1
|
Thangavelu PU, Lin CY, Forouz F, Tanaka K, Dray E, Duijf PHG. The RB protein: more than a sentry of cell cycle entry. Trends Mol Med 2025:S1471-4914(25)00088-7. [PMID: 40300971 DOI: 10.1016/j.molmed.2025.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 03/28/2025] [Accepted: 04/02/2025] [Indexed: 05/01/2025]
Abstract
Genomic instability is a hallmark of cancer. It fuels cancer progression and therapy resistance. As 'the guardian of the genome', the tumor suppressor protein p53 protects against genomic damage. Canonically, the retinoblastoma protein (RB) is 'the sentry of cell cycle entry', as it dictates whether a cell enters the cell cycle to divide. However, the RB pathway also controls myriad non-canonical cellular processes, including metabolism, stemness, angiogenesis, apoptosis, and immune surveillance. We discuss how frequent RB pathway inactivation and underlying mechanisms in cancers affect these processes. We focus on RB's - rather than p53's - 'guardian of the genome' functions in DNA replication, DNA repair, centrosome duplication, chromosome segregation, and chromatin organization. Finally, we review therapeutic strategies, challenges, and opportunities for targeting RB pathway alterations in cancer.
Collapse
Affiliation(s)
- Pulari U Thangavelu
- Frazer Institute, University of Queensland, Translational Research Institute, Brisbane, QLD, Australia
| | - Cheng-Yu Lin
- Frazer Institute, University of Queensland, Translational Research Institute, Brisbane, QLD, Australia
| | - Farzaneh Forouz
- School of Pharmacy, Faculty of Health and Behavioural Sciences, University of Queensland, Brisbane, QLD, Australia
| | - Kozo Tanaka
- Department of Molecular Oncology, Institute of Development, Aging and Cancer (IDAC), Tohoku University, 4-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi 980-8575, Japan
| | - Eloïse Dray
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA; Mays Cancer Center at UT Health San Antonio MD Anderson, San Antonio, TX, USA; Greehey Children's Cancer Research Institute, San Antonio, TX, USA
| | - Pascal H G Duijf
- Centre for Cancer Biology, Clinical and Health Sciences, University of South Australia & SA Pathology, Adelaide, SA, Australia; School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, QLD, Australia; Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway; Department of Medical Genetics, Oslo University Hospital, Oslo, Norway.
| |
Collapse
|
2
|
O'Hara MH, Jegede O, Dickson MA, DeMichele AM, Piekarz R, Gray RJ, Wang V, McShane LM, Rubinstein LV, Patton DR, Williams PM, Hamilton SR, Onitilo A, Tricoli JV, Conley BA, Arteaga CL, Harris LN, O'Dwyer PJ, Chen AP, Flaherty KT. Phase II Study of Palbociclib in Patients with Tumors with CDK4 or CDK6 Amplification: Results from the NCI-MATCH ECOG-ACRIN Trial (EAY131) Subprotocol Z1C. Clin Cancer Res 2025; 31:56-64. [PMID: 39437014 PMCID: PMC11721435 DOI: 10.1158/1078-0432.ccr-24-0036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 05/14/2024] [Accepted: 10/18/2024] [Indexed: 10/25/2024]
Abstract
PURPOSE Amplification of cyclin-dependent kinase 4 (CDK4) and CDK6 is a feature of a variety of malignancies, and preclinical evidence suggests that inhibition of CDK4/6 is a plausible treatment strategy in these tumors. Subprotocol Z1C of the NCI-Molecular Analysis for Therapy Choice trial was designed to evaluate the CDK4/6 inhibitor palbociclib in CDK4- or CDK6-amplified tumors. PATIENTS AND METHODS Patients had a solid malignancy or lymphoma with progression on at least one systemic therapy for advanced disease or with no standard-of-care therapy available. Tumors with ≥7 copies of CDK4 or CDK6 were considered amplified and molecularly eligible. Enrolled patients were treated with palbociclib 125 mg daily on days 1 to 21 of a 28-day cycle. The primary endpoint was objective response rate. RESULTS Forty-three patients were enrolled on subprotocol Z1C, and 38 patients were deemed eligible, treated, and included in analyses; 25 patients were eligible, treated, and centrally confirmed to have CDK4 or CDK6 amplification and comprised the primary analysis cohort for objective response rate endpoint. Among the 25 patients in the primary cohort, one patient had a partial response, 4 patients had stable disease, and 16 patients had progressive disease as best response. Four patients were not evaluable due to lack of follow-up scans. Among the 38 evaluable patients, one patient had a partial response, 10 patients had stable disease, and 21 patients had progressive disease as best response. Partial response and stable disease were seen only in patients with CDK4 amplification. Median progression-free survival was 2.0 months, and median overall survival was 8.8 months. CONCLUSIONS Palbociclib showed limited activity in histology-agnostic CDK4- or CDK6-amplified tumors, although central nervous system tumors may be worthy of future investigation.
Collapse
Affiliation(s)
- Mark H O'Hara
- Abramson Cancer Center at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Opeyemi Jegede
- Dana Farber Cancer Institute - ECOG-ACRIN Biostatistics Center, Boston, Massachusetts
| | - Mark A Dickson
- Memorial Sloan Kettering Cancer Center, Weill Cornell Medical College, New York, New York
| | - Angela M DeMichele
- Abramson Cancer Center at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Richard Piekarz
- Division of Cancer Treatment and Diagnosis, National Cancer Institute, Bethesda, Maryland
| | - Robert J Gray
- Dana Farber Cancer Institute - ECOG-ACRIN Biostatistics Center, Boston, Massachusetts
| | - Victoria Wang
- Dana Farber Cancer Institute - ECOG-ACRIN Biostatistics Center, Boston, Massachusetts
| | - Lisa M McShane
- Biometric Research Program, Division of Cancer Treatment and Diagnosis, National Cancer Institute, Bethesda, Maryland
| | - Lawrence V Rubinstein
- Biometric Research Program, Division of Cancer Treatment and Diagnosis, National Cancer Institute, Bethesda, Maryland
| | - David R Patton
- Center for Biomedical Informatics and Information Technology, National Cancer Institute, Bethesda, Maryland
| | - P Mickey Williams
- Frederick National Laboratory for Cancer Research, Frederick, Maryland
| | | | | | - James V Tricoli
- Division of Cancer Treatment and Diagnosis, National Cancer Institute, Bethesda, Maryland
| | - Barbara A Conley
- Division of Cancer Treatment and Diagnosis, National Cancer Institute, Bethesda, Maryland
| | | | - Lyndsay N Harris
- Division of Cancer Treatment and Diagnosis, National Cancer Institute, Bethesda, Maryland
| | - Peter J O'Dwyer
- Abramson Cancer Center at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Alice P Chen
- Division of Cancer Treatment and Diagnosis, Developmental Therapeutics Clinic, National Cancer Institute, Bethesda, Maryland
| | - Keith T Flaherty
- Massachusetts General Hospital Cancer Center, Boston, Massachusetts
| |
Collapse
|
3
|
Steinhart J, Möller P, Kull M, Krönke J, Barth TFE. CDK6 protein expression is associated with disease progression and treatment resistance in multiple myeloma. Hemasphere 2024; 8:e32. [PMID: 38434534 PMCID: PMC10878183 DOI: 10.1002/hem3.32] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Accepted: 11/13/2023] [Indexed: 03/05/2024] Open
Abstract
Multiple myeloma (MM) is a heterogeneous malignancy of plasma cells. Despite improvement in the prognosis of MM patients after the introduction of many new drugs in the past decades, MM remains incurable since most patients become treatment-resistant. Cyclin-dependent kinase 6 (CDK6) is activated in many types of cancer and has been associated with drug resistance in MM. However, its association with disease stage, genetic alterations, and outcome has not been systematically investigated in large cohorts. Here, we analyzed CDK6 expression using immunohistochemistry in 203 formalin-fixed paraffin-embedded samples of 146 patients and four healthy individuals. We found that 61.5% of all MM specimens express CDK6 at various levels. CDK6 expression increased with the progression of disease with a median of 0% of CDK6-positive plasma cells in monoclonal gammopathy of undetermined significance (MGUS) (n = 10) to 30% in newly diagnosed MM (n = 78) and up to 70% in relapsed cases (n = 55). The highest median CDK6 was observed in extramedullary myeloma (n = 12), a highly aggressive manifestation of MM. Longitudinal analyses revealed that CDK6 is significantly increased in lenalidomide-treated patients but not in those who did not receive lenalidomide. Furthermore, we observed that patients who underwent lenalidomide-comprising induction therapy had significantly shorter progression-free survival when their samples were CDK6 positive. These data support that CDK6 protein expression is a marker for aggressive and drug-resistant disease and describes a potential drug target in MM.
Collapse
Affiliation(s)
- Johannes Steinhart
- Department of PathologyUlm University HospitalUlmGermany
- Department of Internal Medicine IIIUlm University HospitalUlmGermany
| | - Peter Möller
- Department of PathologyUlm University HospitalUlmGermany
| | - Miriam Kull
- Department of Internal Medicine IIIUlm University HospitalUlmGermany
| | - Jan Krönke
- Department of Internal Medicine IIIUlm University HospitalUlmGermany
- Department of Hematology, Oncology and Cancer Immunology, Charité ‐ Universitätsmedizin Berlincorporate member of Freie Universität Berlin and Humboldt‐Universität zu BerlinBerlinGermany
- German Cancer Consortium (DKTK) partner site Berlin and German Cancer Research Center (DKFZ)HeidelbergGermany
| | | |
Collapse
|
4
|
Xu J, Zhou Y, Dong K, Gong J, Xiong W, Wang X, Gu C, Lu XY, Huang DP, Shen XD, She XK, Zhao XC, Yu XJ, Zhang H. Gene variation profile and it's potential correlation with clinical characteristics in HBV-associated HCC patients of Sichuan Han nationality in China. Asian J Surg 2023; 46:4371-4377. [PMID: 36894454 DOI: 10.1016/j.asjsur.2023.02.056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 09/13/2022] [Accepted: 02/15/2023] [Indexed: 03/09/2023] Open
Abstract
OBJECTIVE To explore the correlation between hepatocellular carcinoma (HCC) gene variation profile and clinical characteristics in Han nationality with HBV infection in Sichuan province. METHODS The clinical data and HCC tissues were obtained from the enrolled patients. Whole exome sequencing and bioinformatics analysis were performed on formalin-fixed and paraffin-embedded samples from HCC. Tumor mutational burden (TMB) was measured by an algorithm developed in-house. RESULTS Sixteen high-frequency mutated genes with differential expressions were identified by WES. SMG1 gene variation could be positively correlated with satellite lesions. AMY2B and RGPD4 gene mutation seemed to have a greater chance of vascular invasion. The patients with TATDN1 variation have bigger diameters and greater chances of vascular and microvascular invasion (all P < 0.05). Univariate analysis indicated patients with gene TATDN1 variation had worse prognoses both in disease free survival (DFS) and overall survival (OS). In addition, the enrichment analysis showed many pathways, including the cell cycle pathway, viral oncogene pathway, MAPK pathway, PI3K-AKT pathway, etc., may be associated with HCC. CONCLUSION This study explores the gene variation profile of HCC patients with HBV infection in Han nationality of Sichuan Province for the first time, which confirmed the existence of some high-frequency mutated genes and the possibility that the gene variations are involved in the tumorigenesis of HCC through multiple signal pathways. Also, patients with TATDN1 wild type showed a trend of better prognosis both in DFS and OS.
Collapse
Affiliation(s)
- Jian Xu
- Department of Hepatobiliary Surgery, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610072, China; Department of Hepatobiliary Surgery, Chinese Academy of Science Sichuan Translational Medicine Research Hospital, Chengdu, 610072, China
| | - Yao Zhou
- Department of Hepatobiliary Surgery, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610072, China; Medical School, University of Electronic Science and Technology of China, Chengdu, 610072, China
| | - Ke Dong
- Department of Hepatobiliary Surgery, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610072, China; Department of Hepatobiliary Surgery, Chinese Academy of Science Sichuan Translational Medicine Research Hospital, Chengdu, 610072, China
| | - Jun Gong
- Department of Hepatobiliary Surgery, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610072, China; Department of Hepatobiliary Surgery, Chinese Academy of Science Sichuan Translational Medicine Research Hospital, Chengdu, 610072, China
| | - Wei Xiong
- Department of Hepatobiliary Surgery, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610072, China; Department of Hepatobiliary Surgery, Chinese Academy of Science Sichuan Translational Medicine Research Hospital, Chengdu, 610072, China
| | - Xu Wang
- Department of Hepatobiliary Surgery, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610072, China; Department of Hepatobiliary Surgery, Chinese Academy of Science Sichuan Translational Medicine Research Hospital, Chengdu, 610072, China
| | - Chun Gu
- Department of Hepatobiliary Surgery, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610072, China; Department of Hepatobiliary Surgery, Chinese Academy of Science Sichuan Translational Medicine Research Hospital, Chengdu, 610072, China
| | - Xiang-Yu Lu
- Department of Hepatobiliary Surgery, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610072, China; Department of Hepatobiliary Surgery, Chinese Academy of Science Sichuan Translational Medicine Research Hospital, Chengdu, 610072, China
| | - De-Pei Huang
- The Medical Department, 3D Medicines Inc., Shanghai, 201114, PR China
| | - Xu-Dong Shen
- The Medical Department, 3D Medicines Inc., Shanghai, 201114, PR China
| | - Xue-Ke She
- The Medical Department, 3D Medicines Inc., Shanghai, 201114, PR China
| | - Xiao-Chen Zhao
- The Medical Department, 3D Medicines Inc., Shanghai, 201114, PR China
| | - Xiao-Jiong Yu
- Department of Hepatobiliary Surgery, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610072, China; Department of Hepatobiliary Surgery, Chinese Academy of Science Sichuan Translational Medicine Research Hospital, Chengdu, 610072, China
| | - Hao Zhang
- Department of Hepatobiliary Surgery, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610072, China; Department of Hepatobiliary Surgery, Chinese Academy of Science Sichuan Translational Medicine Research Hospital, Chengdu, 610072, China.
| |
Collapse
|
5
|
Li Z, Wang Y, Liu Y, Jiang Y, Han X, Zhao L, Li Y. Atypical teratoid/rhabdoid tumour with CDK6 amplification in a child: a case report and literature review. Front Pediatr 2023; 11:1237572. [PMID: 37727617 PMCID: PMC10505807 DOI: 10.3389/fped.2023.1237572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 08/08/2023] [Indexed: 09/21/2023] Open
Abstract
Atypical teratoid/rhabdoid tumours (AT/RTs) are rare central nervous system neoplasms that frequently occur in infants and children and have a very poor prognosis. In recent years, molecular analysis of AT/RTs has shown that biallelic inactivation of SMARCB1 (INI1, SNF5, BAF47) or SMARCA4 (BRG1) frequently occurs. Here, we present a case of basal ganglia AT/RT with SMARCB1 gene deficiency and CDK6 gene amplification in a 5-year-old child. A 5-year-old boy was hospitalized due to a 1-week history of frontal and parietal headache. Magnetic resonance imaging (MRI) demonstrated a 3 cm × 2 cm × 1.5 cm heterogeneous enhanced mass located at the right basal ganglia that partially protruded into the right lateral ventricle. The lesion was successfully resected under electrophysiological monitoring and neuronavigation. The postoperative pathological examination implied an AT/RT diagnosis, with loss of SMARCB1 protein, SMARCB1 gene deficiency and CDK6 gene amplification. Unfortunately, the patient died due to respiratory and circulatory failure at 5 weeks after the operation. To date, standard regimens have not yet been established due to the lack of large-scale prospective studies for AT/RT. The p16-RB signalling pathway should be considered as a potential target for AT/RT treatment modalities. Apart from traditional regimens, targeted therapies, especially CDK4/6 inhibitors, are likely a promising therapeutic option for AT/RT treatment.
Collapse
Affiliation(s)
- Zhibin Li
- Department of Neurosurgery, First Hospital of Jilin University, Changchun, China
| | - Yubo Wang
- Department of Neurosurgery, First Hospital of Jilin University, Changchun, China
| | - Yuanhao Liu
- Department of Neurosurgery, First Hospital of Jilin University, Changchun, China
| | - Yining Jiang
- Department of Neurosurgery, First Hospital of Jilin University, Changchun, China
| | - Xuefei Han
- Department of Neurosurgery, First Hospital of Jilin University, Changchun, China
| | - Liyan Zhao
- Department of Clinical Laboratory, Second Hospital of Jilin University, Changchun, China
| | - Yunqian Li
- Department of Neurosurgery, First Hospital of Jilin University, Changchun, China
| |
Collapse
|
6
|
Zabihi M, Lotfi R, Yousefi AM, Bashash D. Cyclins and cyclin-dependent kinases: from biology to tumorigenesis and therapeutic opportunities. J Cancer Res Clin Oncol 2023; 149:1585-1606. [PMID: 35781526 DOI: 10.1007/s00432-022-04135-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 06/13/2022] [Indexed: 12/20/2022]
Abstract
The discussion on cell proliferation cannot be continued without taking a look at the cell cycle regulatory machinery. Cyclin-dependent kinases (CDKs), cyclins, and CDK inhibitors (CKIs) are valuable members of this system and their equilibrium guarantees the proper progression of the cell cycle. As expected, any dysregulation in the expression or function of these components can provide a platform for excessive cell proliferation leading to tumorigenesis. The high frequency of CDK abnormalities in human cancers, together with their druggable structure has raised the possibility that perhaps designing a series of inhibitors targeting CDKs might be advantageous for restricting the survival of tumor cells; however, their application has faced a serious concern, since these groups of serine-threonine kinases possess non-canonical functions as well. In the present review, we aimed to take a look at the biology of CDKs and then magnify their contribution to tumorigenesis. Then, by arguing the bright and dark aspects of CDK inhibition in the treatment of human cancers, we intend to reach a consensus on the application of these inhibitors in clinical settings.
Collapse
Affiliation(s)
- Mitra Zabihi
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ramin Lotfi
- Clinical Research Development Center, Tohid Hospital, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Amir-Mohammad Yousefi
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Davood Bashash
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
7
|
Liu K, Lu H, Jiang D, Guan Y, Xu H, Sun Q, Jiang Q, Zheng J, Chen H, Zhang F, Luo R, Huang Y, Xu J, Hou Y. Prognostic Significance of CDK6 Amplification in Esophageal Squamous Cell Carcinoma. Cancer Treat Res Commun 2023; 35:100698. [PMID: 37023643 DOI: 10.1016/j.ctarc.2023.100698] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 03/13/2023] [Accepted: 03/14/2023] [Indexed: 03/17/2023]
Abstract
Dysregulation of CDK6 plays crucial roles in the carcinogenesis of many kinds of human malignancies. However, the role of CDK6 in esophageal squamous cell carcinoma (ESCC) is not well known. We investigated the frequency and prognostic value of CDK6 amplification to improve the risk stratification in patients with ESCC. Pan-cancer analysis of CDK6 was conducted on The Cancer Genome Atlas (TCGA), Genotype-Tissue Expression (GTEx) and Gene Expression Omnibus (GEO) databases. CDK6 amplification was detected in 502 ESCC samples by Fluorescence in situ hybridization (FISH) through tissue microarrays (TMA). Pan-cancer analysis revealed that CDK6 mRNA level was much higher in multiple kinds of cancers and higher CDK6 mRNA level indicated a better prognosis in ESCC. In this study, CDK6 amplification was detected in 27.5% (138/502) of patients with ESCC. CDK6 amplification was significantly correlated with tumor size (p = 0.044). Patients with CDK6 amplification tended to have a longer disease-free survival (DFS) (p = 0.228) and overall survival (OS) (p = 0.200) compared with patients without CDK6 amplification but of no significance. When further divided into I-II and III-IV stage, CDK6 amplification was significantly associated with longer DFS and OS in III-IV stage group (DFS, p = 0.036; OS, p = 0.022) rather than in I-II stage group (DFS, p = 0.776; OS, p = 0.611). On univariate and multivariate analysis of Cox hazard model, differentiation, vessel invasion, nerve invasion, invasive depth, lymph node metastasis and clinical stage were significantly associated with DFS and OS. Moreover, invasion depth was an independent factor for ESCC prognosis. Taken together, for ESCC patients in III-IV stage, CDK6 amplification indicated a better prognosis.
Collapse
Affiliation(s)
- Kun Liu
- Department of Pathology, Zhongshan Hospital, Fudan University, Xiamen Branch, Xiamen City, Fujian Province, China; Xiamen Clinical Research Center for Cancer Therapy, Xiamen City, Fujian Province, China
| | - Huadong Lu
- Department of Pathology, Zhongshan Hospital, Fudan University, Xiamen Branch, Xiamen City, Fujian Province, China; Xiamen Clinical Research Center for Cancer Therapy, Xiamen City, Fujian Province, China
| | - Dongxian Jiang
- Department of Pathology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yingying Guan
- Department of Pathology, Zhongshan Hospital, Fudan University, Xiamen Branch, Xiamen City, Fujian Province, China; Xiamen Clinical Research Center for Cancer Therapy, Xiamen City, Fujian Province, China
| | - Huijuan Xu
- Department of Pathology, Zhongshan Hospital, Fudan University, Xiamen Branch, Xiamen City, Fujian Province, China; Xiamen Clinical Research Center for Cancer Therapy, Xiamen City, Fujian Province, China
| | - Qi Sun
- Department of Pathology, Zhongshan Hospital, Fudan University, Xiamen Branch, Xiamen City, Fujian Province, China; Xiamen Clinical Research Center for Cancer Therapy, Xiamen City, Fujian Province, China
| | - Qiuli Jiang
- Department of Pathology, Zhongshan Hospital, Fudan University, Xiamen Branch, Xiamen City, Fujian Province, China; Xiamen Clinical Research Center for Cancer Therapy, Xiamen City, Fujian Province, China
| | - Jingmei Zheng
- Department of Pathology, Zhongshan Hospital, Fudan University, Xiamen Branch, Xiamen City, Fujian Province, China; Xiamen Clinical Research Center for Cancer Therapy, Xiamen City, Fujian Province, China
| | - Huan Chen
- Department of Pathology, Zhongshan Hospital, Fudan University, Xiamen Branch, Xiamen City, Fujian Province, China; Xiamen Clinical Research Center for Cancer Therapy, Xiamen City, Fujian Province, China
| | - Fuhan Zhang
- Department of Pathology, Zhongshan Hospital, Fudan University, Xiamen Branch, Xiamen City, Fujian Province, China; Xiamen Clinical Research Center for Cancer Therapy, Xiamen City, Fujian Province, China
| | - Ruichen Luo
- Department of Pathology, Zhongshan Hospital, Fudan University, Xiamen Branch, Xiamen City, Fujian Province, China; Xiamen Clinical Research Center for Cancer Therapy, Xiamen City, Fujian Province, China
| | - Ying Huang
- Department of Pathology, Zhongshan Hospital, Fudan University, Xiamen Branch, Xiamen City, Fujian Province, China; Xiamen Clinical Research Center for Cancer Therapy, Xiamen City, Fujian Province, China
| | - Jianfang Xu
- Department of Pathology, Zhongshan Hospital, Fudan University, Xiamen Branch, Xiamen City, Fujian Province, China; Xiamen Clinical Research Center for Cancer Therapy, Xiamen City, Fujian Province, China; Department of Pathology, Zhongshan Hospital, Fudan University, Shanghai, China.
| | - Yingyong Hou
- Department of Pathology, Zhongshan Hospital, Fudan University, Xiamen Branch, Xiamen City, Fujian Province, China; Xiamen Clinical Research Center for Cancer Therapy, Xiamen City, Fujian Province, China; Department of Pathology, Zhongshan Hospital, Fudan University, Shanghai, China.
| |
Collapse
|
8
|
Zhou Z, Zhu B, Meng Q, Zhang T, Wu Y, Yu R, Gao S. Research progress in molecular pathology markers in medulloblastoma. EXPLORATION OF TARGETED ANTI-TUMOR THERAPY 2023; 4:139-156. [PMID: 36937322 PMCID: PMC10017192 DOI: 10.37349/etat.2023.00126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 12/22/2022] [Indexed: 03/06/2023] Open
Abstract
Medulloblastoma (MB) is the commonest primary malignant brain cancer. The current treatment of MB is usually surgical resection combined with radiotherapy or chemotherapy. Although great progress has been made in the clinical management of MB, tumor metastasis and recurrence are still the main cause of death. Therefore, definitive and timely diagnosis is of great importance for improving therapeutic effects on MB. In 2016, the World Health Organization (WHO) divided MB into four subtypes: wingless-type mouse mammary tumor virus integration site (WNT), sonic hedgehog (SHH), non-WNT/non-SHH group 3, and group 4. Each subtype of MB has a unique profile in copy number variation, DNA alteration, gene transcription, or post-transcriptional/translational modification, all of which are associated with different biological manifestations, clinical features, and prognosis. This article reviewed the research progress of different molecular pathology markers in MB and summarized some targeted drugs against these molecular markers, hoping to stimulate the clinical application of these molecular markers in the classification, diagnosis, and treatment of MB.
Collapse
Affiliation(s)
- Zixuan Zhou
- Department of Neurosurgery, Institute of Nervous System Diseases, The Affiliated Hospital of Xuzhou Medical University, Xuzhou 221002, Jiangsu, China
| | - Bingxin Zhu
- Department of Neurosurgery, Xuzhou Children’s Hospital, Xuzhou Medical University, Xuzhou 221002, Jiangsu, China
| | - Qingming Meng
- Department of Neurosurgery, Institute of Nervous System Diseases, The Affiliated Hospital of Xuzhou Medical University, Xuzhou 221002, Jiangsu, China
| | - Tong Zhang
- Department of Neurosurgery, Institute of Nervous System Diseases, The Affiliated Hospital of Xuzhou Medical University, Xuzhou 221002, Jiangsu, China
| | - Yihao Wu
- Department of Neurosurgery, Institute of Nervous System Diseases, The Affiliated Hospital of Xuzhou Medical University, Xuzhou 221002, Jiangsu, China
| | - Rutong Yu
- Department of Neurosurgery, Institute of Nervous System Diseases, The Affiliated Hospital of Xuzhou Medical University, Xuzhou 221002, Jiangsu, China
- Department of Neurosurgery, Xuzhou Children’s Hospital, Xuzhou Medical University, Xuzhou 221002, Jiangsu, China
- Correspondence: Rutong Yu, Department of Neurosurgery, Institute of Nervous System Diseases, The Affiliated Hospital of Xuzhou Medical University, Xuzhou 221002, Jiangsu, China; Department of Neurosurgery, Xuzhou Children’s Hospital, Xuzhou Medical University, Xuzhou 221002, Jiangsu, China.
| | - Shangfeng Gao
- Department of Neurosurgery, Institute of Nervous System Diseases, The Affiliated Hospital of Xuzhou Medical University, Xuzhou 221002, Jiangsu, China
- Shangfeng Gao, Department of Neurosurgery, Institute of Nervous System Diseases, The Affiliated Hospital of Xuzhou Medical University, Xuzhou 221002, Jiangsu, China.
| |
Collapse
|
9
|
Pribnow A, Jonchere B, Liu J, Smith KS, Campagne O, Xu K, Robinson S, Patel Y, Onar-Thomas A, Wu G, Stewart CF, Northcott PA, Yu J, Robinson GW, Roussel MF. Combination of Ribociclib and Gemcitabine for the Treatment of Medulloblastoma. Mol Cancer Ther 2022; 21:1306-1317. [PMID: 35709750 PMCID: PMC9578677 DOI: 10.1158/1535-7163.mct-21-0598] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 12/03/2021] [Accepted: 05/25/2022] [Indexed: 01/04/2023]
Abstract
Group3 (G3) medulloblastoma (MB) is one of the deadliest forms of the disease for which novel treatment is desperately needed. Here we evaluate ribociclib, a highly selective CDK4/6 inhibitor, with gemcitabine in mouse and human G3MBs. Ribociclib central nervous system (CNS) penetration was assessed by in vivo microdialysis and by IHC and gene expression studies and found to be CNS-penetrant. Tumors from mice treated with short term oral ribociclib displayed inhibited RB phosphorylation, downregulated E2F target genes, and decreased proliferation. Survival studies to determine the efficacy of ribociclib and gemcitabine combination were performed on mice intracranially implanted with luciferase-labeled mouse and human G3MBs. Treatment of mice with the combination of ribociclib and gemcitabine was well tolerated, slowed tumor progression and metastatic spread, and increased survival. Expression-based gene activity and cell state analysis investigated the effects of the combination after short- and long-term treatments. Molecular analysis of treated versus untreated tumors showed a significant decrease in the activity and expression of genes involved in cell-cycle progression and DNA damage response, and an increase in the activity and expression of genes implicated in neuronal identity and neuronal differentiation. Our findings in both mouse and human patient-derived orthotopic xenograft models suggest that ribociclib and gemcitabine combination therapy warrants further investigation as a treatment strategy for children with G3MB.
Collapse
Affiliation(s)
- Allison Pribnow
- Department of Tumor Cell Biology, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, TN, 38105
| | - Barbara Jonchere
- Department of Tumor Cell Biology, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, TN, 38105
| | - Jingjing Liu
- Department of Computational Biology, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, TN, 38105
| | - Kyle S. Smith
- Department of Developmental Neurobiology, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, TN, 38105
| | - Olivia Campagne
- Department of Pharmaceutical Sciences, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, TN, 38105
| | - Ke Xu
- Department of Center for Applied Bioinformatics, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, TN, 38105
| | - Sarah Robinson
- Department of Tumor Cell Biology, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, TN, 38105
| | - Yogesh Patel
- Department of Developmental Neurobiology, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, TN, 38105
| | - Arzu Onar-Thomas
- Department of Biostatistics, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, TN, 38105
| | - Gang Wu
- Department of Center for Applied Bioinformatics, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, TN, 38105
| | - Clinton F. Stewart
- Department of Pharmaceutical Sciences, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, TN, 38105
| | - Paul A. Northcott
- Department of Developmental Neurobiology, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, TN, 38105
| | - Jiyang Yu
- Department of Computational Biology, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, TN, 38105
| | - Giles W. Robinson
- Department of Neuro-Oncology, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, TN, 38105
| | - Martine F. Roussel
- Department of Tumor Cell Biology, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, TN, 38105,Corresponding author: Martine F. Roussel, PhD. Department of Tumor Cell Biology, MS#350, 262, Danny thomas Place, Memphis, TN 38105, Phone: 901-595-3481; FAX: 901-595-2384; . Tel: 901-595-3481
| |
Collapse
|
10
|
Liu XC, Wang FC, Wang JH, Zhao JY, Ye SY. The Circular RNA circSKA3 Facilitates the Malignant Biological Behaviors of Medulloblastoma via miR-520 h/CDK6 Pathway. Mol Biotechnol 2022; 64:1022-1033. [DOI: 10.1007/s12033-022-00466-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 02/11/2022] [Indexed: 11/30/2022]
|
11
|
Kroll-Wheeler L, Heider A. Anaplastic Sarcoma of the Kidney With Heterologous Ganglioneuroblastic Differentiation: Another DICER1-Associated Tumor. Pediatr Dev Pathol 2022; 25:186-191. [PMID: 34515577 DOI: 10.1177/10935266211043861] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Anaplastic sarcoma of the kidney (ASK) is a rare renal tumor for which less than thirty cases have been described in the literature to date. Diagnosis of ASK is primarily based on histology, which features solid spindle cell neoplastic islands arranged in a fascicular pattern, prominent anaplastic nuclear morphology, brisk mitoses, and multiple multiloculated cysts lined by hobnail epithelium reminiscent of cystic nephroma. Chondroid or rhabdomyocytic differentiation is often present within the sarcoma. It has been recently suggested that this tumor entity belongs to the DICER1 syndrome tumors based on identification of DICER1 mutations. We report on a case of this rare tumor found in a twenty-month-old female. In addition to the typical histologic findings of ASK, this case also displayed heterologous neuroblastic-gangliocytic differentiation, which has not been previously described in the literature. TP53 and BRAF v600E had aberrant immunostaining. Chromosomal microarray and genomic sequencing revealed loss of chromosome 10 p15.3-p11.2 and both somatic and germline DICER1 mutations, consistent with recent research and further supporting the classification of this tumor within the DICER1 syndrome associated tumors.
Collapse
Affiliation(s)
| | - Amer Heider
- Department of Pathology, University of Michigan, Ann Arbor, Michigan
| |
Collapse
|
12
|
Yousuf M, Shamsi A, Anjum F, Shafie A, Islam A, Haque QMR, Elasbali AM, Yadav DK, Hassan MI. Effect of pH on the structure and function of cyclin-dependent kinase 6. PLoS One 2022; 17:e0263693. [PMID: 35148332 PMCID: PMC8836317 DOI: 10.1371/journal.pone.0263693] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Accepted: 01/25/2022] [Indexed: 12/15/2022] Open
Abstract
Cyclin-dependent kinase 6 (CDK6) is an important protein kinase that regulates cell growth, development, cell metabolism, inflammation, and apoptosis. Its overexpression is associated with reprogramming glucose metabolism through alternative pathways and apoptosis, which ultimately plays a significant role in cancer development. In the present study, we have investigated the structural and conformational changes in CDK6 at varying pH employing a multi-spectroscopic approach. Circular dichroism (CD) spectroscopy revealed at extremely acidic conditions (pH 2.0–4.0), the secondary structure of CDK6 got significantly disrupted, leading to aggregates formation. These aggregates were further characterized by employing Thioflavin T (ThT) fluorescence. No significant secondary structural changes were observed over the alkaline pH range (pH 7.0–11.0). Further, fluorescence and UV spectroscopy revealed that the tertiary structure of CDK6 was disrupted under extremely acidic conditions, with slight alteration occurring in mild acidic conditions. The tertiary structure remains intact over the entire alkaline range. Additionally, enzyme assay provided an insight into the functional aspect of CDK at varying pH; CDK6 activity was optimal in the pH range of 7.0–8.0. This study will provide a platform that provides newer insights into the pH-dependent dynamics and functional behavior of CDK6 in different CDK6 directed diseased conditions, viz. different types of cancers where changes in pH contribute to cancer development.
Collapse
Affiliation(s)
- Mohd Yousuf
- Department of Biosciences, Jamia Millia Islamia, New Delhi, India
| | - Anas Shamsi
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| | - Farah Anjum
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, Taif, Saudi Arabia
| | - Alaa Shafie
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, Taif, Saudi Arabia
| | - Asimul Islam
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| | | | - Abdelbaset Mohamed Elasbali
- Clinical Laboratory Science, College of Applied Medical Sciences-Qurayyat, Jouf University, Sakaka, Saudi Arabia
| | - Dharmendra Kumar Yadav
- College of Pharmacy, Gachon University of Medicine and Science, Incheon City, South Korea
- * E-mail: (DKY); (MIH)
| | - Md. Imtaiyaz Hassan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
- * E-mail: (DKY); (MIH)
| |
Collapse
|
13
|
Karami M, Entezari M, Miri SR, Hashemi M, Pourhoseini SM. Investigation of expression level of hsa-circ-0001724 and the target gene, CDK6 in patients with gastric cancer. GENE REPORTS 2021. [DOI: 10.1016/j.genrep.2021.101226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
14
|
Integrated analysis of cell cycle-related genes in HR+/HER2- breast cancer. Breast Cancer 2021; 29:121-130. [PMID: 34449047 DOI: 10.1007/s12282-021-01289-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Accepted: 08/19/2021] [Indexed: 10/20/2022]
Abstract
PURPOSE This study aimed to explore the mutational characteristics and significance of cell cycle-related genes (CCGs) in hormone-receptor positive, human epidermal growth factor receptor 2 negative breast cancer (HR+/HER2- BC). METHODS A total of 1668 HR+/HER2- BC patients from the Guangdong Provincial People's Hospital (GDPH) cohort (n = 321) and METABRIC cohort (n = 1347) were included. Tumor samples from HR+/HER2- BC patients were collected for a next-generation sequencing assay in GDPH cohort, including 15 key CCGs. The association between CCGs alterations and overall survival were identified via the Cox regression analysis. The functional roles of the CCGs were explored via the Metascape database. RESULTS Based on multivariate Cox regression analysis, a set of five key CCGs (CDK4, CCND1, CDKN1A, CDKN1C, and CHEK2) were identified as independent prognostic variables in HR+/HER2- BC patients. Besides, the five-CCGs-based risk score was used to effectively classify patients into the low-risk and high-risk groups (P < 0.0001). The potential functional pathways of the CCGs included cell cycle, cyclin D associated events in G1, and regulation of G1/S transition of mitotic cell cycle. CONCLUSION We performed the integrated analysis of the CCGs in HR+/HER2- BC patients. It has the potential to guide individualized precision oncology therapeutic schemes in HR+/HER2- BC patients.
Collapse
|
15
|
Susanti NMP, Tjahjono DH. Cyclin-Dependent Kinase 4 and 6 Inhibitors in Cell Cycle Dysregulation for Breast Cancer Treatment. Molecules 2021; 26:molecules26154462. [PMID: 34361615 PMCID: PMC8348313 DOI: 10.3390/molecules26154462] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 07/19/2021] [Accepted: 07/21/2021] [Indexed: 12/24/2022] Open
Abstract
In cell development, the cell cycle is crucial, and the cycle progression’s main controllers are endogenous CDK inhibitors, cyclin-dependent kinases (CDKs), and cyclins. In response to the mitogenic signal, cyclin D is produced and retinoblastoma protein (Rb) is phosphorylated due to activated CDK4/CDK6. This causes various proteins required in the cell cycle progression to be generated. In addition, complexes of CDK1-cyclin A/B, CDK2-cyclin E/A, and CDK4/CDK6-cyclin D are required in each phase of this progression. Cell cycle dysregulation has the ability to lead to cancer. Based on its role in the cell cycle, CDK has become a natural target of anticancer therapy. Therefore, understanding the CDK structures and the complex formed with the drug, helps to foster the development of CDK inhibitors. This development starts from non-selective CDK inhibitors to selective CDK4/CDK6 inhibitors, and these have been applied in clinical cancer treatment. However, these inhibitors currently require further development for various hematologic malignancies and solid tumors, based on the results demonstrated. In drug development, the main strategy is primarily to prevent and asphyxiate drug resistance, thus a determination of specific biomarkers is required to increase the therapy’s effectiveness as well as patient selection suitability in order to avoid therapy failure. This review is expected to serve as a reference for early and advanced-stage researchers in designing new molecules or repurposing existing molecules as CDK4/CDK6 inhibitors to treat breast cancer.
Collapse
Affiliation(s)
- Ni Made Pitri Susanti
- School of Pharmacy, Bandung Institute of Technology, Jalan Ganesha 10, Bandung 40132, Indonesia;
- Study Program of Pharmacy, Faculty of Mathematics and Natural Sciences, Universitas Udaya, Jalan Bukit Jimbaran, Badung 80361, Indonesia
| | - Daryono Hadi Tjahjono
- School of Pharmacy, Bandung Institute of Technology, Jalan Ganesha 10, Bandung 40132, Indonesia;
- Correspondence: ; Tel.: +62-812-2240-0120
| |
Collapse
|
16
|
Paul MR, Zage PE. Overview and recent advances in the targeting of medulloblastoma cancer stem cells. Expert Rev Anticancer Ther 2021; 21:957-974. [PMID: 34047251 DOI: 10.1080/14737140.2021.1932472] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Introduction: Medulloblastoma, an embryonal small round blue cell tumor primarily arising in the posterior fossa, is the most common malignancy of the central nervous system in children and requires intensive multi-modality therapy for cure. Overall 5-year survival is approximately 75% in children with primary disease, but outcomes for relapsed disease are very poor. Recent advances have identified molecular subgroups with excellent prognosis, with 5-year overall survival rates >90%, and subgroups with very poor prognosis with overall survival rates <50%. Molecular subtyping has allowed for more sophisticated risk stratification of patients, but new treatments for the highest risk patients have not yet improved outcomes. Targeting cancer stem cells may improve outcomes, and several candidate targets and novel drugs are under investigation.Areas covered: We discuss medulloblastoma epidemiology, biology, treatment modalities, risk stratification, and molecular subgroup analysis, links between subgroup and developmental biology, cancer stem cell biology in medulloblastoma including previously described cancer stem cell markers and proposed targeted treatments in the current literature.Expert opinion: The understanding of cancer stem cells in medulloblastoma will advance therapies targeting the most treatment-resistant cells within the tumor and therefore reduce the incidence of treatment refractory and relapsed disease.
Collapse
Affiliation(s)
- Megan Rose Paul
- Department of Pediatrics, Division of Hematology-Oncology, University of California San Diego, La Jolla, California, USA (M.R.P., P.E.Z.); Peckham Center for Cancer and Blood Disorders, Rady Children's Hospital-San Diego, San Diego, California, USA
| | - Peter E Zage
- Department of Pediatrics, Division of Hematology-Oncology, University of California San Diego, La Jolla, California, USA (M.R.P., P.E.Z.); Peckham Center for Cancer and Blood Disorders, Rady Children's Hospital-San Diego, San Diego, California, USA
| |
Collapse
|
17
|
DeWire MD, Fuller C, Campagne O, Lin T, Pan H, Young Poussaint T, Baxter PA, Hwang EI, Bukowinski A, Dorris K, Hoffman L, Waanders AJ, Karajannis MA, Stewart CF, Onar-Thomas A, Fouladi M, Dunkel IJ. A Phase I and Surgical Study of Ribociclib and Everolimus in Children with Recurrent or Refractory Malignant Brain Tumors: A Pediatric Brain Tumor Consortium Study. Clin Cancer Res 2021; 27:2442-2451. [PMID: 33547201 PMCID: PMC8132306 DOI: 10.1158/1078-0432.ccr-20-4078] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 12/16/2020] [Accepted: 02/01/2021] [Indexed: 12/15/2022]
Abstract
PURPOSE Genomic aberrations in cell cycle and PI3K pathways are commonly observed in pediatric brain tumors. This study determined the MTD/recommended phase II dose (RP2D) of ribociclib and everolimus and characterized single-agent ribociclib concentrations in plasma and tumor in children undergoing resection. PATIENTS AND METHODS Patients were enrolled in the phase I study according to a rolling 6 design and received ribociclib and everolimus daily for 21 and 28 days, respectively. Surgical patients received ribociclib at the pediatric RP2D (350 mg/m2) for 7-10 days preoperatively followed by enrollment on the phase I study. Pharmacokinetics were analyzed for both cohorts. RESULTS Sixteen patients were enrolled on the phase I study (median age, 10.3 years; range, 3.9-20.4) and 6 patients in the surgical cohort (median age, 11.4 years; range: 7.2-17.1). Thirteen patients were enrolled at dose level 1 without dose-limiting toxicities (DLT). Two of the 3 patients at dose level 2 experienced DLTs (grade 3 hypertension and grade 4 alanine aminotransferase). The most common grade 3/4 toxicities were lymphopenia, neutropenia, and leukopenia. The RP2D of ribociclib and everolimus was 120 and 1.2 mg/m2 for 21 and 28 days, respectively. Steady-state everolimus exposures with ribociclib were 2.5-fold higher than everolimus administered alone. Ribociclib plasma, tumor concentrations, and cerebrospinal fluid (CSF) samples were collected. The mean tumor-to-plasma ratio of ribociclib was 19.8 (range, 2.22-53.4). CONCLUSIONS Ribociclib and everolimus were well-tolerated and demonstrated pharmacokinetic properties similar to those in adults. Potential therapeutic ribociclib concentrations could be achieved in CSF and tumor tissue, although interpatient variability was observed.
Collapse
Affiliation(s)
- Mariko D DeWire
- Department of Pediatrics College of Medicine, Cincinnati Children's Hospital Medical Center, Cancer and Blood Diseases Institute, University of Cincinnati, Cincinnati, Ohio
| | - Christine Fuller
- Division of Pathology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
- Department of Pathology, Upstate Medical University, Syracuse, New York
| | - Olivia Campagne
- Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Tong Lin
- Department of Biostatistics, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Haitao Pan
- Department of Biostatistics, St. Jude Children's Research Hospital, Memphis, Tennessee
| | | | - Patricia A Baxter
- Texas Children's Cancer Center, Baylor College of Medicine, Houston, Texas
| | - Eugene I Hwang
- Division of Oncology, Children's National Medical Center, Washington, DC
| | - Andrew Bukowinski
- Division of Oncology, Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania
| | - Kathleen Dorris
- Division of Oncology, Denver Children's Hospital, Denver, Colorado
| | - Lindsey Hoffman
- Division of Oncology, Phoenix Children's Hospital, Phoenix, Arizona
| | - Angela J Waanders
- Division of Hematology/Oncology, Ann & Robert H Lurie Children's Hospital, Chicago, Illinois
| | - Matthias A Karajannis
- Pediatric Neuro-Oncology Service, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Clinton F Stewart
- Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Arzu Onar-Thomas
- Department of Biostatistics, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Maryam Fouladi
- Department of Pediatrics College of Medicine, Cincinnati Children's Hospital Medical Center, Cancer and Blood Diseases Institute, University of Cincinnati, Cincinnati, Ohio
- Hematology/Oncology & BMT, Nationwide Children's Hospital, The Ohio State University College of Medicine, Columbus, Ohio
| | - Ira J Dunkel
- Pediatric Neuro-Oncology Service, Memorial Sloan Kettering Cancer Center, New York, New York
| |
Collapse
|
18
|
Buzzetti M, Morlando S, Solomos D, Mehmood A, Cox AWI, Chiesa M, D'Alessandra Y, Garofalo M, Topham CH, Di Leva G. Pre-therapeutic efficacy of the CDK inhibitor dinaciclib in medulloblastoma cells. Sci Rep 2021; 11:5374. [PMID: 33686114 PMCID: PMC7940474 DOI: 10.1038/s41598-021-84082-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 02/05/2021] [Indexed: 12/28/2022] Open
Abstract
Medulloblastoma (MB) is the most common aggressive paediatric brain tumour and, despite the recent progress in the treatments of MB patients, there is still an urgent need of complementary or alternative therapeutic options for MB infants. Cyclin Dependent Kinase inhibitors (CDKi) are at the front-line of novel targeted treatments for multiple cancers and the CDK4/6 specific inhibitor palbociclib has been pre-clinically identified as an effective option for MB cells. Herein, we identified the pan-CDKi dinaciclib as a promising alternative to palbociclib for the suppression of MB cells proliferation. We present evidence supporting dinaciclib's ability to inhibit MB cells in vitro proliferation at considerably lower doses than palbociclib. Sequencing data and pathway analysis suggested that dinaciclib is a potent cell death inducer in MB cells. We found that dinaciclib-triggered apoptosis is triggered by CDK9 inhibition and the resultant reduction in RNA pol II phosphorylation, which leads to the downregulation of the oncogenic marker MYC, and the anti-apoptotic protein MCL-1. Specifically, we demonstrated that MCL-1 is a key apoptotic mediator for MB cells and co-treatment of dinaciclib with BH3 mimetics boosts the therapeutic efficacy of dinaciclib. Together, these findings highlight the potential of multi-CDK inhibition by dinaciclib as an alternative option to CDK4/6 specific inhibition, frequently associated with drug resistance in patients.
Collapse
Affiliation(s)
- Marta Buzzetti
- School of Science, Engineering and Environment, Biomedical Research Centre, Salford, Greater Manchester, UK
- Transcriptional Networks in Lung Cancer Group, Cancer Research UK Manchester Institute, University of Manchester, Manchester, UK
| | - Sonia Morlando
- School of Science, Engineering and Environment, Biomedical Research Centre, Salford, Greater Manchester, UK
| | - Dimitrios Solomos
- School of Science, Engineering and Environment, Biomedical Research Centre, Salford, Greater Manchester, UK
| | - Ammara Mehmood
- School of Science, Engineering and Environment, Biomedical Research Centre, Salford, Greater Manchester, UK
| | - Alexander W I Cox
- Cancer Research UK Lung Cancer Centre of Excellence, at Manchester and University College London, London, UK
| | - Mattia Chiesa
- Bioinformatics and Artificial Intelligence Facility, Centro Cardiologico Monzino IRCCS, Milan, Italy
| | - Yuri D'Alessandra
- Immunology and Functional Genomics Unit, Centro Cardiologico Monzino IRCCS, Milan, Italy
| | - Michela Garofalo
- Transcriptional Networks in Lung Cancer Group, Cancer Research UK Manchester Institute, University of Manchester, Manchester, UK
- Cancer Research UK Lung Cancer Centre of Excellence, at Manchester and University College London, London, UK
| | - Caroline H Topham
- School of Science, Engineering and Environment, Biomedical Research Centre, Salford, Greater Manchester, UK
| | - Gianpiero Di Leva
- School of Pharmacy and Bioengineering, Guy Hilton Research Centre, Keele University, Stoke-on-Trent, UK.
| |
Collapse
|
19
|
Ramaswamy V, Coltin H. Molecular and clinical correlates of medulloblastoma subgroups: A narrative review. GLIOMA 2021. [DOI: 10.4103/glioma.glioma_18_21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
20
|
CNS Low-grade Diffusely Infiltrative Tumors With INI1 Deficiency, Possessing a High Propensity to Progress to Secondary INI1-deficient Rhabdoid Tumors. Am J Surg Pathol 2020; 44:1459-1468. [PMID: 33045149 DOI: 10.1097/pas.0000000000001520] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Atypical teratoid/rhabdoid tumors (AT/RTs) are highly malignant tumors of the central nervous system that predominantly occur in infants, and are characterized by the presence of rhabdoid cells and inactivation of INI1 or (rarely) BRG1. Most AT/RT are identified as primary tumors; however, rare AT/RT or INI1-deficient RTs arising from other primary tumors have been reported. Here, we report 3 cases of hitherto unclassifiable low-grade tumors with loss of INI1 nuclear expression, for which we propose the designation of central nervous system low-grade diffusely infiltrative tumors with INI1 deficiency (CNS LGDIT-INI1), 2 of which progressed to secondary RT. All 3 CNS LGDIT-INI1 exhibited a similar histology: diffusely distributed small tumor cells with round to oval or irregular nuclei and scant cytoplasm were admixed with degenerative neurons and large reactive astrocytes in an edematous, myxoid, or collagenous background. Mitotic figures were absent. Immunohistochemistry revealed that the tumor cells in all 3 CNS LGDIT-INI1 and 2 RT were negative for INI1. Genetically, total or partial homozygous deletions of the INI1 gene were detected in all CNS LGDIT-INI1 and RT excluding 1 CNS LGDIT-INI1 without sufficient DNA quality and quantity. Despite the loss of INI1 expression, these low-grade lesions were clearly distinguishable from AT/RT by their low proliferative activity, diffusely infiltrative growth pattern, and lack of rhabdoid cells and polyphenotypic immunoreactivity. In conclusion, CNS LGDIT-INI1 may represent a rare group of tumors that are clinically indolent but have a high propensity to progress to RT.
Collapse
|
21
|
Zhu S, Lin F, Chen Z, Jiang X, Zhang J, Yang Q, Chen Y, Wang J. Identification of a Twelve-Gene Signature and Establishment of a Prognostic Nomogram Predicting Overall Survival for Medulloblastoma. Front Genet 2020; 11:563882. [PMID: 33101383 PMCID: PMC7495025 DOI: 10.3389/fgene.2020.563882] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 08/18/2020] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Medulloblastoma is the common pediatric malignant tumor with poor prognosis in cerebellum. However, MB is always with clinical heterogeneity. To provide patients with more clinically beneficial treatment strategies, there is a pressing need to develop a new prognostic prediction model as a supplement to the prediction outcomes of clinical judgment. MATERIALS AND METHODS Four datasets of mRNA expression and clinical data were downloaded from gene expression omnibus (GEO) database. Differentially expressed genes (DEGs) were identified and functionally enriched among GSE50161, GSE74195, GSE86574. Then we used STRING and Cytoscape to constructed and analyze protein-protein interaction network (PPI) and hub genes. Univariate cox regression analysis was performed to identify overall survival-related hub genes in an unique dataset from GSE85217 as train cohort. Lasso Cox regression model was used to construct the prognostic gene signature. Time-dependent receiver operating characteristic (ROC), Kaplan-Meier curve, univariate and multivariate Cox regression analysis were used to assess the prognostic capacity of the twelve-gene signature. A unique dataset from GSE85217 was downloaded to further validate the results. Finally, we established the nomogram by using the gene signature and validated it with ROC curve. Gene set enrichment analysis (GSEA) was carried out to further investigate its potential molecular mechanism. Besides, the twelve genes expression at the mRNA and protein levels was validated using external database such as Oncomine, cBioportal and HPA, respectively. RESULTS A twelve-gene signature comprising FOXM1, NEK2, CCT2, ACTL6A, EIF4A3, CCND2, ABL1, SYNCRIP, ITGB1, NRXN2, ENAH, and UMPS was established to predict overall survival of medulloblastoma. The ROC curve showed good performance in survival prediction in both the train cohort and the validation cohort. The twelve-gene signature could stratify patients into a high risk and low risk group which had significantly different survival. Univariate and multivariate Cox regression revealed that the twelve-gene signature was an independent prognostic factor in medulloblastoma. Nomogram, which included twelve-gene signatures, was established and showed some clinical benefit. CONCLUSION Our study identified a twelve-gene signature and established a prognostic nomogram that reliably predicts overall survival in medulloblastoma. The above results will help us to better analyze the pathogenesis and treatment of medulloblastoma in the future.
Collapse
Affiliation(s)
- Sihan Zhu
- Department of Neurosurgery and Neuro-Oncology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Fuhua Lin
- Department of Neurosurgery and Neuro-Oncology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Zhenghe Chen
- Department of Neurosurgery and Neuro-Oncology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Xiaobing Jiang
- Department of Neurosurgery and Neuro-Oncology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Ji Zhang
- Department of Neurosurgery and Neuro-Oncology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Qunying Yang
- Department of Neurosurgery and Neuro-Oncology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Yinsheng Chen
- Department of Neurosurgery and Neuro-Oncology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Jian Wang
- Department of Neurosurgery and Neuro-Oncology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| |
Collapse
|
22
|
Sun D, Zhu D. Circular RNA hsa_circ_0001649 suppresses the growth of osteosarcoma cells via sponging multiple miRNAs. Cell Cycle 2020; 19:2631-2643. [PMID: 32954926 DOI: 10.1080/15384101.2020.1814026] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Osteosarcoma (OS) is a serious bone malignancy commonly occurred in childhood and adolescence. Circular RNA (circRNA) is a novel endogenous RNA that may be considered as a new biomarker for diseases' diagnosis or prognosis. This study explored the roles and mechanism of circ_0001649 in OS. The qRT-PCR was performed to test circ_0001649 expression in OS tissues and cells. Luciferase was used to confirm the binding of circ_0001649 with miR-338-5p, miR-647 and miR-942. OS cells were stably transfected with pEX-circ_0001649 or miRNAs mimic, CCK-8 kit, colony formation, apoptosis and western blot analysis were used to detect the roles of circ_0001649. Circ_0001649 was low-expressed in OS tissues and cell lines. Circ_0001649 overexpression suppressed U2OS and HOS cell viability and survival fraction, and induced apoptosis presented as the increasing levels of Apaf-1, cleaved-caspase-3 and cleaved-caspase-9. Further, circ_0001649 worked as a sponge to absorb miR-338-5p, miR-647 and miR-942 to suppress cell proliferation, induce apoptosis and inhibit STAT pathway. Circ_0001649 suppressed OS cell proliferation and STAT pathway and induced apoptosis through sponging miR-338-5p, miR-647 and miR-942.
Collapse
Affiliation(s)
- Deping Sun
- Department of Orthopedic Trauma, Yantai Affiliated Hospital of Binzhou Medical University , Yantai 264000, Shandong, China
| | - Dongsheng Zhu
- Department of Orthopedic Trauma, Yantai Affiliated Hospital of Binzhou Medical University , Yantai 264000, Shandong, China
| |
Collapse
|
23
|
Genetic Association of rs2237572 Cyclin-Dependent Kinase 6 Gene with Breast Cancer in Iraq. Indian J Clin Biochem 2020; 36:304-311. [PMID: 34220005 DOI: 10.1007/s12291-020-00895-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Accepted: 05/28/2020] [Indexed: 10/24/2022]
Abstract
This case-control study is aimed to evaluate serum concentration of Cyclin-Dependent Kinase 6 (CDK6) and the genetic association between rs2237572 CDK6 gene and breast cancer (BC) in Iraq. To attain this goal, 80 patients with BC as cases and 80 healthy individuals as controls were included. Further, BC patients were sorted according to the molecular classification into four subtypes of Luminal A, Luminal B, Her2/neu enriched and TPN. Serum concentration of CDK6 enzyme, allelic and genotypic frequencies of rs2237572 CDK6, and the occurrence of BC phenotype and its subtypes in the studied population were investigated. ELISA technique was used to perform the biochemical testing, while the molecular analysis was achieved by real-time PCR, high resolution melting analysis, conventional PCR, as well as sequencing analysis. The results revealed no significant difference in serum concentration of CDK6 enzyme between patients and healthy controls (p > 0.05). Also, no significant differences were shown between BC patients subtypes (p > 0.05). The rs2237572 CDK6 genotypes were associated with the BC and affirmed that allele C was inherited as a recessive risk factor. Moreover, a highly significant difference between patients' subtypes in the genotypic frequency of rs2237572 (p < 0.01) was noted. Furthermore, the association of rs2237572 genotypes and CDK6 serum concentration in BC patients showed a considered significant difference between C/C and T/T, C/C and T/C and the CDK6 level (p < 0.05). Nevertheless, T/T and T/C did not show any significant difference with the CDK6 level. Hence, it was concluded that the rs2237572 of CDK6 gene is significantly correlated with BC.
Collapse
|
24
|
Laneve P, Caffarelli E. The Non-coding Side of Medulloblastoma. Front Cell Dev Biol 2020; 8:275. [PMID: 32528946 PMCID: PMC7266940 DOI: 10.3389/fcell.2020.00275] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 03/31/2020] [Indexed: 12/18/2022] Open
Abstract
Medulloblastoma (MB) is the most common pediatric brain tumor and a primary cause of cancer-related death in children. Until a few years ago, only clinical and histological features were exploited for MB pathological classification and outcome prognosis. In the past decade, the advancement of high-throughput molecular analyses that integrate genetic, epigenetic, and expression data, together with the availability of increasing wealth of patient samples, revealed the existence of four molecularly distinct MB subgroups. Their further classification into 12 subtypes not only reduced the well-characterized intertumoral heterogeneity, but also provided new opportunities for the design of targets for precision oncology. Moreover, the identification of tumorigenic and self-renewing subpopulations of cancer stem cells in MB has increased our knowledge of its biology. Despite these advancements, the origin of MB is still debated, and its molecular bases are poorly characterized. A major goal in the field is to identify the key genes that drive tumor growth and the mechanisms through which they are able to promote tumorigenesis. So far, only protein-coding genes acting as oncogenic drivers have been characterized in each MB subgroup. The contribution of the non-coding side of the genome, which produces a plethora of transcripts that control fundamental biological processes, as the cell choice between proliferation and differentiation, is still unappreciated. This review wants to fill this major gap by summarizing the recent findings on the impact of non-coding RNAs in MB initiation and progression. Furthermore, their potential role as specific MB biomarkers and novel therapeutic targets is also highlighted.
Collapse
Affiliation(s)
- Pietro Laneve
- Institute of Molecular Biology and Pathology, National Research Council, Rome, Italy
| | - Elisa Caffarelli
- Institute of Molecular Biology and Pathology, National Research Council, Rome, Italy
| |
Collapse
|
25
|
Kanchan RK, Perumal N, Atri P, Chirravuri Venkata R, Thapa I, Klinkebiel DL, Donson AM, Perry D, Punsoni M, Talmon GA, Coulter DW, Boue' DR, Snuderl M, Nasser MW, Batra SK, Vibhakar R, Mahapatra S. MiR-1253 exerts tumor-suppressive effects in medulloblastoma via inhibition of CDK6 and CD276 (B7-H3). Brain Pathol 2020; 30:732-745. [PMID: 32145124 PMCID: PMC7383594 DOI: 10.1111/bpa.12829] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 02/04/2020] [Accepted: 02/25/2020] [Indexed: 12/21/2022] Open
Abstract
Of the four primary subgroups of medulloblastoma, the most frequent cytogenetic abnormality, i17q, distinguishes Groups 3 and 4 which carry the highest mortality; haploinsufficiency of 17p13.3 is a marker for particularly poor prognosis. At the terminal end of this locus lies miR-1253, a brain-enriched microRNA that regulates bone morphogenic proteins during cerebellar development. We hypothesized miR-1253 confers novel tumor-suppressive properties in medulloblastoma. Using two different cohorts of medulloblastoma samples, we first studied the expression and methylation profiles of miR-1253. We then explored the anti-tumorigenic properties of miR-1253, in parallel with a biochemical analysis of apoptosis and proliferation, and isolated oncogenic targets using high-throughput screening. Deregulation of miR-1253 expression was noted, both in medulloblastoma clinical samples and cell lines, by epigenetic silencing via hypermethylation; specific de-methylation of miR-1253 not only resulted in rapid recovery of expression but also a sharp decline in tumor cell proliferation and target gene expression. Expression restoration also led to a reduction in tumor cell virulence, concomitant with activation of apoptotic pathways, cell cycle arrest and reduction of markers of proliferation. We identified two oncogenic targets of miR-1253, CDK6 and CD276, whose silencing replicated the negative trophic effects of miR-1253. These data reveal novel tumor-suppressive properties for miR-1253, i.e., (i) loss of expression via epigenetic silencing; (ii) negative trophic effects on tumor aggressiveness; and (iii) downregulation of oncogenic targets.
Collapse
Affiliation(s)
- Ranjana K Kanchan
- Department of Biochemistry, University of Nebraska Medical Center, Omaha, NE
| | - Naveenkumar Perumal
- Department of Biochemistry, University of Nebraska Medical Center, Omaha, NE
| | - Pranita Atri
- Department of Biochemistry, University of Nebraska Medical Center, Omaha, NE
| | | | - Ishwor Thapa
- School of Interdisciplinary Informatics, University of Nebraska at Omaha, Omaha, NE
| | - David L Klinkebiel
- Department of Biochemistry, University of Nebraska Medical Center, Omaha, NE
| | - Andrew M Donson
- Morgan Adams Pediatric Brain Tumor Research Program, University of Colorado School of Medicine, Denver, CO
| | - Deborah Perry
- Department of Pathology, Children's Hospital and Medical Center, Omaha, NE
| | - Michael Punsoni
- Department of Pathology, University of Nebraska Medical Center, Omaha, NE
| | - Geoffrey A Talmon
- Department of Pathology, University of Nebraska Medical Center, Omaha, NE
| | - Donald W Coulter
- Department of Hematology/Oncology, University of Nebraska Medical Center, Omaha, NE
| | - Daniel R Boue'
- Department of Pathology and Laboratory Medicine, Nationwide Children's Hospital and the Ohio State University, Columbus, OH
| | - Matija Snuderl
- Department of Pathology, New York University Langone Health, New York, NY
| | - Mohd W Nasser
- Department of Biochemistry, University of Nebraska Medical Center, Omaha, NE
| | - Surinder K Batra
- Department of Biochemistry, University of Nebraska Medical Center, Omaha, NE
| | - Rajeev Vibhakar
- Morgan Adams Pediatric Brain Tumor Research Program, University of Colorado School of Medicine, Denver, CO
| | - Sidharth Mahapatra
- Department of Biochemistry, University of Nebraska Medical Center, Omaha, NE.,Department of Pediatrics, University of Nebraska Medical Center, Omaha, NE
| |
Collapse
|
26
|
Abstract
Even though the treatment of childhood cancer has evolved significantly in recent decades, aggressive central nervous system (CNS) tumors are still a leading cause of morbidity and mortality in this population. Consequently, the identification of molecular targets that can be incorporated into diagnostic practice, effectively predict prognosis, follow treatment response, and materialize into potential targeted therapeutic approaches are still warranted. Since the first evidence of the participation of miRNAs in cancer development and progression 20 years ago, notable progress has been made in the basic understanding of the contribution of their dysregulation as epigenetic driver of tumorigenesis. Nevertheless, among the plethora of articles in the literature, microRNA profiling of pediatric tumors are scarce. This article gives an overview of the recent advances in the diagnostic/prognostic potential of miRNAs in a selection of pediatric CNS tumors: medulloblastoma, ependymoma, pilocytic astrocytoma, glioblastoma, diffuse intrinsic pontine glioma, atypical teratoid/rhabdoid tumors, and choroid plexus tumors.
Collapse
|
27
|
Yu S, Wang XS, Cao KC, Bao XJ, Yu J. Identification of CDK6 and RHOU in Serum Exosome as Biomarkers for the Invasiveness of Non-functioning Pituitary Adenoma. ACTA ACUST UNITED AC 2020; 34:168-176. [PMID: 31601299 DOI: 10.24920/003585] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Objective To explore circulating biomarkers for screening the invasiveness of non-functioning pituitary adenomas (NF-PAs). Methods The exosomal RNAs were extracted from serum of patients with invasive NF-PA (INF-PA) or noninvasive NF-PA (NNF-PA). Droplet digital PCR was adapted to detect the mRNA expression of candidate genes related to tumor progression or invasion, such as cyclin dependent kinase 6 (CDK6), ras homolog family member U (RHOU), and spire type actin nucleation factor 2 (SPIRE2). Student's t-test was used to analyze the statistical difference in the mRNA expression of candidate genes between the two groups. Receiver operating characteristic (ROC) curve was used to establish a model for predicting the invasiveness of NF-PAs. The accuracy, sensitivity, specificity and precision of the model were then obtained to evaluate the diagnostic performance. Results CDK6 (0.2600±0.0912 vs. 0.1789±0.0628, t=3.431, P=0.0013) and RHOU mRNA expressions (0.2696±0.1118 vs. 0.1788±0.0857, t=2.946, P=0.0052) were upregulated in INF-PAs patients' serum exosomes as compared to NNF-PAs. For CDK6, the area under the ROC curve (AUC) was 0.772 (95% CI: 0.600-0.943, P=0.005), the accuracy, sensitivity, specificity and precision were 77.27%, 83.33%, 75.00% and 55.56% to predict the invasiveness of NF-PAs. For RHOU, the AUC was 0.757 (95% CI: 0.599-0.915, P=0.007), the accuracy, sensitivity, specificity and precision were 72.73%, 83.33%, 68.75% and 50.00%. In addition, the mRNA levels of CDK6 and RHOU in serum exosomes were significantly positively correlated (r=0.935, P<0.001). After combination of the cut-off scores of the two genes, the accuracy, sensitivity, specificity and precision were 81.82%, 83.33%, 81.25% and 62.50%. Conclusions CDK6 and RHOU mRNA in serum exosomes can be used as markers for predicting invasiveness of NF-PAs. Combination of the two genes performs better in distinguishing INF-PAs from NNF-PAs. These results indicate CDK6 and RHOU play important roles in the invasiveness of NF-PAs, and the established diagnostic method is valuable for directing the clinical screening and postoperative treatment.
Collapse
Affiliation(s)
- Shan Yu
- State Key Laboratory of Medical Molecular Biology & Key Laboratory of RNA and Hematopoietic Regulation & Department of Biochemistry, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & School of Basic Medicine, Peking Union Medical College, Beijing 100005, China
| | - Xiao-Shuang Wang
- State Key Laboratory of Medical Molecular Biology & Key Laboratory of RNA and Hematopoietic Regulation & Department of Biochemistry, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & School of Basic Medicine, Peking Union Medical College, Beijing 100005, China
| | - Kai-Can Cao
- Department of Thoracic Surgery, Nanfang Hospital, Guangzhou 510515, China
| | - Xin-Jie Bao
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China
| | - Jia Yu
- State Key Laboratory of Medical Molecular Biology & Key Laboratory of RNA and Hematopoietic Regulation & Department of Biochemistry, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & School of Basic Medicine, Peking Union Medical College, Beijing 100005, China
| |
Collapse
|
28
|
Li X, Liu C, Zhao X, Wang R, Gu N, Shen H, Li X, Wang L, Li C. Effects of CDK6 regulated by miR-298 on proliferation and apoptosis of thyroid cancer cells. Oncol Lett 2020; 19:2909-2915. [PMID: 32218846 PMCID: PMC7068225 DOI: 10.3892/ol.2020.11398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Accepted: 01/10/2020] [Indexed: 12/01/2022] Open
Abstract
Effects of CDK6 regulated by miR-298 on proliferation and apoptosis of thyroid cancer cells were explored. Seventy-five cases of thyroid carcinoma and adjacent tissues were collected. The expression levels of miR-298 and CDK6 mRNA in tissues and cells were detected by RT-PCR. In addition, thyroid cancer cells and human normal thyroid cells Nthy-ori3-1 were purchased, with the former transfected with miR-298-mimics, miR-298-inhibitor, miR-NC, si-CDK6, si-NC, Sh-CDK6, Sh-NC to build cell models. Then the expression levels of miR-298 and CDK6 in thyroid cancer tissues and cells were detected by qRT-PCR, and the expression of CDK6, Bax, Bcl-2 and caspase-3 by WB. CCK-8 and flow cytometry were employed to detect cell proliferation and apoptosis, and dual luciferase report was adopted to determine the relationship between miR-298 and CDK6. miR-298 was underexpressed in thyroid cancer, and CDK6 was highly expressed in thyroid cancer. Cell experiments revealed that overexpression of miR-298 or inhibition of CDK6 expression could suppress cell proliferation, promote apoptosis, and significantly increase the expression levels of Bax and caspase-3 proteins, decrease Bcl-2 protein expression, which was contrary to the biological phenotype of cells after inhibition of miR-298 or further overexpression of CDK6. Dual luciferase report confirmed that miR-298 was a targeting site of CDK6. miR-298 can inhibit the proliferation of thyroid cells and promote apoptosis of thyroid cancer cells by regulating the expression of CDK6, which is expected to be a potential target for clinical application.
Collapse
Affiliation(s)
- Xinyan Li
- Department of Pharmacology, Cangzhou Medical College, Cangzhou, Hebei 061000, P.R. China
| | - Cuicui Liu
- Department of Pharmacology, Cangzhou Medical College, Cangzhou, Hebei 061000, P.R. China
| | - Xiumei Zhao
- Centre for Research and Development of Anti-tumor Drugs, Tianjin Institute of Medical and Pharmaceutical Sciences, Tianjin 300020, P.R. China
| | - Rui Wang
- Department of Critical Care Medicine, Cangzhou Central Hospital, Cangzhou, Hebei 061001, P.R. China
| | - Na Gu
- Centre for Research and Development of Anti-tumor Drugs, Tianjin Institute of Medical and Pharmaceutical Sciences, Tianjin 300020, P.R. China
| | - Hongsheng Shen
- Centre for Research and Development of Anti-tumor Drugs, Tianjin Institute of Medical and Pharmaceutical Sciences, Tianjin 300020, P.R. China
| | - Xijing Li
- Centre for Research and Development of Anti-tumor Drugs, Tianjin Institute of Medical and Pharmaceutical Sciences, Tianjin 300020, P.R. China
| | - Luyao Wang
- Centre for Research and Development of Anti-tumor Drugs, Tianjin Institute of Medical and Pharmaceutical Sciences, Tianjin 300020, P.R. China
| | - Chao Li
- Department of Pharmacology, Cangzhou Medical College, Cangzhou, Hebei 061000, P.R. China
| |
Collapse
|
29
|
Kumar R, Liu APY, Northcott PA. Medulloblastoma genomics in the modern molecular era. Brain Pathol 2019; 30:679-690. [PMID: 31799776 DOI: 10.1111/bpa.12804] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Accepted: 11/17/2019] [Indexed: 12/13/2022] Open
Abstract
Medulloblastoma (MB) represents a spectrum of biologically and clinically distinct entities. Initially described histopathologically as a small, round blue cell tumor arising in the cerebellum, MB has emerged as a paradigm for molecular classification in cancer. Recent advances in genomic, transcriptomic and epigenomic profiling of MB have further refined molecular classification and complemented conventional histopathological diagnosis. Herein, we review the main clinical and molecular features of the four consensus subgroups of MB (WNT, SHH, Group 3 and Group 4). We also highlight hereditary predisposition syndromes associated with increased risk of MB. Finally, we explore advances in the classification of the consensus molecular groups while also presenting cutting-edge frontiers in identifying intratumoral heterogeneity and cellular origins of MB.
Collapse
Affiliation(s)
- Rahul Kumar
- Department of Developmental Neurobiology, Division of Brain Tumor Research, St. Jude Children's Research Hospital, Memphis, TN.,St. Jude Graduate School of Biomedical Sciences, Memphis, TN
| | - Anthony P Y Liu
- Department of Developmental Neurobiology, Division of Brain Tumor Research, St. Jude Children's Research Hospital, Memphis, TN.,Department of Oncology, Division of Neurooncology, St. Jude Children's Research Hospital, Memphis, TN
| | - Paul A Northcott
- Department of Developmental Neurobiology, Division of Brain Tumor Research, St. Jude Children's Research Hospital, Memphis, TN
| |
Collapse
|
30
|
Wang H, Zhou J, Yang D, Yi L, Wang X, Ou Y, Yang D, Xu L, Xu M. High expression of the transcriptional coactivator TAZ is associated with a worse prognosis and affects cell proliferation in patients with medulloblastoma. Oncol Lett 2019; 18:5591-5599. [PMID: 31612066 DOI: 10.3892/ol.2019.10851] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2018] [Accepted: 04/11/2019] [Indexed: 12/20/2022] Open
Abstract
The transcriptional coactivator tafazzin (TAZ) serves pivotal roles in organ development, tumor initiation and tumor progression. However, to the best of our knowledge, the expression of TAZ and its clinical significance in human medulloblastoma have not been defined. The present study aimed to clarify the clinical and biological significance of TAZ expression in human medulloblastoma. Immunohistochemical staining for TAZ was performed with 72 medulloblastoma and three normal brain tissue samples. A high expression level of TAZ was detected in 65.28% of medulloblastoma tissues, whereas low expression was identified in the normal brain tissues. TAZ expression was significantly associated with medulloblastoma recurrence. However, the expression of TAZ was not associated with sex, age, tumor location, tumor maximal diameter and tumor histology. Furthermore, both the overall survival and tumor-free survival rate of patients with high levels of expression of TAZ were shorter compared with those of patients with tumors expressing low levels of TAZ. In univariate and multivariate Cox regression analyses, TAZ expression was identified as a significant prognostic factor for patients with medulloblastoma. Functionally, downregulation of TAZ inhibited the proliferation and tumor formation of medulloblastoma cells and the expression of cell-cycle associated proteins in Daoy cells. In conclusion, high expression of TAZ may serve as a prognostic marker for patients with medulloblastoma and TAZ may be a potential target for medulloblastoma therapy.
Collapse
Affiliation(s)
- Hao Wang
- Department of Neurosurgery, Daping Hospital, Third Military Medical University, Chongqing 400042, P.R. China
| | - Ji Zhou
- Department of Neurosurgery, Rocket Force General Hospital, Chinese People's Liberation Army, Beijing 100088, P.R. China
| | - Dong Yang
- Department of Healthy Management, Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing 400042, P.R. China
| | - Liang Yi
- Department of Neurosurgery, Daping Hospital, Third Military Medical University, Chongqing 400042, P.R. China
| | - Xuhui Wang
- Department of Neurosurgery, Daping Hospital, Third Military Medical University, Chongqing 400042, P.R. China
| | - Yangqing Ou
- Department of Neurosurgery, Daping Hospital, Third Military Medical University, Chongqing 400042, P.R. China
| | - Donghong Yang
- Department of Neurosurgery, Daping Hospital, Third Military Medical University, Chongqing 400042, P.R. China
| | - Lunshan Xu
- Department of Neurosurgery, Daping Hospital, Third Military Medical University, Chongqing 400042, P.R. China
| | - Minhui Xu
- Department of Neurosurgery, Daping Hospital, Third Military Medical University, Chongqing 400042, P.R. China
| |
Collapse
|
31
|
Joshi P, Katsushima K, Zhou R, Meoded A, Stapleton S, Jallo G, Raabe E, Eberhart CG, Perera RJ. The therapeutic and diagnostic potential of regulatory noncoding RNAs in medulloblastoma. Neurooncol Adv 2019; 1:vdz023. [PMID: 31763623 PMCID: PMC6859950 DOI: 10.1093/noajnl/vdz023] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Medulloblastoma, a central nervous system tumor that predominantly affects children, always requires aggressive therapy. Nevertheless, it frequently recurs as resistant disease and is associated with high morbidity and mortality. While recent efforts to subclassify medulloblastoma based on molecular features have advanced our basic understanding of medulloblastoma pathogenesis, optimal targets to increase therapeutic efficacy and reduce side effects remain largely undefined. Noncoding RNAs (ncRNAs) with known regulatory roles, particularly long noncoding RNAs (lncRNAs) and microRNAs (miRNAs), are now known to participate in medulloblastoma biology, although their functional significance remains obscure in many cases. Here we review the literature on regulatory ncRNAs in medulloblastoma. In providing a comprehensive overview of ncRNA studies, we highlight how different lncRNAs and miRNAs have oncogenic or tumor suppressive roles in medulloblastoma. These ncRNAs possess subgroup specificity that can be exploited to personalize therapy by acting as theranostic targets. Several of the already identified ncRNAs appear specific to medulloblastoma stem cells, the most difficult-to-treat component of the tumor that drives metastasis and acquired resistance, thereby providing opportunities for therapy in relapsing, disseminating, and therapy-resistant disease. Delivering ncRNAs to tumors remains challenging, but this limitation is gradually being overcome through the use of advanced technologies such as nanotechnology and rational biomaterial design.
Collapse
Affiliation(s)
- Piyush Joshi
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, School of Medicine, Johns Hopkins University, Baltimore, Maryland.,Cancer and Blood Disorders Institute, Johns Hopkins All Children's Hospital, St. Petersburg, Florida
| | - Keisuke Katsushima
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, School of Medicine, Johns Hopkins University, Baltimore, Maryland.,Cancer and Blood Disorders Institute, Johns Hopkins All Children's Hospital, St. Petersburg, Florida
| | - Rui Zhou
- Cancer and Blood Disorders Institute, Johns Hopkins All Children's Hospital, St. Petersburg, Florida
| | - Avner Meoded
- Pediatric Neuroradiology, Johns Hopkins All Children's Hospital, St. Petersburg, Florida
| | - Stacie Stapleton
- Cancer and Blood Disorders Institute, Johns Hopkins All Children's Hospital, St. Petersburg, Florida
| | - George Jallo
- Institute Brain Protection Sciences, Johns Hopkins All Children's Hospital, St. Petersburg, Florida
| | - Eric Raabe
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, School of Medicine, Johns Hopkins University, Baltimore, Maryland.,Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Charles G Eberhart
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, School of Medicine, Johns Hopkins University, Baltimore, Maryland.,Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Ranjan J Perera
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, School of Medicine, Johns Hopkins University, Baltimore, Maryland.,Cancer and Blood Disorders Institute, Johns Hopkins All Children's Hospital, St. Petersburg, Florida.,Sanford Burnham Prebys Medical Discovery Institute, NCI-Designated Cancer Center, La Jolla, California
| |
Collapse
|
32
|
Ma A, Dai X. Exploring the Influence of Parameters on the p53 Response When Single-Stranded Breaks and Double-Stranded Breaks Coexist. Interdiscip Sci 2019; 11:679-690. [PMID: 31222582 DOI: 10.1007/s12539-019-00332-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 04/29/2019] [Accepted: 04/30/2019] [Indexed: 02/07/2023]
Abstract
The p53 response to DNA damage is closely related to cell fate decisions. P53 preferentially responds to single-stranded breaks (SSBs) exhibiting a graded response when single-stranded breaks (SSBs) and double-stranded breaks (DSBs) coexist. However, how p53 natural preferential response is affected by kinetic parameters remains to be elucidated. Here, based on the hybrid model I, we computationally searched all the parameters and parameter combinations in the parameter space to identify those that could alter the natural preferential response of p53 when SSBs and DSBs coexist. Firstly, when a single parameter is changed, the parameters that can alter graded response to produce p53 pulse response are production rate of ATM- and Rad3-related kinase(ATR) (beta2), ATR degradation rate (alf2) and ATR-dependent p53 production rate (beta31). Secondly, when double parameters are changed, the combinations of beta2/alf2/beta31 and any other parameters are capable of altering the p53 natural preferential response, and the combination of ataxia-telangiectasia mutated kinase (ATM)-dependent p53 production rate (beta3) and Wip1-dependent p53 degradation rate (alf35) is also capable of altering the p53 natural preferential response. Thirdly, we analyzed the sensitivity of both pulse amplitude and apoptosis to kinetic parameters. We find that pulse amplitude is most sensitive to ATM-dependent p53 production rate (beta3), and apoptosis is more sensitive to damage-dependent ATM production rate (beta1), wip1-dependent ATM degradation rate (alf15), wip1 production rate (beta5) and wip1 degradation rate (alf5). What is more, the smaller the value of alf15/beta5 or the larger the value of beta1/alf5, the more susceptible the cells are to apoptosis. These results provide clues to design more effective and less toxic targeted treatments for cancer.
Collapse
Affiliation(s)
- Aiqing Ma
- School of Electronics and Information Technology, Sun Yat-Sen University, No. 132 East Outer Ring Road, Guangzhou, 510006, China
| | - Xianhua Dai
- School of Electronics and Information Technology, Sun Yat-Sen University, No. 132 East Outer Ring Road, Guangzhou, 510006, China.
| |
Collapse
|
33
|
Li Y, Tan W, Ye F, Xue F, Gao S, Huang W, Wang Z. Identification of microRNAs and genes as biomarkers of atrial fibrillation using a bioinformatics approach. J Int Med Res 2019; 47:3580-3589. [PMID: 31218935 PMCID: PMC6726789 DOI: 10.1177/0300060519852235] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Objective We aimed to explore potential microRNAs (miRNAs) and target genes related to atrial fibrillation (AF). Methods Data for microarrays GSE70887 and GSE68475, both of which include AF and control groups, were downloaded from the Gene Expression Omnibus database. Differentially expressed miRNAs between AF and control groups were identified within each microarray, and the intersection of these two sets was obtained. These miRNAs were mapped to target genes in the miRNet database. Functional annotation and enrichment analysis of these target genes was performed in the DAVID database. The protein-protein interaction (PPI) network from the STRING database and the miRNA-target-gene network were merged into a PPI-miRNA network using Cytoscape software. Modules of this network containing miRNAs were detected and further analyzed. Results Ten differentially expressed miRNAs and 1520 target genes were identified. Three PPI-miRNA modules were constructed, which contained miR-424, miR-15a, miR-542-3p, and miR-421 as well as their target genes, CDK1, CDK6, and CCND3. Conclusion The identified miRNAs and genes may be related to the pathogenesis of AF. Thus, they may be potential biomarkers for diagnosis and targets for treatment of AF.
Collapse
Affiliation(s)
- Yingyuan Li
- Department of Anesthesiology, The First Affiliated Hospital of Sun Yat-sen University, Guangdong, China
| | - Wulin Tan
- Department of Anesthesiology, The First Affiliated Hospital of Sun Yat-sen University, Guangdong, China
| | - Fang Ye
- Department of Anesthesiology, The First Affiliated Hospital of Sun Yat-sen University, Guangdong, China
| | - Faling Xue
- Department of Anesthesiology, The First Affiliated Hospital of Sun Yat-sen University, Guangdong, China
| | - Shaowei Gao
- Department of Anesthesiology, The First Affiliated Hospital of Sun Yat-sen University, Guangdong, China
| | - Wenqi Huang
- Department of Anesthesiology, The First Affiliated Hospital of Sun Yat-sen University, Guangdong, China
| | - Zhongxing Wang
- Department of Anesthesiology, The First Affiliated Hospital of Sun Yat-sen University, Guangdong, China
| |
Collapse
|
34
|
Fan YF, Yu ZP, Cui XY. lncRNA Colorectal Neoplasia Differentially Expressed (CRNDE) Promotes Proliferation and Inhibits Apoptosis in Non-Small Cell Lung Cancer Cells by Regulating the miR-641/CDK6 Axis. Med Sci Monit 2019; 25:2745-2755. [PMID: 30982057 PMCID: PMC6477934 DOI: 10.12659/msm.913420] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Accepted: 12/03/2018] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND The lncRNA Colorectal Neoplasia Differentially Expressed (CRNDE) gene has been reported as a potential oncogene in NSCLC. Nevertheless, the molecular mechanism of CRNDE in NSCLC progression remains largely unknown. MATERIAL AND METHODS qRT-PCR assay was performed to detect the expression levels of CRNDE, miR-641, and cyclin-dependent kinase 6 (CDK6) in NSCLC. Western blot assay was employed to assess CDK6 protein level in treated NSCLC cells. si-CRNDE#1, si-CRNDE#2, miR-641 mimics, miR-641 inhibitors, or Vector-CDK6 were transfected into NSCLC cells to change the expression levels of CRNDE, miR-641, or CDK6. Dual-luciferase reporter assay was performed to validate the direct interrelated miRNA of CRNDE and the potential target of miR-641. MTT and flow cytometry assays were performed to assess the capacities of cell proliferation and apoptosis, respectively. RESULTS CRNDE level was upregulated in NSCLC, and its knockdown suppressed NSCLC cells proliferation and enhanced apoptosis, whereas miR-641 antagonized the regulatory effect of CRNDE knockdown by directly binding to CRNDE. Moreover, CDK6 was a target of miR-641 and miR-641 exerted anti-proliferation and pro-apoptosis effects through CDK6. CONCLUSIONS CRNDE promoted proliferation and inhibited apoptosis of NSCLC cells at least in part by regulating the miR-641/CDK6 axis, suggesting that CRNDE is a potential therapeutic target for NSCLC treatment.
Collapse
|
35
|
Łakomiak A, Brzuzan P, Jakimiuk E, Florczyk M, Woźny M. Molecular characterization of the cyclin-dependent protein kinase 6 in whitefish (Coregonus lavaretus) and its potential interplay with miR-34a. Gene 2019; 699:115-124. [PMID: 30858134 DOI: 10.1016/j.gene.2019.03.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 03/05/2019] [Accepted: 03/07/2019] [Indexed: 02/06/2023]
Abstract
Cyclin-dependent protein kinase 6 (CDK6) plays a pivotal role in the regulation of the cell cycle and cell proliferation in mammals, and disruption of its expression by various microRNAs has been implicated in the pathogenesis of multiple human cancers. In mammals, miR-34a acts as a downstream effector of p53, and thus indirectly targets Cdk6, abrogating its effects. However, no studies have been done so far to examine the mechanistic involvement of miR-34a in the silencing of cdk6 in fish. In the present study, we found that the cDNA sequence of whitefish cdk6 has a 3'UTR region that contains a binding site for miR-34a. Using a luciferase reporter assay, we demonstrated that whitefish cdk6 is a direct target of miR-34a in vitro. In order to confirm this relationship in vivo, we measured the miR-34a and cdk6 mRNA expression patterns in the liver of whitefish after short-term (8, 24, and 48 h) and long-term (14 and 28 days) exposure to microcystin-LR (MC-LR), a known hepatotoxin and tumor promoter. In contrast to the in vitro findings, we noticed an up-regulation of miR-34a and cdk6 expression after long-term MC-LR treatment. While these results indicate that both, miR-34a and cdk6 are responsive to MC-LR treatment, they do not support the presence of a miR-34a:cdk6 mRNA regulatory pair in the MC-LR-challanged whitefish liver in vivo. On the other hand, our findings suggests that cell regulatory elements, partnering with either miR-34a or cdk6, are worthy of further screening to better understand the molecular mechanisms that underlie the physiological response of fish challenged with hepatotoxic environmental pollutants like microcystins.
Collapse
Affiliation(s)
- Alicja Łakomiak
- Department of Environmental Biotechnology, Faculty of Environmental Sciences, University of Warmia and Mazury in Olsztyn, ul. Słoneczna 45G, 10-709 Olsztyn, Poland.
| | - Paweł Brzuzan
- Department of Environmental Biotechnology, Faculty of Environmental Sciences, University of Warmia and Mazury in Olsztyn, ul. Słoneczna 45G, 10-709 Olsztyn, Poland
| | - Ewa Jakimiuk
- Division of Veterinary Prevention and Feed Hygiene, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, ul. Oczapowskiego 13, 10-950 Olsztyn, Poland
| | - Maciej Florczyk
- Department of Environmental Biotechnology, Faculty of Environmental Sciences, University of Warmia and Mazury in Olsztyn, ul. Słoneczna 45G, 10-709 Olsztyn, Poland
| | - Maciej Woźny
- Department of Environmental Biotechnology, Faculty of Environmental Sciences, University of Warmia and Mazury in Olsztyn, ul. Słoneczna 45G, 10-709 Olsztyn, Poland
| |
Collapse
|
36
|
The tumor-suppressive function of miR-1296-5p by targeting EGFR and CDK6 in gastric cancer. Biosci Rep 2019; 39:BSR20181556. [PMID: 30530570 PMCID: PMC6328896 DOI: 10.1042/bsr20181556] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 11/17/2018] [Accepted: 12/06/2018] [Indexed: 12/12/2022] Open
Abstract
We aimed to confirm the role of miR-1296-5p in gastric cancer and to identify its target genes. The expression of miR-1296-5p was measured in gastric cancer tissues and cell lines. The function of miR-1296-5p was examined by the overexpression and inhibition of its expression in typical gastric cell lines as well as SGC-7901 and MGC-803 cells. The targets of miR-1296-5p were identified by a luciferase activity assay. We found that miR-1296-5p was down-regulated in gastric cancer tissue and cell lines, and low expression levels of miR-1296-5p were associated with advanced clinical stage. Moreover, miR-1296-5p inhibited cell proliferation, migration, and invasion in SGC-7901 and MGC-803 cells. Then, we identified CDK6 and EGFR as novel targets of miR-1296-5p by a luciferase activity assay. Furthermore, the overexpression of miR-1296-5p suppressed the expression of CDK6 and EGFR. Our results indicated a tumor-suppressive role of miR-1296-5p through the translational repression of oncogenic CDK6 and EGFR in gastric cancer.
Collapse
|
37
|
Roskoski R. Cyclin-dependent protein serine/threonine kinase inhibitors as anticancer drugs. Pharmacol Res 2019; 139:471-488. [DOI: 10.1016/j.phrs.2018.11.035] [Citation(s) in RCA: 157] [Impact Index Per Article: 26.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Accepted: 11/27/2018] [Indexed: 02/07/2023]
|
38
|
Lang PY, Gershon TR. A New Way to Treat Brain Tumors: Targeting Proteins Coded by Microcephaly Genes?: Brain tumors and microcephaly arise from opposing derangements regulating progenitor growth. Drivers of microcephaly could be attractive brain tumor targets. Bioessays 2018; 40:e1700243. [PMID: 29577351 PMCID: PMC5910257 DOI: 10.1002/bies.201700243] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Revised: 02/12/2018] [Indexed: 02/06/2023]
Abstract
New targets for brain tumor therapies may be identified by mutations that cause hereditary microcephaly. Brain growth depends on the repeated proliferation of stem and progenitor cells. Microcephaly syndromes result from mutations that specifically impair the ability of brain progenitor or stem cells to proliferate, by inducing either premature differentiation or apoptosis. Brain tumors that derive from brain progenitor or stem cells may share many of the specific requirements of their cells of origin. These tumors may therefore be susceptible to disruptions of the protein products of genes that are mutated in microcephaly. The potential for the products of microcephaly genes to be therapeutic targets in brain tumors are highlighted hereby reviewing research on EG5, KIF14, ASPM, CDK6, and ATR. Treatments that disrupt these proteins may open new avenues for brain tumor therapy that have increased efficacy and decreased toxicity.
Collapse
Affiliation(s)
- Patrick Y. Lang
- Department of Cell Biology and Physiology, School of Medicine, University of North Carolina, Chapel Hill, North Carolina 27599, USA
- Department of Neurology, School of Medicine, University of North Carolina, Chapel Hill, North Carolina 27599, USA
| | - Timothy R. Gershon
- Department of Neurology, School of Medicine, University of North Carolina, Chapel Hill, North Carolina 27599, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina 27599, USA
- Neuroscience Center, University of North Carolina, Chapel Hill, North Carolina 27599, USA
| |
Collapse
|
39
|
Andisheh-Tadbir A, Ashraf MJ, Jeiroodi N. Expression of CDK6 in Oral Squamous Cell Carcinomas. Asian Pac J Cancer Prev 2018; 19:1013-1016. [PMID: 29693970 PMCID: PMC6031802 DOI: 10.22034/apjcp.2018.19.4.1013] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Background: CDK6 is the key factor in regulation of the cell cycle and essential for passage into the G1 phase. It
also plays an important role in the development of various tumors. In this cross-sectional study expression of the CDK6
protein in oral squamous cell carcinoma (OSCC) and healthy oral mucosa of controls was assessed to determine relations
with malignant transformation and clinicopathologic factors. Method: A total of 60 samples, 45 from OSCCs and 15
from healthy tissue, underwent immunohistochemistry for CDK6. Nuclear and cytoplasmic staining of keratinocytes
was considered as positive and the percentages of positive cells were calculated. Results: Expression of CDK6 was
detected in 55.6% of OSCC samples (25 cases) and 13.3% of controls (2 cases), the difference being significant. Mean
percentage of CDK6 stained cells was 24.2±29.3 in the OSCC cases and 4.33±2.1 in the control group, again statistically
significant. No relationship was detected between CDK6 expression and clinicopathologic factors. Conclusion:
Overexpression of CDK6 observed in OSCC points to a role for this protein in oral carcinogenesis.
Collapse
Affiliation(s)
- Azadeh Andisheh-Tadbir
- Oral and Dental Disease Research Center, Department of Oral and Maxillofacial Pathology, Faculty of Dentistry, Shiraz University of Medical Sciences, Shiraz, Iran.
| | | | | |
Collapse
|
40
|
Combined BET bromodomain and CDK2 inhibition in MYC-driven medulloblastoma. Oncogene 2018; 37:2850-2862. [PMID: 29511348 PMCID: PMC5966365 DOI: 10.1038/s41388-018-0135-1] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Revised: 12/18/2017] [Accepted: 12/29/2017] [Indexed: 12/20/2022]
Abstract
Medulloblastoma (MB) is the most common malignant brain tumor in children. MYC genes are frequently amplified and correlate with poor prognosis in MB. BET bromodomains recognize acetylated lysine residues and often promote and maintain MYC transcription. Certain cyclin-dependent kinases (CDKs) are further known to support MYC stabilization in tumor cells. In this report, MB cells were suppressed by combined targeting of MYC expression and MYC stabilization using BET bromodomain inhibition and CDK2 inhibition, respectively. Such combination treatment worked synergistically and caused cell cycle arrest as well as massive apoptosis. Immediate transcriptional changes from this combined MYC blockade were found using RNA-Seq profiling and showed remarkable similarities to changes in MYC target gene expression when MYCN was turned off with doxycycline in our MYCN-inducible animal model for Group 3 MB. In addition, the combination treatment significantly prolonged survival as compared to single-agent therapy in orthotopically transplanted human Group 3 MB with MYC amplifications. Our data suggest that dual inhibition of CDK2 and BET bromodomains can be a novel treatment approach for suppressing MYC-driven cancer.
Collapse
|
41
|
Nomura M, Mukasa A, Nagae G, Yamamoto S, Tatsuno K, Ueda H, Fukuda S, Umeda T, Suzuki T, Otani R, Kobayashi K, Maruyama T, Tanaka S, Takayanagi S, Nejo T, Takahashi S, Ichimura K, Nakamura T, Muragaki Y, Narita Y, Nagane M, Ueki K, Nishikawa R, Shibahara J, Aburatani H, Saito N. Distinct molecular profile of diffuse cerebellar gliomas. Acta Neuropathol 2017; 134:941-956. [PMID: 28852847 PMCID: PMC5663812 DOI: 10.1007/s00401-017-1771-1] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2017] [Revised: 08/21/2017] [Accepted: 08/21/2017] [Indexed: 12/19/2022]
Abstract
Recent studies have demonstrated that tumor-driving alterations are often different among gliomas that originated from different brain regions and have underscored the importance of analyzing molecular characteristics of gliomas stratified by brain region. Therefore, to elucidate molecular characteristics of diffuse cerebellar gliomas (DCGs), 27 adult, mostly glioblastoma cases were analyzed. Comprehensive analysis using whole-exome sequencing, RNA sequencing, and Infinium methylation array (n = 17) demonstrated their distinct molecular profile compared to gliomas in other brain regions. Frequent mutations in chromatin-modifier genes were identified including, noticeably, a truncating mutation in SETD2 (n = 4), which resulted in loss of H3K36 trimethylation and was mutually exclusive with H3F3A K27M mutation (n = 3), suggesting that epigenetic dysregulation may lead to DCG tumorigenesis. Alterations that cause loss of p53 function including TP53 mutation (n = 9), PPM1D mutation (n = 2), and a novel type of PPM1D fusion (n = 1), were also frequent. On the other hand, mutations and copy number changes commonly observed in cerebral gliomas were infrequent. DNA methylation profile analysis demonstrated that all DCGs except for those with H3F3A mutations were categorized in the "RTK I (PDGFRA)" group, and those DCGs had a gene expression signature that was highly associated with PDGFRA. Furthermore, compared with the data of 315 gliomas derived from different brain regions, promoter methylation of transcription factors genes associated with glial development showed a characteristic pattern presumably reflecting their tumor origin. Notably, SOX10, a key transcription factor associated with oligodendroglial differentiation and PDGFRA regulation, was up-regulated in both DCG and H3 K27M-mutant diffuse midline glioma, suggesting their developmental and biological commonality. In contrast, SOX10 was silenced by promoter methylation in most cerebral gliomas. These findings may suggest potential tailored targeted therapy for gliomas according to their brain region, in addition to providing molecular clues to identify the region-related cellular origin of DCGs.
Collapse
Affiliation(s)
- Masashi Nomura
- Department of Neurosurgery, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
- Genome Science Division, Research Center for Advanced Science and Technology (RCAST), The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo, 153-8904, Japan
| | - Akitake Mukasa
- Department of Neurosurgery, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan.
| | - Genta Nagae
- Genome Science Division, Research Center for Advanced Science and Technology (RCAST), The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo, 153-8904, Japan
| | - Shogo Yamamoto
- Genome Science Division, Research Center for Advanced Science and Technology (RCAST), The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo, 153-8904, Japan
| | - Kenji Tatsuno
- Genome Science Division, Research Center for Advanced Science and Technology (RCAST), The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo, 153-8904, Japan
| | - Hiroki Ueda
- Genome Science Division, Research Center for Advanced Science and Technology (RCAST), The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo, 153-8904, Japan
| | - Shiro Fukuda
- Genome Science Division, Research Center for Advanced Science and Technology (RCAST), The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo, 153-8904, Japan
| | - Takayoshi Umeda
- Genome Science Division, Research Center for Advanced Science and Technology (RCAST), The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo, 153-8904, Japan
| | - Tomonari Suzuki
- Department of Neuro-Oncology/Neurosurgery, Saitama International Medical Center, Saitama Medical University, 1397-1 Yamane, Hidaka-shi, Saitama, 350-1298, Japan
| | - Ryohei Otani
- Department of Neurosurgery, Dokkyo Medical University, 880 Kitakobayashi, Mibu-machi, Shimotsuga-gun, Tochigi, 321-0293, Japan
| | - Keiichi Kobayashi
- Department of Neurosurgery, Kyorin University Faculty of Medicine, 6-20-2 Shinkawa, Mitaka, Tokyo, 181-8611, Japan
| | - Takashi Maruyama
- Department of Neurosurgery, Tokyo Women's Medical University, 8-1, Kawada-cho, Shinjuku-ku, Tokyo, 162-8666, Japan
| | - Shota Tanaka
- Department of Neurosurgery, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Shunsaku Takayanagi
- Department of Neurosurgery, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Takahide Nejo
- Department of Neurosurgery, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Satoshi Takahashi
- Department of Neurosurgery, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Koichi Ichimura
- Division of Brain Tumor Translational Research, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| | - Taishi Nakamura
- Department of Neurosurgery, Graduate School of Medicine, Yokohama City University, 3-9, Fukuura, Kanazawa-ku, Yokohama, 236-0004, Japan
| | - Yoshihiro Muragaki
- Department of Neurosurgery, Tokyo Women's Medical University, 8-1, Kawada-cho, Shinjuku-ku, Tokyo, 162-8666, Japan
| | - Yoshitaka Narita
- Department of Neurosurgery and Neuro-Oncology, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| | - Motoo Nagane
- Department of Neurosurgery, Kyorin University Faculty of Medicine, 6-20-2 Shinkawa, Mitaka, Tokyo, 181-8611, Japan
| | - Keisuke Ueki
- Department of Neurosurgery, Dokkyo Medical University, 880 Kitakobayashi, Mibu-machi, Shimotsuga-gun, Tochigi, 321-0293, Japan
| | - Ryo Nishikawa
- Department of Neuro-Oncology/Neurosurgery, Saitama International Medical Center, Saitama Medical University, 1397-1 Yamane, Hidaka-shi, Saitama, 350-1298, Japan
| | - Junji Shibahara
- Department of Pathology, Kyorin University Faculty of Medicine, 6-20-2 Shinkawa, Mitaka, Tokyo, 181-8611, Japan
| | - Hiroyuki Aburatani
- Genome Science Division, Research Center for Advanced Science and Technology (RCAST), The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo, 153-8904, Japan.
| | - Nobuhito Saito
- Department of Neurosurgery, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| |
Collapse
|
42
|
Raleigh DR, Choksi PK, Krup AL, Mayer W, Santos N, Reiter JF. Hedgehog signaling drives medulloblastoma growth via CDK6. J Clin Invest 2017; 128:120-124. [PMID: 29202464 DOI: 10.1172/jci92710] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Accepted: 10/12/2017] [Indexed: 12/23/2022] Open
Abstract
Medulloblastoma, an aggressive cancer of the cerebellum, is among the most common pediatric brain tumors. Approximately one-third of medulloblastomas are associated with misactivation of the Hedgehog (Hh) pathway. GLI family zinc finger 2 (GLI2) coordinates the Hh transcriptional program; however, the GLI2 targets that promote cancer cell proliferation are unknown. Here, we incorporated a Gli2-EGFP allele into 2 different genetic mouse models of Hh-associated medulloblastoma. Hh signaling induced GLI2 binding to the Cdk6 promoter and activated Cdk6 expression, thereby promoting uncontrolled cell proliferation. Genetic or pharmacological inhibition of CDK6 in mice repressed the growth of Hh-associated medulloblastoma and prolonged survival through inhibition of cell proliferation. In human medulloblastoma, misactivation of Hh signaling was associated with high levels of CDK6, pointing to CDK6 as a direct transcriptional target of the Hh pathway. These results suggest that CDK6 antagonists may be a promising therapeutic approach for Hh-associated medulloblastoma in humans.
Collapse
Affiliation(s)
- David R Raleigh
- Department of Radiation Oncology and.,Department of Biochemistry and Biophysics, UCSF, San Francisco, California, USA
| | - Pervinder K Choksi
- Department of Radiation Oncology and.,Department of Biochemistry and Biophysics, UCSF, San Francisco, California, USA
| | - Alexis Leigh Krup
- Department of Radiation Oncology and.,Department of Biochemistry and Biophysics, UCSF, San Francisco, California, USA
| | - Wasima Mayer
- Department of Radiation Oncology and.,Department of Biochemistry and Biophysics, UCSF, San Francisco, California, USA
| | - Nicole Santos
- Department of Biochemistry and Biophysics, UCSF, San Francisco, California, USA
| | - Jeremy F Reiter
- Department of Biochemistry and Biophysics, UCSF, San Francisco, California, USA
| |
Collapse
|
43
|
MiRNA-124 is a link between measles virus persistent infection and cell division of human neuroblastoma cells. PLoS One 2017; 12:e0187077. [PMID: 29073265 PMCID: PMC5658143 DOI: 10.1371/journal.pone.0187077] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Accepted: 10/12/2017] [Indexed: 01/12/2023] Open
Abstract
Measles virus (MV) infects a variety of lymphoid and non-lymphoid peripheral organs. However, in rare cases, the virus can persistently infect cells within the central nervous system. Although some of the factors that allow MV to persist are known, the contribution of host cell-encoded microRNAs (miRNA) have not been described. MiRNAs are a class of noncoding RNAs transcribed from genomes of all multicellular organisms and some viruses, which regulate gene expression in a sequence-specific manner. We have studied the contribution of host cell-encoded miRNAs to the establishment of MV persistent infection in human neuroblastoma cells. Persistent MV infection was accompanied by differences in the expression profile and levels of several host cell-encoded microRNAs as compared to uninfected cells. MV persistence infection of a human neuroblastoma cell line (UKF-NB-MV), exhibit high miRNA-124 expression, and reduced expression of cyclin dependent kinase 6 (CDK6), a known target of miRNA-124, resulting in slower cell division but not cell death. By contrast, acute MV infection of UKF-NB cells did not result in increased miRNA-124 levels or CDK6 reduction. Ectopic overexpression of miRNA-124 affected cell viability only in UKF-NB-MV cells, causing cell death; implying that miRNA-124 over expression can sensitize cells to death only in the presence of MV persistent infection. To determine if miRNA-124 directly contributes to the establishment of MV persistence, UKF-NB cells overexpressing miRNA-124 were acutely infected, resulting in establishment of persistently infected colonies. We propose that miRNA-124 triggers a CDK6-dependent decrease in cell proliferation, which facilitates the establishment of MV persistence in neuroblastoma cells. To our knowledge, this is the first report to describe the role of a specific miRNA in MV persistence.
Collapse
|
44
|
Zhao BW, Chen S, Li YF, Xiang J, Zhou ZW, Peng JS, Chen YB. Low Expression of CDK10 Correlates with Adverse Prognosis in Gastric Carcinoma. J Cancer 2017; 8:2907-2914. [PMID: 28928881 PMCID: PMC5604441 DOI: 10.7150/jca.20142] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2017] [Accepted: 07/07/2017] [Indexed: 01/15/2023] Open
Abstract
Background: Cyclin-dependent kinase (CDK) 10, is reported to play an essential role in the progression from the G2 to M phase of the cell cycle. Recently, reduced expression of CDK10 has been observed in several cancerous human tissue, suggesting that CDK10 is a tumor suppressor gene. However, data on its expression pattern and clinical relevance in gastric cancer are not sufficient. Therefore, this study aims to investigate CDK10 expression and its prognostic significance in primary gastric adenocarcinoma. Methodology/Principal Findings: The expression level of CDK10 was analyzed using qRT-PCR, western blotting, and immunohistochemistry on tissue samples from 189 post-resection gastric cancer patients. The expression of CDK10 mRNA was reduced in tumor tissue samples compared with matched adjacent non-tumor tissue samples (P=0.013); this finding was confirmed by western blot analysis (P=0.016). Immunohistochemistry data indicated that CDK10 expression was significantly decreased in 92 of 189 (48.7%) gastric cancer cases. Kaplan-Meier survival curves revealed that decreased expression of CDK10 was strongly associated with a poor prognosis in gastric cancer patients (P<0.001). Multivariate Cox analysis identified CDK10 expression as an independent prognostic factor for overall survival (P=0.011). Conclusions/Significance: Our data suggest that reduced CDK10 expression independently predicts a poor prognosis in patients with gastric cancer. CDK10 can may serve as a valuable prognostic marker and a potential target for gene therapy.
Collapse
Affiliation(s)
- Bai-Wei Zhao
- The State Key Laboratory of Oncology in South China, Cancer Center, Sun Yat-Sen University, Guangzhou, China.,Department of Gastric Surgery, Cancer Center, Sun Yat-Sen University, Guangzhou, China
| | - Shi Chen
- The State Key Laboratory of Oncology in South China, Cancer Center, Sun Yat-Sen University, Guangzhou, China.,Department of Gastrointestinal Surgery, The 6 th Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Yuan-Fang Li
- The State Key Laboratory of Oncology in South China, Cancer Center, Sun Yat-Sen University, Guangzhou, China.,Department of Gastric Surgery, Cancer Center, Sun Yat-Sen University, Guangzhou, China
| | - Jun Xiang
- Department of Gastrointestinal Surgery, The 6 th Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Zhi-Wei Zhou
- The State Key Laboratory of Oncology in South China, Cancer Center, Sun Yat-Sen University, Guangzhou, China.,Department of Gastric Surgery, Cancer Center, Sun Yat-Sen University, Guangzhou, China
| | - Jun-Sheng Peng
- Department of Gastrointestinal Surgery, The 6 th Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China.,Guangdong Institute of Gastroenterology, The 6 th Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Ying-Bo Chen
- The State Key Laboratory of Oncology in South China, Cancer Center, Sun Yat-Sen University, Guangzhou, China.,Department of Gastric Surgery, Cancer Center, Sun Yat-Sen University, Guangzhou, China
| |
Collapse
|
45
|
Clinical study of genomic drivers in pancreatic ductal adenocarcinoma. Br J Cancer 2017; 117:572-582. [PMID: 28720843 PMCID: PMC5558689 DOI: 10.1038/bjc.2017.209] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Revised: 05/18/2017] [Accepted: 06/12/2017] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Pancreatic ductal adenocarcinoma (PDA) is a lethal cancer with complex genomes and dense fibrotic stroma. This study was designed to identify clinically relevant somatic aberrations in pancreatic cancer genomes of patients with primary and metastatic disease enrolled and treated in two clinical trials. METHODS Tumour nuclei were flow sorted prior to whole genome copy number variant (CNV) analysis. Targeted or whole exome sequencing was performed on most samples. We profiled biopsies from 68 patients enrolled in two Stand Up to Cancer (SU2C)-sponsored clinical trials. These included 38 resected chemoradiation naïve tumours (SU2C 20206-003) and metastases from 30 patients who progressed on prior therapies (SU2C 20206-001). Patient outcomes including progression-free survival (PFS) and overall survival (OS) were observed. RESULTS We defined: (a) CDKN2A homozygous deletions that included the adjacent MTAP gene, only its' 3' region, or excluded MTAP; (b) SMAD4 homozygous deletions that included ME2; (c) a pancreas-specific MYC super-enhancer region; (d) DNA repair-deficient genomes; and (e) copy number aberrations present in PDA patients with long-term (⩾ 40 months) and short-term (⩽ 12 months) survival after surgical resection. CONCLUSIONS We provide a clinically relevant framework for genomic drivers of PDA and for advancing novel treatments.
Collapse
|
46
|
Cook Sangar ML, Genovesi LA, Nakamoto MW, Davis MJ, Knobluagh SE, Ji P, Millar A, Wainwright BJ, Olson JM. Inhibition of CDK4/6 by Palbociclib Significantly Extends Survival in Medulloblastoma Patient-Derived Xenograft Mouse Models. Clin Cancer Res 2017. [PMID: 28637687 DOI: 10.1158/1078-0432.ccr-16-2943] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Purpose: Bioinformatics analysis followed by in vivo studies in patient-derived xenograft (PDX) models were used to identify and validate CDK 4/6 inhibition as an effective therapeutic strategy for medulloblastoma, particularly group 3 MYC-amplified tumors that have the worst clinical prognosis.Experimental Design: A protein interaction network derived from a Sleeping Beauty mutagenesis model of medulloblastoma was used to identify potential novel therapeutic targets. The top hit from this analysis was validated in vivo using PDX models of medulloblastoma implanted subcutaneously in the flank and orthotopically in the cerebellum of mice.Results: Informatics analysis identified the CDK4/6/CYCLIN D/RB pathway as a novel "druggable" pathway for multiple subgroups of medulloblastoma. Palbociclib, a highly specific inhibitor of CDK4/6, was found to inhibit RB phosphorylation and cause G1 arrest in PDX models of medulloblastoma. The drug caused rapid regression of Sonic hedgehog (SHH) and MYC-amplified group 3 medulloblastoma subcutaneous tumors and provided a highly significant survival advantage to mice bearing MYC-amplified intracranial tumors.Conclusions: Inhibition of CDK4/6 is potentially a highly effective strategy for the treatment of SHH and MYC-amplified group 3 medulloblastoma. Clin Cancer Res; 23(19); 5802-13. ©2017 AACR.
Collapse
Affiliation(s)
| | - Laura A Genovesi
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Queensland, Australia
| | - Madison W Nakamoto
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Melissa J Davis
- Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
| | - Sue E Knobluagh
- Department of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State University, Columbus, Ohio
| | - Pengxiang Ji
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Queensland, Australia
| | - Amanda Millar
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Queensland, Australia
| | - Brandon J Wainwright
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Queensland, Australia
| | - James M Olson
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington.
| |
Collapse
|
47
|
Zhang H, Wang X, Chen X. Retracted
: Potential Role of Long Non‐Coding RNA ANRIL in Pediatric Medulloblastoma Through Promotion on Proliferation and Migration by Targeting miR‐323. J Cell Biochem 2017; 118:4735-4744. [DOI: 10.1002/jcb.26141] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Accepted: 05/16/2017] [Indexed: 01/22/2023]
Affiliation(s)
| | - Xiuli Wang
- Department of PediatricsLiaocheng People's HospitalLiaocheng252000China
| | - Xinxin Chen
- Department of PediatricsLiaocheng People's HospitalLiaocheng252000China
| |
Collapse
|
48
|
Dobson THW, Hatcher RJ, Swaminathan J, Das CM, Shaik S, Tao RH, Milite C, Castellano S, Taylor PH, Sbardella G, Gopalakrishnan V. Regulation of USP37 Expression by REST-Associated G9a-Dependent Histone Methylation. Mol Cancer Res 2017; 15:1073-1084. [PMID: 28483947 DOI: 10.1158/1541-7786.mcr-16-0424] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Revised: 03/16/2017] [Accepted: 05/02/2017] [Indexed: 12/31/2022]
Abstract
The deubiquitylase (DUB) USP37 is a component of the ubiquitin system and controls cell proliferation by regulating the stability of the cyclin-dependent kinase inhibitor 1B, (CDKN1B/p27Kip1). The expression of USP37 is downregulated in human medulloblastoma tumor specimens. In the current study, we show that USP37 prevents medulloblastoma growth in mouse orthotopic models, suggesting that it has tumor-suppressive properties in this neural cancer. Here, we also report on the mechanism underlying USP37 loss in medulloblastoma. Previously, we observed that the expression of USP37 is transcriptionally repressed by the RE1 silencing transcription factor (REST), which requires chromatin remodeling factors for its activity. Genetic and pharmacologic approaches were employed to identify a specific role for G9a, a histone methyltransferase (HMT), in promoting methylation of histone H3 lysine-9 (H3K9) mono- and dimethylation, and surprisingly trimethylation, at the USP37 promoter to repress its gene expression. G9a inhibition also blocked the tumorigenic potential of medulloblastoma cells in vivo Using isogenic low- and high-REST medulloblastoma cells, we further showed a REST-dependent elevation in G9a activity, which further increased mono- and trimethylation of histone H3K9, accompanied by downregulation of USP37 expression. Together, these findings reveal a role for REST-associated G9a and histone H3K9 methylation in the repression of USP37 expression in medulloblastoma.Implications: Reactivation of USP37 by G9a inhibition has the potential for therapeutic applications in REST-expressing medulloblastomas. Mol Cancer Res; 15(8); 1073-84. ©2017 AACR.
Collapse
Affiliation(s)
- Tara H W Dobson
- Department of Pediatrics, University of Texas, MD Anderson Cancer Center, Houston, Texas
| | - Rashieda J Hatcher
- Department of Pediatrics, University of Texas, MD Anderson Cancer Center, Houston, Texas
| | | | - Chandra M Das
- Department of Pediatrics, University of Texas, MD Anderson Cancer Center, Houston, Texas
| | - Shavali Shaik
- Department of Pediatrics, University of Texas, MD Anderson Cancer Center, Houston, Texas
| | - Rong-Hua Tao
- Department of Pediatrics, University of Texas, MD Anderson Cancer Center, Houston, Texas
| | - Ciro Milite
- Epigenetic Medicinal Chemistry Lab, Dipartimento di Farmacia, Università degli Studi di Salerno, Fisciano (SA), Italy
| | - Sabrina Castellano
- Epigenetic Medicinal Chemistry Lab, Dipartimento di Farmacia, Università degli Studi di Salerno, Fisciano (SA), Italy
| | - Pete H Taylor
- Department of Pediatrics, University of Texas, MD Anderson Cancer Center, Houston, Texas
| | - Gianluca Sbardella
- Epigenetic Medicinal Chemistry Lab, Dipartimento di Farmacia, Università degli Studi di Salerno, Fisciano (SA), Italy
| | - Vidya Gopalakrishnan
- Department of Pediatrics, University of Texas, MD Anderson Cancer Center, Houston, Texas. .,Department of Molecular and Cellular Oncology, University of Texas, MD Anderson Cancer Center, Houston, Texas.,Center for Cancer Epigenetics, University of Texas, MD Anderson Cancer Center, Houston, Texas.,Brain Tumor Center, University of Texas, MD Anderson Cancer Center, Houston, Texas.,Program in Neuroscience, The University of Texas Graduate School of Biomedical Sciences, Houston, Texas
| |
Collapse
|
49
|
Feng Y, Liu F, Du Z, Zhao D, Cheng J, Guo W. Wip1 regulates SKOV3 cell apoptosis through the p38 MAPK signaling pathway. Mol Med Rep 2017; 15:3651-3657. [PMID: 28440479 PMCID: PMC5436208 DOI: 10.3892/mmr.2017.6469] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Accepted: 01/19/2017] [Indexed: 12/19/2022] Open
Abstract
The aim of the present study was to explore the effect of silencing wild-type p53-induced phosphatase 1 (Wip1) on apoptosis of human ovarian cancer SKOV3 cells. SKOV3 cells cultured in vitro were divided into three groups: untreated cells, cells transfected with control small interfering RNA (siRNA) and cells transfected with siRNA targeting Wip1. Flow cytometry analysis was used to detect cell apoptosis. Western blot analysis was performed to determine expression of tumor protein 53 (p53), cleaved caspase-3, caspase-3, BCL2 associated X (Bax), BCL2 apoptosis regulator (Bcl-2), p38 mitogen-activated protein kinase (p38 MAPK) and phosphorylated (p)-p38 MAPK. Reverse transcription-quantitative polymerase chain reaction was used to detect expression of p53, Bax, Bcl-2 and caspase-3 mRNAs. Compared with control, apoptosis of SKOV3 cell was significantly increased following Wip1 siRNA silencing. Wip1 silencing also resulted in a significant increase of p53 and p-p38 MAPK expression, as well as increased cleaved caspase-3/caspase-3 and Bax/Bcl-2 protein ratios. No significant differences were observed in apoptosis and apoptosis-related protein expression in the control siRNA transfected cells. The present study demonstrated that Wip1 silencing promotes apoptosis of human ovarian cancer SKOV3 cells by activation of the p38 MAPK signaling pathways and through subsequent upregulation of p53, and cleaved caspase-3/caspase-3 and Bax/Bcl-2 protein ratios. Overall, the findings of the present study suggest that targeting Wip1 may be a potential therapeutic avenue for the treatment of human ovarian cancer in the future.
Collapse
Affiliation(s)
- Yanping Feng
- Department of Reproductive Medicine, The First Hospital of Hebei Medical University, Shijiazhuang, Hebei 050031, P.R. China
| | - Fang Liu
- Department of Reproductive Medicine, The First Hospital of Hebei Medical University, Shijiazhuang, Hebei 050031, P.R. China
| | - Zhixiang Du
- Department of Reproductive Medicine, The First Hospital of Hebei Medical University, Shijiazhuang, Hebei 050031, P.R. China
| | - Dongjie Zhao
- Department of Surgery, The Third Hospital of Tangshan, Tangshan, Hebei 063100, P.R. China
| | - Jianxin Cheng
- Department of Obstetrics and Gynecology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, P.R. China
| | - Wei Guo
- Department of Reproductive Medicine, The First Hospital of Hebei Medical University, Shijiazhuang, Hebei 050031, P.R. China
| |
Collapse
|
50
|
Tadesse S, Yu M, Kumarasiri M, Le BT, Wang S. Targeting CDK6 in cancer: State of the art and new insights. Cell Cycle 2016; 14:3220-30. [PMID: 26315616 DOI: 10.1080/15384101.2015.1084445] [Citation(s) in RCA: 106] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Cyclin-dependent kinase 6 (CDK6) plays a vital role in regulating the progression of the cell cycle. More recently, CDK6 has also been shown to have a transcriptional role in tumor angiogenesis. Up-regulated CDK6 activity is associated with the development of several types of cancers. While CDK6 is over-expressed in cancer cells, it has a low detectable level in non-cancerous cells and CDK6-null mice develop normally, suggesting a specific oncogenic role of CDK6, and that its inhibition may represent an ideal mechanism-based and low toxic therapeutic strategy in cancer treatment. Identification of selective small molecule inhibitors of CDK6 is thus needed for drug development. Herein, we review the latest understandings of the biological regulation and oncogenic roles of CDK6. The potential clinical relevance of CDK6 inhibition, the progress in the development of small-molecule CDK6 inhibitors and the rational design of potential selective CDK6 inhibitors are also discussed.
Collapse
Affiliation(s)
- Solomon Tadesse
- a Center for Drug Discovery and Development, Sansom Institute for Health Research, Center for Cancer Biology; and School of Pharmacy and Medical Sciences, University of South Australia ; Adelaide , Australia
| | - Mingfeng Yu
- a Center for Drug Discovery and Development, Sansom Institute for Health Research, Center for Cancer Biology; and School of Pharmacy and Medical Sciences, University of South Australia ; Adelaide , Australia
| | - Malika Kumarasiri
- a Center for Drug Discovery and Development, Sansom Institute for Health Research, Center for Cancer Biology; and School of Pharmacy and Medical Sciences, University of South Australia ; Adelaide , Australia
| | - Bich Thuy Le
- a Center for Drug Discovery and Development, Sansom Institute for Health Research, Center for Cancer Biology; and School of Pharmacy and Medical Sciences, University of South Australia ; Adelaide , Australia
| | - Shudong Wang
- a Center for Drug Discovery and Development, Sansom Institute for Health Research, Center for Cancer Biology; and School of Pharmacy and Medical Sciences, University of South Australia ; Adelaide , Australia
| |
Collapse
|