1
|
Keshri AK, Rawat SS, Chaudhary A, Sharma S, Kapoor A, Mehra P, Kaur R, Mishra A, Prasad A. LL-37, the master antimicrobial peptide, its multifaceted role from combating infections to cancer immunity. Int J Antimicrob Agents 2025; 65:107398. [PMID: 39643165 DOI: 10.1016/j.ijantimicag.2024.107398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 11/16/2024] [Accepted: 11/28/2024] [Indexed: 12/09/2024]
Abstract
Antimicrobial peptides (AMPs) represent a unique group of naturally occurring molecules having diverse biological activities, including potent antimicrobial properties. Among them, LL-37 has emerged as a significant player, demonstrating its multifaceted roles during bacterial, fungal, and viral infections, as well as exhibiting intriguing implications in cancer. This review delves into the versatile functions of LL-37, elucidating its mechanisms of action against microbial pathogens and its potential to modulate immune responses. We explored the efficacy of LL-37 in disrupting bacterial membranes, inhibiting fungal growth, and interfering with viral replication, highlighting its potential as a therapeutic agent against a wide array of infectious diseases. Furthermore, we discussed the emerging role of LL-37 in cancer immunity, where its immunomodulatory effects and direct cytotoxicity towards cancer cells offer novel avenues for cancer therapy in the near future. We provided a comprehensive overview of the activities of LL-37 across various diseases and underscored the importance of further research into harnessing the therapeutic potential of this potential antimicrobial peptide along with other suitable candidates.
Collapse
Affiliation(s)
- Anand K Keshri
- School of Biosciences and Bioengineering, Indian Institute of Technology Mandi, Mandi, Himachal Pradesh, India
| | - Suraj S Rawat
- School of Biosciences and Bioengineering, Indian Institute of Technology Mandi, Mandi, Himachal Pradesh, India
| | - Anubha Chaudhary
- School of Biosciences and Bioengineering, Indian Institute of Technology Mandi, Mandi, Himachal Pradesh, India
| | - Swati Sharma
- School of Biosciences and Bioengineering, Indian Institute of Technology Mandi, Mandi, Himachal Pradesh, India
| | - Ananya Kapoor
- School of Biosciences and Bioengineering, Indian Institute of Technology Mandi, Mandi, Himachal Pradesh, India
| | - Parul Mehra
- School of Biosciences and Bioengineering, Indian Institute of Technology Mandi, Mandi, Himachal Pradesh, India
| | - Rimanpreet Kaur
- School of Biosciences and Bioengineering, Indian Institute of Technology Mandi, Mandi, Himachal Pradesh, India
| | - Amit Mishra
- Cellular and Molecular Neurobiology Unit, Indian Institute of Technology Jodhpur, Rajasthan, India
| | - Amit Prasad
- School of Biosciences and Bioengineering, Indian Institute of Technology Mandi, Mandi, Himachal Pradesh, India; Indian Knowledge System and Mental Health Application Centre, Indian Institute of Technology Mandi, Himachal Pradesh, India.
| |
Collapse
|
2
|
Peng Y, Zhou Y, Shu K, Jia X, Zhong Y. Signal mining of adverse events of proteasome inhibitors in multiple myeloma based on FAERS. Front Pharmacol 2024; 15:1396378. [PMID: 39290866 PMCID: PMC11405236 DOI: 10.3389/fphar.2024.1396378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 08/08/2024] [Indexed: 09/19/2024] Open
Abstract
Objective To mine and analyze adverse events (AEs) related to proteasome inhibitors in multiple myeloma based on the FDA Adverse Event Reporting System (FAERS), providing references for rational clinical medication. Methods AE data related to multiple myeloma proteasome inhibitors were collected from the FAERS from the first quarter of 2010 to the first quarter of 2024. Signal mining of AEs was conducted using the reporting odds ratio method and Bayesian confidence propagation neural network method. Results A total of 8,805 reports for bortezomib, 5,264 for carfilzomib, and 8,771 for ixazomib were collected, with corresponding AE signals of 474, 279, and 287, respectively, involving 23, 21, and 22 System Organ Classes (SOCs). The report information for the three drugs tended to be consistent: more cases were reported in males than in females; the majority of patients were 65 years and over; AEs mostly occurred within 6 months of medication; the outcomes primarily consisted of hospitalization, prolonged hospital stay, and other serious adverse events; the primary reporting country was the United States. The most affected SOCs were infections and infestations, general disorders and administration site conditions, and blood and lymphatic system disorders. Conclusion The overall distribution of AEs for the three multiple myeloma proteasome inhibitors was consistent, but there were certain differences in specific AE signal characteristics, which should be noted in clinical applications.
Collapse
Affiliation(s)
- Yuan Peng
- Department of Pharmacy, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, China
- School of Pharmacy, North Sichuan Medical College, Nanchong, Sichuan, China
| | - Yuying Zhou
- The First Clinical Medical College, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Kaisen Shu
- School of Pharmacy, North Sichuan Medical College, Nanchong, Sichuan, China
| | - Xu Jia
- Department of Pharmacy, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, China
| | - Yan Zhong
- Department of Pharmacy, Hospital of Chengdu Office of People's Government of Tibetan Autonomous Region (Hospital.C.T), Chengdu, Sichuan, China
| |
Collapse
|
3
|
Rajkumar SV. Multiple myeloma: 2024 update on diagnosis, risk-stratification, and management. Am J Hematol 2024; 99:1802-1824. [PMID: 38943315 PMCID: PMC11404783 DOI: 10.1002/ajh.27422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Accepted: 06/11/2024] [Indexed: 07/01/2024]
Abstract
DISEASE OVERVIEW Multiple myeloma accounts for approximately 10% of hematologic malignancies. DIAGNOSIS The diagnosis requires ≥10% clonal bone marrow plasma cells or a biopsy proven plasmacytoma plus evidence of one or more multiple myeloma defining events (MDE): CRAB (hypercalcemia, renal failure, anemia, or lytic bone lesions) attributable to the plasma cell disorder, bone marrow clonal plasmacytosis ≥60%, serum involved/uninvolved free light chain (FLC) ratio ≥100 (provided involved FLC is ≥100 mg/L and urine monoclonal protein is ≥200 mg/24 h), or >1 focal lesion on magnetic resonance imaging. RISK STRATIFICATION The presence of del(17p), t(4;14), t(14;16), t(14;20), gain 1q, del 1p, or p53 mutation is considered high-risk multiple myeloma. Presence of any two high risk factors is considered double-hit myeloma; three or more high risk factors is triple-hit myeloma. RISK-ADAPTED INITIAL THERAPY In patients who are candidates for autologous stem cell transplantation, induction therapy consists of anti-CD38 monoclonal antibody plus bortezomib, lenalidomide, dexamethasone (VRd) followed by autologous stem cell transplantation (ASCT). Selected standard risk patients can delay transplant until first relapse. Frail patients who not candidates for transplant are treated with VRd for approximately 8-12 cycles followed by maintenance or alternatively with daratumumab, lenalidomide, dexamethasone (DRd) until progression. MAINTENANCE THERAPY Standard risk patients need lenalidomide maintenance, while bortezomib plus lenalidomide maintenance is needed for high-risk myeloma. MANAGEMENT OF RELAPSED DISEASE A triplet regimen is usually needed at relapse, with the choice of regimen varying with each successive relapse. Chimeric antigen receptor T (CAR-T) cell therapy and bispecific antibodies are additional options.
Collapse
|
4
|
Kawale AS, Zou L. Regulation, functional impact, and therapeutic targeting of APOBEC3A in cancer. DNA Repair (Amst) 2024; 141:103734. [PMID: 39047499 PMCID: PMC11330346 DOI: 10.1016/j.dnarep.2024.103734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 07/16/2024] [Accepted: 07/19/2024] [Indexed: 07/27/2024]
Abstract
Enzymes of the apolipoprotein B mRNA editing catalytic polypeptide like (APOBEC) family are cytosine deaminases that convert cytosine to uracil in DNA and RNA. Among these proteins, APOBEC3 sub-family members, APOBEC3A (A3A) and APOBEC3B (A3B), are prominent sources of mutagenesis in cancer cells. The aberrant expression of A3A and A3B in cancer cells leads to accumulation of mutations with specific single-base substitution (SBS) signatures, characterized by C→T and C→G changes, in a number of tumor types. In addition to fueling mutagenesis, A3A and A3B, particularly A3A, induce DNA replication stress, DNA damage, and chromosomal instability through their catalytic activities, triggering a range of cellular responses. Thus, A3A/B have emerged as key drivers of genome evolution during cancer development, contributing to tumorigenesis, tumor heterogeneity, and therapeutic resistance. Yet, the expression of A3A/B in cancer cells presents a cancer vulnerability that can be exploited therapeutically. In this review, we discuss the recent studies that shed light on the mechanisms regulating A3A expression and the impact of A3A in cancer. We also review recent advances in the development of A3A inhibitors and provide perspectives on the future directions of A3A research.
Collapse
Affiliation(s)
- Ajinkya S Kawale
- Massachusetts General Hospital Cancer Center and Harvard Medical School, Boston, MA, USA
| | - Lee Zou
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC, USA.
| |
Collapse
|
5
|
Deng K, Li Q, Lu L, Wang L, Cheng Z, Wang S. Proteasome and PARP1 dual-target inhibitor for multiple myeloma: Fluzoparib. Biochem Biophys Rep 2024; 39:101781. [PMID: 39071914 PMCID: PMC11279668 DOI: 10.1016/j.bbrep.2024.101781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 06/05/2024] [Accepted: 07/05/2024] [Indexed: 07/30/2024] Open
Abstract
One of the current mainstream treatments for multiple myeloma (MM) is chemotherapy. However, due to the high clonal heterogeneity and genomic complexity of MM, single-target drugs have limited efficacy and are prone to drug resistance. Therefore, there is an urgent need to develop multi-target drugs against MM. We screened drugs that simultaneously inhibit poly(ADP-ribose) polymerase 1 (PARP1) and 20S proteasome through computer-aided drug discovery (CADD) techniques, and explored the binding mode and dynamic stability of selected inhibitor to proteasome through Molecular biology (MD) simulation method. Thus, the dual-target inhibition effect of fluzoparib was proposed for the first time, and the ability of dual-target inhibition and tumor killing was explored at the enzyme, cell and animal level, respectively. This provides a theoretical and experimental basis for exploring multi-target inhibitory drugs for cancers.
Collapse
Affiliation(s)
- Kai Deng
- Department of Orthopedics, Shenzhen Longhua District Central Hospital, Shenzhen, Guangdong, China
| | - Qiongqiong Li
- Department of Hematology, Shenzhen Longhua District Central Hospital, Shenzhen, Guangdong, China
| | - Lina Lu
- Department of Hematology, Shenzhen Longhua District Central Hospital, Shenzhen, Guangdong, China
| | - Luting Wang
- Department of Hematology, Shenzhen Longhua District Central Hospital, Shenzhen, Guangdong, China
| | - Zhiyong Cheng
- Department of Hematology, Baoding No.1 Hospital, Baoding, Hebei, China
| | - Suyun Wang
- Department of Hematology, Shenzhen Longhua District Central Hospital, Shenzhen, Guangdong, China
| |
Collapse
|
6
|
Qian L, Zhu J, Xue Z, Zhou Y, Xiang N, Xu H, Sun R, Gong W, Cai X, Sun L, Ge W, Liu Y, Su Y, Lin W, Zhan Y, Wang J, Song S, Yi X, Ni M, Zhu Y, Hua Y, Zheng Z, Guo T. Proteomic landscape of epithelial ovarian cancer. Nat Commun 2024; 15:6462. [PMID: 39085232 PMCID: PMC11291745 DOI: 10.1038/s41467-024-50786-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 07/19/2024] [Indexed: 08/02/2024] Open
Abstract
Epithelial ovarian cancer (EOC) is a deadly disease with limited diagnostic biomarkers and therapeutic targets. Here we conduct a comprehensive proteomic profiling of ovarian tissue and plasma samples from 813 patients with different histotypes and therapeutic regimens, covering the expression of 10,715 proteins. We identify eight proteins associated with tumor malignancy in the tissue specimens, which are further validated as potential circulating biomarkers in plasma. Targeted proteomics assays are developed for 12 tissue proteins and 7 blood proteins, and machine learning models are constructed to predict one-year recurrence, which are validated in an independent cohort. These findings contribute to the understanding of EOC pathogenesis and provide potential biomarkers for early detection and monitoring of the disease. Additionally, by integrating mutation analysis with proteomic data, we identify multiple proteins related to DNA damage in recurrent resistant tumors, shedding light on the molecular mechanisms underlying treatment resistance. This study provides a multi-histotype proteomic landscape of EOC, advancing our knowledge for improved diagnosis and treatment strategies.
Collapse
Affiliation(s)
- Liujia Qian
- School of Medicine, Westlake University, Hangzhou, Zhejiang Province, China
- Westlake Center for Intelligent Proteomics, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang Province, China
- Research Center for Industries of the Future, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
- Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, Zhejiang, China
| | - Jianqing Zhu
- Zhejiang Cancer Hospital, Hangzhou, Zhejiang, China
- Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang, China
| | - Zhangzhi Xue
- School of Medicine, Westlake University, Hangzhou, Zhejiang Province, China
- Westlake Center for Intelligent Proteomics, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang Province, China
- Research Center for Industries of the Future, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
- Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, Zhejiang, China
| | - Yan Zhou
- School of Medicine, Westlake University, Hangzhou, Zhejiang Province, China
- Westlake Center for Intelligent Proteomics, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang Province, China
- Research Center for Industries of the Future, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
- Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, Zhejiang, China
| | - Nan Xiang
- School of Medicine, Westlake University, Hangzhou, Zhejiang Province, China
- Westlake Center for Intelligent Proteomics, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang Province, China
- Research Center for Industries of the Future, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
- Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, Zhejiang, China
| | - Hong Xu
- MOE Key Laboratory of Biosystems Homeostasis and Protection, Institute of Biophysics, College of Life Science, Zhejiang University, Hangzhou, China
| | - Rui Sun
- School of Medicine, Westlake University, Hangzhou, Zhejiang Province, China
- Westlake Center for Intelligent Proteomics, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang Province, China
- Research Center for Industries of the Future, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
- Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, Zhejiang, China
| | - Wangang Gong
- Zhejiang Cancer Hospital, Hangzhou, Zhejiang, China
- Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang, China
| | - Xue Cai
- School of Medicine, Westlake University, Hangzhou, Zhejiang Province, China
- Westlake Center for Intelligent Proteomics, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang Province, China
- Research Center for Industries of the Future, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
- Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, Zhejiang, China
| | - Lu Sun
- Zhejiang Cancer Hospital, Hangzhou, Zhejiang, China
- Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang, China
| | - Weigang Ge
- Westlake Omics (Hangzhou) Biotechnology Co., Ltd., Hangzhou, Zhejiang Province, China
| | - Yufeng Liu
- MOE Key Laboratory of Biosystems Homeostasis and Protection, Institute of Biophysics, College of Life Science, Zhejiang University, Hangzhou, China
| | - Ying Su
- Zhejiang Cancer Hospital, Hangzhou, Zhejiang, China
- Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang, China
| | - Wangmin Lin
- Westlake Omics (Hangzhou) Biotechnology Co., Ltd., Hangzhou, Zhejiang Province, China
| | - Yuecheng Zhan
- Westlake Omics (Hangzhou) Biotechnology Co., Ltd., Hangzhou, Zhejiang Province, China
| | - Junjian Wang
- Zhejiang Cancer Hospital, Hangzhou, Zhejiang, China
- Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang, China
| | - Shuang Song
- MOE Key Laboratory of Biosystems Homeostasis and Protection, Institute of Biophysics, College of Life Science, Zhejiang University, Hangzhou, China
| | - Xiao Yi
- School of Medicine, Westlake University, Hangzhou, Zhejiang Province, China
- Westlake Center for Intelligent Proteomics, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang Province, China
- Research Center for Industries of the Future, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
- Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, Zhejiang, China
| | - Maowei Ni
- Zhejiang Cancer Hospital, Hangzhou, Zhejiang, China
- Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang, China
| | - Yi Zhu
- School of Medicine, Westlake University, Hangzhou, Zhejiang Province, China.
- Westlake Center for Intelligent Proteomics, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang Province, China.
- Research Center for Industries of the Future, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China.
- Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, Zhejiang, China.
| | - Yuejin Hua
- MOE Key Laboratory of Biosystems Homeostasis and Protection, Institute of Biophysics, College of Life Science, Zhejiang University, Hangzhou, China.
| | - Zhiguo Zheng
- Zhejiang Cancer Hospital, Hangzhou, Zhejiang, China.
- Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang, China.
| | - Tiannan Guo
- School of Medicine, Westlake University, Hangzhou, Zhejiang Province, China.
- Westlake Center for Intelligent Proteomics, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang Province, China.
- Research Center for Industries of the Future, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China.
- Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, Zhejiang, China.
| |
Collapse
|
7
|
Lobas AA, Saei AA, Lyu H, Zubarev RA, Gorshkov MV. Chemical Proteomics Reveals that the Anticancer Drug Everolimus Affects the Ubiquitin-Proteasome System. ACS Pharmacol Transl Sci 2024; 7:787-796. [PMID: 38481686 PMCID: PMC10928898 DOI: 10.1021/acsptsci.3c00316] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 01/15/2024] [Accepted: 01/19/2024] [Indexed: 02/09/2025]
Abstract
Rapamycin is a natural antifungal, immunosuppressive, and antiproliferative compound that allosterically inhibits mTOR complex 1. The ubiquitin-proteasome system (UPS) responsible for protein turnover is usually not listed among the pathways affected by mTOR signaling. However, some previous studies have indicated the interplay between the UPS and mTOR. It has also been reported that rapamycin and its analogs can allosterically inhibit the proteasome itself. In this work, we studied the molecular effect of rapamycin and its analogs (rapalogs), everolimus and temsirolimus, on the A549 cell line by expression proteomics. The analysis of differentially expressed proteins showed that the cellular response to everolimus treatment is strikingly different from that to rapamycin and temsirolimus. In the cluster analysis, the effect of everolimus was similar to that of bortezomib, a well-established proteasome inhibitor. UPS-related pathways were enriched in the cluster of proteins specifically upregulated upon everolimus and bortezomib treatments, suggesting that both compounds have similar proteasome inhibition effects. In particular, the total amount of ubiquitin was significantly elevated in the samples treated with everolimus and bortezomib, and analysis of the polyubiquitination patterns revealed elevated intensities of the ubiquitin peptide with a GG modification at the K48 residue, consistent with a bottleneck in proteasomal protein degradation. Moreover, the everolimus treatment resulted in both ubiquitin phosphorylation and generation of a significant amount of semitryptic peptides, illustrating the increase in the protease activity. These observations suggest that everolimus affects the UPS in a unique way, and its mechanism of action is different from that of its close chemical analogs, rapamycin and temsirolimus.
Collapse
Affiliation(s)
- Anna A. Lobas
- V.
L. Talrose Institute for Energy Problems of Chemical Physics, Federal
Research Center for Chemical Physics, Russian
Academy of Sciences, 119334 Moscow, Russia
| | - Amir Ata Saei
- Division
of Physiological Chemistry I, Department of Medical Biochemistry and
Biophysics, Karolinska Institutet, SE-17 177 Stockholm, Sweden
- Biozentrum, University of Basel, 4056 Basel, Switzerland
- Center
for Translational Microbiome Research, Department of Microbiology,
Tumor and Cell Biology, Karolinska Institutet, SE-17 177 Stockholm, Sweden
| | - Hezheng Lyu
- Division
of Physiological Chemistry I, Department of Medical Biochemistry and
Biophysics, Karolinska Institutet, SE-17 177 Stockholm, Sweden
| | - Roman A. Zubarev
- Division
of Physiological Chemistry I, Department of Medical Biochemistry and
Biophysics, Karolinska Institutet, SE-17 177 Stockholm, Sweden
- The
National Medical Research Center for Endocrinology, 115478 Moscow, Russia
| | - Mikhail V. Gorshkov
- V.
L. Talrose Institute for Energy Problems of Chemical Physics, Federal
Research Center for Chemical Physics, Russian
Academy of Sciences, 119334 Moscow, Russia
| |
Collapse
|
8
|
Chan PF, Ang KP, Hamid RA. Cytotoxicity of bismuth(III) dithiocarbamate derivatives by promoting a mitochondrial-dependent apoptotic pathway and suppressing MCF-7 breast adenocarcinoma cell invasion. J Biol Inorg Chem 2024; 29:217-241. [PMID: 38369679 DOI: 10.1007/s00775-023-02041-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Accepted: 10/30/2023] [Indexed: 02/20/2024]
Abstract
We previously reported that the bismuth(III) dithiocarbamate derivative, bismuth diethyldithiocarbamate (1) exhibited greater cytotoxicity while inducing apoptosis via the intrinsic pathway in MCF-7 cells. We further evaluated the other bismuth(III) dithiocarbamate derivatives, Bi[S2CNR]3, with R = (CH2CH2OH)(iPr), (CH2)4, and (CH2CH2OH)(CH3), denoted as 2, 3, and 4, respectively, in the same MCF-7 cell line. 2-4 were found to exhibit IC50 values of 10.33 ± 0.06 µM, 1.07 ± 0.01 µM and 25.37 ± 0.12 µM, respectively, compared to that of cisplatin at 30.53 ± 0.23 µM. Apoptotic promotion via the mitochondrial-dependent pathway was due to the elevation of intracellular reactive oxygen species (ROS), promotion of caspases, release of cytochrome c, fragmentation of DNA, and results of staining assay observed in all compound-treated cells. 2-4 are also capable of suppressing MCF-7 cell invasion and modulate Lys-48 also Lys-63 linked polyubiquitination, leading to proteasomal degradation. Analysis of gene expression via qRT-PCR revealed their modulation, which supported all activities conducted upon treatment with 2-4. Altogether, bismuth dithiocarbamate derivatives, with bismuth(III) as the metal center bound to ligands, isopropyl ethanol, pyrrolidine, and methyl ethanol dithiocarbamate, are potential anti-breast cancer agents that induce apoptosis and suppress metastasis. Further studies using other breast cancer cell lines and in vivo studies are recommended to clarify the anticancer effects of these compounds.
Collapse
Affiliation(s)
- Pit Foong Chan
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| | - Kok Pian Ang
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| | - Roslida Abd Hamid
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia.
| |
Collapse
|
9
|
Pakjoo M, Ahmadi SE, Zahedi M, Jaafari N, Khademi R, Amini A, Safa M. Interplay between proteasome inhibitors and NF-κB pathway in leukemia and lymphoma: a comprehensive review on challenges ahead of proteasome inhibitors. Cell Commun Signal 2024; 22:105. [PMID: 38331801 PMCID: PMC10851565 DOI: 10.1186/s12964-023-01433-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Accepted: 12/11/2023] [Indexed: 02/10/2024] Open
Abstract
The current scientific literature has extensively explored the potential role of proteasome inhibitors (PIs) in the NF-κB pathway of leukemia and lymphoma. The ubiquitin-proteasome system (UPS) is a critical component in regulating protein degradation in eukaryotic cells. PIs, such as BTZ, are used to target the 26S proteasome in hematologic malignancies, resulting in the prevention of the degradation of tumor suppressor proteins, the activation of intrinsic mitochondrial-dependent cell death, and the inhibition of the NF-κB signaling pathway. NF-κB is a transcription factor that plays a critical role in the regulation of apoptosis, cell proliferation, differentiation, inflammation, angiogenesis, and tumor migration. Despite the successful use of PIs in various hematologic malignancies, there are limitations such as resistant to these inhibitors. Some reports suggest that PIs can induce NF-κB activation, which increases the survival of malignant cells. This article discusses the various aspects of PIs' effects on the NF-κB pathway and their limitations. Video Abstract.
Collapse
Affiliation(s)
- Mahdi Pakjoo
- Department of Hematology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
- ATMP department, Breast cancer research center, Motamed cancer institute, ACECR, P.O. BOX:15179/64311, Tehran, Iran
| | - Seyed Esmaeil Ahmadi
- Department of Hematology and Blood Banking, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammad Zahedi
- Department of Medical Biotechnology, School of Allied Medicine, Student Research Committee, Iran University of Medical Sciences, Tehran, Iran
| | - Niloofar Jaafari
- Department of Hematology and Blood Banking, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Reyhane Khademi
- Thalassemia & Hemoglobinopathy Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Ali Amini
- Department of Hematology and Blood Banking, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran.
| | - Majid Safa
- Department of Hematology and Blood Banking, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
10
|
Li H, He Y, Wang Y, Xu M. Successful treatment with bortezomib in combination with dexamethasone in a middle-aged male with idiopathic multicentric Castleman's disease: A case report. Open Med (Wars) 2024; 19:20230763. [PMID: 38250020 PMCID: PMC10799255 DOI: 10.1515/med-2023-0763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 07/04/2023] [Accepted: 07/04/2023] [Indexed: 01/23/2024] Open
Abstract
Multicentric Castleman disease (MCD) is a heterogeneous, life-threatening disease. A subgroup of HIV-negative and HHV-8-negative MCD is defined as idiopathic MCD (iMCD) with a poor prognosis. Here we report an unusual case of a 47-year-old male patient with iMCD who experienced multiple treatment regimens such as chemotherapy, immunomodulatory therapy, and targeted therapy, all of which were considered ineffective. Subsequently, he was started on bortezomib in combination with dexamethasone for six cycles and he was in complete remission. The patient has survived nearly 13 years to date - the longest survival of any iMCD patient treated with bortezomib in combination with dexamethasone. Bortezomib combined with dexamethasone may be an effective salvage strategy for severe and refractory iMCD.
Collapse
Affiliation(s)
- Hongling Li
- Department of Oncology, Gansu Provincial Hospital, 204 West Donggang Road, 730000, Gansu, Lanzhou, China
| | - Yang He
- College of Clinical Medicine, Ningxia Medical University, Yinchuan, China
- Department of Oncology, Gansu Provincial Hospital, Gansu, Lanzhou, China
| | - Yongying Wang
- First College of Clinical Medicine, Gansu University of Chinese Medicine, Lanzhou, China
- Department of Oncology, Gansu Provincial Hospital, Gansu, Lanzhou, China
| | - Mengwei Xu
- Department of Pathology, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| |
Collapse
|
11
|
Zafeiropoulou K, Kalampounias G, Alexis S, Androutsopoulou T, Katsoris P, Symeonidis A. Lower-Risk Myelodysplastic Syndrome (MDS) Patients Exhibit Diminished Proteasome Proteolytic Activity and High Intracellular Reactive Oxygen Species (ROS) Levels. Cureus 2023; 15:e49843. [PMID: 38169896 PMCID: PMC10758539 DOI: 10.7759/cureus.49843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/02/2023] [Indexed: 01/05/2024] Open
Abstract
Myelodysplastic syndromes (MDS) constitute a heterogeneous group of clonal hematopoietic stem cell disorders characterized by ineffective hematopoiesis and an elevated risk of transformation to acute myeloid leukemia (AML). Available disease-modifying treatment approaches are limited. The ineffectiveness of proteasome inhibitors (PIs) in MDS patients is currently investigated, although it is unclear whether they rapidly develop resistance to PIs or whether proteasome proteolytic activity (PPA) is constitutively lower in the hematopoietic cells of these patients, thus limiting treatment effectiveness. We investigated 20 patients with MDS, categorized according to the International Prognostic Scoring System (IPSS) into a lower- or a higher-risk group. Peripheral blood mononuclear cells, bone marrow mononuclear cells, and cluster of differentiation 34-positive (CD34+) cells were isolated and assessed for the chymotrypsin-like activity of the proteasome and β5 subunit accumulation. Additionally, intracellular reactive oxygen species (ROS) generation was screened. The lower-risk patient group (n=10) exhibited significantly lower proteasome activity (p<0.001) compared to both the higher-risk group (n=10) and healthy subjects (n=10). Furthermore, the lower-risk group had elevated oxidative stress levels (p<0.0001) and reduced β5 subunit expression (p=0.0286). Both parameters were shown to be associated with transfusion dependency, since transfusion-dependent patients (n=5 in each subgroup) had decreased proteasome activity and simultaneously exhibited higher ROS levels. Our results indicate that reduced β5 expression might potentially explain PIs' ineffectiveness in lower-risk MDS, elucidating the importance of the risk group in the selection of the proper treatment algorithm.
Collapse
Affiliation(s)
| | | | | | | | | | - Argiris Symeonidis
- School of Medicine, University of Patras, Patras, GRC
- Hematology Division, Department of Internal Medicine, University General Hospital of Patras, Patras, GRC
| |
Collapse
|
12
|
Terui H, Segawa Y, Asano Y. Targeting B cells for treatment of systemic sclerosis. Curr Opin Rheumatol 2023; 35:317-323. [PMID: 37540776 DOI: 10.1097/bor.0000000000000961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/06/2023]
Abstract
PURPOSE OF REVIEW The pathogenesis of systemic sclerosis (SSc) has been linked to dysfunctional B cells as demonstrated in previous research. This review aims to show the evidence and ongoing clinical trials of B cell-targeted therapy and overview the various aspects of B cell involvement in SSc. RECENT FINDINGS We provide an overview of the current understanding and therapeutic strategies targeting B cells in SSc patients. Several molecular targets of B cells have been identified for treating SSc, including CD20, CD19, B-cell activating factor (BAFF), and proteasome. SUMMARY Many clinical trials have demonstrated that B cells play a critical role in the pathogenesis of SSc and may be a potential therapeutic target to improve disease symptoms. Although large-scale clinical studies are needed, various B cell-targeted therapies have the potential to address the unmet needs of SSc patients.
Collapse
Affiliation(s)
- Hitoshi Terui
- Department of Dermatology, Tohoku University Graduate School of Medicine, Japan
| | | | | |
Collapse
|
13
|
Solia E, Dimopoulos MA, Kastritis E. Proteasome Inhibitor-Based Regimens in the Frontline Management of Waldenström Macroglobulinemia. Hematol Oncol Clin North Am 2023; 37:689-705. [PMID: 37211495 DOI: 10.1016/j.hoc.2023.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Proteasome inhibitors (PIs) have long been used in myeloma therapy but also for Waldenström macroglobulinemia. Their use has been successful and has also been investigated for the frontline management of the disease. Bortezomib was effective either as a single agent or in combination with other regimens with high response rates observed in most studies, despite its adverse effects, especially neurotoxicity, which remains a major concern. Clinical trials with second-generation PIs such as carfilzomib and ixazomib have also been conducted, always in combination with immunotherapy in previously untreated patients. They have been shown to be active and neuropathy-sparing treatment options.
Collapse
Affiliation(s)
- Eirini Solia
- Department of Clinical Therapeutics, National and Kapodistrian University of Athens, Athens, Greece
| | - Meletios A Dimopoulos
- Department of Clinical Therapeutics, National and Kapodistrian University of Athens, Athens, Greece
| | - Efstathios Kastritis
- Department of Clinical Therapeutics, National and Kapodistrian University of Athens, Athens, Greece.
| |
Collapse
|
14
|
Matamala Montoya M, van Slobbe GJJ, Chang JC, Zaal EA, Berkers CR. Metabolic changes underlying drug resistance in the multiple myeloma tumor microenvironment. Front Oncol 2023; 13:1155621. [PMID: 37091139 PMCID: PMC10117897 DOI: 10.3389/fonc.2023.1155621] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 03/21/2023] [Indexed: 04/08/2023] Open
Abstract
Multiple myeloma (MM) is characterized by the clonal expansion of malignant plasma cells in the bone marrow (BM). MM remains an incurable disease, with the majority of patients experiencing multiple relapses from different drugs. The MM tumor microenvironment (TME) and in particular bone-marrow stromal cells (BMSCs) play a crucial role in the development of drug resistance. Metabolic reprogramming is emerging as a hallmark of cancer that can potentially be exploited for cancer treatment. Recent studies show that metabolism is further adjusted in MM cells during the development of drug resistance. However, little is known about the role of BMSCs in inducing metabolic changes that are associated with drug resistance. In this Perspective, we summarize current knowledge concerning the metabolic reprogramming of MM, with a focus on those changes associated with drug resistance to the proteasome inhibitor Bortezomib (BTZ). In addition, we present proof-of-concept fluxomics (glucose isotope-tracing) and Seahorse data to show that co-culture of MM cells with BMSCs skews the metabolic phenotype of MM cells towards a drug-resistant phenotype, with increased oxidative phosphorylation (OXPHOS), serine synthesis pathway (SSP), TCA cycle and glutathione (GSH) synthesis. Given the crucial role of BMSCs in conveying drug resistance, insights into the metabolic interaction between MM and BMSCs may ultimately aid in the identification of novel metabolic targets that can be exploited for therapy.
Collapse
Affiliation(s)
- María Matamala Montoya
- Division Cell Biology, Metabolism & Cancer, Department Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute of Pharmaceutical Sciences, Utrecht University, Utrecht, Netherlands
| | - Gijs J. J. van Slobbe
- Division Cell Biology, Metabolism & Cancer, Department Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands
| | - Jung-Chin Chang
- Division Cell Biology, Metabolism & Cancer, Department Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands
| | - Esther A. Zaal
- Division Cell Biology, Metabolism & Cancer, Department Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands
- *Correspondence: Celia R. Berkers, ; Esther A. Zaal,
| | - Celia R. Berkers
- Division Cell Biology, Metabolism & Cancer, Department Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands
- *Correspondence: Celia R. Berkers, ; Esther A. Zaal,
| |
Collapse
|
15
|
Rare forms of idiopathic multicentric Castleman disease presenting with intrahepatic cholestatic jaundice successfully treated with the bortezomib-based regimen: two case reports. Ann Hematol 2023; 102:977-979. [PMID: 36749403 DOI: 10.1007/s00277-022-05066-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 12/01/2022] [Indexed: 02/08/2023]
|
16
|
Besse L, Kraus M, Besse A, Driessen C, Tarantino I. The cytotoxic activity of carfilzomib together with nelfinavir is superior to the bortezomib/nelfinavir combination in non-small cell lung carcinoma. Sci Rep 2023; 13:4411. [PMID: 36932175 PMCID: PMC10023769 DOI: 10.1038/s41598-023-31400-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 03/10/2023] [Indexed: 03/19/2023] Open
Abstract
Chemotherapy resistance is still a major problem in the treatment of patients with non-small-cell-lung carcinoma (NSCLC), and novel concepts for the induction of cytotoxicity in NSCLC are highly warranted. Proteotoxicity, the induction of cytotoxicity by targeting the ubiquitin proteasome system, represents an appealing innovative strategy. The combination of the proteasome inhibitor bortezomib (BTZ) and the proteotoxic stress-inducing HIV drug nelfinavir (NFV) synergistically induces proteotoxicity and shows encouraging preclinical efficacy in NSCLC. The second-generation proteasome inhibitor carfilzomib (CFZ) is superior to BTZ and overcomes BTZ resistance in multiple myeloma patients. Here, we show that CFZ together with NFV is superior to the BTZ + NFV combination in inducing endoplasmic reticulum stress and proteotoxicity through the accumulation of excess proteasomal substrate protein in NSCLC in vitro and ex vivo. Interestingly, NFV increases the intracellular availability of CFZ through inhibition of CFZ export from NSCLC cells that express multidrug resistance (MDR) protein. Combining CFZ with NFV may therefore represent a future treatment option for NSCLC, which warrants further investigation.
Collapse
Affiliation(s)
- Lenka Besse
- Laboratory of Experimental Oncology, Department of Oncology and Hematology, Cantonal Hospital St. Gallen, 9000, St. Gallen, Switzerland.
- Cantonal Hospital St. Gallen, Rorschacherstrasse 95 Haus 09/218, 9007, St. Gallen, Switzerland.
| | - Marianne Kraus
- Laboratory of Experimental Oncology, Department of Oncology and Hematology, Cantonal Hospital St. Gallen, 9000, St. Gallen, Switzerland
| | - Andrej Besse
- Laboratory of Experimental Oncology, Department of Oncology and Hematology, Cantonal Hospital St. Gallen, 9000, St. Gallen, Switzerland
| | - Christoph Driessen
- Laboratory of Experimental Oncology, Department of Oncology and Hematology, Cantonal Hospital St. Gallen, 9000, St. Gallen, Switzerland
| | - Ignazio Tarantino
- Department of General, Visceral, Endocrine and Transplant Surgery, Kantonsspital St. Gallen, 9000, St. Gallen, Switzerland
| |
Collapse
|
17
|
Panebianco R, Viale M, Loiacono F, Lanza V, Milardi D, Vecchio G. Terpyridine Glycoconjugates and Their Metal Complexes: Antiproliferative Activity and Proteasome Inhibition. ChemMedChem 2023; 18:e202200701. [PMID: 36773283 DOI: 10.1002/cmdc.202200701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 02/10/2023] [Accepted: 02/10/2023] [Indexed: 02/12/2023]
Abstract
Metal terpyridine complexes have gained substantial interest in many application fields, such as catalysis and supramolecular chemistry. In recent years, the biological activity of terpyridine and its metal complexes has aroused considerable regard. On this basis, we synthesised new terpyridine derivatives of trehalose and glucose to improve the water solubility of terpyridine ligands and target them in cancer cells through glucose transporters. Glucose derivative and its copper(II) and iron(II) complexes showed antiproliferative activity. Interestingly, trehalose residue reduced the cytotoxicity of terpyridine. Moreover, we tested the ability of parent terpyridine ligands and their copper complexes to inhibit proteasome activity as an antineoplastic mechanism.
Collapse
Affiliation(s)
- Roberta Panebianco
- Dipartimento di Scienze Chimiche, Università degli Studi di Catania, Viale A. Doria 6, 95125, Catania, Italy
| | - Maurizio Viale
- U.O.C. Bioterapie, IRCCS Ospedale Policlinico San Martino, L.go R. Benzi 10, 16132, Genova, Italy
| | - Fabrizio Loiacono
- U.O.C. Immunologia, IRCCS Ospedale Policlinico San Martino, L.go R. Benzi 10, 16132, Genova, Italy
| | - Valeria Lanza
- Istituto di Cristallografia, Consiglio Nazionale delle Ricerche, CNR, Via Paolo Gaifami 9, 95126, Catania, Italy
| | - Danilo Milardi
- Istituto di Cristallografia, Consiglio Nazionale delle Ricerche, CNR, Via Paolo Gaifami 9, 95126, Catania, Italy
| | - Graziella Vecchio
- Dipartimento di Scienze Chimiche, Università degli Studi di Catania, Viale A. Doria 6, 95125, Catania, Italy
| |
Collapse
|
18
|
Kilgas S, Ramadan K. Inhibitors of the ATPase p97/VCP: From basic research to clinical applications. Cell Chem Biol 2023; 30:3-21. [PMID: 36640759 DOI: 10.1016/j.chembiol.2022.12.007] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 11/13/2022] [Accepted: 12/21/2022] [Indexed: 01/15/2023]
Abstract
Protein homeostasis deficiencies underlie various cancers and neurodegenerative diseases. The ubiquitin-proteasome system (UPS) and autophagy are responsible for most of the protein degradation in mammalian cells and, therefore, represent attractive targets for cancer therapy and that of neurodegenerative diseases. The ATPase p97, also known as VCP, is a central component of the UPS that extracts and disassembles its substrates from various cellular locations and also regulates different steps in autophagy. Several UPS- and autophagy-targeting drugs are in clinical trials. In this review, we focus on the development of various p97 inhibitors, including the ATPase inhibitors CB-5083 and CB-5339, which reached clinical trials by demonstrating effective anti-tumor activity across various tumor models, providing an effective alternative to targeting protein degradation for cancer therapy. Here, we provide an overview of how different p97 inhibitors have evolved over time both as basic research tools and effective UPS-targeting cancer therapies in the clinic.
Collapse
Affiliation(s)
- Susan Kilgas
- Medical Research Council Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford OX3 7DQ, UK.
| | - Kristijan Ramadan
- Medical Research Council Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford OX3 7DQ, UK.
| |
Collapse
|
19
|
Cui P, Li H, Wang C, Liu Y, Zhang M, Yin Y, Sun Z, Wang Y, Chen X. UBE2T regulates epithelial–mesenchymal transition through the PI3K-AKT pathway and plays a carcinogenic role in ovarian cancer. J Ovarian Res 2022; 15:103. [PMID: 36088429 PMCID: PMC9464398 DOI: 10.1186/s13048-022-01034-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Accepted: 08/24/2022] [Indexed: 11/16/2022] Open
Abstract
Background Ubiquitin-binding enzyme E2T (UBE2T), a member of the E2 family of the ubiquitin–proteasome pathway, is associated with tumorigenesis of varioustumours; however, its role and mechanism in ovarian cancer remain unclear. Results Our study revealed that UBE2T is highly expressed in ovarian cancer; this high expression was closely related to poor prognosis. Immunohistochemistry was used to validate the high expression of UBE2T in ovarian cancer. This is the first study to demonstrate that UBE2T expression is higher in ovarian cancer with BRCA mutation. Moreover, we demonstrated that UBE2T gene silencing significantly inhibited ovarian cancer cell proliferation and invasion. The epithelial–mesenchymal transition (EMT) of ovarian cancer cells and phosphatidylinositol 3 kinase/protein kinase B (PI3K-AKT) pathway were significantly inhibited. Adding the mechanistic target of rapamycin activator MHY1485 activated the PI3K-AKT pathway and significantly restored the proliferative and invasive ability of ovarian cancer cells. Furthermore, a tumorigenesis experiment in nude mice revealed that tumour growth on mice body surface and tumour tissue EMT were significantly inhibited after UBE2T gene silencing. Conclusions This study demonstrated that UBE2T regulates EMT via the PI3K-AKT pathway and plays a carcinogenic role in ovarian cancer. Moreover, UBE2T may interact with BRCA to affect ovarian cancer occurrence and development. Hence, UBE2T may be a valuable novel biomarker for the early diagnosis and prognosis and treatment of ovarian cancer. Further, UBE2T inhibition may be effective for treating ovarian cancer. Supplementary Information The online version contains supplementary material available at 10.1186/s13048-022-01034-9.
Collapse
|
20
|
Lu F, Zhu Y, Zhang G, Liu Z. Renovation as innovation: Repurposing human antibacterial peptide LL-37 for cancer therapy. Front Pharmacol 2022; 13:944147. [PMID: 36081952 PMCID: PMC9445486 DOI: 10.3389/fphar.2022.944147] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Accepted: 07/22/2022] [Indexed: 01/10/2023] Open
Abstract
In many organisms, antimicrobial peptides (AMPs) display wide activities in innate host defense against microbial pathogens. Mammalian AMPs include the cathelicidin and defensin families. LL37 is the only one member of the cathelicidin family of host defense peptides expressed in humans. Since its discovery, it has become clear that they have pleiotropic effects. In addition to its antibacterial properties, many studies have shown that LL37 is also involved in a wide variety of biological activities, including tissue repair, inflammatory responses, hemotaxis, and chemokine induction. Moreover, recent studies suggest that LL37 exhibits the intricate and contradictory effects in promoting or inhibiting tumor growth. Indeed, an increasing amount of evidence suggests that human LL37 including its fragments and analogs shows anticancer effects on many kinds of cancer cell lines, although LL37 is also involved in cancer progression. Focusing on recent information, in this review, we explore and summarize how LL37 contributes to anticancer effect as well as discuss the strategies to enhance delivery of this peptide and selectivity for cancer cells.
Collapse
|
21
|
Kotov JA, Xu Y, Carey ND, Cyster JG. LTβR overexpression promotes plasma cell accumulation. PLoS One 2022; 17:e0270907. [PMID: 35925983 PMCID: PMC9352096 DOI: 10.1371/journal.pone.0270907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Accepted: 06/18/2022] [Indexed: 11/19/2022] Open
Abstract
Multiple myeloma (MM), a malignancy of plasma cells (PCs), has diverse genetic underpinnings and in rare cases these include amplification of the lymphotoxin b receptor (Ltbr) locus. LTβR has well defined roles in supporting lymphoid tissue development and function through actions in stromal and myeloid cells, but whether it is functional in PCs is unknown. Here we showed that Ltbr mRNA was upregulated in mouse PCs compared to follicular B cells, but deficiency in the receptor did not cause a reduction in PC responses to a T-dependent or T-independent immunogen. However, LTβR overexpression (OE) enhanced PC formation in vitro after LPS or anti-CD40 stimulation. In vivo, LTβR OE led to increased antigen-specific splenic and bone marrow (BM) plasma cells responses. LTβR OE PCs had increased expression of Nfkb2 and of the NF-kB target genes Bcl2 and Mcl1, factors involved in the formation of long-lived BM PCs. Our findings suggest a pathway by which Ltbr gene amplifications may contribute to MM development through increased NF-kB activity and induction of an anti-apoptotic transcriptional program.
Collapse
Affiliation(s)
- Jessica A. Kotov
- Howard Hughes Medical Institute and Department of Microbiology and Immunology, University of California, San Francisco, CA, United States of America
| | - Ying Xu
- Howard Hughes Medical Institute and Department of Microbiology and Immunology, University of California, San Francisco, CA, United States of America
| | - Nicholas D. Carey
- Department of Medicine, University of California, San Francisco, CA, United States of America
| | - Jason G. Cyster
- Howard Hughes Medical Institute and Department of Microbiology and Immunology, University of California, San Francisco, CA, United States of America
| |
Collapse
|
22
|
Rajkumar SV. Multiple myeloma: 2022 update on diagnosis, risk stratification, and management. Am J Hematol 2022; 97:1086-1107. [PMID: 35560063 PMCID: PMC9387011 DOI: 10.1002/ajh.26590] [Citation(s) in RCA: 392] [Impact Index Per Article: 130.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 05/05/2022] [Accepted: 05/06/2022] [Indexed: 12/22/2022]
Abstract
DISEASE OVERVIEW Multiple myeloma accounts for approximately 10% of hematologic malignancies. DIAGNOSIS The diagnosis requires ≥10% clonal bone marrow plasma cells or a biopsy-proven plasmacytoma plus evidence of one or more multiple myeloma defining events (MDE): CRAB (hypercalcemia, renal failure, anemia, or lytic bone lesions) attributable to the plasma cell disorder, bone marrow clonal plasmacytosis ≥60%, serum involved/uninvolved free light chain (FLC) ratio ≥ 100 (provided involved FLC is ≥100 mg/L), or >1 focal lesion on magnetic resonance imaging. RISK STRATIFICATION The presence of del(17p), t(4;14), t(14;16), t(14;20), gain 1q, or p53 mutation is considered high-risk multiple myeloma. The presence of any two high risk factors is considered double-hit myeloma, and three or more high risk factors is triple-hit myeloma. RISK-ADAPTED INITIAL THERAPY In patients who are candidates for autologous stem cell transplantation, induction therapy consists of bortezomib, lenalidomide, dexamethasone (VRd) given for approximately 3-4 cycles followed by autologous stem cell transplantation (ASCT). In high-risk patients, daratumumab, bortezomib, lenalidomide, dexamethasone (Dara-VRd) is an alternative to VRd. Selected standard-risk patients can collect stem cells, get additional cycles of induction therapy, and delay transplant until first relapse. Patients who are not candidates for transplant are treated with VRd for approximately 8-12 cycles followed by maintenance or alternatively with daratumumab, lenalidomide, dexamethasone (DRd) until progression. MAINTENANCE THERAPY Standard-risk patients need lenalidomide maintenance, while bortezomib plus lenalidomide maintenance is needed for high-risk myeloma. MANAGEMENT OF RELAPSED DISEASE A triplet regimen is usually needed at relapse, with the choice of regimen varying with each successive relapse.
Collapse
|
23
|
Snow A, Zeidner JF. The development of pevonedistat in myelodysplastic syndrome (MDS) and acute myeloid leukemia (AML): hope or hype? Ther Adv Hematol 2022; 13:20406207221112899. [PMID: 35898435 PMCID: PMC9310330 DOI: 10.1177/20406207221112899] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Accepted: 06/24/2022] [Indexed: 11/24/2022] Open
Abstract
Myelodysplastic syndrome (MDS) is a clonal hematopoietic stem cell disorder clinically defined by cytopenias, bone marrow failure, and an increased risk of progressing to acute myeloid leukemia (AML). Traditionally, first-line treatment for patients with higher-risk MDS has been hypomethylating agents (HMAs). However, these agents have modest clinical activity as single agents. A one-size-fits-all treatment paradigm is insufficient for such a heterogeneous disease in the modern era of precision medicine. Several new agents have been developed for MDS with the hopes of improving clinical outcomes and survival. Pevonedistat is a first-in-class, novel inhibitor of neuronal precursor cell-expressed developmentally down-regulated protein-8 (NEDD8) activating enzyme (NAE) blocking the neddylation pathway leading to downstream effects on the ubiquitin-proteosome pathway. Pevonedistat ultimately leads to apoptosis and inhibition of the cell cycle in cancer cells. Studies have demonstrated the safety profile of pevonedistat, leading to the development of multiple trials investigating combination strategies with pevonedistat in MDS and AML. In this review, we summarize the preclinical and clinical rationale for pevonedistat in MDS and AML, review the clinical data of this agent alone and in combination with HMAs to date, and highlight potential future directions for this agent in myeloid malignancies.
Collapse
Affiliation(s)
- Anson Snow
- Lineberger Comprehensive Cancer Center,
University of North Carolina School of Medicine
- Division of Hematology, Department of Medicine,
University of North Carolina School of Medicine, Chapel Hill, NC, USA
| | - Joshua F. Zeidner
- Lineberger Comprehensive Cancer Center,
University of North Carolina School of Medicine
- Division of Hematology, Department of Medicine,
University of North Carolina School of Medicine, 170 Manning Drive, POB, 3rd
Floor, CB #7305, Chapel Hill, NC 27599, USA
| |
Collapse
|
24
|
Zhang C, Huang C, Xia H, Xu H, Tang Q, Bi F. Autophagic sequestration of SQSTM1 disrupts the aggresome formation of ubiquitinated proteins during proteasome inhibition. Cell Death Dis 2022; 13:615. [PMID: 35840557 PMCID: PMC9287315 DOI: 10.1038/s41419-022-05061-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 06/23/2022] [Accepted: 07/01/2022] [Indexed: 01/21/2023]
Abstract
Aggresome formation is a protective cellular response to counteract proteasome dysfunction by sequestering misfolded proteins and reducing proteotoxic stress. Autophagic degradation of the protein aggregates is considered to be a key compensating mechanism for balancing proteostasis. However, the precise role of autophagy in proteasome inhibition-induced aggresome biogenesis remains unclear. Herein, we demonstrate that in the early stage of proteasome inhibition, the maturation of the autophagosome is suppressed, which facilitates aggresome formation of misfolded proteins. Proteasome inhibition-induced phosphorylation of SQSTM1 T269/S272 inhibits its autophagic receptor activity and promotes aggresome formation of misfolded proteins. Inhibiting SQSTM1 T269/S272 phosphorylation using Doramapimod aggravates proteasome inhibitor-mediated cell damage and tumor suppression. Taken together, our data reveal a negative effect of autophagy on aggresome biogenesis and cell damage upon proteasome inhibition. Our study suggests a novel therapeutic intervention for proteasome inhibitor-mediated tumor treatment.
Collapse
Affiliation(s)
- Chenliang Zhang
- grid.412901.f0000 0004 1770 1022Laboratory of Molecular Targeted Therapy in Oncology, West China Hospital of Sichuan University, Chengdu, China
| | - Chen Huang
- grid.412901.f0000 0004 1770 1022Department of Medical Oncology, Cancer Center, West China Hospital of Sichuan University, Chengdu, China
| | - Hongwei Xia
- grid.412901.f0000 0004 1770 1022Laboratory of Molecular Targeted Therapy in Oncology, West China Hospital of Sichuan University, Chengdu, China
| | - Huanji Xu
- grid.412901.f0000 0004 1770 1022Department of Medical Oncology, Cancer Center, West China Hospital of Sichuan University, Chengdu, China
| | - Qiulin Tang
- grid.412901.f0000 0004 1770 1022Laboratory of Molecular Targeted Therapy in Oncology, West China Hospital of Sichuan University, Chengdu, China
| | - Feng Bi
- grid.412901.f0000 0004 1770 1022Laboratory of Molecular Targeted Therapy in Oncology, West China Hospital of Sichuan University, Chengdu, China ,grid.412901.f0000 0004 1770 1022Department of Medical Oncology, Cancer Center, West China Hospital of Sichuan University, Chengdu, China
| |
Collapse
|
25
|
De Masi R, Orlando S. GANAB and N-Glycans Substrates Are Relevant in Human Physiology, Polycystic Pathology and Multiple Sclerosis: A Review. Int J Mol Sci 2022; 23:7373. [PMID: 35806376 PMCID: PMC9266668 DOI: 10.3390/ijms23137373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 06/22/2022] [Accepted: 06/28/2022] [Indexed: 11/29/2022] Open
Abstract
Glycans are one of the four fundamental macromolecular components of living matter, and they are highly regulated in the cell. Their functions are metabolic, structural and modulatory. In particular, ER resident N-glycans participate with the Glc3Man9GlcNAc2 highly conserved sequence, in protein folding process, where the physiological balance between glycosylation/deglycosylation on the innermost glucose residue takes place, according GANAB/UGGT concentration ratio. However, under abnormal conditions, the cell adapts to the glucose availability by adopting an aerobic or anaerobic regimen of glycolysis, or to external stimuli through internal or external recognition patterns, so it responds to pathogenic noxa with unfolded protein response (UPR). UPR can affect Multiple Sclerosis (MS) and several neurological and metabolic diseases via the BiP stress sensor, resulting in ATF6, PERK and IRE1 activation. Furthermore, the abnormal GANAB expression has been observed in MS, systemic lupus erythematous, male germinal epithelium and predisposed highly replicating cells of the kidney tubules and bile ducts. The latter is the case of Polycystic Liver Disease (PCLD) and Polycystic Kidney Disease (PCKD), where genetically induced GANAB loss affects polycystin-1 (PC1) and polycystin-2 (PC2), resulting in altered protein quality control and cyst formation phenomenon. Our topics resume the role of glycans in cell physiology, highlighting the N-glycans one, as a substrate of GANAB, which is an emerging key molecule in MS and other human pathologies.
Collapse
Affiliation(s)
- Roberto De Masi
- Complex Operative Unit of Neurology, “F. Ferrari” Hospital, Casarano, 73042 Lecce, Italy;
- Laboratory of Neuroproteomics, Multiple Sclerosis Centre, “F. Ferrari” Hospital, Casarano, 73042 Lecce, Italy
| | - Stefania Orlando
- Laboratory of Neuroproteomics, Multiple Sclerosis Centre, “F. Ferrari” Hospital, Casarano, 73042 Lecce, Italy
| |
Collapse
|
26
|
Rehman MEU, Chattaraj A, Neupane K, Rafae A, Saeed S, Basit J, Ibrahim A, Khouri J, Mukherjee S, Anwer F. Efficacy and Safety of Regimens Used for the Treatment of Multicentric Castleman Disease: A Systematic Review. Eur J Haematol Suppl 2022; 109:309-320. [PMID: 35770616 DOI: 10.1111/ejh.13823] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Revised: 06/25/2022] [Accepted: 06/27/2022] [Indexed: 12/01/2022]
Abstract
OBJECTIVES Treatment options for multicentric Castleman disease (MCD) remain limited. The only FDA-approved drug is siltuximab for idiopathic MCD (iMCD), but the response rate with siltuximab is less than 50%. We performed a systematic review to examine the efficacy and safety of various regimens used for the treatment of MCD. METHODS A database search on PubMed, Embase, Cochrane, Web of Science, and Clinicaltrials.gov using the terms "Castleman disease," "treatment outcome" and "patient safety" was done. RESULTS AND CONCLUSIONS Results from a randomized controlled trial (RCT) and an extension study highlighted the efficacy and long-term safety of siltuximab for iMCD; other trials showed tocilizumab to be a suitable alternative. A recent trial reported high response rates with thalidomide in iMCD patients. Promising results were reported for bortezomib in relapsed/ refractory MCD. For human herpesvirus 8 (HHV-8) associated MCD, rituximab along with doxorubicin therapy followed by maintenance with zidovudine and valganciclovir is the most effective therapy. A single-arm trial has highlighted the potential role of tocilizumab in HHV-8 MCD. Data for these regimens are limited and mostly comprise non-randomized trials. Further research on emerging agents could have a major impact on the treatment of this rare disease.
Collapse
Affiliation(s)
| | - Asmi Chattaraj
- Department of Internal Medicine, University Pittsburgh Medical Center, Mckeesport, PA, USA
| | - Karun Neupane
- Department of Internal Medicine, Jacobi Medical Center/Albert Einstein College of Medicine, Bronx, NY, USA
| | - Abdul Rafae
- Department of Internal Medicine, McLaren Flint-Michigan State University, Flint, MI, USA
| | - Sajeel Saeed
- Rawalpindi Medical University, Rawalpindi, Pakistan
| | - Jawad Basit
- Rawalpindi Medical University, Rawalpindi, Pakistan
| | - Atif Ibrahim
- University of Tennessee Health Science Center, Memphis, TN, USA
| | - Jack Khouri
- Department of Hematology and Medical Oncology, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Sudipto Mukherjee
- Department of Hematology and Medical Oncology, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Faiz Anwer
- Department of Hematology and Medical Oncology, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH, USA
| |
Collapse
|
27
|
Ho M, Moscvin M, Low SK, Evans B, Close S, Schlossman R, Laubach J, Prada CP, Glotzbecker B, Richardson PG, Bianchi G. Risk factors for the development of orthostatic hypotension during autologous stem cell transplant in patients with multiple myeloma. Leuk Lymphoma 2022; 63:2403-2412. [DOI: 10.1080/10428194.2022.2084729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Matthew Ho
- Department of Internal Medicine, Mayo Clinic, Rochester, MN, USA
| | - Maria Moscvin
- Amyloidosis program, Division of Hematology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Soon Khai Low
- Department of Internal Medicine, Rochester General Hospital, Rochester, NY, USA
| | - Benjamin Evans
- Amyloidosis program, Division of Hematology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Sara Close
- LeBow Institute for Myeloma Therapeutics and Jerome Lipper Multiple Myeloma Center, Department of Medical Oncology, Dana Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Robert Schlossman
- LeBow Institute for Myeloma Therapeutics and Jerome Lipper Multiple Myeloma Center, Department of Medical Oncology, Dana Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Jacob Laubach
- LeBow Institute for Myeloma Therapeutics and Jerome Lipper Multiple Myeloma Center, Department of Medical Oncology, Dana Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Claudia Paba Prada
- LeBow Institute for Myeloma Therapeutics and Jerome Lipper Multiple Myeloma Center, Department of Medical Oncology, Dana Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Brett Glotzbecker
- Department of Medical Oncology, Dana Farber Cancer Institute, Boston, MA, USA
| | - Paul G. Richardson
- LeBow Institute for Myeloma Therapeutics and Jerome Lipper Multiple Myeloma Center, Department of Medical Oncology, Dana Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Giada Bianchi
- Amyloidosis program, Division of Hematology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
28
|
Zhang L, Zhang MY, Cao XX, Zhou DB, Fajgenbaum DC, Dong YJ, Li J. A prospective, multicenter study of bortezomib, cyclophosphamide, and dexamethasone in relapsed/refractory iMCD. Leuk Lymphoma 2022; 63:618-626. [PMID: 35100929 DOI: 10.1080/10428194.2021.1999437] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Relapsed and refractory (R/R) idiopathic Multicentric Castleman disease (iMCD) is a clinical challenge with few treatment options. In this first multicenter, prospective trial which implemented the recently published CDCN response criteria, we evaluated the efficacy and safety profiles of bortezomib-cyclophosphamide-dexamethasone (BCD) regimen in 24 R/R iMCD patients. By 6 months, 15 patients (62.5%) achieved overall treatment responses; four patients (16.7%) had stable disease and five patients (20.8%) suffered from progression of disease. Even when considering all patients, there were significant (p < .05) improvements in median symptom score, hemoglobin, platelet count, C-reactive protein (CRP) erythrocyte sedimentation rate (ESR), IL-6, albumin, and immunoglobin G (IgG) after treatment. The regimen was well tolerated without grade 3 or higher adverse events. Estimated 1-year progression-free survival (PFS) and overall survival (OS) were 79% and 92%, respectively. BCD regimen is an effective and safe treatment option for R/R iMCD patients. This trial was registered at www.chictr.org.cn as # ChiCTR1800019342.
Collapse
Affiliation(s)
- Lu Zhang
- Department of Hematology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, PR China.,State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, PR China
| | - Miao-Yan Zhang
- Department of Hematology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, PR China.,State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, PR China
| | - Xin-Xin Cao
- Department of Hematology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, PR China.,State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, PR China
| | - Dao-Bin Zhou
- Department of Hematology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, PR China.,State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, PR China
| | - David C Fajgenbaum
- Division of Translational Medicine and Human Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Yu-Jun Dong
- Department of Hematology, Peking University First Hospital, Beijing, PR China
| | - Jian Li
- Department of Hematology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, PR China.,State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, PR China
| |
Collapse
|
29
|
Romancik JT, Cohen JB. Sequencing of Novel Therapies for Mantle Cell Lymphoma. Curr Treat Options Oncol 2021; 22:118. [PMID: 34812968 DOI: 10.1007/s11864-021-00907-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/28/2021] [Indexed: 12/20/2022]
Abstract
OPINION STATEMENT There is no standard approach to sequencing novel therapies in mantle cell lymphoma (MCL). For initial treatment, intensive induction chemotherapy followed by autologous stem cell transplant and rituximab maintenance remains our preferred approach in young, fit patients. We consider bendamustine plus rituximab or lenalidomide plus rituximab in patients who are ineligible for intensive chemotherapy-based approaches. Bruton's tyrosine kinase inhibitors are our preferred class of agents to use in the second-line setting. When patients inevitably relapse on one of these agents, we proceed with chimeric antigen receptor T-cell (CAR T) therapy in eligible patients, often with the use of bridging therapy with corticosteroids, lenalidomide, or venetoclax. We treat patients who are ineligible for CAR T or clinic trial with venetoclax, lenalidomide, or proteosome inhibitor-based regimens, although efficacy is expected to be limited in this setting with a shortened duration of response to each subsequent line of therapy. Allogeneic stem cell transplant remains an option for carefully selected patients who progress after autologous stem cell transplant and CAR T. Clinical trials involving combinations of novel agents in early lines of therapy are ongoing, and new compounds with unique mechanisms of action are in development. The results of ongoing clinical trials with novel agents will further change the treatment landscape for patients with MCL in the coming years.
Collapse
Affiliation(s)
- Jason T Romancik
- Department of Hematology and Medical Oncology, Winship Cancer Institute At Emory University, Atlanta, GA, USA
| | - Jonathon B Cohen
- Department of Hematology and Medical Oncology, Winship Cancer Institute At Emory University, Atlanta, GA, USA.
| |
Collapse
|
30
|
Shaikh J, Patel K, Khan T. Advances in Pyrazole Based Scaffold as Cyclin-Dependent Kinase 2 Inhibitors for the Treatment of Cancer. Mini Rev Med Chem 2021; 22:1197-1215. [PMID: 34711160 DOI: 10.2174/1389557521666211027104957] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 05/27/2021] [Accepted: 08/04/2021] [Indexed: 11/22/2022]
Abstract
The transformation of a normal cell into a tumor cell is one of the initial steps in cell cycle deregulation. The cell cycle is regulated by cyclin-dependent kinases (CDKs) that belong to the protein kinase family. CDK2 is an enchanting target for specific genotypes tumors since cyclin E is selective for CDK2 and the deregulation of specific cancer forms. Thus, CDKs inhibitor specifically CDK2/cyclin A-E has the potential to be a valid cancer target as per the currently undergoing clinical trials. Mostly pyrazole scaffolds have shown selectivity and potency for CDK2 inhibitors. This review demonstrates pyrazole and pyrazole fused with other heterocyclic rings for anti-proliferative activity. Based on the in vitro and molecular docking studies, the IC50 value of various hybrids is revealed to display the most potent analogs for CDK2 inhibition. Thus, the review emphasizes various lead analogs of pyrazole hybrids which can be found to be very potent and selective for anti-cancer drugs.
Collapse
Affiliation(s)
- Jahara Shaikh
- Department of Pharmaceutical Chemistry & Quality Assurance, SVKM'S Dr. Bhanuben Nanavati College of Pharmacy, Vile Parle (W), Mumbai-56. India
| | - Kavitkumar Patel
- Department of Pharmaceutical Chemistry & Quality Assurance, SVKM'S Dr. Bhanuben Nanavati College of Pharmacy, Vile Parle (W), Mumbai-56. India
| | - Tabassum Khan
- Department of Pharmaceutical Chemistry & Quality Assurance, SVKM'S Dr. Bhanuben Nanavati College of Pharmacy, Vile Parle (W), Mumbai-56. India
| |
Collapse
|
31
|
Seyed MA, Ayesha S. Marine-derived pipeline anticancer natural products: a review of their pharmacotherapeutic potential and molecular mechanisms. FUTURE JOURNAL OF PHARMACEUTICAL SCIENCES 2021. [DOI: 10.1186/s43094-021-00350-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Abstract
Background
Cancer is a complex and most widespread disease and its prevalence is increasing worldwide, more in countries that are witnessing urbanization and rapid industrialization changes. Although tremendous progress has been made, the interest in targeting cancer has grown rapidly every year. This review underscores the importance of preventive and therapeutic strategies.
Main text
Natural products (NPs) from various sources including plants have always played a crucial role in cancer treatment. In this growing list, numerous unique secondary metabolites from marine sources have added and gaining attention and became potential players in drug discovery and development for various biomedical applications. Many NPs found in nature that normally contain both pharmacological and biological activity employed in pharmaceutical industry predominantly in anticancer pharmaceuticals because of their enormous range of structure entities with unique functional groups that attract and inspire for the creation of several new drug leads through synthetic chemistry. Although terrestrial medicinal plants have been the focus for the development of NPs, however, in the last three decades, marine origins that include invertebrates, plants, algae, and bacteria have unearthed numerous novel pharmaceutical compounds, generally referred as marine NPs and are evolving continuously as discipline in the molecular targeted drug discovery with the inclusion of advanced screening tools which revolutionized and became the component of antitumor modern research.
Conclusions
This comprehensive review summarizes some important and interesting pipeline marine NPs such as Salinosporamide A, Dolastatin derivatives, Aplidine/plitidepsin (Aplidin®) and Coibamide A, their anticancer properties and describes their mechanisms of action (MoA) with their efficacy and clinical potential as they have attracted interest for potential use in the treatment of various types of cancers.
Collapse
|
32
|
Takiar R, Phillips T. Non-chemotherapy Options for Newly Diagnosed Mantle Cell Lymphoma. Curr Treat Options Oncol 2021; 22:98. [PMID: 34524546 DOI: 10.1007/s11864-021-00900-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/21/2021] [Indexed: 12/29/2022]
Abstract
OPINION STATEMENT Mantle cell lymphoma is a rare and incurable non-Hodgkin lymphoma with a heterogenous clinical presentation. Typically, treatment consists of frontline chemoimmunotherapy induction with or without autologous stem cell transplant (ASCT) as consolidation. However, this approach has the propensity to increase short- and long-term toxicities, such as secondary malignancies, without being curative. Genomic profiling of MCL will allow for greater impact of new targeted therapies in the future and may become a helpful tool to guide treatment. Based on the data discussed, use of non-chemotherapy options may become the preferred approach for frontline therapy as opposed to conventional chemotherapy and hematopoietic stem cell transplants.
Collapse
Affiliation(s)
- Radhika Takiar
- Division of Hematology and Medical Oncology, Department of Internal Medicine, Michigan Medicine, 1500 East Medical Center Drive, Ann Arbor, MI, 48109, USA
| | - Tycel Phillips
- Division of Hematology and Medical Oncology, Department of Internal Medicine, Michigan Medicine, 1500 East Medical Center Drive, Ann Arbor, MI, 48109, USA.
| |
Collapse
|
33
|
Mahmud KM, Niloy MS, Shakil MS, Islam MA. Ruthenium Complexes: An Alternative to Platinum Drugs in Colorectal Cancer Treatment. Pharmaceutics 2021; 13:1295. [PMID: 34452256 PMCID: PMC8398452 DOI: 10.3390/pharmaceutics13081295] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 08/13/2021] [Accepted: 08/16/2021] [Indexed: 02/06/2023] Open
Abstract
Colorectal cancer (CRC) is one of the intimidating causes of death around the world. CRC originated from mutations of tumor suppressor genes, proto-oncogenes and DNA repair genes. Though platinum (Pt)-based anticancer drugs have been widely used in the treatment of cancer, their toxicity and CRC cells' resistance to Pt drugs has piqued interest in the search for alternative metal-based drugs. Ruthenium (Ru)-based compounds displayed promising anticancer activity due to their unique chemical properties. Ru-complexes are reported to exert their anticancer activities in CRC cells by regulating different cell signaling pathways that are either directly or indirectly associated with cell growth, division, proliferation, and migration. Additionally, some Ru-based drug candidates showed higher potency compared to commercially available Pt-based anticancer drugs in CRC cell line models. Meanwhile Ru nanoparticles coupled with photosensitizers or anticancer agents have also shown theranostic potential towards CRC. Ru-nanoformulations improve drug efficacy, targeted drug delivery, immune activation, and biocompatibility, and therefore may be capable of overcoming some of the existing chemotherapeutic limitations. Among the potential Ru-based compounds, only Ru (III)-based drug NKP-1339 has undergone phase-Ib clinical trials in CRC treatment.
Collapse
Affiliation(s)
- Kazi Mustafa Mahmud
- Department of Biochemistry and Molecular Biology, Jahangirnagar University, Savar, Dhaka 1342, Bangladesh; (K.M.M.); (M.S.N.)
| | - Mahruba Sultana Niloy
- Department of Biochemistry and Molecular Biology, Jahangirnagar University, Savar, Dhaka 1342, Bangladesh; (K.M.M.); (M.S.N.)
| | - Md Salman Shakil
- Department of Pharmacology & Toxicology, University of Otago, Dunedin 9016, New Zealand
- Department of Biochemistry, Primeasia University, Banani, Dhaka 1213, Bangladesh
| | - Md Asiful Islam
- Department of Haematology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian 16150, Malaysia
| |
Collapse
|
34
|
Kucuksayan E, Bozkurt F, Yilmaz MT, Sircan-Kucuksayan A, Hanikoglu A, Ozben T. A new combination strategy to enhance apoptosis in cancer cells by using nanoparticles as biocompatible drug delivery carriers. Sci Rep 2021; 11:13027. [PMID: 34158544 PMCID: PMC8219778 DOI: 10.1038/s41598-021-92447-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 05/27/2021] [Indexed: 12/21/2022] Open
Abstract
Some experimental and clinical studies have been conducted for the usage of chemotherapeutic drugs encapsulated into nanoparticles (NPs). However, no study has been conducted so far on the co-encapsulation of doxorubicin (Dox) and epoxomicin (Epo) into NPs as biocompatible drug delivery carriers. Therefore, we investigated if co-encapsulation of doxorubicin (Dox) and/or epoxomicin (Epo) into NPs enhance their anticancer efficiency and prevent drug resistance and toxicity to normal cells. We synthesized Dox and/or Epo loaded poly (lactic-co-glycolic acid) (PLGA) NPs using a multiple emulsion solvent evaporation technique and characterized them in terms of their particle size and stability, surface, molecular, thermal, encapsulation efficiency and in vitro release properties. We studied the effects of drug encapsulated NPs on cellular accumulation, intracellular drug levels, oxidative stress status, cellular viability, drug resistance, 20S proteasome activity, cytosolic Nuclear Factor Kappa B (NF-κB-p65), and apoptosis in breast cancer and normal cells. Our results proved that the nanoparticles we synthesized were thermally stable possessing higher encapsulation efficiency and particle stability. Thermal, morphological and molecular analyses demonstrated the presence of Dox and/or Epo within NPs, indicating that they were successfully loaded. Cell line assays proved that Dox and Epo loaded NPs were less cytotoxic to single-layer normal HUVECs than free Dox and Epo, suggesting that the NPs would be biocompatible drug delivery carriers. The apoptotic index of free Dox and Epo increased 50% through their encapsulation into NPs, proving combination strategy to enhance apoptosis in breast cancer cells. Our results demonstrated that the co-encapsulation of Dox and Epo within NPs would be a promising treatment strategy to overcome multidrug resistance and toxicity to normal tissues that can be studied in further in vivo and clinical studies in breast cancer.
Collapse
Affiliation(s)
- Ertan Kucuksayan
- Faculty of Medicine, Department of Medical Biochemistry, Alanya Alaaddin Keykubat University (ALKU), Antalya, 07490, Turkey.,Chemical and Metallurgical Engineering Faculty, Department of Food Engineering, Yildiz Technical University, Istanbul, Turkey.,Faculty of Medicine, Department of Medical Biochemistry, Akdeniz University, Antalya, Turkey
| | - Fatih Bozkurt
- Chemical and Metallurgical Engineering Faculty, Department of Food Engineering, Yildiz Technical University, Istanbul, Turkey.,Faculty of Engineering and Architecture, Department of Food Engineering, Mus Alparslan University, Mus, Turkey
| | - Mustafa Tahsin Yilmaz
- Chemical and Metallurgical Engineering Faculty, Department of Food Engineering, Yildiz Technical University, Istanbul, Turkey.,Faculty of Engineering, Department of Industrial Engineering, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Aslinur Sircan-Kucuksayan
- Faculty of Medicine, Department of Biophysics, Alanya Alaaddin Keykubat University (ALKU), Antalya, 07490, Turkey
| | - Aysegul Hanikoglu
- Faculty of Medicine, Department of Medical Biochemistry, Akdeniz University, Antalya, Turkey
| | - Tomris Ozben
- Faculty of Medicine, Department of Medical Biochemistry, Akdeniz University, Antalya, Turkey.
| |
Collapse
|
35
|
Refractory NMDA-receptor encephalitis in a teenager: A novel use of Bortezomib. J Neuroimmunol 2021; 355:577565. [PMID: 33813318 DOI: 10.1016/j.jneuroim.2021.577565] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 03/23/2021] [Accepted: 03/29/2021] [Indexed: 02/02/2023]
Abstract
We report the case of a 14-year-old girl who was diagnosed with N-methyl-d-aspartate (NMDA)-receptor encephalitis, with severe features and autonomic instability, requiring intensive care unit admission. She had poor clinical response to the first-line therapies, she was then started on Rituximab and 6 cycles of Cytoxan infusion. She responded to Bortezomib therapy within 2 weeks of initiation, and with long-term sustenance of improvement in the long-term, also demonstrated by an improvement in NMDA titers . As far as we know, this is the first report of use of Bortezomib therapy in a child with refractory NMDA-receptor encephalitis.
Collapse
|
36
|
Lee MS, Lim SH, Yu AR, Hwang CY, Kang I, Yeo EJ. Carfilzomib in Combination with Bortezomib Enhances Apoptotic Cell Death in B16-F1 Melanoma Cells. BIOLOGY 2021; 10:biology10020153. [PMID: 33671902 PMCID: PMC7918982 DOI: 10.3390/biology10020153] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 02/04/2021] [Accepted: 02/09/2021] [Indexed: 02/07/2023]
Abstract
Simple Summary The incidence rate of metastatic melanoma has been rapidly increasing worldwide and its 5-year survival rate is very low. Due to partial responses, various side effects, and resistance to any known cancer therapeutics, more potent and safer therapeutics are needed to increase the survival rate of patients with melanoma. Since proteasome inhibitors, such as bortezomib and carfilzomib, have been suggested as treatments for various cancers, we investigated their potential for the treatment of melanoma by studying their molecular mechanisms of action in B16-F1 melanoma cells. In this study, we found that both bortezomib and carfilzomib lead to apoptosis via ER stress as well as ROS accumulation and MMP loss in melanoma cells. Bortezomib and carfilzomib synergistically reduced B16-F1 tumor growth in vitro and in a C57BL/6 xenograft mouse model. Therefore, a combination therapy with carfilzomib and bortezomib at submaximal concentrations may reduce their side effects and be beneficial for melanoma treatment. Abstract Proteasome inhibitors, such as bortezomib (BZ) and carfilzomib (CFZ), have been suggested as treatments for various cancers. To utilize BZ and/or CFZ as effective therapeutics for treating melanoma, we studied their molecular mechanisms using B16-F1 melanoma cells. Flow cytometry of Annexin V-fluorescein isothiocyanate-labeled cells indicated apoptosis induction by treatment with BZ and CFZ. Apoptosis was evidenced by the activation of various caspases, including caspase 3, 8, 9, and 12. Treatment with BZ and CFZ induced endoplasmic reticulum (ER) stress, as indicated by an increase in eIF2α phosphorylation and the expression of ER stress-associated proteins, including GRP78, ATF6α, ATF4, XBP1, and CCAAT/enhancer-binding protein homologous protein. The effects of CFZ on ER stress and apoptosis were lower than that of BZ. Nevertheless, CFZ and BZ synergistically induced ER stress and apoptosis in B16-F1 cells. Furthermore, the combinational pharmacological interactions of BZ and CFZ against the growth of B16-F1 melanoma cells were assessed by calculating the combination index and dose-reduction index with the CompuSyn software. We found that the combination of CFZ and BZ at submaximal concentrations could obtain dose reduction by exerting synergistic inhibitory effects on cell growth. Moreover, this drug combination reduced tumor growth in C57BL/6 syngeneic mice. Taken together, these results suggest that CFZ in combination with BZ may be a beneficial and potential strategy for melanoma treatment.
Collapse
Affiliation(s)
- Min Seung Lee
- Department of Biochemistry, College of Medicine, Gachon University, Incheon 21999, Korea; (M.S.L.); (S.H.L.)
| | - So Hyun Lim
- Department of Biochemistry, College of Medicine, Gachon University, Incheon 21999, Korea; (M.S.L.); (S.H.L.)
| | - Ah-Ran Yu
- Department of Biomedical Sciences, Graduate School, Kyung Hee University, Seoul 02447, Korea; (A.-R.Y.); (C.Y.H.)
| | - Chi Yeon Hwang
- Department of Biomedical Sciences, Graduate School, Kyung Hee University, Seoul 02447, Korea; (A.-R.Y.); (C.Y.H.)
| | - Insug Kang
- Department of Biochemistry and Molecular Biology, School of Medicine, Biomedical Science Institute, Kyung Hee University, Seoul 02447, Korea
- Correspondence: (I.K.); (E.-J.Y.); Tel.: +82-29-610-922 (I.K.); +82-32-899-6050 (E.-J.Y.); Fax: +82-29-656-349 (I.K.); +82-32-899-6039 (E.-J.Y.)
| | - Eui-Ju Yeo
- Department of Biochemistry, College of Medicine, Gachon University, Incheon 21999, Korea; (M.S.L.); (S.H.L.)
- Correspondence: (I.K.); (E.-J.Y.); Tel.: +82-29-610-922 (I.K.); +82-32-899-6050 (E.-J.Y.); Fax: +82-29-656-349 (I.K.); +82-32-899-6039 (E.-J.Y.)
| |
Collapse
|
37
|
Abstract
INTRODUCTION PROTACs represent a novel class of heterobifunctional molecules that simultaneously bind to a target protein and to an E3 ligase complex, resulting in the transfer of ubiquitin and initiating a process ultimately causing the proteasomal degradation of the target protein. This mechanism of action imbues PROTACs with the ability to modulate target biology in unique ways compared to inhibitors, and the development of PROTACs as therapeutic agents is expected to result in new medicines to treat multiple diseases. AREAS COVERED This review includes published PCT (WO) patent applications covering January 2013 through June 2020. Only English-language patent applications with exemplified PROTACs reported to degrade a target protein(s) were deemed in scope, and the definition of 'PROTAC' was restricted to a bifunctional molecule which contains a discrete binding element for a specific degradation target(s), as well as a separate discrete E3 ligase-binding moiety. EXPERT OPINION Delivering on the enormous potential of PROTACs will require the development of PROTAC medicines that are differentiated from traditional small-molecule inhibitors. The modular composition of PROTACs affords both opportunities and challenges in securing robust intellectual property, and we envision that requirements for novelty are likely to evolve as this area matures.
Collapse
|
38
|
Lee J, Choi A, Cho SY, Jun Y, Na D, Lee A, Jang G, Kwon JY, Kim J, Lee S, Lee C. Genome-scale CRISPR screening identifies cell cycle and protein ubiquitination processes as druggable targets for erlotinib-resistant lung cancer. Mol Oncol 2020; 15:487-502. [PMID: 33188726 PMCID: PMC7858278 DOI: 10.1002/1878-0261.12853] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 10/21/2020] [Accepted: 10/21/2020] [Indexed: 01/01/2023] Open
Abstract
Erlotinib is highly effective in lung cancer patients with epidermal growth factor receptor (EGFR) mutations. However, despite initial favorable responses, most patients rapidly develop resistance to erlotinib soon after the initial treatment. This study aims to identify new genes and pathways associated with erlotinib resistance mechanisms in order to develop novel therapeutic strategies. Here, we induced knockout (KO) mutations in erlotinib‐resistant human lung cancer cells (NCI‐H820) using a genome‐scale CRISPR‐Cas9 sgRNA library to screen for genes involved in erlotinib susceptibility. The spectrum of sgRNAs incorporated among erlotinib‐treated cells was substantially different to that of the untreated cells. Gene set analyses showed a significant depletion of ‘cell cycle process’ and ‘protein ubiquitination pathway’ genes among erlotinib‐treated cells. Chemical inhibitors targeting genes in these two pathways, such as nutlin‐3 and carfilzomib, increased cancer cell death when combined with erlotinib in both in vitro cell line and in vivo patient‐derived xenograft experiments. Therefore, we propose that targeting cell cycle processes or protein ubiquitination pathways are promising treatment strategies for overcoming resistance to EGFR inhibitors in lung cancer.
Collapse
Affiliation(s)
- Jieun Lee
- Department of Life Science, Ewha Womans University, Seoul, Korea.,Ewha-JAX Cancer Immunotherapy Research Center, Ewha Womans University, Seoul, Korea
| | - Ahyoung Choi
- Department of Bio-Information Science, Ewha Womans University, Seoul, Korea
| | - Sung-Yup Cho
- Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine, Seoul, Korea.,Department of Biomedical Sciences, Seoul National University College of Medicine, Korea
| | - Yukyung Jun
- Ewha-JAX Cancer Immunotherapy Research Center, Ewha Womans University, Seoul, Korea.,The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA
| | - Deukchae Na
- Ewha Institute of Convergence Medicine, Ewha Womans University Mokdong Hospital, Seoul, Korea
| | - Ahra Lee
- Ewha-JAX Cancer Immunotherapy Research Center, Ewha Womans University, Seoul, Korea
| | - Giyong Jang
- Department of Life Science, Ewha Womans University, Seoul, Korea.,Ewha-JAX Cancer Immunotherapy Research Center, Ewha Womans University, Seoul, Korea
| | - Jee Young Kwon
- Ewha-JAX Cancer Immunotherapy Research Center, Ewha Womans University, Seoul, Korea.,The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA
| | - Jaesang Kim
- Department of Life Science, Ewha Womans University, Seoul, Korea.,Ewha-JAX Cancer Immunotherapy Research Center, Ewha Womans University, Seoul, Korea
| | - Sanghyuk Lee
- Department of Life Science, Ewha Womans University, Seoul, Korea.,Ewha-JAX Cancer Immunotherapy Research Center, Ewha Womans University, Seoul, Korea.,Department of Bio-Information Science, Ewha Womans University, Seoul, Korea
| | - Charles Lee
- Department of Life Science, Ewha Womans University, Seoul, Korea.,Ewha-JAX Cancer Immunotherapy Research Center, Ewha Womans University, Seoul, Korea.,The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA.,Precision Medicine Center, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
39
|
Zhou H, Lei M, Wang W, Guo M, Wang J, Zhang H, Qiao L, Feng H, Liu Z, Chen L, Hou J, Wang X, Gu C, Zhao B, Izumchenko E, Yang Y, Zhu Y. In vitro and in vivo efficacy of the novel oral proteasome inhibitor NNU546 in multiple myeloma. Aging (Albany NY) 2020; 12:22949-22974. [PMID: 33203800 PMCID: PMC7746380 DOI: 10.18632/aging.104023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 08/15/2020] [Indexed: 01/14/2023]
Abstract
Proteasome inhibition demonstrates highly effective impact on multiple myeloma (MM) treatment. Here, we aimed to examine anti-tumor efficiency and underlying mechanisms of a novel well tolerated orally applicable proteasome inhibitor NNU546 and its hydrolyzed pharmacologically active form NNU219. NNU219 showed more selective inhibition to proteasome catalytic subunits and less off-target effect than bortezomib ex vivo. Moreover, intravenous and oral administration of either NNU219 or NNU546 led to more sustained pharmacodynamic inhibitions of proteasome activities compared with bortezomib. Importantly, NNU219 exhibited potential anti-MM activity in both MM cell lines and primary samples in vitro. The anti-MM activity of NNU219 was associated with induction of G2/M-phase arrest and apoptosis via activation of the caspase cascade and endoplasmic reticulum stress response. Significant growth-inhibitory effects of NNU219 and NNU546 were observed in 3 different human MM xenograft mouse models. Furthermore, such observation was even found in the presence of a bone marrow microenvironment. Taken together, these findings provided the basis for clinical trial of NNU546 to determine its potential as a candidate for MM treatment.
Collapse
Affiliation(s)
- Hui Zhou
- College of Life Science, Nanjing Normal University, Nanjing 210046, PR China
| | - Meng Lei
- College of Science, Nanjing Forestry University, Nanjing 210037, PR China
| | - Wang Wang
- School of Medicine and Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, PR China
| | - Mengjie Guo
- School of Medicine and Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, PR China
| | - Jia Wang
- Jiangsu Chia Tai Fenghai Pharmaceutical Co. Ltd., Nanjing 210046, PR China
| | - Haoyang Zhang
- College of Life Science, Nanjing Normal University, Nanjing 210046, PR China
| | - Li Qiao
- School of Medicine and Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, PR China
| | - Huayun Feng
- College of Science, Nanjing Forestry University, Nanjing 210037, PR China
| | - Zhaogang Liu
- Jiangsu Chia Tai Fenghai Pharmaceutical Co. Ltd., Nanjing 210046, PR China
| | - Lijuan Chen
- The 1st Affiliated Hospital of Nanjing Medical University, Nanjing 210029, PR China
| | - Jianhao Hou
- School of Medicine and Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, PR China
| | - Xueyuan Wang
- College of Life Science, Nanjing Normal University, Nanjing 210046, PR China
| | - Chenxi Gu
- School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210046, PR China
| | - Bo Zhao
- School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210046, PR China
| | - Evgeny Izumchenko
- Department of Medicine, Section of Hematology and Oncology, University of Chicago, Chicago, IL 60637, USA
| | - Ye Yang
- School of Medicine and Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, PR China.,The 3rd Affiliated Hospital, Nanjing University of Chinese Medicine, Nanjing 210023, PR China
| | - Yongqiang Zhu
- College of Life Science, Nanjing Normal University, Nanjing 210046, PR China.,Jiangsu Chia Tai Fenghai Pharmaceutical Co. Ltd., Nanjing 210046, PR China
| |
Collapse
|
40
|
Korycka-Wołowiec A, Wołowiec D, Robak T. The safety of available chemo-free treatments for mantle cell lymphoma. Expert Opin Drug Saf 2020; 19:1377-1393. [PMID: 32946324 DOI: 10.1080/14740338.2020.1826435] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
INTRODUCTION Conventional treatment for mantle cell lymphoma (MCL) patients includes regimens combining rituximab with other cytotoxic drugs, followed or not by consolidation with autologous stem cell transplantation and rituximab maintenance. However, older, unfit, and relapsed/refractory patients are often ineligible for intense treatment. Currently, available new targeted treatment options seem to offer hope in this group of patients. AREAS COVERED This article reviews the safety profiles of new therapeutic chemotherapy-free options for MCL patients. Publications in English from 2010 through June 2020 were surveyed on the MEDLINE database for articles. Proceedings of the American Society of Hematology during the last 5 years were also included. EXPERT OPINION MCL is a clinically heterogenous disease predominantly affecting elderly patients. Its variable clinical course requires personalization and individualization of treatment to achieve optimal survival and acceptable safety profiles, especially in poor prognosis patients. Results of clinical trials performed in the past decade indicated that novel drugs used as a single agent or as part of a conventional chemotherapeutic treatment offer promise in minimalizing the relapse rate for MCL and may allow more effective and safer treatment options by reducing the risk of adverse events, especially cytopenias and infections.
Collapse
Affiliation(s)
| | - Dariusz Wołowiec
- Department of Hematology, Medical University of Wroclaw , Wroclaw, Poland
| | - Tadeusz Robak
- Department of Hematology, Medical University of Lodz , Lodz, Poland
| |
Collapse
|
41
|
Costa VM, Capela JP, Sousa JR, Eleutério RP, Rodrigues PRS, Dores-Sousa JL, Carvalho RA, Lourdes Bastos M, Duarte JA, Remião F, Almeida MG, Varner KJ, Carvalho F. Mitoxantrone impairs proteasome activity and prompts early energetic and proteomic changes in HL-1 cardiomyocytes at clinically relevant concentrations. Arch Toxicol 2020; 94:4067-4084. [DOI: 10.1007/s00204-020-02874-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 08/12/2020] [Indexed: 11/24/2022]
|
42
|
Pancheri E, Guglielmi V, Wilczynski GM, Malatesta M, Tonin P, Tomelleri G, Nowis D, Vattemi G. Non-Hematologic Toxicity of Bortezomib in Multiple Myeloma: The Neuromuscular and Cardiovascular Adverse Effects. Cancers (Basel) 2020; 12:cancers12092540. [PMID: 32906684 PMCID: PMC7563977 DOI: 10.3390/cancers12092540] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Revised: 09/02/2020] [Accepted: 09/04/2020] [Indexed: 12/13/2022] Open
Abstract
Simple Summary Multiple myeloma (MM) is a still uncurable tumor of mainly elderly patients originating from the terminally differentiated B cells. Introduction to the treatment of MM patients of a new class of drugs called proteasome inhibitors (bortezomib followed by carfilzomib and ixazomib) significantly improved disease control. Proteasome inhibitors interfere with the major mechanism of protein degradation in a cell leading to the severe imbalance in the protein turnover that is deadly to MM cells. Currently, these drugs are the mainstream of MM therapy but are also associated with an increased rate of the injuries to multiple organs and tissues. In this review, we summarize the current knowledge on the molecular mechanisms of the first-in-class proteasome inhibitor bortezomib-induced disturbances in the function of peripheral nerves and cardiac and skeletal muscle. Abstract The overall approach to the treatment of multiple myeloma (MM) has undergone several changes during the past decade. and proteasome inhibitors (PIs) including bortezomib, carfilzomib, and ixazomib have considerably improved the outcomes in affected patients. The first-in-class selective PI bortezomib has been initially approved for the refractory forms of the disease but has now become, in combination with other drugs, the backbone of the frontline therapy for newly diagnosed MM patients, as well as in the maintenance therapy and relapsed/refractory setting. Despite being among the most widely used and highly effective agents for MM, bortezomib can induce adverse events that potentially lead to early discontinuation of the therapy with negative effects on the quality of life and outcome of the patients. Although peripheral neuropathy and myelosuppression have been recognized as the most relevant bortezomib-related adverse effects, cardiac and skeletal muscle toxicities are relatively common in MM treated patients, but they have received much less attention. Here we review the neuromuscular and cardiovascular side effects of bortezomib. focusing on the molecular mechanisms underlying its toxicity. We also discuss our preliminary data on the effects of bortezomib on skeletal muscle tissue in mice receiving the drug.
Collapse
Affiliation(s)
- Elia Pancheri
- Department of Neurosciences, Biomedicine and Movement Sciences, Section of Clinical Neurology, University of Verona, 37134 Verona, Italy; (E.P.); (V.G.); (P.T.); (G.T.)
| | - Valeria Guglielmi
- Department of Neurosciences, Biomedicine and Movement Sciences, Section of Clinical Neurology, University of Verona, 37134 Verona, Italy; (E.P.); (V.G.); (P.T.); (G.T.)
| | - Grzegorz M. Wilczynski
- Laboratory of Molecular and Systemic Neuromorphology, Department of Neurophysiology Warsaw, Nencki Institute of Experimental Biology, 02-093 Warsaw, Poland;
| | - Manuela Malatesta
- Department of Neurosciences, Biomedicine and Movement Sciences, Section of Anatomy and Histology, University of Verona, 37134 Verona, Italy;
| | - Paola Tonin
- Department of Neurosciences, Biomedicine and Movement Sciences, Section of Clinical Neurology, University of Verona, 37134 Verona, Italy; (E.P.); (V.G.); (P.T.); (G.T.)
| | - Giuliano Tomelleri
- Department of Neurosciences, Biomedicine and Movement Sciences, Section of Clinical Neurology, University of Verona, 37134 Verona, Italy; (E.P.); (V.G.); (P.T.); (G.T.)
| | - Dominika Nowis
- Department of Immunology, Medical University of Warsaw, 02-093 Warsaw, Poland;
- Laboratory of Experimental Medicine, Medical University of Warsaw, 02-093 Warsaw, Poland
| | - Gaetano Vattemi
- Department of Neurosciences, Biomedicine and Movement Sciences, Section of Clinical Neurology, University of Verona, 37134 Verona, Italy; (E.P.); (V.G.); (P.T.); (G.T.)
- Correspondence:
| |
Collapse
|
43
|
UBE2T promotes glioblastoma invasion and migration via stabilizing GRP78 and regulating EMT. Aging (Albany NY) 2020; 12:10275-10289. [PMID: 32491994 PMCID: PMC7346020 DOI: 10.18632/aging.103239] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 03/31/2020] [Indexed: 01/10/2023]
Abstract
Glioblastoma (GBM) generally has a dismal prognosis, and it is associated with a poor quality of life as the disease progresses. However, the development of effective therapies for GBM has been deficient. Ubiquitin-conjugating enzyme E2T (UBE2T) is a member of the E2 family in the ubiquitin-proteasome pathway and a vital regulator of tumour progression, but its role in GBM is unclear. In this study, we aimed to clarify the role of UBE2T in GBM. Bioinformatics analysis identified UBE2T as an independent risk factor for gliomas. Immunohistochemistry was used to measure UBE2T expression in GBM and normal tissue samples obtained from patients with GBM. The effects of UBE2T on GBM cell invasion and migration were analysed using the Transwell assay. BALB/c nude mice were used for the in vivo assays. Immunoblotting and immunoprecipitation were performed to determine the molecular mechanisms. UBE2T was highly expressed in GBM tissues, and its expression was linked to a poor prognosis. In vitro, depletion of UBE2T significantly suppressed cell invasion and migration. Moreover, UBE2T depletion suppressed the growth of GBM subcutaneous tumours in vivo. Further experiments revealed that UBE2T suppressed invasion and migration by regulating epithelial- mesenchymal transition (EMT) via stabilising GRP78 in GBM cells. We uncovered a novel UBE2T/GRP78/EMT regulatory axis that modulates the malignant progression and recurrence of GBM, indicating that the axis might be a valuable therapeutic target.
Collapse
|
44
|
|
45
|
Rajkumar SV. Multiple myeloma: 2020 update on diagnosis, risk-stratification and management. Am J Hematol 2020; 95:548-567. [PMID: 32212178 DOI: 10.1002/ajh.25791] [Citation(s) in RCA: 501] [Impact Index Per Article: 100.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 03/18/2020] [Indexed: 12/11/2022]
Abstract
DISEASE OVERVIEW Multiple myeloma accounts for approximately 10% of hematologic malignancies. DIAGNOSIS The diagnosis requires ≥10% clonal bone marrow plasma cells or a biopsy proven plasmacytoma plus evidence of one or more multiple myeloma defining events (MDE) namely CRAB (hypercalcemia, renal failure, anemia, or lytic bone lesions) features felt related to the plasma cell disorder, bone marrow clonal plasmacytosis ≥60%, serum involved/uninvolved free light chain (FLC) ratio ≥100 (provided involved FLC is ≥100 mg/L), or >1 focal lesion on magnetic resonance imaging (MRI). RISK STRATIFICATION The presence of del(17p), t(4;14), t(14;16), t(14;20), gain 1q, or p53 mutation is considered high-risk multiple myeloma. Presence of any two high risk factors is considered double-hit myeloma; three or more high risk factors is triple-hit myeloma. RISK-ADAPTED INITIAL THERAPY In transplant eligible patients, induction therapy consists of bortezomib, lenalidomide, dexamethasone (VRd) given for approximately 3-4 cycles followed by autologous stem cell transplantation (ASCT). In high-risk patients, daratumumab, bortezomib, lenalidomide, dexamethasone (Dara-VRd) is an alternative to VRd. Selected standard risk patients can get additional cycles of induction, and delay transplant until first relapse. Patients not candidates for transplant are typically treated with VRd for approximately 8-12 cycles followed by lenalidomide; alternatively these patients can be treated with daratumumab, lenalidomide, dexamethasone (DRd). MAINTENANCE THERAPY After ASCT, standard risk patients need lenalidomide maintenance, while bortezomib-based maintenance is needed for patients with high-risk myeloma. MANAGEMENT OF REFRACTORY DISEASE Most patients require a triplet regimen at relapse, with the choice of regimen varying with each successive relapse.
Collapse
|
46
|
Effect of Bortezomib on Global Gene Expression in PC12-Derived Nerve Cells. Int J Mol Sci 2020; 21:ijms21030751. [PMID: 31979371 PMCID: PMC7038167 DOI: 10.3390/ijms21030751] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 01/17/2020] [Accepted: 01/21/2020] [Indexed: 12/24/2022] Open
Abstract
Peripheral neuropathy is one of the main side-effects of novel therapeutics used in oncohematological diseases, but the molecular basis underlying its development and progression as well as neurotoxicity mechanisms induced by the use of these therapeutics are still not fully elucidated. The aim of this study was to demonstrate the effect of bortezomib on global gene and miRNA expression on PC12-derived nerve cells. Microarray analysis showed that expression of 1383 genes was downregulated at least two fold and 671 genes were upregulated at least two fold in PC12-derived nerve cells treated with bortezomib compared to untreated/control cells. Analysis of functional annotations mainly identified downregulated processes (e.g., regulation of cell cycle, DNA replication and repair, regulation of cell migration, neuron projection morphogenesis and neurotransmitter secretion). The result of miRNA expression analysis demonstrated only 11 significantly downregulated miRNAs (at least two fold) in bortezomib-treated PC12-derived nerve cells vs. control cells. MiRNAs regulate gene expression, therefore we decided to conduct an analysis comparing the outcomes of miRNA microarray expression data to the obtained mRNA data. The most interesting miRNA–target gene correlation is downregulated expression of miR-130a-3p and miR-152-3p and as a result of this downregulation the expression of the Gadd45 increased. This gene is a member of a group of genes, the transcript expression of which is enhanced after stressful growth arrest conditions and treatment with DNA-damaging agents like drugs or mutagens.
Collapse
|
47
|
Targeting the ubiquitin-proteasome pathway to overcome anti-cancer drug resistance. Drug Resist Updat 2020; 48:100663. [DOI: 10.1016/j.drup.2019.100663] [Citation(s) in RCA: 101] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 11/01/2019] [Accepted: 11/03/2019] [Indexed: 02/07/2023]
|
48
|
Zhang KW, Stockerl-Goldstein KE, Lenihan DJ. Emerging Therapeutics for the Treatment of Light Chain and Transthyretin Amyloidosis. JACC Basic Transl Sci 2019; 4:438-448. [PMID: 31312767 PMCID: PMC6609907 DOI: 10.1016/j.jacbts.2019.02.002] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 02/16/2019] [Accepted: 02/19/2019] [Indexed: 02/08/2023]
Abstract
Cardiac amyloidosis is a restrictive cardiomyopathy that results from the deposition of misfolded light chain or transthyretin proteins, most commonly, in cardiac tissue. Traditionally, treatment options for light chain (AL) and transthyretin (ATTR) amyloidosis have been limited. However, there are now multiple novel therapeutics in development and several therapeutics recently approved that promise to revolutionize clinical management of AL and ATTR. Most of these agents disrupt specific stages of amyloidogenesis such as light chain or transthyretin protein production, formation of amyloidogenic intermediates, or amyloid fibril aggregation. Others aim to remove existing amyloid tissue deposits using monoclonal antibody technology. Although these advances represent an important step forward in the care of cardiac amyloidosis patients, additional studies are needed to define the optimal treatment paradigms for AL and ATTR and to validate clinical, imaging, or serum biomarker strategies that may confirm a cardiac response to therapy.
Collapse
Key Words
- AL, light chain amyloidosis
- ASCT, autologous stem cell transplantation
- ATTR, transthyretin amyloidosis
- CA, cardiac amyloidosis
- GLS, global longitudinal strain
- MGUS, monoclonal gammopathy of undetermined significance
- MM, multiple myeloma
- MMP, matrix metalloproteinase
- NT-proBNP, N-terminal prohormone of brain natriuretic peptide
- SAP, serum amyloid P
- cardiac amyloidosis
- clinical trials
- therapeutics
Collapse
Affiliation(s)
- Kathleen W. Zhang
- Division of Cardiology, Cardio-Oncology Center of Excellence, Washington University in St. Louis School of Medicine, Saint Louis, Missouri
| | | | - Daniel J. Lenihan
- Division of Cardiology, Cardio-Oncology Center of Excellence, Washington University in St. Louis School of Medicine, Saint Louis, Missouri
| |
Collapse
|
49
|
Hemming ML, Lawlor MA, Andersen JL, Hagan T, Chipashvili O, Scott TG, Raut CP, Sicinska E, Armstrong SA, Demetri GD, Bradner JE, Ganz PA, Tomlinson G, Olopade OI, Couch FJ, Wang X, Lindor NM, Pankratz VS, Radice P, Manoukian S, Peissel B, Zaffaroni D, Barile M, Viel A, Allavena A, Dall'Olio V, Peterlongo P, Szabo CI, Zikan M, Claes K, Poppe B, Foretova L, Mai PL, Greene MH, Rennert G, Lejbkowicz F, Glendon G, Ozcelik H, Andrulis IL, Thomassen M, Gerdes AM, Sunde L, Cruger D, Birk Jensen U, Caligo M, Friedman E, Kaufman B, Laitman Y, Milgrom R, Dubrovsky M, Cohen S, Borg A, Jernström H, Lindblom A, Rantala J, Stenmark-Askmalm M, Melin B, Nathanson K, Domchek S, Jakubowska A, Lubinski J, Huzarski T, Osorio A, Lasa A, Durán M, Tejada MI, Godino J, Benitez J, Hamann U, Kriege M, Hoogerbrugge N, van der Luijt RB, van Asperen CJ, Devilee P, Meijers-Heijboer EJ, Blok MJ, Aalfs CM, Hogervorst F, Rookus M, Cook M, Oliver C, Frost D, Conroy D, Evans DG, Lalloo F, Pichert G, Davidson R, Cole T, Cook J, Paterson J, Hodgson S, Morrison PJ, Porteous ME, Walker L, Kennedy MJ, Dorkins H, Peock S, Godwin AK, Stoppa-Lyonnet D, de Pauw A, et alHemming ML, Lawlor MA, Andersen JL, Hagan T, Chipashvili O, Scott TG, Raut CP, Sicinska E, Armstrong SA, Demetri GD, Bradner JE, Ganz PA, Tomlinson G, Olopade OI, Couch FJ, Wang X, Lindor NM, Pankratz VS, Radice P, Manoukian S, Peissel B, Zaffaroni D, Barile M, Viel A, Allavena A, Dall'Olio V, Peterlongo P, Szabo CI, Zikan M, Claes K, Poppe B, Foretova L, Mai PL, Greene MH, Rennert G, Lejbkowicz F, Glendon G, Ozcelik H, Andrulis IL, Thomassen M, Gerdes AM, Sunde L, Cruger D, Birk Jensen U, Caligo M, Friedman E, Kaufman B, Laitman Y, Milgrom R, Dubrovsky M, Cohen S, Borg A, Jernström H, Lindblom A, Rantala J, Stenmark-Askmalm M, Melin B, Nathanson K, Domchek S, Jakubowska A, Lubinski J, Huzarski T, Osorio A, Lasa A, Durán M, Tejada MI, Godino J, Benitez J, Hamann U, Kriege M, Hoogerbrugge N, van der Luijt RB, van Asperen CJ, Devilee P, Meijers-Heijboer EJ, Blok MJ, Aalfs CM, Hogervorst F, Rookus M, Cook M, Oliver C, Frost D, Conroy D, Evans DG, Lalloo F, Pichert G, Davidson R, Cole T, Cook J, Paterson J, Hodgson S, Morrison PJ, Porteous ME, Walker L, Kennedy MJ, Dorkins H, Peock S, Godwin AK, Stoppa-Lyonnet D, de Pauw A, Mazoyer S, Bonadona V, Lasset C, Dreyfus H, Leroux D, Hardouin A, Berthet P, Faivre L, Loustalot C, Noguchi T, Sobol H, Rouleau E, Nogues C, Frénay M, Vénat-Bouvet L, Hopper JL, Daly MB, Terry MB, John EM, Buys SS, Yassin Y, Miron A, Goldgar D, Singer CF, Dressler AC, Gschwantler-Kaulich D, Pfeiler G, Hansen TVO, Jønson L, Agnarsson BA, Kirchhoff T, Offit K, Devlin V, Dutra-Clarke A, Piedmonte M, Rodriguez GC, Wakeley K, Boggess JF, Basil J, Schwartz PE, Blank SV, Toland AE, Montagna M, Casella C, Imyanitov E, Tihomirova L, Blanco I, Lazaro C, Ramus SJ, Sucheston L, Karlan BY, Gross J, Schmutzler R, Wappenschmidt B, Engel C, Meindl A, Lochmann M, Arnold N, Heidemann S, Varon-Mateeva R, Niederacher D, Sutter C, Deissler H, Gadzicki D, Preisler-Adams S, Kast K, Schönbuchner I, Caldes T, de la Hoya M, Aittomäki K, Nevanlinna H, Simard J, Spurdle AB, Holland H, Chen X, Platte R, Chenevix-Trench G, Easton DF. Enhancer Domains in Gastrointestinal Stromal Tumor Regulate KIT Expression and Are Targetable by BET Bromodomain Inhibition. Cancer Res 2019. [PMID: 18483246 DOI: 10.1158/0008-5472] [Show More Authors] [Citation(s) in RCA: 748] [Impact Index Per Article: 124.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Gastrointestinal stromal tumor (GIST) is a mesenchymal neoplasm characterized by activating mutations in the related receptor tyrosine kinases KIT and PDGFRA. GIST relies on expression of these unamplified receptor tyrosine kinase (RTK) genes through a large enhancer domain, resulting in high expression levels of the oncogene required for tumor growth. Although kinase inhibition is an effective therapy for many patients with GIST, disease progression from kinase-resistant mutations is common and no other effective classes of systemic therapy exist. In this study, we identify regulatory regions of the KIT enhancer essential for KIT gene expression and GIST cell viability. Given the dependence of GIST upon enhancer-driven expression of RTKs, we hypothesized that the enhancer domains could be therapeutically targeted by a BET bromodomain inhibitor (BBI). Treatment of GIST cells with BBIs led to cell-cycle arrest, apoptosis, and cell death, with unique sensitivity in GIST cells arising from attenuation of the KIT enhancer domain and reduced KIT gene expression. BBI treatment in KIT-dependent GIST cells produced genome-wide changes in the H3K27ac enhancer landscape and gene expression program, which was also seen with direct KIT inhibition using a tyrosine kinase inhibitor (TKI). Combination treatment with BBI and TKI led to superior cytotoxic effects in vitro and in vivo, with BBI preventing tumor growth in TKI-resistant xenografts. Resistance to select BBI in GIST was attributable to drug efflux pumps. These results define a therapeutic vulnerability and clinical strategy for targeting oncogenic kinase dependency in GIST. SIGNIFICANCE: Expression and activity of mutant KIT is essential for driving the majority of GIST neoplasms, which can be therapeutically targeted using BET bromodomain inhibitors.
Collapse
Affiliation(s)
- Matthew L Hemming
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts. .,Center for Sarcoma and Bone Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Matthew A Lawlor
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Jessica L Andersen
- Center for Sarcoma and Bone Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Timothy Hagan
- Department of Oncologic Pathology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Otari Chipashvili
- Department of Oncologic Pathology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Thomas G Scott
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Chandrajit P Raut
- Department of Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Ewa Sicinska
- Department of Oncologic Pathology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Scott A Armstrong
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - George D Demetri
- Center for Sarcoma and Bone Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts.,Ludwig Center at Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts
| | - James E Bradner
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Multiple myeloma: 2018 update on diagnosis, risk‐stratification, and management. Am J Hematol 2018; 93:981-1114. [PMID: 30400719 PMCID: PMC6223128 DOI: 10.1002/ajh.25117] [Citation(s) in RCA: 140] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Accepted: 04/17/2018] [Indexed: 12/22/2022]
Abstract
Disease overview Multiple myeloma accounts for approximately 10% of hematologic malignancies. Diagnosis The diagnosis requires ≥10% clonal bone marrow plasma cells or a biopsy proven plasmacytoma plus evidence of one or more multiple myeloma defining events (MDE): CRAB (hyperc alcemia, r enal failure, a nemia, or lytic b one lesions) features felt related to the plasma cell disorder, bone marrow clonal plasmacytosis ≥60%, serum involved/uninvolved free light chain (FLC) ratio ≥100 (provided involved FLC is ≥100 mg/L), or >1 focal lesion on magnetic resonance imaging. Risk stratification Patients with del(17p), t(14;16), and t(14;20) have high-risk multiple myeloma. Patients with t(4;14) translocation and gain(1q) have intermediate-risk. All others are considered standard-risk. Risk-adapted initial therapy Initial treatment consists of bortezomib, lenalidomide, dexamethasone (VRd). In high-risk patients, carfilzomib, lenalidomide, dexamethasone (KRd) is an alternative to VRd. In eligible patients, initial therapy is given for approximately 3–4 cycles followed by autologous stem cell transplantation (ASCT). Standard risk patients can opt for delayed ASCT at first relapse. Patients not candidates for transplant are treated with VRd for approximately 8–12 cycles followed by lenalidomide or lenalidomide plus dexamethasone. Maintenance therapy After ASCT, lenalidomide maintenance is recommended for standard risk patients, while maintenance with a bortezomib-based regimen is needed for patients with intermediate or high-risk disease. Management of refractory disease Most patients require a triplet regimen at relapse, with the choice of regimen varying with each successive relapse. Aggressive relapse with extramedullary plasmacytomas or plasma cell leukemia may require anthracycline containing combination chemotherapy regimens.
Collapse
|