1
|
Chou MY, Yang MH. Immunomodulation on tumor immune microenvironment in acquired targeted therapy resistance and implication for immunotherapy resistance. Transl Oncol 2025; 54:102353. [PMID: 40058234 PMCID: PMC11929932 DOI: 10.1016/j.tranon.2025.102353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Revised: 02/11/2025] [Accepted: 03/04/2025] [Indexed: 03/18/2025] Open
Abstract
The emergence of molecularly targeted therapies and immunotherapies has revolutionized cancer treatment, yet the optimal sequencing of these modalities remains debated. While targeted therapies often induce initial immunostimulatory effects, the development of resistance is accompanied by dynamic alterations in the tumor-immune microenvironment. These changes can promote tumor growth, hinder immune surveillance, and contribute to subsequent immunotherapy resistance. This review focuses on solid tumors and summarizes the immunomodulatory effects arising in the context of targeted therapy resistance, highlighting the challenges they pose for the subsequent immunotherapy efficacy.
Collapse
Affiliation(s)
- Ming-Yu Chou
- Department of Medical Education, Taipei Veterans General Hospital, Taipei 112201, Taiwan
| | - Muh-Hwa Yang
- Institute of Clinical Medicine, National Yang Ming Chiao Tung University, No. 155, Sec. 2, Li-Nong Street, Taipei 112304, Taiwan; Cancer and Immunology Research Center, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan; Department of Oncology, Taipei Veterans General Hospital, Taipei 112201, Taiwan.
| |
Collapse
|
2
|
Pointreau Y, Freneaux C, Bejan-Angoulvant T, Ternant D, Calais G, Watier H. Clinical usefulness of anti-α3Gal immunoglobulin E assays for cetuximab-mediated anaphylaxis in head and neck cancer. IMMUNO-ONCOLOGY TECHNOLOGY 2025; 25:101041. [PMID: 40103579 PMCID: PMC11919289 DOI: 10.1016/j.iotech.2025.101041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 03/20/2025]
Abstract
Background Fatal anaphylactic reactions to cetuximab remain a clinical issue, although they are associated with preexisting immunoglobulin E (IgE) directed against the galactose-α1,3-galactose epitope (α3Gal). We aimed to compare the clinical usefulness of the two assays and determine the prevalence of preexisting anti-α3Gal IgE. Patients and methods An anti-α3Gal IgE assay was developed (70BP assay) and compared with a commercial assay [bovine thyroglobulin (bTG) assay]. Both assays were applied to two cohorts: 299 healthy blood donors and 41 patients with head and neck cancer treated with cetuximab, including four patients with a history of anaphylactic reaction (9.8%). Results The prevalence of anti-α3Gal IgE was 6% and 5% using 70BP and bTG assays, respectively, in healthy blood donors. Among the head and neck cancer patients, the four who had an anaphylactic reaction were included in the seven (17.1%) and six (14.6%) patients with a signal above the detection threshold using the 70BP and bTG assays, respectively. This resulted in a sensitivity and negative predictive value of 100% for both assays, with a specificity of 91.9% and 94.6%, respectively, and a positive predictive value of 57.1% and 66.6% for the 70BP and bTG assays, respectively. Using an optimized threshold in the bTG assay, the prevalence of anti-α3Gal IgE in blood donors decreased to 1.3%, and five patients (12.2%) were eventually considered positive, giving a specificity of 97.3% and a positive predictive value of 80%. Conclusion The predictive value of anti-α3Gal IgE using these two assays was excellent and useful in clinical practice.
Collapse
Affiliation(s)
- Y Pointreau
- CHRU de Tours, Service de radiothérapie, Tours, France
- Université de Tours, Tours, France
- Institut inter-régional de Cancérologie, Centre Jean Bernard - Clinique Victor Hugo, Centre de Cancérologie de La Sarthe, Le Mans, France
| | - C Freneaux
- CHRU de Tours, Service d'immunologie, Tours, France
| | - T Bejan-Angoulvant
- Université de Tours, Tours, France
- CHRU de Tours, Service de pharmacologie médicale, Tours, France
| | - D Ternant
- Université de Tours, Tours, France
- CHRU de Tours, Service de pharmacologie médicale, Tours, France
| | - G Calais
- CHRU de Tours, Service de radiothérapie, Tours, France
| | - H Watier
- Université de Tours, Tours, France
- CHRU de Tours, Service d'immunologie, Tours, France
| |
Collapse
|
3
|
Wang X, Que H. Diagnostic Significance of Serum VEGF, bFGF, and Wound Tissue EGFR in Diabetic Chronic Refractory Wounds. INT J LOW EXTR WOUND 2025:15347346241313010. [PMID: 39819228 DOI: 10.1177/15347346241313010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2025]
Abstract
BACKGROUND Patients with diabetes mellitus (DM) face a higher risk of developing chronic refractory wounds. Vascular endothelial growth factor (VEGF), basic fibroblast growth factor (bFGF) and epidermal growth factor receptor (EGFR) plays an important role in diabetes-related complications. This study aims to analyze the correlation between the 3 indicators and diabetic chronic refractory wounds, in order to establish the diagnostic value of these 3 indicators and provide reference for the treatment. MATERIAL AND METHODS We selected 168 patients, with 84 in healing group and 84 in refractory group. The levels of serum VEGF, bFGF, and wound tissue EGFR were compared before treatment, and the correlation between the 3 indicators and the refractory wounds was analyzed. After the specific treatment in refractory group, the clinical efficacy and wound closure index was recorded, and the correlation between them and the 3 indicators were analyzed. RESULTS The 3 indicators were all protective factors for diabetic chronic refractory wounds (p < .05). The serum VEGF and bFGF had relatively low diagnostic value for diabetic chronic refractory wounds, while wound tissue EGFR demonstrated higher diagnostic value (p < .05). The 3 indicators had a positive correlation with both the clinical efficacy and the wound closure index (p < .05). CONCLUSION Higher levels of serum VEGF, bFGF, and wound tissue EGFR are conducive to reducing the incidence of diabetic chronic refractory wounds. The combined measurement of these indicators holds high diagnostic value for the disease. Moreover, the higher the expression levels of these 3 indicators, the more favorable the clinical outcomes.
Collapse
Affiliation(s)
- Xuanyu Wang
- Department of Traditional Chinese Medicine Surgery, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Huafa Que
- Department of Traditional Chinese Medicine Surgery, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
4
|
Unutmaz Erkaya DG, Bayrak Durmaz MS, Görgülü Akın B, Bavbek S. Retrospective analysis of rapid drug desensitization with biologic agents: A single center experience. Clin Transl Allergy 2024; 14:e12397. [PMID: 39434186 PMCID: PMC11493553 DOI: 10.1002/clt2.12397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 09/11/2024] [Accepted: 09/29/2024] [Indexed: 10/23/2024] Open
Abstract
BACKGROUND Following the increased use of biological agents, a subset of patients experiences hypersensitivity reaction (HSR). We reported our experience with rapid drug desensitization (RDD) to nine biologics (rituximab, infliximab, cetuximab, trastuzumab, pertuzumab, nivolumab, brentuximab, tocilizumab and filgrastim) and identified risk factors for breakthrough reactions (BTRs). METHOD This was a retrospective review (2013-2022) of patients with immediate HSRs to biological agents. Initial HSRs were classified as grade 1, 2, or 3 in their severity. Skin prick tests (SPT)/intradermal tests (IDT) were performed using implicated agents. The phenotypes of HSRs were defined as Type I, cytokine-release syndrome (CRS), mixed reactions (cytokine-release + type I) based on history, clinical presentations and skin tests with implicated biologicals. A 12-step RDD protocol was used. RESULTS The study comprised 45 patients (F/M: 31/14, median age: 55 (range: 20-69)). Majority of the patients reacted at the first infusion (n: 29/45, 64.4%). The majority of initial HSRs were grade 3 (n: 24/45, 53.3%) and grade 2 (n: 21/45, 46.6%); none were grade 1. Initial reactions were presented as type I (n: 20/45, 44.4%), CRS (n: 12/45, 26.6%) and mixed (n: 13/45, 28.8%). A total of 258 RDDs were performed and 98.4% of them were completed successfully. BTRs occurred in 36/258 (13.9%) infusions of RDDs. There was no significant association between the BTRs and age, drug cycle, SPT and IDT positivity, gender, comorbidities, or atopy. CONCLUSION In our experience, 98.4% of 258 RDDs to biologics were successfully completed; RDD was safe and effective for our population.
Collapse
Affiliation(s)
- Döne Gülçin Unutmaz Erkaya
- Division of Immunology and AllergyDepartment of Chest DiseasesAnkara University School of MedicineAnkaraTurkey
| | - Makbule Seda Bayrak Durmaz
- Division of Immunology and AllergyDepartment of Chest DiseasesAnkara University School of MedicineAnkaraTurkey
| | - Begüm Görgülü Akın
- Division of Immunology and AllergyDepartment of Chest DiseasesAnkara University School of MedicineAnkaraTurkey
| | - Sevim Bavbek
- Division of Immunology and AllergyDepartment of Chest DiseasesAnkara University School of MedicineAnkaraTurkey
| |
Collapse
|
5
|
Badawi KA, Hamed MM, Mohammed NA. An innovative biosensor harnessing the potential of photonic crystal technology to identify a multitude of cancer cells, distinguished by heightened quality factor and sensitivity. JOURNAL OF OPTICS 2024; 53:3246-3258. [DOI: 10.1007/s12596-023-01524-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 10/28/2023] [Indexed: 01/04/2025]
|
6
|
Wahoski CC, Singh B. The Roles of RAC1 and RAC1B in Colorectal Cancer and Their Potential Contribution to Cetuximab Resistance. Cancers (Basel) 2024; 16:2472. [PMID: 39001533 PMCID: PMC11240352 DOI: 10.3390/cancers16132472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 07/03/2024] [Accepted: 07/04/2024] [Indexed: 07/16/2024] Open
Abstract
Colorectal cancer (CRC) is one of the most diagnosed cancers and a leading contributor to cancer-related deaths in the United States. Clinically, standard treatment regimens include surgery, radiation, and chemotherapy; however, there has been increasing development and clinical use of targeted therapies for CRC. Unfortunately, many patients develop resistance to these treatments. Cetuximab, the first targeted therapy approved to treat advanced CRC, is a monoclonal antibody that targets the epidermal growth factor receptor and inhibits downstream pathway activation to restrict tumor cell growth and proliferation. CRC resistance to cetuximab has been well studied, and common resistance mechanisms include constitutive signal transduction through downstream protein mutations and promotion of the epithelial-to-mesenchymal transition. While the most common resistance mechanisms are known, a proportion of patients develop resistance through unknown mechanisms. One protein predicted to contribute to therapy resistance is RAC1, a small GTPase that is involved in cytoskeleton rearrangement, cell migration, motility, and proliferation. RAC1 has also been shown to be overexpressed in CRC. Despite evidence that RAC1 and its alternative splice isoform RAC1B play important roles in CRC and the pathways known to contribute to cetuximab resistance, there is a need to directly study the relationship between RAC1 and RAC1B and cetuximab resistance. This review highlights the recent studies investigating RAC1 and RAC1B in the context of CRC and suggests that these proteins could play a role in resistance to cetuximab.
Collapse
Affiliation(s)
- Claudia C. Wahoski
- Program in Cancer Biology, Vanderbilt University, Nashville, TN 37232, USA
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Bhuminder Singh
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| |
Collapse
|
7
|
Zhai P, Tong T, Wang X, Li C, Liu C, Qin X, Li S, Xie F, Mao J, Zhang J, Guo H. Nuclear miR-451a activates KDM7A and leads to cetuximab resistance in head and neck squamous cell carcinoma. Cell Mol Life Sci 2024; 81:282. [PMID: 38943031 PMCID: PMC11335205 DOI: 10.1007/s00018-024-05324-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 05/29/2024] [Accepted: 06/16/2024] [Indexed: 06/30/2024]
Abstract
Cetuximab resistance has been a major challenge for head and neck squamous cell carcinoma (HNSCC) patients receiving targeted therapy. However, the mechanism that causes cetuximab resistance, especially microRNA (miRNA) regulation, remains unclear. Growing evidence suggests that miRNAs may act as "nuclear activating miRNAs" for targeting promoter regions or enhancers related to target genes. This study elucidates a novel mechanism underlying cetuximab resistance in HNSCC involving the nuclear activation of KDM7A transcription via miR-451a. Herein, small RNA sequencing, quantitative real-time polymerase chain reaction (qRT‒PCR) and fluorescence in situ hybridization (FISH) results provided compelling evidence of miR-451a nuclear enrichment in response to cetuximab treatment. Chromatin isolation via RNA purification, microarray analysis, and bioinformatic analysis revealed that miR-451a interacts with an enhancer region in KDM7A, activating its expression and further facilitating cetuximab resistance. It has also been demonstrated that the activation of KDM7A by nuclear miR-451a is induced by cetuximab treatment and is AGO2 dependent. Logistic regression analyses of 87 HNSCC samples indicated the significance of miR-451a and KDM7A in the development of cetuximab resistance. These discoveries support the potential of miR-451a and KDM7A as valuable biomarkers for cetuximab resistance and emphasize the function of nuclear-activating miRNAs.
Collapse
Affiliation(s)
- Peisong Zhai
- Department of Oral and Maxillofacial-Head & Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai, 200011, People's Republic of China
| | - Tong Tong
- Department of Oral and Maxillofacial Surgery, Shanghai Stomatological Hospital, Fudan University, Shanghai, 200001, People's Republic of China
- Shanghai Key Laboratory of Craniomaxillofacial Development and Diseases, Fudan University, Shanghai, 200002, People's Republic of China
| | - Xiaoning Wang
- Department of Oral and Maxillofacial-Head & Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai, 200011, People's Republic of China
| | - Chuwen Li
- Department of Oral and Maxillofacial-Head & Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai, 200011, People's Republic of China
| | - Chun Liu
- Department of Oral and Maxillofacial-Head & Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai, 200011, People's Republic of China
| | - Xing Qin
- Department of Oral and Maxillofacial-Head & Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai, 200011, People's Republic of China
| | - Shu Li
- Department of Clinical Laboratory, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, People's Republic of China
| | - Fei Xie
- Department of Oral and Maxillofacial-Head & Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai, 200011, People's Republic of China
| | - Jiayi Mao
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, People's Republic of China
| | - Jianjun Zhang
- Department of Oral and Maxillofacial-Head & Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai, 200011, People's Republic of China.
| | - Haiyan Guo
- Department of Clinical Laboratory, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, People's Republic of China.
| |
Collapse
|
8
|
Li Y, Wang B, Yang W, Ma F, Zou J, Li K, Tan S, Feng J, Wang Y, Qin Z, Chen Z, Ding C. Longitudinal plasma proteome profiling reveals the diversity of biomarkers for diagnosis and cetuximab therapy response of colorectal cancer. Nat Commun 2024; 15:980. [PMID: 38302471 PMCID: PMC10834432 DOI: 10.1038/s41467-024-44911-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 01/03/2024] [Indexed: 02/03/2024] Open
Abstract
Cetuximab therapy is the major treatment for colorectal cancer (CRC), but drug resistance limits its effectiveness. Here, we perform longitudinal and deep proteomic profiling of 641 plasma samples originated from 147 CRC patients (CRCs) undergoing cetuximab therapy with multi-course treatment, and 90 healthy controls (HCs). COL12A1, THBS2, S100A8, and S100A9 are screened as potential proteins to distinguish CRCs from HCs both in plasma and tissue validation cohorts. We identify the potential biomarkers (RRAS2, MMP8, FBLN1, RPTOR, and IMPDH2) for the initial response prediction. In a longitudinal setting, we identify two clusters with distinct fluctuations and construct the model with high accuracy to predict the longitudinal response, further validated in the independent cohort. This study reveals the heterogeneity of different biomarkers for tumor diagnosis, the initial and longitudinal response prediction respectively in the first course and multi-course cetuximab treatment, may ultimately be useful in monitoring and intervention strategies for CRC.
Collapse
Affiliation(s)
- Yan Li
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Institutes of Biomedical Sciences, Human Phenome Institute, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Bing Wang
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Institutes of Biomedical Sciences, Human Phenome Institute, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Wentao Yang
- Department of Gastrointestinal Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Fahan Ma
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Institutes of Biomedical Sciences, Human Phenome Institute, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jianling Zou
- Department of Gastrointestinal Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Kai Li
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Institutes of Biomedical Sciences, Human Phenome Institute, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Subei Tan
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Institutes of Biomedical Sciences, Human Phenome Institute, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jinwen Feng
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Institutes of Biomedical Sciences, Human Phenome Institute, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yunzhi Wang
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Institutes of Biomedical Sciences, Human Phenome Institute, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Zhaoyu Qin
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Institutes of Biomedical Sciences, Human Phenome Institute, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Zhiyu Chen
- Department of Gastrointestinal Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai, China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.
| | - Chen Ding
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Institutes of Biomedical Sciences, Human Phenome Institute, Zhongshan Hospital, Fudan University, Shanghai, China.
| |
Collapse
|
9
|
Trembath HE, Yeh JJ, Lopez NE. Gastrointestinal Malignancy: Genetic Implications to Clinical Applications. Cancer Treat Res 2024; 192:305-418. [PMID: 39212927 DOI: 10.1007/978-3-031-61238-1_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Advances in molecular genetics have revolutionized our understanding of the pathogenesis, progression, and therapeutic options for treating gastrointestinal (GI) cancers. This chapter provides a comprehensive overview of the molecular landscape of GI cancers, focusing on key genetic alterations implicated in tumorigenesis across various anatomical sites including GIST, colon and rectum, and pancreas. Emphasis is placed on critical oncogenic pathways, such as mutations in tumor suppressor genes, oncogenes, chromosomal instability, microsatellite instability, and epigenetic modifications. The role of molecular biomarkers in predicting prognosis, guiding treatment decisions, and monitoring therapeutic response is discussed, highlighting the integration of genomic profiling into clinical practice. Finally, we address the evolving landscape of precision oncology in GI cancers, considering targeted therapies and immunotherapies.
Collapse
Affiliation(s)
- Hannah E Trembath
- Division of Colon and Rectal Surgery, Department of Surgery, University of California San Diego, 4303 La Jolla Village Drive Suite 2110, San Diego, CA, 92122, USA
- Division of Surgical Oncology, Department of Surgery, University of North Carolina, 170 Manning Drive, CB#7213, 1150 Physician's Office Building, Chapel Hill, NC, 27599-7213, USA
| | - Jen Jen Yeh
- Division of Colon and Rectal Surgery, Department of Surgery, University of California San Diego, 4303 La Jolla Village Drive Suite 2110, San Diego, CA, 92122, USA
- Division of Surgical Oncology, Department of Surgery, University of North Carolina, 170 Manning Drive, CB#7213, 1150 Physician's Office Building, Chapel Hill, NC, 27599-7213, USA
| | - Nicole E Lopez
- Division of Colon and Rectal Surgery, Department of Surgery, University of California San Diego, 4303 La Jolla Village Drive Suite 2110, San Diego, CA, 92122, USA.
- Division of Surgical Oncology, Department of Surgery, University of North Carolina, 170 Manning Drive, CB#7213, 1150 Physician's Office Building, Chapel Hill, NC, 27599-7213, USA.
| |
Collapse
|
10
|
Hale RC, Morais D, Chou J, Stowell SR. The role of glycosylation in clinical allergy and immunology. J Allergy Clin Immunol 2024; 153:55-66. [PMID: 37717626 PMCID: PMC10872775 DOI: 10.1016/j.jaci.2023.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 09/04/2023] [Accepted: 09/07/2023] [Indexed: 09/19/2023]
Abstract
While glycans are among the most abundant macromolecules on the cell with widespread functions, their role in immunity has historically been challenging to study. This is in part due to difficulties assimilating glycan analysis into routine approaches used to interrogate immune cell function. Despite this, recent developments have illuminated fundamental roles for glycans in host immunity. The growing field of glycoimmunology continues to leverage new tools and approaches to uncover the function of glycans and glycan-binding proteins in immunity. Here we utilize clinical vignettes to examine key roles of glycosylation in allergy, inborn errors of immunity, and autoimmunity. We will discuss the diverse functions of glycans as epitopes, as modulators of antibody function, and as regulators of immune cell function. Finally, we will highlight immune modulatory therapies that harness the critical role of glycans in the immune system.
Collapse
Affiliation(s)
- Rebecca C Hale
- Division of Immunology, Boston Children's Hospital, Harvard Medical School, Boston, Mass; Department of Pathology, Joint Program in Transfusion Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Mass
| | - Dominique Morais
- Department of Pathology, Joint Program in Transfusion Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Mass
| | - Janet Chou
- Division of Immunology, Boston Children's Hospital, Harvard Medical School, Boston, Mass.
| | - Sean R Stowell
- Department of Pathology, Joint Program in Transfusion Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Mass; Harvard Glycomics Center, Harvard Medical School, Boston, Mass.
| |
Collapse
|
11
|
Zahavi DJ, Erbe R, Zhang YW, Guo T, Malchiodi ZX, Maynard R, Lekan A, Gallagher R, Wulfkuhle J, Petricoin E, Jablonski SA, Fertig EJ, Weiner LM. Antibody dependent cell-mediated cytotoxicity selection pressure induces diverse mechanisms of resistance. Cancer Biol Ther 2023; 24:2269637. [PMID: 37878417 PMCID: PMC10601508 DOI: 10.1080/15384047.2023.2269637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 10/07/2023] [Indexed: 10/27/2023] Open
Abstract
Targeted monoclonal antibody therapy has emerged as a powerful therapeutic strategy for cancer. However, only a minority of patients have durable responses and the development of resistance remains a major clinical obstacle. Antibody-dependent cell-mediated cytotoxicity (ADCC) represents a crucial therapeutic mechanism of action; however, few studies have explored ADCC resistance. Using multiple in vitro models of ADCC selection pressure, we have uncovered both shared and distinct resistance mechanisms. Persistent ADCC selection pressure yielded ADCC-resistant cells that are characterized by a loss of NK cell conjugation and this shared resistance phenotype is associated with cell-line dependent modulation of cell surface proteins that contribute to immune synapse formation and NK cell function. We employed single-cell RNA sequencing and proteomic screens to interrogate molecular mechanisms of resistance. We demonstrate that ADCC resistance involves upregulation of interferon/STAT1 and DNA damage response signaling as well as activation of the immunoproteasome. Here, we identify pathways that modulate ADCC sensitivity and report strategies to enhance ADCC-mediated elimination of cancer cells. ADCC resistance could not be reversed with combinatorial treatment approaches. Hence, our findings indicate that tumor cells utilize multiple strategies to inhibit NK cell mediated-ADCC. Future research and development of NK cell-based immunotherapies must incorporate plans to address or potentially prevent the induction of resistance.
Collapse
Affiliation(s)
- David J. Zahavi
- Department of Oncology and Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, USA
| | - Rossin Erbe
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, USA
| | - Yong-Wei Zhang
- Department of Oncology and Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, USA
| | - Theresa Guo
- Department of Oncology, UC San Diego School of Medicine, San Diego, USA
| | - Zoe X. Malchiodi
- Department of Oncology and Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, USA
| | - Rachael Maynard
- Department of Oncology and Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, USA
| | - Alexander Lekan
- Department of Oncology and Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, USA
| | - Rosa Gallagher
- Center for Applied Proteomics and Molecular Medicine, George Mason University, Fairfax, USA
| | - Julia Wulfkuhle
- Center for Applied Proteomics and Molecular Medicine, George Mason University, Fairfax, USA
| | - Emanuel Petricoin
- Center for Applied Proteomics and Molecular Medicine, George Mason University, Fairfax, USA
| | - Sandra A. Jablonski
- Department of Oncology and Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, USA
| | - Elana J. Fertig
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, USA
| | - Louis M. Weiner
- Department of Oncology and Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, USA
| |
Collapse
|
12
|
Sung Y, Hong ST, Jang M, Kim ES, Kim C, Jung Y, Youn I, Chan Kwon I, Cho SW, Ryu JH. Predicting response to anti-EGFR antibody, cetuximab, therapy by monitoring receptor internalization and degradation. Biomaterials 2023; 303:122382. [PMID: 37977005 DOI: 10.1016/j.biomaterials.2023.122382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 10/13/2023] [Accepted: 10/29/2023] [Indexed: 11/19/2023]
Abstract
Anti-epidermal growth factor receptor (EGFR) antibody, cetuximab, therapy has significantly improved the clinical outcomes of patients with colorectal cancer, but the response to cetuximab can vary widely among individuals. We thus need strategies for predicting the response to this therapy. However, the current methods are unsatisfactory in their predictive power. Cetuximab can promote the internalization and degradation of EGFR, and its therapeutic efficacy is significantly correlated with the degree of EGFR degradation. Here, we present a new approach to predict the response to anti-EGFR therapy, cetuximab by evaluating the degree of EGFR internalization and degradation of colorectal cancer cells in vitro and in vivo. Our newly developed fluorogenic cetuximab-conjugated probe (Cetux-probe) was confirmed to undergo EGFR binding, internalization, and lysosomal degradation to yield fluorescence activation; it thus shares the action mechanism by which cetuximab exerts its anti-tumor effects. Cetux-probe-activated fluorescence could be used to gauge EGFR degradation and showed a strong linear correlation with the cytotoxicity of cetuximab in colorectal cancer cells and tumor-bearing mice. The predictive ability of Cetux-probe-activated fluorescence was much higher than those of EGFR expression or KRAS mutation status. The Cetux-probes may become useful tools for predicting the response to cetuximab therapy by assessing EGFR degradation.
Collapse
Affiliation(s)
- Yejin Sung
- Biomedical Research Division, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea; Graduate Program in Bioindustrial Engineering, College of Life Science and Biotechnology, Yonsei University, Seoul, 03722, Republic of Korea
| | - Seung Taek Hong
- Biomedical Research Division, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea; Division of Biohealthcare, Department of Echo-Applied Chemistry, Daejin University, 1007 Hoguk-ro, Pocheon-si, Gyeonggi-do, 11159, Republic of Korea
| | - Mihue Jang
- Biomedical Research Division, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
| | - Eun Sun Kim
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Korea University College of Medicine, Seoul, 20841, Republic of Korea
| | - Chansoo Kim
- AI/R Lab., Computational Science Centre & ASSIST, Korea Institute of Science and Technology (KIST), Hwarangno 14-gil 5, Seongbuk-gu, Seoul, 02792, Republic of Korea
| | - Youngmee Jung
- Biomedical Research Division, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
| | - Inchan Youn
- Biomedical Research Division, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
| | - Ick Chan Kwon
- Biomedical Research Division, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea; KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, 02841, Republic of Korea
| | - Seung-Woo Cho
- Graduate Program in Bioindustrial Engineering, College of Life Science and Biotechnology, Yonsei University, Seoul, 03722, Republic of Korea; Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, 03722, Republic of Korea; Center for Nanomedicine, Institute for Basic Science (IBS), Seoul, 03722, Republic of Korea.
| | - Ju Hee Ryu
- Biomedical Research Division, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea.
| |
Collapse
|
13
|
Yan D. Hope and Challenges: Immunotherapy in EGFR-Mutant NSCLC Patients. Biomedicines 2023; 11:2916. [PMID: 38001917 PMCID: PMC10669068 DOI: 10.3390/biomedicines11112916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 10/24/2023] [Accepted: 10/26/2023] [Indexed: 11/26/2023] Open
Abstract
EGFR tyrosine kinase inhibitors (TKIs) are the preferred initial treatment for non-small cell lung cancer (NSCLC) patients harboring sensitive EGFR mutations. Sadly, remission is transient, and no approved effective treatment options are available for EGFR-TKI-advanced EGFR-mutant NSCLCs. Although immunotherapy with immune checkpoint inhibitors (ICIs) induces sustained cancer remission in a subset of NSCLCs, ICI therapy exhibits limited activity in most EGFR-mutant NSCLCs. Mechanistically, the strong oncogenic EGFR signaling in EGFR-mutant NSCLCs contributes to a non-inflamed tumor immune microenvironment (TIME), characterized by a limited number of CD8+ T cell infiltration, a high number of regulatory CD4+ T cells, and an increased number of inactivated infiltrated T cells. Additionally, EGFR-mutant NSCLC patients are generally non-smokers with low levels of PD-L1 expression and tumor mutation burden. Promisingly, a small population of EGFR-mutant NSCLCs still durably respond to ICI therapy. The hope of ICI therapy from pre-clinical studies and clinical trials is reviewed in EGFR-mutant NSCLCs. The challenges of application ICI therapy in EGFR-mutant NSCLCs are also reviewed.
Collapse
Affiliation(s)
- Dan Yan
- Aflac Cancer and Blood Disorders Center of Children’s Healthcare of Atlanta, Atlanta, GA 30322, USA;
- Department of Pediatrics, Emory University, Atlanta, GA 30322, USA
| |
Collapse
|
14
|
Singh J, Sangwan N, Chauhan A, Avti PK. Integrative network and computational simulation of clinical and genomic data for the identification of mutated EGFR in breast cancer patients for therapeutic targeting using purine analogues. MOLECULAR SIMULATION 2022. [DOI: 10.1080/08927022.2022.2107638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Affiliation(s)
- Jitender Singh
- Department of Biophysics, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | - Namrata Sangwan
- Department of Biophysics, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | - Arushi Chauhan
- Department of Biophysics, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | - Pramod K. Avti
- Department of Biophysics, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| |
Collapse
|
15
|
Hoang TT, Mandleywala K, Viray T, Tan KV, Lewis JS, Pereira PMR. EGFR-Targeted ImmunoPET of UMUC3 Orthotopic Bladder Tumors. Mol Imaging Biol 2022; 24:511-518. [PMID: 35147837 PMCID: PMC10187976 DOI: 10.1007/s11307-022-01708-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 12/27/2021] [Accepted: 01/26/2022] [Indexed: 12/13/2022]
Abstract
PURPOSE Immuno-positron emission tomography (immunoPET) combines the specificity of an antibody with the sensitivity of PET to image dysregulated pathways in cancer. This study examines the performance of immunoPET using the radioimmunoconjugate [89Zr]Zr-DFO-Panitumumab to detect epidermal growth factor receptor (EGFR) expression in an orthotopic model of bladder cancer (BCa). PROCEDURES Expression and quantification of EGFR receptors were confirmed in four different BCa cell lines. Binding assays validated [89Zr]Zr-DFO-Panitumumab specificity for EGFR-expressing UMUC3 BCa cells. Subcutaneous and orthotopic UMUC3 xenografts were then used for PET imaging and ex vivo biodistribution of the radioimmunoconjugate. Control cohorts included non-tumor mice, 89Zr-labeled non-specific IgG, and blocking experiments. RESULTS [89Zr]Zr-DFO-Panitumumab binds specifically to EGFR-expressing UMUC3 cells with a Bmax value of 5.9 × 104 EGFRs/cell in vitro. ImmunoPET/CT images show localization of the antibody in subcutaneous UMUC3 xenografts and murine bladder tumors. In the orthotopic model, the immunoPET signal correlates with the respective tumor volume. Ex vivo biodistribution analysis further confirmed imaging results. CONCLUSION The preclinical data presents a proof of concept for utilizing EGFR-targeted immunoPET to image BCa with altered EGFR protein levels.
Collapse
Affiliation(s)
- Tran T Hoang
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
- Department of Pharmacology, Weill Cornell Medical College, New York, NY, 10065, USA
| | - Komal Mandleywala
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Tara Viray
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Kel Vin Tan
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
- Department of Diagnostic Radiology, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Jason S Lewis
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA.
- Department of Pharmacology, Weill Cornell Medical College, New York, NY, 10065, USA.
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA.
- Department of Radiology, Weill Cornell Medical College, New York, NY, 10065, USA.
- Radiochemistry and Molecular Imaging Probes Core, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA.
| | - Patricia M R Pereira
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA.
- Department of Radiology, Washington University in St. Louis School of Medicine, St. Louis, MO, 63110, USA.
| |
Collapse
|
16
|
Drug Resistance in Colorectal Cancer: From Mechanism to Clinic. Cancers (Basel) 2022; 14:cancers14122928. [PMID: 35740594 PMCID: PMC9221177 DOI: 10.3390/cancers14122928] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 06/03/2022] [Accepted: 06/07/2022] [Indexed: 12/11/2022] Open
Abstract
Colorectal cancer (CRC) is one of the leading causes of death worldwide. The 5-year survival rate is 90% for patients with early CRC, 70% for patients with locally advanced CRC, and 15% for patients with metastatic CRC (mCRC). In fact, most CRC patients are at an advanced stage at the time of diagnosis. Although chemotherapy, molecularly targeted therapy and immunotherapy have significantly improved patient survival, some patients are initially insensitive to these drugs or initially sensitive but quickly become insensitive, and the emergence of such primary and secondary drug resistance is a significant clinical challenge. The most direct cause of resistance is the aberrant anti-tumor drug metabolism, transportation or target. With more in-depth research, it is found that cell death pathways, carcinogenic signals, compensation feedback loop signal pathways and tumor immune microenvironment also play essential roles in the drug resistance mechanism. Here, we assess the current major mechanisms of CRC resistance and describe potential therapeutic interventions.
Collapse
|
17
|
Cruz-Duarte R, Rebelo de Almeida C, Negrão M, Fernandes A, Borralho P, Sobral D, Gallego-Paez LM, Machado D, Gramaça J, Vílchez J, Xavier AT, Ferreira MG, Miranda AR, Mansinho H, Brito MJ, Pacheco TR, Abreu C, Lucia-Costa A, Mansinho A, Fior R, Costa L, Martins M. Predictive and Therapeutic Implications of a Novel PLCγ1/SHP2-Driven Mechanism of Cetuximab Resistance in Metastatic Colorectal Cancer. Clin Cancer Res 2022; 28:1203-1216. [PMID: 34980600 PMCID: PMC9365369 DOI: 10.1158/1078-0432.ccr-21-1992] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 11/14/2021] [Accepted: 12/27/2021] [Indexed: 01/07/2023]
Abstract
PURPOSE Cetuximab is an EGFR-targeted therapy approved for the treatment of RAS wild-type (WT) metastatic colorectal cancer (mCRC). However, about 60% of these patients show innate resistance to cetuximab. To increase cetuximab efficacy, it is crucial to successfully identify responder patients, as well as to develop new therapeutic approaches to overcome cetuximab resistance. EXPERIMENTAL DESIGN We evaluated the value of EGFR effector phospholipase C gamma 1 (PLCγ1) in predicting cetuximab responses, by analyzing progression-free survival (PFS) of a multicentric retrospective cohort of 94 treated patients with mCRC (log-rank test and Cox regression model). Furthermore, we used in vitro and zebrafish xenotransplant models to identify and target the mechanism behind PLCγ1-mediated resistance to cetuximab. RESULTS In this study, levels of PLCγ1 were found increased in RAS WT tumors and were able to predict cetuximab responses in clinical samples and in vitro and in vivo models. Mechanistically, PLCγ1 expression was found to bypass cetuximab-dependent EGFR inhibition by activating ERK and AKT pathways. This novel resistance mechanism involves a noncatalytic role of PLCγ1 SH2 tandem domains in the propagation of downstream signaling via SH2-containing protein tyrosine phosphatase 2 (SHP2). Accordingly, SHP2 inhibition sensitizes PLCγ1-resistant cells to cetuximab. CONCLUSIONS Our discoveries reveal the potential of PLCγ1 as a predictive biomarker for cetuximab responses and suggest an alternative therapeutic approach to circumvent PLCγ1-mediated resistance to cetuximab in patients with RAS WT mCRC. In this way, this work contributes to the development of novel strategies in the medical management and treatment of patients with mCRC.
Collapse
Affiliation(s)
- Raquel Cruz-Duarte
- Instituto de Medicina Molecular - João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | | | - Magda Negrão
- Champalimaud Centre for the Unknown, Champalimaud Foundation, Lisbon, Portugal
| | - Afonso Fernandes
- Instituto de Medicina Molecular - João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Paula Borralho
- Institute of Pathology, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Daniel Sobral
- Universidade Nova Lisboa, UCIBIO, Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Caparica, Portugal
| | | | - Daniel Machado
- Oncology Division, Centro Hospitalar Barreiro-Montijo, Barreiro, Portugal
| | - João Gramaça
- Oncology Division, Centro Hospitalar Barreiro-Montijo, Barreiro, Portugal
| | - José Vílchez
- Oncology Division, Centro Hospitalar Barreiro-Montijo, Barreiro, Portugal
| | - Ana T. Xavier
- Oncology Division, Centro Hospitalar Barreiro-Montijo, Barreiro, Portugal
| | - Miguel Godinho Ferreira
- Champalimaud Centre for the Unknown, Champalimaud Foundation, Lisbon, Portugal.,Institute for Research on Cancer and Aging of Nice (IRCAN), UMR7284 U1081 UNS, Université Côte d'Azur, Nice, France
| | - Ana R. Miranda
- Hemato-Oncologia Division, Hospital Garcia de Orta, Almada, Portugal
| | - Helder Mansinho
- Hemato-Oncologia Division, Hospital Garcia de Orta, Almada, Portugal
| | - Maria J. Brito
- Pathology Division, Hospital Garcia de Orta, Almada, Portugal
| | - Teresa R. Pacheco
- Instituto de Medicina Molecular - João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal.,Oncology Division, Hospital de Santa Maria, Centro Hospitalar Lisboa Norte, Lisbon, Portugal
| | - Catarina Abreu
- Oncology Division, Hospital de Santa Maria, Centro Hospitalar Lisboa Norte, Lisbon, Portugal
| | - Ana Lucia-Costa
- Oncology Division, Hospital de Santa Maria, Centro Hospitalar Lisboa Norte, Lisbon, Portugal
| | - André Mansinho
- Instituto de Medicina Molecular - João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal.,Oncology Division, Hospital de Santa Maria, Centro Hospitalar Lisboa Norte, Lisbon, Portugal
| | - Rita Fior
- Champalimaud Centre for the Unknown, Champalimaud Foundation, Lisbon, Portugal
| | - Luís Costa
- Instituto de Medicina Molecular - João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal.,Oncology Division, Hospital de Santa Maria, Centro Hospitalar Lisboa Norte, Lisbon, Portugal.,Corresponding Authors: Marta Martins, Translational Oncology, Instituto de Medicina Molecular - João Lobo Antunes, Lisbon 1649-028, Portugal. E-mail: ; and Luís Costa, Instituto de Medicina Molecular-João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisbon 1649-028, Portugal. E-mail:
| | - Marta Martins
- Instituto de Medicina Molecular - João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal.,Corresponding Authors: Marta Martins, Translational Oncology, Instituto de Medicina Molecular - João Lobo Antunes, Lisbon 1649-028, Portugal. E-mail: ; and Luís Costa, Instituto de Medicina Molecular-João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisbon 1649-028, Portugal. E-mail:
| |
Collapse
|
18
|
Jo H, Lee MS, Lee YP, Kim H, Hong J, Lee J, Park S, Park J, Park Y, Lim H, Kang W, Kim S. A Comparison of Folinic Acid, Fluorouracil and Irinotecan (FOLFIRI) plus Bevacizumab and FOLFIRI plus Aflibercept as Second-line Treatment for Metastatic Colorectal Cancer. Clin Oncol (R Coll Radiol) 2022; 34:e323-e328. [DOI: 10.1016/j.clon.2022.02.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 01/05/2022] [Accepted: 02/15/2022] [Indexed: 12/13/2022]
|
19
|
Kapoor SS, Zaiss DMW. Emerging Role of EGFR Mutations in Creating an Immune Suppressive Tumour Microenvironment. Biomedicines 2021; 10:biomedicines10010052. [PMID: 35052732 PMCID: PMC8772868 DOI: 10.3390/biomedicines10010052] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 12/22/2021] [Accepted: 12/23/2021] [Indexed: 02/06/2023] Open
Abstract
Several types of tumours overexpress the Epidermal Growth Factor Receptor (EGFR) in either wild type or mutated form. These tumours are often highly aggressive and difficult to treat. The underlying mechanisms for this phenomenon have remained largely unresolved, but recent publications suggest two independent mechanisms that may contribute. According to one line of research, tumours that overexpress the EGFR grow autonomously and become “addicted” to growth factor signalling. Inhibition of this signal using EGFR inhibitors can, therefore, induce cell death in tumour cells and lead to tumour shrinkage. The other line of research, as highlighted by recent findings, suggests that the overexpression, specifically of mutant forms of the EGFR, may create an immune-suppressive and lymphocyte depleted microenvironment within tumours. Such a lymphocyte depleted microenvironment may explain the resistance of EGFR overexpressing cancers to tumour therapies, particularly to check-point inhibitor treatments. In this article, we discuss the recent data which support an immune modulatory effect of EGFR signalling and compare these published studies with the most recent data from The Cancer Genome Atlas (TCGA), in this way, dissecting possible underlying mechanisms. We thereby focus our study on how EGFR overexpression may lead to the local activation of TGFβ, and hence to an immune suppressive environment. Consequently, we define a novel concept of how the mitogenic and immune modulatory effects of EGFR overexpression may contribute to tumour resistance to immunotherapy, and how EGFR specific inhibitors could be used best to enhance the efficacy of tumour therapy.
Collapse
Affiliation(s)
- Simran S. Kapoor
- Institute of Immunology and Infection Research, University of Edinburgh, Edinburgh EH9 3FL, UK;
| | - Dietmar M. W. Zaiss
- Institute of Immunology and Infection Research, University of Edinburgh, Edinburgh EH9 3FL, UK;
- Faculty of Medicine, Institute of Immune Medicine, University of Regensburg, 93053 Regensburg, Germany
- Correspondence:
| |
Collapse
|
20
|
Luo M, Huang Z, Yang X, Chen Y, Jiang J, Zhang L, Zhou L, Qin S, Jin P, Fu S, Peng L, Li B, Fang Y, Pu W, Gong Y, Liu Y, Ren Z, Liu QL, Wang C, Xiao F, He D, Zhang H, Li C, Xu H, Dai L, Peng Y, Zhou ZG, Huang C, Chen HN. PHLDB2 Mediates Cetuximab Resistance via Interacting With EGFR in Latent Metastasis of Colorectal Cancer. Cell Mol Gastroenterol Hepatol 2021; 13:1223-1242. [PMID: 34952201 PMCID: PMC8881668 DOI: 10.1016/j.jcmgh.2021.12.011] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 12/09/2021] [Accepted: 12/10/2021] [Indexed: 12/13/2022]
Abstract
BACKGROUND & AIMS Latent metastasis of colorectal cancer (CRC) frequently develops months or years after primary surgery, followed by adjuvant therapies, and may progress rapidly even with targeted therapy administered, but the underlying mechanism remains unclear. Here, we aim to explore the molecular basis for the aggressive behavior of latent metastasis in CRC. METHODS Transcriptional profiling and pathway enrichment analysis of paired primary and metastatic tumor samples were performed. The underlying mechanisms of pleckstrin homology-like domain, family B, member 2 (PHLDB2) in CRC were investigated by RNA immunoprecipitation assay, immunohistochemistry, mass spectrometry analysis, and Duolink in situ proximity ligation assay (Sigma-Aldrich, Shanghai, China). The efficacy of targeting PHLDB2 in cetuximab treatment was elucidated in CRC cell lines and mouse models. RESULTS Based on the transcriptional profile of paired primary and metastatic tumor samples, we identified PHLDB2 as a potential regulator in latent liver metastasis. A detailed mechanistic study showed that chemotherapeutic agent-induced oxidative stress promotes methyltransferase-like 14 (METTL14)-mediated N6-methyladenosine modification of PHLDB2 messenger RNA, facilitating its protein expression. Up-regulated PHLDB2 stabilizes epidermal growth factor receptor (EGFR) and promotes its nuclear translocation, which in turn results in EGFR signaling activation and consequent cetuximab resistance. Moreover, Arg1163 (R1163) of PHLDB2 is crucial for interaction with EGFR, and the R1163A mutation abrogates its regulatory function in EGFR signaling. CONCLUSIONS PHLDB2 plays a crucial role in cetuximab resistance and is proposed to be a potential target for the treatment of CRC.
Collapse
Affiliation(s)
- Maochao Luo
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China,West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, China
| | - Zhao Huang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China,West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, China
| | - Xingyue Yang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China,West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, China
| | - Yan Chen
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China,West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, China
| | - Jingwen Jiang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China,West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, China
| | - Lu Zhang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China,West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, China
| | - Li Zhou
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China,West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, China
| | - Siyuan Qin
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China,West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, China
| | - Ping Jin
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China,West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, China
| | - Shuyue Fu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China,West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, China
| | - Liyuan Peng
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China,West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, China
| | - Bowen Li
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China,West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, China
| | - Yongting Fang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China,West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, China
| | - Wenchen Pu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Yanqiu Gong
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Yu Liu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Zhixiang Ren
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Qiu-Luo Liu
- Department of Gastrointestinal Surgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Cun Wang
- Department of Gastrointestinal Surgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Fangqiong Xiao
- West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, China
| | - Du He
- Department of Pathology, West China Hospital, Sichuan University, Chengdu, China
| | - Hongying Zhang
- Department of Pathology, West China Hospital, Sichuan University, Chengdu, China
| | - Changlong Li
- West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, China
| | - Heng Xu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Lunzhi Dai
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Yong Peng
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Zong-Gung Zhou
- Department of Gastrointestinal Surgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Canhua Huang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China,West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, China,Canhua Huang, PhD, State Key Laboratory of Biotherapy, West China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, No. 17, Section 3, South Renmin Rd, Chengdu, 610041, P.R. China. Tel: +86-13258370346; fax: +86-28-85164060.
| | - Hai-Ning Chen
- Department of Gastrointestinal Surgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China,Correspondence Address correspondence to: Hai-Ning Chen, MD, PhD, Department of Gastrointestinal Surgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, P.R. China. Tel: +86-18980606468.
| |
Collapse
|
21
|
Bofinger R, Weitsman G, Evans R, Glaser M, Sander K, Allan H, Hochhauser D, Kalber TL, Årstad E, Hailes HC, Ng T, Tabor AB. Drug delivery, biodistribution and anti-EGFR activity: theragnostic nanoparticles for simultaneous in vivo delivery of tyrosine kinase inhibitors and kinase activity biosensors. NANOSCALE 2021; 13:18520-18535. [PMID: 34730152 PMCID: PMC8601123 DOI: 10.1039/d1nr02770k] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 09/24/2021] [Indexed: 05/03/2023]
Abstract
In vivo delivery of small molecule therapeutics to cancer cells, assessment of the selectivity of administration, and measuring the efficacity of the drug in question at the molecule level, are important ongoing challenges in developing new classes of cancer chemotherapeutics. One approach that has the potential to provide targeted delivery, tracking of biodistribution and readout of efficacy, is to use multimodal theragnostic nanoparticles to deliver the small molecule therapeutic. In this paper, we report the development of targeted theragnostic lipid/peptide/DNA lipopolyplexes. These simultaneously deliver an inhibitor of the EGFR tyrosine kinase, and plasmid DNA coding for a Crk-based biosensor, Picchu-X, which when expressed in the target cells can be used to quantify the inhibition of EGFR in vivo in a mouse colorectal cancer xenograft model. Reversible bioconjugation of a known analogue of the tyrosine kinase inhibitor Mo-IPQA to a cationic peptide, and co-formulation with peptides containing both EGFR-binding and cationic sequences, allowed for good levels of inhibitor encapsulation with targeted delivery to LIM1215 colon cancer cells. Furthermore, high levels of expression of the Picchu-X biosensor in the LIM1215 cells in vivo allowed us to demonstrate, using fluorescence lifetime microscopy (FLIM)-based biosensing, that EGFR activity can be successfully suppressed by the tyrosine kinase inhibitor, released from the lipopolyplexes. Finally, we measured the biodistribution of lipopolyplexes containing 125I-labelled inhibitors and were able to demonstrate that the lipopolyplexes gave significantly higher drug delivery to the tumors compared with free drug.
Collapse
Affiliation(s)
- Robin Bofinger
- Department of Chemistry, University College London, 20, Gordon Street, London WC1H 0AJ, UK.
| | - Gregory Weitsman
- School of Cancer and Pharmaceutical Sciences, King's College London, London, SE1 1UL, UK.
| | - Rachel Evans
- School of Cancer and Pharmaceutical Sciences, King's College London, London, SE1 1UL, UK.
- UCL Cancer Institute, Paul O'Gorman Building, University College London, London WC1E 6DD, UK
| | - Matthias Glaser
- Department of Chemistry, University College London, 20, Gordon Street, London WC1H 0AJ, UK.
- Centre for Radiopharmaceutical Chemistry, Kathleen Lonsdale Building, 5 Gower Place, London WC1E 6BS, UK
| | - Kerstin Sander
- Department of Chemistry, University College London, 20, Gordon Street, London WC1H 0AJ, UK.
- Centre for Radiopharmaceutical Chemistry, Kathleen Lonsdale Building, 5 Gower Place, London WC1E 6BS, UK
| | - Helen Allan
- Department of Chemistry, University College London, 20, Gordon Street, London WC1H 0AJ, UK.
| | - Daniel Hochhauser
- UCL Cancer Institute, Paul O'Gorman Building, University College London, London WC1E 6DD, UK
| | - Tammy L Kalber
- Centre for Advanced Biomedical Imaging, Paul O'Gorman Building, University College London, London WC1E 6DD, UK
| | - Erik Årstad
- Department of Chemistry, University College London, 20, Gordon Street, London WC1H 0AJ, UK.
- Centre for Radiopharmaceutical Chemistry, Kathleen Lonsdale Building, 5 Gower Place, London WC1E 6BS, UK
| | - Helen C Hailes
- Department of Chemistry, University College London, 20, Gordon Street, London WC1H 0AJ, UK.
| | - Tony Ng
- School of Cancer and Pharmaceutical Sciences, King's College London, London, SE1 1UL, UK.
- UCL Cancer Institute, Paul O'Gorman Building, University College London, London WC1E 6DD, UK
| | - Alethea B Tabor
- Department of Chemistry, University College London, 20, Gordon Street, London WC1H 0AJ, UK.
| |
Collapse
|
22
|
Precision oncology in metastatic colorectal cancer - from biology to medicine. Nat Rev Clin Oncol 2021; 18:506-525. [PMID: 33864051 DOI: 10.1038/s41571-021-00495-z] [Citation(s) in RCA: 127] [Impact Index Per Article: 31.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/01/2021] [Indexed: 02/06/2023]
Abstract
Remarkable progress has been made in the development of biomarker-driven targeted therapies for patients with multiple cancer types, including melanoma, breast and lung tumours, although precision oncology for patients with colorectal cancer (CRC) continues to lag behind. Nonetheless, the availability of patient-derived CRC models coupled with in vitro and in vivo pharmacological and functional analyses over the past decade has finally led to advances in the field. Gene-specific alterations are not the only determinants that can successfully direct the use of targeted therapy. Indeed, successful inhibition of BRAF or KRAS in metastatic CRCs driven by activating mutations in these genes requires combinations of drugs that inhibit the mutant protein while at the same time restraining adaptive resistance via CRC-specific EGFR-mediated feedback loops. The emerging paradigm is, therefore, that the intrinsic biology of CRC cells must be considered alongside the molecular profiles of individual tumours in order to successfully personalize treatment. In this Review, we outline how preclinical studies based on patient-derived models have informed the design of practice-changing clinical trials. The integration of these experiences into a common framework will reshape the future design of biology-informed clinical trials in this field.
Collapse
|
23
|
Peng J, Lv J, Peng J. KRAS mutation is predictive for poor prognosis in rectal cancer patients with neoadjuvant chemoradiotherapy: a systemic review and meta-analysis. Int J Colorectal Dis 2021; 36:1781-1790. [PMID: 33760952 DOI: 10.1007/s00384-021-03911-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/12/2021] [Indexed: 02/04/2023]
Abstract
PURPOSE To investigate the association between KRAS mutation and prognosis in rectal cancer patients with neoadjuvant chemoradiotherapy. METHODS Literature was searched in the databases including Cochrane Library, EMBASE (Ovid), and MEDLINE (PubMed) from inception to December 16, 2020. The keywords "rectal cancer" or "rectal carcinoma" or "rectal adenocarcinoma" and "KRAS" and "neoadjuvant" were used for preliminary literature retrieval. Pooled odds ratios (ORs) and 95% confidence intervals (95%CIs) were calculated for the KRAS mutation and clinical outcomes including overall survival (OS), disease-free survival (DFS), pathologic complete remission (pCR), downstaging of T stages and tumor stages, as well as improvements in tumor regression grading (TRG). Publication bias was assessed by the funnel plots. RESULTS A total of 16 articles were included for eligibility. The total number of patients was 3674 cases, with an incidence of KRAS gene mutation of 36.6% (1346/3674). Meta-analysis showed that the pooled OR for KRAS mutation on OS was 1.33 (95%CI: 113-1.56). Consistently, results also indicated that the KRAS mutant was related to the poor DFS (pooled OR=1.55, 95%CI: 1.19-2.02). However, KRAS mutation is not related to the PCR (pooled OR= 0.71, 95%CI: 0.44-1.14), downstaging in T stages (pooled OR= 0.66, 95%CI: 0.42-1.06), tumor stages (pooled OR= 1.18, 95%CI: 0.78-1.78, I2=12.9%), as well as improvement in TRG grades (pooled OR= 0.84, 95%CI: 0.59-1.20). CONCLUSION KRAS mutation is a predictor for the poor prognosis of neoadjuvant chemoradiotherapy in patients with rectal cancer, but it is not related to the responses of tumors after treatment.
Collapse
Affiliation(s)
- Junfu Peng
- Department of TCM Surgery, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Jun Lv
- Department of TCM, Aviation General Hospital, Beijing, China
| | - Jisheng Peng
- Department of TCM Gastroenterology, The Third Affiliated Hospital of Beijing University of Chinese Medicine, No. 51 Anwai Xiaoguan Street, Chaoyang District, Beijing, 100029, China.
| |
Collapse
|
24
|
Pinto TDA, Alves TDDN, Pinto SA, Oliveira EC. CYTOPLASMIC-MEMBRANE EGFR PREDICTS EXPANDED RAS MUTATION STATUS IN COLORECTAL CARCINOMAS? ARQUIVOS BRASILEIROS DE CIRURGIA DIGESTIVA : ABCD = BRAZILIAN ARCHIVES OF DIGESTIVE SURGERY 2021; 34:e1574. [PMID: 34133521 PMCID: PMC8195465 DOI: 10.1590/0102-672020210001e1574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 09/18/2020] [Indexed: 11/21/2022]
Abstract
BACKGROUND Inhibitors of the epidermal growth factor (EGFR) represent an effective therapeutic option for patients with metastatic colorectal carcinoma, free of activating mutations in KRAS and NRAS. However, the research of mutations is of high cost and scarcely accessible. The expression of the EGFR by immunohistochemistry predicting the mutation status of the expanded RAS (KRAS and NRAS), may allow treatment by a diagnostic method less costly and more accessible. AIM Investigate the correlation between the clinical-pathological data, the cytoplasmic-membrane expression of the EGFR and the mutational status of the expanded RAS. METHOD A total of 139 patients with colorectal carcinoma from the archives of Instituto Goiano de Oncologia e Hematologia were evaluated. RESULTS Mutation of the expanded RAS was detected in 78 (56.1%) cases. The EGFR expression was stratified in 23 (16.5%) "positive", 49 (35.2%) "negative" and 67 (48.2%) "uncertain". No significant correlation was found between the mutational status of the RAS and the EGFR expression in comparison to age, gender, location, histological type, histological grade and stage. From 23 "positive" cases, 21 (91.3%) showed wild-type RAS gene, and 49 "negative", 41 (83.7%) presented mutation, resulting in a strong association between EGFR "positive", "negative" groups and the mutational status of the RAS (p<0.001), with 86.1% of accuracy. CONCLUSIONS The cytoplasmic-membrane analysis of the EGFR expression stratified into "positive", "negative" and "uncertain" predicts mutational status of the RAS in 51.7% of the cases (p<0.001), with 86.1% of accuracy.
Collapse
Affiliation(s)
| | | | - Sebastião Alves Pinto
- Department of Pathology, Goiano Institute of Oncology and Hematology, Goiânia, GO, Brazil
- Department of Pathology, Faculty of Medicine, Federal University of Goiás, Goiânia, GO, Brazil
| | - Enio Chaves Oliveira
- Department of Surgery, Faculty of Medicine, Federal University of Goiás, GO, Goiás, Brazil
| |
Collapse
|
25
|
Cao Y, Wang X. Effects of molecular markers on the treatment decision and prognosis of colorectal cancer: a narrative review. J Gastrointest Oncol 2021; 12:1191-1196. [PMID: 34295567 PMCID: PMC8261319 DOI: 10.21037/jgo-21-230] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 05/26/2021] [Indexed: 12/12/2022] Open
Abstract
OBJECTIVE To summarize the effects of molecular markers on the treatment decision and prognosis of colorectal cancer. BACKGROUND Colorectal cancer is a highly heterogeneous disease. Even colorectal cancers of the same pathological type and clinical stage may have significant differences in treatment efficacy and prognosis. There are three main molecular mechanisms for the occurrence and development of colorectal cancer: chromosomal instability (CIN) pathway, microsatellite instability (MSI), and CpG island methylate phenotype (CIMP). There are multiple molecular markers distributed on each pathway. METHODS We performed a literature search on the PubMed database for studies published in English (from the date of initiation of the database to the year of 2020) using the following subject terms: "colon cancer", "rectal cancer", "colorectal cancer", "molecular markers", "biomarkers", "treatment strategies", and "prognosis". CONCLUSIONS The different expression states of molecular markers have a significant impact on the treatment decision and prognosis of colorectal cancer. Main colorectal cancer molecular markers include MSI and some important genes. Individualized treatments for tumors with different molecular phenotypes have improved the treatment effectiveness for colorectal cancer. The rational use of molecular markers is valuable for treatment decision-making and the prognosis of patients with colorectal cancer.
Collapse
Affiliation(s)
- Yujuan Cao
- Department of Oncology, Peking University Shougang Hospital, Beijing, China
| | - Xiaodong Wang
- Department of Oncology, Peking University Shougang Hospital, Beijing, China
| |
Collapse
|
26
|
Meng M, Zhong K, Jiang T, Liu Z, Kwan HY, Su T. The current understanding on the impact of KRAS on colorectal cancer. Biomed Pharmacother 2021; 140:111717. [PMID: 34044280 DOI: 10.1016/j.biopha.2021.111717] [Citation(s) in RCA: 86] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 05/06/2021] [Accepted: 05/07/2021] [Indexed: 02/07/2023] Open
Abstract
KRAS (kirsten rat sarcoma viral oncogene) is a member of the RAS family. KRAS mutations are one of most dominant mutations in colorectal cancer (CRC). The impact of KRAS mutations on the prognosis and survival of CRC patients drives many research studies to explore potential therapeutics or target therapy for the KRAS mutant CRC. This review summarizes the current understanding of the pathological consequences of the KRAS mutations in the development of CRC; and the impact of the mutations on the response and the sensitivity to the current front-line chemotherapy. The current therapeutic strategies for treating KRAS mutant CRC, the difficulties and challenges will also be discussed.
Collapse
Affiliation(s)
- Mingjing Meng
- Guangdong Key Laboratory for Translational Cancer Research of Chinese Medicine, Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, School of Pharmaceutical Science, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Keying Zhong
- Guangdong Key Laboratory for Translational Cancer Research of Chinese Medicine, Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, School of Pharmaceutical Science, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Ting Jiang
- Guangdong Key Laboratory for Translational Cancer Research of Chinese Medicine, Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, School of Pharmaceutical Science, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Zhongqiu Liu
- Guangdong Key Laboratory for Translational Cancer Research of Chinese Medicine, Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, School of Pharmaceutical Science, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China; Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China.
| | - Hiu Yee Kwan
- Centre for Cancer and Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China.
| | - Tao Su
- Guangdong Key Laboratory for Translational Cancer Research of Chinese Medicine, Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, School of Pharmaceutical Science, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China; Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China.
| |
Collapse
|
27
|
Cho SH, Seung BJ, Kim SH, Bae MK, Lim HY, Sur JH. EGFR Overexpression and Sequence Analysis of KRAS, BRAF, and EGFR Mutation Hot Spots in Canine Intestinal Adenocarcinoma. Vet Pathol 2021; 58:674-682. [PMID: 33926328 DOI: 10.1177/03009858211009778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Epidermal growth factor receptor (EGFR) is overexpressed in many human colorectal cancers and anti-EGFR agents are employed as immunotherapies. However, KRAS, EGFR, and BRAF gene mutations can influence the activity of the anti-EGFR agents. We evaluated EGFR expression at protein and mRNA levels in canine intestinal adenocarcinomas using immunohistochemistry (IHC) and RNA in situ hybridization (RNA-ISH). We also investigated the mutation status of EGFR, KRAS, and BRAF to aid the development of anti-EGFR agents for canine intestinal adenocarcinoma. EGFR expression was highest in adenocarcinoma, followed by intramucosal neoplasia (adenoma and in situ carcinoma), and nonneoplastic canine intestinal tissue, at both protein (P = .000) and mRNA (P = .005) levels. The EGFR, KRAS, and BRAF genes showed wild-type sequences at the mutation hot spots in all 13 specimens. Thus, EGFR might serve as a promising diagnostic marker in canine intestinal adenocarcinoma, and further studies would be needed to develop EGFR-targeted anticancer therapies.
Collapse
Affiliation(s)
- Seung-Hee Cho
- 34965 Konkuk University, Gwangjin-gu, Seoul, Republic of Korea
| | | | - Soo-Hyeon Kim
- 34965 Konkuk University, Gwangjin-gu, Seoul, Republic of Korea
| | - Min-Kyung Bae
- 34965 Konkuk University, Gwangjin-gu, Seoul, Republic of Korea
| | - Ha-Young Lim
- 34965 Konkuk University, Gwangjin-gu, Seoul, Republic of Korea
| | - Jung-Hyang Sur
- 34965 Konkuk University, Gwangjin-gu, Seoul, Republic of Korea
| |
Collapse
|
28
|
Chung C. Predictive and prognostic biomarkers with therapeutic targets in colorectal cancer: A 2021 update on current development, evidence, and recommendation. J Oncol Pharm Pract 2021; 28:850-869. [PMID: 33832365 DOI: 10.1177/10781552211005525] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Although therapeutically actionable molecular alterations are widely distributed across many cancer types, only a handful of them show evidence of clinical utility and are recommended for routine clinical practice in the management of cancers of colon and rectum (CRC). This 2021 update aims to provide a succinct summary on the use of prognostic and/or predictive biomarkers (expanded RAS, BRAF, microsatellite-high [MSI-H] or deficient mismatch repair [dMMR], neurotrophic tyrosine receptor kinase [NTRK] fusion genes, and human epidermal growth factor receptor type II [HER2] gene amplification) associated with CRC. Therapeutic implications of each relevant predictive or prognostic biomarker for patients with CRC are described, along with discussion on new developments on (1) biomarker-driven therapies such as testing of BRAF, MLH1 promoter methylation and MMR germline genes in differentiating sporadic CRC or hereditary conditions such as Lynch syndrome; (2) first-line use of immune checkpoint inhibitors in metastatic CRC; (3) risk stratification and therapy selection based on primary tumor location (left-sided vs. right-sided colon cancer); (3) atypical BRAF mutations; (4) use of EGFR directed therapy in the perioperative oligometastatic disease setting; (5) re-challenge of EGFR directed therapy and (6) personalizing therapy of fluoropyrimidine and irinotecan based on new evidence in pharmacogenomic testing. Data are collected and analyzed from available systematic reviews and meta-analyses of treatments with known therapeutic targets in CRC, which may be associated with predictive and/or prognostic biomarkers. Discussions are presented in an application-based format, with goal to empower pharmacists or other clinicians to gain awareness and understanding in biomarker-driven cancer therapy issues.
Collapse
Affiliation(s)
- Clement Chung
- 23530Houston Methodist West Hospital, Houston, TX, USA
| |
Collapse
|
29
|
Wen S, Unuma K, Chinuki Y, Hikino H, Uemura K. Fatal anaphylaxis due to alpha-gal syndrome after initial cetuximab administration: The first forensic case report. Leg Med (Tokyo) 2021; 51:101878. [PMID: 33892262 DOI: 10.1016/j.legalmed.2021.101878] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 03/27/2021] [Accepted: 03/31/2021] [Indexed: 10/21/2022]
Abstract
Cetuximab is mainly used for the treatment of advanced and metastatic colorectal cancer. Owing to the oligosaccharide galactose-α-1,3-galactose (α-gal) in its heavy chain, cetuximab can induce severe IgE-dependent anaphylaxis. α-Gal is also the antigen responsible for α-gal syndrome, known as mammalian meat allergy. Patients with α-gal syndrome may suffer from cetuximab-induced anaphylaxis at the first administration because of developed α-gal-specific IgE antibodies. A male patient in his 50 s with metastatic colon cancer was receiving chemotherapy involving scheduled cetuximab administration. However, he died soon after the first administration. Forensic autopsy confirmed rectal cancer, metastatic rectal cancer in the liver, and renal cancer. Laboratory blood tests revealed the presence of cetuximab- and beef-specific IgE antibodies before cetuximab administration and an extremely high level of tryptase after administration. Thus, we determined that the death was caused by cetuximab-induced anaphylaxis due to the preexisting α-gal syndrome. To the best of our knowledge, this is the first autopsy case report in forensic medicine of fatal anaphylaxis after initial cetuximab administration.
Collapse
Affiliation(s)
- Shuheng Wen
- Department of Forensic Medicine, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Kana Unuma
- Department of Forensic Medicine, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan.
| | - Yuko Chinuki
- Department of Dermatology, Shimane University, Faculty of Medicine, Shimane, Japan
| | - Hajime Hikino
- Department of Breast Surgery, Matsue Red Cross Hospital, Matsue, Shimane, Japan
| | - Koichi Uemura
- Department of Forensic Medicine, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| |
Collapse
|
30
|
Li Y, Gao Q, Liu H, Lin S, Chen H, Ding R, Gu Y, Chao CC, Dong X. The Targeting Effect of Cetuximab Combined with PD-L1 Blockade against EGFR-Expressing Tumors in a Tailored CD16-CAR T-Cell Reporter System. Cancer Invest 2021; 39:285-296. [PMID: 33646061 DOI: 10.1080/07357907.2021.1894570] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
The switchable chimeric antigen receptors (CARs) have shown many advantages in CAR T-cell therapy. However, human primary T-cells are required to evaluate antigen-specific adaptors by IFN-γ assay or FACS analysis, which limits the throughput of adaptor screening. A sensitive and robust CD16-CAR Jurkat NFAT-eGFP reporter system has been developed to assess the therapeutic efficacy of antibody-targeted CAR-T-cell by effectively evaluating the T-cell activation by various tumor cells and the impact of immune checkpoint inhibitor antibodies. This reporter system facilitates the screening of targeted antibodies in a high throughput manner for the development of improved T-cell immunotherapy.
Collapse
Affiliation(s)
- Yijian Li
- BGI Education Center, University of Chinese Academy of Sciences, Shenzhen, China.,BGI-Shenzhen, Shenzhen, China
| | | | | | | | | | | | - Ying Gu
- BGI-Shenzhen, Shenzhen, China
| | | | - Xuan Dong
- BGI-Shenzhen, Shenzhen, China.,Guangdong Provincial Key Laboratory of Human Disease Genomics, Shenzhen Key Laboratory of Genomics, Shenzhen, China
| |
Collapse
|
31
|
HER2 Expression Is Predictive of Survival in Cetuximab Treated Patients with RAS Wild Type Metastatic Colorectal Cancer. Cancers (Basel) 2021; 13:cancers13040638. [PMID: 33562755 PMCID: PMC7914886 DOI: 10.3390/cancers13040638] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 01/29/2021] [Accepted: 02/01/2021] [Indexed: 12/24/2022] Open
Abstract
The overexpressed HER2 is an important target for treatment with monoclonal antibody (mAb) trastuzumab, only in patients with breast and gastric cancers, and is an emerging therapeutic biomarker in metastatic colorectal cancer (mCRC) treated with anti-epidermal growth factor receptor (EGFR) mAbs cetuximab and panitumumab. In this study, we investigated the relative expression and predictive value of all human epidermal growth factor receptor (HER) family members in 144 cetuximab-treated patients with wild type RAS mCRC. The relative expression of EGFR and HER2 have also been examined in 21-paired primary tumours and their metastatic sites by immunohistochemistry. Of the 144 cases examined, 25%, 97%, 79%, 48%, and 10% were positive for EGFR, HER2, HER3, and HER4 and all four HER family members, respectively. The expression of EGFR was an indicator of poorer overall survival and the membranous expression of HER2 and HER3 3+ intensity was associated with a shorter progression free survival (PFS). In contrast, the cytoplasmic expression of HER2 was associated with better PFS. In 48% and 71% of the cases, there were discordance in the expression of EGFR or one or more HER family members in paired primary and related metastatic tumours, respectively. Our results implicate the importance of a large prospective investigation of the expression level and predictive value of not only the therapeutic target (i.e., EGFR protein) but also HER2 and other HER family members as therapeutic targets, or for response to therapy with anti-EGFR mAbs and other forms of HER inhibitors, in both the primary tumours and metastatic sites in mCRC.
Collapse
|
32
|
Kitamura N, Sento S, Yoshizawa Y, Sasabe E, Kudo Y, Yamamoto T. Current Trends and Future Prospects of Molecular Targeted Therapy in Head and Neck Squamous Cell Carcinoma. Int J Mol Sci 2020; 22:E240. [PMID: 33383632 PMCID: PMC7795499 DOI: 10.3390/ijms22010240] [Citation(s) in RCA: 143] [Impact Index Per Article: 28.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Revised: 12/17/2020] [Accepted: 12/24/2020] [Indexed: 02/06/2023] Open
Abstract
In recent years, advances in drug therapy for head and neck squamous cell carcinoma (HNSCC) have progressed rapidly. In addition to cytotoxic anti-cancer agents such as platinum-based drug (cisplatin and carboplatin) and taxane-based drugs (docetaxel and paclitaxel), epidermal growth factor receptor-tyrosine kinase inhibitors (cetuximab) and immune checkpoint inhibitors such as anti-programmed cell death-1 (PD-1) antibodies (nivolumab and pembrolizumab) have come to be used. The importance of anti-cancer drug therapy is increasing year by year. Therefore, we summarize clinical trials of molecular targeted therapy and biomarkers in HNSCC from previous studies. Here we show the current trends and future prospects of molecular targeted therapy in HNSCC.
Collapse
Affiliation(s)
- Naoya Kitamura
- Department of Oral and Maxillofacial Surgery, Kochi Medical School, Kochi University, Nankoku, Kochi 783-8505, Japan; (S.S.); (Y.Y.); (E.S.); (T.Y.)
| | - Shinya Sento
- Department of Oral and Maxillofacial Surgery, Kochi Medical School, Kochi University, Nankoku, Kochi 783-8505, Japan; (S.S.); (Y.Y.); (E.S.); (T.Y.)
| | - Yasumasa Yoshizawa
- Department of Oral and Maxillofacial Surgery, Kochi Medical School, Kochi University, Nankoku, Kochi 783-8505, Japan; (S.S.); (Y.Y.); (E.S.); (T.Y.)
| | - Eri Sasabe
- Department of Oral and Maxillofacial Surgery, Kochi Medical School, Kochi University, Nankoku, Kochi 783-8505, Japan; (S.S.); (Y.Y.); (E.S.); (T.Y.)
| | - Yasusei Kudo
- Department of Oral Bioscience, Tokushima University Graduate School of Biomedical Sciences, 3-18-15 Kuramoto, Tokushima 770-8504, Japan;
| | - Tetsuya Yamamoto
- Department of Oral and Maxillofacial Surgery, Kochi Medical School, Kochi University, Nankoku, Kochi 783-8505, Japan; (S.S.); (Y.Y.); (E.S.); (T.Y.)
| |
Collapse
|
33
|
Lungulescu CV, Ungureanu BS, Turcu-Stiolica A, Ghimpau V, Artene SA, Cazacu IM, Grecu AF, Dinescu VC, Croitoru A, Volovat SR. The role of IgE specific for galactose-α-1,3-galactose in predicting cetuximab induced hypersensitivity reaction: a systematic review and a diagnostic meta-analysis. Sci Rep 2020; 10:21355. [PMID: 33288791 PMCID: PMC7721698 DOI: 10.1038/s41598-020-78497-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 11/26/2020] [Indexed: 02/01/2023] Open
Abstract
Recombinant monoclonal antibodies are used for treating various diseases, from asthma, rheumatoid arthritis, and inflammatory bowel disease to cancer. Although monoclonal antibodies are known to have fewer toxic reactions compared with the conventional cytotoxic antineoplastic drugs, the cases of severe systemic hypersensitivity reaction (HSR) should be acknowledged. Our aim was to assess the diagnostic accuracy of the anti-IgE for galactose-α-1,3-galactose in patients with HSRs to cetuximab. We searched in PubMed, Cochrane Library, Scopus, and World of Science databases to July 1st, 2020. We included a total of 6 studies, with 1074 patients. Meta-analysis was performed using bivariate analysis and the random-effect model. The pooled sensitivity was 73% (95% CI 62-81%) and the pooled specificity was 88% (95% CI 79-94%). We had not found significant heterogeneity and, despite some discrepancies in the nature of data available in the analysed studies, we draw the conclusion that the presence of cetuximab specific IgE (anti cetuximab antibody) and/or galactose-α-1,3-galactose shows moderate to high sensitivity and specificity of developing an HSR. More studies are needed to establish a protocol necessary for the proper prediction and avoidance of HSR related to cetuximab.
Collapse
Affiliation(s)
| | - Bogdan Silviu Ungureanu
- Research Center of Gastroenterology and Hepatology, University of Medicine and Pharmacy of Craiova, Craiova, Romania.
| | - Adina Turcu-Stiolica
- Department of Pharmacoeconomics, University of Medicine and Pharmacy of Craiova, Craiova, Romania.
| | - Valentina Ghimpau
- Pharmacy of Craiova Doctoral School, University of Medicine, Craiova, Romania
| | | | | | | | - Venera Cristina Dinescu
- Health Promotion and Occupational Medicine Department, University of Medicine & Pharmacy of Craiova, Craiova, Romania
| | - Adina Croitoru
- Fundeni Clinical Institute, Titu Maiorescu University, Bucharest, Romania
| | | |
Collapse
|
34
|
Al Qaraghuli MM. Biotherapeutic Antibodies for the Treatment of Head and Neck Cancer: Current Approaches and Future Considerations of Photothermal Therapies. Front Oncol 2020; 10:559596. [PMID: 33324546 PMCID: PMC7726427 DOI: 10.3389/fonc.2020.559596] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 11/03/2020] [Indexed: 12/24/2022] Open
Abstract
Head and neck cancer (HNC) is a heterogeneous disease that includes a variety of tumors originating in the hypopharynx, oropharynx, lip, oral cavity, nasopharynx, or larynx. HNC is the sixth most common malignancy worldwide and affects thousands of people in terms of incidence and mortality. Various factors can trigger the development of the disease such as smoking, alcohol consumption, and repetitive viral infections. HNC is currently treated by single or multimodality approaches, which are based on surgery, radiotherapy, chemotherapy, and biotherapeutic antibodies. The latter approach will be the focus of this article. There are currently three approved antibodies against HNCs (cetuximab, nivolumab, and pembrolizumab), and 48 antibodies under development. The majority of these antibodies are of humanized (23 antibodies) or human (19 antibodies) origins, and subclass IgG1 represents a total of 32 antibodies. In addition, three antibody drug conjugates (ADCs: telisotuzumab-vedotin, indatuximab-ravtansine, and W0101) and two bispecific antibodies (GBR 1372 and ABL001) have been under development. Despite the remarkable success of antibodies in treating different tumors, success was limited in HNCs. This limitation is attributed to efficacy, resistance, and the appearance of various side effects. However, the efficacy of these antibodies could be enhanced through conjugation to gold nanoparticles (GNPs). These conjugates combine the high specificity of antibodies with unique spectral properties of GNPs to generate a treatment approach known as photothermal therapy. This approach can provide promising outcomes due to the ability of GNPs to convert light into heat, which can specifically destroy cancer cells and treat HNC in an effective manner.
Collapse
Affiliation(s)
- Mohammed M. Al Qaraghuli
- SiMologics Ltd., Glasgow, United Kingdom
- Department of Chemical and Process Engineering, University of Strathclyde, Glasgow, United Kingdom
| |
Collapse
|
35
|
Zanetti-Domingues LC, Bonner SE, Martin-Fernandez ML, Huber V. Mechanisms of Action of EGFR Tyrosine Kinase Receptor Incorporated in Extracellular Vesicles. Cells 2020; 9:cells9112505. [PMID: 33228060 PMCID: PMC7699420 DOI: 10.3390/cells9112505] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 10/09/2020] [Accepted: 11/11/2020] [Indexed: 02/07/2023] Open
Abstract
EGFR and some of the cognate ligands extensively traffic in extracellular vesicles (EVs) from different biogenesis pathways. EGFR belongs to a family of four homologous tyrosine kinase receptors (TKRs). This family are one of the major drivers of cancer and is involved in several of the most frequent malignancies such as non-small cell lung cancer, breast cancer, colorectal cancer and ovarian cancer. The carrier EVs exert crucial biological effects on recipient cells, impacting immunity, pre-metastatic niche preparation, angiogenesis, cancer cell stemness and horizontal oncogene transfer. While EV-mediated EGFR signalling is important to EGFR-driven cancers, little is known about the precise mechanisms by which TKRs incorporated in EVs play their biological role, their stoichiometry and associations to other proteins relevant to cancer pathology and EV biogenesis, and their means of incorporation in the target cell. In addition, it remains unclear whether different subtypes of EVs incorporate different complexes of TKRs with specific functions. A raft of high spatial and temporal resolution methods is emerging that could solve these and other questions regarding the activity of EGFR and its ligands in EVs. More importantly, methods are emerging to block or mitigate EV activity to suppress cancer progression and drug resistance. By highlighting key findings and areas that remain obscure at the intersection of EGFR signalling and EV action, we hope to cross-fertilise the two fields and speed up the application of novel techniques and paradigms to both.
Collapse
Affiliation(s)
- Laura C. Zanetti-Domingues
- Central Laser Facility, Research Complex at Harwell, Rutherford Appleton Laboratory, Didcot OX11 0FA, UK;
- Correspondence: (L.C.Z.-D.); (V.H.)
| | - Scott E. Bonner
- The Wood Lab, Department of Paediatrics, University of Oxford, Oxford OX1 3QX, UK;
| | - Marisa L. Martin-Fernandez
- Central Laser Facility, Research Complex at Harwell, Rutherford Appleton Laboratory, Didcot OX11 0FA, UK;
| | - Veronica Huber
- Unit of Immunotherapy of Human Tumors, Fondazione IRCCS Istituto Nazionale dei Tumori, 20133 Milan, Italy
- Correspondence: (L.C.Z.-D.); (V.H.)
| |
Collapse
|
36
|
Metges JP, Douillard JY, Ramée JF, Dupuis O, Senellart H, Porneuf M, Deguiral P, Achour NE, Edeline J, Cumin I, Artignan X, Faroux R, Stampfli C, Cojocarasu O, Gourlaouen A, Bideau K, Meyer VG, Fichet A, Klein V, Touchefeu Y, Besson D, Desclos H, Barraya R, Alavi Z, Campion L, Lagadec DD, Marhuenda F, Grudé F. Efficacy and safety of panitumumab in a cohort of patients with metastatic colorectal cancer in France: PANI OUEST, a post-EMA-approval descriptive study with a geriatric oncology focus. TURKISH JOURNAL OF GASTROENTEROLOGY 2020; 31:695-705. [PMID: 33169707 DOI: 10.5152/tjg.2020.19219] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
BACKGROUND/AIMS The Bretagne-Pays de la Loire cancer observatory, an oncology network created by the French Ministry of Health, is specifically dedicated to assess the use of new targeted anticancer therapies in routine practice. In line with the French National Cancer III program, our cancer network set up a real-life cohort, which is independent of the pharmaceutical industry, for patients with colorectal cancer to monitor patient safety and quality of care and promote pharmacovigilance. MATERIALS AND METHODS Panitumumab monotherapy was assessed in 243 patients with wild-type Kirsten rat sarcoma who were treated for metastatic colorectal cancer (mCRC) between July 2008 and December 2010 after prior chemotherapy using oxaliplatine and irinotecan. This was a post-European medicine agency marketing (EMA-M) study Results: This study shed light on the best practices, strategic adaptations, clinical results (treatment objective responses, 13%; progression free survival, 2.99 months [2.73-3.15]; and overall survival, 6.8 months [5.49-8.38]) as well as expected or unexpected (grade 3 or 4: 11.5%) secondary effects in the phase IV panitumumab treatment of mCRC. CONCLUSION Our results are similar to those by Amado whose phase III study led to obtaining EMA-M for panitumumab and tend to confirm the antitumor activity of this antiepidermal growth factor receptor antibody in the treatment of mCRC. In addition, our results opened avenues to further assessment of panitumumab use as monotherapy as well as its benefit-risk ratio while taking into account the patients' general and clinical characteristics. In 2012, the French National Authority for Health appended these data to the panitumumab transparency committee report.
Collapse
Affiliation(s)
- Jean-Philippe Metges
- Observatoire dédié au Cancer BPL, siège médical ICO site Paul Papin, France;C.H.R.U., Hôpital Morvan, Institut de cancérologie et d'hématologie, Brest, France
| | - Jean-Yves Douillard
- Observatory of Cancer BPL, Angers, France;West Institut of Cancer (ICO), René Gauducheau, Boulevard Jacques Monod, Saint-Herblain, France
| | | | - Olivier Dupuis
- Private Hospital Jean Bernard/Clinique Victor Hugo Le Mans, Le Mans, France
| | - Helene Senellart
- West Institut of Cancer (ICO), René Gauducheau, Boulevard Jacques Monod, Saint-Herblain, France
| | - Marc Porneuf
- Hospital Center of Yves le Foll, Saint-Brieuc, France;C.H. Lannion Trestel, Venelle de Kergomar, Lannion, France
| | | | - Nach Eddine Achour
- Private Hospital Pasteur-Lanroze, Brest, France;Private Hospital CMC de la Baie de Morlaix, Morlaix, France
| | - Julien Edeline
- C.R.L.C.C. Eugène Marquis, Avenue de la Bataille Flandres-Dunkerque, Rennes, France
| | | | - Xavier Artignan
- C.H.P, 6 Boulevard de la Boutière, Saint-Gregoire, France;Private Hospital Sévigné, Cesson Sevigne, France
| | - Roger Faroux
- Hospital Center of Vendée, La Roche Sur Yon, France
| | | | | | | | | | - Véronique Guérin Meyer
- West Institut of Cancer (ICO), Paul Papin, Angers, France;Hospital Center of Saumur, Saumur, France
| | | | - Vincent Klein
- Hospital Center of Vannes, Vannes, France;Private Hospital Océane, Vannes, France
| | - Yann Touchefeu
- University Hospital of. Nantes Hôtel Dieu, Nantes, France
| | | | | | | | | | - Loic Campion
- West Institut of Cancer (ICO), René Gauducheau, Boulevard Jacques Monod, Saint-Herblain, France
| | | | - Fanny Marhuenda
- Observatory of Cancer BPL, Angers, France;West Institut of Cancer (ICO), Paul Papin, Angers, France
| | - Francoise Grudé
- Observatory of Cancer BPL, Angers, France;West Institut of Cancer (ICO), Paul Papin, Angers, France
| |
Collapse
|
37
|
Barber PR, Weitsman G, Lawler K, Barrett JE, Rowley M, Rodriguez-Justo M, Fisher D, Gao F, Tullis IDC, Deng J, Brown L, Kaplan R, Hochhauser D, Adams R, Maughan TS, Vojnovic B, Coolen ACC, Ng T. HER2-HER3 Heterodimer Quantification by FRET-FLIM and Patient Subclass Analysis of the COIN Colorectal Trial. J Natl Cancer Inst 2020; 112:944-954. [PMID: 31851321 PMCID: PMC7492762 DOI: 10.1093/jnci/djz231] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 11/27/2019] [Accepted: 12/11/2019] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND The phase III MRC COIN trial showed no statistically significant benefit from adding the EGFR-target cetuximab to oxaliplatin-based chemotherapy in first-line treatment of advanced colorectal cancer. This study exploits additional information on HER2-HER3 dimerization to achieve patient stratification and reveal previously hidden subgroups of patients who had differing disease progression and treatment response. METHODS HER2-HER3 dimerization was quantified by fluorescence lifetime imaging microscopy in primary tumor samples from 550 COIN trial patients receiving oxaliplatin and fluoropyrimidine chemotherapy with or without cetuximab. Bayesian latent class analysis and covariate reduction was performed to analyze the effects of HER2-HER3 dimer, RAS mutation, and cetuximab on progression-free survival and overall survival (OS). All statistical tests were two-sided. RESULTS Latent class analysis on a cohort of 398 patients revealed two patient subclasses with differing prognoses (median OS = 1624 days [95% confidence interval [CI] = 1466 to 1816 days] vs 461 days [95% CI = 431 to 504 days]): Class 1 (15.6%) showed a benefit from cetuximab in OS (hazard ratio = 0.43, 95% CI = 0.25 to 0.76, P = .004). Class 2 showed an association of increased HER2-HER3 with better OS (hazard ratio = 0.64, 95% CI = 0.44 to 0.94, P = .02). A class prediction signature was formed and tested on an independent validation cohort (n = 152) validating the prognostic utility of the dimer assay. Similar subclasses were also discovered in full trial dataset (n = 1630) based on 10 baseline clinicopathological and genetic covariates. CONCLUSIONS Our work suggests that the combined use of HER dimer imaging and conventional mutation analyses will be able to identify a small subclass of patients (>10%) who will have better prognosis following chemotherapy. A larger prospective cohort will be required to confirm its utility in predicting the outcome of anti-EGFR treatment.
Collapse
Affiliation(s)
- Paul R Barber
- UCL Cancer Institute, Paul O’Gorman Building, University College London, London, UK
| | - Gregory Weitsman
- Richard Dimbleby Laboratory of Cancer Research, School of Cancer & Pharmaceutical Sciences, King’s College London, London, UK
| | - Katherine Lawler
- Richard Dimbleby Laboratory of Cancer Research, School of Cancer & Pharmaceutical Sciences, King’s College London, London, UK
- Institute for Mathematical and Molecular Biomedicine, King’s College London, Guy’s Medical School Campus, London, UK
| | - James E Barrett
- Richard Dimbleby Laboratory of Cancer Research, School of Cancer & Pharmaceutical Sciences, King’s College London, London, UK
| | - Mark Rowley
- Institute for Mathematical and Molecular Biomedicine, King’s College London, Guy’s Medical School Campus, London, UK
- Saddle Point Science Ltd, London, UK
| | | | - David Fisher
- MRC Clinical Trials Unit at UCL, Institute of Clinical Trials & Methodology, London, UK
| | - Fangfei Gao
- UCL Cancer Institute, Paul O’Gorman Building, University College London, London, UK
| | - Iain D C Tullis
- Department of Oncology, Cancer Research UK and Medical Research Council Oxford Institute for Radiation Oncology, University of Oxford, Oxford, UK
| | - Jinhai Deng
- Richard Dimbleby Laboratory of Cancer Research, School of Cancer & Pharmaceutical Sciences, King’s College London, London, UK
| | - Louise Brown
- MRC Clinical Trials Unit at UCL, Institute of Clinical Trials & Methodology, London, UK
| | - Richard Kaplan
- MRC Clinical Trials Unit at UCL, Institute of Clinical Trials & Methodology, London, UK
| | - Daniel Hochhauser
- UCL Cancer Institute, Paul O’Gorman Building, University College London, London, UK
| | | | - Timothy S. Maughan
- Department of Oncology, Cancer Research UK and Medical Research Council Oxford Institute for Radiation Oncology, University of Oxford, Oxford, UK
| | - Borivoj Vojnovic
- Department of Oncology, Cancer Research UK and Medical Research Council Oxford Institute for Radiation Oncology, University of Oxford, Oxford, UK
| | - Anthony C C Coolen
- Institute for Mathematical and Molecular Biomedicine, King’s College London, Guy’s Medical School Campus, London, UK
- Saddle Point Science Ltd, London, UK
| | - Tony Ng
- UCL Cancer Institute, Paul O’Gorman Building, University College London, London, UK
- Richard Dimbleby Laboratory of Cancer Research, School of Cancer & Pharmaceutical Sciences, King’s College London, London, UK
- Breast Cancer Now Research Unit, Department of Research Oncology, Guy’s Hospital King’s College London, London, UK
| |
Collapse
|
38
|
Amodio V, Yaeger R, Arcella P, Cancelliere C, Lamba S, Lorenzato A, Arena S, Montone M, Mussolin B, Bian Y, Whaley A, Pinnelli M, Murciano-Goroff YR, Vakiani E, Valeri N, Liao WL, Bhalkikar A, Thyparambil S, Zhao HY, de Stanchina E, Marsoni S, Siena S, Bertotti A, Trusolino L, Li BT, Rosen N, Di Nicolantonio F, Bardelli A, Misale S. EGFR Blockade Reverts Resistance to KRAS G12C Inhibition in Colorectal Cancer. Cancer Discov 2020; 10:1129-1139. [PMID: 32430388 PMCID: PMC7416460 DOI: 10.1158/2159-8290.cd-20-0187] [Citation(s) in RCA: 316] [Impact Index Per Article: 63.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 04/13/2020] [Accepted: 04/29/2020] [Indexed: 12/19/2022]
Abstract
Most patients with KRAS G12C-mutant non-small cell lung cancer (NSCLC) experience clinical benefit from selective KRASG12C inhibition, whereas patients with colorectal cancer bearing the same mutation rarely respond. To investigate the cause of the limited efficacy of KRASG12C inhibitors in colorectal cancer, we examined the effects of AMG510 in KRAS G12C colorectal cancer cell lines. Unlike NSCLC cell lines, KRAS G12C colorectal cancer models have high basal receptor tyrosine kinase (RTK) activation and are responsive to growth factor stimulation. In colorectal cancer lines, KRASG12C inhibition induces higher phospho-ERK rebound than in NSCLC cells. Although upstream activation of several RTKs interferes with KRASG12C blockade, we identify EGFR signaling as the dominant mechanism of colorectal cancer resistance to KRASG12C inhibitors. The combinatorial targeting of EGFR and KRASG12C is highly effective in colorectal cancer cells and patient-derived organoids and xenografts, suggesting a novel therapeutic strategy to treat patients with KRAS G12C colorectal cancer. SIGNIFICANCE: The efficacy of KRASG12C inhibitors in NSCLC and colorectal cancer is lineage-specific. RTK dependency and signaling rebound kinetics are responsible for sensitivity or resistance to KRASG12C inhibition in colorectal cancer. EGFR and KRASG12C should be concomitantly inhibited to overcome resistance to KRASG12C blockade in colorectal tumors.See related commentary by Koleilat and Kwong, p. 1094.This article is highlighted in the In This Issue feature, p. 1079.
Collapse
Affiliation(s)
- Vito Amodio
- Candiolo Cancer Institute, FPO - IRCCS, Candiolo, Torino, Italy
- Department of Oncology, University of Torino, Candiolo, Torino, Italy
| | - Rona Yaeger
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Pamela Arcella
- Candiolo Cancer Institute, FPO - IRCCS, Candiolo, Torino, Italy
- Department of Oncology, University of Torino, Candiolo, Torino, Italy
| | | | - Simona Lamba
- Candiolo Cancer Institute, FPO - IRCCS, Candiolo, Torino, Italy
| | - Annalisa Lorenzato
- Candiolo Cancer Institute, FPO - IRCCS, Candiolo, Torino, Italy
- Department of Oncology, University of Torino, Candiolo, Torino, Italy
| | - Sabrina Arena
- Candiolo Cancer Institute, FPO - IRCCS, Candiolo, Torino, Italy
- Department of Oncology, University of Torino, Candiolo, Torino, Italy
| | - Monica Montone
- Candiolo Cancer Institute, FPO - IRCCS, Candiolo, Torino, Italy
| | | | - Yu Bian
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Adele Whaley
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Marika Pinnelli
- Candiolo Cancer Institute, FPO - IRCCS, Candiolo, Torino, Italy
- Department of Oncology, University of Torino, Candiolo, Torino, Italy
| | | | - Efsevia Vakiani
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Nicola Valeri
- Center for Evolution and Cancer, The Institute of Cancer Research, London, United Kingdom
- Department of Medicine, The Royal Marsden Hospital, London, United Kingdom
| | | | | | | | - Hui-Yong Zhao
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, New York
- Antitumour Assessment Core Facility, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Elisa de Stanchina
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, New York
- Antitumour Assessment Core Facility, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Silvia Marsoni
- Niguarda Cancer Center, Grande Ospedale Metropolitano Niguarda, Milan, Italy
- Istituto FIRC di Oncologia Molecolare (IFOM), Milan, Italy
| | - Salvatore Siena
- Niguarda Cancer Center, Grande Ospedale Metropolitano Niguarda, Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | - Andrea Bertotti
- Candiolo Cancer Institute, FPO - IRCCS, Candiolo, Torino, Italy
- Department of Oncology, University of Torino, Candiolo, Torino, Italy
| | - Livio Trusolino
- Candiolo Cancer Institute, FPO - IRCCS, Candiolo, Torino, Italy
- Department of Oncology, University of Torino, Candiolo, Torino, Italy
| | - Bob T Li
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
- Weill Cornell Medical College, New York, New York
| | - Neal Rosen
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, New York
- Center for Molecular-Based Therapy, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Federica Di Nicolantonio
- Candiolo Cancer Institute, FPO - IRCCS, Candiolo, Torino, Italy
- Department of Oncology, University of Torino, Candiolo, Torino, Italy
| | - Alberto Bardelli
- Candiolo Cancer Institute, FPO - IRCCS, Candiolo, Torino, Italy.
- Department of Oncology, University of Torino, Candiolo, Torino, Italy
| | - Sandra Misale
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, New York.
| |
Collapse
|
39
|
Hong CS, Sun EG, Choi JN, Kim DH, Kim JH, Ryu KH, Shim HJ, Hwang JE, Bae WK, Kim HR, Kim KK, Jung C, Chung IJ, Cho SH. Fibroblast growth factor receptor 4 increases epidermal growth factor receptor (EGFR) signaling by inducing amphiregulin expression and attenuates response to EGFR inhibitors in colon cancer. Cancer Sci 2020; 111:3268-3278. [PMID: 32533590 PMCID: PMC7469799 DOI: 10.1111/cas.14526] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Revised: 06/03/2020] [Accepted: 06/06/2020] [Indexed: 02/06/2023] Open
Abstract
Fibroblast growth factor receptor 4 (FGFR4) is known to induce cancer cell proliferation, invasion, and antiapoptosis through activation of RAS/RAF/ERK and PI3K/AKT pathways, which are also known as major molecular bases of colon cancer carcinogenesis related with epidermal growth factor receptor (EGFR) signaling. However, the interaction between FGFR4 and EGFR signaling in regard to colon cancer progression is unclear. Here, we investigated a potential cross‐talk between FGFR4 and EGFR, and the effect of anti‐EGFR therapy in colon cancer treatment. To explore the biological roles of FGFR4 in cancer progression, RNA sequencing was carried out using FGFR4 transfected colon cell lines. Gene ontology data showed the upregulation of genes related to EGFR signaling, and we identified that FGFR4 overexpression secretes EGFR ligands such as amphiregulin (AREG) with consequent activation of EGFR and ErbB3. This result was also shown in in vivo study and the cooperative interaction between EGFR and FGFR4 promoted tumor growth. In addition, FGFR4 overexpression reduced cetuximab‐induced cytotoxicity and the combination of FGFR4 inhibitor (BLU9931) and cetuximab showed profound antitumor effect compared to cetuximab alone. Clinically, we found the positive correlation between FGFR4 and AREG expression in tumor tissue, but not in normal tissue, from colon cancer patients and these expressions were significantly correlated with poor overall survival in patients treated with cetuximab. Therefore, our results provide the novel mechanism of FGFR4 in connection with EGFR activation and the combination of FGFR4 inhibitor and cetuximab could be a promising therapeutic option to achieve the optimal response to anti‐EGFR therapy in colon cancer.
Collapse
Affiliation(s)
- Chang-Soo Hong
- Division of Hematology-Oncology, Department of Internal Medicine, Chonnam National University Hwasun Hospital, Chonnam National University Medical School, Hwasun, Korea
| | - Eun-Gene Sun
- Division of Hematology-Oncology, Department of Internal Medicine, Chonnam National University Hwasun Hospital, Chonnam National University Medical School, Hwasun, Korea
| | - Ji-Na Choi
- Division of Hematology-Oncology, Department of Internal Medicine, Chonnam National University Hwasun Hospital, Chonnam National University Medical School, Hwasun, Korea
| | - Dae-Hwan Kim
- Division of Hematology-Oncology, Department of Internal Medicine, Chonnam National University Hwasun Hospital, Chonnam National University Medical School, Hwasun, Korea
| | - Jo-Heon Kim
- Department of Pathology, Chonnam National University Hwasun Hospital, Hwasun, Korea
| | - Kyung-Hyun Ryu
- Department of Biological Science, Sookmyung Women's University, Seoul, Korea
| | - Hyun-Jeong Shim
- Division of Hematology-Oncology, Department of Internal Medicine, Chonnam National University Hwasun Hospital, Chonnam National University Medical School, Hwasun, Korea
| | - Jun-Eul Hwang
- Division of Hematology-Oncology, Department of Internal Medicine, Chonnam National University Hwasun Hospital, Chonnam National University Medical School, Hwasun, Korea
| | - Woo-Kyun Bae
- Division of Hematology-Oncology, Department of Internal Medicine, Chonnam National University Hwasun Hospital, Chonnam National University Medical School, Hwasun, Korea.,Combinatorial Tumor Immunotherapy MRC, Chonnam National University Medical School, Hwasun, Korea
| | - Hyeong-Rok Kim
- Department of Surgery, Chonnam National University Hwasun Hospital, Hwasun, Korea
| | - Kyung Keun Kim
- Department of Pharmacology, Chonnam National University Medical School, Hwasun, Korea
| | - Chaeyong Jung
- Department of Anatomy, Chonnam National University Medical School, Hwasun, Korea
| | - Ik-Joo Chung
- Division of Hematology-Oncology, Department of Internal Medicine, Chonnam National University Hwasun Hospital, Chonnam National University Medical School, Hwasun, Korea.,Combinatorial Tumor Immunotherapy MRC, Chonnam National University Medical School, Hwasun, Korea
| | - Sang-Hee Cho
- Division of Hematology-Oncology, Department of Internal Medicine, Chonnam National University Hwasun Hospital, Chonnam National University Medical School, Hwasun, Korea.,Combinatorial Tumor Immunotherapy MRC, Chonnam National University Medical School, Hwasun, Korea
| |
Collapse
|
40
|
Li QH, Wang YZ, Tu J, Liu CW, Yuan YJ, Lin R, He WL, Cai SR, He YL, Ye JN. Anti-EGFR therapy in metastatic colorectal cancer: mechanisms and potential regimens of drug resistance. Gastroenterol Rep (Oxf) 2020; 8:179-191. [PMID: 32665850 PMCID: PMC7333932 DOI: 10.1093/gastro/goaa026] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 03/27/2020] [Accepted: 04/09/2020] [Indexed: 12/24/2022] Open
Abstract
Cetuximab and panitumumab, as the highly effective antibodies targeting epidermal growth factor receptor (EGFR), have clinical activity in the patients with metastatic colorectal cancer (mCRC). These agents have good curative efficacy, but drug resistance also exists at the same time. The effects of KRAS, NRAS, and BRAF mutations and HER2 amplification on the treatment of refractory mCRC have been elucidated and the corresponding countermeasures have been put forward. However, the changes in EGFR and its ligands, the mutations or amplifications of PIK3CA, PTEN, TP53, MET, HER3, IRS2, FGFR1, and MAP2K1, the overexpression of insulin growth factor-1, the low expression of Bcl-2-interacting mediator of cell death, mismatch repair-deficient, and epigenetic instability may also lead to drug resistance in mCRC. Although the emergence of drug resistance has genetic or epigenetic heterogeneity, most of these molecular changes relating to it are focused on the key signaling pathways, such as the RAS/RAF/mitogen-activated protein kinase or phosphatidylinositol 3-kinase/Akt/mammalian target of the rapamycin pathway. Accordingly, numerous efforts to target these signaling pathways and develop the novel therapeutic regimens have been carried out. Herein, we have reviewed the underlying mechanisms of the resistance to anti-EGFR therapy and the possible implications in clinical practice.
Collapse
Affiliation(s)
- Qing-Hai Li
- Department of Gastrointestinal Surgery, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, P. R. China
| | - Ying-Zhao Wang
- Department of Gastrointestinal Surgery, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, P. R. China
| | - Jian Tu
- Department of Musculoskeletal Oncology, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, P. R. China
| | - Chu-Wei Liu
- Department of Gastrointestinal Surgery, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, P. R. China
| | - Yu-Jie Yuan
- Department of Gastrointestinal Surgery, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, P. R. China
| | - Run Lin
- Department of Radiology, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, P. R. China
| | - Wei-Ling He
- Department of Gastrointestinal Surgery, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, P. R. China
| | - Shi-Rong Cai
- Department of Gastrointestinal Surgery, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, P. R. China
| | - Yu-Long He
- Department of Gastrointestinal Surgery, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, P. R. China
| | - Jin-Ning Ye
- Department of Gastrointestinal Surgery, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, P. R. China
| |
Collapse
|
41
|
EGFR Protein Expression in KRAS Wild-Type Metastatic Colorectal Cancer Is Another Negative Predictive Factor of the Cetuximab Therapy. Cancers (Basel) 2020; 12:cancers12030614. [PMID: 32155907 PMCID: PMC7139947 DOI: 10.3390/cancers12030614] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 02/28/2020] [Accepted: 03/04/2020] [Indexed: 12/15/2022] Open
Abstract
The selection of colorectal cancer patients for anti-epidermal growth factor receptor (EGFR) antibody therapy is based on the determination of their RAS mutation status—a strongly negative predictive factor—since the protein target, EGFR, is not a reliable predictor of therapeutic response. In this study, we revisited the EGFR protein issue using a cohort of 90 patients with KRAS exon2 wild-type colorectal cancer who have been treated with cetuximab therapy. Twenty-nine of these patients had metastatic tissue available for analysis. The level of EGFR protein expression in the patients was determined by immunohistochemistry and evaluated by H-score (HS) methodology. Progression-free survival (PFS) and overall survival (OS) of the patients were determined according to the EGFR-HS ranges of both the primary and metastatic tissues using Kaplan–Meyer statistics. In the case of primary tumors, EGFR scores lower than HS = 200 were associated with significantly longer OS. In the case of metastatic tissues, all levels lower than the EGFR-HS range chosen were associated with significantly longer OS. These results are explained by the fact that metastatic tissues rarely maintained the expression levels of the primary tumors. On the other hand, high EGFR expression levels in either primary tumors or metastatic tissues were associated with multiple metastatic disease. This suggests a negative prognostic role of EGFR expression. However, in a multivariate analysis, one-sidedness remained a strong independent predictive factor of survival. Previous studies demonstrated that the EGFR expression level depends on sidedness. Therefore, a subgroup analysis of the left- and right-sided cases was performed on both primary and metastatic tissues. In the case of metastic tissues, an analysis confirmed a better OS in low EGFR protein-expressing cases than in high EGFR protein-expressing cases. Collectively, these data suggest that EGFR protein expression is another negative predictive factor of the efficacy of cetuximab therapy of KRAS exon2 wild-type colorectal cancer.
Collapse
|
42
|
de Lima PO, Joseph S, Panizza B, Simpson F. Epidermal Growth Factor Receptor's Function in Cutaneous Squamous Cell Carcinoma and Its Role as a Therapeutic Target in the Age of Immunotherapies. Curr Treat Options Oncol 2020; 21:9. [PMID: 32016630 DOI: 10.1007/s11864-019-0697-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
OPINION STATEMENT Recent studies have evidenced the potential of combining anti-EGFR therapies with anti-PD-1/PD-L1 checkpoint therapies. Both anti-EGFR and anti-PD-1/PD-L1 have been separately tested in the treatment of cutaneous SCC (cSCC). Here, we review recent data on EGFR in the context of cancer progression, as a prognostic and as a therapeutic target in cSCC. Anti-EGFR/checkpoint immunotherapy and other combination therapy approaches are discussed. With the advent of immunotherapy, EGFR is still a valid cSCC target.
Collapse
Affiliation(s)
- Priscila Oliveira de Lima
- The University of Queensland Diamantina Institute, University of Queensland, Woolloongabba, Queensland, Australia
| | - Shannon Joseph
- The University of Queensland Diamantina Institute, University of Queensland, Woolloongabba, Queensland, Australia
| | - Benedict Panizza
- Faculty of Medicine, University of Queensland, Woolloongabba, Queensland, Australia.,Otolaryngology-Head and Neck Surgery Department, Princess Alexandra Hospital, Brisbane, Queensland, Australia
| | - Fiona Simpson
- The University of Queensland Diamantina Institute, University of Queensland, Woolloongabba, Queensland, Australia.
| |
Collapse
|
43
|
van Helden EJ, Elias SG, Gerritse SL, van Es SC, Boon E, Huisman MC, van Grieken NCT, Dekker H, van Dongen GAMS, Vugts DJ, Boellaard R, van Herpen CML, de Vries EGE, Oyen WJG, Brouwers AH, Verheul HMW, Hoekstra OS, Menke-van der Houven van Oordt CW. [ 89Zr]Zr-cetuximab PET/CT as biomarker for cetuximab monotherapy in patients with RAS wild-type advanced colorectal cancer. Eur J Nucl Med Mol Imaging 2019; 47:849-859. [PMID: 31705176 PMCID: PMC7076055 DOI: 10.1007/s00259-019-04555-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2019] [Accepted: 09/24/2019] [Indexed: 10/29/2022]
Abstract
PURPOSE One-third of patients with RAS wild-type mCRC do not benefit from anti-EGFR monoclonal antibodies. This might be a result of variable pharmacokinetics and insufficient tumor targeting. We evaluated cetuximab tumor accumulation on [89Zr]Zr-cetuximab PET/CT as a potential predictive biomarker and determinant for an escalating dosing strategy. PATIENTS AND METHODS PET/CT imaging of [89Zr]Zr-cetuximab (37 MBq/10 mg) after a therapeutic pre-dose (500 mg/m2 ≤ 2 h) cetuximab was performed at the start of treatment. Patients without visual tumor uptake underwent dose escalation and a subsequent [89Zr]Zr-cetuximab PET/CT. Treatment benefit was defined as stable disease or response on CT scan evaluation after 8 weeks. RESULTS Visual tumor uptake on [89Zr]Zr-cetuximab PET/CT was observed in 66% of 35 patients. There was no relationship between PET positivity and treatment benefit (52% versus 80% for PET-negative, P = 0.16), progression-free survival (3.6 versus 5.7 months, P = 0.15), or overall survival (7.1 versus 9.4 months, P = 0.29). However, in 67% of PET-negative patients, cetuximab dose escalation (750-1250 mg/m2) was applied, potentially influencing outcome in this group. None of the second [89Zr]Zr-cetuximab PET/CT was positive. Eighty percent of patients without visual tumor uptake had treatment benefit, making [89Zr]Zr-cetuximab PET/CT unsuitable as a predictive biomarker. Tumor SUVpeak did not correlate to changes in tumor size on CT (P = 0.23), treatment benefit, nor progression-free survival. Cetuximab pharmacokinetics were not related to treatment benefit. BRAF mutations, right-sidedness, and low sEGFR were correlated with intrinsic resistance to cetuximab. CONCLUSION Tumor uptake on [89Zr]Zr-cetuximab PET/CT failed to predict treatment benefit in patients with RAS wild-type mCRC receiving cetuximab monotherapy. BRAF mutations, right-sidedness, and low sEGFR correlated with intrinsic resistance to cetuximab.
Collapse
Affiliation(s)
- E J van Helden
- Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, Location VU Medical Center, Amsterdam, The Netherlands
| | - S G Elias
- Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - S L Gerritse
- Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, Location VU Medical Center, Amsterdam, The Netherlands
| | - S C van Es
- Medical Oncology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - E Boon
- Medical Oncology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - M C Huisman
- Radiology and Nuclear Medicine, Cancer Center Amsterdam, Amsterdam UMC, Location VU Medical Center, Amsterdam, The Netherlands
| | - N C T van Grieken
- Pathology, Cancer Center Amsterdam, Amsterdam UMC, Location VU Medical Center, Amsterdam, The Netherlands
| | - H Dekker
- Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, Location VU Medical Center, Amsterdam, The Netherlands
| | - G A M S van Dongen
- Radiology and Nuclear Medicine, Cancer Center Amsterdam, Amsterdam UMC, Location VU Medical Center, Amsterdam, The Netherlands
| | - D J Vugts
- Radiology and Nuclear Medicine, Cancer Center Amsterdam, Amsterdam UMC, Location VU Medical Center, Amsterdam, The Netherlands
| | - R Boellaard
- Radiology and Nuclear Medicine, Cancer Center Amsterdam, Amsterdam UMC, Location VU Medical Center, Amsterdam, The Netherlands
| | - C M L van Herpen
- Medical Oncology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - E G E de Vries
- Medical Oncology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - W J G Oyen
- Radiology and Nuclear Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
- The Institute of Cancer Research and The Royal Marsden Hospital, London, UK
| | - A H Brouwers
- Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - H M W Verheul
- Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, Location VU Medical Center, Amsterdam, The Netherlands
| | - O S Hoekstra
- Radiology and Nuclear Medicine, Cancer Center Amsterdam, Amsterdam UMC, Location VU Medical Center, Amsterdam, The Netherlands
| | | |
Collapse
|
44
|
Khan K, Valeri N, Dearman C, Rao S, Watkins D, Starling N, Chau I, Cunningham D. Targeting EGFR pathway in metastatic colorectal cancer- tumour heterogeniety and convergent evolution. Crit Rev Oncol Hematol 2019; 143:153-163. [PMID: 31678702 DOI: 10.1016/j.critrevonc.2019.09.001] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 08/28/2019] [Accepted: 09/03/2019] [Indexed: 12/30/2022] Open
Abstract
Despite significant progress in management of metastatic colorectal cancer (mCRC) pertaining to better screening procedures and amelioration of the therapeutic armamentarium with targeted therapies, prognosis remains poor. Targeting epidermal growth factor receptor (EGFR) has been of particular interest owing to favourable efficacy benefits demonstrated by monoclonal antibodies (cetuximab and panitumumab) in various clinical settings and development of predictive biomarkers informing treatment decisions respectively. In spite of optimal patient selection based on RAS mutation status, primary and secondary resistance to monoclonal antibodies is higher than desired. Further research into predictive biomarkers is therefore essential, but has, to date, been conducted with considerable limitations. Whilst molecular heterogeneity has been demonstrated by several studies in mCRC, for incomprehensible reasons, multiple resistant genetic alterations that emerge under the selective pressure of EGFR-targeted therapies are somehow able to influence the biological and clinical behaviour of cancer cells, despite being detectable at extremely low frequencies. Intriguingly, these subclonal events largely seem to converge on RAS/RAF/MAPK pathway in patients treated with EGFR-targeted monoclonal antibodies. This review describes the clinical and biological evolution and development of EGFR targeted therapies in mCRC, the challenges in the presence of molecular complexities, the role of cell free (cf)-DNA and future strategies that could lead to further optimal discovery of clinically meaningful biomarkers and application of precision medicine.
Collapse
Affiliation(s)
- Khurum Khan
- Gastrointestinal Unit, The Royal Marsden NHS Foundation Trust, Sutton SM2 5PT, UK; Gastrointestinal Unit, University College London Hospitals, 250 Euston Road London, NW1 2AF, UK
| | - Nicola Valeri
- Gastrointestinal Unit, The Royal Marsden NHS Foundation Trust, Sutton SM2 5PT, UK
| | - Charles Dearman
- Gastrointestinal Unit, The Royal Marsden NHS Foundation Trust, Sutton SM2 5PT, UK
| | - Sheela Rao
- Gastrointestinal Unit, The Royal Marsden NHS Foundation Trust, Sutton SM2 5PT, UK
| | - David Watkins
- Gastrointestinal Unit, The Royal Marsden NHS Foundation Trust, Sutton SM2 5PT, UK
| | - Naureen Starling
- Gastrointestinal Unit, The Royal Marsden NHS Foundation Trust, Sutton SM2 5PT, UK
| | - Ian Chau
- Gastrointestinal Unit, The Royal Marsden NHS Foundation Trust, Sutton SM2 5PT, UK
| | - David Cunningham
- Gastrointestinal Unit, The Royal Marsden NHS Foundation Trust, Sutton SM2 5PT, UK.
| |
Collapse
|
45
|
Yau TO. Precision treatment in colorectal cancer: Now and the future. JGH Open 2019; 3:361-369. [PMID: 31633039 PMCID: PMC6788378 DOI: 10.1002/jgh3.12153] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 01/04/2019] [Accepted: 01/14/2019] [Indexed: 12/19/2022]
Abstract
Until recently, a one-drug-fits-all model was applied to every patient diagnosed with the same condition. But not every condition is the same, and this has led to many cases of ineffective treatment. Pharmacogenetics is increasingly used to stratify patients for precision medicine treatments, for instance, the UGT1A1*28 polymorphism as a dosage indicator for the use of irinotecan as well as epidermal growth factor receptor (EGFR) immunohistochemistry and KRAS Proto-Oncogene (KRAS) exon 2 mutation tests for determining the likelihood of treatment response to cetuximab or panitumumab treatment in metastatic colorectal cancer (CRC). The other molecular subtypes, such as KRAS exon 3/4, B-Raf Proto-Oncogene, NRAF, PIK3CA, and PETN, were also reported as potential new pharmacogenetic targets for the current and the newly discovered anticancer drugs. In addition to next-generation sequencing (NGS), primary tumor cells for in vivo and in vitro drug screening, imaging biomarker 3'-Deoxy-3'-18F-fluorothymidine positron emission tomography, and circulating tumor DNA (ctDNA) detection methods are being developed and may represent the future direction of precision medicine. This review will discuss the current environment of precision medicine, including clinically approved targeted therapies, the latest potential therapeutic agents, and the ongoing pharmacogenetic trials for CRC patients.
Collapse
Affiliation(s)
- Tung On Yau
- John van Geest Cancer Research Centre, School of Science and TechnologyNottingham Trent UniversityNottinghamUK
| |
Collapse
|
46
|
Long-Term Vemurafenib Exposure Induced Alterations of Cell Phenotypes in Melanoma: Increased Cell Migration and Its Association with EGFR Expression. Int J Mol Sci 2019; 20:ijms20184484. [PMID: 31514305 PMCID: PMC6770060 DOI: 10.3390/ijms20184484] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 09/06/2019] [Accepted: 09/09/2019] [Indexed: 12/20/2022] Open
Abstract
Acquired resistance during BRAF inhibitor therapy remains a major challenge for melanoma treatment. Accordingly, we evaluated the phenotypical and molecular changes of isogeneic human V600E BRAF-mutant melanoma cell line pairs pre- and post-treatment with vemurafenib. Three treatment naïve lines were subjected to in vitro long-term vemurafenib treatment while three pairs were pre- and post-treatment patient-derived lines. Molecular and phenotypical changes were assessed by Sulforhodamine-B (SRB) assay, quantitative RT-PCR (q-RT-PCR), immunoblot, and time-lapse microscopy. We found that five out of six post-treatment cells had higher migration activity than pretreatment cells. However, no unequivocal correlation between increased migration and classic epithelial–mesenchymal transition (EMT) markers could be identified. In fast migrating cells, the microphthalmia-associated transcription factor (MITF) and epidermal growth factor receptor (EGFR) mRNA levels were considerably lower and significantly higher, respectively. Interestingly, high EGFR expression was associated with elevated migration but not with proliferation. Cells with high EGFR expression showed significantly decreased sensitivity to vemurafenib treatment, and had higher Erk activation and FRA-1 expression. Importantly, melanoma cells with higher EGFR expression were more resistant to the EGFR inhibitor erlotinib treatment than cells with lower expression, with respect to both proliferation and migration inhibition. Finally, EGFR-high melanoma cells were characterized by higher PD-L1 expression, which might in turn indicate that immunotherapy may be an effective approach in these cases.
Collapse
|
47
|
Van Haele M, Vander Borght S, Ceulemans A, Wieërs M, Metsu S, Sagaert X, Weynand B. Rapid clinical mutational testing of KRAS, BRAF and EGFR: a prospective comparative analysis of the Idylla technique with high-throughput next-generation sequencing. J Clin Pathol 2019; 73:35-41. [PMID: 31296605 DOI: 10.1136/jclinpath-2019-205970] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 06/24/2019] [Accepted: 06/25/2019] [Indexed: 12/22/2022]
Abstract
AIMS Precision medicine therapy is remodelling the diagnostic landscape of cancer. The success of these new therapies is often based on the presence or absence of a specific mutation in a tumour. The Idylla platform is designed to determine the mutational status of a tumour as quickly and accurately as possible, as a rapid, accurate diagnosis is of the utmost importance for the treatment of patients. This is the first complete prospective study to investigate the robustness of the Idylla platform for EGFR, KRAS and BRAF mutations in non-small cell lung cancer, metastatic colorectal cancer and metastatic melanoma, respectively. METHODS We compared prospectively the Idylla platform with the results we obtained from parallel high-throughput next-generation sequencing, which is the current gold standard for mutational testing. Furthermore, we evaluated the benefits and disadvantages of the Idylla platform in clinical practice. Additionally, we reviewed all the published Idylla performance articles. RESULTS There was an overall agreement of 100%, 94% and 94% between the next-generation panel and the Idylla BRAF, KRAS and EGFR mutation test. Two interesting discordant findings among 48 cases were observed and will be discussed together with the advantages and shortcoming of both techniques. CONCLUSION Our observations demonstrate that the Idylla cartridge for the EGFR, KRAS and BRAF mutations is highly accurate, rapid and has a limited hands-on time compared with next-generation sequencing.
Collapse
Affiliation(s)
- Matthias Van Haele
- Department of Imaging and Pathology, KU Leuven, Leuven, Belgium .,Pathology, University Hospitals Leuven, Leuven, Belgium
| | | | - An Ceulemans
- Department of Imaging and Pathology, KU Leuven, Leuven, Belgium
| | - Michiel Wieërs
- Department of Imaging and Pathology, KU Leuven, Leuven, Belgium
| | | | - Xavier Sagaert
- Department of Imaging and Pathology, KU Leuven, Leuven, Belgium.,Pathology, University Hospitals Leuven, Leuven, Belgium
| | - Birgit Weynand
- Department of Imaging and Pathology, KU Leuven, Leuven, Belgium.,Pathology, University Hospitals Leuven, Leuven, Belgium
| |
Collapse
|
48
|
Alpha-Gal-containing biologics and anaphylaxis. Allergol Int 2019; 68:296-300. [PMID: 31053502 DOI: 10.1016/j.alit.2019.04.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Accepted: 03/19/2019] [Indexed: 01/17/2023] Open
Abstract
Cetuximab, the IgG1 subclass chimeric mouse-human monoclonal antibody biologic that targets the epidermal growth factor receptor (EGFR), is used worldwide for the treatment of EGFR-positive unresectable progressive/recurrent colorectal cancer and head and neck cancer. Research has shown that the principal cause of cetuximab-induced anaphylaxis is anti-oligosaccharide IgE antibodies specific for galactose-α-1,3-galactose (α-Gal) oligosaccharide present on the mouse-derived Fab portion of the cetuximab heavy chain. Furthermore, it has been revealed that patients who are allergic to cetuximab also develop an allergic reaction to mammalian meat containing the same α-Gal oligosaccharide owing to cross-reactivity, and the presumed cause of sensitization is tick bites: Amblyomma in the United States, Ixodes in Australia and Europe, and Haemaphysalis in Japan. The α-Gal-specific IgE test (bovine thyroglobulin-conjugated ImmunoCAP) or CD63-expression-based basophil activation test may be useful to identify patients with IgE to α-Gal in order to predict risk for cetuximab-induced anaphylactic shock. Investigations of cetuximab-related anaphylaxis have revealed three novel findings that improve our understanding of immediate-type allergy: 1) oligosaccharide can serve as the main IgE epitope of anaphylaxis; 2) because of the oligosaccharide epitope, a wide range of cross-reactivity with mammalian meats containing α-Gal similar to cetuximab occurs; and 3) tick bites are a crucial factor of sensitization to the oligosaccharide. Nonetheless, taking a medical history of tick bites and beef allergy may be insufficient to prevent cetuximab-induced anaphylaxis, and therefore blood testing with an α-Gal-specific IgE test, with high sensitivity and specificity, is necessary to detect sensitization to α-Gal.
Collapse
|
49
|
Isolated Metastases to Multiple Genital Organs: a Curious Case of Metachronous Spread of Carcinoma Colon. Indian J Surg Oncol 2019; 10:321-323. [DOI: 10.1007/s13193-018-0855-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 12/04/2018] [Indexed: 10/27/2022] Open
|
50
|
Mizukami T, Izawa N, Nakajima TE, Sunakawa Y. Targeting EGFR and RAS/RAF Signaling in the Treatment of Metastatic Colorectal Cancer: From Current Treatment Strategies to Future Perspectives. Drugs 2019; 79:633-645. [PMID: 30968289 DOI: 10.1007/s40265-019-01113-0] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The epidermal growth factor receptor (EGFR) and RAS/RAF signaling pathway plays pivotal roles in tumor progression via proliferation, survival, invasion, and immune evasion. Two anti-EGFR monoclonal antibodies, cetuximab and panitumumab, have become essential components in the treatment of patients with metastatic colorectal cancer (mCRC). Treatment with these anti-EGFR antibodies has shown definite benefits when administered in all treatment lines and is strongly recommended as the preferred regimen to prolong survival, especially when administered in the first- and third-lines. Recent efforts have revealed not only mechanisms responsible for resistance to anti-EGFR antibodies, including expanded RAS mutations as a negative predictive biomarker, but also the possibility of continuing anti-EGFR antibody treatment in combination with chemotherapy. Furthermore, the challenges associated with the pharmaceutical development of treatments for patients with mutant-type BRAF mCRC are ongoing. In this review, we provide an overview of the EGFR and RAS/RAF signaling pathway and antitumor activity, focusing on practical aspects such as established treatments including patient selection, treatment strategies, and future perspectives for drug development targeting the EGFR and RAS/RAF signaling pathway.
Collapse
Affiliation(s)
- Takuro Mizukami
- Department of Clinical Oncology, St. Marianna University School of Medicine, 2-16-1, Sugao, Miyamae, Kawasaki, Kanagawa, 2168511, Japan
| | - Naoki Izawa
- Department of Clinical Oncology, St. Marianna University School of Medicine, 2-16-1, Sugao, Miyamae, Kawasaki, Kanagawa, 2168511, Japan
| | - Takako Eguchi Nakajima
- Department of Clinical Oncology, St. Marianna University School of Medicine, 2-16-1, Sugao, Miyamae, Kawasaki, Kanagawa, 2168511, Japan
| | - Yu Sunakawa
- Department of Clinical Oncology, St. Marianna University School of Medicine, 2-16-1, Sugao, Miyamae, Kawasaki, Kanagawa, 2168511, Japan.
| |
Collapse
|