostly incurable. Here, we review current knowledge regarding the molecular biology and the genetics of uveal melanoma and highlight the related therapeutic applications and perspectives.
Collapse
Affiliation(s)
- Raquel Vivet-Noguer
- Uveal Melanoma Translational Group, Department of Translational Research, Institut Curie, PSL Research University, 75248 Paris, France
| | - Malcy Tarin
- Uveal Melanoma Translational Group, Department of Translational Research, Institut Curie, PSL Research University, 75248 Paris, France
| | - Sergio Roman-Roman
- Uveal Melanoma Translational Group, Department of Translational Research, Institut Curie, PSL Research University, 75248 Paris, France
| | - Samar Alsafadi
- Uveal Melanoma Translational Group, Department of Translational Research, Institut Curie, PSL Research University, 75248 Paris, France.
| |
Collapse
|
27
|
Rabbie R, Ferguson P, Molina‐Aguilar C, Adams DJ, Robles‐Espinoza CD. Melanoma subtypes: genomic profiles, prognostic molecular markers and therapeutic possibilities. J Pathol 2019; 247:539-551. [PMID: 30511391 PMCID: PMC6492003 DOI: 10.1002/path.5213] [Citation(s) in RCA: 147] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Revised: 11/27/2018] [Accepted: 11/30/2018] [Indexed: 12/24/2022]
Abstract
Melanoma is characterised by its ability to metastasise at early stages of tumour development. Current clinico-pathologic staging based on the American Joint Committee on Cancer criteria is used to guide surveillance and management in early-stage disease, but its ability to predict clinical outcome has limitations. Herein we review the genomics of melanoma subtypes including cutaneous, acral, uveal and mucosal, with a focus on the prognostic and predictive significance of key molecular aberrations. © 2018 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Roy Rabbie
- Experimental Cancer GeneticsThe Wellcome Sanger InstituteHinxtonUK
- Cambridge Cancer CentreCambridge University Hospitals NHS Foundation TrustCambridgeUK
| | - Peter Ferguson
- Tissue Pathology and Diagnostic Oncology, Royal Prince Alfred HospitalSydneyAustralia
- Melanoma Institute Australia, The University of SydneySydneyAustralia
| | - Christian Molina‐Aguilar
- Laboratorio Internacional de Investigación sobre el Genoma HumanoUniversidad Nacional Autónoma de MéxicoSantiago de QuerétaroMexico
| | - David J Adams
- Experimental Cancer GeneticsThe Wellcome Sanger InstituteHinxtonUK
| | - Carla D Robles‐Espinoza
- Experimental Cancer GeneticsThe Wellcome Sanger InstituteHinxtonUK
- Laboratorio Internacional de Investigación sobre el Genoma HumanoUniversidad Nacional Autónoma de MéxicoSantiago de QuerétaroMexico
| |
Collapse
|
28
|
Kennedy S, Rice M, Toomey S, Horgan N, Hennessey BT, Larkin A. An insight into the molecular genetics of a uveal melanoma patient cohort. J Cancer Res Clin Oncol 2018; 144:1861-1868. [PMID: 30008023 DOI: 10.1007/s00432-018-2705-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Accepted: 07/05/2018] [Indexed: 12/26/2022]
Abstract
BACKGROUND/AIMS Uveal melanoma (UM) is a highly aggressive malignancy and presents a clinically significant unmet need in cancer therapeutics. The aim of this study was to identify previously unreported mutations in UM among an Irish cohort of patients which may have potential clinical relevance. METHODS DNA was extracted from 36 intraocular melanoma patient samples and 4 metastatic melanoma samples among the patient cohort by microdissection from formalin-fixed paraffin embedded tissue blocks and underwent genotyping to test for known single nucleotide polymorphisms in 42 cancer associated genes. These mutations were analysed using a custom-designed sequenom panel. RESULTS Using high-throughput genotyping, mutually exclusive GNAQ and GNA11 mutations were detected in 31 of 34 UM patients together with a number of non-synonymous changes in established cancer driver genes, PHLPP2, MET, PIK3R1 and IDH-1, variants which have not been previously associated with UM. CONCLUSION Given the lack of knowledge regarding the clinical relevance of the variants identified in this UM cohort and their likely pathogenic nature in other cancers, further studies of the functional impact of these variant mutations are warranted to establish possible previously, undescribed roles in UM pathogenesis, which may provide additional targets for future therapies.
Collapse
Affiliation(s)
- Susan Kennedy
- National Ophthalmic Laboratory, Royal Victoria Eye and Ear Hospital, Adelaide Road, Dublin 2, Ireland
| | - Michael Rice
- National Ophthalmic Laboratory, Royal Victoria Eye and Ear Hospital, Adelaide Road, Dublin 2, Ireland
| | - Sinead Toomey
- Department of Medical Oncology, Royal College of Surgeons in Ireland, Beaumont Hospital, Beaumont, Dublin 9, Ireland
| | - Noel Horgan
- National Ophthalmic Laboratory, Royal Victoria Eye and Ear Hospital, Adelaide Road, Dublin 2, Ireland
| | - Bryan T Hennessey
- Department of Medical Oncology, Royal College of Surgeons in Ireland, Beaumont Hospital, Beaumont, Dublin 9, Ireland
| | - Annemarie Larkin
- National Institute for Cellular Biotechnology, Dublin City University, Glasnevin, Dublin 9, Ireland.
| |
Collapse
|
29
|
Park JJ, Diefenbach RJ, Joshua AM, Kefford RF, Carlino MS, Rizos H. Oncogenic signaling in uveal melanoma. Pigment Cell Melanoma Res 2018; 31:661-672. [DOI: 10.1111/pcmr.12708] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2017] [Revised: 04/19/2018] [Accepted: 04/25/2018] [Indexed: 12/14/2022]
Affiliation(s)
- John J. Park
- Department of Biomedical Sciences; Faculty of Medicine and Health Sciences; Macquarie University; Sydney New South Wales Australia
- Melanoma Institute Australia; Sydney New South Wales Australia
| | - Russell J. Diefenbach
- Department of Biomedical Sciences; Faculty of Medicine and Health Sciences; Macquarie University; Sydney New South Wales Australia
- Melanoma Institute Australia; Sydney New South Wales Australia
| | - Anthony M. Joshua
- Melanoma Institute Australia; Sydney New South Wales Australia
- Kinghorn Cancer Centre; St Vincent’s Hospital; Sydney New South Wales Australia
| | - Richard F. Kefford
- Department of Biomedical Sciences; Faculty of Medicine and Health Sciences; Macquarie University; Sydney New South Wales Australia
- Melanoma Institute Australia; Sydney New South Wales Australia
- Department of Medical Oncology; Crown Princess Mary Cancer Centre; Westmead and Blacktown Hospitals; Sydney New South Wales Australia
| | - Matteo S. Carlino
- Department of Biomedical Sciences; Faculty of Medicine and Health Sciences; Macquarie University; Sydney New South Wales Australia
- Melanoma Institute Australia; Sydney New South Wales Australia
- Department of Medical Oncology; Crown Princess Mary Cancer Centre; Westmead and Blacktown Hospitals; Sydney New South Wales Australia
| | - Helen Rizos
- Department of Biomedical Sciences; Faculty of Medicine and Health Sciences; Macquarie University; Sydney New South Wales Australia
- Melanoma Institute Australia; Sydney New South Wales Australia
| |
Collapse
|
30
|
Sharma A, Stei MM, Fröhlich H, Holz FG, Loeffler KU, Herwig-Carl MC. Genetic and epigenetic insights into uveal melanoma. Clin Genet 2018; 93:952-961. [PMID: 28902406 DOI: 10.1111/cge.13136] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Revised: 08/31/2017] [Accepted: 09/04/2017] [Indexed: 12/18/2022]
Abstract
Uveal melanoma (UM) is the most frequent primary intraocular tumor in Caucasian adults and is potentially fatal if metastases develop. While several prognostic genetic changes have been identified in UM, epigenetic influences are now getting closer attention. Recent technological advances have allowed to exam the human genome to a greater extent and have improved our understanding of several diseases including malignant tumors. In this context, there has been tremendous progress in the field of UM pathogenesis. Herein, we review the literature with emphasis on genetic alterations, epigenetic modifications and signaling pathways as well as possible biomarkers in UM. In addition, different research models for UM are discussed. New insights and major challenges are outlined in order to evaluate the current status for this potentially devastating disease.
Collapse
Affiliation(s)
- A Sharma
- Department of Ophthalmology, University of Bonn, Bonn, Germany.,Department of Neurology, University of Bonn, Bonn, Germany
| | - M M Stei
- Department of Ophthalmology, University of Bonn, Bonn, Germany
| | - H Fröhlich
- Algorithmic Bioinformatics, BIT, University of Bonn, Bonn, Germany.,UCB Biosciences GmbH, Monheim, Germany
| | - F G Holz
- Department of Ophthalmology, University of Bonn, Bonn, Germany
| | - K U Loeffler
- Department of Ophthalmology, University of Bonn, Bonn, Germany
| | - M C Herwig-Carl
- Department of Ophthalmology, University of Bonn, Bonn, Germany
| |
Collapse
|
31
|
Carita G, Frisch-Dit-Leitz E, Dahmani A, Raymondie C, Cassoux N, Piperno-Neumann S, Némati F, Laurent C, De Koning L, Halilovic E, Jeay S, Wylie A, Emery C, Roman-Roman S, Schoumacher M, Decaudin D. Dual inhibition of protein kinase C and p53-MDM2 or PKC and mTORC1 are novel efficient therapeutic approaches for uveal melanoma. Oncotarget 2018; 7:33542-56. [PMID: 27507190 PMCID: PMC5085101 DOI: 10.18632/oncotarget.9552] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Accepted: 05/10/2016] [Indexed: 12/27/2022] Open
Abstract
Uveal melanoma (UM) is the most common cancer of the eye in adults. Many UM patients develop metastases for which no curative treatment has been identified. Novel therapeutic approaches are therefore urgently needed. UM is characterized by mutations in the genes GNAQ and GNA11 which activate the PKC pathway, leading to the use of PKC inhibitors as a rational strategy to treat UM tumors. Encouraging clinical activity has been noted in UM patients treated with PKC inhibitors. However, it is likely that curative treatment regimens will require a combination of targeted therapeutic agents. Employing a large panel of UM patient-derived xenograft models (PDXs), several PKC inhibitor-based combinations were tested in vivo using the PKC inhibitor AEB071. The most promising approaches were further investigated in vitro using our unique panel of UM cell lines. When combined with AEB071, the two agents CGM097 (p53-MDM2 inhibitor) and RAD001 (mTORC1 inhibitor) demonstrated greater activity than single agents, with tumor regression observed in several UM PDXs. Follow-up studies in UM cell lines on these two drug associations confirmed their combination activity and ability to induce cell death. While no effective treatment currently exists for metastatic uveal melanoma, we have discovered using our unique panel of preclinical models that combinations between PKC/mTOR inhibitors and PKC/p53-MDM2 inhibitors are two novel and very effective therapeutic approaches for this disease. Together, our study reveals that combining PKC and p53-MDM2 or mTORC1 inhibitors may provide significant clinical benefit for UM patients.
Collapse
Affiliation(s)
- Guillaume Carita
- Laboratory of Preclinical Investigation, Department of Translational Research, PSL University, Institut Curie, Paris, France
| | | | - Ahmed Dahmani
- Laboratory of Preclinical Investigation, Department of Translational Research, PSL University, Institut Curie, Paris, France
| | - Chloé Raymondie
- Laboratory of Preclinical Investigation, Department of Translational Research, PSL University, Institut Curie, Paris, France
| | - Nathalie Cassoux
- Department of Ophthalmological Oncology, Institut Curie, Paris, France
| | | | - Fariba Némati
- Laboratory of Preclinical Investigation, Department of Translational Research, PSL University, Institut Curie, Paris, France
| | - Cécile Laurent
- Residual Tumor & Response to Treatment Laboratory, Department of Translational Research, Institut Curie, PSL University, Paris, Paris, France
| | - Leanne De Koning
- RPPA Platform, Department of Translational Research, Institut Curie, PSL University, Paris, France
| | - Ensar Halilovic
- Novartis Institutes for Biomedical Research, Cambridge, MA, USA
| | - Sebastien Jeay
- Novartis Institutes for Biomedical Research, Cambridge, MA, USA
| | - Andrew Wylie
- Novartis Institutes for Biomedical Research, Cambridge, MA, USA
| | - Caroline Emery
- Novartis Institutes for Biomedical Research, Cambridge, MA, USA
| | - Sergio Roman-Roman
- Department of Translational Research, Institut Curie, PSL University, Paris, France
| | - Marie Schoumacher
- Department of Translational Research, Institut Curie, PSL University, Paris, France
| | - Didier Decaudin
- Laboratory of Preclinical Investigation, Department of Translational Research, PSL University, Institut Curie, Paris, France.,Department of Medical Oncology, Institut Curie, Paris, France
| |
Collapse
|
32
|
Shoushtari AN, Ong LT, Schoder H, Singh-Kandah S, Abbate KT, Postow MA, Callahan MK, Wolchok J, Chapman PB, Panageas KS, Schwartz GK, Carvajal RD. A phase 2 trial of everolimus and pasireotide long-acting release in patients with metastatic uveal melanoma. Melanoma Res 2018; 26:272-7. [PMID: 26795274 DOI: 10.1097/cmr.0000000000000234] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The aim of this study was to test the hypothesis that inhibiting mammalian target of rapamycin and insulin-like growth factor-1 receptor would be efficacious in metastatic uveal melanoma. This was a phase 2 trial of everolimus 10 mg daily plus pasireotide long-acting release 60 mg every 28 days enrolling patients with progressive, metastatic uveal melanoma to treatment until progression by Response Evaluation Criteria In Solid Tumors 1.1 (RECIST 1.1) or unacceptable toxicity. The primary endpoint was clinical benefit rate, defined as any objective response or RECIST 1.1 stable disease at 16 weeks. A subset of patients underwent baseline indium-111-octreotide scans. A total of 14 patients were enrolled, of which 13 were evaluable for the primary endpoint, before the study was terminated due to poor accrual. Three of 13 (26%) patients obtained clinical benefit. Seven of 13 (54%) had stable disease lasting for a median of 8 weeks (range: 8-16 weeks). Grade 3 adverse events deemed at least possibly related to study drugs were hyperglycemia (n=7), oral mucositis (n=2), diarrhea (n=1), hypophosphatemia (n=1), and anemia (n=1). Seven of 14 (50%) patients required at least one dose reduction due to toxicity. Seven of eight (88%) patients with baseline indium-111-octreotide scans had at least one avid lesion, with significant intrapatient heterogeneity. There was a trend toward an association between octreotide avidity and cytostatic response to therapy (P=0.078). The combination of everolimus and pasireotide has limited clinical benefit in this small metastatic uveal melanoma cohort. Dose reductions for side effects were common. Further investigation into the relationship between somatostatin receptor expression and cytostatic activity of somatostatin analogues is warranted.
Collapse
Affiliation(s)
- Alexander N Shoushtari
- aMelanoma and Immunotherapeutics Service bMolecular Imaging and Therapy Service cDepartment of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center dWeill Cornell Medical College eDivision of Hematology/Oncology, Columbia University Medical Center, New York, New York, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Peng J, Liu H, Liu C. MiR-155 Promotes Uveal Melanoma Cell Proliferation and Invasion by Regulating NDFIP1 Expression. Technol Cancer Res Treat 2017; 16:1160-1167. [PMID: 29333944 PMCID: PMC5762084 DOI: 10.1177/1533034617737923] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
MicroRNAs refer to small RNA molecules that destroy the messenger RNA by binding on them inhibiting the production of protein. However, the role of miR-155 in uveal melanoma metastasis remains largely unknown. In this study, we found that miR-155 was upregulated in both uveal melanoma cells and tissues. Transfection of miR-155 mimic into uveal melanoma cells led to an increase in cell growth and invasion; in contrast, inhibition of miR-155 resulted in opposite effects. Also, we identified Nedd4-family interacting protein 1 as a direct target of miR-155, and the expression of Nedd4-family interacting protein 1 was inhibited by miR-155. Furthermore, ectopic expression of Nedd4-family interacting protein 1 restored the effects of miR-155 on cell proliferation and invasion of uveal melanoma cells. In conclusion, miR-155 acts as a tumor promotor in uveal melanoma through increasing cell proliferation and invasion. Thus, miR-155 might serve as a potential therapeutic target in patients with uveal melanoma.
Collapse
Affiliation(s)
- Jing Peng
- 1 Department of Ophthalmology, Xi'an No. 4 Hospital, Shanxi Ophthalmology Medical Center, Xi'an, China
| | - Honglei Liu
- 1 Department of Ophthalmology, Xi'an No. 4 Hospital, Shanxi Ophthalmology Medical Center, Xi'an, China
| | - Cuihong Liu
- 1 Department of Ophthalmology, Xi'an No. 4 Hospital, Shanxi Ophthalmology Medical Center, Xi'an, China
| |
Collapse
|
34
|
Chua V, Lapadula D, Randolph C, Benovic JL, Wedegaertner PB, Aplin AE. Dysregulated GPCR Signaling and Therapeutic Options in Uveal Melanoma. Mol Cancer Res 2017; 15:501-506. [PMID: 28223438 DOI: 10.1158/1541-7786.mcr-17-0007] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Revised: 01/31/2017] [Accepted: 02/15/2017] [Indexed: 12/20/2022]
Abstract
Uveal melanoma is the most common primary intraocular malignant tumor in adults and arises from the transformation of melanocytes in the uveal tract. Even after treatment of the primary tumor, up to 50% of patients succumb to metastatic disease. The liver is the predominant organ of metastasis. There is an important need to provide effective treatment options for advanced stage uveal melanoma. To provide the preclinical basis for new treatments, it is important to understand the molecular underpinnings of the disease. Recent genomic studies have shown that mutations within components of G protein-coupled receptor (GPCR) signaling are early events associated with approximately 98% of uveal melanomas.Implications: This review discusses the alterations in GPCR signaling components (GNAQ and GNA11), dysregulated GPCR signaling cascades, and viable targeted therapies with the intent to provide insight into new therapeutic strategies in uveal melanoma. Mol Cancer Res; 15(5); 501-6. ©2017 AACR.
Collapse
Affiliation(s)
- Vivian Chua
- Department of Cancer Biology, Sidney Kimmel Cancer Center at Jefferson, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Dominic Lapadula
- Department of Biochemistry and Molecular Biology, Sidney Kimmel Cancer Center at Jefferson, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Clinita Randolph
- Department of Biochemistry and Molecular Biology, Sidney Kimmel Cancer Center at Jefferson, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Jeffrey L Benovic
- Department of Biochemistry and Molecular Biology, Sidney Kimmel Cancer Center at Jefferson, Thomas Jefferson University, Philadelphia, Pennsylvania.,Cancer Cell Biology and Signaling Program, Sidney Kimmel Cancer Center at Jefferson, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Philip B Wedegaertner
- Department of Biochemistry and Molecular Biology, Sidney Kimmel Cancer Center at Jefferson, Thomas Jefferson University, Philadelphia, Pennsylvania.,Cancer Cell Biology and Signaling Program, Sidney Kimmel Cancer Center at Jefferson, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Andrew E Aplin
- Department of Cancer Biology, Sidney Kimmel Cancer Center at Jefferson, Thomas Jefferson University, Philadelphia, Pennsylvania. .,Cancer Cell Biology and Signaling Program, Sidney Kimmel Cancer Center at Jefferson, Thomas Jefferson University, Philadelphia, Pennsylvania
| |
Collapse
|
35
|
Next-Generation Sequencing Reveals Pathway Activations and New Routes to Targeted Therapies in Cutaneous Metastatic Melanoma. Am J Dermatopathol 2017; 39:1-13. [PMID: 28045747 DOI: 10.1097/dad.0000000000000729] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND Comprehensive genomic profiling of clinical samples by next-generation sequencing (NGS) can identify one or more therapy targets for the treatment of metastatic melanoma (MM) with a single diagnostic test. METHODS NGS was performed on hybridization-captured, adaptor ligation-based libraries using DNA extracted from 4 formalin-fixed paraffin-embedded sections cut at 10 microns from 30 MM cases. The exons of 182 cancer-related genes were fully sequenced using the Illumina HiSeq 2000 at an average sequencing depth of 1098X and evaluated for genomic alterations (GAs) including point mutations, insertions, deletions, copy number alterations, and select gene fusions/rearrangements. Clinically relevant GAs (CRGAs) were defined as those identifying commercially available targeted therapeutics or therapies in registered clinical trials. RESULTS The 30 American Joint Committee on Cancer Stage IV MM included 17 (57%) male and 13 (43%) female patients with a mean age of 59.5 years (range 41-83 years). All MM samples had at least 1 GA, and an average of 2.7 GA/sample (range 1-7) was identified. The mean number of GA did not differ based on age or sex; however, on average, significantly more GAs were identified in amelanotic and poorly differentiated MM. GAs were most commonly identified in BRAF (12 cases, 40%), CDKN2A (6 cases, 20%), NF1 (8 cases, 26.7%), and NRAS (6 cases, 20%). CRGAs were identified in all patients, and represented 77% of the GA (64/83) detected. The median and mean CRGAs per tumor were 2 and 2.1, respectively (range 1-7). CONCLUSION Comprehensive genomic profiling of MM, using a single diagnostic test, uncovers an unexpectedly high number of CRGA that would not be identified by standard of care testing. Moreover, NGS has the potential to influence therapy selection and can direct patients to enter relevant clinical trials evaluating promising targeted therapies.
Collapse
|
36
|
Carvajal RD, Schwartz GK, Tezel T, Marr B, Francis JH, Nathan PD. Metastatic disease from uveal melanoma: treatment options and future prospects. Br J Ophthalmol 2017; 101:38-44. [PMID: 27574175 PMCID: PMC5256122 DOI: 10.1136/bjophthalmol-2016-309034] [Citation(s) in RCA: 283] [Impact Index Per Article: 35.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Revised: 08/01/2016] [Accepted: 08/08/2016] [Indexed: 12/12/2022]
Abstract
Uveal melanoma represents ∼85% of all ocular melanomas and up to 50% of patients develop metastatic disease. Metastases are most frequently localised to the liver and, as few patients are candidates for potentially curative surgery, this is associated with a poor prognosis. There is currently little published evidence for the optimal management and treatment of metastatic uveal melanoma and the lack of effective therapies in this setting has led to the widespread use of systemic treatments for patients with cutaneous melanoma. Uveal and cutaneous melanomas are intrinsically different diseases and so dedicated management strategies and therapies for uveal melanoma are much needed. This review explores the biology of uveal melanoma and how this relates to ongoing trials of targeted therapies in the metastatic disease setting. In addition, we consider the options to optimise patient management and care.
Collapse
Affiliation(s)
- Richard D Carvajal
- Division of Hematology/Oncology, Columbia University Medical Center, New York, USA
| | - Gary K Schwartz
- Division of Hematology/Oncology, Columbia University Medical Center, New York, USA
| | - Tongalp Tezel
- Department of Ophthalmology, Columbia University Medical Center, New York, USA
| | - Brian Marr
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, USA
| | - Jasmine H Francis
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, USA
| | - Paul D Nathan
- Division of Cancer Services, Mt Vernon Cancer Centre, Northwood, UK
| |
Collapse
|
37
|
Helgadottir H, Höiom V. The genetics of uveal melanoma: current insights. APPLICATION OF CLINICAL GENETICS 2016; 9:147-55. [PMID: 27660484 PMCID: PMC5019476 DOI: 10.2147/tacg.s69210] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Uveal melanoma (UM) is the most common malignant eye tumor in adults affecting ~7,000 individuals per year worldwide. UM is a rare subtype of melanoma with distinct clinical and molecular features as compared to other melanoma subtypes. UMs lack the most typical cutaneous melanoma-associated mutations (BRAF, NRAS, and NF1) and are instead characterized by a different set of genes with oncogenic or loss-of-function mutations. By next-generation sequencing efforts on UM tumors, several driver genes have been detected. The most frequent ones are BAP1, EIF1AX, GNA11, GNAQ, and SF3B1. In many cases, mutations in these genes appear in a mutually exclusive manner, have different risk of metastasis, and are consequently of prognostic importance. The majority of UM cases are sporadic but a few percentage of the cases occurs in families with an inherited predisposition for this malignancy. In recent years, germline mutations in the BAP1 gene have been found to segregate in an autosomal dominant pattern with numerous different cancer types including UM in cancer-prone families. This cancer syndrome has been denoted as the tumor predisposition syndrome.
Collapse
Affiliation(s)
- Hildur Helgadottir
- Department of Oncology and Pathology, Karolinska institutet; Department of Oncology, Karolinska University Hospital, Stockholm, Sweden
| | - Veronica Höiom
- Department of Oncology and Pathology, Karolinska institutet
| |
Collapse
|
38
|
Bienaimé F, Legendre C, Terzi F, Canaud G. Antiphospholipid syndrome and kidney disease. Kidney Int 2016; 91:34-44. [PMID: 27555120 DOI: 10.1016/j.kint.2016.06.026] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Revised: 06/06/2016] [Accepted: 06/17/2016] [Indexed: 12/22/2022]
Abstract
The antiphospholipid syndrome is a common autoimmune disease caused by pathogenic antiphospholipid antibodies, leading to recurrent thrombosis and/or obstetrical complications. Importantly for nephrologists, antiphospholipid antibodies are associated with various renal manifestations including large renal vessel thrombosis, renal artery stenosis, and a constellation of intrarenal lesions that has been termed antiphospholipid nephropathy. This last condition associates various degrees of acute thrombotic microangiopathy, proliferative and fibrotic lesions of the intrarenal vessels, and ischemic modifications of the renal parenchyma. The course of the disease can range from indolent nephropathy to devastating acute renal failure. The pejorative impact of antiphospholipid antibody-related renal complication is well established in the context of systemic lupus erythematous or after renal transplantation. In contrast, the exact significance of isolated antiphospholipid nephropathy remains uncertain. The evidence to guide management of the renal complications of antiphospholipid syndrome is limited. However, the recent recognition of the heterogeneous molecular mechanisms underlying the progression of intrarenal vascular lesions in antiphospholipid syndrome have opened promising tracks for patient monitoring and targeted therapeutic intervention.
Collapse
Affiliation(s)
- Frank Bienaimé
- Université Paris Descartes, Sorbonne Paris Cité, Hôpital Necker-Enfants Malades, Paris, France; Service d'Explorations Fonctionnelles, Hôpital Necker-Enfants Malades, Paris, France; INSERM U1151, Institut Necker Enfants Malades, Hôpital Necker-Enfants Malades, Paris, France
| | - Christophe Legendre
- Université Paris Descartes, Sorbonne Paris Cité, Hôpital Necker-Enfants Malades, Paris, France; INSERM U1151, Institut Necker Enfants Malades, Hôpital Necker-Enfants Malades, Paris, France; Service de Néphrologie Transplantation Adultes, Hôpital Necker-Enfants Malades, Paris, France
| | - Fabiola Terzi
- Université Paris Descartes, Sorbonne Paris Cité, Hôpital Necker-Enfants Malades, Paris, France; INSERM U1151, Institut Necker Enfants Malades, Hôpital Necker-Enfants Malades, Paris, France
| | - Guillaume Canaud
- Université Paris Descartes, Sorbonne Paris Cité, Hôpital Necker-Enfants Malades, Paris, France; INSERM U1151, Institut Necker Enfants Malades, Hôpital Necker-Enfants Malades, Paris, France; Service de Néphrologie Transplantation Adultes, Hôpital Necker-Enfants Malades, Paris, France.
| |
Collapse
|
39
|
A Rare Thyroid Metastasis from Uveal Melanoma and Response to Immunotherapy Agents. Case Rep Oncol Med 2016; 2016:6564094. [PMID: 27110415 PMCID: PMC4823504 DOI: 10.1155/2016/6564094] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Accepted: 03/01/2016] [Indexed: 12/14/2022] Open
Abstract
Thyroid metastasis is a rare occurrence with cutaneous melanoma and even more uncommon with uveal melanoma. The management of such metastasis is uncertain due to its infrequency and, in the era of immunotherapy, the effect of these novel drugs on uncommon metastasis, such as to the thyroid, is unknown. We report the rare case of a thyroid metastasis in a patient diagnosed with ocular melanoma initially managed with enucleation. Metastatic disease developed in the lung and thyroid gland. The case patient received the immunotherapy ipilimumab with stable disease in the thyroid and progressive disease elsewhere. The patient was then further treated with a second immunotherapy agent, pembrolizumab, and remains with stable disease one year later. We discuss the current literature on thyroid metastases from all causes and the optimal known management strategies. Furthermore, we provide an original report on the response of this disease to the novel immunomodulators, ipilimumab, and pembrolizumab with stable disease four years after initial diagnosis of ocular melanoma.
Collapse
|
40
|
Komatsubara KM, Manson DK, Carvajal RD. Selumetinib for the treatment of metastatic uveal melanoma: past and future perspectives. Future Oncol 2016; 12:1331-44. [PMID: 27044592 DOI: 10.2217/fon-2015-0075] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Uveal melanoma is a rare but aggressive subtype of melanoma. Nearly 50% of patients will develop metastatic disease despite primary enucleation or radiation therapy. There is currently no standard of care therapy for metastatic uveal melanoma, and no therapy that has been shown to prolong overall survival. Uveal melanoma is characterized by activation of signaling pathways including the MAPK pathway and the PI3K/AKT pathway, among others, via mutations in the G-α-proteins GNAQ and GNA11. MEK inhibition with selumetinib has been evaluated as a therapeutic strategy in metastatic uveal melanoma. This review will discuss preclinical and clinical studies evaluating selumetinib in metastatic uveal melanoma, as well as potential future perspectives on MEK inhibition in the management of metastatic uveal melanoma.
Collapse
Affiliation(s)
| | - Daniel K Manson
- Division of Hematology/Oncology, Columbia University Medical Center, New York, NY, USA
| | - Richard D Carvajal
- Division of Hematology/Oncology, Columbia University Medical Center, New York, NY, USA
| |
Collapse
|
41
|
Abstract
Uveal melanoma (UM) is the second-most common form of melanoma and the most common primary intraocular malignancy. Up to one-half of patients are at risk for fatal metastatic disease. The metastatic potential of an individual tumor can be accurately determined by analysis of a fine-needle aspirate with gene expression profiling assay that is available for routine clinical use through a commercial Clinical Laboratory Improvement Amendments (CLIA)-certified laboratory. The test renders one of two results-class 1 (low metastatic risk) or class 2 (high metastatic risk)-and has been extensively validated in multiple centers. Until recently, the genetic mutations and signaling aberrations in UM were largely unknown. With the advent of new genomic sequencing technologies, however, the molecular landscape of UM is rapidly emerging. Mutations in the Gq alpha subunits GNAQ and GNA11 are mutually exclusive and represent early or initiating events that constitutively activate the MAPK pathway. Mutations in BRCA1-associated protein-1 (BAP1) and splicing factor 3B subunit 1 (SF3B1) also appear to be largely mutually exclusive, and they occur later in tumor progression. BAP1 mutations are strongly associated with metastasis, whereas SF3B1 mutations are associated with a more favorable outcome. BAP1 mutations can arise in the germ line, leading to a newly described BAP1 familial cancer syndrome. These discoveries have led to new clinical trials to assess several classes of compounds, including MEK, protein kinase C, and histone deacetylase inhibitors, in the adjuvant setting for high-risk patients identified as class 2, as well as in the setting of advanced disseminated disease.
Collapse
Affiliation(s)
- J William Harbour
- From the Ocular Oncology Service, Bascom Palmer Eye Institute and Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL
| |
Collapse
|
42
|
Sun L, Wang Q, Gao X, Shi D, Mi S, Han Q. MicroRNA-454 functions as an oncogene by regulating PTEN in uveal melanoma. FEBS Lett 2015; 589:2791-6. [PMID: 26296312 DOI: 10.1016/j.febslet.2015.08.007] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Revised: 08/04/2015] [Accepted: 08/05/2015] [Indexed: 12/25/2022]
Abstract
MicroRNAs (miRNAs) regulate gene expression by targeted repression of transcription and translation, and are involved in carcinogenesis. In this study, we demonstrated that the expression of miR-454 was up-regulated in uveal melanoma tissues compared to normal tissues. Ectopic expression of miR-454 resulted in significant promotion of cell proliferation, colony formation, invasion and induction of cell cycle in uveal melanoma cells. Furthermore, we identified PTEN as a direct target of miR-454. Our data revealed that ectopic expression of PTEN restored the effects of miR-454 on cell proliferation and invasion in uveal melanoma cells. These findings support an oncogene role of miR-454 in development of uveal melanoma.
Collapse
Affiliation(s)
- Lei Sun
- Department of Ophthalmology, The Fourth Hospital of Harbin Medical University, Harbin 150001, Heilongjiang, China
| | - Qiaoling Wang
- Department of Ophthalmology, The Second People's Hospital of Jinan, Jinan 250022, Shandong, China
| | - Xiangchun Gao
- Department of Ophthalmology, The Fourth Hospital of Harbin Medical University, Harbin 150001, Heilongjiang, China
| | - Dejing Shi
- Department of Ophthalmology, The Fourth Hospital of Harbin Medical University, Harbin 150001, Heilongjiang, China
| | - Shuyong Mi
- Department of Ophthalmology, The Fourth Hospital of Harbin Medical University, Harbin 150001, Heilongjiang, China
| | - Qing Han
- Department of Ophthalmology, The Fourth Hospital of Harbin Medical University, Harbin 150001, Heilongjiang, China.
| |
Collapse
|
43
|
Bennett D, Lyulcheva E, Cobbe N. Drosophila as a Potential Model for Ocular Tumors. Ocul Oncol Pathol 2015; 1:190-9. [PMID: 27172095 DOI: 10.1159/000370155] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2014] [Accepted: 11/26/2014] [Indexed: 01/14/2023] Open
Abstract
Drosophila has made many contributions to our understanding of cancer genes and mechanisms that have subsequently been validated in mammals. Despite anatomical differences between fly and human eyes, flies offer a tractable genetic model in which to dissect the functional importance of genetic lesions found to be affected in human ocular tumors. Here, we discuss different approaches for using Drosophila as a model for ocular cancer and how studies on ocular cancer genes in flies have begun to reveal potential strategies for therapeutic intervention. We also discuss recent developments in the use of Drosophila for drug discovery, which is coming to the fore as Drosophila models are becoming tailored to study tumor types found in the clinic.
Collapse
Affiliation(s)
- Daimark Bennett
- Institute of Integrative Biology, University of Liverpool, Liverpool, Salford, UK
| | - Ekaterina Lyulcheva
- Institute of Integrative Biology, University of Liverpool, Liverpool, Salford, UK; North Western Deanery, Salford Royal NHS Foundation Trust, Salford, UK
| | - Neville Cobbe
- Institute of Integrative Biology, University of Liverpool, Liverpool, Salford, UK
| |
Collapse
|
44
|
Kaur J, Malik MA, Gulati R, Azad SV, Goswami S. Genetic determinants of uveal melanoma. Tumour Biol 2014; 35:11711-11717. [PMID: 25296731 DOI: 10.1007/s13277-014-2681-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2013] [Accepted: 07/18/2013] [Indexed: 11/27/2022] Open
Abstract
Melanoma of the uveal tract is the most common primary intraocular tumor in adults. With advances in genetic research and the open source access of genetic databases, new insights are emerging into the molecular changes of this cancer. As with most other tumors, the driving force behind such research is the hope of finding and developing new modalities for therapeutic purposes, prognosticating disease and understanding risk factors for metastasis. With advances in proteomics, cytogenetics and gene profiling, the stage is set to unearth the underlying genetic basis which can in the future be a target of therapeutic modalities. This article describes the cytogenetic, molecular pathogenesis, and prognostic factors along with the most important findings and their attribution to current and future management of uveal melanoma.
Collapse
Affiliation(s)
- Jasbir Kaur
- Department of Ocular Biochemistry, Dr. Rajendra Prasad Centre for Ophthalmic Sciences, All India Institute of Medical Sciences, New Delhi, India,
| | | | | | | | | |
Collapse
|
45
|
Sas-Korczyńska B, Markiewicz A, Romanowska-Dixon B, Pluta E. Preliminary results of proton radiotherapy for choroidal melanoma - the Kraków experience. Contemp Oncol (Pozn) 2014; 18:359-66. [PMID: 25477761 PMCID: PMC4248051 DOI: 10.5114/wo.2014.42233] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2013] [Revised: 12/05/2013] [Accepted: 02/03/2014] [Indexed: 11/24/2022] Open
Abstract
AIM OF THE STUDY The objective of the study was to present the preliminary results of proton radiotherapy as a method for treating 15 patients with choroidal melanoma. MATERIAL AND METHODS The proton radiotherapy was administered using beams providing energy levels of 60 MeV, which ensures a clinical range of 28.4 mm. In addition, the beam has a very narrow penumbra of 1.3 mm and a sharp distal dose fall-off. All patients received the dose of 60 CGE (cobalt gray equivalent) given to the PTV (planning target volume). This dose was administered in 4 fractions over 4 successive days of treatment. RESULTS The tumour had regressed in 8 patients (53.3%) and remained stable in 3 patients (20%). The large tumours in another 3 patients (20%) were removed during vitrectomy (endoresection), which increased the number of patients with tumour regression up to 11 (73.3%). In the case of 1 patient, despite intraocular tumour regression occurring the choroidal melanoma had spread multifocally into the orbit, which necessitated orbit exenteration. The results ensured that the eyeballs of 14 patients (93.3%) could be saved. The follow-up period for the 15 patients ranged between 8 and 26 months (average: 17.4 months, median: 19 months). In this period some side effects were noted: an increase in intraocular pressure, retinal detachment, cataract, maculopathy, neuropathy and vitreous haemorrhaging. CONCLUSIONS The preliminary results confirm that proton radiotherapy is an effective method for treating patients with choroidal melanoma. This method ensures an eyeball preservation rate of 93%, with the vision function of 80% of the patients being saved.
Collapse
Affiliation(s)
- Beata Sas-Korczyńska
- Department of Oncology, Maria Sklodowska-Curie Memorial Cancer Center and Institute of Oncology, Krakow Branch, Poland
- Department of Ophthalmology and Ocular Oncology Clinic, Jagiellonian University, Collegium Medicum, Krakow, Poland
| | - Anna Markiewicz
- Department of Ophthalmology and Ocular Oncology Clinic, Jagiellonian University, Collegium Medicum, Krakow, Poland
| | - Bożena Romanowska-Dixon
- Department of Ophthalmology and Ocular Oncology Clinic, Jagiellonian University, Collegium Medicum, Krakow, Poland
| | - Elżbieta Pluta
- Department of Ophthalmology and Ocular Oncology Clinic, Jagiellonian University, Collegium Medicum, Krakow, Poland
- Department of Radiotherapy, Maria Sklodowska-Curie Memorial Cancer Center and Institute of Oncology, Krakow Branch, Poland
| |
Collapse
|
46
|
Amirouchene-Angelozzi N, Nemati F, Gentien D, Nicolas A, Dumont A, Carita G, Camonis J, Desjardins L, Cassoux N, Piperno-Neumann S, Mariani P, Sastre X, Decaudin D, Roman-Roman S. Establishment of novel cell lines recapitulating the genetic landscape of uveal melanoma and preclinical validation of mTOR as a therapeutic target. Mol Oncol 2014; 8:1508-20. [PMID: 24994677 DOI: 10.1016/j.molonc.2014.06.004] [Citation(s) in RCA: 111] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Revised: 04/05/2014] [Accepted: 06/04/2014] [Indexed: 01/21/2023] Open
Abstract
Uveal melanoma (UM) is the most common primary tumor of the eye in adults. There is no standard adjuvant treatment to prevent metastasis and no effective therapy in the metastatic setting. We have established a unique panel of 7 UM cell lines from either patient's tumors or patient-derived tumor xenografts (PDXs). This panel recapitulates the molecular landscape of the disease in terms of genetic alterations and mutations. All the cell lines display GNAQ or GNA11 activating mutations, and importantly four of them display BAP1 (BRCA1 associated protein-1) deficiency, a hallmark of aggressive disease. The mTOR pathway was shown to be activated in most of the cell lines independent of AKT signaling. mTOR inhibitor Everolimus reduced the viability of UM cell lines and significantly delayed tumor growth in 4 PDXs. Our data suggest that mTOR inhibition with Everolimus, possibly in combination with other agents, may be considered as a therapeutic option for the management of uveal melanoma.
Collapse
Affiliation(s)
- Nabil Amirouchene-Angelozzi
- Biophenics Laboratory, Translational Research Department, Institut Curie, 26 rue d'Ulm, 75005 Paris, France.
| | - Fariba Nemati
- Laboratory of Preclinical Investigation, Translational Research Department, Institut Curie, 26, rue d'Ulm, 75005 Paris, France.
| | - David Gentien
- Genomics Platform, Translational Research Department, Institut Curie, 26, rue d'Ulm, 75005 Paris, France.
| | - André Nicolas
- Department of Tumor Biology, Institut Curie, 26, rue d'Ulm, 75005 Paris, France.
| | | | - Guillaume Carita
- Laboratory of Preclinical Investigation, Translational Research Department, Institut Curie, 26, rue d'Ulm, 75005 Paris, France.
| | | | - Laurence Desjardins
- Department of Ophthalmological Oncology, Institut Curie, 26, rue d'Ulm, 75005 Paris, France.
| | - Nathalie Cassoux
- Department of Ophthalmological Oncology, Institut Curie, 26, rue d'Ulm, 75005 Paris, France.
| | | | - Pascale Mariani
- Department of Surgery, Institut Curie, 26, rue d'Ulm, 75005 Paris, France.
| | - Xavier Sastre
- Department of Tumor Biology, Institut Curie, 26, rue d'Ulm, 75005 Paris, France.
| | - Didier Decaudin
- Laboratory of Preclinical Investigation, Translational Research Department, Institut Curie, 26, rue d'Ulm, 75005 Paris, France.
| | - Sergio Roman-Roman
- Translational Research Department, Institut Curie, 26, rue d'Ulm, 75005 Paris, France.
| |
Collapse
|
47
|
Abstract
PURPOSE OF REVIEW To provide an update on the rapidly evolving methods for assessing prognosis and predicting response to targeted molecular therapy in uveal melanoma. RECENT FINDINGS The techniques for assessing prognosis in uveal melanoma have evolved from simple physical features, such as tumor size, location, and cell morphology, to the slightly more sophisticated counting of chromosomal gains and losses. More recently, gene expression profiling has provided a highly accurate and biologically informative gold standard for molecular prognostication. The latest step in the evolution of molecular testing has been the recent discovery of major driver mutations that allow predictive testing of response to targeted molecular therapies. Mutations in GNAQ and GNA11 are early events that promote cell proliferation, and these mutations are sensitive to MAPK kinase, PKC, and AKT inhibitors. Mutations in BAP1, SF3B1, and EIF1AX are later events that are largely mutually exclusive. Mutations in BAP1 are strongly associated with metastasis, whereas those in SF3B1 and EIF1AX are associated with good prognosis. Uveal melanomas with BAP1 mutations demonstrate sensitivity to epigenetic modulators, such as histone deacetylase inhibitors. Clinical trials are now available to evaluate the efficacy of these targeted molecular agents in patients with uveal melanoma. SUMMARY Molecular prognostic testing and enrollment of high-risk patients into clinical trials of targeted molecular therapy are rapidly becoming the standard of care in the management of uveal melanoma.
Collapse
|
48
|
Bello DM, Ariyan CE, Carvajal RD. Melanoma Mutagenesis and Aberrant Cell Signaling. Cancer Control 2013; 20:261-81. [DOI: 10.1177/107327481302000404] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Affiliation(s)
- Danielle M. Bello
- Department of Surgery Memorial Sloan-Kettering Cancer Center, New York, New York
| | - Charlotte E. Ariyan
- Department of Surgery Memorial Sloan-Kettering Cancer Center, New York, New York
| | - Richard D. Carvajal
- Department of Medical Oncology Memorial Sloan-Kettering Cancer Center, New York, New York
| |
Collapse
|
49
|
|
50
|
Harbour JW. Genomic, prognostic, and cell-signaling advances in uveal melanoma. AMERICAN SOCIETY OF CLINICAL ONCOLOGY EDUCATIONAL BOOK. AMERICAN SOCIETY OF CLINICAL ONCOLOGY. ANNUAL MEETING 2013. [PMID: 23714557 DOI: 10.1200/edbook_am.2013.33.388] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Uveal melanoma (UM) is the second-most common form of melanoma and the most common primary intraocular malignancy. Up to one-half of patients are at risk for fatal metastatic disease. The metastatic potential of an individual tumor can be accurately determined by analysis of a fine-needle aspirate with gene expression profiling assay that is available for routine clinical use through a commercial Clinical Laboratory Improvement Amendments (CLIA)-certified laboratory. The test renders one of two results-class 1 (low metastatic risk) or class 2 (high metastatic risk)-and has been extensively validated in multiple centers. Until recently, the genetic mutations and signaling aberrations in UM were largely unknown. With the advent of new genomic sequencing technologies, however, the molecular landscape of UM is rapidly emerging. Mutations in the Gq alpha subunits GNAQ and GNA11 are mutually exclusive and represent early or initiating events that constitutively activate the MAPK pathway. Mutations in BRCA1-associated protein-1 (BAP1) and splicing factor 3B subunit 1 (SF3B1) also appear to be largely mutually exclusive, and they occur later in tumor progression. BAP1 mutations are strongly associated with metastasis, whereas SF3B1 mutations are associated with a more favorable outcome. BAP1 mutations can arise in the germ line, leading to a newly described BAP1 familial cancer syndrome. These discoveries have led to new clinical trials to assess several classes of compounds, including MEK, protein kinase C, and histone deacetylase inhibitors, in the adjuvant setting for high-risk patients identified as class 2, as well as in the setting of advanced disseminated disease.
Collapse
Affiliation(s)
- J William Harbour
- From the Ocular Oncology Service, Bascom Palmer Eye Institute and Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL
| |
Collapse
|