1
|
Hervieu L, Groo AC, Bellien J, Guerrot D, Malzert-Fréon A. Glucuronidation of orally administered drugs and the value of nanocarriers in strategies for its overcome. Pharmacol Ther 2025; 266:108773. [PMID: 39647710 DOI: 10.1016/j.pharmthera.2024.108773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 10/25/2024] [Accepted: 12/02/2024] [Indexed: 12/10/2024]
Abstract
The gastrointestinal tract (GIT) plays a pivotal role in the absorption of orally administered drugs, with the small intestine serving as the primary site due to its extensive surface area and specialized cell types, including enterocytes and M cells. After oral administration, drugs are generally transported via the portal vein to the liver, where they undergo first-pass metabolism. This process involves various enzymatic reactions, including glucuronidation, facilitated by uridine diphosphate-glucuronosyltransferase (UGT), a major phase 2 reaction in mammalian metabolism. UGTs conjugate glucuronic acid to a wide array of endogenous and exogenous substrates, enhancing their solubility and excretion, but significantly affecting the bioavailability and therapeutic efficacy of drugs. UGT enzymes are ubiquitously distributed across tissues, prominently in the liver, but also in the GIT, kidneys, brain, and other organs where they play crucial roles in xenobiotic metabolism. Species-specific differences in UGT expression and activity impact the selection of animal models for pharmacological studies. Various experimental models - ranging from computational simulations (in silico) to laboratory experiments (in vitro) and animal studies (in vivo) - are employed throughout drug discovery and development to evaluate drug metabolism, including UGT activity. Effective strategies to counter pre-systemic metabolism are critical for improving drug bioavailability. This review explores several approaches including prodrugs, co-administration of specific molecules or use of inhibiting excipients in formulations. Strategies incorporating these excipients in nanoformulations demonstrate notable increases in drug absorption and bioavailability. This review highlights the importance of targeted delivery systems and excipient selection in overcoming metabolic barriers, aiming to optimize drug efficacy and patient outcomes.
Collapse
Affiliation(s)
- Laura Hervieu
- Université de Caen Normandie, CERMN UR4258, Normandie Univ, 14000 Caen, France; Université de Rouen Normandie, INSERM UMR1096, Normandie Univ, 76000 Rouen, France
| | - Anne-Claire Groo
- Université de Caen Normandie, CERMN UR4258, Normandie Univ, 14000 Caen, France
| | - Jérémy Bellien
- Université de Rouen Normandie, INSERM UMR1096, Normandie Univ, 76000 Rouen, France; Pharmacology Department, Rouen University Hospital, 76000 Rouen, France
| | - Dominique Guerrot
- Université de Rouen Normandie, INSERM UMR1096, Normandie Univ, 76000 Rouen, France; Nephrology Department, Rouen University Hospital, 76000 Rouen, France
| | | |
Collapse
|
2
|
Nogueiras-Álvarez R, Pérez Francisco I. Pharmacogenetics in Oncology: A useful tool for individualizing drug therapy. Br J Clin Pharmacol 2024; 90:2483-2508. [PMID: 39077855 DOI: 10.1111/bcp.16181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 06/28/2024] [Indexed: 07/31/2024] Open
Abstract
With the continuous development of genetics in healthcare, there has been a significant contribution to the development of precision medicine, which is ultimately aimed at improving the care of patients. Generally, drug treatments used in Oncology are characterized by a narrow therapeutic range and by their potential toxicity. Knowledge of pharmacogenomics and pharmacogenetics can be very useful in the area of Oncology, as they constitute additional tools that can help to individualize patients' treatment. This work includes a description of some genes that have been revealed to be useful in the field of Oncology, as they play a role in drug prescription and in the prediction of treatment response.
Collapse
Affiliation(s)
- Rita Nogueiras-Álvarez
- Osakidetza Basque Health Service, Galdakao-Usansolo University Hospital, Basque Country Pharmacovigilance Unit, Galdakao, Bizkaia/Vizcaya, Spain
| | - Inés Pérez Francisco
- Breast Cancer Research Group, Bioaraba Health Research Institute, Vitoria-Gasteiz, Araba/Álava, Spain
| |
Collapse
|
3
|
Xu S, Lan H, Huang C, Ge X, Zhu J. Mechanisms and emerging strategies for irinotecan-induced diarrhea. Eur J Pharmacol 2024; 974:176614. [PMID: 38677535 DOI: 10.1016/j.ejphar.2024.176614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 04/24/2024] [Accepted: 04/24/2024] [Indexed: 04/29/2024]
Abstract
Irinotecan (also known as CPT-11) is a topoisomerase I inhibitor first approved for clinical use as an anticancer agent in 1996. Over the past more than two decades, it has been widely used for combination regimens to treat various malignancies, especially in gastrointestinal and lung cancers. However, severe dose-limiting toxicities, especially gastrointestinal toxicity such as late-onset diarrhea, were frequently observed in irinotecan-based therapy, thus largely limiting the clinical application of this agent. Current knowledge regarding the pathogenesis of irinotecan-induced diarrhea is characterized by the complicated metabolism of irinotecan to its active metabolite SN-38 and inactive metabolite SN-38G. A series of enzymes and transporters were involved in these metabolic processes, including UGT1A1 and CYP3A4. Genetic polymorphisms of these metabolizing enzymes were significantly associated with the occurrence of irinotecan-induced diarrhea. Recent discoveries and progress made on the detailed mechanisms enable the identification of potential biomarkers for predicting diarrhea and as such guiding the proper patient selection with a better range of tolerant dosages. In this review, we introduce the metabolic process of irinotecan and describe the pathogenic mechanisms underlying irinotecan-induced diarrhea. Based on the mechanisms, we further outline the potential biomarkers for predicting the severity of diarrhea. Finally, based on the current experimental evidence in preclinical and clinical studies, we discuss and prospect the current and emerging strategies for the prevention of irinotecan-induced diarrhea.
Collapse
Affiliation(s)
- Shengkun Xu
- Department of Radiation Oncology, Zhejiang Cancer Hospital, Hangzhou, Zhejiang 310022, China; Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310018, China; Zhejiang Key Laboratory of Radiation Oncology, Hangzhou, Zhejiang 310022, China
| | - Huiyin Lan
- Department of Radiation Oncology, Zhejiang Cancer Hospital, Hangzhou, Zhejiang 310022, China; Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310018, China; Zhejiang Key Laboratory of Radiation Oncology, Hangzhou, Zhejiang 310022, China
| | - Chengyi Huang
- Department of Radiation Oncology, Zhejiang Cancer Hospital, Hangzhou, Zhejiang 310022, China; Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310018, China; Zhejiang Key Laboratory of Radiation Oncology, Hangzhou, Zhejiang 310022, China
| | - Xingnan Ge
- Department of Radiation Oncology, Zhejiang Cancer Hospital, Hangzhou, Zhejiang 310022, China; Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310018, China; Zhejiang Key Laboratory of Radiation Oncology, Hangzhou, Zhejiang 310022, China
| | - Ji Zhu
- Department of Radiation Oncology, Zhejiang Cancer Hospital, Hangzhou, Zhejiang 310022, China; Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310018, China; Zhejiang Key Laboratory of Radiation Oncology, Hangzhou, Zhejiang 310022, China.
| |
Collapse
|
4
|
Ibrahim R, Khoury R, Ibrahim T, Le Cesne A, Assi T. UGT1A1 Testing in Breast Cancer: should it become routine practice in patients treated with antibody-drug conjugates? Crit Rev Oncol Hematol 2024; 196:104265. [PMID: 38307394 DOI: 10.1016/j.critrevonc.2024.104265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 12/21/2023] [Accepted: 01/10/2024] [Indexed: 02/04/2024] Open
Abstract
The use of genetic testing to personalize therapeutic strategies in cancer is rapidly evolving and thus changing the landscape of treatment of oncologic patients. The UGT1A1 gene is an important component for the metabolism and glucoronidation of certain drugs, including irinotecan and sacituzumab govitecan (SG); therefore, various UGT1A1 polymorphisms leading to decreased function of the UGT1A1 enzyme may lead to increased risk of treatment-related side effects. Testing for UGT1A1 polymorphism is not routinely adopted in clinical practice; that is due to the lack of concise studies and recommendations concerning the clinical relevance of this test and its impact on the quality of life of cancer patients. The knowledge regarding UGT1A1 polymorphism and its clinical relevance will be reviewed in this article, as well as the published literature on the association between UGT1A1 polymorphism and the toxicity risk of irinotecan as well as sacituzumab govitecan. The current recommendations and guidelines on UGT1A1 testing will be discussed in detail in the hopes of providing guidance to oncologists in their clinical practice.
Collapse
Affiliation(s)
- Rebecca Ibrahim
- Division of International Patients Care, Gustave Roussy Cancer Campus, Villejuif, France
| | - Rita Khoury
- Division of International Patients Care, Gustave Roussy Cancer Campus, Villejuif, France
| | - Tony Ibrahim
- Division of International Patients Care, Gustave Roussy Cancer Campus, Villejuif, France
| | - Axel Le Cesne
- Division of International Patients Care, Gustave Roussy Cancer Campus, Villejuif, France
| | - Tarek Assi
- Division of International Patients Care, Gustave Roussy Cancer Campus, Villejuif, France.
| |
Collapse
|
5
|
Singh RD, Avadhesh A, Sharma G, Dholariya S, Shah RB, Goyal B, Gupta SC. Potential of Cytochrome P450, a Family of Xenobiotic Metabolizing Enzymes, in Cancer Therapy. Antioxid Redox Signal 2023; 38:853-876. [PMID: 36242099 DOI: 10.1089/ars.2022.0116] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Significance: Targeted cancer therapy with minimal off-target consequences has shown promise for some cancer types. Although cytochrome P450 (CYP) consists of 18 families, CYP1-4 families play key role in metabolizing xenobiotics and cancer drugs. This eventually affects the process of carcinogenesis, treatment outcomes, and cancer drug resistance. Differential overexpression of CYPs in transformed cells, together with phenotypic alterations in tumors, presents a potential for therapeutic intervention. Recent Advances: Recent advances in molecular tools and information technology have helped utilize CYPs as cancer targets. The precise expression in various tumors, X-ray crystal structures, improved understanding of the structure-activity relationship, and new approaches in the development of prodrugs have supported the ongoing efforts to develop CYP-based drugs with a better therapeutic index. Critical Issues: Narrow therapeutic index, off-target effects, drug resistance, and tumor heterogeneity limit the benefits of CYP-based conventional cancer therapies. In this review, we address the CYP1-4 families as druggable targets in cancer. An emphasis is given to the CYP expression, function, and the possible mechanisms that drive expression and activity in normal and transformed tissues. The strategies that inhibit or activate CYPs for therapeutic benefits are also discussed. Future Directions: Efforts are needed to develop more selective tools that will help comprehend molecular and metabolic alterations in tumor tissues with biological end-points in relation to CYPs. This will eventually translate to developing more specific CYP inhibitors/inducers. Antioxid. Redox Signal. 38, 853-876.
Collapse
Affiliation(s)
- Ragini D Singh
- Department of Biochemistry, All India Institute of Medical Sciences, Rajkot, India
| | - Avadhesh Avadhesh
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Gaurav Sharma
- Department of Physiology, All India Institute of Medical Sciences, Rajkot, India
| | - Sagar Dholariya
- Department of Biochemistry, All India Institute of Medical Sciences, Rajkot, India
| | - Rima B Shah
- Department of Pharmacology, All India Institute of Medical Sciences, Rajkot, India
| | - Bela Goyal
- Department of Biochemistry, All India Institute of Medical Sciences, Rishikesh, India
| | - Subash Chandra Gupta
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi, India
- Department of Biochemistry, All India Institute of Medical Sciences, Guwahati, India
| |
Collapse
|
6
|
Karas S, Innocenti F. All You Need to Know About UGT1A1 Genetic Testing for Patients Treated With Irinotecan: A Practitioner-Friendly Guide. JCO Oncol Pract 2021; 18:270-277. [PMID: 34860573 DOI: 10.1200/op.21.00624] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Irinotecan is an anticancer agent widely used for the treatment of solid tumors, including colorectal and pancreatic cancers. Severe neutropenia and diarrhea are common dose-limiting toxicities of irinotecan-based therapy, and UGT1A1 polymorphisms are one of the major risk factors of these toxicities. In 2005, the US Food and Drug Administration revised the drug label to indicate that patients with UGT1A1*28 homozygous genotype should receive a decreased dose of irinotecan. However, UGT1A1*28 testing is not routinely used in the clinic, and specific reasons include lack of access to concise information on this wide issue as well as mixed recommendations by regulatory and professional entities. To assist oncologists in assessing whether and when to use UGT1A1 genetic testing in patients receiving irinotecan-based therapies, this article provided (1) essential knowledge of UGT1A1 polymorphisms; (2) an update on the impact of UGT1A1 polymorphisms on efficacy and toxicity of contemporary irinotecan-based regimens; (3) dosing adjustments based upon the UGT1A1 genotypes, and (4) recommendations from currently available guidelines from the US and international scientific consortia and major oncology societies.
Collapse
Affiliation(s)
- Spinel Karas
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Federico Innocenti
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC
| |
Collapse
|
7
|
Innocenti F, Mills SC, Sanoff H, Ciccolini J, Lenz HJ, Milano G. All You Need to Know About DPYD Genetic Testing for Patients Treated With Fluorouracil and Capecitabine: A Practitioner-Friendly Guide. JCO Oncol Pract 2020; 16:793-798. [PMID: 33197222 DOI: 10.1200/op.20.00553] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Fluoropyrimidines (fluorouracil, capecitabine, and other analogs) are highly used anticancer drugs worldwide. However, patients with cancer treated with these drugs might experience severe, life-threatening toxicity because of germline genetic variation in the DPYD gene. This is a genetic predisposition with an established mechanistic basis that links genetic variation in the DPYD gene to an increase in systemic drug exposure, resulting in an increased risk of toxicity. Pharmacology guidelines provide recommendations on avoiding treatment with fluoropyrimidines or reducing their dose in patients carrying DPYD genetic variants conferring an increased risk of toxicity. However, oncology societies in the United States do not recommend systematic testing. Instead, on April 30, 2020, the European Society for Medical Oncology issued a document recommending genetic testing. In this scenario of contradicting information, practicing oncologists struggle with reaching an informed decision on whether genetic testing should be applied before treatment. This is mostly due to uncertainty about the clinical relevance of genetic testing from the perspective of a practicing oncologist. To reach an informed decision, practicing oncologists need access to concise information on the genetic variants to be tested and a practitioner-friendly interpretation of the test results. We believe this information is currently lacking. To our knowledge, for the first time, we provide a single guide for health care professionals to make an evidence-based decision about DPYD testing for patients with cancer. This article provides the essential knowledge base for oncologists to have an informed discussion with their patients about the genetic testing for DPYD. This document assists practitioners in quickly evaluating whether, when, where, and how to order a DPYD genetic test.
Collapse
Affiliation(s)
- Federico Innocenti
- Eshelman School of Pharmacy, The University of North Carolina, Chapel Hill, NC
| | - Sarah C Mills
- Eshelman School of Pharmacy, The University of North Carolina, Chapel Hill, NC
| | - Hanna Sanoff
- Department of Medicine, The University of North Carolina, Chapel Hill, NC
| | - Joseph Ciccolini
- SMARTc unit, CRCM Institut National de la Santé et de la Recherche Médicale U1068, Aix Marseille University, Marseille, France
| | - Heinz-Josef Lenz
- Keck School of Medicine, University of Southern California, Los Angeles, CA
| | | |
Collapse
|
8
|
Zhu J, Liu A, Sun X, Liu L, Zhu Y, Zhang T, Jia J, Tan S, Wu J, Wang X, Zhou J, Yang J, Zhang C, Zhang H, Zhao Y, Cai G, Zhang W, Xia F, Wan J, Zhang H, Shen L, Cai S, Zhang Z. Multicenter, Randomized, Phase III Trial of Neoadjuvant Chemoradiation With Capecitabine and Irinotecan Guided by UGT1A1 Status in Patients With Locally Advanced Rectal Cancer. J Clin Oncol 2020; 38:4231-4239. [PMID: 33119477 PMCID: PMC7768334 DOI: 10.1200/jco.20.01932] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Differentiating the irinotecan dose on the basis of the uridine diphosphate glucuronosyltransferase 1A1 (UGT1A1) genotype improves the pathologic complete response (pCR) rate. In this study, we further investigated preoperative irinotecan combined with capecitabine-based chemoradiotherapy for locally advanced rectal cancer.
Collapse
Affiliation(s)
- Ji Zhu
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Anwen Liu
- Department of Oncology, Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Xinchen Sun
- Department of Radiation Oncology, First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Luying Liu
- Department of Radiation Oncology, Cancer Hospital of the University of Chinese Academy of Sciences & Zhejiang Cancer Hospital, Hangzhou, China
| | - Yaqun Zhu
- Department of Radiation Oncology, Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Tao Zhang
- Department of Oncology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jianhui Jia
- Department of Radiotherapy, Liaoning Cancer Hospital & Institute, China Medical University Cancer Hospital, Shenyang, China
| | - Shisheng Tan
- Department of Oncology, Guizhou Provincial People's Hospital, Guiyang, China
| | - Junxin Wu
- Department of Radiation Oncology, Fujian Provincial Cancer Hospital, Fuzhou, China
| | - Xin Wang
- Department of Abdominal Oncology, West China Hospital Sichuan University, Chengdu, China
| | - Juying Zhou
- Department of Radiation Oncology, First Affiliated Hospital of Soochow University, Suzhou, China
| | - Jialin Yang
- Department of Radiation Oncology, Sichuan Cancer Hospital& Institute, Chengdu, China
| | - Chen Zhang
- Department of Radiation Oncology, HWA MEI Hospital, University of Chinese Academy of Science, Ningbo, China
| | - Hongyan Zhang
- Department of Radiation Oncology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Yuanyuan Zhao
- Department of Radiation Oncology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Gang Cai
- Department of Radiation Oncology, Ruijin Hospital Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Wei Zhang
- Department of Biostatistics, School of Public Health, Fudan University, Shanghai, China
| | - Fan Xia
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Juefeng Wan
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Hui Zhang
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Lijun Shen
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - SanJun Cai
- Department of Colorectal Cancer, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Zhen Zhang
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| |
Collapse
|
9
|
Uno Y, Mikami T, Tsukazaki Y, Nakanishi Y, Murayama N, Ikushiro S, Tsusaki H, Yamazaki H. Genetic variants of UDP-glucuronosyltransferases 1A1, 1A6, and 1A9 in cynomolgus and rhesus macaques. Xenobiotica 2020; 51:115-121. [PMID: 32811258 DOI: 10.1080/00498254.2020.1810367] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
1. In the cynomolgus macaque, UDP-glucuronosyltransferases (UGTs) 1As have similar molecular and enzymatic characteristics to those of their human orthologs. However, genetic polymorphisms in major cynomolgus UGT1A1/6/9 have not been investigated. 2. We re-sequenced UGT1A1, UGT1A6, and UGT1A9 in 186 cynomolgus macaques (bred in Cambodia, China, or Indonesia) and 54 rhesus macaques and found 15, 13, and 26 non-synonymous variants, respectively. 3. Of these UGT1A1, UGT1A6, and UGT1A9 variants, respectively, 10, 9, and 12 were unique to cynomolgus macaques; 4, 1, and 2 were unique to rhesus macaques; and 1, 2, and 5 were found in both cynomolgus and rhesus macaques. The frequency of the UGT1A1 mutation G69R was 23%, 28%, and 63% in cynomolgus macaques bred in Cambodia, China, and Indonesia, respectively, and 97% in rhesus macaques. 4. The O-glucuronidation activities of liver microsomes from cynomolgus and rhesus macaques with respect to estradiol, serotonin, and propofol were measured. Among these activities, liver microsomes from cynomolgus macaques heterozygous for UGT1A1 G69R (n = 11) showed significantly reduced estradiol 3-O-glucuronidation activities compared with those from wild-type animals (n = 38). 5. These results suggest genetic variants such as UGT1A1 G69R could influence the UGT1A1-mediated glucuronidation of drugs in cynomolgus and rhesus macaques.
Collapse
Affiliation(s)
- Yasuhiro Uno
- Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima-City, Japan.,Shin Nippon Biomedical Laboratories, Ltd, Tokyo, Japan
| | | | | | | | - Norie Murayama
- Laboratory of Drug Metabolism and Pharmacokinetics, Showa Pharmaceutical University, Tokyo, Japan
| | - Shinichi Ikushiro
- Faculty of Engineering, Toyama Prefectural University, Toyama, Japan
| | | | - Hiroshi Yamazaki
- Laboratory of Drug Metabolism and Pharmacokinetics, Showa Pharmaceutical University, Tokyo, Japan
| |
Collapse
|
10
|
Association between the UGT1A1*28 allele and hyperbilirubinemia in HIV-positive patients receiving atazanavir: a meta-analysis. Biosci Rep 2019; 39:BSR20182105. [PMID: 30962262 PMCID: PMC6499501 DOI: 10.1042/bsr20182105] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 03/25/2019] [Accepted: 04/01/2019] [Indexed: 01/06/2023] Open
Abstract
Objectives The uridine diphosphate glucuronosyltransferase 1A1 (UGT1A1)*28 allele in HIV-positive patients receiving atazanavir (ATV) might be associated with the risk of hyperbilirubinemia. Owing to mixed and inconclusive results, a meta-analysis was conducted to systematically summarize and clarify this association. Methods Based on a comprehensive search of PubMed, Embase and Web of Science databases, studies investigating the association between UGT1A1 alleles and hyperbilirubinemia was retrieved. We evaluated the strength of this relationship using odds ratios (ORs) with 95% confidence intervals (CIs). Sensitivity analysis was performed by removing each study one at a time and calculating the pooled ORs of the remaining studies to test the robustness of the meta-analysis results. The Q statistic and the I2 index statistic were used to assess heterogeneity. Publication bias was evaluated using Orwin’s fail-safe N test. Results A total of six individual studies were included in this meta-analysis. A significantly increased risk of hyperbilirubinemia was observed in HIV-positive patients receiving ATV with the UGT1A1*1/*28 or UGT1A1*28/*28 genotype, and the risk was higher with the UGT1A1*28/*28 genotype than with the UGT1A1*1/*28 genotype. (UGT1A1*28/*28 versus UGT1A1*1/*28: OR = 3.69, 95%CI = 1.82–7.49; UGT1A1*1/*28 versus UGT1A1*1/*1: OR = 3.50, 95%CI = 1.35–9.08; UGT1A1*28/*28 versus UGT1A1*1/*1: OR = 10.07, 95%CI = 4.39–23.10). All of the pooled ORs were not significantly affected by the remaining studies and different modeling methods, indicating robust results. Conclusions This meta-analysis suggests that the UGT1A1*28 allele represents a biomarker for an increased risk of hyperbilirubinemia in HIV-positive patients receiving ATV.
Collapse
|
11
|
Yang Y, Zhou M, Hu M, Cui Y, Zhong Q, Liang L, Huang F. UGT1A1*6 and UGT1A1*28 polymorphisms are correlated with irinotecan-induced toxicity: A meta-analysis. Asia Pac J Clin Oncol 2018; 14:e479-e489. [DOI: 10.1111/ajco.13028] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Accepted: 05/20/2018] [Indexed: 02/06/2023]
Affiliation(s)
- Yuwei Yang
- Department of Epidemiology and Biostatistics; School of Public Health; Anhui Medical University; Hefei China
| | - MengMeng Zhou
- Department of Epidemiology and Biostatistics; School of Public Health; Anhui Medical University; Hefei China
| | - Mingjun Hu
- Department of Epidemiology and Biostatistics; School of Public Health; Anhui Medical University; Hefei China
| | - Yanjie Cui
- Department of Epidemiology and Biostatistics; School of Public Health; Anhui Medical University; Hefei China
| | - Qi Zhong
- Department of Epidemiology and Biostatistics; School of Public Health; Anhui Medical University; Hefei China
| | - Ling Liang
- Department of Epidemiology and Biostatistics; School of Public Health; Anhui Medical University; Hefei China
| | - Fen Huang
- Department of Epidemiology and Biostatistics; School of Public Health; Anhui Medical University; Hefei China
| |
Collapse
|
12
|
DPYD and UGT1A1 genotyping to predict adverse events during first-line FOLFIRI or FOLFOXIRI plus bevacizumab in metastatic colorectal cancer. Oncotarget 2017; 9:7859-7866. [PMID: 29487697 PMCID: PMC5814264 DOI: 10.18632/oncotarget.23559] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Accepted: 11/13/2017] [Indexed: 12/20/2022] Open
Abstract
Our study addresses the issue of the clinical reliability of three candidate DPYD and one UGT single nucleotide polymorphisms in predicting 5-fluorouracil- and irinotecan-related adverse events. To this purpose, we took advantage of a large cohort of metastatic colorectal cancer patients treated with first-line 5-fluorouracil- and irinotecan-based chemotherapy regimens (i.e., FOLFIRI or FOLFOXIRI) plus bevacizumab in the randomized clinical trial TRIBE by GONO (clinicaltrials.gov: NCT00719797), in which adverse events were carefully and prospectively collected at each treatment cycle. Here we show that patients bearing DPYD c.1905+1G/A and c.2846A/T genotypes, together with UGT1A1*28 variant carriers, have an increased risk of experiencing clinically relevant toxicities, including hematological AEs and stomatitis. No carrier of the DPYD c.1679T>G minor allele was identified. Present results support the preemptive screening of mentioned DPYD and UGT1A1 variants to identify patients at risk of clinically relevant 5-fluoruracil- and irinotecan-related AEs, in order to improve treatments’ safety through a “genotype-guided” approach.
Collapse
|
13
|
Fricke-Galindo I, Jung-Cook H, LLerena A, López-López M. Interethnic variability of pharmacogenetic biomarkers in Mexican healthy volunteers: a report from the RIBEF (Ibero-American Network of Pharmacogenetics and Pharmacogenomics). Drug Metab Pers Ther 2017; 31:61-81. [PMID: 26812836 DOI: 10.1515/dmpt-2015-0030] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Accepted: 12/04/2015] [Indexed: 01/01/2023]
Abstract
Mexico presents a complex population diversity integrated by Mexican indigenous (MI) (7% of Mexico's population) and Mexican mestizos (MMs). This composition highlights the importance of pharmacogenetic studies in Mexican populations. The aims of this study were to analyze the reported frequencies of the most relevant pharmacogenetic biomarkers and metabolic phenotypes in healthy volunteers from Mexican populations and to assess its interethnic variability across MI and MM populations. After a literature search in PubMed, and according to previously defined inclusion criteria, 63 pharmacogenetic studies performed in Mexican healthy volunteers up to date were selected. These reports comprised 56,292 healthy volunteers (71.58% MM). Allele frequencies in 31 pharmacogenetic biomarkers, from 121 searched, are described. Nine of these biomarkers presented variation within MM and MI groups. The frequencies of CYP2D6*3, *4, *5, *10, *17, *35 and *41 alleles in the MM group were different from those reported in the MI group. CYP2C9*2 and *3 alleles were more frequent in MM than in MI populations (χ2 test, p<0.05). CYP2C19*3 allele was not found in the MM or MI populations reported. For UGT1A1*28, only one study was found. HLA-A*31:01 and HLA-B*15:02 were present in some MM and MI populations. Poor metabolizers for CYP2D6 and CYP2C9 were more frequent in MM than in MI groups (χ2 test, p<0.05). Only 26% of the relevant pharmacogenetic biomarkers searched have been studied in Mexican healthy volunteers; therefore, further studies are warranted. The frequency variation of biomarkers in MM and MI populations could be important for the clinical implementation of pharmacogenetics in Mexico.
Collapse
|
14
|
Serpe L, Canaparo R, Scordo MG, Spina E. Pharmacogenetics of drug-metabolizing enzymes in Italian populations. Drug Metab Pers Ther 2016; 30:107-20. [PMID: 25527811 DOI: 10.1515/dmdi-2014-0028] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Accepted: 11/21/2014] [Indexed: 11/15/2022]
Abstract
Drug-metabolizing enzymes play a major role in the biotransformation and subsequent elimination of most drugs and xenobiotics from the body. Both phase I and phase II enzymes are highly polymorphic. Inter-individual differences in genes coding for drug-metabolizing enzymes are important for understanding variability in drug response and for individualization of drug prescription. The prevalence of genetic polymorphisms in drug metabolism varies widely with ethnicity, and marked differences in the distribution of allelic variants of genes encoding drug-metabolizing enzymes have been documented in populations of different racial origin. This review aimed to summarize the available studies on genetic polymorphisms associated with drug metabolism conducted in Italian populations and to compare the frequency of the various metabolizer phenotypes and most common variant alleles (and resulting genotypes) with corresponding values from other populations. Notably, published data are not extensive, and most studies were performed on relatively low numbers of individuals. In general, the frequency of polymorphisms in the cytochrome P450 (CYP) genes as well as in the investigated phase II enzymes in the Italian population was similar to values reported for other Caucasian populations. However, the prevalence of CYP2D6 gene duplication among Italians was found to be very high, confirming the higher frequency of CYP2D6 ultrarapid metabolizers in the Mediterranean area compared to Northern Europe. It is worth noting that a geographic gradient in the flavin-containing monooxygenase 3 polymorphism distribution was also seen, the Italian population showing higher similarity to other Mediterranean populations than to North Europeans.
Collapse
|
15
|
Abstract
The final therapeutic effect of a drug candidate, which is directed to a specific molecular target strongly depends on its absorption, distribution, metabolism and excretion (ADME). The disruption of at least one element of ADME may result in serious drug resistance. In this work we described the role of one element of this resistance: phase II metabolism with UDP-glucuronosyltransferases (UGTs). UGT function is the transformation of their substrates into more polar metabolites, which are better substrates for the ABC transporters, MDR1, MRP and BCRP, than the native drug. UGT-mediated drug resistance can be associated with (i) inherent overexpression of the enzyme, named intrinsic drug resistance or (ii) induced expression of the enzyme, named acquired drug resistance observed when enzyme expression is induced by the drug or other factors, as food-derived compounds. Very often this induction occurs via ligand binding receptors including AhR (aryl hydrocarbon receptor) PXR (pregnane X receptor), or other transcription factors. The effect of UGT dependent resistance is strengthened by coordinate action and also a coordinate regulation of the expression of UGTs and ABC transporters. This coupling of UGT and multidrug resistance proteins has been intensively studied, particularly in the case of antitumor treatment, when this resistance is "improved" by differences in UGT expression between tumor and healthy tissue. Multidrug resistance coordinated with glucuronidation has also been described here for drugs used in the management of epilepsy, psychiatric diseases, HIV infections, hypertension and hypercholesterolemia. Proposals to reverse UGT-mediated drug resistance should consider the endogenous functions of UGT.
Collapse
Affiliation(s)
- Zofia Mazerska
- Gdańsk University of Technology, Chemical Faculty, Department of Pharmaceutical Technology and Biochemistry, 80-233 Gdańsk, Poland
| | - Anna Mróz
- Gdańsk University of Technology, Chemical Faculty, Department of Pharmaceutical Technology and Biochemistry, 80-233 Gdańsk, Poland
| | - Monika Pawłowska
- Gdańsk University of Technology, Chemical Faculty, Department of Pharmaceutical Technology and Biochemistry, 80-233 Gdańsk, Poland
| | - Ewa Augustin
- Gdańsk University of Technology, Chemical Faculty, Department of Pharmaceutical Technology and Biochemistry, 80-233 Gdańsk, Poland.
| |
Collapse
|
16
|
Namjou B, Marsolo K, Lingren T, Ritchie MD, Verma SS, Cobb BL, Perry C, Kitchner TE, Brilliant MH, Peissig PL, Borthwick KM, Williams MS, Grafton J, Jarvik GP, Holm IA, Harley JB. A GWAS Study on Liver Function Test Using eMERGE Network Participants. PLoS One 2015; 10:e0138677. [PMID: 26413716 PMCID: PMC4586138 DOI: 10.1371/journal.pone.0138677] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Accepted: 09/02/2015] [Indexed: 11/18/2022] Open
Abstract
Introduction Liver enzyme levels and total serum bilirubin are under genetic control and in recent years genome-wide population-based association studies have identified different susceptibility loci for these traits. We conducted a genome-wide association study in European ancestry participants from the Electronic Medical Records and Genomics (eMERGE) Network dataset of patient medical records with available genotyping data in order to identify genetic contributors to variability in serum bilirubin levels and other liver function tests and to compare the effects between adult and pediatric populations. Methods The process of whole genome imputation of eMERGE samples with standard quality control measures have been described previously. After removing missing data and outliers based on principal components (PC) analyses, 3294 samples from European ancestry were used for the GWAS study. The association between each single nucleotide polymorphism (SNP) and total serum bilirubin and other liver function tests was tested using linear regression, adjusting for age, gender, site, platform and ancestry principal components (PC). Results Consistent with previous results, a strong association signal has been detected for UGT1A gene cluster (best SNP rs887829, beta = 0.15, p = 1.30x10-118) for total serum bilirubin level. Indeed, in this region more than 176 SNPs (or indels) had p<10−8 spanning 150Kb on the long arm of chromosome 2q37.1. In addition, we found a similar level of magnitude in a pediatric group (p = 8.26x10-47, beta = 0.17). Further imputation using sequencing data as a reference panel revealed association of other markers including known TA7 repeat indels (rs8175347) (p = 9.78x10-117) and rs111741722 (p = 5.41x10-119) which were in proxy (r2 = 0.99) with rs887829. Among rare variants, two Asian subjects homozygous for coding SNP rs4148323 (G71R) were identified. Additional known effects for total serum bilirubin were also confirmed including organic anion transporters SLCO1B1-SLCO1B3, TDRP and ZMYND8 at FDR<0.05 with no gene-gene interaction effects. Phenome-wide association studies (PheWAS) suggest a protective effect of TA7 repeat against cerebrovascular disease in an adult cohort (OR = 0.75, p = 0.0008). Among other liver function tests, we also confirmed the previous effect of the ABO blood group locus for variation in serum alkaline phosphatase (rs579459, p = 9.44x10-15). Conclusions Taken together, our data present interesting findings with strong confirmation of previous effects by simply using the eMERGE electronic health record phenotyping. In addition, our findings indicate that similar to the adult population, the UGT1A1 is the main locus responsible for normal variation of serum bilirubin in pediatric populations.
Collapse
Affiliation(s)
- Bahram Namjou
- Center for Autoimmune Genomics and Etiology, Cincinnati Children’s Hospital Medical Center (CCHMC), Cincinnati, OH, United States of America
- University of Cincinnati, College of Medicine, Cincinnati, OH, United States of America
- * E-mail:
| | - Keith Marsolo
- University of Cincinnati, College of Medicine, Cincinnati, OH, United States of America
- Division of Biomedical Informatics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States of America
| | - Todd Lingren
- University of Cincinnati, College of Medicine, Cincinnati, OH, United States of America
- Division of Biomedical Informatics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States of America
| | - Marylyn D. Ritchie
- Center for Systems Genomics, The Pennsylvania State University, University Park, PA, United States of America
| | - Shefali S. Verma
- Center for Systems Genomics, The Pennsylvania State University, University Park, PA, United States of America
| | - Beth L. Cobb
- Center for Autoimmune Genomics and Etiology, Cincinnati Children’s Hospital Medical Center (CCHMC), Cincinnati, OH, United States of America
| | - Cassandra Perry
- Division of Genetics and Genomics, Boston Children’s Hospital (BCH), Boston, MA, United States of America
| | - Terrie E. Kitchner
- Center for Human Genetics, Marshfield Clinic, Marshfield, Wisconsin, United States of America
| | - Murray H. Brilliant
- Center for Human Genetics, Marshfield Clinic, Marshfield, Wisconsin, United States of America
| | - Peggy L. Peissig
- Center for Human Genetics, Marshfield Clinic, Marshfield, Wisconsin, United States of America
| | - Kenneth M. Borthwick
- Genomic Medicine Institute, Geisinger Health System, Danville, PA, United States of America
| | - Marc S. Williams
- Genomic Medicine Institute, Geisinger Health System, Danville, PA, United States of America
| | - Jane Grafton
- Group Health Research Institute, Seattle, WA, United States of America
| | - Gail P. Jarvik
- Department of Medicine, University of Washington, Seattle, WA, United States of America
- Department of Genome Sciences, University of Washington, Seattle, WA, United States of America
| | - Ingrid A. Holm
- Division of Genetics and Genomics and The Manton Center for Orphan Disease Research, Boston Children’s Hospital, Boston, MA, United States of America
- Department of Pediatrics, Harvard Medical School, Boston, MA, United States of America
| | - John B. Harley
- Center for Autoimmune Genomics and Etiology, Cincinnati Children’s Hospital Medical Center (CCHMC), Cincinnati, OH, United States of America
- University of Cincinnati, College of Medicine, Cincinnati, OH, United States of America
- U.S. Department of Veterans Affairs Medical Center, Cincinnati, OH, United States of America
| |
Collapse
|
17
|
Chen Z, Su D, Ai L, Jiang X, Wu C, Xu Q, Wang X, Fan Z. UGT1A1 sequence variants associated with risk of adult hyperbilirubinemia: a quantitative analysis. Gene 2014; 552:32-38. [PMID: 25200497 DOI: 10.1016/j.gene.2014.09.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2014] [Revised: 07/31/2014] [Accepted: 09/03/2014] [Indexed: 02/07/2023]
Abstract
BACKGROUNDS AND AIMS UDP-glucuronosyltransferase 1 A1 (UGT1A1) is an enzyme that transforms small lipophilic molecules into water-soluble and excretable metabolites. UGT1A1 polymorphisms contribute to hyperbilirubinemia. This study quantitatively associated UGT1A1 variants in patients with hyperbilirubinemia and healthy subjects. METHODS A total of 104 individuals with hyperbilirubinemia and 105 healthy controls were enrolled for genotyping and DNA sequencing UGT1A1 sequence variants, including the Phenobarbital Response enhancer module (PBREM) region, the promoter region (TATA box), and the 5 exons for quantitative association with hyperbilirubinemia. RESULTS Eleven UGT1A1 variants were revealed in the case and control subjects, four of which were novel coding variants. A variant of PBREM (UGT1A1*60) was found in 47.6% of the patients, a TA repeat motif in the 5-primer promoter region [A(TA)7TAA,UGT1A1*28] was found in 27.9% of the patients, and p.G71R (UGT1A1*6) was in 33.2% of the patients. For the healthy controls, the frequency of UGT1A1*60, UGT1A1*28 and UGT1A1*6 was 26.7%, 9.0% and 15.7%, respectively. Homozygous UGT1A1*28 and homozygous UGT1A1*6 were significantly associated with the risk of adult hyperbilirubinemia, with an odds ratio (OR) of 17.79 (95% CIs, 2.11-133.61) and 14.93 (95% CIs, 1.83-121.88), respectively. Quantitative analysis showed that sense mutation (including UGT1A1*6) and UGT1A1*28/*28, but not UGT1A1*60/*60 or UGT1A1*1/*28, was associated with increased serum total bilirubin (TB) levels. High linkage disequilibrium occurred between UGT1A1*60 and UGT1A1*28 (D'=0.964, r(2)=0.345). CONCLUSIONS This study identified four novel UGT1A1 coding variants, some of which were associated with increased serum TB levels. A quantitative approach to evaluate adult hyperbilirubinemia provides a more vigorous framework for better understanding of adult hyperbilirubinemia genetics.
Collapse
Affiliation(s)
- Zhiwei Chen
- Department of Health Care Center, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Institute of Digestive Disease, Shanghai, China
| | - Dazhi Su
- Department of Health Care Center, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Institute of Digestive Disease, Shanghai, China
| | - Luoyan Ai
- Department of Health Care Center, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Institute of Digestive Disease, Shanghai, China
| | - Xiaoke Jiang
- Department of Health Care Center, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Institute of Digestive Disease, Shanghai, China
| | - Changwei Wu
- Department of Health Care Center, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Institute of Digestive Disease, Shanghai, China
| | - Qingqing Xu
- Department of Health Care Center, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Institute of Digestive Disease, Shanghai, China
| | - Xiaohan Wang
- Department of Health Care Center, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Institute of Digestive Disease, Shanghai, China
| | - Zhuping Fan
- Department of Health Care Center, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Institute of Digestive Disease, Shanghai, China.
| |
Collapse
|
18
|
Iusuf D, Ludwig M, Elbatsh A, van Esch A, van de Steeg E, Wagenaar E, van der Valk M, Lin F, van Tellingen O, Schinkel AH. OATP1A/1B transporters affect irinotecan and SN-38 pharmacokinetics and carboxylesterase expression in knockout and humanized transgenic mice. Mol Cancer Ther 2013; 13:492-503. [PMID: 24194565 DOI: 10.1158/1535-7163.mct-13-0541] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Organic anion-transporting polypeptides (OATP) mediate the hepatic uptake of many drugs, thus codetermining their clearance. Impaired hepatic clearance due to low-activity polymorphisms in human OATP1B1 may increase systemic exposure to SN-38, the active and toxic metabolite of the anticancer prodrug irinotecan. We investigated the pharmacokinetics and toxicity of irinotecan and SN-38 in Oatp1a/1b-null mice: Plasma exposure of irinotecan and SN-38 was increased 2 to 3-fold after irinotecan dosing (10 mg/kg, i.v.) compared with wild-type mice. Also, liver-to-plasma ratios were significantly reduced, suggesting impaired hepatic uptake of both compounds. After 6 daily doses of irinotecan, Oatp1a/1b-null mice suffered from increased toxicity. However, Oatp1a/1b-null mice had increased levels of carboxylesterase (Ces) enzymes, which caused higher conversion of irinotecan to SN-38 in plasma, potentially complicating pharmacokinetic analyses. Ces inhibitors blocked this increased conversion. Interestingly, liver-specific humanized OATP1B1 and OATP1B3 transgenic mice had normalized hepatic expression of Ces1 genes. While irinotecan liver-to-plasma ratios in these humanized mice were similar to those in Oatp1a/1b-null mice, SN-38 liver-to-plasma ratios returned to wild-type levels, suggesting that human OATP1B proteins mediate SN-38, but not irinotecan uptake in vivo. Upon direct administration of SN-38 (1 mg/kg, i.v.), Oatp1a/1b-null mice had increased SN-38 plasma levels, lower liver concentrations, and decreased cumulative biliary excretion of SN-38. Mouse Oatp1a/1b transporters have a role in the plasma clearance of irinotecan and SN-38, whereas human OATP1B transporters may only affect SN-38 disposition. Oatp1a/1b-null mice have increased expression and activity of Ces1 enzymes, whereas humanized mice provide a rescue of this phenotype.
Collapse
Affiliation(s)
- Dilek Iusuf
- Corresponding Author: Alfred H. Schinkel, Division of Molecular Oncology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Hazama S, Mishima H, Tsunedomi R, Okuyama Y, Kato T, Takahashi KI, Nozawa H, Ando H, Kobayashi M, Takemoto H, Nagata N, Kanekiyo S, Inoue Y, Hamamoto Y, Fujita Y, Hinoda Y, Okayama N, Oba K, Sakamoto JI, Oka M. UGT1A1*6, 1A7*3, and 1A9*22 genotypes predict severe neutropenia in FOLFIRI-treated metastatic colorectal cancer in two prospective studies in Japan. Cancer Sci 2013; 104:1662-9. [PMID: 24033692 DOI: 10.1111/cas.12283] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2013] [Revised: 09/02/2013] [Accepted: 09/05/2013] [Indexed: 12/21/2022] Open
Abstract
UNLABELLED Retrospective studies have suggested that UDP-glucuronosyltransferase (UGT)1A1, UGT1A7, and UGT1A9 predict severe toxicity and efficacy of irinotecan-containing regimens. We prospectively evaluated the impact of UGT1A genotypes and haplotypes on severe toxicity and efficacy in patients treated with fluorouracil, leucovorin, and irinotecan combination chemotherapy (FOLFIRI) for metastatic colorectal cancer (mCRC) from the two prospective multicenter phase II studies in Japan. The FLIGHT1 study was a first-line FOLFIRI trial, and FLIGHT2 was a FOLFOX-refractory, second-line FOLFIRI trial. A total of 73 patients agreed to additional analysis, and were genotyped for UGT1A polymorphisms, UGT1A1*28 (TA6>TA7), UGT1A1*6 (211G>A), UGT1A1*27 (686C>A), UGT1A1*60 (-3279T>G), UGT1A1*93 (-3156G>A), UGT1A7 (-57T>G), UGT1A7*3 (387T>G, 622T>C), and UGT1A9*22 (T9>T10). Of 73 patients, 34 developed G3/4 severe hematological toxicities. The toxicities were significantly more frequent in patients with UGT1A1*6 (211A), UGT1A7 (387G), and UGT1A9*22 reference alleles (T9). Haplotype I, which consists of all favorable alleles, was associated with a significant reduction in hematologic toxicity (P = 0.031). In contrast, haplotype II, which contains four high-risk alleles, showed significantly higher hematologic toxicity than the other haplotypes (P = 0.010). Six out of seven patients who were homozygous for UGT1A1*28 or *6 experienced severe hematological toxicity despite the fact that their response rate was not impaired (42.9%). We concluded that UGT1A polymorphisms, especially UGT1A1*6, are important for the prediction of severe toxicity of FOLFIRI in northeast Asian populations. In this regard, haplotype analyses should substantially impact the prediction of severe hematological toxicities of FOLFIRI. ( CLINICAL TRIAL REGISTRATION UMIN000002388 and UMIN000002476).
Collapse
Affiliation(s)
- Shoichi Hazama
- Department of Digestive Surgery and Surgical Oncology (Surgery II), Yamaguchi University Graduate School of Medicine, Ube, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Loupakis F, Schirripa M, Zhang W, Falcone A, Lenz HJ. Pharmacogenetic Concerns in Metastatic Colorectal Cancer Therapy. CURRENT COLORECTAL CANCER REPORTS 2012. [DOI: 10.1007/s11888-012-0137-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
21
|
Barh D, Agte V, Dhawan D, Agte V, Padh H. Cancer Biomarkers for Diagnosis, Prognosis and Therapy. MOLECULAR AND CELLULAR THERAPEUTICS 2012:18-68. [DOI: 10.1002/9781119967309.ch2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
22
|
Strassburg CP. Hyperbilirubinemia syndromes (Gilbert-Meulengracht, Crigler-Najjar, Dubin-Johnson, and Rotor syndrome). Best Pract Res Clin Gastroenterol 2010; 24:555-71. [PMID: 20955959 DOI: 10.1016/j.bpg.2010.07.007] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2010] [Revised: 07/17/2010] [Accepted: 07/22/2010] [Indexed: 02/06/2023]
Abstract
Hyperbilirubinemia is an important clinical sign that often indicates severe hepatobiliary disease of different etiologies. Inherited non-haemolytichyperbilirubinemic conditions include Dubin-Johnson, Rotor, and Gilbert-Meulengracht syndromes, which are important differential diagnoses indicating benign disease that require no immediate treatment. Dubin-Johnson and Rotor syndromes are rare, exhibit mixed direct and indirect hyperbilirubinemia as well as typical profiles or urinary coproporphyrin excretion. Gilbert-Meulengracht disease leads to unconjugated hyperbilirubinemia because of impaired glucuronidation activity, and is part of a spectrum of genetic variants also encompassing fatal Crigler-Najjar syndrome. Gilbert-Meulengracht syndrome can be diagnosed by clinical presentation, biochemistry and genotyping, and carries significance regarding the disposition towards drug-associated toxicity. In addition, the precise diagnosis of these inherited hyperbilirubinemic syndromes avoids unnecessary invasive procedures for suspected more severe hepatobiliary disease.
Collapse
Affiliation(s)
- Christian P Strassburg
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany.
| |
Collapse
|
23
|
Abstract
Although significant progress has been made in colorectal cancer (CRC) treatment within the last decade with the approval of multiple new agents, the prognosis for patients with metastatic CRC remains poor with 5-year survival rates of approximately 8%. Resistance to chemotherapy remains a major obstacle in effective CRC treatment and many patients do not receive any clinical benefit from chemotherapy. In addition, other patients will experience adverse reactions to treatment resulting in dose modifications or treatment withdrawal, which can severely reduce treatment efficacy. Currently, significant research efforts are attempting to identify reliable and validated biomarkers with which will guide clinicians to make more informed treatment decisions. Specifically, the use of molecular profiling has the potential to assist the clinician in administering the correct drug, dose, or intervention for the patient before the onset of therapy thereby selecting a treatment strategy likely to have the greatest clinical outcome while minimizing adverse events. However, until recently, personalized medicine is a paradigm that has existed more in conceptual terms than in reality with very few validated biomarkers used routinely in metastatic CRC treatment. Rapid advances in genomic, transcriptomic and proteomic technologies continues to improve our understanding of tumor biology, but the search for reliable biomarkers has turned out to be more challenging than previously anticipated with significant disparity in published literature and limited translation into routine clinical practice. Recent progress with the identification and validation of biomarkers to the anti-epidermal growth factor receptor monoclonal antibodies including KRAS and possibly BRAF provide optimism that the goal of individualized treatment is within reach. This review will highlight and discuss current progress in the search for biomarkers, the challenges this emerging field presents, and the future role of biomarkers in advancing CRC treatment.
Collapse
|
24
|
Wilson PM, Lenz HJ. Integrating Biomarkers Into Clinical Decision Making for Colorectal Cancer. Clin Colorectal Cancer 2010; 9 Suppl 1:S16-27. [DOI: 10.3816/ccc.2010.s.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
25
|
Ramírez J, Ratain MJ, Innocenti F. Uridine 5'-diphospho-glucuronosyltransferase genetic polymorphisms and response to cancer chemotherapy. Future Oncol 2010; 6:563-85. [PMID: 20373870 PMCID: PMC3102300 DOI: 10.2217/fon.10.17] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Pharmacogenetics aims to elucidate how genetic variation affects the efficacy and side effects of drugs, with the ultimate goal of personalizing medicine. Clinical studies of the genetic variation in the uridine 5'-diphosphoglucuronosyltransferase gene have demonstrated how reduced-function allele variants can predict the risk of severe toxicity and help identify cancer patients who could benefit from reduced-dose schedules or alternative chemotherapy. Candidate polymorphisms have also been identified in vitro, although the functional consequences of these variants still need to be tested in the clinical setting. Future approaches in uridine 5'-diphosphoglucuronosyltransferase pharmacogenetics include genetic testing prior to drug treatment, genotype-directed dose-escalation studies, study of genetic variation at the haplotype level and genome-wide studies.
Collapse
Affiliation(s)
- Jacqueline Ramírez
- Department of Medicine, The University of Chicago, 5841 S. Maryland Avenue, MC2115, Chicago, IL, USA 60637, Tel.: +1 773 834 2451, Fax: +1 773 702 9268,
| | - Mark J Ratain
- Department of Medicine, Committee on Clinical Pharmacology & Pharmacogenomics, Cancer Research Center, The University of Chicago, 5841 S. Maryland Avenue, MC2115, Chicago, IL, USA 60637, Tel.: +1 773 702 4400, Fax: +1 773 702 3969,
| | - Federico Innocenti
- Department of Medicine, Committee on Clinical Pharmacology & Pharmacogenomics, Cancer Research Center, The University of Chicago, 5841 S. Maryland Avenue, MC2115, Chicago, IL, USA 60637, Tel.: +1 773 834 2452, Fax: +1 773 702 9268,
| |
Collapse
|
26
|
Strassburg CP. Gilbert-Meulengracht’s syndrome and pharmacogenetics: is jaundice just the tip of the iceberg? Drug Metab Rev 2009; 42:168-81. [DOI: 10.3109/03602530903209429] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
27
|
Snozek CLH, O'Kane DJ, Algeciras-Schimnich A. Pharmacogenetics of solid tumors: directed therapy in breast, lung, and colorectal cancer: a paper from the 2008 william beaumont hospital symposium on molecular pathology. J Mol Diagn 2009; 11:381-9. [PMID: 19644023 DOI: 10.2353/jmoldx.2009.090003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Genetic variability in drug-metabolizing enzymes and signaling pathways affects chemotherapy-related toxicity and treatment outcome in cancer. In breast and colorectal cancer, polymorphisms in metabolic enzymes involved in tamoxifen and irinotecan therapies has led the U.S. Food and Drug Administration to address genetic factors relevant to patient consideration of treatment with these compounds. Tamoxifen therapeutic failure in breast cancer has been associated with reduced CYP2D6 activity due to inefficient activation of tamoxifen. Irinotecan toxicity in colorectal cancer is more common in patients with reduced-activity UGT1A alleles, resulting in excessive exposure to the potent SN-38 metabolite. In colorectal and lung cancers, somatic mutations in the epidermal growth factor receptor and downstream signaling molecules have been associated with the therapeutic outcome of epidermal growth factor receptor-directed therapies. This review discusses the current knowledge regarding the utility of single gene-UGT1A1, CYP2D6, EGFR, and KRAS-or multigene analysis, for optimizing breast, colorectal, and lung cancer therapy. Current advances in these areas highlight how pharmacogenetics help personalized decision-making for patient management.
Collapse
Affiliation(s)
- Christine L H Snozek
- Division of Clinical Biochemistry and Immunology, Department of Laboratory Medicine and Pathology, College of Medicine, Mayo Clinic, Rochester, Minnesota 55905, USA
| | | | | |
Collapse
|
28
|
Pharmacokinetic analysis of irinotecan plus bevacizumab in patients with advanced solid tumors. Cancer Chemother Pharmacol 2009; 65:97-105. [PMID: 19415281 DOI: 10.1007/s00280-009-1008-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2008] [Accepted: 04/09/2009] [Indexed: 02/07/2023]
Abstract
PURPOSE The purpose of this study was to evaluate the effect of bevacizumab on the pharmacokinetics (PK) of irinotecan and its active metabolite. Exploratory analyses of the impact of variability in uridine diphosphate glucuronosyltransferase 1A (UGT1A) genes on irinotecan metabolism and toxicity were conducted. METHODS This was an open-labeled, fixed-sequence study of bevacizumab with FOLFIRI (irinotecan, leucovorin, and infusional 5-fluorouracil). Pharmacokinetic assessments were conducted in cycles 1 and 3. RESULTS Forty-five subjects were enrolled. No difference in dose-normalized AUC(0-last) for irinotecan and SN-38 between irinotecan administered alone or in combination with bevacizumab was identified. Leukopenia was associated with higher exposure to both irinotecan and SN-38. UGT1A1 polymorphisms were associated with variability in irinotecan PK. Gastrointestinal toxicity was associated with UGT1A6 genotype. No other associations between UGT1A genotypes and toxicity were detected. CONCLUSION Bevacizumab does not affect irinotecan PK when administered concurrently. A variety of pharmacogenetic relationships may influence the pharmacokinetics of irinotecan and its toxicity.
Collapse
|
29
|
Innocenti F, Kroetz DL, Schuetz E, Dolan ME, Ramírez J, Relling M, Chen P, Das S, Rosner GL, Ratain MJ. Comprehensive pharmacogenetic analysis of irinotecan neutropenia and pharmacokinetics. J Clin Oncol 2009; 27:2604-14. [PMID: 19349540 DOI: 10.1200/jco.2008.20.6300] [Citation(s) in RCA: 205] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
PURPOSE We aim to identify genetic variation, in addition to the UGT1A1*28 polymorphism, that can explain the variability in irinotecan (CPT-11) pharmacokinetics and neutropenia in cancer patients. PATIENTS AND METHODS Pharmacokinetic, genetic, and clinical data were obtained from 85 advanced cancer patients treated with single-agent CPT-11 every 3 weeks at doses of 300 mg/m(2) (n = 20) and 350 mg/m(2) (n = 65). Forty-two common variants were genotyped in 12 candidate genes of the CPT-11 pathway using several methodologies. Univariate and multivariate models of absolute neutrophil count (ANC) nadir and pharmacokinetic parameters were evaluated. RESULTS Almost 50% of the variation in ANC nadir is explained by UGT1A1*93, ABCC1 IVS11 -48C>T, SLCO1B1*1b, ANC baseline levels, sex, and race (P < .0001). More than 40% of the variation in CPT-11 area under the curve (AUC) is explained by ABCC2 -24C>T, SLCO1B1*5, HNF1A 79A>C, age, and CPT-11 dose (P < .0001). Almost 30% of the variability in SN-38 (the active metabolite of CPT-11) AUC is explained by ABCC1 1684T>C, ABCB1 IVS9 -44A>G, and UGT1A1*93 (P = .004). Other models explained 17%, 23%, and 27% of the variation in APC (a metabolite of CPT-11), SN-38 glucuronide (SN-38G), and SN-38G/SN-38 AUCs, respectively. When tested in univariate models, pretreatment total bilirubin was able to modify the existing associations between genotypes and phenotypes. CONCLUSION On the basis of this exploratory analysis, common polymorphisms in genes encoding for ABC and SLC transporters may have a significant impact on the pharmacokinetics and pharmacodynamics of CPT-11. Confirmatory studies are required.
Collapse
|
30
|
Ekhart C, Rodenhuis S, Smits PH, Beijnen JH, Huitema AD. An overview of the relations between polymorphisms in drug metabolising enzymes and drug transporters and survival after cancer drug treatment. Cancer Treat Rev 2009; 35:18-31. [DOI: 10.1016/j.ctrv.2008.07.003] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2008] [Revised: 07/09/2008] [Accepted: 07/22/2008] [Indexed: 11/16/2022]
|
31
|
Strassburg CP, Kalthoff S, Ehmer U. Variability and function of family 1 uridine-5'-diphosphate glucuronosyltransferases (UGT1A). Crit Rev Clin Lab Sci 2009; 45:485-530. [PMID: 19003600 DOI: 10.1080/10408360802374624] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The substrate spectrum of human UDP-glucuronosyltransferase 1A (UGT1A) proteins includes the glucuronidation of non-steroidal anti-inflammatory drugs, anticonvulsants, chemotherapeutics, steroid hormones, bile acids, and bilirubin. The unique genetic organization of the human UGT1A gene locus, and an increasing number of functionally relevant genetic variants define tissue specificity as well as a broad range of interindividual variabilities of glucuronidation. Genetic UGT1A variability has been conserved throughout the protein's evolution and shows ethnic diversity. It is the biochemical and genetic basis for clinical phenotypes such as Gilbert's syndrome and Crigler-Najjar's disease as well as for the potential for severe, unwanted drug side effects such as in irinotecan treatment. UGT1A variants influence the metabolic effects of xenobiotic exposure and therefore have been linked to cancer risk. Detailed knowledge of the organization, function, and pharmacogenetics of the human UGT1A gene locus is likely to significantly contribute to the improvement of drug safety and efficacy as well as to the provision of steps toward the goal of individualized drug therapy and disease risk prediction.
Collapse
Affiliation(s)
- Christian P Strassburg
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany.
| | | | | |
Collapse
|
32
|
|
33
|
|
34
|
Deeken JF, Slack R, Marshall JL. Irinotecan and uridine diphosphate glucuronosyltransferase 1A1 pharmacogenetics. Cancer 2008; 113:1502-10. [DOI: 10.1002/cncr.23777] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
35
|
Gandara DR, Lara PN, Natale R, Belani C. Progress in Small-Cell Lung Cancer: The Lowest Common Denominator. J Clin Oncol 2008; 26:4236-8. [DOI: 10.1200/jco.2008.17.2692] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Affiliation(s)
| | - Primo N. Lara
- University of California Davis Cancer Center, Sacramento, CA
| | | | | |
Collapse
|
36
|
Abstract
PURPOSE OF REVIEW The toxicity of irinotecan is predictable, manageable and nonadditive in the majority of patients; however, with its increasing use alone and in combination with other agents and modalities, the recognition and control of these adverse effects remain a clinical challenge. Major efforts over the last several years have focused not only on adding fluoropyrimidines and epidermal growth factor receptor inhibitors to irinotecan, but also investigating factors that account for interindividual differences in toxicities. RECENT FINDINGS The association of uridine diphosphoglucuronosyl transferase 1A polymorphisms with increased irinotecan-induced diarrhea and neutropenia, the dose adjustment of irinotecan in the setting of hepatic dysfunction and the observation that 'chemo' liver can develop in the neoadjuvant colorectal cancer setting are recently reported. Also, data from the Sandostatin LAR Depot Trial for the Optimum Prevention of chemotherapy-induced diarrhea support the 30 mg dose of octreotide LAR to manage the condition. SUMMARY Recent evidence demonstrates that patients with hepatic insufficiency, uridine diphosphoglucuronosyl transferase 1A polymorphisms (e.g. 1A128 homozygotes and heterozygotes), are at greater risk for irinotecan-induced toxicity. Adjusting irinotecan's dose to the degree of hepatic insufficiency is now established. While 'chemo' liver is not specific to irinotecan, its occurrence influences strategies for treating advanced colorectal cancer. Finally, controlling chemotherapy-induced diarrhea with 30 mg of octreotide LAR is adequate for most patients.
Collapse
Affiliation(s)
- Lowell Anthony
- Louisiana State University Health Sciences Center, Stanley S Scott Cancer Center, New Orleans, Louisiana 70012, USA.
| |
Collapse
|
37
|
Abstract
Gilbert's syndrome is characterized by mild unconjugated nonhemolytic hyperbilirubinemia, which does not lead to hepatic inflammation, fibrosis, chronic liver disease or liver failure. Almost 100 years after its clinical description, it was linked to a genetic variant of the human bilirubin UDP-glucuronosyltransferase (UGT1A1), UGT1A1 (*)28, found in approximately 40% of Caucasoid individuals. Over 113 UGT1A1 variants have since been reported, leading to a continuous spectrum from mild hyperbilirubinemia to life-threatening jaundice. UGT1A variants are evolutionary diverse and occur in the context of haplotypes combining different variants within the promoter, the 5 exons, as well as introns of the UGT1A1 gene, and also in combination with other UGT1A genes expressed in the liver and the extrahepatic gastrointestinal tract. The variation of glucuronidation hidden behind Gilbert's syndrome impacts drug therapy, which includes the well-characterized examples of irinotecan and atazanavir. The prediction of unwanted drug reactions associated with Gilbert's syndrome will improve drug safety, therapeutic individualization and impact the drug-development process.
Collapse
Affiliation(s)
- Christian P Strassburg
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany.
| |
Collapse
|
38
|
Strassburg CP, Lankisch TO, Manns MP, Ehmer U. Family 1 uridine-5'-diphosphate glucuronosyltransferases (UGT1A): from Gilbert's syndrome to genetic organization and variability. Arch Toxicol 2008; 82:415-33. [PMID: 18491077 DOI: 10.1007/s00204-008-0314-x] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2008] [Accepted: 04/30/2008] [Indexed: 12/13/2022]
Abstract
The human UDP-glucuronosyltransferase 1A gene locus is organized to generate enzymes, which share a carboxyterminal portion and are unique at their aminoterminal variable region. Expression is tissue-specific and overlapping substrate specificities include a broad spectrum of endogenous and xenobiotic compounds as well as many therapeutic drugs targeted for detoxification and elimination by glucuronidation. The absence of glucuronidation leads to fatal hyperbilirubinemia. A remarkable interindividual variability of UDP-glucuronosyltransferases is evidenced by over 100 identified genetic variants leading to alterations of catalytic activites or transcription levels. Variant alleles with lower carcinogen detoxification activity have been associated with cancer risk such as colorectal cancer and hepatocellular carcinoma. Genetic variants and haplotypes have been identified as risk factors for unwanted drug effects of the anticancer drug irinotecan and the antiviral proteinase inhibitor atazanavir. Glucuronidation and its variability are likely to represent an important factor for individualized drug therapy and risk prediction impacting the drug development and licensing processes.
Collapse
Affiliation(s)
- Christian P Strassburg
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany.
| | | | | | | |
Collapse
|
39
|
Pangilinan JM, Khan GN, Zalupski MM. Irinotecan pharmacogenetics: an overview for the community oncologist. ACTA ACUST UNITED AC 2008. [DOI: 10.1016/s1548-5315(11)70439-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
40
|
Stewart CF, Panetta JC, O'Shaughnessy MA, Throm SL, Fraga CH, Owens T, Liu T, Billups C, Rodriguez-Galindo C, Gajjar A, Furman WL, McGregor LM. UGT1A1 promoter genotype correlates with SN-38 pharmacokinetics, but not severe toxicity in patients receiving low-dose irinotecan. J Clin Oncol 2007; 25:2594-600. [PMID: 17577039 DOI: 10.1200/jco.2006.10.2301] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
PURPOSE To study the association between UDP-glucuronosyltransferase 1A1 (UGT1A1) genotypes and severe toxicity as well as irinotecan disposition in pediatric patients with solid tumors receiving low-dose, protracted irinotecan (15 to 75 mg/m2 daily for 5 days for 2 consecutive weeks). PATIENTS AND METHODS Seventy-four patients on five institutional clinical trials received irinotecan (15 to 75 mg/m2) daily intravenously or orally for 5 days for 2 consecutive weeks. Genomic DNA was genotyped for UGT1A1*28, and patients were designated as 6/6, 6/7, or 7/7 depending on the number of TA repeats in the UGT1A1 promoter region. Patients were evaluated for gastrointestinal and hematologic toxicity, as well as baseline and maximal serum bilirubin levels. Toxicity and pharmacokinetic results were evaluated during courses 1 and 2 of irinotecan therapy. RESULTS The frequencies of 6/6, 6/7, and 7/7 genotypes were 27 (36.5%), 36 (48.6%), and 9 (12.2%) of 74 patients, respectively. Patients with 7/7 genotype had a statistically greater baseline total bilirubin than patients with 6/6 or 6/7 genotype (P = .005). UGT1A1*28 genotype was not associated with grade 3 and 4 neutropenia (P = .21 for course 1; P = .23 for course 2) or diarrhea (P = .176 for course 1; P = .87 for course 2). However, patients with the 7/7 genotype tended to have higher SN-38 area under the plasma time-concentration curve (AUC) values and lower SN-38G/SN-38 AUC ratios. CONCLUSION Severe toxicity was not increased in pediatric patients with the 7/7 genotype when treated with a low-dose protracted schedule of irinotecan. Therefore, UGT1A1 genotyping is not a useful prognostic indicator of severe toxicity for patients treated with this irinotecan dosage and schedule.
Collapse
Affiliation(s)
- Clinton F Stewart
- Department of Pharmaceutical Sciences, St Jude Children's Research Hospital, Memphis, TN 38105, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Abstract
Irinotecan is widely used in the treatment of metastatic colorectal cancer and extensive small-cell lung cancer. Its use is limited by severe toxicities such as neutropenia and delayed-type diarrhea. Irinotecan is converted to its active metabolite SN-38. SN-38 is further metabolized to SN-38G by various hepatic and extrahepatic UGT1A isozymes, mainly UGT1A1. Impaired glucuronidation activity of the UGT1A1 enzyme has been linked with elevated levels of SN-38, leading to toxicities. UGT1A1*28 involves an extra TA repeat in the UGT1A1 promoter region and is the variant most frequently contributing to interpatient variability in irinotecan pharmacokinetics and toxicities. This information led to the revision of the irinotecan label by the US Food and Drug Administration. Recently, UGT1A1*6 seems to contribute to the risk of toxicity of irinotecan in Asian patients. The pharmacogenetics of irinotecan (irinogenetics) is one of few promising examples of the application of pharmacogenetics to individualized drug therapy. This review summarizes ongoing studies and unanswered questions on irinogenetics.
Collapse
Affiliation(s)
- Tae Won Kim
- Section of Oncology, Department of Medicine, Asan Medical Center, University of Ulsan, Seoul, Korea
| | | |
Collapse
|
42
|
Adaptive evolution of multiple-variable exons and structural diversity of drug-metabolizing enzymes. BMC Evol Biol 2007; 7:69. [PMID: 17475008 PMCID: PMC1885805 DOI: 10.1186/1471-2148-7-69] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2007] [Accepted: 05/02/2007] [Indexed: 01/17/2023] Open
Abstract
BACKGROUND The human genome contains a large number of gene clusters with multiple-variable-first exons, including the drug-metabolizing UDP glucuronosyltransferase (UGT1) and I-branching beta-1,6-N-acetylglucosaminyltransferase (GCNT2, also known as IGNT) clusters, organized in a tandem array, similar to that of the protocadherin (PCDH), immunoglobulin (IG), and T-cell receptor (TCR) clusters. To gain insight into the evolutionary processes that may have shaped their diversity, we performed comprehensive comparative analyses for vertebrate multiple-variable-first-exon clusters. RESULTS We found that there are species-specific variable-exon duplications and mutations in the vertebrate Ugt1, Gcnt2, and Ugt2a clusters and that their variable and constant genomic organizations are conserved and vertebrate-specific. In addition, analyzing the complete repertoires of closely-related Ugt2 clusters in humans, mice, and rats revealed extensive lineage-specific duplications. In contrast to the Pcdh gene clusters, gene conversion does not play a predominant role in the evolution of the vertebrate Ugt1, Gcnt2 and Ugt2 gene clusters. Thus, their tremendous diversity is achieved through "birth-and-death" evolution. Comparative analyses and homologous modeling demonstrated that vertebrate UGT proteins have similar three-dimensional structures each with N-terminal and C-terminal Rossmann-fold domains binding acceptor and donor substrates, respectively. Molecular docking experiments identified key residues in donor and acceptor recognition and provided insight into the catalytic mechanism of UGT glucuronidation, suggesting the human UGT1A1 residue histidine 39 (H39) as a general base and the residue aspartic acid 151 (D151) as an important electron-transfer helper. In addition, we identified four hypervariable regions in the N-terminal Rossmann domain that form an acceptor-binding pocket. Finally, analyzing patterns of nonsynonymous and synonymous nucleotide substitutions identified codon sites that are subject to positive Darwinian selection at the molecular level. These diversified residues likely play an important role in recognition of myriad xenobiotics and endobiotics. CONCLUSION Our results suggest that enormous diversity of vertebrate multiple variable first exons is achieved through birth-and-death evolution and that adaptive evolution of specific codon sites enhances vertebrate UGT diversity for defense against environmental agents. Our results also have interesting implications regarding the staggering molecular diversity required for chemical detoxification and drug clearance.
Collapse
|
43
|
Imyanitov EN, Moiseyenko VM. Molecular-based choice of cancer therapy: realities and expectations. Clin Chim Acta 2007; 379:1-13. [PMID: 17306783 DOI: 10.1016/j.cca.2007.01.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2006] [Revised: 01/03/2007] [Accepted: 01/06/2007] [Indexed: 01/29/2023]
Abstract
Current choice of cancer therapy is usually empirical and relies mainly on the statistical prediction of the treatment success. Molecular research provides some opportunities to personalize antitumor treatment. For example, life-threatening toxic reactions can be avoided by the identification of subjects, who carry susceptible genotypes of drug-metabolizing genes (e.g. TPMT, UGT1A1, MTHFR, DPYD). Tumor sensitivity can be predicted by molecular portraying of targets and other molecules associated with drug response. Tailoring of antiestrogen and trastuzumab therapy based on hormone and HER2 receptor status has already become a classical example of customized medicine. Other predictive markers have been identified both for cytotoxic and for targeted therapies, and include, for example, expression of TS, TP, DPD, OPRT, ERCC1, MGMT, TOP2A, class III beta-tubulin molecules as well as genomic alterations of EGFR, KIT, ABL oncogenes.
Collapse
Affiliation(s)
- Evgeny N Imyanitov
- Laboratory of Molecular Oncology, N.N. Petrov Institute of Oncology, St.-Petersburg, Russia.
| | | |
Collapse
|
44
|
Innocenti F, Ratain MJ. Pharmacogenetics of irinotecan: clinical perspectives on the utility of genotyping. Pharmacogenomics 2006; 7:1211-21. [PMID: 17184208 DOI: 10.2217/14622416.7.8.1211] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Depending upon the UDP glucuronosyltransferase 1A1 (UGT1A1) genotype, patients are more or less susceptible to the risk of severe toxicity of irinotecan. As the US FDA-approved label of irinotecan (CPT-11, Camptosar®) has been recently revised to include UGT1A1 genotype among potential risk factors for toxicity, it is expected that UGT1A1 genotyping will be increasingly used in patients undergoing irinotecan treatment. At present, the label states that *28/*28 (7/7) genotype patients are at higher risk of neutropenia and should be treated at a lower dose of irinotecan. Although effective alternative drugs (i.e., oxaliplatin) exist for metastatic colorectal cancer (the main indication of irinotecan), recent studies have confirmed that irinotecan has an important place in the management of this disease. We feel that now is the time for addressing questions around the UGT1A1*28 testing that many oncologists might have had but remained unanswered. For example, does the test have adequate sensitivity/specificity? Can the test results be effectively utilized to guide therapy of metastatic colorectal cancer patients? Is it possible that the *1/*1 (6/6) patients are underdosed? How can the genetic prediction of irinotecan toxicity be improved? Is the UGT1A1*28 test fully predictive of the UGT1A1 deficiency in patients who are not of Caucasian origin? Clinicians and investigators interested in a discussion of each of these points could find this article a useful source.
Collapse
Affiliation(s)
- Federico Innocenti
- The University of Chicago, Committee on Clinical Pharmacology and Pharmacogenomics, Chicago, IL, USA.
| | | |
Collapse
|
45
|
Van Bebber SL, Keegan HL, Phillips KA, Issa AM. Novel personalized medicine technology: UGT1A1 testing for irinotecan as a case study. Per Med 2006; 3:415-419. [DOI: 10.2217/17410541.3.4.415] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Third Wave’s Invader® UDP glucuronosyltransferase 1A1 (UGT1A1) Molecular Assay, a genotyping system to predict adverse drug reactions in patients receiving the chemotherapeutic agent irinotecan (Camptosar®, Pzifer, NY, USA) for the treatment of metastatic colorectal cancer (mCRC), was recently approved by the US FDA. Clinical application, economic and regulatory data were collected on this test in the Evaluation Data for Assessing Personalized Medicine Translation (EDAPT) evidence base. This descriptive analysis highlight these data and the issues for the translation of this test to practice, including gaps in the evidence base, issues regarding adoption of the test to clinical practice and the potential societal impact of UGT1A1 testing for irinotecan prescribing.
Collapse
Affiliation(s)
- Stephanie L Van Bebber
- University of California, Department of Clinical Pharmacy, School of Pharmacy, San Francisco, 3333 California St Suite 420 Box 0613, University of California, San Francisco, CA 94143–0613, USA
| | - Hugh L Keegan
- Stanford University School of Medicine, Stanford, CA, USA. Keegan conducted this research while completing a joint MPH/MD program at the University of California, Berkeley, CA, USA
| | - Kathryn A Phillips
- University of California, Department of Clinical Pharmacy, School of Pharmacy, San Francisco, 3333 California St Suite 420 Box 0613, University of California, San Francisco, CA 94143–0613, USA
| | - Amalia M Issa
- The Methodist Hospital and University of Houston, Program in Personalized Medicine & Targeted Therapeutics and the Abramson Center for the Future of Health, 300 Technology Building, T2–309, Houston, TX 77204–4021, USA
| |
Collapse
|
46
|
O'Dwyer PJ, Catalano RB. Uridine diphosphate glucuronosyltransferase (UGT) 1A1 and irinotecan: practical pharmacogenomics arrives in cancer therapy. J Clin Oncol 2006; 24:4534-8. [PMID: 17008691 DOI: 10.1200/jco.2006.07.3031] [Citation(s) in RCA: 117] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
|