1
|
Ranga V, Dakal TC, Maurya PK, Johnson MS, Sharma NK, Kumar A. Role of RGD-binding Integrins in ovarian cancer progression, metastasis and response to therapy. Integr Biol (Camb) 2025; 17:zyaf003. [PMID: 39916547 DOI: 10.1093/intbio/zyaf003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 09/12/2024] [Accepted: 01/29/2025] [Indexed: 05/08/2025]
Abstract
Integrins are transmembrane receptors that play a crucial role in cell adhesion and signaling by connecting the extracellular environment to the intracellular cytoskeleton. After binding with specific ligands in the extracellular matrix (ECM), integrins undergo conformational changes that transmit signals across the cell membrane. The integrin-mediated bidirectional signaling triggers various cellular responses, such as changes in cell shape, migration and proliferation. Irregular integrin expression and activity are closely linked to tumor initiation, angiogenesis, cell motility, invasion, and metastasis. Thus, understanding the intricate regulatory mechanism is essential for slowing cancer progression and preventing carcinogenesis. Among the four classes of integrins, the arginine-glycine-aspartic acid (RGD)-binding integrins stand out as the most crucial integrin receptor subfamily in cancer and its metastasis. Dysregulation of almost all RGD-binding integrins promotes ECM degradation in ovarian cancer, resulting in ovarian carcinoma progression and resistance to therapy. Preclinical studies have demonstrated that targeting these integrins with therapeutic antibodies and ligands, such as RGD-containing peptides and their derivatives, can enhance the precision of these therapeutic agents in treating ovarian cancer. Therefore, the development of novel therapeutic agents is essential for treating ovarian cancer. This review mainly discusses genes and their importance across different ovarian cancer subtypes, the involvement of RGD motif-containing ECM proteins in integrin-mediated signaling in ovarian carcinoma, ongoing, completed, partially completed, and unsuccessful clinical trials of therapeutic agents, as well as existing limitations and challenges, advancements made so far, potential strategies, and directions for future research in the field. Insight Box Integrin-mediated signaling regulates cell migration, proliferation and differentiation. Dysregulated integrin expression and activity promote tumor growth and dissemination. Thus, a proper understanding of this complex regulatory mechanism is essential to delay cancer progression and prevent carcinogenesis. Notably, integrins binding to RGD motifs play an important role in tumor initiation, evolution, and metastasis. Preclinical studies have demonstrated that therapeutic agents, such as antibodies and small molecules with RGD motifs, target RGD-binding integrins and disrupt their interactions with the ECM, thereby inhibiting ovarian cancer proliferation and migration. Altogether, this review highlights the potential of RGD-binding integrins in providing new insights into the progression and metastasis of ovarian cancer and how these integrins have been utilized to develop effective treatment plans.
Collapse
Affiliation(s)
- Vipin Ranga
- DBT-North East Centre for Agricultural Biotechnology (DBT-NECAB), Assam Agricultural University, Agriculture University Road, Jorhat, Assam 785013, India
| | - Tikam Chand Dakal
- Genome and Computational Biology Laboratory, Department of Biotechnology, Mohanlal Sukhadia University, University Road, Udaipur, Rajasthan 313001, India
| | - Pawan Kumar Maurya
- Department of Biochemistry, Central University of Haryana, Central University of Haryana Road, Mahendergarh, Haryana 123031, India
| | - Mark S Johnson
- Structural Bioinformatics Laboratory and InFLAMES Research Flagship Center, Biochemistry, Faculty of Science and Engineering, Åbo Akademi University, Tykistökatu 6A, Turku 20520, Finland
| | - Narendra Kumar Sharma
- Department of Bioscience and Biotechnology, Banasthali Vidyapith, Vanasthali Road, Tonk, Rajasthan 304022, India
| | - Abhishek Kumar
- Manipal Academy of Higher Education (MAHE), Tiger Circle Road, Manipal, Karnataka 576104, India
- Institute of Bioinformatics, Discoverer Building, International Technology Park, Whitefield, Bangalore, Karnataka 560006, India
| |
Collapse
|
2
|
Surman M, Wilczak M, Bzowska M, Tylko G, Przybyło M. The Proangiogenic Effects of Melanoma-Derived Ectosomes Are Mediated by αvβ5 Integrin Rather than αvβ3 Integrin. Cells 2024; 13:1336. [PMID: 39195226 PMCID: PMC11352487 DOI: 10.3390/cells13161336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 07/28/2024] [Accepted: 08/10/2024] [Indexed: 08/29/2024] Open
Abstract
Ectosomes are carriers of proangiogenic factors during cancer progression. This study investigated whether the proangiogenic effect exerted by melanoma-derived ectosomes on recipient endothelial cells is mediated by ectosomal αvβ3 and αvβ5 integrins. Ectosomes were isolated from the conditioned culture media of four melanoma cell lines and melanocytes. Changes in gene and protein expression of αvβ3 and αvβ5 integrins, as well as VEGF and TNF-α were assessed in ectosome-treated endothelial cells. To confirm the functional involvement of ectosomal integrins in functional tests (Alamar Blue, wound healing and tube formation assays), ectosomes were also pretreated with anti-integrin antibodies and integrin-blocking peptides echistatin and cilengitide. Melanoma-derived ectosomes induced changes in the expression of αvβ3 and αvβ5 integrins in recipient endothelial cells, leading to increased viability, migratory properties, and tube formation potential. The extent of proangiogenic stimulation varied depending on the types of cells releasing ectosomes and the recipient cells. The use of anti-integrin antibodies and integrin-blocking peptides revealed a more significant role for the αvβ5 integrin/VEGF than the αvβ3 integrin/TNF-α pathway in the interactions between ectosomes and endothelial cells. The study demonstrated the functional role of ectosomal αvβ3 and αvβ5 integrins. It also provided a baseline understanding of ectosome-mediated αvβ3 integrin/TNF-α and αvβ5 integrin/VEGF signaling in angiogenesis.
Collapse
Affiliation(s)
- Magdalena Surman
- Department of Glycoconjugate Biochemistry, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University, 30-387 Krakow, Poland; (M.S.); (M.W.)
| | - Magdalena Wilczak
- Department of Glycoconjugate Biochemistry, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University, 30-387 Krakow, Poland; (M.S.); (M.W.)
- Doctoral School of Exact and Natural Sciences, Jagiellonian University, 30-348 Krakow, Poland
| | - Małgorzata Bzowska
- Department of Immunology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Krakow, Poland;
| | - Grzegorz Tylko
- Department of Cell Biology and Imaging, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University, 30-387 Krakow, Poland;
| | - Małgorzata Przybyło
- Department of Glycoconjugate Biochemistry, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University, 30-387 Krakow, Poland; (M.S.); (M.W.)
| |
Collapse
|
3
|
Sun J, Chen C, Pan P, Zhang K, Xu J, Chen C. The potential of bacterial anti-phagocytic proteins in suppressing the clearance of extracellular vesicles mediated by host phagocytosis. Front Immunol 2024; 15:1418061. [PMID: 38903499 PMCID: PMC11186983 DOI: 10.3389/fimmu.2024.1418061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 05/24/2024] [Indexed: 06/22/2024] Open
Abstract
Extracellular vesicles (EVs), characterized by low immunogenicity, high biocompatibility and targeting specificity along with excellent blood-brain barrier permeability, are increasingly recognized as promising drug delivery vehicles for treating a variety of diseases, such as cancer, inflammation and viral infection. However, recent findings demonstrate that the intracellular delivery efficiency of EVs fall short of expectations due to phagocytic clearance mediated by the host mononuclear phagocyte system through Fcγ receptors, complement receptors as well as non-opsonic phagocytic receptors. In this text, we investigate a range of bacterial virulence proteins that antagonize host phagocytic machinery, aiming to explore their potential in engineering EVs to counteract phagocytosis. Special emphasis is placed on IdeS secreted by Group A Streptococcus and ImpA secreted by Pseudomonas aeruginosa, as they not only counteract phagocytosis but also bind to highly upregulated surface biomarkers αVβ3 on cancer cells or cleave the tumor growth and metastasis-promoting factor CD44, respectively. This suggests that bacterial anti-phagocytic proteins, after decorated onto EVs using pre-loading or post-loading strategies, can not only improve EV-based drug delivery efficiency by evading host phagocytosis and thus achieve better therapeutic outcomes but also further enable an innovative synergistic EV-based cancer therapy approach by integrating both phagocytosis antagonism and cancer targeting or deactivation.
Collapse
Affiliation(s)
- Jiacong Sun
- School of Life Sciences, Tianjin University, Tianjin, China
| | - Congcong Chen
- Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Institute of Clinical Pharmacology, Anhui Medical University, Hefei, China
| | - Pengpeng Pan
- Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Institute of Clinical Pharmacology, Anhui Medical University, Hefei, China
| | - Keyi Zhang
- Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Institute of Clinical Pharmacology, Anhui Medical University, Hefei, China
| | - Jinrui Xu
- School of Life Sciences, Ningxia University, Yinchuan, China
- Key Laboratory of Ministry of Education for Conservation and Utilization of Special Biological Resources in the Western, Ningxia University, Yinchuan, China
| | - Cheng Chen
- School of Life Sciences, Tianjin University, Tianjin, China
| |
Collapse
|
4
|
Xiong S, Qin B, Liu C, Pan Y. Editorial: Immunosuppression mechanisms and immunotherapy strategies in glioblastoma. Front Cell Neurosci 2024; 18:1411330. [PMID: 38725447 PMCID: PMC11080981 DOI: 10.3389/fncel.2024.1411330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 04/09/2024] [Indexed: 05/12/2024] Open
Affiliation(s)
- Sihan Xiong
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| | - Bing Qin
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Chuang Liu
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| | - Yuanbo Pan
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
5
|
Viktorsson K, Rieckmann T, Fleischmann M, Diefenhardt M, Hehlgans S, Rödel F. Advances in molecular targeted therapies to increase efficacy of (chemo)radiation therapy. Strahlenther Onkol 2023; 199:1091-1109. [PMID: 37041372 PMCID: PMC10673805 DOI: 10.1007/s00066-023-02064-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 02/19/2023] [Indexed: 04/13/2023]
Abstract
Recent advances in understanding the tumor's biology in line with a constantly growing number of innovative technologies have prompted characterization of patients' individual malignancies and may display a prerequisite to treat cancer at its patient individual tumor vulnerability. In recent decades, radiation- induced signaling and tumor promoting local events for radiation sensitization were explored in detail, resulting the development of novel molecular targets. A multitude of pharmacological, genetic, and immunological principles, including small molecule- and antibody-based targeted strategies, have been developed that are suitable for combined concepts with radiation (RT) or chemoradiation therapy (CRT). Despite a plethora of promising experimental and preclinical findings, however, so far, only a very limited number of clinical trials have demonstrated a better outcome and/or patient benefit when RT or CRT are combined with targeted agents. The current review aims to summarize recent progress in molecular therapies targeting oncogenic drivers, DNA damage and cell cycle response, apoptosis signaling pathways, cell adhesion molecules, hypoxia, and the tumor microenvironment to impact therapy refractoriness and to boost radiation response. In addition, we will discuss recent advances in nanotechnology, e.g., RNA technologies and protein-degrading proteolysis-targeting chimeras (PROTACs) that may open new and innovative ways to benefit from molecular-targeted therapy approaches with improved efficacy.
Collapse
Affiliation(s)
- Kristina Viktorsson
- Department of Oncology/Pathology, Karolinska Institutet, Visionsgatan 4, 17164, Solna, Sweden
| | - Thorsten Rieckmann
- Department of Radiation Oncology, University Medical Center Hamburg Eppendorf, Martinistraße 52, 20246, Hamburg, Germany
- Department of Otolaryngology, University Medical Center Hamburg Eppendorf, Martinistraße 52, 20246, Hamburg, Germany
| | - Maximilian Fleischmann
- Department of Radiotherapy and Oncology, Goethe University, Theodor-Stern-Kai 7, 60590, Frankfurt am Main, Germany
- Frankfurt Cancer Institute (FCI), University of Frankfurt, Theodor-Stern-Kai 7, 60590, Frankfurt, Germany
| | - Markus Diefenhardt
- Department of Radiotherapy and Oncology, Goethe University, Theodor-Stern-Kai 7, 60590, Frankfurt am Main, Germany
- Frankfurt Cancer Institute (FCI), University of Frankfurt, Theodor-Stern-Kai 7, 60590, Frankfurt, Germany
| | - Stephanie Hehlgans
- Department of Radiotherapy and Oncology, Goethe University, Theodor-Stern-Kai 7, 60590, Frankfurt am Main, Germany
| | - Franz Rödel
- Department of Radiotherapy and Oncology, Goethe University, Theodor-Stern-Kai 7, 60590, Frankfurt am Main, Germany.
- Frankfurt Cancer Institute (FCI), University of Frankfurt, Theodor-Stern-Kai 7, 60590, Frankfurt, Germany.
- German Cancer Consortium (DKTK) partner site: Frankfurt, Im Neuenheimer Feld 280, 69120, Heidelberg, Germany.
| |
Collapse
|
6
|
Yin L, Li X, Wang R, Zeng Y, Zeng Z, Xie T. Recent Research Progress of RGD Peptide–Modified Nanodrug Delivery Systems in Tumor Therapy. Int J Pept Res Ther 2023; 29:53. [DOI: 10.1007/s10989-023-10523-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/20/2023] [Indexed: 01/06/2025]
Abstract
AbstractThere have been great advancements in targeted nanodrug delivery systems for tumor therapy. Liposomes, polymeric nanoparticles, and inorganic nanoparticles are commonly employed as nanocarriers for drug delivery, and it has been found that arginine glycine aspartic acid (RGD) peptides and their derivatives can be used as ligands of integrin receptors to enhance the direct targeting ability. In this paper, we review the recent applications of RGD-modified liposomes, polymeric nanoparticles, and inorganic nanocarriers in cancer diagnosis and treatment, discuss the current challenges and prospects, and examine the progress made by the latest research on RGD peptide–modified nano delivery systems in cancer therapy. In recent years, RGD peptide–modified nanodrug delivery systems have been proven to have great potential in tumor therapy. Finally, we provide an overview of the current limitations and future directions of RGD peptide–modified nano-drug delivery systems for cancer therapy. This review aims to elucidate the contribution of RGD peptide–modified nanodrug delivery systems in the field of tumor therapy.
Collapse
|
7
|
Gunjur A, Balasubramanian A, Hafeez U, Menon S, Cher L, Parakh S, Gan HK. Poor correlation between preclinical and patient efficacy data for tumor targeted monotherapies in glioblastoma: the results of a systematic review. J Neurooncol 2022; 159:539-549. [PMID: 35933567 DOI: 10.1007/s11060-022-04092-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 07/06/2022] [Indexed: 10/15/2022]
Abstract
PURPOSE Limited progress has been made in treating glioblastoma, and we hypothesise that poor concordance between preclinical and clinical efficacy in this disease is a major barrier to drug development. We undertook a systematic review to quantify this issue. METHODS We identified phase I trials (P1Ts) of tumor targeted drugs, subsequent trial results and preceding relevant preclinical data published in adult glioblastoma patients between 2006-2019 via structured searches of EMBASE/MEDLINE/PUBMED. Detailed clinical/preclinical information was extracted. Associations between preclinical and clinical efficacy metrics were determined using appropriate non-parametric statistical tests. RESULTS A total of 28 eligible P1Ts were identified, with median ORR of 2.9% (range 0.0-33.3%). Twenty-three (82%) had published relevant preclinical data available. Five (18%) had relevant later phase clinical trial data available. There was overall poor correlation between preclinical and clinical efficacy metrics on univariate testing. However, drugs that had undergone in vivo testing had significantly longer median overall survival (7.9 vs 5.6mo, p = 0.02). Additionally, drugs tested in ≥ 2 biologically-distinct in vivo models ('multiple models') had a significantly better median response rate than those tested using only one ('single model') or those lacking in vivo data (6.8% vs 1.2% vs. 0.0% respectively, p = 0.027). CONCLUSION Currently used preclinical models poorly predict subsequent activity in P1Ts, and generally over-estimate the anti-tumor activity of these drugs. This underscores the need for better preclinical models to aid the development of novel anti-glioblastoma drugs. Until these become widely available and used, the use of multiple biologically-distinct in vivo models should be strongly encouraged.
Collapse
Affiliation(s)
- Ashray Gunjur
- Experimental Cancer Genetics, Wellcome Sanger Institute, Hinxton, UK.,Department of Medical Oncology, Austin Health, 145 Studley Road, Heidelberg, VIC, 3084, Australia
| | - Adithya Balasubramanian
- Department of Medical Oncology, Austin Health, 145 Studley Road, Heidelberg, VIC, 3084, Australia.,Personalised Oncology Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, 3052, Australia
| | - Umbreen Hafeez
- Department of Medical Oncology, Austin Health, 145 Studley Road, Heidelberg, VIC, 3084, Australia.,Olivia Newton-John Cancer Research Institute, Austin Hospital, 145 Studley Road, Heidelberg, VIC, 3084, Australia.,La Trobe University School of Cancer Medicine, 145 Studley Road, Heidelberg, VIC, 3084, Australia.,Medical Student Education, University of Melbourne, Gratton St, Parkville, VIC, 3010, Australia
| | - Siddharth Menon
- Department of Medical Oncology, Austin Health, 145 Studley Road, Heidelberg, VIC, 3084, Australia.,Olivia Newton-John Cancer Research Institute, Austin Hospital, 145 Studley Road, Heidelberg, VIC, 3084, Australia.,La Trobe University School of Cancer Medicine, 145 Studley Road, Heidelberg, VIC, 3084, Australia
| | - Lawrence Cher
- Department of Medical Oncology, Austin Health, 145 Studley Road, Heidelberg, VIC, 3084, Australia
| | - Sagun Parakh
- Department of Medical Oncology, Austin Health, 145 Studley Road, Heidelberg, VIC, 3084, Australia.,Olivia Newton-John Cancer Research Institute, Austin Hospital, 145 Studley Road, Heidelberg, VIC, 3084, Australia.,La Trobe University School of Cancer Medicine, 145 Studley Road, Heidelberg, VIC, 3084, Australia
| | - Hui Kong Gan
- Department of Medical Oncology, Austin Health, 145 Studley Road, Heidelberg, VIC, 3084, Australia. .,Olivia Newton-John Cancer Research Institute, Austin Hospital, 145 Studley Road, Heidelberg, VIC, 3084, Australia. .,La Trobe University School of Cancer Medicine, 145 Studley Road, Heidelberg, VIC, 3084, Australia. .,Department of Medicine, University of Melbourne, 145 Studley Road, Heidelberg, VIC, 3084, Australia.
| |
Collapse
|
8
|
Waseem D, Khan GM, Haq IU, Syed DN. Dibutylstannanediyl (2Z,2'Z)-bis(4-(benzylamino)-4-oxobut-2-enoate inhibits prostate cancer progression by activating p38 MAPK/PPARα/SMAD4 signaling. Toxicol Appl Pharmacol 2022; 449:116127. [PMID: 35705140 DOI: 10.1016/j.taap.2022.116127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 06/07/2022] [Accepted: 06/08/2022] [Indexed: 11/18/2022]
Abstract
Organotin (IV) compounds are a focus of research for potential use in cancer chemotherapy. Here, we established anticancer profile of dibutyltin (IV) carboxylate derivatives in prostate cancer (PCa) model. We determined cytotoxicity of a library of dibutyltin (IV) carboxylate derivatives and observed that dibutylstannanediyl (2Z,2'Z)-bis(4-(benzylamino)-4-oxobut-2-enoate (Ch-620; 10 μM) was minimally toxic to normal fibroblasts. Ch-620 (1-1.25 μM) inhibited proliferation of PCa and melanoma cells on short- and long-term exposures with induction of cell cycle arrest. Ch-620 treatment increased population of apoptotic cells, as assessed by flow cytometry, and activated caspase 3. Proteomics showed activation of PPARα, with repression of SMAD4 and integrin β5 (ITGB5) in Ch-620-treated PCa cells. Further analysis demonstrated that Ch-620 resulted in phosphorylation of p38 MAPK, upregulation of PPARα and decreased expression of SMAD4 and ITGB5 with reduced migration of PCa cells. In vivo studies in PC3M grafted athymic nude mice showed that Ch-620 (5 μg/week; 7 weeks) treatment reduced tumor growth as opposed to untreated controls. Immunoblot analysis of tumors demonstrated upregulated p-p38 MAPK and PPARα, followed by a decline in SMAD4 and ITGB5. Immunohistochemistry reinforced these results with increased caspase 3 and p-p38 MAPK and diminished Ki67 staining in Ch-620 treated animals. Taken together, our data indicate that Ch-620 inhibited proliferation of PCa through modulation of MAPK/PPARα/SMAD4 signaling. Organotin (IV) carboxylate compounds; specifically Ch-620 can be a potential anticancer agent for the treatment of PCa subject to detailed pre-clinical and clinical investigations. This unlocks prospects for the development of new tin-based drugs in cancer therapeutics.
Collapse
Affiliation(s)
- Durdana Waseem
- Department of Dermatology, University of Wisconsin-Madison, USA; Shifa College of Pharmaceutical Sciences, Shifa Tameer-e-Millat University, Jaffer Khan Jamali Road, H-8/4, Islamabad, Pakistan.
| | - Gul Majid Khan
- Department of Pharmacy, Quaid-i-Azam University, Islamabad, Pakistan; Islamia College Peshawar, Jamu Road, Khyber Pakhtunkhwa, Pakistan
| | - Ihsan-Ul Haq
- Department of Pharmacy, Quaid-i-Azam University, Islamabad, Pakistan
| | - Deeba N Syed
- Department of Dermatology, University of Wisconsin-Madison, USA
| |
Collapse
|
9
|
Dhaliwal D, Shepherd TG. Molecular and cellular mechanisms controlling integrin-mediated cell adhesion and tumor progression in ovarian cancer metastasis: a review. Clin Exp Metastasis 2021; 39:291-301. [PMID: 34822024 PMCID: PMC8971148 DOI: 10.1007/s10585-021-10136-5] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Accepted: 11/12/2021] [Indexed: 12/30/2022]
Abstract
Epithelial ovarian cancer (EOC) is the most lethal gynecological malignancy in the developed world. EOC metastasis is unique since malignant cells detach directly from the primary tumor site into the abdominal fluid and form multicellular aggregates, called spheroids, that possess enhanced survival mechanisms while in suspension. As such, altered cell adhesion properties are paramount to EOC metastasis with cell detachment from the primary tumor, dissemination as spheroids, and reattachment to peritoneal surfaces for secondary tumor formation. The ability for EOC cells to establish and maintain cell–cell contacts in spheroids is critical for cell survival in suspension. Integrins are a family of cell adhesion receptors that play a crucial role in cell–cell and cell-extracellular matrix interactions. These glycoprotein receptors regulate diverse functions in tumor cells and are implicated in multiple steps of cancer progression. Altered integrin expression is detected in numerous carcinomas, where they play a role in cell migration, invasion, and anchorage-independent survival. Like that observed for other carcinomas, epithelial-mesenchymal transition (EMT) occurs during metastasis and integrins can function in this process as well. Herein, we provide a review of the evidence for integrin-mediated cell adhesion mechanisms impacting steps of EOC metastasis. Taken together, targeting integrin function may represent a potential therapeutic strategy to inhibit progression of advanced EOC.
Collapse
Affiliation(s)
- Dolly Dhaliwal
- The Mary & John Knight Translational Ovarian Cancer Research Unit, Lawson Health Research Institute and London Health Sciences Centre, London, ON, Canada.,Department of Anatomy & Cell Biology, Schulich School of Medicine & Dentistry, Western University, London, ON, Canada
| | - Trevor G Shepherd
- The Mary & John Knight Translational Ovarian Cancer Research Unit, Lawson Health Research Institute and London Health Sciences Centre, London, ON, Canada. .,Department of Anatomy & Cell Biology, Schulich School of Medicine & Dentistry, Western University, London, ON, Canada. .,Department of Obstetrics & Gynaecology, Schulich School of Medicine & Dentistry, Western University, London, ON, Canada. .,Department of Oncology, Schulich School of Medicine & Dentistry, Western University, London, ON, Canada. .,London Regional Cancer Program, 790 Commissioners Rd E, Room A4-836, London, ON, N6A 4L6, Canada.
| |
Collapse
|
10
|
Dzobo K. Integrins Within the Tumor Microenvironment: Biological Functions, Importance for Molecular Targeting, and Cancer Therapeutics Innovation. OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2021; 25:417-430. [PMID: 34191612 DOI: 10.1089/omi.2021.0069] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Many cellular functions important for solid tumor initiation and progression are mediated by members of the integrin family, a diverse family of cell attachment receptors. With recent studies emphasizing the role of the tumor microenvironment (TME) in tumor initiation and progression, it is not surprising that considerable attention is being paid to integrins. Several integrin antagonists are under clinical trials, with many demonstrating promising activity in patients with different cancers. A deeper knowledge of the functions of integrins within the TME is still required and might lead to better inhibitors being discovered. Integrin expression is commonly dysregulated in many tumors with integrins playing key roles in signaling as well as promotion of tumor cell invasion and migration. Integrins also play a major role in adhesion of circulating tumor cells to new sites and the resulting formation of secondary tumors. Furthermore, integrins have demonstrated the ability to promoting stem cell-like properties in tumor cells as well as drug resistance. Anti-integrin therapies rely heavily on the doses or concentrations used as these determine whether the drugs act as antagonists or as integrin agonists. This expert review offers the latest synthesis in terms of the current knowledge of integrins functions within the TME and as potential molecular targets for cancer therapeutics innovation.
Collapse
Affiliation(s)
- Kevin Dzobo
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Cape Town Component, Cape Town, South Africa.,Division of Medical Biochemistry and Institute of Infectious Disease and Molecular Medicine, Department of Integrative Biomedical Sciences, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
11
|
Stanzani E, Pedrosa L, Bourmeau G, Anezo O, Noguera-Castells A, Esteve-Codina A, Passoni L, Matteoli M, de la Iglesia N, Seano G, Martínez-Soler F, Tortosa A. Dual Role of Integrin Alpha-6 in Glioblastoma: Supporting Stemness in Proneural Stem-Like Cells While Inducing Radioresistance in Mesenchymal Stem-Like Cells. Cancers (Basel) 2021; 13:cancers13123055. [PMID: 34205341 PMCID: PMC8235627 DOI: 10.3390/cancers13123055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 06/10/2021] [Accepted: 06/12/2021] [Indexed: 11/23/2022] Open
Abstract
Simple Summary Glioblastoma stem-like cells (GSCs) are responsible for most of the malignant characteristics of glioblastoma, including therapeutic resistance, tumour recurrence, and tumour cellular heterogeneity. Therefore, increased understanding of the mechanisms regulating GSCs aggressiveness may help to improve patients’ outcomes. Here, we investigated the role of integrin a6 in controlling stemness and resistance to radiotherapy across proneural and mesenchymal molecular subtypes. We observed that integrin a6 had a clear role in stemness maintenance in proneural but not in mesenchymal GSCs. In addition, we proved a crucial role of integrin a6 in supporting mesenchymal GSCs resistance to ionizing radiation. Finally, we highlighted that integrin a6 may control different stem-associated features in GSCs, depending on the molecular subtype. The inhibition of integrin a6 limits stem-like malignant characteristics in both GSCs subtypes and thus may potentially control tumour relapse following conventional treatment. Abstract Therapeutic resistance after multimodal therapy is the most relevant cause of glioblastoma (GBM) recurrence. Extensive cellular heterogeneity, mainly driven by the presence of GBM stem-like cells (GSCs), strongly correlates with patients’ prognosis and limited response to therapies. Defining the mechanisms that drive stemness and control responsiveness to therapy in a GSC-specific manner is therefore essential. Here we investigated the role of integrin a6 (ITGA6) in controlling stemness and resistance to radiotherapy in proneural and mesenchymal GSCs subtypes. Using cell sorting, gene silencing, RNA-Seq, and in vitro assays, we verified that ITGA6 expression seems crucial for proliferation and stemness of proneural GSCs, while it appears not to be relevant in mesenchymal GSCs under basal conditions. However, when challenged with a fractionated protocol of radiation therapy, comparable to that used in the clinical setting, mesenchymal GSCs were dependent on integrin a6 for survival. Specifically, GSCs with reduced levels of ITGA6 displayed a clear reduction of DNA damage response and perturbation of cell cycle pathways. These data indicate that ITGA6 inhibition is able to overcome the radioresistance of mesenchymal GSCs, while it reduces proliferation and stemness in proneural GSCs. Therefore, integrin a6 controls crucial characteristics across GBM subtypes in GBM heterogeneous biology and thus may represent a promising target to improve patient outcomes.
Collapse
Affiliation(s)
- Elisabetta Stanzani
- Apoptosis and Cancer Unit, Department of Physiological Sciences, IDIBELL, Faculty of Medicine and Health Sciences, Universitat de Barcelona, 08907 L’Hospitalet del Llobregat, Spain;
- Correspondence: or (E.S.); (A.T.)
| | - Leire Pedrosa
- Haematology and Oncology Unit, August Pi i Sunyer Biomedical Research Institute (IDIBAPS), 08036 Barcelona, Spain; (L.P.); (N.d.l.I.)
| | - Guillaume Bourmeau
- Tumor Microenvironment Lab., Institut Curie, Université PSL, Université Paris-Saclay, CNRS UMR3347, Inserm U1021, Signalisation Radiobiologie et Cancer, 91400 Orsay, France; (G.B.); (O.A.); (G.S.)
| | - Oceane Anezo
- Tumor Microenvironment Lab., Institut Curie, Université PSL, Université Paris-Saclay, CNRS UMR3347, Inserm U1021, Signalisation Radiobiologie et Cancer, 91400 Orsay, France; (G.B.); (O.A.); (G.S.)
| | - Aleix Noguera-Castells
- Laboratory of Molecular and Translational Oncology, Departament of Medicine, CELLEX Biomedical Research Centre, Faculty of Medicine and Health Sciences, Universitat de Barcelona, 08036 Barcelona, Spain;
| | - Anna Esteve-Codina
- Functional Genomics, Centre for Genomic Regulation (CNAG-CRG), Barcelona Institute of Science and Technology, 08028 Barcelona, Spain;
- Universitat Pompeu Fabra (UPF), 08003 Barcelona, Spain
| | - Lorena Passoni
- Laboratory of Pharmacology and Brain Pathology, IRCCS Humanitas Research Hospital, 20089 Rozzano, Italy;
| | - Michela Matteoli
- CNR Institute of Neuroscience, c/o Humanitas, 20089 Rozzano, Italy;
| | - Núria de la Iglesia
- Haematology and Oncology Unit, August Pi i Sunyer Biomedical Research Institute (IDIBAPS), 08036 Barcelona, Spain; (L.P.); (N.d.l.I.)
| | - Giorgio Seano
- Tumor Microenvironment Lab., Institut Curie, Université PSL, Université Paris-Saclay, CNRS UMR3347, Inserm U1021, Signalisation Radiobiologie et Cancer, 91400 Orsay, France; (G.B.); (O.A.); (G.S.)
| | - Fina Martínez-Soler
- Apoptosis and Cancer Unit, Department of Physiological Sciences, IDIBELL, Faculty of Medicine and Health Sciences, Universitat de Barcelona, 08907 L’Hospitalet del Llobregat, Spain;
- Department of Basic Nursing, Faculty of Medicine and Health Sciences, Universitat de Barcelona, 08907 L’Hospitalet del Llobregat, Spain
| | - Avelina Tortosa
- Apoptosis and Cancer Unit, Department of Physiological Sciences, IDIBELL, Faculty of Medicine and Health Sciences, Universitat de Barcelona, 08907 L’Hospitalet del Llobregat, Spain;
- Department of Basic Nursing, Faculty of Medicine and Health Sciences, Universitat de Barcelona, 08907 L’Hospitalet del Llobregat, Spain
- Correspondence: or (E.S.); (A.T.)
| |
Collapse
|
12
|
Brain-invasive meningiomas: molecular mechanisms and potential therapeutic options. Brain Tumor Pathol 2021; 38:156-172. [PMID: 33903981 DOI: 10.1007/s10014-021-00399-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Accepted: 04/07/2021] [Indexed: 02/07/2023]
Abstract
Meningiomas are the most commonly diagnosed benign intracranial adult tumors. Subsets of meningiomas that present with extensive invasion into surrounding brain areas have high recurrence rates, resulting in difficulties for complete resection, substantially increased mortality of patients, and are therapeutically challenging for neurosurgeons. Exciting new data have provided insights into the understanding of the molecular machinery of invasion. Moreover, clinical trials for several novel approaches have been launched. Here, we will highlight the mechanisms which govern brain invasion and new promising therapeutic approaches for brain-invasive meningiomas, including pharmacological approaches targeting three major aspects of tumor cell invasion: extracellular matrix degradation, cell adhesion, and growth factors, as well as other innovative treatments such as immunotherapy, hormone therapy, Tumor Treating Fields, and biodegradable copolymers (wafers), impregnated chemotherapy. Those ongoing studies can offer more diversified possibilities of potential treatments for brain-invasive meningiomas, and help to increase the survival benefits for patients.
Collapse
|
13
|
Liu S, Ren J, Ten Dijke P. Targeting TGFβ signal transduction for cancer therapy. Signal Transduct Target Ther 2021; 6:8. [PMID: 33414388 PMCID: PMC7791126 DOI: 10.1038/s41392-020-00436-9] [Citation(s) in RCA: 225] [Impact Index Per Article: 56.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 12/04/2020] [Accepted: 12/05/2020] [Indexed: 12/19/2022] Open
Abstract
Transforming growth factor-β (TGFβ) family members are structurally and functionally related cytokines that have diverse effects on the regulation of cell fate during embryonic development and in the maintenance of adult tissue homeostasis. Dysregulation of TGFβ family signaling can lead to a plethora of developmental disorders and diseases, including cancer, immune dysfunction, and fibrosis. In this review, we focus on TGFβ, a well-characterized family member that has a dichotomous role in cancer progression, acting in early stages as a tumor suppressor and in late stages as a tumor promoter. The functions of TGFβ are not limited to the regulation of proliferation, differentiation, apoptosis, epithelial-mesenchymal transition, and metastasis of cancer cells. Recent reports have related TGFβ to effects on cells that are present in the tumor microenvironment through the stimulation of extracellular matrix deposition, promotion of angiogenesis, and suppression of the anti-tumor immune reaction. The pro-oncogenic roles of TGFβ have attracted considerable attention because their intervention provides a therapeutic approach for cancer patients. However, the critical function of TGFβ in maintaining tissue homeostasis makes targeting TGFβ a challenge. Here, we review the pleiotropic functions of TGFβ in cancer initiation and progression, summarize the recent clinical advancements regarding TGFβ signaling interventions for cancer treatment, and discuss the remaining challenges and opportunities related to targeting this pathway. We provide a perspective on synergistic therapies that combine anti-TGFβ therapy with cytotoxic chemotherapy, targeted therapy, radiotherapy, or immunotherapy.
Collapse
Affiliation(s)
- Sijia Liu
- Oncode Institute and Department of Cell and Chemical Biology, Leiden University Medical Center, Einthovenweg 20, 2300 RC, Leiden, The Netherlands
| | - Jiang Ren
- Oncode Institute and Department of Cell and Chemical Biology, Leiden University Medical Center, Einthovenweg 20, 2300 RC, Leiden, The Netherlands
| | - Peter Ten Dijke
- Oncode Institute and Department of Cell and Chemical Biology, Leiden University Medical Center, Einthovenweg 20, 2300 RC, Leiden, The Netherlands.
| |
Collapse
|
14
|
Birzu C, French P, Caccese M, Cerretti G, Idbaih A, Zagonel V, Lombardi G. Recurrent Glioblastoma: From Molecular Landscape to New Treatment Perspectives. Cancers (Basel) 2020; 13:E47. [PMID: 33375286 PMCID: PMC7794906 DOI: 10.3390/cancers13010047] [Citation(s) in RCA: 131] [Impact Index Per Article: 26.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 12/22/2020] [Accepted: 12/23/2020] [Indexed: 12/23/2022] Open
Abstract
Glioblastoma is the most frequent and aggressive form among malignant central nervous system primary tumors in adults. Standard treatment for newly diagnosed glioblastoma consists in maximal safe resection, if feasible, followed by radiochemotherapy and adjuvant chemotherapy with temozolomide; despite this multimodal treatment, virtually all glioblastomas relapse. Once tumors progress after first-line therapy, treatment options are limited and management of recurrent glioblastoma remains challenging. Loco-regional therapy with re-surgery or re-irradiation may be evaluated in selected cases, while traditional systemic therapy with nitrosoureas and temozolomide rechallenge showed limited efficacy. In recent years, new clinical trials using, for example, regorafenib or a combination of tyrosine kinase inhibitors and immunotherapy were performed with promising results. In particular, molecular targeted therapy could show efficacy in selected patients with specific gene mutations. Nonetheless, some molecular characteristics and genetic alterations could change during tumor progression, thus affecting the efficacy of precision medicine. We therefore reviewed the molecular and genomic landscape of recurrent glioblastoma, the strategy for clinical management and the major phase I-III clinical trials analyzing recent drugs and combination regimens in these patients.
Collapse
Affiliation(s)
- Cristina Birzu
- Sorbonne Université, Inserm, CNRS, UMR S 1127, Institut du Cerveau, ICM, AP-HP, Hôpitaux Universitaires La Pitié Salpêtrière—Charles Foix, Service de Neurologie 2-Mazarin, F-75013 Paris, France; (C.B.); (A.I.)
| | - Pim French
- Department of Neurology, Erasmus University Medical Center, Doctor Molewaterplein 40, 3015 GD Rotterdam, The Netherlands;
| | - Mario Caccese
- Department of Oncology, Oncology 1, Veneto Institute of Oncology IOV-IRCCS, via Gattamelata 54, 35128 Padua, Italy; (M.C.); (G.C.); (V.Z.)
| | - Giulia Cerretti
- Department of Oncology, Oncology 1, Veneto Institute of Oncology IOV-IRCCS, via Gattamelata 54, 35128 Padua, Italy; (M.C.); (G.C.); (V.Z.)
| | - Ahmed Idbaih
- Sorbonne Université, Inserm, CNRS, UMR S 1127, Institut du Cerveau, ICM, AP-HP, Hôpitaux Universitaires La Pitié Salpêtrière—Charles Foix, Service de Neurologie 2-Mazarin, F-75013 Paris, France; (C.B.); (A.I.)
| | - Vittorina Zagonel
- Department of Oncology, Oncology 1, Veneto Institute of Oncology IOV-IRCCS, via Gattamelata 54, 35128 Padua, Italy; (M.C.); (G.C.); (V.Z.)
| | - Giuseppe Lombardi
- Department of Oncology, Oncology 1, Veneto Institute of Oncology IOV-IRCCS, via Gattamelata 54, 35128 Padua, Italy; (M.C.); (G.C.); (V.Z.)
| |
Collapse
|
15
|
Ritzenthaler JD, Zhang M, Torres-Gonzalez E, Roman J. The Integrin Inhibitor Cilengitide and Bleomycin-Induced Pulmonary Fibrosis : Cilengitide and Bleomycin-Induced Pulmonary Fibrosis. Lung 2020; 198:947-955. [PMID: 33146772 DOI: 10.1007/s00408-020-00400-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 10/18/2020] [Indexed: 12/22/2022]
Abstract
PURPOSE Fibroproliferation and excess deposition of extracellular matrix (ECM) are the pathologic hallmarks of idiopathic pulmonary fibrosis (IPF), a chronic progressive disorder with high mortality and suboptimal treatment options. Although the etiologic mechanisms responsible for the development and progression of IPF remain unclear, cell-ECM interactions and growth factors are considered important. Cilengitide is a cyclic RGD pentapeptide with anti-angiogenic activity that targets αvβ3, αvβ5 and α5β1, integrins known to mediate cell-ECM interactions and activate the pro-fibrotic growth factor Transforming Growth Factor beta (TGF-β). METHODS Cilengitide was studied in vitro with the use of NIH/3T3 cells and primary lung fibroblasts, and in vivo in the well-characterized bleomycin-induced lung injury model. The extent of ECM deposition was determined by RT-PCR, Western blot, histologic analysis and hydroxyproline assay of lung tissue. Bronchoalveolar lavage analysis was used to determine cell counts. RESULTS Cilengitide treatment of cultured fibroblasts showed decreased adhesion to vitronectin and fibronectin, both integrin-dependent events. Cilengitide also inhibited TGF-β-induced fibronectin gene expression and reduced the accumulation of mRNAs and protein for fibronectin and collagen type I. Both preventive and treatment effects of daily injections of cilengitide (20 mg/kg) failed to inhibit the development of pulmonary fibrosis as determined by histological analysis (Ashcroft scoring), bronchoalveolar lavage (BAL) fluid cell counts, and hydroxyproline content. CONCLUSIONS Overall, our data suggest that, despite its in vitro activity in fibroblasts, daily injections of cilengitide (20 mg/kg) did not inhibit the development of or ameliorate bleomycin-induced pulmonary fibrosis in mice.
Collapse
Affiliation(s)
- Jeffrey D Ritzenthaler
- Department of Medicine, Division of Pulmonary, Allergy and Critical Medicine, Jane & Leonard Korman Respiratory Institute, Thomas Jefferson University, Jefferson Alumni Hall, 381, Philadelphia, PA, 19107, USA.
| | - Michael Zhang
- Department of Pharmacology & Toxicology, University of Louisville Health Sciences Center, Louisville, KY, USA.,University of Minnesota Medical School, Minneapolis, MN, USA
| | - Edilson Torres-Gonzalez
- Department of Medicine, Division of Pulmonary, Allergy and Critical Medicine, Jane & Leonard Korman Respiratory Institute, Thomas Jefferson University, Jefferson Alumni Hall, 381, Philadelphia, PA, 19107, USA
| | - Jesse Roman
- Department of Pharmacology & Toxicology, University of Louisville Health Sciences Center, Louisville, KY, USA.,Department of Medicine, Division of Pulmonary, Critical Care, and Sleep Medicine, University of Louisville Health Sciences Center, Louisville, KY, USA.,Department of Medicine, Division of Pulmonary, Allergy and Critical Medicine, Jane & Leonard Korman Respiratory Institute, Thomas Jefferson University, Jefferson Alumni Hall, 381, Philadelphia, PA, 19107, USA.,Department of Pharmacology & Experimental Therapeutics, Thomas Jefferson University, Philadelphia, PA, USA
| |
Collapse
|
16
|
Zhao J, Santino F, Giacomini D, Gentilucci L. Integrin-Targeting Peptides for the Design of Functional Cell-Responsive Biomaterials. Biomedicines 2020; 8:E307. [PMID: 32854363 PMCID: PMC7555639 DOI: 10.3390/biomedicines8090307] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 08/21/2020] [Accepted: 08/23/2020] [Indexed: 01/17/2023] Open
Abstract
Integrins are a family of cell surface receptors crucial to fundamental cellular functions such as adhesion, signaling, and viability, deeply involved in a variety of diseases, including the initiation and progression of cancer, of coronary, inflammatory, or autoimmune diseases. The natural ligands of integrins are glycoproteins expressed on the cell surface or proteins of the extracellular matrix. For this reason, short peptides or peptidomimetic sequences that reproduce the integrin-binding motives have attracted much attention as potential drugs. When challenged in clinical trials, these peptides/peptidomimetics let to contrasting and disappointing results. In the search for alternative utilizations, the integrin peptide ligands have been conjugated onto nanoparticles, materials, or drugs and drug carrier systems, for specific recognition or delivery of drugs to cells overexpressing the targeted integrins. Recent research in peptidic integrin ligands is exploring new opportunities, in particular for the design of nanostructured, micro-fabricated, cell-responsive, stimuli-responsive, smart materials.
Collapse
Affiliation(s)
| | | | | | - Luca Gentilucci
- Department of Chemistry “G. Ciamician”, University of Bologna, via Selmi 2, 40126 Bologna, Italy; (J.Z.); (F.S.); (D.G.)
| |
Collapse
|
17
|
Dukinfield M, Maniati E, Reynolds LE, Aubdool A, Baliga RS, D'Amico G, Maiques O, Wang J, Bedi KC, Margulies KB, Sanz‐Moreno V, Hobbs A, Hodivala‐Dilke K. Repurposing an anti-cancer agent for the treatment of hypertrophic heart disease. J Pathol 2019; 249:523-535. [PMID: 31424556 PMCID: PMC6900130 DOI: 10.1002/path.5340] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 08/14/2019] [Accepted: 08/15/2019] [Indexed: 02/06/2023]
Abstract
Coronary microvascular dysfunction combined with maladaptive cardiomyocyte morphology and energetics is a major contributor to heart failure advancement. Thus, dually enhancing cardiac angiogenesis and targeting cardiomyocyte function to slow, or reverse, the development of heart failure is a logical step towards improved therapy. We present evidence for the potential to repurpose a former anti-cancer Arg-Gly-Asp (RGD)-mimetic pentapeptide, cilengitide, here used at low doses. Cilengitide targets αvβ3 integrin and this protein is upregulated in human dilated and ischaemic cardiomyopathies. Treatment of mice after abdominal aortic constriction (AAC) surgery with low-dose cilengitide (ldCil) enhances coronary angiogenesis and directly affects cardiomyocyte hypertrophy with an associated reduction in disease severity. At a molecular level, ldCil treatment has a direct effect on cardiac endothelial cell transcriptomic profiles, with a significant enhancement of pro-angiogenic signalling pathways, corroborating the enhanced angiogenic phenotype after ldCil treatment. Moreover, ldCil treatment of Angiotensin II-stimulated AngII-stimulated cardiomyocytes significantly restores transcriptomic profiles similar to those found in normal human heart. The significance of this finding is enhanced by transcriptional similarities between AngII-treated cardiomyocytes and failing human hearts. Taken together, our data provide evidence supporting a possible new strategy for improved heart failure treatment using low-dose RGD-mimetics with relevance to human disease. © 2019 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Matthew Dukinfield
- Barts Cancer Institute, Queen Mary University of London, John Vane Science Centre, Charterhouse SquareLondonUK
| | - Eleni Maniati
- Barts Cancer Institute, Queen Mary University of London, John Vane Science Centre, Charterhouse SquareLondonUK
| | - Louise E Reynolds
- Barts Cancer Institute, Queen Mary University of London, John Vane Science Centre, Charterhouse SquareLondonUK
| | - Aisah Aubdool
- William Harvey Research Institute, Queen Mary University of London, Charterhouse SquareLondonUK
| | - Reshma S Baliga
- William Harvey Research Institute, Queen Mary University of London, Charterhouse SquareLondonUK
| | - Gabriela D'Amico
- Barts Cancer Institute, Queen Mary University of London, John Vane Science Centre, Charterhouse SquareLondonUK
| | - Oscar Maiques
- Barts Cancer Institute, Queen Mary University of London, John Vane Science Centre, Charterhouse SquareLondonUK
| | - Jun Wang
- Barts Cancer Institute, Queen Mary University of London, John Vane Science Centre, Charterhouse SquareLondonUK
| | - Kenneth C Bedi
- Perelman School of MedicineUniversity of Pennsylvania, Translational Research CenterPhiladelphiaPAUSA
| | - Kenneth B Margulies
- Perelman School of MedicineUniversity of Pennsylvania, Translational Research CenterPhiladelphiaPAUSA
| | - Victoria Sanz‐Moreno
- Barts Cancer Institute, Queen Mary University of London, John Vane Science Centre, Charterhouse SquareLondonUK
| | - Adrian Hobbs
- William Harvey Research Institute, Queen Mary University of London, Charterhouse SquareLondonUK
| | - Kairbaan Hodivala‐Dilke
- Barts Cancer Institute, Queen Mary University of London, John Vane Science Centre, Charterhouse SquareLondonUK
| |
Collapse
|
18
|
Wettersten HI, Weis SM, Pathria P, Von Schalscha T, Minami T, Varner JA, Cheresh DA. Arming Tumor-Associated Macrophages to Reverse Epithelial Cancer Progression. Cancer Res 2019; 79:5048-5059. [PMID: 31416839 DOI: 10.1158/0008-5472.can-19-1246] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 07/01/2019] [Accepted: 08/08/2019] [Indexed: 12/30/2022]
Abstract
Tumor-associated macrophages (TAM) are highly expressed within the tumor microenvironment of a wide range of cancers, where they exert a protumor phenotype by promoting tumor cell growth and suppressing antitumor immune function. Here, we show that TAM accumulation in human and mouse tumors correlates with tumor cell expression of integrin αvβ3, a known driver of epithelial cancer progression and drug resistance. A monoclonal antibody targeting αvβ3 (LM609) exploited the coenrichment of αvβ3 and TAMs to not only eradicate highly aggressive drug-resistant human lung and pancreas cancers in mice, but also to prevent the emergence of circulating tumor cells. Importantly, this antitumor activity in mice was eliminated following macrophage depletion. Although LM609 had no direct effect on tumor cell viability, it engaged macrophages but not natural killer (NK) cells to induce antibody-dependent cellular cytotoxicity (ADCC) of αvβ3-expressing tumor cells despite their expression of the CD47 "don't eat me" signal. In contrast to strategies designed to eliminate TAMs, these findings suggest that anti-αvβ3 represents a promising immunotherapeutic approach to redirect TAMs to serve as tumor killers for late-stage or drug-resistant cancers. SIGNIFICANCE: Therapeutic antibodies are commonly engineered to optimize engagement of NK cells as effectors. In contrast, LM609 targets αvβ3 to suppress tumor progression and enhance drug sensitivity by exploiting TAMs to trigger ADCC.
Collapse
Affiliation(s)
- Hiromi I Wettersten
- Department of Pathology, University of California, San Diego, La Jolla, California.,Moores Cancer Center, University of California, San Diego, La Jolla, California.,Sanford Consortium for Regenerative Medicine, University of California, San Diego, La Jolla, California
| | - Sara M Weis
- Department of Pathology, University of California, San Diego, La Jolla, California.,Moores Cancer Center, University of California, San Diego, La Jolla, California.,Sanford Consortium for Regenerative Medicine, University of California, San Diego, La Jolla, California
| | - Paulina Pathria
- Department of Pathology, University of California, San Diego, La Jolla, California.,Moores Cancer Center, University of California, San Diego, La Jolla, California
| | - Tami Von Schalscha
- Department of Pathology, University of California, San Diego, La Jolla, California.,Moores Cancer Center, University of California, San Diego, La Jolla, California.,Sanford Consortium for Regenerative Medicine, University of California, San Diego, La Jolla, California
| | - Toshiyuki Minami
- Department of Pathology, University of California, San Diego, La Jolla, California.,Moores Cancer Center, University of California, San Diego, La Jolla, California.,Sanford Consortium for Regenerative Medicine, University of California, San Diego, La Jolla, California
| | - Judith A Varner
- Department of Pathology, University of California, San Diego, La Jolla, California.,Moores Cancer Center, University of California, San Diego, La Jolla, California
| | - David A Cheresh
- Department of Pathology, University of California, San Diego, La Jolla, California. .,Moores Cancer Center, University of California, San Diego, La Jolla, California.,Sanford Consortium for Regenerative Medicine, University of California, San Diego, La Jolla, California
| |
Collapse
|
19
|
Guidotti G, Brambilla L, Rossi D. Peptides in clinical development for the treatment of brain tumors. Curr Opin Pharmacol 2019; 47:102-109. [DOI: 10.1016/j.coph.2019.02.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 02/08/2019] [Accepted: 02/18/2019] [Indexed: 12/30/2022]
|
20
|
68Ga-labeled dimeric and trimeric cyclic RGD peptides as potential PET radiotracers for imaging gliomas. Appl Radiat Isot 2019; 148:168-177. [DOI: 10.1016/j.apradiso.2019.03.033] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Revised: 02/08/2019] [Accepted: 03/25/2019] [Indexed: 01/04/2023]
|
21
|
Harjunpää H, Llort Asens M, Guenther C, Fagerholm SC. Cell Adhesion Molecules and Their Roles and Regulation in the Immune and Tumor Microenvironment. Front Immunol 2019; 10:1078. [PMID: 31231358 PMCID: PMC6558418 DOI: 10.3389/fimmu.2019.01078] [Citation(s) in RCA: 478] [Impact Index Per Article: 79.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Accepted: 04/29/2019] [Indexed: 12/14/2022] Open
Abstract
The immune system and cancer have a complex relationship with the immune system playing a dual role in tumor development. The effector cells of the immune system can recognize and kill malignant cells while immune system-mediated inflammation can also promote tumor growth and regulatory cells suppress the anti-tumor responses. In the center of all anti-tumor responses is the ability of the immune cells to migrate to the tumor site and to interact with each other and with the malignant cells. Cell adhesion molecules including receptors of the immunoglobulin superfamily and integrins are of crucial importance in mediating these processes. Particularly integrins play a vital role in regulating all aspects of immune cell function including immune cell trafficking into tissues, effector cell activation and proliferation and the formation of the immunological synapse between immune cells or between immune cell and the target cell both during homeostasis and during inflammation and cancer. In this review we discuss the molecular mechanisms regulating integrin function and the role of integrins and other cell adhesion molecules in immune responses and in the tumor microenvironment. We also describe how malignant cells can utilize cell adhesion molecules to promote tumor growth and metastases and how these molecules could be targeted in cancer immunotherapy.
Collapse
Affiliation(s)
- Heidi Harjunpää
- Research Program of Molecular and Integrative Biosciences, Faculty of Bio- and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Marc Llort Asens
- Research Program of Molecular and Integrative Biosciences, Faculty of Bio- and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Carla Guenther
- Research Program of Molecular and Integrative Biosciences, Faculty of Bio- and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Susanna C Fagerholm
- Research Program of Molecular and Integrative Biosciences, Faculty of Bio- and Environmental Sciences, University of Helsinki, Helsinki, Finland
| |
Collapse
|
22
|
Banerjee D, Cieslar-Pobuda A, Zhu GH, Wiechec E, Patra HK. Adding Nanotechnology to the Metastasis Treatment Arsenal. Trends Pharmacol Sci 2019; 40:403-418. [PMID: 31076247 DOI: 10.1016/j.tips.2019.04.002] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2018] [Revised: 03/28/2019] [Accepted: 04/05/2019] [Indexed: 01/22/2023]
Abstract
Metastasis is a major cause of cancer-related mortality, accounting for 90% of cancer deaths. The explosive growth of cancer biology research has revealed new mechanistic network information and pathways that promote metastasis. Consequently, a large number of antitumor agents have been developed and tested for their antimetastatic efficacy. Despite their exciting cytotoxic effects on tumor cells in vitro and antitumor activities in preclinical studies in vivo, only a few have shown potent antimetastatic activities in clinical trials. In this review, we provide a brief overview of current antimetastatic strategies that show clinical efficacy and review nanotechnology-based approaches that are currently being incorporated into these therapies to mitigate challenges associated with treating cancer metastasis.
Collapse
Affiliation(s)
- Debarshi Banerjee
- Department of Pediatrics, Columbia University Medical Center, New York, NY, USA
| | - Artur Cieslar-Pobuda
- Nordic EMBL Partnership, Centre for Molecular Medicine Norway (NCMM), University of Oslo, Oslo, Norway; Institute of Automatic Control, Silesian University of Technology, Gliwice, Poland
| | - Geyunjian Harry Zhu
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, UK
| | - Emilia Wiechec
- Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden.
| | - Hirak K Patra
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, UK; Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden; Wolfson College, University of Cambridge, Cambridge, UK.
| |
Collapse
|
23
|
Dryer SE, Roshanravan H, Kim EY. TRPC channels: Regulation, dysregulation and contributions to chronic kidney disease. Biochim Biophys Acta Mol Basis Dis 2019; 1865:1041-1066. [PMID: 30953689 DOI: 10.1016/j.bbadis.2019.04.001] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 12/20/2018] [Accepted: 01/06/2019] [Indexed: 12/13/2022]
Abstract
Mutations in the gene encoding canonical transient receptor potential-6 (TRPC6) channels result in severe nephrotic syndromes that typically lead to end-stage renal disease. Many but not all of these mutations result in a gain in the function of the resulting channel protein. Since those observations were first made, substantial work has supported the hypothesis that TRPC6 channels can also contribute to progression of acquired (non-genetic) glomerular diseases, including primary and secondary FSGS, glomerulosclerosis during autoimmune glomerulonephritis, and possibly in type-1 diabetes. Their regulation has been extensively studied, especially in podocytes, but also in mesangial cells and other cell types present in the kidney. More recent evidence has implicated TRPC6 in renal fibrosis and tubulointerstitial disease caused by urinary obstruction. Consequently TRPC6 is being extensively investigated as a target for drug discovery. Other TRPC family members are present in kidney. TRPC6 can form a functional heteromultimer with TRPC3, and it has been suggested that TRPC5 may also play a role in glomerular disease progression, although the evidence on this is contradictory. Here we review literature on the expression and regulation of TRPC6, TRPC3 and TRPC5 in various cell types of the vertebrate kidney, the evidence that these channels are dysregulated in disease models, and research showing that knock-out or pharmacological inhibition of these channels can reduce the severity of kidney disease. We also summarize several areas that remain controversial, and some of the large gaps of knowledge concerning the fundamental role of these proteins in regulation of renal function.
Collapse
Affiliation(s)
- Stuart E Dryer
- Department of Biology and Biochemistry, University of Houston, Houston, TX, USA; Department of Internal Medicine, Division of Nephrology, Baylor College of Medicine, Houston, TX, USA.
| | - Hila Roshanravan
- Department of Biology and Biochemistry, University of Houston, Houston, TX, USA
| | - Eun Young Kim
- Department of Biology and Biochemistry, University of Houston, Houston, TX, USA
| |
Collapse
|
24
|
A comparative assessment of the effects of integrin inhibitor cilengitide on primary culture of head and neck squamous cell carcinoma (HNSCC) and HNSCC cell lines. Clin Transl Oncol 2019; 21:1052-1060. [DOI: 10.1007/s12094-018-02025-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Accepted: 12/20/2018] [Indexed: 01/17/2023]
|
25
|
Marelli G, Avigni R, Allavena P, Garlanda C, Mantovani A, Doni A, Erreni M. Optical in vivo imaging detection of preclinical models of gut tumors through the expression of integrin αVβ3. Oncotarget 2018; 9:31380-31396. [PMID: 30140377 PMCID: PMC6101137 DOI: 10.18632/oncotarget.25826] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Accepted: 07/12/2018] [Indexed: 12/22/2022] Open
Abstract
Optical imaging and Fluorescent Molecular Tomography (FMT) are becoming increasingly important for the study of different preclinical models of cancer, providing a non-invasive method for the evaluation of tumor progression in a relatively simple and fast way. Intestinal tumors, in particular colorectal cancer (CRC), represent a major cause of cancer-related death in Western countries: despite the presence of a number of preclinical models of intestinal carcinogenesis, there is a paucity of information about the possibility to detect intestinal tumors using fluorescent probes and optical in vivo imaging. Herein, we identify the detection of integrin αvβ3 by FMT and optical imaging as an effective approach to assess the occurrence and progression of intestinal carcinogenesis in genetic and chemically-induced mouse models. For this purpose, a commercially available probe (IntegriSense), recognizing integrin αvβ3, was injected in APC+/min mice bearing small intestinal adenomas or CRC: FMT analysis allowed a specific tumor detection, further confirmed by subsequent ex vivo imaging or conventional histology. In addition, IntegriSense detection by FMT allowed the longitudinal monitoring of tumor growth. Taken together, our data indicate the possibility to use integrin αvβ3 for the visualization of intestinal tumors in preclinical models.
Collapse
Affiliation(s)
- Giulia Marelli
- IRCCS Humanitas Clinical and Research Center, Rozzano, Milan, Italy.,Current address: Center for Molecular Oncology, Bart Cancer Institute, Queen Mary University of London, London, UK
| | - Roberta Avigni
- IRCCS Humanitas Clinical and Research Center, Rozzano, Milan, Italy
| | - Paola Allavena
- IRCCS Humanitas Clinical and Research Center, Rozzano, Milan, Italy.,Humanitas University, Rozzano, Milan, Italy
| | - Cecilia Garlanda
- IRCCS Humanitas Clinical and Research Center, Rozzano, Milan, Italy.,Humanitas University, Rozzano, Milan, Italy
| | - Alberto Mantovani
- IRCCS Humanitas Clinical and Research Center, Rozzano, Milan, Italy.,Humanitas University, Rozzano, Milan, Italy.,The William Harvey Research Institute, Queen Mary University of London, London, UK
| | - Andrea Doni
- IRCCS Humanitas Clinical and Research Center, Rozzano, Milan, Italy
| | - Marco Erreni
- IRCCS Humanitas Clinical and Research Center, Rozzano, Milan, Italy
| |
Collapse
|
26
|
Brokinkel B, Hess K, Mawrin C. Brain invasion in meningiomas-clinical considerations and impact of neuropathological evaluation: a systematic review. Neuro Oncol 2018; 19:1298-1307. [PMID: 28419308 DOI: 10.1093/neuonc/nox071] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
With the release of the 2016 edition of the World Health Organization (WHO) Classification of Central Nervous System Tumors, brain invasion in meningiomas has been added as a stand-alone criterion for atypia and can therefore impact grading and indirectly adjuvant therapy. Regarding this rising clinical importance, we have reviewed the current knowledge about brain invasion with emphasis on its implications on current and future clinical practice. We found various definitions of brain invasion and approaches for evaluation in surgically obtained specimens described over the past decades. This heterogeneity is reflected by weak correlation with prognosis and remains controversial. Similarly, associated clinical factors are largely unknown. Preoperative, imaging-guided detection of brain invasion is unspecific, and intraoperative assessment using standard and new high-magnification microscopic techniques remains imprecise. Despite the increasing knowledge about molecular alterations of the tumor/ brain surface, pharmacotherapeutic options targeting brain invasive meningiomas are lacking. Finally, we summarize the impact of brain invasion on histopathological grading in the WHO classifications of brain tumors since 1979.In conclusion, standardized neurosurgical sampling and neuropathological analyses could improve diagnostic reliability and reproducibility of future studies. Further research is needed to improve pre- and intraoperative visualization of brain invasion and to develop adjuvant, targeted therapies.
Collapse
Affiliation(s)
- Benjamin Brokinkel
- Department of Neurosurgery, University Hospital Münster, Münster, Germany; Institute of Neuropathology, University Hospital Münster, Münster, Germany; Institute of Neuropathology, Otto-von-Guericke University, Magdeburg, Germany
| | - Katharina Hess
- Department of Neurosurgery, University Hospital Münster, Münster, Germany; Institute of Neuropathology, University Hospital Münster, Münster, Germany; Institute of Neuropathology, Otto-von-Guericke University, Magdeburg, Germany
| | - Christian Mawrin
- Department of Neurosurgery, University Hospital Münster, Münster, Germany; Institute of Neuropathology, University Hospital Münster, Münster, Germany; Institute of Neuropathology, Otto-von-Guericke University, Magdeburg, Germany
| |
Collapse
|
27
|
Schnell O, Albrecht V, Pfirrmann D, Eigenbrod S, Krebs B, Romagna A, Siller S, Giese A, Tonn JC, Schichor C. MGMT promoter methylation is not correlated with integrin expression in malignant gliomas: clarifying recent clinical trial results. Med Oncol 2018; 35:103. [PMID: 29882028 DOI: 10.1007/s12032-018-1162-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Accepted: 05/31/2018] [Indexed: 11/28/2022]
Abstract
Integrin alpha-v-beta-3 (αvβ3) is important for invasive tumor growth and angiogenesis in glioblastomas (GBM). However, recent clinical trials on inhibition of this integrin led to ambiguous results whether patients with methylated or unmethylated 6O-methylguanine methyltransferase (MGMT) promoter might profit from this kind of therapy. Therefore, we addressed the still unanswered question about a possible correlation between integrin αvβ3 expression and MGMT promoter methylation in GBM. For this purpose, tumor samples from newly diagnosed and untreated GBM patients with methylated (n = 22) or unmethylated (n = 17) MGMT promoter were simultaneously analyzed for integrin αvβ3 expression by an automated immunohistochemical staining platform. Interestingly, subsequent semi-quantitative analysis by a special imaging software did not show any difference in integrin expression between patients with methylated or unmethylated MGMT promoter status. Moreover, further analysis of the integrin subunits via ELISA from histologic sections revealed that there is no difference in integrin subunit expression between these patients. Hence, our results are important for designing future clinical trials with respect to treatment stratification, while it still has to be identified which other molecular factors determine differential responses to targeted anti-integrin αvβ3 treatment.
Collapse
Affiliation(s)
- Oliver Schnell
- Department of Neurosurgery, Universitaetsklinikum Freiburg, Breisacher Strasse 64, 79106, Freiburg, Germany. .,Department of Neurosurgery, Klinikum der Ludwig-Maximilians-Universität München, Munich, Germany.
| | - Valerie Albrecht
- Department of Neurosurgery, Klinikum der Ludwig-Maximilians-Universität München, Munich, Germany
| | - David Pfirrmann
- Department of Neurosurgery, Klinikum der Ludwig-Maximilians-Universität München, Munich, Germany
| | - Sabina Eigenbrod
- Center for Neuropathology and Prion Research (ZNP), Ludwig-Maximilians-Universität München, Munich, Germany
| | - Bjarne Krebs
- Center for Neuropathology and Prion Research (ZNP), Ludwig-Maximilians-Universität München, Munich, Germany
| | - Alexander Romagna
- Department of Neurosurgery, Medical Center University of Salzburg, Salzburg, Austria
| | - Sebastian Siller
- Department of Neurosurgery, Klinikum der Ludwig-Maximilians-Universität München, Munich, Germany
| | - Armin Giese
- Center for Neuropathology and Prion Research (ZNP), Ludwig-Maximilians-Universität München, Munich, Germany
| | - Jörg-Christian Tonn
- Department of Neurosurgery, Klinikum der Ludwig-Maximilians-Universität München, Munich, Germany
| | - Christian Schichor
- Department of Neurosurgery, Klinikum der Ludwig-Maximilians-Universität München, Munich, Germany
| |
Collapse
|
28
|
Bhatnagar S, Verma KD, Hu Y, Khera E, Priluck A, Smith DE, Thurber GM. Oral Administration and Detection of a Near-Infrared Molecular Imaging Agent in an Orthotopic Mouse Model for Breast Cancer Screening. Mol Pharm 2018; 15:1746-1754. [PMID: 29696981 PMCID: PMC5941251 DOI: 10.1021/acs.molpharmaceut.7b00994] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
![]()
Molecular
imaging is advantageous for screening diseases such as
breast cancer by providing precise spatial information on disease-associated
biomarkers, something neither blood tests nor anatomical imaging can
achieve. However, the high cost and risks of ionizing radiation for
several molecular imaging modalities have prevented a feasible and
scalable approach for screening. Clinical studies have demonstrated
the ability to detect breast tumors using nonspecific probes such
as indocyanine green, but the lack of molecular information and required
intravenous contrast agent does not provide a significant benefit
over current noninvasive imaging techniques. Here we demonstrate that
negatively charged sulfate groups, commonly used to improve solubility
of near-infrared fluorophores, enable sufficient oral absorption and
targeting of fluorescent molecular imaging agents for completely noninvasive
detection of diseased tissue such as breast cancer. These functional
groups improve the pharmacokinetic properties of affinity ligands
to achieve targeting efficiencies compatible with clinical imaging
devices using safe, nonionizing radiation (near-infrared light). Together,
this enables development of a “disease screening pill”
capable of oral absorption and systemic availability, target binding,
background clearance, and imaging at clinically relevant depths for
breast cancer screening. This approach should be adaptable to other
molecular targets and diseases for use as a new class of screening
agents.
Collapse
|
29
|
Schnittert J, Bansal R, Storm G, Prakash J. Integrins in wound healing, fibrosis and tumor stroma: High potential targets for therapeutics and drug delivery. Adv Drug Deliv Rev 2018; 129:37-53. [PMID: 29414674 DOI: 10.1016/j.addr.2018.01.020] [Citation(s) in RCA: 129] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 01/16/2018] [Accepted: 01/29/2018] [Indexed: 12/20/2022]
Abstract
Wound healing is a complex process, which ultimately leads to fibrosis if not repaired well. Pathologically very similar to fibrosis is the tumor stroma, found in several solid tumors which are regarded as wounds that do not heal. Integrins are heterodimeric surface receptors which control various physiological cellular functions. Additionally, integrins also sense ECM-induced extracellular changes during pathological events, leading to cellular responses, which influence ECM remodeling. The purpose and scope of this review is to introduce integrins as key targets for therapeutics and drug delivery within the scope of wound healing, fibrosis and the tumor stroma. This review provides a general introduction to the biology of integrins including their types, ligands, means of signaling and interaction with growth factor receptors. Furthermore, we highlight integrins as key targets for therapeutics and drug delivery, based on their biological role, expression pattern within human tissues and at cellular level. Next, therapeutic approaches targeting integrins, with a focus on clinical studies, and targeted drug delivery strategies based on ligands are described.
Collapse
|
30
|
Abstract
The link between GBM molecular subtype and response to treatment remains undefined. In this issue of Cancer Cell, Cosset and colleagues define a subpopulation of patients within the proneural/classical subtype sensitive to integrin blockade because of a Glut3 addiction. These findings reveal context-dependent druggable vulnerability in a subpopulation of GBM.
Collapse
Affiliation(s)
- Severa Bunda
- Princess Margaret Cancer Centre, University of Toronto, Toronto, ON, Canada
| | - Gelareh Zadeh
- Princess Margaret Cancer Centre, University of Toronto, Toronto, ON, Canada
| | - Kenneth D Aldape
- Princess Margaret Cancer Centre, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
31
|
Cosset É, Ilmjärv S, Dutoit V, Elliott K, von Schalscha T, Camargo MF, Reiss A, Moroishi T, Seguin L, Gomez G, Moo JS, Preynat-Seauve O, Krause KH, Chneiweiss H, Sarkaria JN, Guan KL, Dietrich PY, Weis SM, Mischel PS, Cheresh DA. Glut3 Addiction Is a Druggable Vulnerability for a Molecularly Defined Subpopulation of Glioblastoma. Cancer Cell 2017; 32:856-868.e5. [PMID: 29198914 PMCID: PMC5730343 DOI: 10.1016/j.ccell.2017.10.016] [Citation(s) in RCA: 128] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Revised: 08/31/2017] [Accepted: 10/29/2017] [Indexed: 12/18/2022]
Abstract
While molecular subtypes of glioblastoma (GBM) are defined using gene expression and mutation profiles, we identify a unique subpopulation based on addiction to the high-affinity glucose transporter, Glut3. Although Glut3 is a known driver of a cancer stem cell phenotype, direct targeting is complicated by its expression in neurons. Using established GBM lines and patient-derived stem cells, we identify a subset of tumors within the "proneural" and "classical" subtypes that are addicted to aberrant signaling from integrin αvβ3, which activates a PAK4-YAP/TAZ signaling axis to enhance Glut3 expression. This defined subpopulation of GBM is highly sensitive to agents that disrupt this pathway, including the integrin antagonist cilengitide, providing a targeted therapeutic strategy for this unique subset of GBM tumors.
Collapse
Affiliation(s)
- Érika Cosset
- Department of Pathology, Moores Cancer Center, Sanford Consortium for Regenerative Medicine, University of California San Diego, La Jolla, CA 92037, USA.
| | - Sten Ilmjärv
- Department of Pathology and Immunology, Medical School, University of Geneva, Geneva, Vital-IT Group, SIB Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Valérie Dutoit
- Laboratory of Tumor Immunology, Centre of Oncology, Geneva University Hospitals, University of Geneva, Geneva, Switzerland
| | - Kathryn Elliott
- Department of Pathology, Moores Cancer Center, Sanford Consortium for Regenerative Medicine, University of California San Diego, La Jolla, CA 92037, USA
| | - Tami von Schalscha
- Department of Pathology, Moores Cancer Center, Sanford Consortium for Regenerative Medicine, University of California San Diego, La Jolla, CA 92037, USA
| | - Maria F Camargo
- Department of Pathology, Moores Cancer Center, Sanford Consortium for Regenerative Medicine, University of California San Diego, La Jolla, CA 92037, USA
| | - Alexander Reiss
- Department of Pathology, Moores Cancer Center, Sanford Consortium for Regenerative Medicine, University of California San Diego, La Jolla, CA 92037, USA
| | - Toshiro Moroishi
- Department of Pharmacology, Moores Cancer Center, Sanford Consortium for Regenerative Medicine, University of California San Diego, La Jolla, CA 92037, USA
| | - Laetitia Seguin
- Department of Pathology, Moores Cancer Center, Sanford Consortium for Regenerative Medicine, University of California San Diego, La Jolla, CA 92037, USA
| | - German Gomez
- Department of Pathology, Moores Cancer Center, Sanford Consortium for Regenerative Medicine, University of California San Diego, La Jolla, CA 92037, USA
| | - Jung-Soon Moo
- Department of Pharmacology, Moores Cancer Center, Sanford Consortium for Regenerative Medicine, University of California San Diego, La Jolla, CA 92037, USA
| | - Olivier Preynat-Seauve
- Division of Hematology, Departments of Internal Medicine and Human Protein Science, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Karl-Heinz Krause
- Department of Pathology and Immunology, Medical School, University of Geneva, Geneva, Vital-IT Group, SIB Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | | | - Jann N Sarkaria
- Department of Radiation Oncology, Mayo Clinic, Rochester, MN 55905, USA
| | - Kun-Liang Guan
- Department of Pharmacology, Moores Cancer Center, Sanford Consortium for Regenerative Medicine, University of California San Diego, La Jolla, CA 92037, USA
| | - Pierre-Yves Dietrich
- Laboratory of Tumor Immunology, Centre of Oncology, Geneva University Hospitals, University of Geneva, Geneva, Switzerland
| | - Sara M Weis
- Department of Pathology, Moores Cancer Center, Sanford Consortium for Regenerative Medicine, University of California San Diego, La Jolla, CA 92037, USA
| | - Paul S Mischel
- Ludwig Institute for Cancer Research, Department of Pathology, Moores Cancer Center, University of California San Diego, La Jolla, CA 92093, USA
| | - David A Cheresh
- Department of Pathology, Moores Cancer Center, Sanford Consortium for Regenerative Medicine, University of California San Diego, La Jolla, CA 92037, USA.
| |
Collapse
|
32
|
Weller M, Nabors LB, Gorlia T, Leske H, Rushing E, Bady P, Hicking C, Perry J, Hong YK, Roth P, Wick W, Goodman SL, Hegi ME, Picard M, Moch H, Straub J, Stupp R. Cilengitide in newly diagnosed glioblastoma: biomarker expression and outcome. Oncotarget 2017; 7:15018-32. [PMID: 26918452 PMCID: PMC4924768 DOI: 10.18632/oncotarget.7588] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2016] [Accepted: 01/29/2016] [Indexed: 11/25/2022] Open
Abstract
Integrins αvβ3 and αvβ5 regulate angiogenesis and invasiveness in cancer, potentially by modulating activation of the transforming growth factor (TGF)-β pathway. The randomized phase III CENTRIC and phase II CORE trials explored the integrin inhibitor cilengitide in patients with newly diagnosed glioblastoma with versus without O6-methylguanine DNA methyltransferase (MGMT) promoter methylation. These trials failed to meet their primary endpoints. Immunohistochemistry was used to assess the levels of the target integrins of cilengitide, αvβ3 and αvβ5 integrins, of αvβ8 and of their putative target, phosphorylation of SMAD2, in tumor tissues from CENTRIC (n=274) and CORE (n=224). αvβ3 and αvβ5 expression correlated well in tumor and endothelial cells, but showed little association with αvβ8 or pSMAD2 levels. In CENTRIC, there was no interaction between the biomarkers and treatment for prediction of outcome. In CORE, higher αvβ3 levels in tumor cells were associated with improved progression-free survival by central review and with improved overall survival in patients treated with cilengitide. Integrins αvβ3, αvβ5 and αvβ8 are differentially expressed in glioblastoma. Integrin levels do not correlate with the activation level of the canonical TGF-β pathway. αvβ3 integrin expression may predict benefit from integrin inhibition in patients with glioblastoma lacking MGMT promoter methylation.
Collapse
Affiliation(s)
- Michael Weller
- Department of Neurology, University Hospital Zurich and University of Zurich, Zurich, Switzerland
| | | | | | - Henning Leske
- Institute of Neuropathology, University Hospital Zurich, Zurich, Switzerland
| | - Elisabeth Rushing
- Institute of Neuropathology, University Hospital Zurich, Zurich, Switzerland
| | - Pierre Bady
- Department of Education and Research, University of Lausanne, Lausanne, Switzerland.,SIB Swiss Institute of Bioinformatics, Lausanne, Switzerland.,Department of Clinical Neurosciences, University Hospital Lausanne, Lausanne, Switzerland
| | - Christine Hicking
- Department of Translational and Biomarkers Research, Oncology, Merck KGaA, Darmstadt, Germany
| | - James Perry
- Sunnybrook Health Sciences Centre, Toronto, ON, Canada
| | - Yong-Kil Hong
- The Catholic University of Korea, Seoul St. Mary's Hospital, Seoul, Korea
| | - Patrick Roth
- Department of Neurology, University Hospital Zurich and University of Zurich, Zurich, Switzerland
| | - Wolfgang Wick
- Neurology Clinic, University of Heidelberg, Heidelberg, Germany.,Clinical Cooperation Unit (CCU) Neurooncology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Simon L Goodman
- Department of Translational and Biomarkers Research, Oncology, Merck KGaA, Darmstadt, Germany
| | - Monika E Hegi
- Department of Clinical Neurosciences, University Hospital Lausanne, Lausanne, Switzerland
| | - Martin Picard
- Department of Translational and Biomarkers Research, Oncology, Merck KGaA, Darmstadt, Germany
| | - Holger Moch
- Institute of Surgical Pathology, University Hospital Zurich, Zurich, Switzerland
| | - Josef Straub
- Department of Translational and Biomarkers Research, Oncology, Merck KGaA, Darmstadt, Germany
| | - Roger Stupp
- Department of Oncology, University Hospital Zurich, Zurich, Switzerland
| |
Collapse
|
33
|
Monteiro AR, Hill R, Pilkington GJ, Madureira PA. The Role of Hypoxia in Glioblastoma Invasion. Cells 2017; 6:E45. [PMID: 29165393 PMCID: PMC5755503 DOI: 10.3390/cells6040045] [Citation(s) in RCA: 217] [Impact Index Per Article: 27.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 11/20/2017] [Accepted: 11/21/2017] [Indexed: 12/14/2022] Open
Abstract
Glioblastoma multiforme (GBM), a grade IV astrocytoma, is the most common and deadly type of primary malignant brain tumor, with a patient's median survival rate ranging from 15 to 17 months. The current treatment for GBM involves tumor resection surgery based on MRI image analysis, followed by radiotherapy and treatment with temozolomide. However, the gradual development of tumor resistance to temozolomide is frequent in GBM patients leading to subsequent tumor regrowth/relapse. For this reason, the development of more effective therapeutic approaches for GBM is of critical importance. Low tumor oxygenation, also known as hypoxia, constitutes a major concern for GBM patients, since it promotes cancer cell spreading (invasion) into the healthy brain tissue in order to evade this adverse microenvironment. Tumor invasion not only constitutes a major obstacle to surgery, radiotherapy, and chemotherapy, but it is also the main cause of death in GBM patients. Understanding how hypoxia triggers the GBM cells to become invasive is paramount to developing novel and more effective therapies against this devastating disease. In this review, we will present a comprehensive examination of the available literature focused on investigating how GBM hypoxia triggers an invasive cancer cell phenotype and the role of these invasive proteins in GBM progression.
Collapse
Affiliation(s)
- Ana Rita Monteiro
- Centre for Biomedical Research (CBMR), University of Algarve, Campus of Gambelas, Building 8, Room 3.4, 8005-139 Faro, Portugal.
| | - Richard Hill
- Brain Tumour Research Centre of Excellence, Institute of Biomedical and Biomolecular Sciences, University of Portsmouth, Portsmouth PO1 2DT, UK.
| | - Geoffrey J Pilkington
- Brain Tumour Research Centre of Excellence, Institute of Biomedical and Biomolecular Sciences, University of Portsmouth, Portsmouth PO1 2DT, UK.
| | - Patrícia A Madureira
- Centre for Biomedical Research (CBMR), University of Algarve, Campus of Gambelas, Building 8, Room 3.4, 8005-139 Faro, Portugal.
- Brain Tumour Research Centre of Excellence, Institute of Biomedical and Biomolecular Sciences, University of Portsmouth, Portsmouth PO1 2DT, UK.
| |
Collapse
|
34
|
αvβ3 and α5β1 integrin-specific ligands: From tumor angiogenesis inhibitors to vascularization promoters in regenerative medicine? Biotechnol Adv 2017; 36:208-227. [PMID: 29155160 DOI: 10.1016/j.biotechadv.2017.11.004] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Revised: 11/07/2017] [Accepted: 11/13/2017] [Indexed: 12/30/2022]
Abstract
Integrins are cell adhesion receptors predominantly important during normal and tumor angiogenesis. A sequence present on several extracellular matrix proteins composed of Arg-Gly-Asp (RGD) has attracted attention due to its role in cell adhesion mediated by integrins. The development of ligands that can bind to integrins involved in tumor angiogenesis and brake disease progression has resulted in new investigational drug entities reaching the clinical trial phase in humans. The use of integrin-specific ligands can be useful for the vascularization of regenerative medicine constructs, which remains a major limitation for translation into clinical practice. In order to enhance vascularization, immobilization of integrin-specific RGD peptidomimetics within constructs is a recommended approach, due to their high specificity and selectivity towards certain desired integrins. This review endeavours to address the potential of peptidomimetic-coated biomaterials as vascular network promoters for regenerative medicine purposes. Clinical studies involving molecules tracking active integrins in cancer angiogenesis and reasons for their failure are also addressed.
Collapse
|
35
|
Malric L, Monferran S, Gilhodes J, Boyrie S, Dahan P, Skuli N, Sesen J, Filleron T, Kowalski-Chauvel A, Cohen-Jonathan Moyal E, Toulas C, Lemarié A. Interest of integrins targeting in glioblastoma according to tumor heterogeneity and cancer stem cell paradigm: an update. Oncotarget 2017; 8:86947-86968. [PMID: 29156849 PMCID: PMC5689739 DOI: 10.18632/oncotarget.20372] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Accepted: 07/23/2017] [Indexed: 12/22/2022] Open
Abstract
Glioblastomas are malignant brain tumors with dismal prognosis despite standard treatment with surgery and radio/chemotherapy. These tumors are defined by an important cellular heterogeneity and notably contain a particular subpopulation of Glioblastoma-initiating cells, which recapitulate the heterogeneity of the original Glioblastoma. In order to classify these heterogeneous tumors, genomic profiling has also been undertaken to classify these heterogeneous tumors into several subtypes. Current research focuses on developing therapies, which could take into account this cellular and genomic heterogeneity. Among these targets, integrins are the subject of numerous studies since these extracellular matrix transmembrane receptors notably controls tumor invasion and progression. Moreover, some of these integrins are considered as membrane markers for the Glioblastoma-initiating cells subpopulation. We reviewed here integrin expression according to glioblastoma molecular subtypes and cell heterogeneity. We discussed their roles in glioblastoma invasion, angiogenesis, therapeutic resistance, stemness and microenvironment modulations, and provide an overview of clinical trials investigating integrins in glioblastomas. This review highlights that specific integrins could be identified as selective glioblastoma cells markers and that their targeting represents new diagnostic and/or therapeutic strategies.
Collapse
Affiliation(s)
- Laure Malric
- INSERM U1037, Center for Cancer Research of Toulouse, Toulouse, France
| | - Sylvie Monferran
- INSERM U1037, Center for Cancer Research of Toulouse, Toulouse, France.,Faculty of Pharmaceutical Sciences, University of Toulouse III Paul Sabatier, Toulouse, France
| | - Julia Gilhodes
- Department of Biostatistics, IUCT-Oncopole, Toulouse, France
| | - Sabrina Boyrie
- INSERM U1037, Center for Cancer Research of Toulouse, Toulouse, France
| | - Perrine Dahan
- INSERM U1037, Center for Cancer Research of Toulouse, Toulouse, France
| | - Nicolas Skuli
- INSERM U1037, Center for Cancer Research of Toulouse, Toulouse, France.,Department of Neurosurgery, Johns Hopkins University, Baltimore, Maryland, USA
| | - Julie Sesen
- INSERM U1037, Center for Cancer Research of Toulouse, Toulouse, France
| | - Thomas Filleron
- Department of Biostatistics, IUCT-Oncopole, Toulouse, France
| | | | - Elizabeth Cohen-Jonathan Moyal
- INSERM U1037, Center for Cancer Research of Toulouse, Toulouse, France.,Department of Radiotherapy, IUCT-Oncopole, Toulouse, France
| | - Christine Toulas
- INSERM U1037, Center for Cancer Research of Toulouse, Toulouse, France.,Laboratory of Oncogenetic, IUCT-Oncopole, Toulouse, France
| | - Anthony Lemarié
- INSERM U1037, Center for Cancer Research of Toulouse, Toulouse, France.,Faculty of Pharmaceutical Sciences, University of Toulouse III Paul Sabatier, Toulouse, France
| |
Collapse
|
36
|
Abstract
Anti-angiogenic therapy has become an important component in the treatment of many solid tumors given the importance of adequate blood supply for tumor growth and metastasis. Despite promising preclinical data and early clinical trials, anti-angiogenic agents have failed to show a survival benefit in randomized controlled trials of patients with glioblastoma. In particular, agents targeting vascular endothelial growth factor (VEGF) appear to prolong progression free survival, possibly improve quality of life, and decrease steroid usage, yet the trials to date have demonstrated no extension of overall survival. In order to improve duration of response and convey a survival benefit, additional research is still needed to explore alternative pro-angiogenic pathways, mechanisms of resistance, combination strategies, and biomarkers to predict therapeutic response.
Collapse
Affiliation(s)
- Nancy Wang
- Stephen E. and Catherine Pappas Center for Neuro-Oncology, Massachusetts General Hospital, Boston, MA, USA
| | - Rakesh K Jain
- Department of Radiation Oncology, Massachusetts General Hospital, Boston, MA, USA
| | - Tracy T Batchelor
- Stephen E. and Catherine Pappas Center for Neuro-Oncology, Massachusetts General Hospital, Boston, MA, USA.
- Department of Radiation Oncology, Massachusetts General Hospital, Boston, MA, USA.
- Department of Hematology/Oncology, Massachusetts General Hospital, Boston, MA, USA.
| |
Collapse
|
37
|
Jin J, Choi SH, Lee JE, Joo JD, Han JH, Park SY, Kim CY. Antitumor activity of 7-O-succinyl macrolactin A tromethamine salt in the mouse glioma model. Oncol Lett 2017; 13:3767-3773. [PMID: 28529591 DOI: 10.3892/ol.2017.5918] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2015] [Accepted: 02/17/2017] [Indexed: 11/05/2022] Open
Abstract
Chemoradiotherapy with temozolomide is the current standard treatment option for patients with glioblastoma. However, the majority of patients with glioblastoma survive for <2 years. Therefore, it is necessary to develop more effective therapeutic strategies for the treatment of glioblastoma. 7-O-succinyl macrolactin A tromethamine salt (SMA salt), a macrolactin compound, is known to possess an antiangiogenic activity. The present study investigated the antitumor effects of SMA salt in the treatment of glioblastoma by evaluating in vitro and in vivo antitumor effects of SMA salt in an experimental glioblastoma model. The antitumor effects of the drug on human glioblastoma U87MG, U251MG and LN229 cell lines were assessed using in vitro cell viability, migration and invasion assays. Nude mice with established U87MG glioblastoma were assigned to either the control or SMA salt treatment group. The volume of tumors and the duration of survival were also measured. SMA salt affected cell viability and caused a concentration-dependent inhibition effect on the migration and invasion of glioblastoma cell lines. Animals in the SMA salt treatment group demonstrated a significant reduction in tumor volume and an increase in survival (P<0.05). Treatment with SMA salt presented more cytotoxic effects as well as anti-migration and anti-invasion activity compared with the control group in vitro and in vivo. These results suggest that SMA salt has significant antitumor effects on glioblastoma.
Collapse
Affiliation(s)
- Jun Jin
- Department of Neurosurgery, Seoul National University Bundang Hospital, Seongnam-si, Gyeonggi-do 13620, Republic of Korea.,Department of Neurosurgery, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| | - Suh Hee Choi
- Department of Neurosurgery, Seoul National University Bundang Hospital, Seongnam-si, Gyeonggi-do 13620, Republic of Korea
| | - Jung Eun Lee
- Department of Neurosurgery, Seoul National University Bundang Hospital, Seongnam-si, Gyeonggi-do 13620, Republic of Korea
| | - Jin-Deok Joo
- Department of Neurosurgery, Seoul National University Bundang Hospital, Seongnam-si, Gyeonggi-do 13620, Republic of Korea.,Department of Neurosurgery, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| | - Jung Ho Han
- Department of Neurosurgery, Seoul National University Bundang Hospital, Seongnam-si, Gyeonggi-do 13620, Republic of Korea.,Department of Neurosurgery, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| | - Su-Young Park
- Research and Development Center, Daewoo Pharmaceutical Ind. Co., Ltd., Busan 49393, Republic of Korea
| | - Chae-Yong Kim
- Department of Neurosurgery, Seoul National University Bundang Hospital, Seongnam-si, Gyeonggi-do 13620, Republic of Korea.,Department of Neurosurgery, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| |
Collapse
|
38
|
Lee W, Lim S, Kim Y. The role of myosin II in glioma invasion: A mathematical model. PLoS One 2017; 12:e0171312. [PMID: 28166231 PMCID: PMC5293275 DOI: 10.1371/journal.pone.0171312] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Accepted: 01/18/2017] [Indexed: 01/09/2023] Open
Abstract
Gliomas are malignant tumors that are commonly observed in primary brain cancer. Glioma cells migrate through a dense network of normal cells in microenvironment and spread long distances within brain. In this paper we present a two-dimensional multiscale model in which a glioma cell is surrounded by normal cells and its migration is controlled by cell-mechanical components in the microenvironment via the regulation of myosin II in response to chemoattractants. Our simulation results show that the myosin II plays a key role in the deformation of the cell nucleus as the glioma cell passes through the narrow intercellular space smaller than its nuclear diameter. We also demonstrate that the coordination of biochemical and mechanical components within the cell enables a glioma cell to take the mode of amoeboid migration. This study sheds lights on the understanding of glioma infiltration through the narrow intercellular spaces and may provide a potential approach for the development of anti-invasion strategies via the injection of chemoattractants for localization.
Collapse
Affiliation(s)
- Wanho Lee
- National Institute for Mathematical Sciences, Daejeon, 34047, Republic of Korea
| | - Sookkyung Lim
- Department of Mathematical Sciences, University of Cincinnati, Cincinnati, OH, 45221, United States of America
| | - Yangjin Kim
- Mathematical Biosciences Institute, Ohio State University, Columbus, OH, 43210, United States of America
- Department of Mathematics, Konkuk University, Seoul, 05029, Republic of Korea
- * E-mail:
| |
Collapse
|
39
|
Talin Modulation by a Synthetic N-Acylurea Derivative Reduces Angiogenesis in Human Endothelial Cells. Int J Mol Sci 2017; 18:ijms18010221. [PMID: 28117756 PMCID: PMC5297850 DOI: 10.3390/ijms18010221] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Revised: 01/15/2017] [Accepted: 01/17/2017] [Indexed: 12/30/2022] Open
Abstract
Talin is a focal adhesion protein that activates integrins and recruits other focal adhesion proteins. Talin regulates the interactions between integrins and the extracellular matrix, which are critical for endothelial cells during angiogenesis. In this study, we successfully synthesized a novel talin modulator, N-((2-(1H-indol-3-yl)ethyl)carbamoyl)-2-(benzo[d][1,3]dioxol-5-yloxy)acetamide, referred to as KCH-1521. KCH-1521 was determined to bind talin and modulate downstream signaling molecules of talin. After 24 h of treatment, KCH-1521 changed the cell morphology of human umbilical vein endothelial cells (HUVECs) and reduced focal adhesion protein expression including vinculin and paxillin. Talin downstream signaling is regulated via focal adhesion kinase (FAK), kinase B (AKT), and extracellular signal-regulated kinase (ERK) pathways, however, treatment with KCH-1521 decreased phosphorylation of FAK, AKT, and ERK, leading to reduction of cell proliferation, survival, and angiogenesis. Interestingly, the expression of various angiogenic genes was significantly decreased after treatment with KCH-1521. Also, in vitro tube forming assay revealed that KCH-1521 reduced angiogenic networks in a time-dependent manner. To investigate the reversibility of its effects, KCH-1521 was removed after treatment. HUVECs recovered their morphology through rearrangement of the cytoskeleton and the expression of angiogenic genes was also recovered. By further optimization and in vivo studies of KCH-1521, a novel drug of talin modulation could be used to achieve therapeutic anti-angiogenesis for vascular diseases and cancers.
Collapse
|
40
|
Majeski HE, Yang J. The 2016 John J. Abel Award Lecture: Targeting the Mechanical Microenvironment in Cancer. Mol Pharmacol 2016; 90:744-754. [PMID: 27742780 PMCID: PMC5118638 DOI: 10.1124/mol.116.106765] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Accepted: 10/13/2016] [Indexed: 12/14/2022] Open
Abstract
Past decades of cancer research have mainly focused on the role of various extracellular and intracellular biochemical signals on cancer progression and metastasis. Recent studies suggest an important role of mechanical forces in regulating cellular behaviors. This review first provides an overview of the mechanobiology research field. Then we specially focus on mechanotransduction pathways in cancer progression and describe in detail the key signaling components of such mechanotransduction pathways and extracellular matrix components that are altered in cancer. Although our understanding of mechanoregulation in cancer is still in its infancy, some agents against key mechanoregulators have been developed and will be discussed to explore the potential of pharmacologically targeting mechanotransduction in cancer.
Collapse
Affiliation(s)
- Hannah E Majeski
- Department of Pharmacology (H.E.M., J.Y.), Department of Pediatrics (J.Y.), and Biomedical Sciences Graduate Program (H.E.M., J.Y.), Moores Cancer Center, University of California, San Diego, La Jolla, California
| | - Jing Yang
- Department of Pharmacology (H.E.M., J.Y.), Department of Pediatrics (J.Y.), and Biomedical Sciences Graduate Program (H.E.M., J.Y.), Moores Cancer Center, University of California, San Diego, La Jolla, California
| |
Collapse
|
41
|
Insulin-like growth factor binding protein-3 inhibits cell adhesion via suppression of integrin β4 expression. Oncotarget 2016; 6:15150-63. [PMID: 25945837 PMCID: PMC4558142 DOI: 10.18632/oncotarget.3825] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Accepted: 03/26/2015] [Indexed: 11/25/2022] Open
Abstract
We previously reported that IGF binding protein-3 (IGFBP-3), a major IGF-binding protein in human serum, regulates angiogenic activities of human head and neck squamous cell carcinoma (HNSCC) cells and human umbilical vein endothelial cells (HUVECs) through IGF-dependent and IGF-independent mechanisms. However, the role of IGFBP-3 in cell adhesion is largely unknown. We demonstrate here that IGFBP-3 inhibits the adhesion of HNSCC cells and HUVECs to the extracellular matrix (ECM). IGFBP-3 reduced transcription of a variety of integrins, especially integrin β4, and suppressed phosphorylation of focal adhesion kinase (FAK) and Src in these cells through both IGF-dependent and IGF-independent pathways. IGFBP-3 was found to suppress the transcription of c-fos and c-jun and the activity of AP1 transcription factor. The regulatory effect of IGFBP-3 on integrin β4 transcription was attenuated by blocking c-jun and c-fos gene expression via siRNA transfection. Taken together, our data show that IGFBP-3 has IGF-dependent and -independent inhibitory effects on intracellular adhesion signaling in HNSCC and HUVECs through its ability to block c-jun and c-fos transcription and thus AP-1-mediated integrin β4 transcription. Collectively, our data suggest that IGFPB-3 may be an effective cancer therapeutic agent by blocking integrin-mediated adhesive activity of tumor and vascular endothelial cells.
Collapse
|
42
|
Khasraw M, Lee A, McCowatt S, Kerestes Z, Buyse ME, Back M, Kichenadasse G, Ackland S, Wheeler H. Cilengitide with metronomic temozolomide, procarbazine, and standard radiotherapy in patients with glioblastoma and unmethylated MGMT gene promoter in ExCentric, an open-label phase II trial. J Neurooncol 2016; 128:163-171. [PMID: 26935578 DOI: 10.1007/s11060-016-2094-0] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Accepted: 02/25/2016] [Indexed: 12/22/2022]
Abstract
Newly diagnosed glioblastoma multiforme with unmethylated MGMT promoter has a poor prognosis, with a median survival of 12 months. This phase II study investigated the efficacy and safety of combining the selective integrin inhibitor cilengitide with a combination of metronomic temozolomide and procarbazine for these patients. Eligible patients (newly diagnosed, histologically confirmed supratentorial glioblastoma with unmethylated MGMT promoter) were entered into this multicentre study. Cilengitide (2000 mg IV twice weekly) was commenced 1 week prior to radiotherapy combined with daily temozolomide (60 mg/m(2)) and procarbazine (50 or 100 mg) and, after 4 weeks' break, followed by six adjuvant cycles of temozolomide (50-60 mg/m(2)) and procarbazine (50 or 100 mg) on days 1-20, every 28 days. Cilengitide was continued for up to 12 months or until disease progression or unacceptable toxicity. The primary endpoint for efficacy was a 12-month overall survival rate of 65 %. Twenty-nine patients completed study treatment. Sixteen patients survived for 12 months or more, an overall survival rate of 55 %. The median overall survival was 14.5 months (95 % CI 11.1-19.6) and the median progression-free survival was 7.4 months (95 % CI 6.1-8). Cilengitide combined with metronomic temozolomide and procarbazine in MGMT-promoter unmethylated glioblastoma did not improve survival compared with historical data and does not warrant further investigation.
Collapse
Affiliation(s)
- Mustafa Khasraw
- Northern Sydney Cancer Centre, Royal North Shore Hospital, Sydney, Australia. .,University of Sydney, Sydney, Australia. .,NHMRC Clinical Trials Centre, University of Sydney, Sydney, Australia. .,Royal North Shore Hospital, Pacific HWY, St Leonards, NSW, 2065, Australia.
| | - Adrian Lee
- Northern Sydney Cancer Centre, Royal North Shore Hospital, Sydney, Australia.,University of Sydney, Sydney, Australia
| | - Sally McCowatt
- Northern Sydney Cancer Centre, Royal North Shore Hospital, Sydney, Australia
| | - Zoltan Kerestes
- Northern Sydney Cancer Centre, Royal North Shore Hospital, Sydney, Australia
| | - Marc E Buyse
- International Drug Development Institute (IDDI), Louvain-la-Neuve, Belgium
| | - Michael Back
- Northern Sydney Cancer Centre, Royal North Shore Hospital, Sydney, Australia.,University of Sydney, Sydney, Australia
| | - Ganessan Kichenadasse
- International Drug Development Institute (IDDI), Louvain-la-Neuve, Belgium.,Flinders Medical Centre and Flinders University, Adelaide, Australia
| | | | - Helen Wheeler
- Northern Sydney Cancer Centre, Royal North Shore Hospital, Sydney, Australia.,University of Sydney, Sydney, Australia
| |
Collapse
|
43
|
Hu Q, Sun W, Lu Y, Bomba HN, Ye Y, Jiang T, Isaacson AJ, Gu Z. Tumor Microenvironment-Mediated Construction and Deconstruction of Extracellular Drug-Delivery Depots. NANO LETTERS 2016; 16:1118-1126. [PMID: 26785163 DOI: 10.1021/acs.nanolett.5b04343] [Citation(s) in RCA: 140] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Protein therapy has been considered the most direct and safe approach to treat cancer. Targeting delivery of extracellularly active protein without internalization barriers, such as membrane permeation and endosome escape, is efficient and holds vast promise for anticancer treatment. Herein, we describe a "transformable" core-shell based nanocarrier (designated CS-NG), which can enzymatically assemble into microsized extracellular depots at the tumor site with assistance of hyaluronidase (HAase), an overexpressed enzyme at the tumor microenvironment. Equipped with an acid-degradable modality, the resulting CS-NG can substantially release combinational anticancer drugs-tumor necrosis factor (TNF)-related apoptosis inducing ligand (TRAIL) and antiangiogenic cilengitide toward the membrane of cancer cells and endothelial cells at the acidic tumor microenvironment, respectively. Enhanced cytotoxicity on MDA-MB-231 cells and improved antitumor efficacy were observed using CS-NG, which was attributed to the inhibition of cellular internalization and prolonged retention time in vivo.
Collapse
Affiliation(s)
- Quanyin Hu
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University , Raleigh, North Carolina 27695, United States
- Division of Molecular Pharmaceutics and Center for Nanotechnology in Drug Delivery, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill , Chapel Hill, North Carolina 27599, United States
| | - Wujin Sun
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University , Raleigh, North Carolina 27695, United States
- Division of Molecular Pharmaceutics and Center for Nanotechnology in Drug Delivery, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill , Chapel Hill, North Carolina 27599, United States
| | - Yue Lu
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University , Raleigh, North Carolina 27695, United States
- Division of Molecular Pharmaceutics and Center for Nanotechnology in Drug Delivery, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill , Chapel Hill, North Carolina 27599, United States
| | - Hunter N Bomba
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University , Raleigh, North Carolina 27695, United States
- Division of Molecular Pharmaceutics and Center for Nanotechnology in Drug Delivery, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill , Chapel Hill, North Carolina 27599, United States
| | - Yanqi Ye
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University , Raleigh, North Carolina 27695, United States
- Division of Molecular Pharmaceutics and Center for Nanotechnology in Drug Delivery, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill , Chapel Hill, North Carolina 27599, United States
| | - Tianyue Jiang
- School of Pharmaceutical Sciences, Nanjing Tech University , Nanjing 210000, Jiangsu China
| | - Ari J Isaacson
- Department of Radiology, University of North Carolina at Chapel Hill , Chapel Hill, North Carolina 27514, United States
| | - Zhen Gu
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University , Raleigh, North Carolina 27695, United States
- Division of Molecular Pharmaceutics and Center for Nanotechnology in Drug Delivery, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill , Chapel Hill, North Carolina 27599, United States
- Department of Medicine, University of North Carolina School of Medicine , Chapel Hill, North Carolina 27599, United States
| |
Collapse
|
44
|
Suppression of CD51 in pancreatic stellate cells inhibits tumor growth by reducing stroma and altering tumor-stromal interaction in pancreatic cancer. Int J Oncol 2016; 48:1499-508. [DOI: 10.3892/ijo.2016.3374] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Accepted: 01/05/2016] [Indexed: 11/05/2022] Open
|
45
|
Glioma-targeted therapy using Cilengitide nanoparticles combined with UTMD enhanced delivery. J Control Release 2016; 224:112-125. [DOI: 10.1016/j.jconrel.2016.01.015] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Revised: 12/10/2015] [Accepted: 01/08/2016] [Indexed: 12/14/2022]
|
46
|
Reyes E. A novel PET tracer for targeted imaging of atherosclerosis. J Nucl Cardiol 2015; 22:1191-4. [PMID: 25721316 DOI: 10.1007/s12350-015-0088-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Accepted: 01/29/2015] [Indexed: 10/23/2022]
Affiliation(s)
- Eliana Reyes
- Royal Brompton and Harefield Hospitals, Sydney Street, London, SW3 6NP, UK.
| |
Collapse
|
47
|
Srinivasan M, Rajabi M, Mousa SA. Multifunctional Nanomaterials and Their Applications in Drug Delivery and Cancer Therapy. NANOMATERIALS 2015; 5:1690-1703. [PMID: 28347089 PMCID: PMC5304767 DOI: 10.3390/nano5041690] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Revised: 09/23/2015] [Accepted: 10/01/2015] [Indexed: 01/05/2023]
Abstract
The field of nanotechnology has led to the development of many innovative strategies for effective detection and treatment of cancer, overcoming limitations associated with conventional cancer diagnosis and therapy. Multifunctional nanoparticle systems can integrate imaging, targeting and treatment moieties on the surface and in the core, resulting in targeted delivery of the imaging or treatment modalities, specifically to the tumor. Multifunctional nanoparticles also enable simultaneous delivery of multiple treatment agents, resulting in effective combinatorial therapeutic regimens against cancer. In this review, various multifunctional nanoparticle systems that feature a variety of targeting moieties for in vitro and/or in vivo cancer imaging and therapy are discussed.
Collapse
Affiliation(s)
- Mathangi Srinivasan
- The Pharmaceutical Research Institute, 1 Discovery Drive, Rensselaer, NY 12144, USA.
| | - Mehdi Rajabi
- The Pharmaceutical Research Institute, 1 Discovery Drive, Rensselaer, NY 12144, USA.
| | - Shaker A Mousa
- The Pharmaceutical Research Institute, 1 Discovery Drive, Rensselaer, NY 12144, USA.
| |
Collapse
|
48
|
Gounder MM, Nayak L, Sahebjam S, Muzikansky A, Sanchez AJ, Desideri S, Ye X, Ivy SP, Nabors LB, Prados M, Grossman S, DeAngelis LM, Wen PY. Evaluation of the Safety and Benefit of Phase I Oncology Trials for Patients With Primary CNS Tumors. J Clin Oncol 2015; 33:3186-92. [PMID: 26282642 DOI: 10.1200/jco.2015.61.1525] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
PURPOSE Patients with high-grade gliomas (HGG) are frequently excluded from first-in-human solid tumor trials because of perceived poor prognosis, excessive toxicities, concomitant drug interactions, and poor efficacy. We conducted an analysis of outcomes from select, single-agent phase I studies in patients with HGG. We compared outcomes to pooled analysis of published studies in solid tumors with various molecular and cytotoxic drugs evaluated as single agents or as combinations. PATIENT AND METHODS Individual records of patients with recurrent HGG enrolled onto Adult Brain Tumor Consortium trials of single-agent, cytotoxic or molecular agents from 2000 to 2008 were analyzed for baseline characteristics, toxicities, responses, and survival. RESULTS Our analysis included 327 patients with advanced, refractory HGG who were enrolled onto eight trials involving targeted molecular (n=5) and cytotoxic (n=3) therapies. At enrollment, patients had a median Karnofsky performance score of 90 and median age of 52 years; 62% were men, 63% had glioblastoma, and the median number of prior systemic chemotherapies was one. Baseline laboratory values were in an acceptable range to meet eligibility criteria. Patients were on the study for a median of two cycles (range, <one to 56 cycles), and 96% were evaluable for primary end points. During cycle 1, grade≥3 nonhematologic and grade≥4 hematologic toxicities were 5% (28 of 565 adverse events) and 0.9% (five of 565 adverse events), respectively, and 66% of these occurred at the highest dose level. There was one death attributed to drug. Overall response rate (complete and partial response) was 5.5%. Median progression-free and overall survival times were 1.8 and 6 months, respectively. CONCLUSION Patients with HGG who meet standard eligibility criteria may be good candidates for solid tumor phase I studies with single-agent molecular or cytotoxic drugs with favorable preclinical rationale and pharmacokinetic properties in this population.
Collapse
Affiliation(s)
- Mrinal M Gounder
- Mrinal M. Gounder, Armando J. Sanchez, and Lisa M. DeAngelis, Memorial Sloan-Kettering Cancer Center and Weil Cornell Medical School, New York, NY; Lakshmi Nayak and Patrick Y. Wen, Dana-Farber/Brigham and Women's Cancer Center and Harvard Medical School; Alona Muzikansky, Massachusetts General Hospital and Harvard Medical School, Boston, MA; Solmaz Sahebjam, Moffitt Cancer Center, University of South Florida, Tampa, FL; Serena Desideri, Xiaobu Ye, and Stuart Grossman, Johns Hopkins Sidney Kimmel Cancer Center, Baltimore; S. Percy Ivy, National Cancer Institute, Cancer Therapy Evaluation Program, Bethesda, MD; L. Burt Nabors, University of Alabama at Birmingham, Birmingham, AL; and Michael Prados, University of California at San Francisco, San Francisco, CA.
| | - Lakshmi Nayak
- Mrinal M. Gounder, Armando J. Sanchez, and Lisa M. DeAngelis, Memorial Sloan-Kettering Cancer Center and Weil Cornell Medical School, New York, NY; Lakshmi Nayak and Patrick Y. Wen, Dana-Farber/Brigham and Women's Cancer Center and Harvard Medical School; Alona Muzikansky, Massachusetts General Hospital and Harvard Medical School, Boston, MA; Solmaz Sahebjam, Moffitt Cancer Center, University of South Florida, Tampa, FL; Serena Desideri, Xiaobu Ye, and Stuart Grossman, Johns Hopkins Sidney Kimmel Cancer Center, Baltimore; S. Percy Ivy, National Cancer Institute, Cancer Therapy Evaluation Program, Bethesda, MD; L. Burt Nabors, University of Alabama at Birmingham, Birmingham, AL; and Michael Prados, University of California at San Francisco, San Francisco, CA
| | - Solmaz Sahebjam
- Mrinal M. Gounder, Armando J. Sanchez, and Lisa M. DeAngelis, Memorial Sloan-Kettering Cancer Center and Weil Cornell Medical School, New York, NY; Lakshmi Nayak and Patrick Y. Wen, Dana-Farber/Brigham and Women's Cancer Center and Harvard Medical School; Alona Muzikansky, Massachusetts General Hospital and Harvard Medical School, Boston, MA; Solmaz Sahebjam, Moffitt Cancer Center, University of South Florida, Tampa, FL; Serena Desideri, Xiaobu Ye, and Stuart Grossman, Johns Hopkins Sidney Kimmel Cancer Center, Baltimore; S. Percy Ivy, National Cancer Institute, Cancer Therapy Evaluation Program, Bethesda, MD; L. Burt Nabors, University of Alabama at Birmingham, Birmingham, AL; and Michael Prados, University of California at San Francisco, San Francisco, CA
| | - Alona Muzikansky
- Mrinal M. Gounder, Armando J. Sanchez, and Lisa M. DeAngelis, Memorial Sloan-Kettering Cancer Center and Weil Cornell Medical School, New York, NY; Lakshmi Nayak and Patrick Y. Wen, Dana-Farber/Brigham and Women's Cancer Center and Harvard Medical School; Alona Muzikansky, Massachusetts General Hospital and Harvard Medical School, Boston, MA; Solmaz Sahebjam, Moffitt Cancer Center, University of South Florida, Tampa, FL; Serena Desideri, Xiaobu Ye, and Stuart Grossman, Johns Hopkins Sidney Kimmel Cancer Center, Baltimore; S. Percy Ivy, National Cancer Institute, Cancer Therapy Evaluation Program, Bethesda, MD; L. Burt Nabors, University of Alabama at Birmingham, Birmingham, AL; and Michael Prados, University of California at San Francisco, San Francisco, CA
| | - Armando J Sanchez
- Mrinal M. Gounder, Armando J. Sanchez, and Lisa M. DeAngelis, Memorial Sloan-Kettering Cancer Center and Weil Cornell Medical School, New York, NY; Lakshmi Nayak and Patrick Y. Wen, Dana-Farber/Brigham and Women's Cancer Center and Harvard Medical School; Alona Muzikansky, Massachusetts General Hospital and Harvard Medical School, Boston, MA; Solmaz Sahebjam, Moffitt Cancer Center, University of South Florida, Tampa, FL; Serena Desideri, Xiaobu Ye, and Stuart Grossman, Johns Hopkins Sidney Kimmel Cancer Center, Baltimore; S. Percy Ivy, National Cancer Institute, Cancer Therapy Evaluation Program, Bethesda, MD; L. Burt Nabors, University of Alabama at Birmingham, Birmingham, AL; and Michael Prados, University of California at San Francisco, San Francisco, CA
| | - Serena Desideri
- Mrinal M. Gounder, Armando J. Sanchez, and Lisa M. DeAngelis, Memorial Sloan-Kettering Cancer Center and Weil Cornell Medical School, New York, NY; Lakshmi Nayak and Patrick Y. Wen, Dana-Farber/Brigham and Women's Cancer Center and Harvard Medical School; Alona Muzikansky, Massachusetts General Hospital and Harvard Medical School, Boston, MA; Solmaz Sahebjam, Moffitt Cancer Center, University of South Florida, Tampa, FL; Serena Desideri, Xiaobu Ye, and Stuart Grossman, Johns Hopkins Sidney Kimmel Cancer Center, Baltimore; S. Percy Ivy, National Cancer Institute, Cancer Therapy Evaluation Program, Bethesda, MD; L. Burt Nabors, University of Alabama at Birmingham, Birmingham, AL; and Michael Prados, University of California at San Francisco, San Francisco, CA
| | - Xiaobu Ye
- Mrinal M. Gounder, Armando J. Sanchez, and Lisa M. DeAngelis, Memorial Sloan-Kettering Cancer Center and Weil Cornell Medical School, New York, NY; Lakshmi Nayak and Patrick Y. Wen, Dana-Farber/Brigham and Women's Cancer Center and Harvard Medical School; Alona Muzikansky, Massachusetts General Hospital and Harvard Medical School, Boston, MA; Solmaz Sahebjam, Moffitt Cancer Center, University of South Florida, Tampa, FL; Serena Desideri, Xiaobu Ye, and Stuart Grossman, Johns Hopkins Sidney Kimmel Cancer Center, Baltimore; S. Percy Ivy, National Cancer Institute, Cancer Therapy Evaluation Program, Bethesda, MD; L. Burt Nabors, University of Alabama at Birmingham, Birmingham, AL; and Michael Prados, University of California at San Francisco, San Francisco, CA
| | - S Percy Ivy
- Mrinal M. Gounder, Armando J. Sanchez, and Lisa M. DeAngelis, Memorial Sloan-Kettering Cancer Center and Weil Cornell Medical School, New York, NY; Lakshmi Nayak and Patrick Y. Wen, Dana-Farber/Brigham and Women's Cancer Center and Harvard Medical School; Alona Muzikansky, Massachusetts General Hospital and Harvard Medical School, Boston, MA; Solmaz Sahebjam, Moffitt Cancer Center, University of South Florida, Tampa, FL; Serena Desideri, Xiaobu Ye, and Stuart Grossman, Johns Hopkins Sidney Kimmel Cancer Center, Baltimore; S. Percy Ivy, National Cancer Institute, Cancer Therapy Evaluation Program, Bethesda, MD; L. Burt Nabors, University of Alabama at Birmingham, Birmingham, AL; and Michael Prados, University of California at San Francisco, San Francisco, CA
| | - L Burt Nabors
- Mrinal M. Gounder, Armando J. Sanchez, and Lisa M. DeAngelis, Memorial Sloan-Kettering Cancer Center and Weil Cornell Medical School, New York, NY; Lakshmi Nayak and Patrick Y. Wen, Dana-Farber/Brigham and Women's Cancer Center and Harvard Medical School; Alona Muzikansky, Massachusetts General Hospital and Harvard Medical School, Boston, MA; Solmaz Sahebjam, Moffitt Cancer Center, University of South Florida, Tampa, FL; Serena Desideri, Xiaobu Ye, and Stuart Grossman, Johns Hopkins Sidney Kimmel Cancer Center, Baltimore; S. Percy Ivy, National Cancer Institute, Cancer Therapy Evaluation Program, Bethesda, MD; L. Burt Nabors, University of Alabama at Birmingham, Birmingham, AL; and Michael Prados, University of California at San Francisco, San Francisco, CA
| | - Michael Prados
- Mrinal M. Gounder, Armando J. Sanchez, and Lisa M. DeAngelis, Memorial Sloan-Kettering Cancer Center and Weil Cornell Medical School, New York, NY; Lakshmi Nayak and Patrick Y. Wen, Dana-Farber/Brigham and Women's Cancer Center and Harvard Medical School; Alona Muzikansky, Massachusetts General Hospital and Harvard Medical School, Boston, MA; Solmaz Sahebjam, Moffitt Cancer Center, University of South Florida, Tampa, FL; Serena Desideri, Xiaobu Ye, and Stuart Grossman, Johns Hopkins Sidney Kimmel Cancer Center, Baltimore; S. Percy Ivy, National Cancer Institute, Cancer Therapy Evaluation Program, Bethesda, MD; L. Burt Nabors, University of Alabama at Birmingham, Birmingham, AL; and Michael Prados, University of California at San Francisco, San Francisco, CA
| | - Stuart Grossman
- Mrinal M. Gounder, Armando J. Sanchez, and Lisa M. DeAngelis, Memorial Sloan-Kettering Cancer Center and Weil Cornell Medical School, New York, NY; Lakshmi Nayak and Patrick Y. Wen, Dana-Farber/Brigham and Women's Cancer Center and Harvard Medical School; Alona Muzikansky, Massachusetts General Hospital and Harvard Medical School, Boston, MA; Solmaz Sahebjam, Moffitt Cancer Center, University of South Florida, Tampa, FL; Serena Desideri, Xiaobu Ye, and Stuart Grossman, Johns Hopkins Sidney Kimmel Cancer Center, Baltimore; S. Percy Ivy, National Cancer Institute, Cancer Therapy Evaluation Program, Bethesda, MD; L. Burt Nabors, University of Alabama at Birmingham, Birmingham, AL; and Michael Prados, University of California at San Francisco, San Francisco, CA
| | - Lisa M DeAngelis
- Mrinal M. Gounder, Armando J. Sanchez, and Lisa M. DeAngelis, Memorial Sloan-Kettering Cancer Center and Weil Cornell Medical School, New York, NY; Lakshmi Nayak and Patrick Y. Wen, Dana-Farber/Brigham and Women's Cancer Center and Harvard Medical School; Alona Muzikansky, Massachusetts General Hospital and Harvard Medical School, Boston, MA; Solmaz Sahebjam, Moffitt Cancer Center, University of South Florida, Tampa, FL; Serena Desideri, Xiaobu Ye, and Stuart Grossman, Johns Hopkins Sidney Kimmel Cancer Center, Baltimore; S. Percy Ivy, National Cancer Institute, Cancer Therapy Evaluation Program, Bethesda, MD; L. Burt Nabors, University of Alabama at Birmingham, Birmingham, AL; and Michael Prados, University of California at San Francisco, San Francisco, CA
| | - Patrick Y Wen
- Mrinal M. Gounder, Armando J. Sanchez, and Lisa M. DeAngelis, Memorial Sloan-Kettering Cancer Center and Weil Cornell Medical School, New York, NY; Lakshmi Nayak and Patrick Y. Wen, Dana-Farber/Brigham and Women's Cancer Center and Harvard Medical School; Alona Muzikansky, Massachusetts General Hospital and Harvard Medical School, Boston, MA; Solmaz Sahebjam, Moffitt Cancer Center, University of South Florida, Tampa, FL; Serena Desideri, Xiaobu Ye, and Stuart Grossman, Johns Hopkins Sidney Kimmel Cancer Center, Baltimore; S. Percy Ivy, National Cancer Institute, Cancer Therapy Evaluation Program, Bethesda, MD; L. Burt Nabors, University of Alabama at Birmingham, Birmingham, AL; and Michael Prados, University of California at San Francisco, San Francisco, CA
| |
Collapse
|
49
|
Liu S. Radiolabeled Cyclic RGD Peptide Bioconjugates as Radiotracers Targeting Multiple Integrins. Bioconjug Chem 2015; 26:1413-38. [PMID: 26193072 DOI: 10.1021/acs.bioconjchem.5b00327] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Angiogenesis is a requirement for tumor growth and metastasis. The angiogenic process depends on vascular endothelial cell migration and invasion, and is regulated by various cell adhesion receptors. Integrins are such a family of receptors that facilitate the cellular adhesion to and migration on extracellular matrix proteins in the intercellular spaces and basement membranes. Among 24 members of the integrin family, αvβ3 is studied most extensively for its role in tumor angiogenesis and metastasis. The αvβ3 is expressed at relatively low levels on epithelial cells and mature endothelial cells, but it is highly expressed on the activated endothelial cells of tumor neovasculature and some tumor cells. This restricted expression makes αvβ3 an excellent target to develop antiangiogenic drugs and diagnostic molecular imaging probes. Since αvβ3 is a receptor for extracellular matrix proteins with one or more RGD tripeptide sequence, many radiolabeled cyclic RGD peptides have been evaluated as "αvβ3-targeted" radiotracers for tumor imaging over the past decade. This article will use the dimeric and tetrameric cyclic RGD peptides developed in our laboratories as examples to illustrate basic principles for development of αvβ3-targeted radiotracers. It will focus on different approaches to maximize the radiotracer tumor uptake and tumor/background ratios. This article will also discuss some important assays for preclinical evaluations of integrin-targeted radiotracers. In general, multimerization of cyclic RGD peptides increases their integrin binding affinity and the tumor uptake and retention times of their radiotracers. Regardless of their multiplicity, the capability of cyclic RGD peptides to bind other integrins (namely, αvβ5, α5β1, α6β4, α4β1, and αvβ6) is expected to enhance the radiotracer tumor uptake due to the increased integrin population. The results from preclinical and clinical studies clearly show that radiolabeled cyclic RGD peptides (such as (99m)Tc-3P-RGD2, (18)F-Alfatide-I, and (18)F-Alfatide-II) are useful as the molecular imaging probes for early cancer detection and noninvasive monitoring of the tumor response to antiangiogenic therapy.
Collapse
Affiliation(s)
- Shuang Liu
- School of Health Sciences, Purdue University, 550 Stadium Mall Drive, West Lafayette, Indiana 47907, United States
| |
Collapse
|
50
|
Browne A, Tookman LA, Ingemarsdotter CK, Bouwman RD, Pirlo K, Wang Y, McNeish IA, Lockley M. Pharmacological Inhibition of β3 Integrin Reduces the Inflammatory Toxicities Caused by Oncolytic Adenovirus without Compromising Anticancer Activity. Cancer Res 2015; 75:2811-21. [PMID: 25977332 DOI: 10.1158/0008-5472.can-14-3761] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2014] [Accepted: 04/07/2015] [Indexed: 01/28/2023]
Abstract
Adenoviruses have been clinically tested as anticancer therapies but their utility has been severely limited by rapid, systemic cytokine release and consequent inflammatory toxicity. Here, we describe a new approach to tackling these dangerous side effects. Using human ovarian cancer cell lines as well as malignant epithelial cells harvested from the ascites of women with ovarian cancer, we show that tumor cells do not produce cytokines in the first 24 hours following in vitro infection with the oncolytic adenovirus dl922-947. In contrast, dl922-947 does induce inflammatory cytokines at early time points following intraperitoneal delivery in mice with human ovarian cancer intraperitoneal xenografts. In these animals, cytokines originate predominantly in murine tissues, especially in macrophage-rich organs such as the spleen. We use a nonreplicating adenovirus to confirm that early cytokine production is independent of adenoviral replication. Using β3 integrin knockout mice injected intraperitoneally with dl922-947 and β3 null murine peritoneal macrophages, we confirm a role for macrophage cell surface β3 integrin in this dl922-947-induced inflammation. We present new evidence that co-administration of a cyclic RGD-mimetic-specific inhibitor of β3 integrin significantly attenuates the cytokine release and inflammatory hepatic toxicity induced by dl922-947 in an intraperitoneal murine model of ovarian cancer. Importantly, we find no evidence that β3 inhibition compromises viral infectivity and oncolysis in vitro or anticancer efficacy in vivo. By enabling safe, systemic delivery of replicating adenoviruses, this novel approach could have a major impact on the future development of these effective anticancer agents.
Collapse
Affiliation(s)
- Ashley Browne
- Barts Cancer Institute, Queen Mary University of London, Charterhouse Square, London, United Kingdom
| | - Laura A Tookman
- Barts Cancer Institute, Queen Mary University of London, Charterhouse Square, London, United Kingdom
| | - Carin K Ingemarsdotter
- Barts Cancer Institute, Queen Mary University of London, Charterhouse Square, London, United Kingdom
| | - Russell D Bouwman
- Barts Cancer Institute, Queen Mary University of London, Charterhouse Square, London, United Kingdom
| | - Katrina Pirlo
- Barts Cancer Institute, Queen Mary University of London, Charterhouse Square, London, United Kingdom
| | - Yaohe Wang
- Barts Cancer Institute, Queen Mary University of London, Charterhouse Square, London, United Kingdom
| | - Iain A McNeish
- Barts Cancer Institute, Queen Mary University of London, Charterhouse Square, London, United Kingdom. Institute of Cancer Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Michelle Lockley
- Barts Cancer Institute, Queen Mary University of London, Charterhouse Square, London, United Kingdom.
| |
Collapse
|