1
|
Garcia AR, Mendes A, Custódia C, Faria CC, Barata JT, Malhó R, Figueira I, Brito MA. Abrogating Metastatic Properties of Triple-Negative Breast Cancer Cells by EGFR and PI3K Dual Inhibitors. Cancers (Basel) 2023; 15:3973. [PMID: 37568789 PMCID: PMC10416979 DOI: 10.3390/cancers15153973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 07/25/2023] [Accepted: 08/01/2023] [Indexed: 08/13/2023] Open
Abstract
Triple-negative breast cancer (TNBC) is a devastating BC subtype. Its aggressiveness, allied to the lack of well-defined molecular targets, usually culminates in the appearance of metastases that account for poor prognosis, particularly when they develop in the brain. Nevertheless, TNBC has been associated with epidermal growth factor receptor (EGFR) overexpression, leading to downstream phosphoinositide 3-kinase (PI3K) signaling activation. We aimed to unravel novel drug candidates for TNBC treatment based on EGFR and/or PI3K inhibition. Using a highly metastatic TNBC cell line with brain tropism (MDA-MB-231 Br4) and a library of 27 drug candidates in silico predicted to inhibit EGFR, PI3K, or EGFR plus PI3K, and to cross the blood-brain barrier, we evaluated the effects on cell viability. The half maximal inhibitory concentration (IC50) of the most cytotoxic ones was established, and cell cycle and death, as well as migration and EGFR pathway intervenient, were further evaluated. Two dual inhibitors emerged as the most promising drugs, with the ability to modulate cell cycle, death, migration and proliferation, morphology, and PI3K/AKT cascade players such as myocyte enhancer factor 2C (MEF2C) and forkhead box P1 (FOXP1). This work revealed EGFR/PI3K dual inhibitors as strong candidates to tackle brain metastatic TNBC cells.
Collapse
Affiliation(s)
- Ana Rita Garcia
- Research Institute for Medicines, Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisbon, Portugal
- Department of Pharmaceutical Sciences and Medicines, Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisbon, Portugal
| | - Avilson Mendes
- Research Institute for Medicines, Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisbon, Portugal
- Department of Pharmaceutical Sciences and Medicines, Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisbon, Portugal
| | - Carlos Custódia
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Av. Prof. Egas Moniz, 1649-028 Lisbon, Portugal
| | - Cláudia C. Faria
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Av. Prof. Egas Moniz, 1649-028 Lisbon, Portugal
- Department of Neurosurgery, Hospital de Santa Maria, Centro Hospitalar Universitário Lisboa Norte (CHULN), Av. Prof. Egas Moniz, 1649-035 Lisbon, Portugal
| | - João T. Barata
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Av. Prof. Egas Moniz, 1649-028 Lisbon, Portugal
| | - Rui Malhó
- BioISI—Biosystems and Integrative Sciences Institute, Faculty of Sciences, Universidade de Lisboa, Campo Grande, 1746-016 Lisbon, Portugal
| | - Inês Figueira
- Research Institute for Medicines, Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisbon, Portugal
- Farm-ID—Faculty of Pharmacy Association for Research and Development, Av. Prof. Gama Pinto, 1649-003 Lisbon, Portugal
| | - Maria Alexandra Brito
- Research Institute for Medicines, Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisbon, Portugal
- Department of Pharmaceutical Sciences and Medicines, Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisbon, Portugal
| |
Collapse
|
2
|
Rational Computational Design of Fourth-Generation EGFR Inhibitors to Combat Drug-Resistant Non-Small Cell Lung Cancer. Int J Mol Sci 2020; 21:ijms21239323. [PMID: 33297461 PMCID: PMC7730458 DOI: 10.3390/ijms21239323] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 12/01/2020] [Accepted: 12/04/2020] [Indexed: 11/16/2022] Open
Abstract
Although the inhibitors of singly mutated epidermal growth factor receptor (EGFR) kinase are effective for the treatment of non-small cell lung cancer (NSCLC), their clinical efficacy has been limited due to the emergence of various double and triple EGFR mutants with drug resistance. It has thus become urgent to identify potent and selective inhibitors of triple mutant EGFRs resistant to first-, second-, and third-generation EGFR inhibitors. Herein, we report the discovery of potent and highly selective inhibitors of EGFR exon 19 p.E746_A750del/EGFR exon 20 p.T790M/EGFR exon 20 p.C797S (d746-750/T790M/C797S) mutant, which were derived via two-track virtual screening and de novo design. This two-track approach was performed so as to maximize and minimize the inhibitory activity against the triple mutant and the wild type, respectively. Extensive chemical modifications of the initial hit compounds led to the identification of several low-nanomolar inhibitors of the d746-750/T790M/C797S mutant. Among them, two compounds exhibited more than 104-fold selectivity in the inhibition of EGFRd746-750/T790M/C797S over the wild type. The formations of a hydrogen bond with the mutated residue Ser797 and the van der Waals contact with the mutated residue Met790 were found to be a common feature in the interactions between EGFRd746-750/T790M/C797S and the fourth-generation inhibitors. Such an exceptionally high selectivity could also be attributed to the formation of the hydrophobic contact with a Gly loop residue or the hydrogen bond with Asp855 in the activation loop. The discovery of the potent and selective EGFRd746-750/T790M/C797S inhibitors were actually made possible by virtue of the modified protein-ligand binding free energy function involving a new hydration free energy term with enhanced accuracy. The fourth-generation EGFR inhibitors found in this work are anticipated to serve as a new starting point for the discovery of anti-NSCLC medicines to overcome the problematic drug resistance.
Collapse
|
3
|
Kumar AS, Kamalasanan K. Drug delivery to optimize angiogenesis imbalance in keloid: A review. J Control Release 2020; 329:1066-1076. [PMID: 33091533 DOI: 10.1016/j.jconrel.2020.10.035] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 10/16/2020] [Accepted: 10/17/2020] [Indexed: 12/12/2022]
Abstract
The wound healing process involves three continuous stages. Where, any imbalance can lead to the formation of unwanted keloids, hypertrophic scar, or tumors. Keloids are any unpleasant, non-compliant comorbidity affecting a major section of people around the globe who acquire it either genetically or by pathological means as a result of a skin injury. Angiogenesis is unavoidable in the healing process after an injury or disruption of skin to promote tissue regeneration. Uncontrolled angiogenesis during the healing process can initiate the unwanted response in the wound that facilitate keloid. Angiogenic therapy is adapted to accelerate healing after an injury. Else ways, there exists a risk of keloid formation due to excessive angiogenesis during the wound healing process. There are numerous strategies to treat keloid. Anti-angiogenic factors are provided to patients post-surgery to prevent the keloid formation; however, they come into the picture after the formation of keloid. The available strategies to treat keloids are steroidal injections, surgical excision of the keloid, radiotherapy, pressure therapy, the use of cryosurgery, and many more. The available treatments are not promising in reducing the recurrent rate of keloids as there are chances of high re-occurrences with similar/larger lesions on the removed keloid site. In this review, we are discussing the importance of controlled angiogenesis with the help of controlled drug delivery strategies enabling the wound healing process without the induction of keloid.
Collapse
Affiliation(s)
- Aishwari S Kumar
- Department of Pharmaceutics, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Sciences Campus, AIMS Ponekkara PO, Kochi, Kerala, 682041, India
| | - Kaladhar Kamalasanan
- Department of Pharmaceutics, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Sciences Campus, AIMS Ponekkara PO, Kochi, Kerala, 682041, India.
| |
Collapse
|
4
|
Han C, Ren J, Su F, Hu X, Li M, Wang Z, Wu L. Hybrids of Quinoline and Anilinopyrimidine: Novel EGFRT790M Inhibitors with Antiproliferative Activity against Non-Small Cell Lung Cancer Cell Lines. Anticancer Agents Med Chem 2020; 20:724-733. [PMID: 32116203 DOI: 10.2174/1871520620666200302113206] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 10/24/2019] [Accepted: 01/27/2020] [Indexed: 12/30/2022]
Abstract
BACKGROUND The third-generation irreversible Epidermal Growth Factor Receptor (EGFR) Tyrosine Kinase Inhibitors (TKIs) inhibit the T790M mutation while sparing EGFRWT. However, the C797S point mutation confers resistance to existing irreversible EGFRT790M inhibitors. OBJECTIVE Novel EGFRT790M inhibitors were designed through hybridization of quinoline and anilinopyrimidine, and biologically evaluated their antiproliferative activity against Non-Small Cell Lung Cancer (NSCLC) cell lines. METHODS The target compounds 11a-h were synthesized and structurally characterized with 1H, 13C Nuclear Magnetic Resonance (NMR) spectroscopy and High-Resolution Mass Spectrometry (HRMS). Their inhibitory effects on tumor cell proliferation and EGFR kinase were biologically evaluated. Additionally, molecular docking studies were also performed on the representative typical EGFRT790M inhibitor. RESULTS Most of the evaluated compounds displayed moderate antiproliferative activity on H1975 cells with EGFRL858R/T790M. However, compound 11a (IC50 = 2.235 ± 0.565μM) showed stronger inhibition than gefitinib (IC50 = 8.830 ± 0.495μM) in concentration- and time-dependent manner. Moreover, compound 11a exhibited weaker inhibitory activities on cells with EGFRWT. Specifically, compound 11a strongly suppressed EGFRL858R/T790M (IC50 = 0.515 ± 0.011μM) relative to EGFRWT (IC50 = 0.913 ± 0.068μM). Furthermore, molecular docking studies demonstrated its strong binding contacts with the EGFRT790M enzyme through hydrogen bonds and other non-bonded interactions. CONCLUSION Taken together, these results indicate that the hybrid of quinoline and anilinopyrimidine 11a, could be a potential inhibitor of EGFRT790M in NSCLC, which warrants further in-depth studies.
Collapse
Affiliation(s)
- Chun Han
- Department of Chemistry, Changzhi University, Shanxi, Changzhi 046011, China
| | - Jiahong Ren
- Department of Biology, Changzhi University, Shanxi, Changzhi 046011, China
| | - Feng Su
- Department of Chemistry, Changzhi University, Shanxi, Changzhi 046011, China
| | - Xiaoqin Hu
- Department of Chemistry, Changzhi University, Shanxi, Changzhi 046011, China
| | - Mengyao Li
- Department of Chemistry, Changzhi University, Shanxi, Changzhi 046011, China
| | - Zhijun Wang
- Department of Chemistry, Changzhi University, Shanxi, Changzhi 046011, China
| | - Lintao Wu
- Department of Chemistry, Changzhi University, Shanxi, Changzhi 046011, China
| |
Collapse
|
5
|
Deb B, George IA, Sharma J, Kumar P. Phosphoproteomics Profiling to Identify Altered Signaling Pathways and Kinase-Targeted Cancer Therapies. Methods Mol Biol 2020; 2051:241-264. [PMID: 31552632 DOI: 10.1007/978-1-4939-9744-2_10] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Phosphorylation is one of the most extensively studied posttranslational modifications (PTM), which regulates cellular functions like cell growth, differentiation, apoptosis, and cell signaling. Kinase families cover a wide number of oncoproteins and are strongly associated with cancer. Identification of driver kinases is an intense area of cancer research. Thus, kinases serve as the potential target to improve the efficacy of targeted therapies. Mass spectrometry-based phosphoproteomic approach has paved the way to the identification of a large number of altered phosphorylation events in proteins and signaling cascades that may lead to oncogenic processes in a cell. Alterations in signaling pathways result in the activation of oncogenic processes predominantly regulated by kinases and phosphatases. Therefore, drugs such as kinase inhibitors, which target dysregulated pathways, represent a promising area for cancer therapy.
Collapse
Affiliation(s)
- Barnali Deb
- Institute of Bioinformatics, International Technology Park, Bangalore, India.,Manipal Academy of Higher Education (MAHE), Manipal, Karnataka, India
| | - Irene A George
- Institute of Bioinformatics, International Technology Park, Bangalore, India
| | - Jyoti Sharma
- Institute of Bioinformatics, International Technology Park, Bangalore, India.,Manipal Academy of Higher Education (MAHE), Manipal, Karnataka, India
| | - Prashant Kumar
- Institute of Bioinformatics, International Technology Park, Bangalore, India. .,Manipal Academy of Higher Education (MAHE), Manipal, Karnataka, India.
| |
Collapse
|
6
|
Shah RR, Shah DR. Safety and Tolerability of Epidermal Growth Factor Receptor (EGFR) Tyrosine Kinase Inhibitors in Oncology. Drug Saf 2019; 42:181-198. [PMID: 30649743 DOI: 10.1007/s40264-018-0772-x] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Tyrosine kinase inhibitors (TKIs) that target epidermal growth factor receptor (EGFR) have dramatically improved progression-free survival in non-small-cell lung cancer (NSCLC) patients who carry sensitizing EGFR-activating mutations and in patients with breast and pancreatic cancers. However, EGFR-TKIs are associated with significant and disabling undesirable effects that adversely impact on quality of life and compliance. These effects include dermatological reactions, diarrhoea, hepatotoxicity, stomatitis, interstitial lung disease and ocular toxicity. Each individual EGFR-TKI is also associated with additional adverse effect(s) that are not shared widely by the other members of its class. Often, these effects call for dose reduction, treatment discontinuation or pharmacotherapeutic intervention. Since dermatological effects result from on-target effects on wild-type EGFR, rash is often considered to be a biomarker of efficacy. A number of studies have reported better outcomes in patients with skin reactions compared with those without. This has led to a 'dosing-to-rash' strategy to optimize therapeutic outcomes. Although conceptually attractive, there is currently insufficient evidence-based support for this strategy. While skin reactions following EGFR-TKIs are believed to result from an effect on wild-type EGFR, their efficacy is related to effects on mutant variants of EGFR. It is noteworthy that newer EGFR-TKIs that spare wild-type EGFR are associated with fewer dermatological reactions. Furthermore, secondary mutations such as T790M in exon 20 often lead to development of resistance to the clinical activity and efficacy of first- and second-generation EGFR-TKIs. This has stimulated the search for later-generations of EGFR-TKIs with the ability to overcome this resistance and with greater target selectivity to spare wild-type EGFR in expectations of an improved safety profile. However, available data reviewed herein indicate that not only are these newer agents associated with the aforementioned adverse effects typical of earlier agents, but they are also susceptible to resistance due to tertiary mutations, most frequently C797S. At least three later-generation EGFR-TKIs, canertinib, naquotinib and rociletinib, have been discontinued from further development in NSCLC following concerns about their safety and risk/benefit.
Collapse
|
7
|
Aydinlik S, Dere E, Ulukaya E. Induction of autophagy enhances apoptotic cell death via epidermal growth factor receptor inhibition by canertinib in cervical cancer cells. Biochim Biophys Acta Gen Subj 2019; 1863:903-916. [DOI: 10.1016/j.bbagen.2019.02.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 02/20/2019] [Accepted: 02/25/2019] [Indexed: 12/26/2022]
|
8
|
The Effect of Canertinib on Sensitivity of Cytotoxic Drugs in Tamoxifen-Resistant Breast Cancer Cells In Vitro. Int J Genomics 2018; 2018:7628734. [PMID: 30425998 PMCID: PMC6218737 DOI: 10.1155/2018/7628734] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 07/18/2018] [Accepted: 07/31/2018] [Indexed: 01/05/2023] Open
Abstract
Aims and Objectives To investigate and examine the reversal effects of canertinib on the activity of EGFR and tamoxifen resistance in drug-resistant human breast carcinoma cells (MCF-7/TamR). Materials and Methods The antiproliferative activity of canertinib alone or in combination with a conventional EGFR-targeting chemotherapies cytotoxic drugs differing in the mechanism(s) of action, such as paclitaxel, carboplatin, etoposide, vinorelbine, and daunorubicin as well as resistance mechanisms of EGFR targeting, have been investigated. Results With an elevated dosage of canertinib, a significant decrease in proliferation and increase in apoptosis was observed. The treatment with higher doses of canertinib resulted in a 2-3-fold increase in apoptosis. In the combined treatment, it had been noticed a significant developed apoptotic cell death rather induced by single agent treatment. A significant downregulation of the antiapoptotic protein bcl-2 was exposed by immunocytochemistry investigation. Sensitivity to paclitaxel was also measured and was found to inversely correlate to bcl-2 status. Conclusion Proliferation inhibition and apoptosis in MCF-7/TAM-R cells increase with increasing dosage of canertinib. This suggests that canertinib can reverse tamoxifen resistance in breast cancer cells. The antitumor effect of this EGFR-irreversible tyrosine kinase inhibitor provides a rationale for its clinical evaluation in combination with other cytotoxic drugs.
Collapse
|
9
|
Sima N, Sun W, Gorshkov K, Shen M, Huang W, Zhu W, Xie X, Zheng W, Cheng X. Small Molecules Identified from a Quantitative Drug Combinational Screen Resensitize Cisplatin's Response in Drug-Resistant Ovarian Cancer Cells. Transl Oncol 2018; 11:1053-1064. [PMID: 29982103 PMCID: PMC6034569 DOI: 10.1016/j.tranon.2018.06.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2018] [Revised: 06/10/2018] [Accepted: 06/11/2018] [Indexed: 12/29/2022] Open
Abstract
Drug resistance to chemotherapy occurs in many ovarian cancer patients resulting in failure of treatment. Exploration of drug resistance mechanisms and identification of new therapeutics that overcome the drug resistance can improve patient prognosis. Following a quantitative combination screen of 6060 approved drugs and bioactive compounds in a cisplatin-resistant A2780-cis ovarian cancer cell line, 38 active compounds with IC50s under 1 μM suppressed the growth of cisplatin-resistant ovarian cancer cells. Among these confirmed compounds, CUDC-101, OSU-03012, oligomycin A, VE-821, or Torin2 in a combination with cisplatin restored cisplatin's apoptotic response in the A2780-cis cells, while SR-3306, GSK-923295, SNX-5422, AT-13387, and PF-05212384 directly suppressed the growth of A2780-cis cells. One of the mechanisms for overcoming cisplatin resistance in these cells is mediated by the inhibition of epidermal growth factor receptor (EGFR), though not all the EGFR inhibitors are equally active. The increased levels of total EGFR and phosphorylated-EGFR (p-EGFR) in the A2780-cis cells were reduced after the combined treatment of cisplatin with EGFR inhibitors. In addition, a knockdown of EGFR mRNA reduced cisplatin resistance in the A2780-cis cells. Therefore, the top active compounds identified in this work can be studied further as potential treatments for cisplatin-resistant ovarian cancer. The quantitative combinational screening approach is a useful method for identifying effective compounds and drug combinations against drug-resistant cancer cells.
Collapse
Affiliation(s)
- Ni Sima
- Department of Gynecologic Oncology, Women's Reproductive Health Laboratory of Zhejiang Province, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, PR China; National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, USA
| | - Wei Sun
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, USA
| | - Kirill Gorshkov
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, USA
| | - Min Shen
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, USA
| | - Wei Huang
- Department of Gynecologic Oncology, Women's Reproductive Health Laboratory of Zhejiang Province, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, PR China; National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, USA
| | - Wenge Zhu
- Department of Biochemistry and Molecular Biology, The George Washington University Medical School, Washington, DC
| | - Xing Xie
- Department of Gynecologic Oncology, Women's Reproductive Health Laboratory of Zhejiang Province, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, PR China
| | - Wei Zheng
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, USA.
| | - Xiaodong Cheng
- Department of Gynecologic Oncology, Women's Reproductive Health Laboratory of Zhejiang Province, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, PR China.
| |
Collapse
|
10
|
Sameshima T, Yamamoto T, Sano O, Sogabe S, Igaki S, Sakamoto K, Ida K, Gotou M, Imaeda Y, Sakamoto J, Miyahisa I. Discovery of an Irreversible and Cell-Active BCL6 Inhibitor Selectively Targeting Cys53 Located at the Protein-Protein Interaction Interface. Biochemistry 2018; 57:1369-1379. [PMID: 29293322 DOI: 10.1021/acs.biochem.7b00732] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
B-cell lymphoma 6 (BCL6) is the most frequently involved oncogene in diffuse large B-cell lymphomas (DLBCLs). BCL6 shows potent transcriptional repressor activity through interactions with its corepressors, such as BCL6 corepressor (BCOR). The inhibition of the protein-protein interaction (PPI) between BCL6 and its corepressors suppresses the growth of BCL6-dependent DLBCLs, thus making BCL6 an attractive drug target for lymphoma treatment. However, potent small-molecule PPI inhibitor identification remains challenging because of the lack of deep cavities at PPI interfaces. This article reports the discovery of a potent, cell-active small-molecule BCL6 inhibitor, BCL6-i (8), that operates through irreversible inhibition. First, we synthesized irreversible lead compound 4, which targets Cys53 in a cavity on the BCL6-BTB domain dimer by introducing an irreversible warhead to high-throughput screening hit compound 1. Further chemical optimization of 4 based on kinact/KI evaluation produced BCL6-i with a kinact/KI value of 1.9 × 104 M-1 s-1, corresponding to a 670-fold improvement in potency compared to that of 4. By exploiting the property of irreversible inhibition, engagement of BCL6-i to intracellular BCL6 was confirmed. BCL6-i showed intracellular PPI inhibitory activity between BCL6 and its corepressors, thus resulting in BCL6-dependent DLBCL cell growth inhibition. BCL6-i is a cell-active chemical probe with the most potent BCL6 inhibitory activity reported to date. The discovery process of BCL6-i illustrates the utility of irreversible inhibition for identifying potent chemical probes for intractable target proteins.
Collapse
Affiliation(s)
- Tomoya Sameshima
- Pharmaceutical Research Division, Takeda Pharmaceutical Company Limited , 26-1, Muraoka-higashi 2 chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Takeshi Yamamoto
- Pharmaceutical Research Division, Takeda Pharmaceutical Company Limited , 26-1, Muraoka-higashi 2 chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Osamu Sano
- Pharmaceutical Research Division, Takeda Pharmaceutical Company Limited , 26-1, Muraoka-higashi 2 chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Satoshi Sogabe
- Pharmaceutical Research Division, Takeda Pharmaceutical Company Limited , 26-1, Muraoka-higashi 2 chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Shigeru Igaki
- Pharmaceutical Research Division, Takeda Pharmaceutical Company Limited , 26-1, Muraoka-higashi 2 chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Kotaro Sakamoto
- Pharmaceutical Research Division, Takeda Pharmaceutical Company Limited , 26-1, Muraoka-higashi 2 chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Koh Ida
- Pharmaceutical Research Division, Takeda Pharmaceutical Company Limited , 26-1, Muraoka-higashi 2 chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Mika Gotou
- Pharmaceutical Research Division, Takeda Pharmaceutical Company Limited , 26-1, Muraoka-higashi 2 chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Yasuhiro Imaeda
- Pharmaceutical Research Division, Takeda Pharmaceutical Company Limited , 26-1, Muraoka-higashi 2 chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Junichi Sakamoto
- Pharmaceutical Research Division, Takeda Pharmaceutical Company Limited , 26-1, Muraoka-higashi 2 chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Ikuo Miyahisa
- Pharmaceutical Research Division, Takeda Pharmaceutical Company Limited , 26-1, Muraoka-higashi 2 chome, Fujisawa, Kanagawa 251-8555, Japan
| |
Collapse
|
11
|
Lu X, Yu L, Zhang Z, Ren X, Smaill JB, Ding K. Targeting EGFRL858R/T790Mand EGFRL858R/T790M/C797Sresistance mutations in NSCLC: Current developments in medicinal chemistry. Med Res Rev 2018; 38:1550-1581. [DOI: 10.1002/med.21488] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Revised: 12/19/2017] [Accepted: 12/31/2017] [Indexed: 12/21/2022]
Affiliation(s)
- Xiaoyun Lu
- School of Pharmacy; Jinan University; Guangzhou China
| | - Lei Yu
- Guangzhou Institutes of Biomedicine and Health; Chinese Academy of Sciences; Guangzhou China
| | - Zhang Zhang
- School of Pharmacy; Jinan University; Guangzhou China
| | - Xiaomei Ren
- School of Pharmacy; Jinan University; Guangzhou China
| | - Jeff B. Smaill
- Maurice Wilkins Centre for Molecular Biodiscovery; University of Auckland; Auckland New Zealand
- Auckland Cancer Society Research Centre; University of Auckland; Auckland New Zealand
| | - Ke Ding
- School of Pharmacy; Jinan University; Guangzhou China
| |
Collapse
|
12
|
Chen L, Lu J, Huang T, Cai YD. A computational method for the identification of candidate drugs for non-small cell lung cancer. PLoS One 2017; 12:e0183411. [PMID: 28820893 PMCID: PMC5562320 DOI: 10.1371/journal.pone.0183411] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Accepted: 08/03/2017] [Indexed: 11/25/2022] Open
Abstract
Lung cancer causes a large number of deaths per year. Until now, a cure for this disease has not been found or developed. Finding an effective drug through traditional experimental methods invariably costs millions of dollars and takes several years. It is imperative that computational methods be developed to integrate several types of existing information to identify candidate drugs for further study, which could reduce the cost and time of development. In this study, we tried to advance this effort by proposing a computational method to identify candidate drugs for non-small cell lung cancer (NSCLC), a major type of lung cancer. The method used three steps: (1) preliminary screening, (2) screening compounds by an association test and a permutation test, (3) screening compounds using an EM clustering algorithm. In the first step, based on the chemical-chemical interaction information reported in STITCH, a well-known database that reports interactions between chemicals and proteins, and approved NSCLC drugs, compounds that can interact with at least one approved NSCLC drug were picked. In the second step, the association test selected compounds that can interact with at least one NSCLC-related chemical and at least one NSCLC-related gene, and subsequently, the permutation test was used to discard nonspecific compounds from the remaining compounds. In the final step, core compounds were selected using a powerful clustering algorithm, the EM algorithm. Six putative compounds, protoporphyrin IX, hematoporphyrin, canertinib, lapatinib, pelitinib, and dacomitinib, were identified by this method. Previously published data show that all of the selected compounds have been reported to possess anti-NSCLC activity, indicating high probabilities of these compounds being novel candidate drugs for NSCLC.
Collapse
Affiliation(s)
- Lei Chen
- College of Life Science, Shanghai University, Shanghai, People’s Republic of China
- College of Information Engineering, Shanghai Maritime University, Shanghai, People’s Republic of China
| | - Jing Lu
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, People’s Republic of China
| | - Tao Huang
- Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, People’s Republic of China
| | - Yu-Dong Cai
- College of Life Science, Shanghai University, Shanghai, People’s Republic of China
- * E-mail:
| |
Collapse
|
13
|
Park H, Jung HY, Mah S, Hong S. Discovery of EGF Receptor Inhibitors That Are Selective for the d746-
750/T790M/C797S Mutant through Structure-Based de Novo Design. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201703389] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Hwangseo Park
- Department of Bioscience and Biotechnology; Sejong University; Seoul 143-747 Korea
| | - Hoi-Yun Jung
- Department of Chemistry; Korea Advanced Institute of Science and Technology; Daejeon 34141 Korea
- Center for Catalytic Hydrocarbon Functionalization; Institute for Basic Science (IBS); Daejeon 34141 Korea
| | - Shinmee Mah
- Department of Chemistry; Korea Advanced Institute of Science and Technology; Daejeon 34141 Korea
- Center for Catalytic Hydrocarbon Functionalization; Institute for Basic Science (IBS); Daejeon 34141 Korea
| | - Sungwoo Hong
- Department of Chemistry; Korea Advanced Institute of Science and Technology; Daejeon 34141 Korea
- Center for Catalytic Hydrocarbon Functionalization; Institute for Basic Science (IBS); Daejeon 34141 Korea
| |
Collapse
|
14
|
Park H, Jung HY, Mah S, Hong S. Discovery of EGF Receptor Inhibitors That Are Selective for the d746-
750/T790M/C797S Mutant through Structure-Based de Novo Design. Angew Chem Int Ed Engl 2017; 56:7634-7638. [DOI: 10.1002/anie.201703389] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Revised: 05/09/2017] [Indexed: 11/08/2022]
Affiliation(s)
- Hwangseo Park
- Department of Bioscience and Biotechnology; Sejong University; Seoul 143-747 Korea
| | - Hoi-Yun Jung
- Department of Chemistry; Korea Advanced Institute of Science and Technology; Daejeon 34141 Korea
- Center for Catalytic Hydrocarbon Functionalization; Institute for Basic Science (IBS); Daejeon 34141 Korea
| | - Shinmee Mah
- Department of Chemistry; Korea Advanced Institute of Science and Technology; Daejeon 34141 Korea
- Center for Catalytic Hydrocarbon Functionalization; Institute for Basic Science (IBS); Daejeon 34141 Korea
| | - Sungwoo Hong
- Department of Chemistry; Korea Advanced Institute of Science and Technology; Daejeon 34141 Korea
- Center for Catalytic Hydrocarbon Functionalization; Institute for Basic Science (IBS); Daejeon 34141 Korea
| |
Collapse
|
15
|
Design and synthesis of quinazolinones as EGFR inhibitors to overcome EGFR resistance obstacle. Bioorg Med Chem 2017; 25:2713-2723. [DOI: 10.1016/j.bmc.2017.03.039] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Revised: 03/14/2017] [Accepted: 03/16/2017] [Indexed: 12/22/2022]
|
16
|
A Combination of Two Receptor Tyrosine Kinase Inhibitors, Canertinib and PHA665752 Compromises Ovarian Cancer Cell Growth in 3D Cell Models. Oncol Ther 2016; 4:257-274. [PMID: 28261654 PMCID: PMC5315083 DOI: 10.1007/s40487-016-0031-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Indexed: 12/25/2022] Open
Abstract
Introduction Advanced ovarian cancer is often a fatal disease as chemotherapeutic drugs have limited effectiveness. Better targeted therapy is needed to improve the survival and quality of life for these women. Receptor tyrosine kinases including EGFR, Her-2 and c-Met are associated with a poor prognosis in ovarian cancer. Therefore, the co-activation of these receptors may be crucial for growth promoting activity. In this study, we explored the effect of combining two small molecule inhibitors that target the EGFR/Her-2 and c-Met receptor tyrosine kinases in two ovarian cancer cell lines. The aim of this study was to investigate the combined inhibition activity of a dual EGFR/Her-2 inhibitor (canertinib) and a c-Met inhibitor (PHA665752) in ovarian cancer cell lines in 3D cell aggregates. Methods OVCAR-5 and SKOV-3 ovarian cancer cell lines were cultured on a non-adherent surface to produce 3D cell clusters and aggregates. Cells were exposed to canertinib and PHA665752, both individually and in combination, for 48 h. The effect on growth, metabolism and the expression/phosphorylation of selective signaling proteins associated with EGFR, Her-2 and c-Met were investigated. Results The single drug treatments significantly decreased cell growth and altered the expression of signaling proteins in OVCAR-5 and SKOV-3 cell lines. The combination treatment showed greater reduction of cell numbers for both cell lines. Total expression and phosphorylation of signaling proteins were further reduced in the combination drug treatments, compared to the single inhibitor treatments. Conclusion Our findings suggest that the concurrent targeting of more than one receptor tyrosine kinase may be useful in developing more effective targeted drug regimens for patients, who have EGFR, Her-2 and c-Met positive ovarian cancer cells.
Collapse
|
17
|
Kinases inhibitors in lung cancer: From benchside to bedside. Biochim Biophys Acta Rev Cancer 2016; 1866:128-40. [DOI: 10.1016/j.bbcan.2016.07.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Revised: 07/01/2016] [Accepted: 07/02/2016] [Indexed: 12/31/2022]
|
18
|
Strategies to overcome acquired resistances conferred by mutations in the kinase domain of EGFR. Future Med Chem 2016; 8:853-78. [DOI: 10.4155/fmc-2016-0019] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Deregulation of EGFR is involved in the development of many cancers. The inhibition of EGFR kinase activity has been clinically validated as a promising approach for the treatment of non-small-cell lung cancer (NSCLC). However, all NSCLC patients who initially benefited from first-generation EGFR inhibitors eventually develop drug resistance. A point mutation at the gatekeeper position, T790M in EGFR kinase domain accounts for more than 50% of acquired resistance. Therefore, second- and third-generation EGFR inhibitors have been developed to overcome the resistance conferred by the gatekeeper mutation. This review has highlighted recent advances in overcoming acquired resistance for the development of each generation of EGFR inhibitors along with their potential issues, and urgent quest for the development of new generation of EGFR inhibitors.
Collapse
|
19
|
Xiao Q, Qu R, Gao D, Yan Q, Tong L, Zhang W, Ding J, Xie H, Li Y. Discovery of 5-(methylthio)pyrimidine derivatives as L858R/T790M mutant selective epidermal growth factor receptor (EGFR) inhibitors. Bioorg Med Chem 2016; 24:2673-80. [PMID: 27131639 DOI: 10.1016/j.bmc.2016.04.032] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Revised: 04/13/2016] [Accepted: 04/16/2016] [Indexed: 11/24/2022]
Abstract
To overcome the drug-resistance of first generation EGFR inhibitors and the nonselective toxicities of second generation inhibitors among NSCLC patients, a series of 5-(methylthio)pyrimidine derivatives were discovered as novel EGFR inhibitors, which harbored not only potent enzymatic and antiproliferative activities against EGFR(L858R/T790M) mutants, but good selectivity over wide-type form of the receptor. This goal was achieved by employing structure-based drug design and traditional optimization strategies, based on WZ4002 and CO1686. These derivatives inhibited the enzymatic activity of EGFR(L858R/T790M) mutants with IC50 values in subnanomolar ranges, while exhibiting hundreds of fold less potency on EGFR(WT). These compounds also strongly inhibited the proliferation of H1975 non-small cell lung cancer cells bearing EGFR(L858R/T790M), while being significantly less toxic to A431 human epithelial carcinoma cells with overexpressed EGFR(WT). The EGFR kinase inhibitory and antiproliferative activities were further validated by Western blot analysis for activation of EGFR and the downstream signaling in cancer cells.
Collapse
Affiliation(s)
- Qiang Xiao
- School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Rong Qu
- Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Dingding Gao
- School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Qi Yan
- School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Linjiang Tong
- Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Wei Zhang
- School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Jian Ding
- Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Hua Xie
- Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.
| | - Yingxia Li
- School of Pharmacy, Fudan University, Shanghai 201203, China.
| |
Collapse
|
20
|
Wang Z, Wu X, Wang L, Zhang J, Liu J, Song Z, Tang Z. Facile and efficient synthesis and biological evaluation of 4-anilinoquinazoline derivatives as EGFR inhibitors. Bioorg Med Chem Lett 2016; 26:2589-93. [PMID: 27118497 DOI: 10.1016/j.bmcl.2016.04.032] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Revised: 04/11/2016] [Accepted: 04/13/2016] [Indexed: 10/21/2022]
Abstract
Series of 4-anilinoquinazoline derivatives were conveniently and efficiently synthesized and their antitumor activities were evaluated by MTT assay in three human cancer cell lines: H1975, HepG2 and SMMC-7721. New compounds 19a-19h were designed and synthesized to seek for powerful EGFR inhibitors and to explore whether methyl group at C-2 position of quinazoline ring has a positive effect on EGFR inhibition. All the compounds of 19a-19h were found potent against all three cell lines and five compounds (19c, 19d, and 19f-19h) were found more potent against H1975 than gefitinib. SAR studies revealed that methyl group at C-2 position of quinazoline ring could significantly improve the antitumor potency of 4-anilinoquinazolines. The same conclusion was also drawn according to the results of Western blotting analysis. Among all the tested compounds, 19g exhibited extremely potent against H1975 with an IC50 value of 0.11μM, remarkably lower than that of gefitinib (1.23μM). The results of western blotting analysis showed that compounds 19c and 19g could notably inhibit the expression of phosphorylated EGFR, especially 19g, almost inhibited completely.
Collapse
Affiliation(s)
- Zheng Wang
- Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Shaanxi Province Key Laboratory of New Drugs and Chinese Medicine Foundation Research, Shaanxi Rheumatism and Tumor Center of TCM Engineering Technology Research, Shaanxi University of Chinese Medicine, Xian Yang 712083, China
| | - Xue Wu
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Xi'an 710032, China
| | - Li Wang
- Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Shaanxi Province Key Laboratory of New Drugs and Chinese Medicine Foundation Research, Shaanxi Rheumatism and Tumor Center of TCM Engineering Technology Research, Shaanxi University of Chinese Medicine, Xian Yang 712083, China
| | - Jiao Zhang
- Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Shaanxi Province Key Laboratory of New Drugs and Chinese Medicine Foundation Research, Shaanxi Rheumatism and Tumor Center of TCM Engineering Technology Research, Shaanxi University of Chinese Medicine, Xian Yang 712083, China
| | - Jianli Liu
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Science, Northwest University, Xi'an 710069, China
| | - Zhongxing Song
- Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Shaanxi Province Key Laboratory of New Drugs and Chinese Medicine Foundation Research, Shaanxi Rheumatism and Tumor Center of TCM Engineering Technology Research, Shaanxi University of Chinese Medicine, Xian Yang 712083, China
| | - Zhishu Tang
- Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Shaanxi Province Key Laboratory of New Drugs and Chinese Medicine Foundation Research, Shaanxi Rheumatism and Tumor Center of TCM Engineering Technology Research, Shaanxi University of Chinese Medicine, Xian Yang 712083, China.
| |
Collapse
|
21
|
Lu J, Chen L, Yin J, Huang T, Bi Y, Kong X, Zheng M, Cai YD. Identification of new candidate drugs for lung cancer using chemical-chemical interactions, chemical-protein interactions and a K-means clustering algorithm. J Biomol Struct Dyn 2016; 34:906-17. [PMID: 26849843 DOI: 10.1080/07391102.2015.1060161] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Lung cancer, characterized by uncontrolled cell growth in the lung tissue, is the leading cause of global cancer deaths. Until now, effective treatment of this disease is limited. Many synthetic compounds have emerged with the advancement of combinatorial chemistry. Identification of effective lung cancer candidate drug compounds among them is a great challenge. Thus, it is necessary to build effective computational methods that can assist us in selecting for potential lung cancer drug compounds. In this study, a computational method was proposed to tackle this problem. The chemical-chemical interactions and chemical-protein interactions were utilized to select candidate drug compounds that have close associations with approved lung cancer drugs and lung cancer-related genes. A permutation test and K-means clustering algorithm were employed to exclude candidate drugs with low possibilities to treat lung cancer. The final analysis suggests that the remaining drug compounds have potential anti-lung cancer activities and most of them have structural dissimilarity with approved drugs for lung cancer.
Collapse
Affiliation(s)
- Jing Lu
- a School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong , Yantai University , Yantai , 264005 , P.R. China
| | - Lei Chen
- b College of Information Engineering , Shanghai Maritime University , Shanghai 201306 , P.R. China
| | - Jun Yin
- b College of Information Engineering , Shanghai Maritime University , Shanghai 201306 , P.R. China
| | - Tao Huang
- c The Key Laboratory of Stem Cell Biology , Institute of Health Sciences, Shanghai Jiao Tong University School of Medicine (SJTUSM) and Shanghai Institutes for Biological Sciences (SIBS), Chinese Academy of Sciences (CAS) , Shanghai 200025 , P.R. China
| | - Yi Bi
- a School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong , Yantai University , Yantai , 264005 , P.R. China
| | - Xiangyin Kong
- c The Key Laboratory of Stem Cell Biology , Institute of Health Sciences, Shanghai Jiao Tong University School of Medicine (SJTUSM) and Shanghai Institutes for Biological Sciences (SIBS), Chinese Academy of Sciences (CAS) , Shanghai 200025 , P.R. China
| | - Mingyue Zheng
- d Drug Discovery and Design Center , Shanghai Institute of Materia Medica , Shanghai 201203 , P.R. China
| | - Yu-Dong Cai
- e College of Life Science , Shanghai University , Shanghai 200444 , P.R. China
| |
Collapse
|
22
|
Marquez-Medina D, Popat S. Closing faucets: the role of anti-angiogenic therapies in malignant pleural diseases. Clin Transl Oncol 2015; 18:760-8. [PMID: 26680633 DOI: 10.1007/s12094-015-1464-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Accepted: 11/27/2015] [Indexed: 01/31/2023]
Abstract
Malignant pleural effusion (MPE) represents 15-35 % of pleural effusions and markedly worsens the prognosis and quality of life of patients with cancer. Malignant mesothelioma (MM) and lung adenocarcinoma are the most frequent primary and secondary causes, respectively, of MPE. Effective treatments for cancer-related MPE are warranted in order to improve symptoms, reduce the number of invasive pleural procedures, and prolong patient life. Since angiogenesis plays a key role in MPE development, the potential role of bevacizumab and other anti-angiogenic therapies have been explored in this review. No relevant phase III trials have specifically analysed the benefit from adding bevacizumab to platinum-based chemotherapy in lung cancer-related MPE. However, small retrospective series reported 71.4-93.3 % MPE control rate, a reduction in invasive procedures, and a safe profile with this combination. Being approved for the first-line treatment of non-squamous advanced NSCLC, the addition of bevacizumab should be considered for patients presenting with MPE. In addition, further studies in this are recommended. In MM, the addition of bevacizumab to platinum-based chemotherapy did not meet primary endpoints in two phase II trials. However, the beneficial results on OS reported in comparison with historical cohorts and the statistically significant benefit on PFS and OS observed in the phase III MAPS trial foretell an eventual role for the combination of platinum/pemetrexed/bevacizumab as front-line systemic therapy for pleural MM. To date, no other anti-angiogenic drug has showed significant benefit in the treatment of patients with either MPE or MM. However, new promising drugs such as ramucirumab or recombinant human endostar warrant further investigation.
Collapse
Affiliation(s)
- D Marquez-Medina
- Medical Oncology Department, Arnau de Vilanova University Hospital, Avda. Rovira Roure, 80, 25198, Lleida, Spain.
| | - S Popat
- Lung Cancer Unit, Royal Marsden Hospital, London, UK
| |
Collapse
|
23
|
Tan CS, Gilligan D, Pacey S. Treatment approaches for EGFR-inhibitor-resistant patients with non-small-cell lung cancer. Lancet Oncol 2015; 16:e447-e459. [PMID: 26370354 DOI: 10.1016/s1470-2045(15)00246-6] [Citation(s) in RCA: 309] [Impact Index Per Article: 30.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Revised: 03/18/2015] [Accepted: 03/23/2015] [Indexed: 12/13/2022]
Abstract
Discovery of activating mutations in EGFR and their use as predictive biomarkers to tailor patient therapy with EGFR tyrosine kinase inhibitors (TKIs) has revolutionised treatment of patients with advanced EGFR-mutant non-small-cell lung cancer (NSCLC). At present, first-line treatment with EGFR TKIs (gefitinib, erlotinib, and afatinib) has been approved for patients harbouring exon 19 deletions or exon 21 (Leu858Arg) substitution EGFR mutations. These agents improve response rates, time to progression, and overall survival. Unfortunately, patients develop resistance, limiting patient benefit and posing a challenge to oncologists. Optimum treatment after progression is not clearly defined. A more detailed understanding of the biology of EGFR-mutant NSCLC and the mechanisms of resistance to targeted therapy mean that an era of treatment approaches based on rationally developed drugs or therapeutic strategies has begun. Combination approaches-eg, dual EGFR blockade-to overcome resistance have been trialled and seem to be promising but are potentially limited by toxicity. Third-generation EGFR-mutant-selective TKIs, such as AZD9291 or rociletininb, which target Thr790Met-mutant tumours, the most common mechanism of EGFR TKI resistance, have entered clinical trials, and exciting, albeit preliminary, efficacy data have been reported. In this Review, we summarise the scientific literature and evidence on therapy options after EGFR TKI treatment for patients with NSCLC, aiming to provide a guide to oncologists, and consider how to maximise therapeutic advances in outcomes in this rapidly advancing area.
Collapse
Affiliation(s)
- Chee-Seng Tan
- Department of Haematology-Oncology, National University Cancer Institute of Singapore, National University Health System, Singapore
| | | | - Simon Pacey
- Department of Oncology, University of Cambridge, Cambridge, UK.
| |
Collapse
|
24
|
Qin M, Wang T, Xu B, Ma Z, Jiang N, Xie H, Gong P, Zhao Y. Novel hydrazone moiety-bearing aminopyrimidines as selective inhibitors of epidermal growth factor receptor T790M mutant. Eur J Med Chem 2015; 104:115-26. [DOI: 10.1016/j.ejmech.2015.09.031] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Revised: 09/17/2015] [Accepted: 09/24/2015] [Indexed: 10/23/2022]
|
25
|
Tang J, Qian Y, Li H, Kopecky BJ, Ding D, Ou HC, DeCook R, Chen X, Sun Z, Kobel M, Bao J. Canertinib induces ototoxicity in three preclinical models. Hear Res 2015; 328:59-66. [PMID: 26163095 PMCID: PMC4581429 DOI: 10.1016/j.heares.2015.07.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Revised: 06/23/2015] [Accepted: 07/03/2015] [Indexed: 12/16/2022]
Abstract
Neuregulin-1 (NRG1) ligand and its epidermal growth factor receptor (EGFR)/ERBB family regulate normal cellular proliferation and differentiation in many tissues including the cochlea. Aberrant NRG1 and ERBB signaling cause significant hearing impairment in mice. Dysregulation of the same signaling pathway in humans is involved in certain types of cancers such as breast cancer or non-small cell lung cancer (NSCLC). A new irreversible pan-ERBB inhibitor, canertinib, has been tested in clinical trials for the treatment of refractory NSCLC. Its possible ototoxicity was unknown. In this study, a significant dose-dependent canertinib ototoxicity was observed in a zebrafish model. Canertinib ototoxicity was further confirmed in two mouse models with different genetic backgrounds. The data strongly suggested an evolutionally preserved ERBB molecular mechanism underlying canertinib ototoxicity. Thus, these results imply that clinical monitoring of hearing loss should be considered for clinical testing of canertinib or other pan-ERBB inhibitors.
Collapse
Affiliation(s)
- Jian Tang
- Department of Otolaryngology, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Thoracic Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China
| | - Yi Qian
- Department of Cardio-Thoracic Surgery, The Third Affiliated Hospital of Nantong University, Wuxi 214041, China
| | - Hui Li
- Department of Otolaryngology, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Pharmaceutical Sciences, Northeast Ohio Medical University, Rootstown, OH 44272, USA
| | - Benjamin J Kopecky
- Department of Otolaryngology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Dalian Ding
- Center for Hearing and Deafness, State University of New York at Buffalo, 137 Cary Hall, 3435 Main Street, Buffalo, NY 14214, USA
| | - Henry C Ou
- Department of Pediatrics, Seattle Children's Hospital, Seattle, WA, USA; Department of Otolaryngology, University of Washington, Seattle, WA, USA
| | - Rhonda DeCook
- Department of Statistics and Actuarial Science, University of Iowa, Iowa City, IA 52242, USA
| | - Xiaojie Chen
- Gateway Biotechnology Inc., St. Louis, MO 63108, USA
| | - Zhenyu Sun
- Department of Cardio-Thoracic Surgery, The Third Affiliated Hospital of Nantong University, Wuxi 214041, China
| | - Megan Kobel
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University, Rootstown, OH 44272, USA
| | - Jianxin Bao
- Department of Otolaryngology, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Anatomy and Neurobiology, Northeast Ohio Medical University, Rootstown, OH 44272, USA.
| |
Collapse
|
26
|
Juchum M, Günther M, Laufer SA. Fighting cancer drug resistance: Opportunities and challenges for mutation-specific EGFR inhibitors. Drug Resist Updat 2015; 20:12-28. [PMID: 26021435 DOI: 10.1016/j.drup.2015.05.002] [Citation(s) in RCA: 93] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2014] [Revised: 04/29/2015] [Accepted: 05/04/2015] [Indexed: 12/21/2022]
Abstract
Multiple mutations in the EGFR gene are a major cause for the failure of Erlotinib and Gefitinib in the treatment of patients harboring non-small-cell lung cancer (NSCLC) who initially responded to this therapy. The development of these tyrosine kinase inhibitors (TKIs) is going back to the early 90s, where cancer was widely considered and fully treated as a disease of an organ. Fundamental gain of knowledge in cell biology in general and cancer genetics in particular led us to where we currently stand: cancer is a disease that originates in the genome. Fast and affordable gene sequencing paved the way and opened our eyes for the genetic instability of many cancers, particularly EGFR driven NSCLC. This might allow highly rational and personal therapies by aiming at a very particular wild type and mutant kinase pattern. However, the paradigm "one disease - one target - one drug" is currently challenged. Both activating and deactivating EGFR mutations are known to render the development of novel targeted drugs difficult. Among all lung adenocarcinomas, only 20% are driven by EGFR and only a subpopulation has an activating mutation (e.g. L858R), making them sensitive to first generation EGFR inhibitors. Unfortunately, most of them acquire second deactivating mutations (e.g. T790M) during treatment, leading to a complete loss of response. Are specific inhibitors of the double EGFR mutant L858R/T790M the magic bullet? Much scientific evidence but also high expectations justify this approach. Structural biology of EGFR mutants constitutes the basis for highly rational approaches. Second generation pan EGFR inhibitors inhibiting wild type (WT) and mutant EGFR like Afatinib suffer from dose-limiting adverse effects. Inhibition of WT EGFR is considered to be the culprit. Third generation EGFR inhibitors follow two strategies. Mutant selectivity and improved target residential time. These inhibitors display high mutant selectivity and irreversible binding patterns while sparing WT EGFR activity, hence enhancing tumor selectivity while minimizing adverse effects. Third generation EGFR inhibitors are still undergoing preclinical and clinical evaluation. The most advanced are Rociletinib and AZD9291 which displayed encouraging preliminary clinical phase II data regarding response and adverse effects. In the current review we show both a medicinal chemists' approach toward the design of third generation EGFR inhibitors as well as a detailed overview of the development of EGFR inhibitors over the last decade. High interdisciplinary approaches, such as structural biology and time-resolved tumor genetics pave the way toward the development of drugs that target EGFR mutants. This might lead to highly effective targeted and personalized therapies with enhanced response rates for a minor cohort of patients which have to undergo continuous gene sequencing, hence enabling therapies with tailor-made TKIs.
Collapse
Affiliation(s)
- Michael Juchum
- Department of Pharmaceutical and Medicinal Chemistry, Institute of Pharmaceutical Sciences, Eberhard Karls University Tuebingen, Auf der Morgenstelle 8, 72076 Tuebingen, Germany
| | - Marcel Günther
- Department of Pharmaceutical and Medicinal Chemistry, Institute of Pharmaceutical Sciences, Eberhard Karls University Tuebingen, Auf der Morgenstelle 8, 72076 Tuebingen, Germany
| | - Stefan A Laufer
- Department of Pharmaceutical and Medicinal Chemistry, Institute of Pharmaceutical Sciences, Eberhard Karls University Tuebingen, Auf der Morgenstelle 8, 72076 Tuebingen, Germany.
| |
Collapse
|
27
|
Saad S, Huang K, Halmos B. Overcoming resistance to EGF receptor tyrosine kinase inhibitors in EGFR-mutated NSCLC. Lung Cancer Manag 2014. [DOI: 10.2217/lmt.14.35] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
SUMMARY The development of EGF receptor (EGFR)-tyrosine kinase inhibitors has recently provided a new therapeutic option for patients with advanced EGFR-mutant NSCLC; however, the long-term efficacy of such therapies is generally limited by the development of resistance. Recognizing the mechanisms underlying resistance and developing therapies to overcome key resistance pathways is an area of intense, ongoing investigation. In this review, we will provide an overview of EGFR-mutated lung cancer, primary and acquired resistance to EGFR-tyrosine kinase inhibitors and emerging therapeutic strategies designed to circumvent resistance.
Collapse
Affiliation(s)
- Shumaila Saad
- Herbert Irving Comprehensive Cancer Center, New York Presbyterian Hospital/Columbia University Medical Center, New York, NY, USA
| | - Kan Huang
- Division of Hematology/Oncology, New York Presbyterian Hospital/Columbia University Medical Center, New York, NY, USA
| | - Balazs Halmos
- Division of Hematology/Oncology, Herbert Irving Comprehensive Cancer Center, New York Presbyterian Hospital/Columbia University Medical Center, New York, NY, USA
| |
Collapse
|
28
|
Cheng X, Chen H. Tumor heterogeneity and resistance to EGFR-targeted therapy in advanced nonsmall cell lung cancer: challenges and perspectives. Onco Targets Ther 2014; 7:1689-704. [PMID: 25285017 PMCID: PMC4181629 DOI: 10.2147/ott.s66502] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Lung cancer, mostly nonsmall cell lung cancer, continues to be the leading cause of cancer-related death worldwide. With the development of tyrosine kinase inhibitors that selectively target lung cancer-related epidermal growth factor receptor mutations, management of advanced nonsmall cell lung cancer has been greatly transformed. Improvements in progression-free survival and life quality of the patients were observed in numerous clinical studies. However, overall survival is not prolonged because of later-acquired drug resistance. Recent studies reveal a heterogeneous subclonal architecture of lung cancer, so it is speculated that the tumor may rapidly adapt to environmental changes via a Darwinian selection mechanism. In this review, we aim to provide an overview of both spatial and temporal tumor heterogeneity as potential mechanisms underlying epidermal growth factor receptor tyrosine kinase inhibitor resistance in nonsmall cell lung cancer and summarize the possible origins of tumor heterogeneity covering theories of cancer stem cells and clonal evolution, as well as genomic instability and epigenetic aberrations in lung cancer. Moreover, investigational measures that overcome heterogeneity-associated drug resistance and new assays to improve tumor assessment are also discussed.
Collapse
Affiliation(s)
- Xinghua Cheng
- Department of Thoracic Surgery, Fudan University Shanghai Cancer Center, Shanghai, People's Republic of China
| | - Haiquan Chen
- Department of Thoracic Surgery, Fudan University Shanghai Cancer Center, Shanghai, People's Republic of China
| |
Collapse
|
29
|
Carnio S, Novello S, Bironzo P, Scagliotti GV. Moving from histological subtyping to molecular characterization: new treatment opportunities in advanced non-small-cell lung cancer. Expert Rev Anticancer Ther 2014; 14:1495-513. [PMID: 25183305 DOI: 10.1586/14737140.2014.949245] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Over the last 10 years, the systemic treatment of advanced non-small-cell lung cancer has progressively moved away from the 'one-size-fits-all' approach to histological subtyping. Currently, there is a progressive implementation of targeted therapies based on specific molecular characteristics such as the EGF receptor sensitizing mutations and the anaplastic lymphoma kinase rearrangements. Despite the availability of effective agents against these abnormalities, acquired resistance is still a major issue. A new generation of tyrosine kinase inhibitors for EGF receptor and anaplastic lymphoma kinase targeting acquired resistance mechanisms have been recently investigated. Several promising tyrosine kinase inhibitors that hit other targets are also in clinical development, including: rat sarcoma gene/MEK, BRAF1, PIK3A, c-mesenchymal-epithelial transition, c-ros oncogene 1, rearranged during transfection, human EGFR 2, FGFR, VEGFR, PDGFR and discoidin death receptor 2. Furthermore, new advances in immunology have been achieved through the discovery of vaccines and immune checkpoint pathways such as the cytotoxic T-lymphocyte-associated antigen-4, programmed cell death protein 1 and its ligands.
Collapse
Affiliation(s)
- Simona Carnio
- Department of Oncology, S. Luigi Hospital, University of Torino, Regione Gonzole 10, 10043 Orbassano, Torino, Italy
| | | | | | | |
Collapse
|
30
|
Hojjat-Farsangi M. Small-molecule inhibitors of the receptor tyrosine kinases: promising tools for targeted cancer therapies. Int J Mol Sci 2014; 15:13768-801. [PMID: 25110867 PMCID: PMC4159824 DOI: 10.3390/ijms150813768] [Citation(s) in RCA: 152] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Revised: 07/31/2014] [Accepted: 08/05/2014] [Indexed: 12/20/2022] Open
Abstract
Chemotherapeutic and cytotoxic drugs are widely used in the treatment of cancer. In spite of the improvements in the life quality of patients, their effectiveness is compromised by several disadvantages. This represents a demand for developing new effective strategies with focusing on tumor cells and minimum side effects. Targeted cancer therapies and personalized medicine have been defined as a new type of emerging treatments. Small molecule inhibitors (SMIs) are among the most effective drugs for targeted cancer therapy. The growing number of approved SMIs of receptor tyrosine kinases (RTKs) i.e., tyrosine kinase inhibitors (TKIs) in the clinical oncology imply the increasing attention and application of these therapeutic tools. Most of the current approved RTK-TKIs in preclinical and clinical settings are multi-targeted inhibitors with several side effects. Only a few specific/selective RTK-TKIs have been developed for the treatment of cancer patients. Specific/selective RTK-TKIs have shown less deleterious effects compared to multi-targeted inhibitors. This review intends to highlight the importance of specific/selective TKIs for future development with less side effects and more manageable agents. This article provides an overview of: (1) the characteristics and function of RTKs and TKIs; (2) the recent advances in the improvement of specific/selective RTK-TKIs in preclinical or clinical settings; and (3) emerging RTKs for targeted cancer therapies by TKIs.
Collapse
Affiliation(s)
- Mohammad Hojjat-Farsangi
- Department of Oncology-Pathology, Immune and Gene Therapy Lab, Cancer Center Karolinska (CCK), Karolinska University Hospital Solna and Karolinska Institute, Stockholm 17176, Sweden.
| |
Collapse
|
31
|
Han C, Wan L, Ji H, Ding K, Huang Z, Lai Y, Peng S, Zhang Y. Synthesis and evaluation of 2-anilinopyrimidines bearing 3-aminopropamides as potential epidermal growth factor receptor inhibitors. Eur J Med Chem 2014; 77:75-83. [DOI: 10.1016/j.ejmech.2014.02.032] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2014] [Revised: 02/05/2014] [Accepted: 02/13/2014] [Indexed: 01/11/2023]
|
32
|
Tu TY, Wang Z, Bai J, Sun W, Peng WK, Huang RYJ, Thiery JP, Kamm RD. Rapid prototyping of concave microwells for the formation of 3D multicellular cancer aggregates for drug screening. Adv Healthc Mater 2014; 3:609-16. [PMID: 23983140 PMCID: PMC4038742 DOI: 10.1002/adhm.201300151] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2013] [Revised: 07/04/2013] [Indexed: 01/27/2023]
Abstract
Microwell technology has revolutionized many aspects of in vitro cellular studies from 2D traditional cultures to 3D in vivo-like functional assays. However, existing lithography-based approaches are often costly and time-consuming. This study presents a rapid, low-cost prototyping method of CO2 laser ablation of a conventional untreated culture dish to create concave microwells used for generating multicellular aggregates, which can be readily available for general laboratories. Polymethylmethacrylate (PMMA), polydimethylsiloxane (PDMS), and polystyrene (PS) microwells are investigated, and each produces distinctive microwell features. Among these three materials, PS cell culture dishes produce the optimal surface smoothness and roundness. A549 lung cancer cells are grown to form cancer aggregates of controllable size from ≈40 to ≈80 μm in PS microwells. Functional assays of spheroids are performed to study migration on 2D substrates and in 3D hydrogel conditions as a step towards recapitulating the dissemination of cancer cells. Preclinical anti-cancer drug screening is investigated and reveals considerable differences between 2D and 3D conditions, indicating the importance of assay type as well as the utility of the present approach.
Collapse
Affiliation(s)
- Ting-Yuan Tu
- BioSystems and Micromechanics IRG, Singapore-MIT Alliance for Research and Technology (SMART) Center 1 CREATE Way, #04-13/14 Enterprise Wing, Singapore 138602, Singapore
| | - Zhe Wang
- BioSystems and Micromechanics IRG, Singapore-MIT Alliance for Research and Technology (SMART) Center 1 CREATE Way, #04-13/14 Enterprise Wing, Singapore 138602, Singapore
| | - Jing Bai
- BioSystems and Micromechanics IRG, Singapore-MIT Alliance for Research and Technology (SMART) Center 1 CREATE Way, #04-13/14 Enterprise Wing, Singapore 138602, Singapore
| | - Wei Sun
- BioSystems and Micromechanics IRG, Singapore-MIT Alliance for Research and Technology (SMART) Center 1 CREATE Way, #04-13/14 Enterprise Wing, Singapore 138602, Singapore
| | - Weng Kung Peng
- BioSystems and Micromechanics IRG, Singapore-MIT Alliance for Research and Technology (SMART) Center 1 CREATE Way, #04-13/14 Enterprise Wing, Singapore 138602, Singapore
| | - Ruby Yun-Ju Huang
- Cancer Science Institute of Singapore, National University of Singapore MD6, Medical Drive, Singapore 117456, Singapore
| | - Jean-Paul Thiery
- Institute of Molecular Cell Biology (IMCB), A-STAR Departement of Biochemistry School of Medicine, National University of Singapore Proteos, 61 Biopolis Drive, Singapore, 138673, Singapore
| | - Roger D. Kamm
- BioSystems and Micromechanics IRG, Singapore-MIT Alliance for Research and Technology (SMART) Center 1 CREATE Way, #04-13/14 Enterprise Wing, Singapore 138602, Singapore
| |
Collapse
|
33
|
Liu SV, Subramaniam D, Cyriac GC, Abdul-Khalek FJ, Giaccone G. Emerging protein kinase inhibitors for non-small cell lung cancer. Expert Opin Emerg Drugs 2013; 19:51-65. [DOI: 10.1517/14728214.2014.873403] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
34
|
Covalent EGFR inhibitor analysis reveals importance of reversible interactions to potency and mechanisms of drug resistance. Proc Natl Acad Sci U S A 2013; 111:173-8. [PMID: 24347635 DOI: 10.1073/pnas.1313733111] [Citation(s) in RCA: 207] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Covalent inhibition is a reemerging paradigm in kinase drug design, but the roles of inhibitor binding affinity and chemical reactivity in overall potency are not well-understood. To characterize the underlying molecular processes at a microscopic level and determine the appropriate kinetic constants, specialized experimental design and advanced numerical integration of differential equations are developed. Previously uncharacterized investigational covalent drugs reported here are shown to be extremely effective epidermal growth factor receptor (EGFR) inhibitors (kinact/Ki in the range 10(5)-10(7) M(-1)s(-1)), despite their low specific reactivity (kinact ≤ 2.1 × 10(-3) s(-1)), which is compensated for by high binding affinities (Ki < 1 nM). For inhibitors relying on reactivity to achieve potency, noncovalent enzyme-inhibitor complex partitioning between inhibitor dissociation and bond formation is central. Interestingly, reversible binding affinity of EGFR covalent inhibitors is highly correlated with antitumor cell potency. Furthermore, cellular potency for a subset of covalent inhibitors can be accounted for solely through reversible interactions. One reversible interaction is between EGFR-Cys797 nucleophile and the inhibitor's reactive group, which may also contribute to drug resistance. Because covalent inhibitors target a cysteine residue, the effects of its oxidation on enzyme catalysis and inhibitor pharmacology are characterized. Oxidation of the EGFR cysteine nucleophile does not alter catalysis but has widely varied effects on inhibitor potency depending on the EGFR context (e.g., oncogenic mutations), type of oxidation (sulfinylation or glutathiolation), and inhibitor architecture. These methods, parameters, and insights provide a rational framework for assessing and designing effective covalent inhibitors.
Collapse
|
35
|
Design, synthesis and biological evaluation of novel 4-anilinoquinazolines with C-6 urea-linked side chains as inhibitors of the epidermal growth factor receptor. Bioorg Med Chem 2013; 21:7988-98. [DOI: 10.1016/j.bmc.2013.09.049] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2013] [Revised: 09/18/2013] [Accepted: 09/19/2013] [Indexed: 11/18/2022]
|
36
|
Dahal UP, Obach RS, Gilbert AM. Benchmarking in vitro covalent binding burden as a tool to assess potential toxicity caused by nonspecific covalent binding of covalent drugs. Chem Res Toxicol 2013; 26:1739-45. [PMID: 24164572 DOI: 10.1021/tx400301q] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Despite several advantages of covalent inhibitors (such as increased biochemical efficiency, longer duration of action on the target, and lower efficacious doses) over their reversible binding counterparts, there is a reluctance to use covalent inhibitors as a drug design strategy in pharmaceutical research. This reluctance is due to their anticipated reactions with nontargeted macromolecules. We hypothesized that there may be a threshold limit for nonspecific covalent binding, below which a covalent binding drug may be less likely to cause toxicity due to irreversible binding to off-target macromolecules. Estimation of in vivo covalent binding burden from in vitro data has previously been used as an approach to distinguish those agents more likely to cause toxicity (e.g., hepatotoxicity) via metabolic activation to reactive metabolites. We have extended this approach to nine covalent binding drugs to determine in vitro covalent binding burden. In vitro covalent binding burden was determined by incubating radiolabeled drugs with pooled human hepatocytes. These data were scaled to an estimate of in vivo covalent binding burden by combining the in vitro data with daily dose. Scaled in vivo daily covalent binding burden of marketed covalent drugs was found to be under 10 mg/day, which is in agreement with previously reported threshold value for metabolically activated reversible drugs. Covalent binding was also compared to the intrinsic reactivities of the covalent inhibitors assessed using nucleophiles glutathione and N-α-acetyl lysine. The intrinsic reactivity did not correlate with observed in vitro covalent binding, which demonstrated that the intrinsic reactivity of the electrophilic groups of covalent drugs does not exclusively account for the extent of covalent binding. The ramifications of these findings for consideration of using a covalent strategy in drug design are discussed.
Collapse
Affiliation(s)
- Upendra P Dahal
- Pharmacokinetics, Dynamics and Metabolism and ‡Worldwide Medicinal Chemistry, Pfizer Inc. , Groton, Connecticut 06340, United States
| | | | | |
Collapse
|
37
|
Han C, Huang Z, Zheng C, Wan L, Lai Y, Peng S, Ding K, Ji H, Zhang Y. Nitric oxide donating anilinopyrimidines: Synthesis and biological evaluation as EGFR inhibitors. Eur J Med Chem 2013; 66:82-90. [DOI: 10.1016/j.ejmech.2013.05.026] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2013] [Revised: 05/18/2013] [Accepted: 05/20/2013] [Indexed: 01/21/2023]
|
38
|
Yoo SY, Kwon SM. Angiogenesis and its therapeutic opportunities. Mediators Inflamm 2013; 2013:127170. [PMID: 23983401 PMCID: PMC3745966 DOI: 10.1155/2013/127170] [Citation(s) in RCA: 138] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2013] [Accepted: 07/07/2013] [Indexed: 11/18/2022] Open
Abstract
Angiogenesis plays critical roles in human physiology that range from reproduction and fetal growth to wound healing and tissue repair. The sophisticated multistep process is tightly regulated in a spatial and temporal manner by "on-off switch signals" between angiogenic factors, extracellular matrix components, and endothelial cells. Uncontrolled angiogenesis may lead to several angiogenic disorders, including vascular insufficiency (myocardial or critical limb ischemia) and vascular overgrowth (hemangiomas, vascularized tumors, and retinopathies). Thus, numerous therapeutic opportunities can be envisaged through the successful understanding and subsequent manipulation of angiogenesis. Here, we review the clinical implications of angiogenesis and discuss pro- and antiangiogenic agents that offer potential therapy for cancer and other angiogenic diseases.
Collapse
Affiliation(s)
- So Young Yoo
- Laboratory for Vascular Medicine and Stem Cell Biology, Convergence Stem Cell Research Center, Medical Research Institute, Pusan National University School of Medicine, Yangsan 626-870, Republic of Korea
| | - Sang Mo Kwon
- Laboratory for Vascular Medicine and Stem Cell Biology, Convergence Stem Cell Research Center, Medical Research Institute, Pusan National University School of Medicine, Yangsan 626-870, Republic of Korea
| |
Collapse
|
39
|
Roengvoraphoj M, Tsongalis GJ, Dragnev KH, Rigas JR. Epidermal growth factor receptor tyrosine kinase inhibitors as initial therapy for non-small cell lung cancer: focus on epidermal growth factor receptor mutation testing and mutation-positive patients. Cancer Treat Rev 2013; 39:839-50. [PMID: 23768755 DOI: 10.1016/j.ctrv.2013.05.001] [Citation(s) in RCA: 88] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2012] [Revised: 05/02/2013] [Accepted: 05/04/2013] [Indexed: 01/24/2023]
Abstract
Activation of the epidermal growth factor receptor (EGFR) pathway has been implicated in tumorigenesis in non-small cell lung cancer (NSCLC), the most common type of lung cancer. As a result, EGFR has become a key focus for the development of personalized therapy, with several molecular biomarkers having been investigated as potential predictors of response with EGFR tyrosine kinase inhibitors (TKIs) in NSCLC (e.g., EGFR expression, EGFR gene copy gain, and EGFR mutations). Of these, activating mutations in EGFR have thus far given the most consistent results based on the available evidence from preclinical studies and clinical trials. In an attempt to identify patients who are most likely to benefit from treatment with EGFR TKIs, EGFR mutation testing is being increasingly utilized in clinical practice. Currently in the United States, no EGFR TKI or accompanying mutational test is approved for the identification and first-line treatment of patients with advanced NSCLC. However, the first-generation EGFR TKIs, erlotinib and gefitinib, as well as investigational ErbB family TKIs and EGFR mutation testing methods are being evaluated in this setting. This review will discuss EGFR mutation testing as a biomarker of response to EGFR TKIs and the evolution of EGFR mutational analysis in NSCLC. Completed and ongoing clinical trials evaluating currently available or investigational EGFR TKIs as first-line therapy in molecularly and clinically selected patients with NSCLC, with a focus on trials in patients whose tumors have EGFR mutations, will also be reviewed.
Collapse
Affiliation(s)
- Monic Roengvoraphoj
- Comprehensive Thoracic Oncology Program, Norris Cotton Cancer Center, Dartmouth-Hitchcock Medical Center, One Medical Center Drive, Lebanon, NH 03756-0001, USA; The Geisel School of Medicine at Dartmouth, One Rope Ferry Road, Hanover, NH 03755-1404, USA.
| | | | | | | |
Collapse
|
40
|
Han C, Huang Z, Zheng C, Wan L, Zhang L, Peng S, Ding K, Ji H, Tian J, Zhang Y. Novel hybrids of (phenylsulfonyl)furoxan and anilinopyrimidine as potent and selective epidermal growth factor receptor inhibitors for intervention of non-small-cell lung cancer. J Med Chem 2013; 56:4738-48. [PMID: 23668441 DOI: 10.1021/jm400463q] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
A series of hybrids (12a-k) from (phenylsulfonyl)furoxan and anilinopyrimidine were synthesized and biologically evaluated as epidermal growth factor receptor (EGFR) inhibitors for intervention of non-small-cell lung cancer (NSCLC). Compound 12k exhibited strong and selective EGFR L858R/T790M inhibitory activity (IC50 = 0.047 μM) and displayed antiproliferative effects on EGFR mutation NSCLC cell lines HCC827 (del E746_A750) and H1975 (L858R/T790M) with IC50 values of 0.007 and 0.029 μM, respectively. Additionally, 12k released high levels of NO in H1975 cells but not in normal human cells, and its activity was diminished by pretreatment with a NO scavenger. Furthermore, 12k induced apoptosis of H1975 and HCC827 cells more strongly than WZ4002 (1), inhibited EGFR downstream signaling in H1975 cells, and suppressed the nuclear factor-κB activation in H1975 cells, while 1 had no significant effects under the same conditions. Finally, 12k substantially inhibited tumor growth in an H1975 xenograft mouse model. Overall, 12k might be a promising candidate for the treatment of NSCLC.
Collapse
Affiliation(s)
- Chun Han
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, People's Republic of China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Majem M, Pallarès C. An update on molecularly targeted therapies in second- and third-line treatment in non-small cell lung cancer: focus on EGFR inhibitors and anti-angiogenic agents. Clin Transl Oncol 2013; 15:343-57. [DOI: 10.1007/s12094-012-0964-2] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2012] [Accepted: 10/19/2012] [Indexed: 12/22/2022]
|
42
|
Hrustanovic G, Lee BJ, Bivona TG. Mechanisms of resistance to EGFR targeted therapies. Cancer Biol Ther 2013; 14:304-14. [PMID: 23358468 DOI: 10.4161/cbt.23627] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
EGFR is a validated therapeutic target in many human cancers. EGFR targeted therapies are in widespread clinical use in patients with non-small cell lung cancer and other tumor types. Despite the clinical success of EGFR targeted therapy, resistance to treatment is a significant barrier to the optimized use of EGFR inhibitors to cure patients with lung and other cancers. Here, we review established and emerging mechanisms of resistance to EGFR targeted therapy and highlight strategies that could overcome treatment resistance and therefore enhance clinical outcomes.
Collapse
Affiliation(s)
- Gorjan Hrustanovic
- Department of Medicine, Division of Hematology and Oncology, Helen Diller Comprehensive Cancer Center University of California San Francisco, San Francisco, CA, USA
| | | | | |
Collapse
|
43
|
Clinical perspectives for irreversible tyrosine kinase inhibitors in cancer. Biochem Pharmacol 2012; 84:1388-99. [PMID: 22885287 DOI: 10.1016/j.bcp.2012.07.031] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2012] [Revised: 07/27/2012] [Accepted: 07/30/2012] [Indexed: 11/21/2022]
Abstract
Irreversible inhibitors provide potent and selective inhibition of tyrosine kinase enzymes. Use of such inhibitors has proved promising in overcoming the tumor resistance encountered with reversible tyrosine kinase inhibitors. Irreversible inhibitors inactivate their protein target through covalent interaction with a nucleophilic cysteine residue within the nucleotide binding pocket of the kinase domain. Different irreversible tyrosin kinase inhibitors directed against epidermal growth factor receptor (EGFR), Bruton's tyrosine kinase (BTK), vascular endothelial growth factor receptor (VEGFR) and fibroblast growth factor receptor tyrosine kinase (FGFR) have been developed and some of them have been employed clinically as anticancer agents. This review focuses on recent preclinical and clinical progress with currently available irreversible tyrosine kinase inhibitors. The chemical structures of the candidates, structure-activity relationships, biological activities and results of current clinical investigations are described.
Collapse
|
44
|
Ayoola A, Barochia A, Belani K, Belani CP. Primary and acquired resistance to epidermal growth factor receptor tyrosine kinase inhibitors in non-small cell lung cancer: an update. Cancer Invest 2012; 30:433-46. [PMID: 22571344 DOI: 10.3109/07357907.2012.666691] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Epidermal growth factor receptor (EGFR) is a critical target in the treatment of nonsmall cell lung cancer (NSCLC). The mutations involving EGFR are more prevalent in patients of Asian ancestry, women, never smokers, and those with adenocarcinoma histology. Primary mechanism of resistance to EGFR-TKIs includes in frame insertion mutation in exon 20, de novo T790M mutation also on exon 20, activating mutations in KRAS, loss of PTEN, and amplification of c-MET whereas acquired resistance results from development of secondary alteration in ATP domain of T790M. There are many novel targeting agents in development to overcome resistance to EGFR TKIs.
Collapse
Affiliation(s)
- Ayodele Ayoola
- Penn State Hershey Cancer Institute, Penn State Milton S. Hershey Medical Center, Hershey, PA 17033, USA
| | | | | | | |
Collapse
|
45
|
Nedergaard MK, Hedegaard CJ, Poulsen HS. Targeting the epidermal growth factor receptor in solid tumor malignancies. BioDrugs 2012; 26:83-99. [PMID: 22385404 DOI: 10.2165/11599760-000000000-00000] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The epidermal growth factor receptor (EGFR) is over-expressed, as well as mutated, in many types of cancers. In particular, the EGFR variant type III mutant (EGFRvIII) has attracted much attention as it is frequently and exclusively found on many tumor cells, and hence both EGFR and EGFRvIII have been proposed as valid targets in many cancer therapy settings. Different strategies have been developed in order to either inhibit EGFR/EGFRvIII activity or to ablate EGFR/EGFRvIII-positive tumor cells. Drugs that inhibit these receptors include monoclonal antibodies (mAbs) that bind to the extracellular part of EGFR, blocking the binding sites for the EGFR ligands, and intracellular tyrosine kinase inhibitors (TKIs) that block the ATP binding site of the tyrosine kinase domain. Besides an EGFRvIII-targeted vaccine, conjugated anti-EGFR mAbs have been used in different settings to deliver lethal agents to the EGFR/EGFRvIII-positive cells; among these are radio-labelled mAbs and immunotoxins. This article reviews the current status and efficacy of EGFR/EGFRvIII-targeted therapies.
Collapse
Affiliation(s)
- Mette K Nedergaard
- Department of Radiation Biology, Finsencenter, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | | | | |
Collapse
|
46
|
Abstract
INTRODUCTION The design of target-specific covalent inhibitors is conceptually attractive because of increased biochemical efficiency through covalency and increased duration of action that outlasts the pharmacokinetics of the agent. Although many covalent inhibitors have been approved or are in advanced clinical trials to treat indications such as cancer and hepatitis C, there is a general tendency to avoid them as drug candidates because of concerns regarding immune-mediated toxicity that can arise from indiscriminate reactivity with off-target proteins. AREAS COVERED The review examines potential reason(s) for the excellent safety record of marketed covalent agents and advanced clinical candidates for emerging therapeutic targets. A significant emphasis is placed on proteomic techniques and chemical/biochemical reactivity assays that aim to provide a systematic rank ordering of pharmacologic selectivity relative to off-target protein reactivity of covalent inhibitors. EXPERT OPINION While tactics to examine selective covalent modification of the pharmacologic target are broadly applicable in drug discovery, it is unclear whether the output from such studies can prospectively predict idiosyncratic immune-mediated drug toxicity. Opinions regarding an acceptable threshold of protein reactivity/body burden for a toxic electrophile and a non-toxic electrophilic covalent drug have not been defined. Increasing confidence in proteomic and chemical/biochemical reactivity screens will require a retrospective side-by-side profiling of marketed covalent drugs and electrophiles known to cause deleterious toxic effects via non-selective covalent binding.
Collapse
Affiliation(s)
- Amit S Kalgutkar
- Pharmacokinetics, Dynamics, and Metabolism Department, Pfizer Worldwide Research and Development, Cambridge, MA 02139, USA.
| | | |
Collapse
|
47
|
Abstract
Protein kinases are now considered highly druggable due to the fact that there are kinase inhibitors on the market as effective drugs (e.g. Gleevec, Tarceva, and Nexavar). The class of drugs remains plagued by questions about how the inhibition profile affects the efficacy, and whether truly selective kinase inhibitors actually exist. Lapatinib remains one of the most selective kinase inhibitors in use for cancer therapy. This chapter will focus on our strategies to discover this novel, dual EGFR and ERBB-2 tyrosine kinase inhibitor using a carefully designed biological evaluation cascade coupled with a multidimensional data analysis. The primary topics discussed will cover the optimization of potency for two kinase targets, yet selective among over 500 kinases within the highly homologous ATP binding site, cellular selectivity and efficacy, and subsequent studies to understand the mechanism of action.
Collapse
Affiliation(s)
- Karen E. Lackey
- Hoffmann-La Roche Discovery Chemistry 340 Kingsland Street, Nutley NJ 07110, USA
| |
Collapse
|
48
|
Irreversible EGFR inhibitors in advanced non-small-cell lung carcinoma: rationale and clinical evidence. ACTA ACUST UNITED AC 2012. [DOI: 10.4155/cli.12.7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
49
|
Abstract
Enzymes are often excellent drug targets. Yet drug pressure on an enzyme target often fosters the rise of cells with resistance-conferring mutations, some of which may compromise fitness and others that compensate to restore fitness. This review presents, first, a structural analysis of a diverse group of wild-type and mutant enzyme targets and, second, an in-depth analysis of five diverse targets to elucidate a broader perspective of the effects of resistance-conferring mutations on protein or organismal fitness. The structural analysis reveals that resistance-conferring mutations may introduce steric hindrance or eliminate critical interactions, as expected, but that they may also have indirect effects such as altering protein dynamics and enzyme kinetics. The structure-based development of the latest generation of inhibitors targeting HIV reverse transcriptase, P. falciparum and S. aureus dihydrofolate reductase, neuraminidase, and epithelial growth factor receptor (EGFR) tyrosine kinase, is highlighted to emphasize lessons that may be applied to future drug discovery to overcome mutation-induced resistance. Successful next-generation drugs tend to be more flexible and exploit a greater number of interactions mimicking those of the substrate with conserved residues.
Collapse
Affiliation(s)
- Amy C Anderson
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, Connecticut 06269, United States.
| |
Collapse
|
50
|
Carmi C, Galvani E, Vacondio F, Rivara S, Lodola A, Russo S, Aiello S, Bordi F, Costantino G, Cavazzoni A, Alfieri RR, Ardizzoni A, Petronini PG, Mor M. Irreversible Inhibition of Epidermal Growth Factor Receptor Activity by 3-Aminopropanamides. J Med Chem 2012; 55:2251-64. [DOI: 10.1021/jm201507x] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Caterina Carmi
- Dipartimento
Farmaceutico, Università degli Studi di Parma, V.le G.P. Usberti
27/A, I-43124 Parma, Italy
| | - Elena Galvani
- Dipartimento di Medicina Sperimentale, Università degli Studi di Parma, Via Volturno
39, I-43125 Parma, Italy
| | - Federica Vacondio
- Dipartimento
Farmaceutico, Università degli Studi di Parma, V.le G.P. Usberti
27/A, I-43124 Parma, Italy
| | - Silvia Rivara
- Dipartimento
Farmaceutico, Università degli Studi di Parma, V.le G.P. Usberti
27/A, I-43124 Parma, Italy
| | - Alessio Lodola
- Dipartimento
Farmaceutico, Università degli Studi di Parma, V.le G.P. Usberti
27/A, I-43124 Parma, Italy
| | - Simonetta Russo
- Dipartimento
Farmaceutico, Università degli Studi di Parma, V.le G.P. Usberti
27/A, I-43124 Parma, Italy
| | - Stefania Aiello
- Dipartimento di Scienze e Tecnologie
Molecolari e Biomolecolari, Università degli Studi di Palermo, Via Archirafi 32, I-90123 Palermo, Italy
| | - Fabrizio Bordi
- Dipartimento
Farmaceutico, Università degli Studi di Parma, V.le G.P. Usberti
27/A, I-43124 Parma, Italy
| | - Gabriele Costantino
- Dipartimento
Farmaceutico, Università degli Studi di Parma, V.le G.P. Usberti
27/A, I-43124 Parma, Italy
| | - Andrea Cavazzoni
- Dipartimento di Medicina Sperimentale, Università degli Studi di Parma, Via Volturno
39, I-43125 Parma, Italy
| | - Roberta R. Alfieri
- Dipartimento di Medicina Sperimentale, Università degli Studi di Parma, Via Volturno
39, I-43125 Parma, Italy
| | - Andrea Ardizzoni
- Oncologia Medica, Azienda Ospedaliero-Universitaria di Parma, V.le Gramsci
14, I-43125 Parma, Italy
| | - Pier Giorgio Petronini
- Dipartimento di Medicina Sperimentale, Università degli Studi di Parma, Via Volturno
39, I-43125 Parma, Italy
| | - Marco Mor
- Dipartimento
Farmaceutico, Università degli Studi di Parma, V.le G.P. Usberti
27/A, I-43124 Parma, Italy
| |
Collapse
|