1
|
Shu Y, Dong Y, Li B, Wang Y, Liao Q, Su Z, Wang J, Zuo P, Yuan H, Wang C, Li S, Fan Y, Su X. Knockdown of STK39 inhibits lung cancer brain metastasis by suppressing the CPSF4/NFκB/COX2 pathway. J Neurooncol 2025:10.1007/s11060-025-05072-3. [PMID: 40399619 DOI: 10.1007/s11060-025-05072-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2025] [Accepted: 05/06/2025] [Indexed: 05/23/2025]
Abstract
PURPOSE Lung cancer is the most common cancer worldwide, and approximately 30% of lung cancer patients will develop brain metastases. Serine/threonine kinase 39 (STK39) plays a significant role in various malignancies. However, the role and mechanism of STK39 in lung cancer brain metastasis have not been reported. METHODS The expression levels of STK39 in lung cancer cells were detected using quantitative reverse transcription PCR (RT-qPCR) and Western blotting. STK39 expression was knocked down in lung cancer cell lines PC9 and H1299 using RNA interference. Cell proliferation, apoptosis, cell cycle, migration, and invasion abilities were assessed using the CCK-8 assay, colony formation assay, flow cytometry, and Transwell chamber assay, respectively. Phosphoproteomics analysis was performed to identify phosphorylated target proteins of STK39 and associated signaling pathways. PC9 and H1299 cells with knocked-down STK39 were injected into nude mice via the common carotid artery to observe the formation of brain metastases. Finally, RT-qPCR and Western blotting were used to detect the expression of STK39, CPSF4/NFκB/COX2, and epithelial-mesenchymal transition (EMT) markers in lung cancer and brain metastasis tissues, and to analyze the correlation between STK39 expression and the size of metastatic tumors. RESULTS STK39 was highly expressed in lung cancer cell lines PC9 and H1299. Knockdown of STK39 inhibited proliferation, migration, and invasion of lung cancer cells, induced apoptosis, and caused cell cycle arrest. Phosphoproteomics and Phos-tag analyses showed that knockdown of STK39 significantly downregulated the expression of phosphorylated CPSF4 protein in PC9 and H1299 cells, along with significant downregulation of NFκB, COX2, and EMT markers. Knockdown of STK39 inhibited the formation of brain metastases by PC9 and H1299 cells in nude mice. Lung cancer brain metastasis tissues exhibited high expression of STK39, CPSF4, NFκB, and COX2, with their expression levels showing a significant positive correlation with the size of metastatic tumors. CONCLUSION STK39 is highly expressed in lung cancer brain metastasis tissues, and knockdown of STK39 significantly inhibits brain metastasis in experimental models, accompanied by the suppression of the CPSF4/NFκB/COX2 signaling pathway and EMT process. Therefore, STK39 may be a key factor promoting lung cancer brain metastasis and a potential therapeutic target.
Collapse
Affiliation(s)
- Yue Shu
- Department of Neurosurgery, The Third Affiliated Hospital of Kunming Medical University, No. 519, Kunzhou Road, Xishan District, Kunming, Yunnan, 650118, People's Republic of China
| | - Yunzhu Dong
- Department of Anesthesiology, The First Affiliated Hospital of Kunming Medical University, Kunming, 650032, China
| | - Bo Li
- Orthopedics Department, Yongchuan District People's Hospital of Chongqing City, Chongqing, 402160, China
| | - Yutong Wang
- College of Traditional Chinese Medicine, Yunnan University of Chinese Medicine, Kunming, 650500, China
| | - Quanyang Liao
- College of Traditional Chinese Medicine, Yunnan University of Chinese Medicine, Kunming, 650500, China
| | - Ziqin Su
- Department of Neurosurgery, The Third Affiliated Hospital of Kunming Medical University, No. 519, Kunzhou Road, Xishan District, Kunming, Yunnan, 650118, People's Republic of China
| | - Jun Wang
- Department of Anesthesiology, The First Affiliated Hospital of Kunming Medical University, Kunming, 650032, China
| | - Pin Zuo
- Department of Neurosurgery, The Third Affiliated Hospital of Kunming Medical University, No. 519, Kunzhou Road, Xishan District, Kunming, Yunnan, 650118, People's Republic of China
| | - Hongpin Yuan
- Department of Neurosurgery, The Third Affiliated Hospital of Kunming Medical University, No. 519, Kunzhou Road, Xishan District, Kunming, Yunnan, 650118, People's Republic of China
| | - Chun Wang
- Department of PET-CT/MR Center, The Third Affiliated Hospital of Kunming Medical University, Kunming, 650118, China
| | - Shujuan Li
- Department of PET-CT/MR Center, The Third Affiliated Hospital of Kunming Medical University, Kunming, 650118, China
| | - Yaodong Fan
- Department of Neurosurgery, The Third Affiliated Hospital of Kunming Medical University, No. 519, Kunzhou Road, Xishan District, Kunming, Yunnan, 650118, People's Republic of China.
| | - Xiaosan Su
- Scientific Research and Experimental Center, Yunnan University of Chinese Medicine, No.295 Th Yuhua Road, Chenggong District, Kunming, Yunnan, 650500, People's Republic of China.
| |
Collapse
|
2
|
Castañeda-González JP, Parra-Medina R, Riess JW, Gandara DR, Carvajal-Carmona LG. Genetic Ancestry and Lung Cancer in Latin American Patients: A Crucial Step for Understanding a Diverse Population. Clin Lung Cancer 2025:S1525-7304(25)00050-6. [PMID: 40221250 DOI: 10.1016/j.cllc.2025.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Revised: 03/07/2025] [Accepted: 03/10/2025] [Indexed: 04/14/2025]
Abstract
Lung cancer is the second leading cause of cancer-related deaths in Latin America. While incidence and mortality rates are higher in other populations, the ``Hispanic paradox'' observed in US Hispanics reflects a lower mortality rate for mortality from non-small cell lung cancer (NSCLC) despite socioeconomic disparities, which may be related to epigenetic and cultural factors. Genetic studies have identified single nucleotide polymorphisms associated with ancestry as key contributors to lung cancer risk and outcomes, emphasizing the importance of genomic insights for early detection and personalized treatments. This narrative review explores the impact of genetic ancestry on lung cancer in Hispanic/Latino populations. We searched MEDLINE and Google Scholar for "((SNP) OR (germline) OR (variant)) AND (lung cancer) AND ((Hispanic) OR (Latin))," focusing on Latin American studies. We included articles published up to December 2024. Specific variation in genes such as XRCC1, CYP1A1, CYP1A2, SEMA3B, PADPRP, and mEPHX have been associated with increased lung cancer risk. Lung cancer incidence and prognosis vary significantly among Hispanics due to their diverse genetic ancestry. Understanding ancestry-specific genetic variations may help personalize treatment and improve outcomes for this population.
Collapse
Affiliation(s)
- Juan Pablo Castañeda-González
- Latinos United for Cancer Health Advancement Initiative, University of California Davis Comprehensive Cancer Center, Sacramento, CA, USA.
| | - Rafael Parra-Medina
- Department of Pathology, Instituto Nacional de Cancerología, Bogotá, Colombia; Research Institute, Fundación Universitaria de Ciencias de la Salud - FUCS, Bogotá, Colombia
| | - Jonathan W Riess
- Division of Hematology and Oncology, UC Davis Comprehensive Cancer Center, Sacramento, CA, USA
| | - David R Gandara
- Division of Hematology and Oncology, UC Davis Comprehensive Cancer Center, Sacramento, CA, USA
| | - Luis G Carvajal-Carmona
- Latinos United for Cancer Health Advancement Initiative, University of California Davis Comprehensive Cancer Center, Sacramento, CA, USA; Genome Center, University of California, Davis, CA, USA; Department of Biochemistry and Molecular Medicine, School of Medicine, University of California Davis, Sacramento, CA, USA
| |
Collapse
|
3
|
Wu X, Wu Z, Xie Z, Huang H, Wang Y, Lv K, Yang H, Liu X. The role of EMG1 in lung adenocarcinoma progression: Implications for prognosis and immune cell infiltration. Int Immunopharmacol 2024; 138:112553. [PMID: 38943975 DOI: 10.1016/j.intimp.2024.112553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 06/20/2024] [Accepted: 06/21/2024] [Indexed: 07/01/2024]
Abstract
BACKGROUND AND AIMS Lung adenocarcinoma (LUAD) is the most common and aggressive cancer with a high incidence. N1-specific pseudouridine methyltransferase (EMG1), a highly conserved nucleolus protein, plays an important role in the biological development of ribosomes. However, the role of EMG1 in the progression of LUAD is still unclear. METHODS The expression of EMG1 in LUAD cells, and LUAD tissues, and adjacent noncancerous tissues was quantified using real-time polymerase chain reaction (PCR) and western blotting. The roles of EMG1 in LUAD cell proliferation, migration, invasion and tumorigenicity were explored in vitro and in vivo. Western blot analysis to underlying molecular mechanism of EMG1 regulating the biological function of LUAD. EMG1 expression and its impact on tumor prognosis were analyzed using a range of databases including GEPIA, UALCAN, cBioPortal, LinkedOmics, and Kaplan-Meier Plotter. RESULTS EMG1 expression was elevated in LUAD patients compared to normal tissues, and EMG1 expression was strongly correlated with prognosis in LUAD patients. EMG1 expression correlated with age, gender, N stage, T stage, and pathologic stage. EMG1 expression was strongly positively correlated with MRPL51, PHB2, SNRPG, ATP5MD, and TPI1, and strongly negatively correlated with MACF1, DOCK9, RAPGEF2, SYNJ1, and KIDINS220, the major enrichment pathways for EMG1 and related genes include Cell cycle, DNA Replication and Pathways in cancer signaling pathways. EMG1 expression level was significantly increased in LUAD cell lines and tissues. Knockdown of EMG1 could inhibit LUAD cell proliferation, migration, invasion, and tumorigenicity. Besides, EMG1 overexpression could promote LUAD cell proliferation, migration, and invasion. High expression of EMG1 predicts poor prognosis in LUAD patients, and EMG1 may play an oncogenic role in the tumor microenvironment by participating in the infiltration of LUAD immune cells. CONCLUSIONS EMG1 regulated various functions in LUAD by directly mediating Akt/mTOR/p70s6k signaling pathways activation. The results suggest that EMG1 may be a novel biomarker for assessing prognosis and immune cell infiltration in LUAD.
Collapse
Affiliation(s)
- Xingwei Wu
- Anhui Province Key Laboratory of Non-coding RNA Basic and Clinical Transformation (Wannan Medical College), Wuhu 241001, Anhui, China; Key Laboratory of Non-coding RNA Transformation Research of Anhui Higher Education Institution (Wannan Medical College), Wuhu 241001, Anhui, China; Central Laboratory, Yijishan Hospital, The First Affiliated Hospital of Wannan Medical College, Wuhu 241001, Anhui, China; Non-coding RNA Research Center of Wannan Medical College, Wuhu, Anhui 241001, China; Clinical Research Center for Critical Respiratory Medicine of Anhui Province, Yijishan Hospital, The First Affiliated Hospital of Wannan Medical College, Wuhu 241001, Anhui, China
| | - Zhenguo Wu
- Anhui Province Key Laboratory of Non-coding RNA Basic and Clinical Transformation (Wannan Medical College), Wuhu 241001, Anhui, China; Key Laboratory of Non-coding RNA Transformation Research of Anhui Higher Education Institution (Wannan Medical College), Wuhu 241001, Anhui, China; Central Laboratory, Yijishan Hospital, The First Affiliated Hospital of Wannan Medical College, Wuhu 241001, Anhui, China; Non-coding RNA Research Center of Wannan Medical College, Wuhu, Anhui 241001, China; Clinical Research Center for Critical Respiratory Medicine of Anhui Province, Yijishan Hospital, The First Affiliated Hospital of Wannan Medical College, Wuhu 241001, Anhui, China
| | - Zehang Xie
- Anhui Province Key Laboratory of Non-coding RNA Basic and Clinical Transformation (Wannan Medical College), Wuhu 241001, Anhui, China; Key Laboratory of Non-coding RNA Transformation Research of Anhui Higher Education Institution (Wannan Medical College), Wuhu 241001, Anhui, China; Central Laboratory, Yijishan Hospital, The First Affiliated Hospital of Wannan Medical College, Wuhu 241001, Anhui, China; Non-coding RNA Research Center of Wannan Medical College, Wuhu, Anhui 241001, China; Clinical Research Center for Critical Respiratory Medicine of Anhui Province, Yijishan Hospital, The First Affiliated Hospital of Wannan Medical College, Wuhu 241001, Anhui, China
| | - Haoyu Huang
- Anhui Province Key Laboratory of Non-coding RNA Basic and Clinical Transformation (Wannan Medical College), Wuhu 241001, Anhui, China; Key Laboratory of Non-coding RNA Transformation Research of Anhui Higher Education Institution (Wannan Medical College), Wuhu 241001, Anhui, China; Central Laboratory, Yijishan Hospital, The First Affiliated Hospital of Wannan Medical College, Wuhu 241001, Anhui, China; Non-coding RNA Research Center of Wannan Medical College, Wuhu, Anhui 241001, China; Clinical Research Center for Critical Respiratory Medicine of Anhui Province, Yijishan Hospital, The First Affiliated Hospital of Wannan Medical College, Wuhu 241001, Anhui, China
| | - Yingying Wang
- Anhui Province Key Laboratory of Non-coding RNA Basic and Clinical Transformation (Wannan Medical College), Wuhu 241001, Anhui, China; Key Laboratory of Non-coding RNA Transformation Research of Anhui Higher Education Institution (Wannan Medical College), Wuhu 241001, Anhui, China; Clinical Research Center for Critical Respiratory Medicine of Anhui Province, Yijishan Hospital, The First Affiliated Hospital of Wannan Medical College, Wuhu 241001, Anhui, China; Department of Nuclear Medicine, Yijishan Hospital, The First Affiliated Hospital of Wannan Medical College, Wuhu, Anhui 241001, China
| | - Kun Lv
- Anhui Province Key Laboratory of Non-coding RNA Basic and Clinical Transformation (Wannan Medical College), Wuhu 241001, Anhui, China; Key Laboratory of Non-coding RNA Transformation Research of Anhui Higher Education Institution (Wannan Medical College), Wuhu 241001, Anhui, China; Central Laboratory, Yijishan Hospital, The First Affiliated Hospital of Wannan Medical College, Wuhu 241001, Anhui, China; Non-coding RNA Research Center of Wannan Medical College, Wuhu, Anhui 241001, China; Clinical Research Center for Critical Respiratory Medicine of Anhui Province, Yijishan Hospital, The First Affiliated Hospital of Wannan Medical College, Wuhu 241001, Anhui, China.
| | - Hui Yang
- Anhui Province Key Laboratory of Non-coding RNA Basic and Clinical Transformation (Wannan Medical College), Wuhu 241001, Anhui, China; Key Laboratory of Non-coding RNA Transformation Research of Anhui Higher Education Institution (Wannan Medical College), Wuhu 241001, Anhui, China; Central Laboratory, Yijishan Hospital, The First Affiliated Hospital of Wannan Medical College, Wuhu 241001, Anhui, China; Non-coding RNA Research Center of Wannan Medical College, Wuhu, Anhui 241001, China; Clinical Research Center for Critical Respiratory Medicine of Anhui Province, Yijishan Hospital, The First Affiliated Hospital of Wannan Medical College, Wuhu 241001, Anhui, China.
| | - Xiaocen Liu
- Anhui Province Key Laboratory of Non-coding RNA Basic and Clinical Transformation (Wannan Medical College), Wuhu 241001, Anhui, China; Key Laboratory of Non-coding RNA Transformation Research of Anhui Higher Education Institution (Wannan Medical College), Wuhu 241001, Anhui, China; Clinical Research Center for Critical Respiratory Medicine of Anhui Province, Yijishan Hospital, The First Affiliated Hospital of Wannan Medical College, Wuhu 241001, Anhui, China; Department of Nuclear Medicine, Yijishan Hospital, The First Affiliated Hospital of Wannan Medical College, Wuhu, Anhui 241001, China.
| |
Collapse
|
4
|
LoPiccolo J, Gusev A, Christiani DC, Jänne PA. Lung cancer in patients who have never smoked - an emerging disease. Nat Rev Clin Oncol 2024; 21:121-146. [PMID: 38195910 PMCID: PMC11014425 DOI: 10.1038/s41571-023-00844-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/28/2023] [Indexed: 01/11/2024]
Abstract
Lung cancer is the most common cause of cancer-related deaths globally. Although smoking-related lung cancers continue to account for the majority of diagnoses, smoking rates have been decreasing for several decades. Lung cancer in individuals who have never smoked (LCINS) is estimated to be the fifth most common cause of cancer-related deaths worldwide in 2023, preferentially occurring in women and Asian populations. As smoking rates continue to decline, understanding the aetiology and features of this disease, which necessitate unique diagnostic and treatment paradigms, will be imperative. New data have provided important insights into the molecular and genomic characteristics of LCINS, which are distinct from those of smoking-associated lung cancers and directly affect treatment decisions and outcomes. Herein, we review the emerging data regarding the aetiology and features of LCINS, particularly the genetic and environmental underpinnings of this disease as well as their implications for treatment. In addition, we outline the unique diagnostic and therapeutic paradigms of LCINS and discuss future directions in identifying individuals at high risk of this disease for potential screening efforts.
Collapse
Affiliation(s)
- Jaclyn LoPiccolo
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA.
- The Lowe Center for Thoracic Oncology, Dana-Farber Cancer Institute, Boston, MA, USA.
| | - Alexander Gusev
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- The Eli and Edythe L. Broad Institute, Cambridge, MA, USA
| | - David C Christiani
- Department of Environmental Health, Harvard T. H. Chan School of Public Health, Boston, MA, USA
- Massachusetts General Hospital, Boston, MA, USA
| | - Pasi A Jänne
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- The Lowe Center for Thoracic Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| |
Collapse
|
5
|
Yue S, Pei L, Lai F, Xiao H, Li Z, Zeng R, Chen L, Chen W, Liu H, Li Y, Xiao H, Cao X. Genome-wide analysis study of gestational diabetes mellitus and related pathogenic factors in a Chinese Han population. BMC Pregnancy Childbirth 2023; 23:856. [PMID: 38087213 PMCID: PMC10714520 DOI: 10.1186/s12884-023-06167-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 12/02/2023] [Indexed: 12/18/2023] Open
Abstract
BACKGROUND Gestational diabetes mellitus (GDM) affects the metabolism of both the mother and fetus during and after pregnancy. Genetic factors are important in the pathogenesis of GDM, and associations vary by ethnicity. However, related studies about the relationship between the susceptibility genes and glucose traits remain limited in China. This study aimed to identify genes associated with GDM susceptibility in Chinese Han women and validate those findings using clinical data during pregnancy and postpartum period. METHODS A genome-wide association study (GWAS) of 398 Chinese Han women (199 each with and without GDM) was conducted and associations between single nucleotide polymorphisms (SNPs) and glucose metabolism were identified by searching public databases. Relationships between filtered differential SNPs and glucose metabolism were verified using clinical data during pregnancy. The GDM group were followed up postpartum to evaluate the progression of glucose metabolism. RESULTS We identified five novel SNPs with genome-wide significant associations with GDM: rs62069863 in TRPV3 gene and rs2232016 in PRMT6 gene were positive correlated with 1 h plasma glucose (1hPG) and 2 h plasma glucose (2hPG), rs1112718 in HHEX/EXOC6 gene and rs10460009 in LPIN2 gene were positive associated with fasting plasma glucose, 1hPG and 2hPG, rs927316 in GLIS3 gene was negative correlated with 2hPG. Of the 166 GDM women followed up postpartum, rs62069863 in TRPV3 gene was positively associated with fasting insulin, homoeostasis model assessment of insulin resistance. CONCLUSIONS The variants of rs62069863 in TRPV3 gene, rs2232016 in PRMT6 gene, rs1112718 in HHEX/EXOC6 gene, rs927316 in GLIS3 gene, and rs10460009 in LPIN2 gene were newly-identified susceptibility loci for GDM in the Chinese Han population. TRPV3 was associated with worse insulin resistance postpartum. TRIAL REGISTRATION This study was registered in the Chinese Clinical Trial Registry. TRIAL REGISTRATION NUMBER ChiCTR2100043762. Date of first registration: 28/02/2021.
Collapse
Affiliation(s)
- Shufan Yue
- Department of Endocrinology, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, People's Republic of China
| | - Ling Pei
- Department of Endocrinology, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, People's Republic of China
| | - Fenghua Lai
- Department of Endocrinology, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, People's Republic of China
| | - Huangmeng Xiao
- Department of Endocrinology, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, People's Republic of China
| | - Zeting Li
- Department of Endocrinology, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, People's Republic of China
| | - Rui Zeng
- Department of Endocrinology, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, People's Republic of China
| | - Li Chen
- Department of Endocrinology, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, People's Republic of China
| | - Wenzhan Chen
- Department of Endocrinology, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, People's Republic of China
| | - Huiling Liu
- Department of Endocrinology, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, People's Republic of China
| | - Yanbing Li
- Department of Endocrinology, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, People's Republic of China
| | - Haipeng Xiao
- Department of Endocrinology, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, People's Republic of China
| | - Xiaopei Cao
- Department of Endocrinology, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, People's Republic of China.
| |
Collapse
|
6
|
Mukherjee A, Nongthomba U. To RNA-binding and beyond: Emerging facets of the role of Rbfox proteins in development and disease. WILEY INTERDISCIPLINARY REVIEWS. RNA 2023:e1813. [PMID: 37661850 DOI: 10.1002/wrna.1813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 07/23/2023] [Accepted: 07/25/2023] [Indexed: 09/05/2023]
Abstract
The RNA-binding Fox-1 homologue (Rbfox) proteins represent an ancient family of splicing factors, conserved through evolution. All members share an RNA recognition motif (RRM), and a particular affinity for the GCAUG signature in target RNA molecules. The role of Rbfox, as a splice factor, deciding the tissue-specific inclusion/exclusion of an exon, depending on its binding position on the flanking introns, is well known. Rbfox often acts in concert with other splicing factors, and forms splicing regulatory networks. Apart from this canonical role, recent studies show that Rbfox can also function as a transcription co-factor, and affects mRNA stability and translation. The repertoire of Rbfox targets is vast, including genes involved in the development of tissue lineages, such as neurogenesis, myogenesis, and erythropoeiesis, and molecular processes, including cytoskeletal dynamics, and calcium handling. A second layer of complexity is added by the fact that Rbfox expression itself is regulated by multiple mechanisms, and, in vertebrates, exhibits tissue-specific expression. The optimum dosage of Rbfox is critical, and its misexpression is etiological to various disease conditions. In this review, we discuss the contextual roles played by Rbfox as a tissue-specific regulator for the expression of many important genes with diverse functions, through the lens of the emerging data which highlights its involvement in many human diseases. Furthermore, we explore the mechanistic details provided by studies in model organisms, with emphasis on the work with Drosophila. This article is categorized under: RNA Processing > Splicing Mechanisms RNA Interactions with Proteins and Other Molecules > Protein-RNA Interactions: Functional Implications RNA Turnover and Surveillance > Regulation of RNA Stability RNA Processing > Splicing Regulation/Alternative Splicing.
Collapse
Affiliation(s)
- Amartya Mukherjee
- Department of Developmental Biology and Genetics, Indian Institute of Science, Bangalore, India
| | - Upendra Nongthomba
- Department of Developmental Biology and Genetics, Indian Institute of Science, Bangalore, India
| |
Collapse
|
7
|
Perron G, Jandaghi P, Moslemi E, Nishimura T, Rajaee M, Alkallas R, Lu T, Riazalhosseini Y, Najafabadi HS. Pan-cancer analysis of mRNA stability for decoding tumour post-transcriptional programs. Commun Biol 2022; 5:851. [PMID: 35987939 PMCID: PMC9392771 DOI: 10.1038/s42003-022-03796-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 08/04/2022] [Indexed: 11/25/2022] Open
Abstract
Measuring mRNA decay in tumours is a prohibitive challenge, limiting our ability to map the post-transcriptional programs of cancer. Here, using a statistical framework to decouple transcriptional and post-transcriptional effects in RNA-seq data, we uncover the mRNA stability changes that accompany tumour development and progression. Analysis of 7760 samples across 18 cancer types suggests that mRNA stability changes are ~30% as frequent as transcriptional events, highlighting their widespread role in shaping the tumour transcriptome. Dysregulation of programs associated with >80 RNA-binding proteins (RBPs) and microRNAs (miRNAs) drive these changes, including multi-cancer inactivation of RBFOX and miR-29 families. Phenotypic activation or inhibition of RBFOX1 highlights its role in calcium signaling dysregulation, while modulation of miR-29 shows its impact on extracellular matrix organization and stemness genes. Overall, our study underlines the integral role of mRNA stability in shaping the cancer transcriptome, and provides a resource for systematic interrogation of cancer-associated stability pathways. The role of mRNA stability in shaping the cancer transcriptome is revealed using a statistical analysis of transcriptomic data.
Collapse
|
8
|
Anantharajan J, Baburajendran N, Lin G, Loh YY, Xu W, Ahmad NHB, Liu S, Jansson AE, Kuan JWL, Ng EY, Yeo YK, Hung AW, Joy J, Hill J, Ford HL, Zhao R, Keller TH, Kang C. Structure-activity relationship studies of allosteric inhibitors of EYA2 tyrosine phosphatase. Protein Sci 2022; 31:422-431. [PMID: 34761455 PMCID: PMC8819961 DOI: 10.1002/pro.4234] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 10/31/2021] [Accepted: 11/02/2021] [Indexed: 02/03/2023]
Abstract
Human eyes absent (EYA) proteins possess Tyr phosphatase activity, which is critical for numerous cancer and metastasis promoting activities, making it an attractive target for cancer therapy. In this work, we demonstrate that the inhibitor-bound form of EYA2 does not favour binding to Mg2+ , which is indispensable for the Tyr phosphatase activity. We further describe characterization and optimization of this class of allosteric inhibitors. A series of analogues were synthesized to improve potency of the inhibitors and to elucidate structure-activity relationships. Two co-crystal structures confirm the binding modes of this class of inhibitors. Our medicinal chemical, structural, biochemical, and biophysical studies provide insight into the molecular interactions of EYA2 with these allosteric inhibitors. The compounds derived from this study are useful for exploring the function of the Tyr phosphatase activity of EYA2 in normal and cancerous cells and serve as reference compounds for screening or developing allosteric phosphatase inhibitors. Finally, the co-crystal structures reported in this study will aid in structure-based drug discovery against EYA2.
Collapse
Affiliation(s)
- Jothi Anantharajan
- Experimental Drug Development CentreAgency for Science, Technology and Research (A*STAR)Singapore
| | - Nithya Baburajendran
- Experimental Drug Development CentreAgency for Science, Technology and Research (A*STAR)Singapore
| | - Grace Lin
- Experimental Drug Development CentreAgency for Science, Technology and Research (A*STAR)Singapore
| | - Yong Yao Loh
- Experimental Drug Development CentreAgency for Science, Technology and Research (A*STAR)Singapore
| | - Weijun Xu
- Experimental Drug Development CentreAgency for Science, Technology and Research (A*STAR)Singapore
| | - Nur Huda Binte Ahmad
- Experimental Drug Development CentreAgency for Science, Technology and Research (A*STAR)Singapore
| | - Shuang Liu
- Experimental Drug Development CentreAgency for Science, Technology and Research (A*STAR)Singapore
- Chemical Biology and Therapeutics ScienceBroad Institute of MIT and HarvardCambridgeMassachusettsUSA
| | - Anna E. Jansson
- Experimental Drug Development CentreAgency for Science, Technology and Research (A*STAR)Singapore
| | - John Wee Liang Kuan
- Experimental Drug Development CentreAgency for Science, Technology and Research (A*STAR)Singapore
| | - Elizabeth Yihui Ng
- Experimental Drug Development CentreAgency for Science, Technology and Research (A*STAR)Singapore
| | - Yee Khoon Yeo
- Experimental Drug Development CentreAgency for Science, Technology and Research (A*STAR)Singapore
| | - Alvin W. Hung
- Experimental Drug Development CentreAgency for Science, Technology and Research (A*STAR)Singapore
| | - Joma Joy
- Experimental Drug Development CentreAgency for Science, Technology and Research (A*STAR)Singapore
| | - Jeffrey Hill
- Experimental Drug Development CentreAgency for Science, Technology and Research (A*STAR)Singapore
| | - Heide L. Ford
- Department of Obstetrics and GynecologyUniversity of Colorado Anschutz Medical CampusAuroraColoradoUSA
| | - Rui Zhao
- Department of Biochemistry and Molecular GeneticsUniversity of Colorado Anschutz Medical CampusAuroraColoradoUSA
| | - Thomas H. Keller
- Experimental Drug Development CentreAgency for Science, Technology and Research (A*STAR)Singapore
| | - CongBao Kang
- Experimental Drug Development CentreAgency for Science, Technology and Research (A*STAR)Singapore
| |
Collapse
|
9
|
Associations between genetic loci, environment factors and mental disorders: a genome-wide survival analysis using the UK Biobank data. Transl Psychiatry 2022; 12:17. [PMID: 35017462 PMCID: PMC8752606 DOI: 10.1038/s41398-022-01782-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 12/10/2021] [Accepted: 12/22/2021] [Indexed: 11/08/2022] Open
Abstract
It is well-accepted that both environment and genetic factors contribute to the development of mental disorders (MD). However, few genetic studies used time-to-event data analysis to identify the susceptibility genetic variants associated with MD and explore the role of environment factors in these associations. In order to detect novel genetic loci associated with MD based on the time-to-event data and identify the role of environmental factors in them, this study recruited 376,806 participants from the UK Biobank cohort. The MD outcomes (including overall MD status, anxiety, depression and substance use disorders (SUD)) were defined based on in-patient hospital, self-reported and death registry data collected in the UK Biobank. SPACOX approach was used to identify the susceptibility loci for MD using the time-to-event data of the UK Biobank cohort. And then we estimated the associations between identified candidate loci, fourteen environment factors and MD through a phenome-wide association study and mediation analysis. SPACOX identified multiple candidate loci for overall MD status, depression and SUD, such as rs139813674 (P value = 8.39 × 10-9, ZNF684) for overall MD status, rs7231178 (DCC, P value = 2.11 × 10-9) for depression, and rs10228494 (FOXP2, P value = 6.58 × 10-10) for SUD. Multiple environment factors could influence the associations between identified loci and MD, such as confide in others and felt hated. Our study identified novel candidate loci for MD, highlighting the strength of time-to-event data based genetic association studies. We also observed that multiple environment factors could influence the association between susceptibility loci and MD.
Collapse
|
10
|
Chang F, Zhang H, Chen C, Ke Z, Zhao M, Fan X, Zhang Y. Concomitant genetic alterations are associated with plasma D-dimer level in patients with non-small cell lung cancer. Future Oncol 2021; 18:679-690. [PMID: 34789015 DOI: 10.2217/fon-2021-0455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/09/2022] Open
Abstract
Objective: D-dimer is correlated to the poor prognosis of non-small cell lung cancer. The study aimed to investigate the association between plasma D-dimer and concomitant mutations in non-small cell lung cancer. Methods: A total of 517 non-small cell lung cancer patients were recruited and tested for ALK, BRAF, EGFR, HER2/ERBB2, KRAS, MET, PIK3CA, RET and ROS1 mutation by next-generation sequencing. Multiple gene mutation information, clinical baseline data and laboratory test data were analyzed statistically. Results: All patients were divided into three groups: wild-type group, single-gene mutation group and concomitant mutation group. The analysis of D-dimer, uric acid, gender, family history, smoking history, histology and distant metastasis all showed significant differences in the three groups (p < 0.05). D-dimer was considered as a risk factor for concomitant mutations according to the unordered multiple logistic regression analysis. The receiver operating characteristic curve analysis indicated that D-dimer had an important predictive value for the occurrence of concomitant mutations (AUC: 0.94; sensitivity: 88.71%; specificity: 86.46). There was significantly shorter median progression-free survival in the concomitant mutation group compared with the single mutation group (7.70 months vs 14.00 months; p = 0.0133). Conclusion: Plasma D-dimer is significantly associated with concomitant mutations and may be regarded as a potent predictor of concomitant mutations for non-small cell lung cancer patients.
Collapse
Affiliation(s)
- Fangqun Chang
- Department of Geriatric Respiratory & Critical Care, Anhui Geriatric Institute, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230022, PR China
| | - Hao Zhang
- Department of Geriatric Respiratory & Critical Care, Anhui Geriatric Institute, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230022, PR China
| | - Chen Chen
- Department of Geriatric Respiratory & Critical Care, Anhui Geriatric Institute, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230022, PR China
| | - Zhangyan Ke
- Department of Geriatric Respiratory & Critical Care, Anhui Geriatric Institute, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230022, PR China
| | - Meiling Zhao
- Department of Geriatric Respiratory & Critical Care, Anhui Geriatric Institute, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230022, PR China
| | - Xiaoyun Fan
- Department of Geriatric Respiratory & Critical Care, Anhui Geriatric Institute, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230022, PR China
| | - Yanbei Zhang
- Department of Geriatric Respiratory & Critical Care, Anhui Geriatric Institute, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230022, PR China
| |
Collapse
|
11
|
Fei Z, Zheng Q, Hong HG, Li Y. Inference for High-Dimensional Censored Quantile Regression. J Am Stat Assoc 2021; 118:898-912. [PMID: 37309513 PMCID: PMC10259833 DOI: 10.1080/01621459.2021.1957900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Revised: 04/12/2021] [Accepted: 07/13/2021] [Indexed: 10/20/2022]
Abstract
With the availability of high dimensional genetic biomarkers, it is of interest to identify heterogeneous effects of these predictors on patients' survival, along with proper statistical inference. Censored quantile regression has emerged as a powerful tool for detecting heterogeneous effects of covariates on survival outcomes. To our knowledge, there is little work available to draw inference on the effects of high dimensional predictors for censored quantile regression. This paper proposes a novel procedure to draw inference on all predictors within the framework of global censored quantile regression, which investigates covariate-response associations over an interval of quantile levels, instead of a few discrete values. The proposed estimator combines a sequence of low dimensional model estimates that are based on multi-sample splittings and variable selection. We show that, under some regularity conditions, the estimator is consistent and asymptotically follows a Gaussian process indexed by the quantile level. Simulation studies indicate that our procedure can properly quantify the uncertainty of the estimates in high dimensional settings. We apply our method to analyze the heterogeneous effects of SNPs residing in lung cancer pathways on patients' survival, using the Boston Lung Cancer Survivor Cohort, a cancer epidemiology study on the molecular mechanism of lung cancer.
Collapse
Affiliation(s)
- Zhe Fei
- Department of Biostatistics, University of California, Los Angeles
| | - Qi Zheng
- Department of Bioinformatics and Biostatistics, University of Louisville
| | - Hyokyoung G Hong
- Department of Statistics and Probability, Michigan State University
| | - Yi Li
- Department of Biostatistics, University of Michigan
| |
Collapse
|
12
|
Bi W, Lee S. Scalable and Robust Regression Methods for Phenome-Wide Association Analysis on Large-Scale Biobank Data. Front Genet 2021; 12:682638. [PMID: 34211504 PMCID: PMC8239389 DOI: 10.3389/fgene.2021.682638] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 05/17/2021] [Indexed: 02/05/2023] Open
Abstract
With the advances in genotyping technologies and electronic health records (EHRs), large biobanks have been great resources to identify novel genetic associations and gene-environment interactions on a genome-wide and even a phenome-wide scale. To date, several phenome-wide association studies (PheWAS) have been performed on biobank data, which provides comprehensive insights into many aspects of human genetics and biology. Although inspiring, PheWAS on large-scale biobank data encounters new challenges including computational burden, unbalanced phenotypic distribution, and genetic relationship. In this paper, we first discuss these new challenges and their potential impact on data analysis. Then, we summarize approaches that are scalable and robust in GWAS and PheWAS. This review can serve as a practical guide for geneticists, epidemiologists, and other medical researchers to identify genetic variations associated with health-related phenotypes in large-scale biobank data analysis. Meanwhile, it can also help statisticians to gain a comprehensive and up-to-date understanding of the current technical tool development.
Collapse
Affiliation(s)
- Wenjian Bi
- Department of Medical Genetics, School of Basic Medical Sciences, Peking University, Beijing, China
- Department of Biostatistics, University of Michigan, Ann Arbor, MI, United States
- Center for Statistical Genetics, University of Michigan, Ann Arbor, MI, United States
| | - Seunggeun Lee
- Graduate School of Data Science, Seoul National University, Seoul, South Korea
| |
Collapse
|
13
|
Li L, Chen M, Li G, Cai R. Raddeanin A induced apoptosis of non-small cell lung cancer cells by promoting ROS-mediated STAT3 inactivation. Tissue Cell 2021; 71:101577. [PMID: 34146943 DOI: 10.1016/j.tice.2021.101577] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 06/06/2021] [Accepted: 06/07/2021] [Indexed: 02/07/2023]
Abstract
PURPOSE Non-small cell lung cancer (NSCLC) is a high-risk type of lung cancer. Raddeanin A exerts anti-tumor activity by regulating cell proliferation and apoptosis, but its role in NSCLC remains to be elucidated. This study was to investigate the effect of raddeanin A in NSCLC and its mechanism. METHODS The effect of raddeanin A (2, 4, 8, 10 μmol/L) on the viability, proliferation and apoptosis of A549 and H1299 cells was determined by cell counting kit-8, colony formation and flow cytometry assays, respectively. Next, western blot was performed to examine the protein expressions of cleaved caspase-3, Bax, phosphorylated signal transducer and activator of transcription 3 (p-STAT3) and STAT3. Subsequently, the intracellular reactive oxygen species (ROS) generation and mitochondrial membrane potential of NSCLC cells were detected by 2', 7'-dichlorofluorescein-diacetate (DCFH-DA) and JC-1 assay. Lastly, the effect of N-acetylcysteine (NAC) on the apoptosis, ROS generation, and STAT3 was evaluated by the above-mentioned assays again. RESULTS Raddeanin A treatment had no obvious effect on 16HBE cells viability, but it inhibited viability and proliferation of A549 and H1299 cells, promoted the apoptosis, increased the protein expressions of cleaved caspase-3 and Bax, generated intracellular ROS, as well as decreased mitochondrial membrane potential and the expressions of p-STAT3 and STAT3 in A549 and H1299 cells. After cells treated with NAC, the effect of raddeanin A was reversed, as evidenced by the apoptosis and ROS generation were suppressed, and the expression of p-STAT3 was promoted. CONCLUSION Raddeanin A suppressed the proliferation and induced apoptosis of NSCLC cells via promoting the ROS-mediated STAT3 inactivation.
Collapse
Affiliation(s)
- Liang Li
- Department of Thoracic Surgery, Hainan General Hospital, China
| | - Minbiao Chen
- Department of Thoracic Surgery, Hainan General Hospital, China
| | - Gao Li
- Department of Thoracic Surgery, Hainan General Hospital, China
| | - Renzhong Cai
- Department of Thoracic Surgery, Hainan General Hospital, China.
| |
Collapse
|
14
|
Yang S, Tang D, Zhao YC, Liu H, Luo S, Stinchcombe TE, Glass C, Su L, Shen S, Christiani DC, Wang Q, Wei Q. Potentially functional variants of ERAP1, PSMF1 and NCF2 in the MHC-I-related pathway predict non-small cell lung cancer survival. Cancer Immunol Immunother 2021; 70:2819-2833. [PMID: 33651148 DOI: 10.1007/s00262-021-02877-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 02/01/2021] [Indexed: 01/21/2023]
Abstract
BACKGROUND Cellular immunity against tumor cells is highly dependent on antigen presentation by major histocompatibility complex class I (MHC-I) molecules. However, few published studies have investigated associations between functional variants of MHC-I-related genes and clinical outcomes of lung cancer patients. METHODS We performed a two-phase Cox proportional hazards regression analysis by using two previously published genome-wide association studies to evaluate associations between genetic variants in the MHC-I-related gene set and the survival of non-small cell lung cancer (NSCLC) patients, followed by expression quantitative trait loci analysis. RESULTS Of the 7811 single-nucleotide polymorphisms (SNPs) in 89 genes of 1185 NSCLC patients in the discovery dataset of the Prostate, Lung, Colorectal and Ovarian Cancer Screening Trial, 24 SNPs remained statistically significant after validation in additional 984 NSCLC patients from the Harvard Lung Cancer Susceptibility Study. In a multivariate stepwise Cox model, three independent functional SNPs (ERAP1 rs469783 T > C, PSMF1 rs13040574 C > A and NCF2 rs36071574 G > A) remained significant with an adjusted hazards ratio (HR) of 0.83 [95% confidence interval (CI) = 0.77-0.89, P = 8.0 × 10-7], 0.86 (0.80-0.93, P = 9.4 × 10-5) and 1.31 (1.11-1.54, P = 0.001) for overall survival (OS), respectively. Further combined genotypes revealed a poor survival in a dose-response manner in association with the number of unfavorable genotypes (Ptrend < 0.0001 and 0.0002 for OS and disease-specific survival, respectively). Also, ERAP1 rs469783C and PSMF1 rs13040574A alleles were associated with higher mRNA expression levels of their genes. CONCLUSION These potentially functional SNPs of the MHC-I-related genes may be biomarkers for NSCLC survival, possibly through modulating the expression of corresponding genes.
Collapse
Affiliation(s)
- Sen Yang
- Department of Internal Medicine, Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China
- Duke University Medical Center and Department of Population Health Sciences, Duke Cancer Institute, Duke University School of Medicine, 905 S LaSalle Street, Durham, NC, 27710, USA
- Department of Population Health Sciences, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Dongfang Tang
- Duke University Medical Center and Department of Population Health Sciences, Duke Cancer Institute, Duke University School of Medicine, 905 S LaSalle Street, Durham, NC, 27710, USA
- Department of Population Health Sciences, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Yu Chen Zhao
- Duke University Medical Center and Department of Population Health Sciences, Duke Cancer Institute, Duke University School of Medicine, 905 S LaSalle Street, Durham, NC, 27710, USA
- Department of Population Health Sciences, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Hongliang Liu
- Duke University Medical Center and Department of Population Health Sciences, Duke Cancer Institute, Duke University School of Medicine, 905 S LaSalle Street, Durham, NC, 27710, USA
- Department of Population Health Sciences, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Sheng Luo
- Department of Biostatistics and Bioinformatics, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Thomas E Stinchcombe
- Duke University Medical Center and Department of Population Health Sciences, Duke Cancer Institute, Duke University School of Medicine, 905 S LaSalle Street, Durham, NC, 27710, USA
- Department of Medicine, Duke University Medical Center, Durham, NC, 27710, USA
| | - Carolyn Glass
- Duke University Medical Center and Department of Population Health Sciences, Duke Cancer Institute, Duke University School of Medicine, 905 S LaSalle Street, Durham, NC, 27710, USA
- Department of Pathology, Duke ©University School of Medicine, Durham, NC, 27710, USA
| | - Li Su
- Departments of Environmental Health and Department of Epidemiology, Harvard School of Public Health, Boston, MA, 02115, USA
| | - Sipeng Shen
- Departments of Environmental Health and Department of Epidemiology, Harvard School of Public Health, Boston, MA, 02115, USA
| | - David C Christiani
- Departments of Environmental Health and Department of Epidemiology, Harvard School of Public Health, Boston, MA, 02115, USA
- Department of Medicine, Massachusetts General Hospital, Boston, MA, 02114, USA
| | - Qiming Wang
- Department of Internal Medicine, Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China.
| | - Qingyi Wei
- Duke University Medical Center and Department of Population Health Sciences, Duke Cancer Institute, Duke University School of Medicine, 905 S LaSalle Street, Durham, NC, 27710, USA.
- Department of Population Health Sciences, Duke University School of Medicine, Durham, NC, 27710, USA.
- Department of Medicine, Duke University Medical Center, Durham, NC, 27710, USA.
| |
Collapse
|
15
|
Brhane Y, Yang P, Christiani DC, Liu G, McLaughlin JR, Brennan P, Shete S, Field JK, Tardón A, Kohno T, Shiraishi K, Matsuo K, Bossé Y, Amos CI, Hung RJ. Genetic Determinants of Lung Cancer Prognosis in Never Smokers: A Pooled Analysis in the International Lung Cancer Consortium. Cancer Epidemiol Biomarkers Prev 2020; 29:1983-1992. [PMID: 32699080 PMCID: PMC7541720 DOI: 10.1158/1055-9965.epi-20-0248] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 05/12/2020] [Accepted: 07/15/2020] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Lung cancer remains the leading cause of cancer death worldwide, with 15% to 20% occurring in never smokers. To assess genetic determinants for prognosis among never smokers, we conducted a genome-wide investigation in the International Lung Cancer Consortium (ILCCO). METHODS Genomic and clinical data from 1,569 never-smoking patients with lung cancer of European ancestry from 10 ILCCO studies were included. HRs and 95% confidence intervals of overall survival were estimated. We assessed whether the associations were mediated through mRNA expression-based 1,553 normal lung tissues from the lung expression quantitative trait loci (eQTL) dataset and Genotype-Tissue Expression (GTEx). For cross-ethnicity generalization, we assessed the associations in a Japanese study (N = 887). RESULTS One locus at 13q22.2 was associated with lung adenocarcinoma survival at genome-wide level, with carriers of rs12875562-T allele exhibiting poor prognosis [HR = 1.71 (1.41-2.07), P = 3.60 × 10-8], and altered mRNA expression of LMO7DN in lung tissue (GTEx, P = 9.40 × 10-7; Lung eQTL dataset, P = 0.003). Furthermore, 2 of 11 independent loci that reached the suggestive significance level (P < 10-6) were significant eQTL affecting mRNA expression of nearby genes in lung tissues, including CAPZB at 1p36.13 and UBAC1 at 9q34.3. One locus encoding NWD2/KIAA1239 at 4p14 showed associations in both European [HR = 0.50 (0.38-0.66), P = 6.92 × 10-7] and Japanese populations [HR = 0.79 (0.67-0.94), P = 0.007]. CONCLUSIONS Based on the largest genomic investigation on the lung cancer prognosis of never smokers to date, we observed that lung cancer prognosis is affected by inherited genetic variants. IMPACT We identified one locus near LMO7DN at genome-wide level and several potential prognostic genes with cis-effect on mRNA expression. Further functional genomics work is required to understand their role in tumor progression.
Collapse
Affiliation(s)
- Yonathan Brhane
- Prosserman Centre for Population Health Research, Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, Canada
| | | | | | - Geoffrey Liu
- Princess Margaret Cancer Centre, Toronto, Canada
| | - John R McLaughlin
- Dalla Lana School of Public Health, University of Toronto, Toronto, Canada
| | - Paul Brennan
- International Agency for Research on Cancer, Lyon, France
| | - Sanjay Shete
- The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - John K Field
- Roy Castle Lung Cancer Research Programme, Institute of Translational Medicine, Department of Molecular and Clinical Cancer Medicine, University of Liverpool, Liverpool, United Kingdom
| | - Adonina Tardón
- University of Oviedo, ISPA and CIBERESP, Faculty of Medicine, Campus del Cristo, Oviedo, Spain
| | - Takashi Kohno
- Division of Genome Biology, National Cancer Center Research Institute, Tokyo, Japan
| | - Kouya Shiraishi
- Division of Genome Biology, National Cancer Center Research Institute, Tokyo, Japan
| | - Keitaro Matsuo
- Division of Cancer Epidemiology and Prevention, Department of Preventive Medicine, Aichi Cancer Center Research Institute, Nagoya, Japan
| | - Yohan Bossé
- Institut universitaire de cardiologie et de pneumologie de Québec, Department of Molecular Medicine, Laval University, Quebec, Canada
| | - Christopher I Amos
- Institute for Clinical and Translational Research, Baylor College of Medicine, Houston, Texas
| | - Rayjean J Hung
- Prosserman Centre for Population Health Research, Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, Canada.
- Dalla Lana School of Public Health, University of Toronto, Toronto, Canada
| |
Collapse
|
16
|
Tang D, Zhao YC, Liu H, Luo S, Clarke JM, Glass C, Su L, Shen S, Christiani DC, Gao W, Wei Q. Potentially functional genetic variants in PLIN2, SULT2A1 and UGT1A9 genes of the ketone pathway and survival of nonsmall cell lung cancer. Int J Cancer 2020; 147:1559-1570. [PMID: 32072637 PMCID: PMC8078192 DOI: 10.1002/ijc.32932] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 01/18/2020] [Accepted: 02/03/2020] [Indexed: 12/11/2022]
Abstract
The ketone metabolism pathway is a principle procedure in physiological homeostasis and induces cancer cells to switch between glycolysis and oxidative phosphorylation for energy production. We conducted a two-phase analysis for associations between genetic variants in the ketone metabolism pathway genes and survival of nonsmall cell lung cancer (NSCLC) by analyzing genotyping data from two published genome-wide association studies (GWASs). In the discovery, we used a genotyping dataset from the Prostate, Lung, Colorectal and Ovarian Cancer Screening Trial in the multivariable Cox proportional hazards regression analysis. We used Bayesian false discovery probability (≤0.80) for multiple testing correction to evaluate associations between 25,819 (2,176 genotyped and 23,643 imputed) single-nucleotide polymorphisms (SNPs) in 162 genes and survival of 1,185 NSCLC patients. Subsequently, we validated the identified significant SNPs with an additional 984 NSCLC patients from the Harvard Lung Cancer Susceptibility GWAS study. Finally, we found that three independent and potentially functional SNPs in three different genes (i.e., PLIN2 rs7867814 G>A, SULT2A1 rs2547235 C>T and UGT1A9 rs2011404 C>T) were independently associated with risk of death from NSCLC, with a combined hazards ratio of 1.22 [95% confidence interval = 1.09-1.36 and p = 0.0003], 0.82 (0.74-0.91 and p = 0.0002) and 1.21 (1.10-1.33 and p = 0.0001), respectively. Additional expression quantitative trait loci analysis found that the survival-associated PLIN2 rs7867814 GA + AA genotypes, but not the genotypes of other two SNPs, were significantly associated with increased mRNA expression levels (p = 0.005). These results indicated that PLIN2 variants may be potential predictors of NSCLC survival through regulating the PLIN2 expression.
Collapse
Affiliation(s)
- Dongfang Tang
- Department of Thoracic Oncology, Huadong Hospital, Fudan University, Shanghai 200040, China
- Duke Cancer Institute, Duke University Medical Center, Durham, NC 27710, USA
- Department of Population Health Sciences, Duke University School of Medicine, Durham, NC 27710, USA
| | - Yu Chen Zhao
- Duke Cancer Institute, Duke University Medical Center, Durham, NC 27710, USA
- Department of Population Health Sciences, Duke University School of Medicine, Durham, NC 27710, USA
| | - Hongliang Liu
- Duke Cancer Institute, Duke University Medical Center, Durham, NC 27710, USA
- Department of Population Health Sciences, Duke University School of Medicine, Durham, NC 27710, USA
| | - Sheng Luo
- Department of Biostatistics and Bioinformatics, Duke University School of Medicine, Durham, NC 27710, USA
| | - Jeffrey M. Clarke
- Duke Cancer Institute, Duke University Medical Center, Durham, NC 27710, USA
- Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA
| | - Carolyn Glass
- Duke Cancer Institute, Duke University Medical Center, Durham, NC 27710, USA
- Department of Pathology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Li Su
- Departments of Environmental Health and Department of Epidemiology, Harvard School of Public Health, Boston, MA, 02115 USA
| | - Sipeng Shen
- Departments of Environmental Health and Department of Epidemiology, Harvard School of Public Health, Boston, MA, 02115 USA
| | - David C. Christiani
- Departments of Environmental Health and Department of Epidemiology, Harvard School of Public Health, Boston, MA, 02115 USA
- Department of Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Wen Gao
- Department of Thoracic Oncology, Huadong Hospital, Fudan University, Shanghai 200040, China
| | - Qingyi Wei
- Duke Cancer Institute, Duke University Medical Center, Durham, NC 27710, USA
- Department of Population Health Sciences, Duke University School of Medicine, Durham, NC 27710, USA
- Department of Biostatistics and Bioinformatics, Duke University School of Medicine, Durham, NC 27710, USA
| |
Collapse
|
17
|
Li C, Wu D, Lu Q. Set-based genetic association and interaction tests for survival outcomes based on weighted V statistics. Genet Epidemiol 2020; 45:46-63. [PMID: 32896012 DOI: 10.1002/gepi.22353] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 08/03/2020] [Accepted: 08/03/2020] [Indexed: 01/07/2023]
Abstract
With advancements in high-throughout technologies, studies have been conducted to investigate the role of massive genetic variants in human diseases. While set-based tests have been developed for binary and continuous disease outcomes, there are few computationally efficient set-based tests available for time-to-event outcomes. To facilitate the genetic association and interaction analyses of time-to-event outcomes, We develop a suite of multivariant tests based on weighted V statistics with or without considering potential genetic heterogeneity. In addition to the computation efficiency and nice asymptotic properties, all the new tests can deal with left truncation and competing risks in the survival data, and adjust for covariates. Simulation studies show that the new tests run faster, are more accurate in small samples, and account for confounding effect better than the existing multivariant survival tests. When the genetic effect is heterogeneous across individuals/subpopulations, the association test considering genetic heterogeneity is more powerful than the existing tests that do not account for genetic heterogeneity. Using the new methods, we perform a genome-wide association analysis of the genotype and age-to-Alzheimer's data from the Rush Memory and Aging Project and the Religious Orders Study. The analysis identifies two genes, APOE and APOC1, associated with age to Alzheimer's disease onset.
Collapse
Affiliation(s)
- Chenxi Li
- Department of Epidemiology and Biostatistics, Michigan State University, East Lansing, Michigan, USA
| | - Di Wu
- Department of Epidemiology and Biostatistics, Michigan State University, East Lansing, Michigan, USA
| | - Qing Lu
- Department of Biostatistics, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
18
|
Bi W, Fritsche LG, Mukherjee B, Kim S, Lee S. A Fast and Accurate Method for Genome-Wide Time-to-Event Data Analysis and Its Application to UK Biobank. Am J Hum Genet 2020; 107:222-233. [PMID: 32589924 DOI: 10.1016/j.ajhg.2020.06.003] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Accepted: 06/03/2020] [Indexed: 12/09/2022] Open
Abstract
With increasing biobanking efforts connecting electronic health records and national registries to germline genetics, the time-to-event data analysis has attracted increasing attention in the genetics studies of human diseases. In time-to-event data analysis, the Cox proportional hazards (PH) regression model is one of the most used approaches. However, existing methods and tools are not scalable when analyzing a large biobank with hundreds of thousands of samples and endpoints, and they are not accurate when testing low-frequency and rare variants. Here, we propose a scalable and accurate method, SPACox (a saddlepoint approximation implementation based on the Cox PH regression model), that is applicable for genome-wide scale time-to-event data analysis. SPACox requires fitting a Cox PH regression model only once across the genome-wide analysis and then uses a saddlepoint approximation (SPA) to calibrate the test statistics. Simulation studies show that SPACox is 76-252 times faster than other existing alternatives, such as gwasurvivr, 185-511 times faster than the standard Wald test, and more than 6,000 times faster than the Firth correction and can control type I error rates at the genome-wide significance level regardless of minor allele frequencies. Through the analysis of UK Biobank inpatient data of 282,871 white British European ancestry samples, we show that SPACox can efficiently analyze large sample sizes and accurately control type I error rates. We identified 611 loci associated with time-to-event phenotypes of 12 common diseases, of which 38 loci would be missed within a logistic regression framework with a binary phenotype defined as event occurrence status during the follow-up period.
Collapse
|
19
|
Silencing of PRDX2 Inhibits the Proliferation and Invasion of Non-Small Cell Lung Cancer Cells. BIOMED RESEARCH INTERNATIONAL 2020; 2020:1276328. [PMID: 32337219 PMCID: PMC7157786 DOI: 10.1155/2020/1276328] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 02/24/2020] [Accepted: 02/25/2020] [Indexed: 12/12/2022]
Abstract
Peroxiredoxin 2 (PRDX2), a member of the peroxiredoxin family of antioxidant enzymes, has been revealed to be an important player in cancer progression. However, the biological role of PRDX2 in the progression of non-small cell lung cancer (NSCLC) is poor reported. In the present study, the loss-of-function experiments were performed to investigate the specific role of PRDX2 in the growth and invasion of NSCLC. The results revealed that knockdown of PRDX2 by siRNA interference significantly suppressed the proliferation, migration, and invasion of A549 and H1299 cells, as well as diminished the activity of MMP9. Additionally, the decrease in PRDX2 expression significantly promoted apoptosis in NSCLC cells by downregulating expression of Bcl-2 and upregulating the expression of Bax, cleaved caspase 3 and cleaved caspase 9, but had no significant effect on the apoptosis of normal lung epithelial cells BEAS-2B. Moreover, PRDX2 inhibitor also inhibited the proliferation, migration, and invasion of A549 cells and promoted apoptosis. Further, our data demonstrated that silencing of PRDX2 markedly reduced the phosphorylation of Akt and mTOR and expression of downstream proteins Cyclin D1 and p70S6k. In conclusion, our findings indicate that PRDX2 exerts a prooncogenic role in the progression of NSCLC and might be a potential therapeutic target for NSCLC treatment.
Collapse
|
20
|
Cai M, Lin N, Su L, Wu X, Xie X, Li Y, Chen X, Lin Y, Huang H, Xu L. Copy number variations associated with fetal congenital kidney malformations. Mol Cytogenet 2020; 13:11. [PMID: 32211073 PMCID: PMC7092440 DOI: 10.1186/s13039-020-00481-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Accepted: 03/17/2020] [Indexed: 01/19/2023] Open
Abstract
Background Congenital anomalies of the kidney and urinary tract (CAKUT) constitute 20–30% of all congenital malformations. Within the CAKUT phenotypic spectrum, renal hypodysplasia (RHD) is particularly severe. This study aimed to evaluate the applicability of single-nucleotide polymorphism (SNP) array test in prenatal diagnosis of RHD for improving prenatal genetic counseling and to search for evidence of a possible causative role of copy-number variations (CNVs) in RHD. Results We performed a systematic survey of CNV burden in 120 fetuses with RHD: 103 cases were isolated RHD and 17 were non-isolated RHD. Single-nucleotide polymorphism (SNP) array test was performed using the Affymetrix CytoScan HD platform. All annotated CNVs were validated by fluorescence in situ hybridization. We identified abnormal CNVs in 15 (12.5%) cases of RHD; of these CNVs, 11 were pathogenic and 4 were variants of uncertain significance. The detection rate of abnormal CNVs in non-isolated RHD was higher (29.4%, 5/17) than that in isolated RHD (9.7%, 10/103) (P = 0.060). Parents are more inclined to terminate the pregnancy if the fetuses have pathogenic results of the SNP-array test. Conclusions The variable phenotypes that abnormal CNVs may cause indicate the genetic counseling is needed for RHD cases.
Collapse
Affiliation(s)
- Meiying Cai
- Department of the Prenatal Diagnosis Center, Fujian Provincial Maternity and Children's Hospital, affiliated hospital of Fujian Medical University, Fujian Key Laboratory for Prenatal Diagnosis and Birth Defect, Fuzhou, China
| | - Na Lin
- Department of the Prenatal Diagnosis Center, Fujian Provincial Maternity and Children's Hospital, affiliated hospital of Fujian Medical University, Fujian Key Laboratory for Prenatal Diagnosis and Birth Defect, Fuzhou, China
| | - Linjuan Su
- Department of the Prenatal Diagnosis Center, Fujian Provincial Maternity and Children's Hospital, affiliated hospital of Fujian Medical University, Fujian Key Laboratory for Prenatal Diagnosis and Birth Defect, Fuzhou, China
| | - Xiaoqing Wu
- Department of the Prenatal Diagnosis Center, Fujian Provincial Maternity and Children's Hospital, affiliated hospital of Fujian Medical University, Fujian Key Laboratory for Prenatal Diagnosis and Birth Defect, Fuzhou, China
| | - Xiaorui Xie
- Department of the Prenatal Diagnosis Center, Fujian Provincial Maternity and Children's Hospital, affiliated hospital of Fujian Medical University, Fujian Key Laboratory for Prenatal Diagnosis and Birth Defect, Fuzhou, China
| | - Ying Li
- Department of the Prenatal Diagnosis Center, Fujian Provincial Maternity and Children's Hospital, affiliated hospital of Fujian Medical University, Fujian Key Laboratory for Prenatal Diagnosis and Birth Defect, Fuzhou, China
| | - Xuemei Chen
- Department of the Prenatal Diagnosis Center, Fujian Provincial Maternity and Children's Hospital, affiliated hospital of Fujian Medical University, Fujian Key Laboratory for Prenatal Diagnosis and Birth Defect, Fuzhou, China
| | - Yuan Lin
- Department of the Prenatal Diagnosis Center, Fujian Provincial Maternity and Children's Hospital, affiliated hospital of Fujian Medical University, Fujian Key Laboratory for Prenatal Diagnosis and Birth Defect, Fuzhou, China
| | - Hailong Huang
- Department of the Prenatal Diagnosis Center, Fujian Provincial Maternity and Children's Hospital, affiliated hospital of Fujian Medical University, Fujian Key Laboratory for Prenatal Diagnosis and Birth Defect, Fuzhou, China
| | - Liangpu Xu
- Department of the Prenatal Diagnosis Center, Fujian Provincial Maternity and Children's Hospital, affiliated hospital of Fujian Medical University, Fujian Key Laboratory for Prenatal Diagnosis and Birth Defect, Fuzhou, China
| |
Collapse
|
21
|
Li C, Wang A, Chen Y, Liu Y, Zhang H, Zhou J. MicroRNA‑299‑5p inhibits cell metastasis in breast cancer by directly targeting serine/threonine kinase 39. Oncol Rep 2020; 43:1221-1233. [PMID: 32020227 PMCID: PMC7057922 DOI: 10.3892/or.2020.7486] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Accepted: 01/10/2020] [Indexed: 12/14/2022] Open
Abstract
Numerous studies have demonstrated that microRNAs (miRNAs) play a key role in human carcinogenesis and metastasis. For example, miR‑299‑5p has previously been revealed to be dysregulated in several human cancers. However, the biological function of miR‑299‑5p in breast cancer remains unclear. The present study demonstrated that miR‑299‑5p was downregulated in breast cancer tissues and cell lines. The restoration of miR‑299‑5p expression suppressed cell migration and invasion, whereas inhibition of miR‑299‑5p promoted cell migration and invasion. In addition, in vivo studies demonstrated that miR‑299‑5p overexpression was able to inhibit tumour metastasis in nude mice. Mechanistically, through bioinformatics analysis and a dual‑luciferase assay, it was confirmed that miR‑299‑5p directly targets serine/threonine kinase 39 (STK39). Silencing STK39 inhibited cell metastasis and suppressed epithelial‑mesenchymal transition markers and matrix metalloproteinase expression, whereas restoration of STK39 expression was able to reverse miR‑299‑5p‑inhibited cell migration and invasion. Collectively, the results of the present study demonstrated that miR‑299‑5p supresses breast cancer cell migration and invasion by targeting STK39. These findings may provide novel insights into miR‑299‑5p and its potential diagnostic and therapeutic benefits in breast cancer.
Collapse
Affiliation(s)
- Chenxing Li
- Department of Genetics and Cell Biology, School of Basic Medical Sciences, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Aiying Wang
- Department of Genetics and Cell Biology, School of Basic Medical Sciences, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Yanke Chen
- Department of Genetics and Cell Biology, School of Basic Medical Sciences, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Yan Liu
- Clinical Research Center of Shaanxi Province for Dental and Maxillofacial Diseases, Department of Preventive Dentistry, College of Stomatology, Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| | - Hui Zhang
- College of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Jun Zhou
- Department of Pharmacology, School of Basic Medical Sciences, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| |
Collapse
|
22
|
Li X, Li X, Yin Z, Jiang M, Tian W, Tang M, Zhou B. Polymorphisms of rs4787050 and rs8045980 are associated with lung cancer risk in northeast Chinese female nonsmokers. Biomark Med 2019; 13:1119-1128. [PMID: 31512508 DOI: 10.2217/bmm-2018-0482] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Aim: We studied the association between two single-nucleotide polymorphisms (SNPs: rs4787050 and rs8045980) in RBFOX1 and lung cancer risk, and explored the interaction between the two SNPs and exposure to cooking oil fume on lung cancer risk in northeast Chinese female nonsmokers. Methods: Northeast Chinese female nonsmokers were enrolled into the study (people with lung cancer, 647; people without lung cancer, 675). All statistical analyses were performed using SPSS software. Results: The SNPs rs4787050 and rs8045980 showed a significant association with susceptibility to lung cancer. Moreover, cooking oil fume exposure was found to increase the risk of lung cancer. However, no gene-environment interactions were discovered. Conclusion: The present study revealed that rs4787050 and rs8045980 in RBFOX1 may be meaningful as a novel biomarker for lung cancer susceptibility.
Collapse
Affiliation(s)
- Xiaoying Li
- Department of Clinical Epidemiology, First Affiliated Hospital of China Medical University, Shenyang 110001, PR China.,Department of Epidemiology, School of Public Health, China Medical University, Shenyang, 110122, PR China
| | - Xuelian Li
- Department of Epidemiology, School of Public Health, China Medical University, Shenyang, 110122, PR China
| | - Zhihua Yin
- Department of Epidemiology, School of Public Health, China Medical University, Shenyang, 110122, PR China
| | - Min Jiang
- Department of Clinical Epidemiology, First Affiliated Hospital of China Medical University, Shenyang 110001, PR China.,Department of Epidemiology, School of Public Health, China Medical University, Shenyang, 110122, PR China
| | - Wen Tian
- Department of Clinical Epidemiology, First Affiliated Hospital of China Medical University, Shenyang 110001, PR China.,Department of Epidemiology, School of Public Health, China Medical University, Shenyang, 110122, PR China
| | - Man Tang
- Department of Clinical Pharmacology, School of Pharmacy, China Medical University, Shenyang, 110122, PR China
| | - Baosen Zhou
- Department of Clinical Epidemiology, First Affiliated Hospital of China Medical University, Shenyang 110001, PR China.,Department of Epidemiology, School of Public Health, China Medical University, Shenyang, 110122, PR China
| |
Collapse
|
23
|
Anantharajan J, Zhou H, Zhang L, Hotz T, Vincent MY, Blevins MA, Jansson AE, Kuan JWL, Ng EY, Yeo YK, Baburajendran N, Lin G, Hung AW, Joy J, Patnaik S, Marugan J, Rudra P, Ghosh D, Hill J, Keller TH, Zhao R, Ford HL, Kang C. Structural and Functional Analyses of an Allosteric EYA2 Phosphatase Inhibitor That Has On-Target Effects in Human Lung Cancer Cells. Mol Cancer Ther 2019; 18:1484-1496. [PMID: 31285279 DOI: 10.1158/1535-7163.mct-18-1239] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 05/05/2019] [Accepted: 06/28/2019] [Indexed: 12/23/2022]
Abstract
EYA proteins (EYA1-4) are critical developmental transcriptional cofactors that contain an EYA domain (ED) harboring Tyr phosphatase activity. EYA proteins are largely downregulated after embryogenesis but are reexpressed in cancers, and their Tyr phosphatase activity plays an important role in the DNA damage response and tumor progression. We previously identified a class of small-molecule allosteric inhibitors that specifically inhibit the Tyr phosphatase activity of EYA2. Herein, we determined the crystal structure of the EYA2 ED in complex with NCGC00249987 (a representative compound in this class), revealing that it binds to an induced pocket distant from the active site. NCGC00249987 binding leads to a conformational change of the active site that is unfavorable for Mg2+ binding, thereby inhibiting EYA2's Tyr phosphatase activity. We demonstrate, using genetic mutations, that migration, invadopodia formation, and invasion of lung adenocarcinoma cells are dependent on EYA2 Tyr phosphatase activity, whereas growth and survival are not. Further, we demonstrate that NCGC00249987 specifically targets migration, invadopodia formation, and invasion of lung cancer cells, but that it does not inhibit cell growth or survival. The compound has no effect on lung cancer cells carrying an EYA2 F290Y mutant that abolishes compound binding, indicating that NCGC00249987 is on target in lung cancer cells. These data suggest that the NCGC00249987 allosteric inhibitor can be used as a chemical probe to study the function of the EYA2 Tyr phosphatase activity in cells and may have the potential to be developed into an antimetastatic agent for cancers reliant on EYA2's Tyr phosphatase activity.
Collapse
Affiliation(s)
| | - Hengbo Zhou
- Department of Pharmacology, University of Colorado Denver Anschutz Medical Campus, Aurora, Colorado
| | - Lingdi Zhang
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver Anschutz Medical Campus, Aurora, Colorado
| | - Taylor Hotz
- Department of Pharmacology, University of Colorado Denver Anschutz Medical Campus, Aurora, Colorado
| | - Melanie Y Vincent
- Department of Pharmacology, University of Colorado Denver Anschutz Medical Campus, Aurora, Colorado
| | - Melanie A Blevins
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver Anschutz Medical Campus, Aurora, Colorado
| | - Anna E Jansson
- Experimental Drug Discovery Centre, A*STAR, Singapore, Singapore
| | | | | | - Yee Khoon Yeo
- Experimental Drug Discovery Centre, A*STAR, Singapore, Singapore
| | | | - Grace Lin
- Experimental Drug Discovery Centre, A*STAR, Singapore, Singapore
| | - Alvin W Hung
- Experimental Drug Discovery Centre, A*STAR, Singapore, Singapore
| | - Joma Joy
- Experimental Drug Discovery Centre, A*STAR, Singapore, Singapore
| | - Samarjit Patnaik
- National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, Maryland
| | - Juan Marugan
- National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, Maryland
| | - Pratyaydipta Rudra
- Department of Biostatistics and Informatics, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Debashis Ghosh
- Department of Biostatistics and Informatics, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Jeffrey Hill
- Experimental Drug Discovery Centre, A*STAR, Singapore, Singapore.
| | - Thomas H Keller
- Experimental Drug Discovery Centre, A*STAR, Singapore, Singapore.
| | - Rui Zhao
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver Anschutz Medical Campus, Aurora, Colorado.
| | - Heide L Ford
- Department of Pharmacology, University of Colorado Denver Anschutz Medical Campus, Aurora, Colorado. .,Department of Biochemistry and Molecular Genetics, University of Colorado Denver Anschutz Medical Campus, Aurora, Colorado
| | - CongBao Kang
- Experimental Drug Discovery Centre, A*STAR, Singapore, Singapore.
| |
Collapse
|
24
|
Tumor-associated antigens identified early in mouse mammary tumor development can be effective vaccine targets. Vaccine 2019; 37:3552-3561. [PMID: 31126858 DOI: 10.1016/j.vaccine.2019.05.024] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 04/05/2019] [Accepted: 05/09/2019] [Indexed: 01/25/2023]
Abstract
Breast cancer vaccines composed of antigens identified by serological analysis of cDNA expression libraries (SEREX) induce antigen specific immune responses in patients but have had disappointing clinical benefits. While many attempts to modify the adjuvants and vaccine method have been tried, one issue not addressed was whether the SEREX tumor-associated antigens identified from late stages of disease were ideal targets. We questioned in the transgenic TgMMTV-neu mouse model whether the antigen repertoire is distinct between early and late stage breast cancer and whether the antigens identified via SEREX from transgenic mice with early or late stage tumors would elicit differential anti-tumor effects to address this question. Three early stage antigens, Pdhx, Stk39, and Otud6B, were identified from a SEREX screen of mice prior to development of palpable lesions. Formulated into a vaccine, each early antigen inhibited tumor growth (p < 0.0001). The antigens identified from mice with late stage tumors (Swap70, Gsn, and Arhgef2) were unable to inhibit tumor growth when used as vaccines (for example Gsn p = 0.26). Each of the three early stage antigens were essential for tumor survival in syngeneic mouse tumor cells and in human breast cancer cell lines across breast cancer subtypes. Silencing protein expression of the early antigens increased apoptosis (p < 0.0001 for all antigens in mouse and p < 0.05 for all antigens in human triple negative breast cancer) and decreased survival (p < 0.0001 for all antigens in mouse and human triple negative and HER2 positive breast cancer). Overexpression of the early stage antigens in women with breast cancer predicted worse prognosis (p = 0.03) while overexpression of late stage antigens did not impact prognosis (p = 0.09). These data suggest that antigens expressed earlier in breast tumor development and functionally relevant to breast tumor growth may be more effective targets for therapeutic breast cancer vaccines than antigens identified in later disease.
Collapse
|
25
|
Wei JH, Feng ZH, Cao Y, Zhao HW, Chen ZH, Liao B, Wang Q, Han H, Zhang J, Xu YZ, Li B, Wu JT, Qu GM, Wang GP, Liu C, Xue W, Liu Q, Lu J, Li CX, Li PX, Zhang ZL, Yao HH, Pan YH, Chen WF, Xie D, Shi L, Gao ZL, Huang YR, Zhou FJ, Wang SG, Liu ZP, Chen W, Luo JH. Predictive value of single-nucleotide polymorphism signature for recurrence in localised renal cell carcinoma: a retrospective analysis and multicentre validation study. Lancet Oncol 2019; 20:591-600. [PMID: 30880070 DOI: 10.1016/s1470-2045(18)30932-x] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Revised: 11/26/2018] [Accepted: 12/10/2018] [Indexed: 02/07/2023]
Abstract
BACKGROUND Identification of high-risk localised renal cell carcinoma is key for the selection of patients for adjuvant treatment who are at truly higher risk of reccurrence. We developed a classifier based on single-nucleotide polymorphisms (SNPs) to improve the predictive accuracy for renal cell carcinoma recurrence and investigated whether intratumour heterogeneity affected the precision of the classifier. METHODS In this retrospective analysis and multicentre validation study, we used paraffin-embedded specimens from the training set of 227 patients from Sun Yat-sen University (Guangzhou, Guangdong, China) with localised clear cell renal cell carcinoma to examine 44 potential recurrence-associated SNPs, which were identified by exploratory bioinformatics analyses of a genome-wide association study from The Cancer Genome Atlas (TCGA) Kidney Renal Clear Cell Carcinoma (KIRC) dataset (n=114, 906 600 SNPs). We developed a six-SNP-based classifier by use of LASSO Cox regression, based on the association between SNP status and patients' recurrence-free survival. Intratumour heterogeneity was investigated from two other regions within the same tumours in the training set. The six-SNP-based classifier was validated in the internal testing set (n=226), the independent validation set (Chinese multicentre study; 428 patients treated between Jan 1, 2004 and Dec 31, 2012, at three hospitals in China), and TCGA set (441 retrospectively identified patients who underwent resection between 1998 and 2010 for localised clear cell renal cell carcinoma in the USA). The main outcome was recurrence-free survival; the secondary outcome was overall survival. FINDINGS Although intratumour heterogeneity was found in 48 (23%) of 206 cases in the internal testing set with complete SNP information, the predictive accuracy of the six-SNP-based classifier was similar in the three different regions of the training set (areas under the curve [AUC] at 5 years: 0·749 [95% CI 0·660-0·826] in region 1, 0·734 [0·651-0·814] in region 2, and 0·736 [0·649-0·824] in region 3). The six-SNP-based classifier precisely predicted recurrence-free survival of patients in three validation sets (hazard ratio [HR] 5·32 [95% CI 2·81-10·07] in the internal testing set, 5·39 [3·38-8·59] in the independent validation set, and 4·62 [2·48-8·61] in the TCGA set; all p<0·0001), independently of patient age or sex and tumour stage, grade, or necrosis. The classifier and the clinicopathological risk factors (tumour stage, grade, and necrosis) were combined to construct a nomogram, which had a predictive accuracy significantly higher than that of each variable alone (AUC at 5 years 0·811 [95% CI 0·756-0·861]). INTERPRETATION Our six-SNP-based classifier could be a practical and reliable predictor that can complement the existing staging system for prediction of localised renal cell carcinoma recurrence after surgery, which might enable physicians to make more informed treatment decisions about adjuvant therapy. Intratumour heterogeneity does not seem to hamper the accuracy of the six-SNP-based classifier as a reliable predictor of recurrence. The classifier has the potential to guide treatment decisions for patients at differing risks of recurrence. FUNDING National Key Research and Development Program of China, National Natural Science Foundation of China, Guangdong Provincial Science and Technology Foundation of China, and Guangzhou Science and Technology Foundation of China.
Collapse
Affiliation(s)
- Jin-Huan Wei
- Department of Urology, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Zi-Hao Feng
- Department of Urology, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Yun Cao
- Department of Pathology, Cancer Center, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Hong-Wei Zhao
- Department of Urology, Affiliated Yantai Yuhuangding Hospital, Qingdao University Medical College, Shandong, China
| | - Zhen-Hua Chen
- Department of Urology, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Bing Liao
- Department of Pathology, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Qing Wang
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Hubei, China
| | - Hui Han
- Department of Urology, Cancer Center, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Jin Zhang
- Department of Urology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yun-Ze Xu
- Department of Urology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Bo Li
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Ji-Tao Wu
- Department of Urology, Affiliated Yantai Yuhuangding Hospital, Qingdao University Medical College, Shandong, China
| | - Gui-Mei Qu
- Department of Pathology, Affiliated Yantai Yuhuangding Hospital, Qingdao University Medical College, Shandong, China
| | - Guo-Ping Wang
- Department of Pathology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Hubei, China
| | - Cong Liu
- Department of Pathology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Hubei, China
| | - Wei Xue
- Department of Urology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Qiang Liu
- Department of Pathology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jun Lu
- Department of Urology, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Cai-Xia Li
- School of Mathematics and Computational Science, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Pei-Xing Li
- School of Mathematics and Computational Science, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Zhi-Ling Zhang
- Department of Urology, Cancer Center, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Hao-Hua Yao
- Department of Urology, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Yi-Hui Pan
- Department of Urology, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Wen-Fang Chen
- Department of Pathology, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Dan Xie
- Department of Pathology, Cancer Center, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Lei Shi
- Department of Urology, Affiliated Yantai Yuhuangding Hospital, Qingdao University Medical College, Shandong, China
| | - Zhen-Li Gao
- Department of Urology, Affiliated Yantai Yuhuangding Hospital, Qingdao University Medical College, Shandong, China
| | - Yi-Ran Huang
- Department of Urology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Fang-Jian Zhou
- Department of Urology, Cancer Center, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Shao-Gang Wang
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Hubei, China
| | - Zhi-Ping Liu
- Department of Internal Medicine and Department of Molecular Biology, University of Texas Southwestern Medical Center at Dallas, TX, USA
| | - Wei Chen
- Department of Urology, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Jun-Hang Luo
- Department of Urology, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China.
| |
Collapse
|
26
|
Wang XH, Cui YX, Wang ZM, Liu J. Down-regulation of FOXR2 inhibits non-small cell lung cancer cell proliferation and invasion through the Wnt/β-catenin signaling pathway. Biochem Biophys Res Commun 2018; 500:229-235. [PMID: 29634928 DOI: 10.1016/j.bbrc.2018.04.046] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2018] [Accepted: 04/06/2018] [Indexed: 02/08/2023]
Abstract
Forkhead box R2 (FOXR2), a new member of the FOX family, is an important player in a wide range of cellular processes such as proliferation, migration, differentiation and apoptosis. Recently, FOXR2 has been reported to be implicated in cancer development. However, the biological functions of FOXR2 in non-small cell lung cancer (NSCLC) remain unclear. In this study, we investigated the specific role of FOXR2 in NSCLC. The results showed that down-regulation of FOXR2 significantly inhibited NSCLC cell proliferation and invasion in vitro and suppressed NSCLC cell growth and metastasis in vivo. In addition, the decrease in FOXR2 expression markedly reduced the protein levels of β-catenin, cyclinD1 and c-Myc and hence inactivated the Wnt/β-catenin pathway in NSCLC cells. Taken together, we concluded that FOXR2 might be considered as a promising therapeutic target for NSCLC treatment.
Collapse
Affiliation(s)
- Xin-Hua Wang
- Department of Clinical Laboratory, Linyi City Central Hospital, Linyi, 276400, China
| | - Yan-Xiang Cui
- Department of Clinical Laboratory, Traditional Chinese Medical Hospital of Huangdao District, Qingdao, 266000, China
| | - Zhen-Min Wang
- Department of Clinical Laboratory, Linyi City Central Hospital, Linyi, 276400, China
| | - Jian Liu
- Department of Clinical Laboratory, Linyi City Central Hospital, Linyi, 276400, China.
| |
Collapse
|
27
|
Bossé Y, Amos CI. A Decade of GWAS Results in Lung Cancer. Cancer Epidemiol Biomarkers Prev 2018; 27:363-379. [PMID: 28615365 PMCID: PMC6464125 DOI: 10.1158/1055-9965.epi-16-0794] [Citation(s) in RCA: 152] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Revised: 12/06/2016] [Accepted: 04/20/2017] [Indexed: 01/03/2023] Open
Abstract
Genome-wide association studies (GWAS) were successful to identify genetic factors robustly associated with lung cancer. This review aims to synthesize the literature in this field and accelerate the translation of GWAS discoveries into results that are closer to clinical applications. A chronologic presentation of published GWAS on lung cancer susceptibility, survival, and response to treatment is presented. The most important results are tabulated to provide a concise overview in one read. GWAS have reported 45 lung cancer susceptibility loci with varying strength of evidence and highlighted suspected causal genes at each locus. Some genetic risk loci have been refined to more homogeneous subgroups of lung cancer patients in terms of histologic subtypes, smoking status, gender, and ethnicity. Overall, these discoveries are an important step for future development of new therapeutic targets and biomarkers to personalize and improve the quality of care for patients. GWAS results are on the edge of offering new tools for targeted screening in high-risk individuals, but more research is needed if GWAS are to pay off the investment. Complementary genomic datasets and functional studies are needed to refine the underlying molecular mechanisms of lung cancer preliminarily revealed by GWAS and reach results that are medically actionable. Cancer Epidemiol Biomarkers Prev; 27(4); 363-79. ©2018 AACRSee all articles in this CEBP Focus section, "Genome-Wide Association Studies in Cancer."
Collapse
Affiliation(s)
- Yohan Bossé
- Institut Universitaire de Cardiologie et de Pneumologie de Québec, Quebec, Canada.
- Department of Molecular Medicine, Laval University, Quebec, Canada
| | - Christopher I Amos
- Department of Biomedical Data Science, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire
| |
Collapse
|
28
|
Sepesi B, Ye Y, Mitchell KG, Zhang L, Gu J, Ji L, Antonoff MB, Hofstetter WL, Rice DC, Mehran RJ, Walsh GL, Vaporciyan AA, Swisher SG, Roth JA, Wu X. Genetic variants in cytokine signaling pathways and clinical outcomes in early-stage lung cancer patients. J Thorac Cardiovasc Surg 2018; 155:2635-2645.e15. [PMID: 29548588 DOI: 10.1016/j.jtcvs.2018.02.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2017] [Revised: 01/20/2018] [Accepted: 02/05/2018] [Indexed: 01/09/2023]
Abstract
OBJECTIVES The purpose of this study was to explore the role of single nucleotide polymorphisms (SNPs) in cytokine signaling genes and to compare them with clinical outcomes in surgical patients with non-small cell lung cancer (NSCLC). METHODS SNPs of the cytokine signaling pathway were analyzed using peripheral blood of 722 patients who underwent resection of stage I to III NSCLC between 1995 and 2009. Cox proportional hazard analyses were performed to identify SNPs associated with overall survival (OS) and risk of recurrence. Internal validation using bootstrap analysis selected SNPs for unfavorable genotype and survival tree analysis. RESULTS Seventeen and 9 SNPs were independently associated with OS and recurrence, respectively. Patients with ≥9 unfavorable genotypes experienced worse OS (median, 41 months) than patients with 7 to 8 (89 months) and ≤6 (153 months) after median follow-up of 71 months (P = 2.86 × 10-23). Patients with ≤3 unfavorable genotypes had greater time to recurrence (median not reached) than those with 4 to 6 (114 months) and ≥7 (44 months; P = 1.3 × 10-5). Survival tree analysis classified patients into 3 risk groups. Patients in the intermediate- (median OS, 82 months) and high-risk groups (43 months) had worse survival than the low-risk group (176 months; P = 5.51 × 10-20). Median time to recurrence was worse in the intermediate- (114 months) and high-risk groups (58 months) than the low-risk group (median not reached; P = 2.52 × 10-9). CONCLUSIONS Genetic variants in cytokine signaling pathways were associated with clinical outcomes in NSCLC patients treated with surgery individually and cumulatively. Further studies are necessary to elucidate our findings and translate them into the clinical setting.
Collapse
Affiliation(s)
- Boris Sepesi
- Department of Thoracic and Cardiovascular Surgery, The University of Texas MD Anderson Cancer Center, Houston, Tex.
| | - Yuanqing Ye
- Department of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, Tex
| | - Kyle G Mitchell
- Department of Thoracic and Cardiovascular Surgery, The University of Texas MD Anderson Cancer Center, Houston, Tex
| | - Liren Zhang
- Department of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, Tex
| | - Jianchun Gu
- Department of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, Tex
| | - Lin Ji
- Department of Thoracic and Cardiovascular Surgery, The University of Texas MD Anderson Cancer Center, Houston, Tex
| | - Mara B Antonoff
- Department of Thoracic and Cardiovascular Surgery, The University of Texas MD Anderson Cancer Center, Houston, Tex
| | - Wayne L Hofstetter
- Department of Thoracic and Cardiovascular Surgery, The University of Texas MD Anderson Cancer Center, Houston, Tex
| | - David C Rice
- Department of Thoracic and Cardiovascular Surgery, The University of Texas MD Anderson Cancer Center, Houston, Tex
| | - Reza J Mehran
- Department of Thoracic and Cardiovascular Surgery, The University of Texas MD Anderson Cancer Center, Houston, Tex
| | - Garrett L Walsh
- Department of Thoracic and Cardiovascular Surgery, The University of Texas MD Anderson Cancer Center, Houston, Tex
| | - Ara A Vaporciyan
- Department of Thoracic and Cardiovascular Surgery, The University of Texas MD Anderson Cancer Center, Houston, Tex
| | - Stephen G Swisher
- Department of Thoracic and Cardiovascular Surgery, The University of Texas MD Anderson Cancer Center, Houston, Tex
| | - Jack A Roth
- Department of Thoracic and Cardiovascular Surgery, The University of Texas MD Anderson Cancer Center, Houston, Tex
| | - Xifeng Wu
- Department of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, Tex.
| |
Collapse
|
29
|
Li Z, Zhu W, Xiong L, Yu X, Chen X, Lin Q. Role of high expression levels of STK39 in the growth, migration and invasion of non-small cell type lung cancer cells. Oncotarget 2018; 7:61366-61377. [PMID: 27542260 PMCID: PMC5308657 DOI: 10.18632/oncotarget.11351] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Accepted: 07/30/2016] [Indexed: 11/25/2022] Open
Abstract
Non-small cell type lung cancer (NSCLC) is the most common malignancy and the leading cause of cancer related mortality. In this study, serine/threonine kinase 39 (STK39) was identified as an up-regulated gene in NSCLC tissues by next-generation RNA sequencing. Although STK39 gene polymorphisms may be prognostic of overall survival in patients with early stage NSCLC, the roles of STK39 in NSCLC cancer are poorly understood. In the current study, Genome Set Enrichment Analysis (GSEA) on the RNA-seq data of NSCLC specimens indicated that cancer-related process and pathways, including metastasis, cell cycle, apoptosis and p38 pathway, were significantly correlated with STK39 expression. STK39 expression was significantly increased in NSCLC cases and its protein expression was positively correlated with the poor tumor stage, large tumor size, advanced lymphnode metastasis and poor prognosis. Down-regulation of STK39 in NSCLC cells significantly decreased cell proliferation by blocking of cell cycle and inducing apoptosis. We also found that STK39 knockdown in NSCLC cells remarkably repressed cell migration and invasion. On the contrary, overexpression of STK39 in NSCLC cells had inverse effects on cell behaviors. Taken together, STK39 acts as a tumor oncogene in NSCLC and can be a potential biomarker of carcinogenesis.
Collapse
Affiliation(s)
- Zhao Li
- Department of Thoracic Surgery, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Wenzhuo Zhu
- Department of Thoracic Surgery, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Liwen Xiong
- Department of Pulmonary Diseases, Shanghai Chest Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Xiaobo Yu
- Department of Thoracic Surgery, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Xi Chen
- Department of Thoracic Surgery, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Qiang Lin
- Department of Thoracic Surgery, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| |
Collapse
|
30
|
Low expression of protocadherin7 (PCDH7) is a potential prognostic biomarker for primary non-muscle invasive bladder cancer. Oncotarget 2017; 7:28384-92. [PMID: 27070091 PMCID: PMC5053733 DOI: 10.18632/oncotarget.8635] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Accepted: 02/23/2016] [Indexed: 12/14/2022] Open
Abstract
Bladder cancer is a heterogeneous disease with outcome difficult to predict, and novel predictive biomarkers are needed. PCDH7, a member of protocadherins family, functions as tumor suppressor in several human cancers. The human PCDH7 gene is localized in chromosome 4p15, which is often inactivated in human cancers, including bladder cancer. The aim of this study was to investigate the clinical significance of PCDH7 expression in non-muscle invasive bladder cancer (NMIBC). PCDH7 expression was examined using immunohistochemical staining in 199 primary NMIBC tissues and 25 normal bladder epithelial tissues. Then the relationship between PCDH7 expression and clinicopathologic features was evaluated. Kaplan-Meier survival analysis and Cox analysis was used to evaluate the correlation between PCDH7 expression and prognosis. PCDH7 expression in NMIBC tissues was significantly lower than that in normal bladder epithelial tissues (P < 0.001). Low PCDH7 expression correlated with advanced grade (P = 0.021) and larger tumor size (P = 0.044). Moreover, patients with low PCDH7 expression have shorter recurrence-free survival (P < 0.001), progression-free survival (P = 0.007) and overall survival (P = 0.011) than patients with high PCDH7 expression. Low PCDH7 expression is an independent predictor of recurrence-free survival (multivariate Cox analysis: P = 0.007), progression-free survival (multivariate Cox analysis: P = 0.014) and overall survival (multivariate Cox analysis: P = 0.004). The findings indicate that low PCDH7 expression is a potential prognostic biomarker for primary NMIBC.
Collapse
|
31
|
Li J, Li Y, Wang B, Ma Y, Chen P. Id-1 promotes migration and invasion of non-small cell lung cancer cells through activating NF-κB signaling pathway. J Biomed Sci 2017; 24:95. [PMID: 29233161 PMCID: PMC5727929 DOI: 10.1186/s12929-017-0400-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Accepted: 12/01/2017] [Indexed: 12/21/2022] Open
Abstract
Background Numerous studies have shown that Id-1 (Inhibitor of differentiation 1) is upregulated in several cancers and associated with tumor malignant characters. However, the clinical significance and biological role of Id-1 in non-small cell lung cancer (NSCLC) remains unclear. Methods We used RT-PCR, Western blot and Immunohistochemistry to measure Id-1 expression in NSCLC tissues and matched adjacent noncancerous tissues. The expression pattern of Id-1 in NSCLC tissues was determined by scoring system of immunohistochemical analysis. The Kaplan-Meier method was used to calculate the survival curve, and log-rank test to determine statistical significance. The Id-1 gene was overexpressed or downreuglated with Lentiviral vectors in NSCLC cells. And, the migration ability of NSCLC cells was tested in a Transwell Boyden Chamber. Results We found that Id-1 is generally expressed higher in NSCLC tissues compared with matched adjacent noncancerous tissues. We also found that high Id-1 expression in tumor tissues is significantly correlated with tumor progression and poor survival in NSCLC patients. Furthermore, our experimental data revealed that knockdown of Id-1 significantly suppressed the proliferation, migration and invasion of NSCLC cells, whereas ectopic expression of Id-1 promoted the malignant phenotype of NSCLC cells. Mechanistic study showed that NF-κB signaling pathway contributed to the effects of Id-1 in NSCLC cells. Moreover, blocking the NF-κB pathway significantly inhibited the tumor-promoting actions of Id-1 in NSCLC cells. Conclusions We identified a tumorigenic role of Id-1 in NSCLC and provided a novel therapeutic target for NSCLC patients.
Collapse
Affiliation(s)
- Jie Li
- Department of Chest Surgery, The General Hospital of The People's Liberation Army, No. 28 Fuxing road, Beijing, 100853, China.
| | - Yingjie Li
- Department of Cardio-thoracic Surgery, First Affiliated Hospital, General Hospital of The People's Liberation Army, Beijing, China
| | - Bin Wang
- Department of Chest Surgery, The General Hospital of The People's Liberation Army, No. 28 Fuxing road, Beijing, 100853, China
| | - Yongfu Ma
- Department of Chest Surgery, The General Hospital of The People's Liberation Army, No. 28 Fuxing road, Beijing, 100853, China
| | - Ping Chen
- Department of Cardio-thoracic Surgery, First Affiliated Hospital, General Hospital of The People's Liberation Army, Beijing, China
| |
Collapse
|
32
|
Li Z, Qiu R, Qiu X, Tian T. EYA2 promotes lung cancer cell proliferation by downregulating the expression of PTEN. Oncotarget 2017; 8:110837-110848. [PMID: 29340020 PMCID: PMC5762288 DOI: 10.18632/oncotarget.22860] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Accepted: 10/29/2017] [Indexed: 12/13/2022] Open
Abstract
Lung cancer is the leading cause of cancer-related death worldwide. Despite advances have been made in diagnosis and therapeutic strategies, the prognosis of lung cancer is still very poor. Eyes absent transcriptional cofactor EYA2 has been shown to promote lung cancer cell growth, however, the underlying molecular mechanism is still not fully understood. In the present study, we found that EYA2 was up-regulated in lung cancer, and EYA2 led to increased cell proliferation by inhibiting Phosphatase and tensin homologue (PTEN) expression via modulation of miR-93. Additionally, survival analysis showed that lung cancer patients with higher EYA2 expression predicted a worse prognosis. Therefore, these findings demonstrate that EYA2 may play an important role in lung cancer occurrence and progression. Targeting EYA2 may provide a feasible approach in developing novel anticancer therapeutics.
Collapse
Affiliation(s)
- Zhaoming Li
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Ran Qiu
- Wuhan Institute of Bioengineering, Wuhan, China
| | - Xia Qiu
- Department of Medicine, Shangqiu Medical School, Shangqiu, China
| | - Tian Tian
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
33
|
Dantoft W, Martínez-Vicente P, Jafali J, Pérez-Martínez L, Martin K, Kotzamanis K, Craigon M, Auer M, Young NT, Walsh P, Marchant A, Angulo A, Forster T, Ghazal P. Genomic Programming of Human Neonatal Dendritic Cells in Congenital Systemic and In Vitro Cytomegalovirus Infection Reveal Plastic and Robust Immune Pathway Biology Responses. Front Immunol 2017; 8:1146. [PMID: 28993767 PMCID: PMC5622154 DOI: 10.3389/fimmu.2017.01146] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Accepted: 08/30/2017] [Indexed: 12/12/2022] Open
Abstract
Neonates and especially premature infants are highly susceptible to infection but still can have a remarkable resilience that is poorly understood. The view that neonates have an incomplete or deficient immune system is changing. Human neonatal studies are challenging, and elucidating host protective responses and underlying cognate pathway biology, in the context of viral infection in early life, remains to be fully explored. In both resource rich and poor settings, human cytomegalovirus (HCMV) is the most common cause of congenital infection. By using unbiased systems analyses of transcriptomic resources for HCMV neonatal infection, we find the systemic response of a preterm congenital HCMV infection, involves a focused IFN regulatory response associated with dendritic cells. Further analysis of transcriptional-programming of neonatal dendritic cells in response to HCMV infection in culture revealed an early dominant IFN-chemokine regulatory subnetworks, and at later times the plasticity of pathways implicated in cell-cycle control and lipid metabolism. Further, we identify previously unknown suppressed networks associated with infection, including a select group of GPCRs. Functional siRNA viral growth screen targeting 516-GPCRs and subsequent validation identified novel GPCR-dependent antiviral (ADORA1) and proviral (GPR146, RGS16, PTAFR, SCTR, GPR84, GPR85, NMUR2, FZ10, RDS, CCL17, and SORT1) roles. By contrast a gene family cluster of protocadherins is significantly differentially induced in neonatal cells, suggestive of possible immunomodulatory roles. Unexpectedly, programming responses of adult and neonatal dendritic cells, upon HCMV infection, demonstrated comparable quantitative and qualitative responses showing that functionally, neonatal dendritic cell are not overly compromised. However, a delay in responses of neonatal cells for IFN subnetworks in comparison with adult-derived cells are notable, suggestive of subtle plasticity differences. These findings support a set-point control mechanism rather than immaturity for explaining not only neonatal susceptibility but also resilience to infection. In summary, our findings show that neonatal HCMV infection leads to a highly plastic and functional robust programming of dendritic cells in vivo and in vitro. In comparison with adults, a minimal number of subtle quantitative and temporal differences may contribute to variability in host susceptibility and resilience, in a context dependent manner.
Collapse
Affiliation(s)
- Widad Dantoft
- Division of Infection and Pathway Medicine, School of Biomedical Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Pablo Martínez-Vicente
- Division of Infection and Pathway Medicine, School of Biomedical Sciences, University of Edinburgh, Edinburgh, United Kingdom.,Immunology Unit, Department of Biomedical Sciences, Medical School, University of Barcelona, Barcelona, Spain
| | - James Jafali
- Division of Infection and Pathway Medicine, School of Biomedical Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Lara Pérez-Martínez
- Division of Infection and Pathway Medicine, School of Biomedical Sciences, University of Edinburgh, Edinburgh, United Kingdom.,Quantitative Proteomics, Institute of Molecular Biology, Mainz, Germany
| | - Kim Martin
- Division of Infection and Pathway Medicine, School of Biomedical Sciences, University of Edinburgh, Edinburgh, United Kingdom.,Synexa Life Sciences, Cape Town, South Africa
| | - Konstantinos Kotzamanis
- Division of Infection and Pathway Medicine, School of Biomedical Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Marie Craigon
- Division of Infection and Pathway Medicine, School of Biomedical Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Manfred Auer
- Division of Infection and Pathway Medicine, School of Biomedical Sciences, University of Edinburgh, Edinburgh, United Kingdom.,SynthSys-Centre for Synthetic and Systems Biology, School of Engineering, University of Edinburgh, Edinburgh, United Kingdom
| | - Neil T Young
- Division of Applied Medicine, Institute of Medical Sciences, University of Aberdeen, Aberdeen, United Kingdom
| | - Paul Walsh
- NSilico Life Science and Department of Computing, Institute of Technology, Cork, Ireland
| | - Arnaud Marchant
- Institute for Medical Immunology, Université Libre de Bruxelles, Charleroi, Belgium
| | - Ana Angulo
- Immunology Unit, Department of Biomedical Sciences, Medical School, University of Barcelona, Barcelona, Spain
| | - Thorsten Forster
- Division of Infection and Pathway Medicine, School of Biomedical Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Peter Ghazal
- Division of Infection and Pathway Medicine, School of Biomedical Sciences, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
34
|
Chen HF, Ma RR, He JY, Zhang H, Liu XL, Guo XY, Gao P. Protocadherin 7 inhibits cell migration and invasion through E-cadherin in gastric cancer. Tumour Biol 2017; 39:1010428317697551. [PMID: 28381163 DOI: 10.1177/1010428317697551] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The protocadherin 7 is a member of the protocadherin family that expressed aberrantly in many types of human cancers. However, its expression, function, and underlying mechanisms are little known in gastric cancer. In this study, we detected protocadherin 7 expression in gastric cancer tissues and non-tumorous gastric mucosa tissues by real-time quantitative polymerase chain reaction and immunohistochemistry. The association of protocadherin 7 expression with the clinicopathological characteristics and the prognosis was subsequently analyzed. MTS ((3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium)) and transwell assays were performed to assess the effect of protocadherin 7 on proliferation, migration, and invasion in gastric cancer cell lines. Moreover, real-time quantitative polymerase chain reaction and western blot were used to detect the expression of epithelial-mesenchymal transition markers. Protocadherin 7 expression was decreased gradiently from normal tissue to gastric cancer, especially in gastric cancer tissue with lymph node metastasis. Low expression of protocadherin 7 was significantly associated with Lauren's classification ( p = 0.0005), lymph node metastases ( p = 0.0002), and tumor node metastasis stage ( p = 0.0221), as well as poor prognosis ( p < 0.05). Furthermore, down-regulation of protocadherin 7 in gastric cancer cell lines significantly increased their migration and invasion abilities (both p < 0.05), while it had no influence on the gastric cancer cell proliferation ( p > 0.05). Additionally, our results demonstrated that E-cadherin expression was down-regulated in gastric cancer cells with protocadherin 7 depletion. Our data indicated that protocadherin 7 may play important roles in the invasion and metastasis of gastric cancer, and protocadherin 7 could suppress cell migration and invasion through E-cadherin inhibition. Protocadherin 7 can serve as a novel biomarker for diagnostic and prognosis in patients with gastric cancer.
Collapse
Affiliation(s)
- Hong-Fang Chen
- 1 Department of Pathology, Qilu Hospital, Shandong University, Jinan, China.,2 Department of Pathology, Yidu Central Hospital of Weifang, Weifang, China
| | - Ran-Ran Ma
- 1 Department of Pathology, Qilu Hospital, Shandong University, Jinan, China.,3 Department of Pathology, School of Medicine, Shandong University, Jinan, China
| | - Jun-Yi He
- 1 Department of Pathology, Qilu Hospital, Shandong University, Jinan, China.,3 Department of Pathology, School of Medicine, Shandong University, Jinan, China
| | - Hui Zhang
- 1 Department of Pathology, Qilu Hospital, Shandong University, Jinan, China.,3 Department of Pathology, School of Medicine, Shandong University, Jinan, China
| | - Xiao-Ling Liu
- 2 Department of Pathology, Yidu Central Hospital of Weifang, Weifang, China
| | - Xiang-Yu Guo
- 1 Department of Pathology, Qilu Hospital, Shandong University, Jinan, China.,3 Department of Pathology, School of Medicine, Shandong University, Jinan, China
| | - Peng Gao
- 1 Department of Pathology, Qilu Hospital, Shandong University, Jinan, China.,3 Department of Pathology, School of Medicine, Shandong University, Jinan, China
| |
Collapse
|
35
|
Zhang Y, Wei Y, Jiang B, Chen L, Bai H, Zhu X, Li X, Zhang H, Yang Q, Ma J, Xu Y, Ben J, Christiani DC, Chen Q. Scavenger Receptor A1 Prevents Metastasis of Non-Small Cell Lung Cancer via Suppression of Macrophage Serum Amyloid A1. Cancer Res 2017; 77:1586-1598. [PMID: 28202524 DOI: 10.1158/0008-5472.can-16-1569] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2016] [Revised: 12/27/2016] [Accepted: 01/03/2017] [Indexed: 11/16/2022]
Abstract
Mechanisms of cross-talk between tumor cells and tumor-associated macrophages (TAM), which drive metastasis, are not fully understood. Scavenger receptor A1 (SR-A1) expressed primarily in macrophages has been associated with lung tumorigenesis. In this study, we used population genetics, transcriptomics, and functional analyses to uncover how SR-A1 is involved in lung cancer and its prognosis. SR-A1 genetic variants were investigated for possible association with survival of advanced stage NSCLC patients in the Harvard Lung Cancer Study cohort. Two SNPs (rs17484273, rs1484751) in SR-A1 were associated significantly with poor overall survival in this cohort. Data from The Cancer Genome Atlas showed considerable downregulation of SR-A1 in lung tumor tissues. The association of SR-A1 with prognosis was validated in animal models in the context of lung cancer metastasis. Macrophages derived from mice genetically deficient for SR-A1 exhibited accelerated metastasis in a model of lung cancer. On the other hand, tumor cell seeding, migration, and invasion, as well as macrophage accumulation in lung cancer tissue, were enhanced in SR-A1-deficient mice. SR-A1 deletion upregulated serum amyloid A1 (SAA1) in macrophages via MAPK/IκB/NFκB signaling. SAA1 promoted tumor cell invasion and macrophage migration in vitro and in vivo, but these effects were blocked by administration of an anti-SAA1 antibody. Overall, our findings show how SR-A1 suppresses lung cancer metastasis by downregulating SAA1 production in TAMs. Cancer Res; 77(7); 1586-98. ©2017 AACR.
Collapse
Affiliation(s)
- Yan Zhang
- Department of Pathophysiology, Key Laboratory of Cardiovascular Disease and Molecular Intervention, Nanjing Medical University, Nanjing, China
| | - Yongyue Wei
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
| | - Bin Jiang
- Department of Pathophysiology, Key Laboratory of Cardiovascular Disease and Molecular Intervention, Nanjing Medical University, Nanjing, China
| | - Lili Chen
- Department of Pathophysiology, Key Laboratory of Cardiovascular Disease and Molecular Intervention, Nanjing Medical University, Nanjing, China
| | - Hui Bai
- Department of Pathophysiology, Key Laboratory of Cardiovascular Disease and Molecular Intervention, Nanjing Medical University, Nanjing, China
| | - Xudong Zhu
- Department of Pathophysiology, Key Laboratory of Cardiovascular Disease and Molecular Intervention, Nanjing Medical University, Nanjing, China
| | - Xiaoyu Li
- Department of Pathophysiology, Key Laboratory of Cardiovascular Disease and Molecular Intervention, Nanjing Medical University, Nanjing, China
| | - Hanwen Zhang
- Department of Pathophysiology, Key Laboratory of Cardiovascular Disease and Molecular Intervention, Nanjing Medical University, Nanjing, China
| | - Qing Yang
- Department of Pathophysiology, Key Laboratory of Cardiovascular Disease and Molecular Intervention, Nanjing Medical University, Nanjing, China
| | - Junqing Ma
- Department of Pathophysiology, Key Laboratory of Cardiovascular Disease and Molecular Intervention, Nanjing Medical University, Nanjing, China
| | - Yong Xu
- Department of Pathophysiology, Key Laboratory of Cardiovascular Disease and Molecular Intervention, Nanjing Medical University, Nanjing, China
| | - Jingjing Ben
- Department of Pathophysiology, Key Laboratory of Cardiovascular Disease and Molecular Intervention, Nanjing Medical University, Nanjing, China.
| | - David C Christiani
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, Massachusetts.,Pulmonary and Critical Care Division, Department of Medicine, Massachusetts General Hospital/Harvard Medical School, Boston, Massachusetts
| | - Qi Chen
- Department of Pathophysiology, Key Laboratory of Cardiovascular Disease and Molecular Intervention, Nanjing Medical University, Nanjing, China.
| |
Collapse
|
36
|
Zhu M, Geng L, Shen W, Wang Y, Liu J, Cheng Y, Wang C, Dai J, Jin G, Hu Z, Ma H, Shen H. Exome-Wide Association Study Identifies Low-Frequency Coding Variants in 2p23.2 and 7p11.2 Associated with Survival of Non-Small Cell Lung Cancer Patients. J Thorac Oncol 2017; 12:644-656. [PMID: 28104536 DOI: 10.1016/j.jtho.2016.12.025] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Revised: 11/23/2016] [Accepted: 12/15/2016] [Indexed: 01/10/2023]
Abstract
INTRODUCTION A growing body of evidence has suggested that low-frequency or rare coding variants might have strong effects on the development and prognosis of cancer. Here, we aim to assess the role of low-frequency and rare coding variants in the survival of NSCLC in Chinese populations. METHODS We performed an exome-wide scan of 247,870 variants in 1008 patients with NSCLC and replicated the promising variants by using imputed genotype data of The Cancer Genome Atlas (TCGA) with a Cox regression model. Gene-based and pathway-based analysis were also performed for nonsynonymous or splice site variants. Additionally, analysis of gene expression data in the TCGA was used to increase the reliability of candidate loci and genes. RESULTS A low-frequency missense variant in chaperonin containing TCP1 subunit 6A gene (CCT6A) (rs33922584: adjusted hazard ratio [HRadjusted] = 1.75, p = 6.06 × 10-4) was significantly related to the survival of patients with NSCLC, which was further replicated by the TCGA samples (HRadjusted = 4.19, p = 0.015). Interestingly, the G allele of rs33922584 was significantly associated with high expression of CCT6A (p = 0.019) that might induce the worse survival in the TCGA samples (HRadjusted = 1.15, p = 0.047). Besides, rs117512489 in gene phospholipase B1 gene (PLB1) (HR = 2.02, p = 7.28 × 10-4) was also associated with survival of the patients with NSCLC in our samples, but it was supported only by gene expression analysis in the TCGA (HRadjusted = 1.15, p = 0.023). Gene-based and pathway-based analysis revealed a total of 32 genes, including CCT6A and 34 potential pathways might account for the survival of NSCLC, respectively. CONCLUSION These results provided more evidence for the important role of low-frequency or rare variants in the survival of patients with NSCLC.
Collapse
Affiliation(s)
- Meng Zhu
- Department of Epidemiology and Biostatistics, Collaborative Innovation Center For Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing, People's Republic of China
| | - Liguo Geng
- Department of Epidemiology and Biostatistics, Collaborative Innovation Center For Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing, People's Republic of China
| | - Wei Shen
- Department of Epidemiology and Biostatistics, Collaborative Innovation Center For Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing, People's Republic of China
| | - Yuzhuo Wang
- Department of Epidemiology and Biostatistics, Collaborative Innovation Center For Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing, People's Republic of China
| | - Jia Liu
- Department of Epidemiology and Biostatistics, Collaborative Innovation Center For Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing, People's Republic of China
| | - Yang Cheng
- Department of Epidemiology and Biostatistics, Collaborative Innovation Center For Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing, People's Republic of China
| | - Cheng Wang
- Department of Epidemiology and Biostatistics, Collaborative Innovation Center For Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing, People's Republic of China
| | - Juncheng Dai
- Department of Epidemiology and Biostatistics, Collaborative Innovation Center For Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing, People's Republic of China; Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center of Cancer Medicine, Nanjing Medical University, Nanjing, People's Republic of China
| | - Guangfu Jin
- Department of Epidemiology and Biostatistics, Collaborative Innovation Center For Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing, People's Republic of China; Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center of Cancer Medicine, Nanjing Medical University, Nanjing, People's Republic of China
| | - Zhibin Hu
- Department of Epidemiology and Biostatistics, Collaborative Innovation Center For Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing, People's Republic of China; Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center of Cancer Medicine, Nanjing Medical University, Nanjing, People's Republic of China
| | - Hongxia Ma
- Department of Epidemiology and Biostatistics, Collaborative Innovation Center For Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing, People's Republic of China; Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center of Cancer Medicine, Nanjing Medical University, Nanjing, People's Republic of China.
| | - Hongbing Shen
- Department of Epidemiology and Biostatistics, Collaborative Innovation Center For Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing, People's Republic of China; Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center of Cancer Medicine, Nanjing Medical University, Nanjing, People's Republic of China
| |
Collapse
|
37
|
Zhou X, Updegraff BL, Guo Y, Peyton M, Girard L, Larsen JE, Xie XJ, Zhou Y, Hwang TH, Xie Y, Rodriguez-Canales J, Villalobos P, Behrens C, Wistuba II, Minna JD, O'Donnell KA. PROTOCADHERIN 7 Acts through SET and PP2A to Potentiate MAPK Signaling by EGFR and KRAS during Lung Tumorigenesis. Cancer Res 2016; 77:187-197. [PMID: 27821484 DOI: 10.1158/0008-5472.can-16-1267-t] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Revised: 10/11/2016] [Accepted: 10/23/2016] [Indexed: 12/14/2022]
Abstract
Non-small cell lung cancer (NSCLC) is the leading cause of cancer-associated deaths worldwide. Given the efficacy of membrane proteins as therapeutic targets in human malignancies, we examined cell-surface receptors that may act as drivers of lung tumorigenesis. Here, we report that the PROTOCADHERIN PCDH7 is overexpressed frequently in NSCLC tumors where this event is associated with poor clinical outcome. PCDH7 overexpression synergized with EGFR and KRAS to induce MAPK signaling and tumorigenesis. Conversely, PCDH7 depletion suppressed ERK activation, sensitized cells to MEK inhibitors, and reduced tumor growth. PCDH7 potentiated ERK signaling by facilitating interaction of protein phosphatase PP2A with its potent inhibitor, the SET oncoprotein. By establishing an oncogenic role for PCDH7 in lung tumorigenesis, our results provide a rationale to develop novel PCDH7 targeting therapies that act at the cell surface of NSCLC cells to compromise their growth. Cancer Res; 77(1); 187-97. ©2016 AACR.
Collapse
Affiliation(s)
- Xiaorong Zhou
- Department of Molecular Biology, UT Southwestern Medical Center, Dallas, Texas.,Department of Immunology, Nantong University School of Medicine, Nantong, China
| | - Barrett L Updegraff
- Department of Molecular Biology, UT Southwestern Medical Center, Dallas, Texas
| | - Yabin Guo
- Department of Molecular Biology, UT Southwestern Medical Center, Dallas, Texas
| | - Michael Peyton
- Hamon Center for Therapeutic Oncology Research, UT Southwestern Medical Center, Dallas, Texas
| | - Luc Girard
- Hamon Center for Therapeutic Oncology Research, UT Southwestern Medical Center, Dallas, Texas.,Department of Pharmacology, UT Southwestern Medical Center, Dallas, Texas
| | - Jill E Larsen
- Department of Genetics and Computational Biology, QIMR Berghofer Medical Research Institute, Brisbane, Queensland
| | - Xian-Jin Xie
- Department of Clinical Science, UT Southwestern Medical Center, Dallas, Texas.,Harold C. Simmons Comprehensive Cancer Center, UT Southwestern Medical Center, Dallas, Texas
| | - Yunyun Zhou
- Department of Clinical Science, UT Southwestern Medical Center, Dallas, Texas
| | - Tae Hyun Hwang
- Department of Clinical Science, UT Southwestern Medical Center, Dallas, Texas
| | - Yang Xie
- Department of Clinical Science, UT Southwestern Medical Center, Dallas, Texas
| | - Jaime Rodriguez-Canales
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Pamela Villalobos
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Carmen Behrens
- Department of Thoracic Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Ignacio I Wistuba
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - John D Minna
- Hamon Center for Therapeutic Oncology Research, UT Southwestern Medical Center, Dallas, Texas.,Department of Pharmacology, UT Southwestern Medical Center, Dallas, Texas.,Department of Internal Medicine, UT Southwestern Medical Center, Dallas, Texas
| | - Kathryn A O'Donnell
- Department of Molecular Biology, UT Southwestern Medical Center, Dallas, Texas. .,Harold C. Simmons Comprehensive Cancer Center, UT Southwestern Medical Center, Dallas, Texas
| |
Collapse
|
38
|
Pei Y, Wu Q, Liu Y, Sun L, Zhi W, Zhang P. Prenatal sonographic diagnosis of urorectal septum malformation sequence and chromosomal microarray analysis: A case report and review of the literature. Medicine (Baltimore) 2016; 95:e5326. [PMID: 27828853 PMCID: PMC5106059 DOI: 10.1097/md.0000000000005326] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
INTRODUCTION Urorectal septum malformation sequence (URSMS) is a rare congenital abnormal syndrome that is caused by the incomplete division of the cloaca. Based on whether the cloaca membrane breaks down or not, the URSMS are classified as full and partial forms. The prenatal diagnosis of URSMS remains challenging because of poor recognition to this malformation and the relatively non-specific sonographic features. We report a prenatally sonographic diagnosed case of the partial URSMS, and review the literature to summarize the prenatal features. CASE REPORT AND REVIEW A 37-year old woman was referred at 24 weeks of gestation for fetal abdominal cyst. Detailed sonographic examination was done and revealed the vesicocolic fistula, distended colon, absence of perianal hypoechoic ring, pyelectasis, and small stomach bubble. The URSMS was suspected.Amniocentesis was done and karyotyping revealed 46,XY. Furthermore, chromosomal microarray analysis (CMA) was performed for the first time in URSMS and an alteration of 111.8Kb deletion was detected in 16p13.3 which was located inside the RBFOX1 gene. Parental studies showed that the deletion was inherited from the father who has nomal clinical phenotype.The woman elected to terminate the pregnancy at 25 weeks gestation and postmortem examination confirmed the diagnosis of partial URSMS.The published studies were reviewed and 28 cases of URSMS with conducted prenatal ultrasonography were collected in this report. The most common sonographic description, as suspicious signs of URSMS, were severe oligohydramnios or anhydramnios, urinary tract anomalies, fetal intra-abdominal cysts, and dilated bowel. Also, enterolithiasis and vesicocolic fistula were relatively infrequent but highly specific feature of URSMS. CONCLUSIONS URSMS is difficult to be diagnosed prenatally. However, it has characteristic features that can be detected by fetal ultrasonography, and a precise prenatal sonographic examination is crucial for diagnosing URSMS. Besides, more genomic profiling studies are needed to elucidate the causality.
Collapse
Affiliation(s)
| | - Qingqing Wu
- Department of Ultrasound
- Correspondence: Qingqing Wu, Department of Ultrasound, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing 100026, China (e-mail: )
| | | | | | - Wenxue Zhi
- Department of Pathology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing, China
| | | |
Collapse
|
39
|
Liu L, Huang J, Wang K, Li L, Li Y, Yuan J, Wei S. Identification of hallmarks of lung adenocarcinoma prognosis using whole genome sequencing. Oncotarget 2016; 6:38016-28. [PMID: 26497366 PMCID: PMC4741981 DOI: 10.18632/oncotarget.5697] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Accepted: 09/30/2015] [Indexed: 11/25/2022] Open
Abstract
In conjunction with clinical characteristics, prognostic biomarkers are essential for choosing optimal therapies to lower the mortality of lung adenocarcinoma. Whole genome sequencing (WGS) of 7 cancerous-noncancerous tissue pairs was performed to explore the comparative copy number variations (CNVs) associated with lung adenocarcinoma. The frequencies of top ranked CNVs were verified in an independent set of 114 patients and then the roles of target CNVs in disease prognosis were assessed in 313 patients. The WGS yielded 2604 CNVs. After frequency validation and biological function screening of top 10 CNVs, 9 mutant driver genes from 7 CNVs were further analyzed for an association with survival. Compared with the PBXIP1 amplified copy number, unamplified carriers had a 0.62-fold (95%CI = 0.43–0.91) decreased risk of death. Compared with an amplified TERT, those with an unamplified TERT had a 35% reduction (95% CI = 3%–56%) in risk of lung adenocarcinoma progression. Cases with both unamplified PBXIP1 and TERT had a median 34.32-month extension of overall survival and 34.55-month delay in disease progression when compared with both amplified CNVs. This study demonstrates that CNVs of TERT and PBXIP1 have the potential to translate into the clinic and be used to improve outcomes for patients with this fatal disease.
Collapse
Affiliation(s)
- Li Liu
- Department of Epidemiology and Biostatistics, and the Ministry of Education Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China
| | - Jiao Huang
- Department of Epidemiology and Biostatistics, and the Ministry of Education Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China
| | - Ke Wang
- Department of Epidemiology and Biostatistics, and the Ministry of Education Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China
| | - Li Li
- Department of Epidemiology and Biostatistics, and the Ministry of Education Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China
| | - Yangkai Li
- Department of Thoracic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China
| | - Jingsong Yuan
- Department of Radiation Oncology, Center for Radiological Research, Columbia University Medical Center, New York, NY, USA
| | - Sheng Wei
- Department of Epidemiology and Biostatistics, and the Ministry of Education Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China
| |
Collapse
|
40
|
Morales-Espinosa D, García-Román S, Karachaliou N, Rosell R. Pharmacogenomics in the treatment of lung cancer: an update. Pharmacogenomics 2015; 16:1751-60. [DOI: 10.2217/pgs.15.99] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Significant advances have been made in the analysis of the human genome in the first decades of the 21st century and understanding of tumor biology has matured greatly. The identification of tumor-associated mutations and the pathways involved has led to the development of targeted anticancer therapies. However, the challenge now in using chemotherapy to treat nonsmall-cell lung cancer is to identify more molecular markers predictive of drug sensitivity and determine the optimal drug sequences in order to tailor treatment to each patient. This approach could permit selection of patients who could benefit most from a specific type of chemotherapy by matching their tumor and individual genetic profile. Nevertheless, this potential has been limited so far by reliance on the single biomarker approach, though this is now on the way to being overcome through whole genome studies.
Collapse
Affiliation(s)
- Daniela Morales-Espinosa
- Translational Research Laboratory, Catalan Institute of Oncology, Hospital Universitari Germans Trias I Pujol, Ctra Canyet s/n, Badalona, 08916 Barcelona, Spain
- Fundación Clínica, Médica Sur, Mexico City, Mexico
- Carcinogenesis Laboratory, National Cancer Institute, Mexico City, México
- Dr Rosell Oncology Institute, Quirón Dexeus University Hospital, Barcelona, Spain
| | | | - Niki Karachaliou
- Dr Rosell Oncology Institute, Quirón Dexeus University Hospital, Barcelona, Spain
| | - Rafael Rosell
- Translational Research Laboratory, Catalan Institute of Oncology, Hospital Universitari Germans Trias I Pujol, Ctra Canyet s/n, Badalona, 08916 Barcelona, Spain
- Dr Rosell Oncology Institute, Quirón Dexeus University Hospital, Barcelona, Spain
- Pangaea Biotech S.L., Barcelona, Spain
- Molecular Oncology Research (MORe) Foundation, Barcelona, Spain
| |
Collapse
|
41
|
GAO TANGXIN, ZHENG SHANGYONG, LI QIAN, RAN PENGZHAN, SUN LIJUAN, YUAN YUNCANG, XIAO CHUNJIE. Aberrant hypomethylation and overexpression of the eyes absent homologue 2 suppresses tumor cell growth of human lung adenocarcinoma cells. Oncol Rep 2015; 34:2333-42. [DOI: 10.3892/or.2015.4245] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Accepted: 06/15/2015] [Indexed: 11/06/2022] Open
|
42
|
Cao Y, Liu Y, Yang X, Liu X, Han N, Zhang K, Lin D. Estimation of the Survival of Patients With Lung Squamous Cell Carcinoma Using Genomic Copy Number Aberrations. Clin Lung Cancer 2015; 17:68-74.e5. [PMID: 26427646 DOI: 10.1016/j.cllc.2015.08.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Revised: 08/04/2015] [Accepted: 08/11/2015] [Indexed: 01/25/2023]
Abstract
BACKGROUND Estimation of the survival of patients with lung squamous cell carcinoma (SCC) on the basis of histopathology is inadequate. The aim of this study was to identify genomic regions with potential value for estimating the prognosis of these patients. PATIENTS AND METHODS Depending on their survival time, 100 patients with primary lung SCC were separated into high- or low-risk prognostic groups, and their copy number aberrations (CNAs) were analyzed using array-comparative genomic hybridization (array-CGH). RESULTS We identified 123 CNA regions that were significantly associated with survival. Among these regions, some have been reported previously (eg, amplifications of 8p12, 3q27.1, and loss of 9p21.3 and 13q34) but others have never been reported. For example, gains of 3q27.1, 5p13.2, and 5p13.3 were found to be associated with a favorable prognosis, but patients harboring gains of 11q23.3, 11q13.1, and 14q32.3, and deletions of 3p21.3 and 9p21.3 tended to have poor survival. Among the 123 CNA regions, 41 were further selected to construct a survival estimation model that could effectively separate SCC patients into high- or low-risk groups with an accuracy of 92%, sensitivity of 90%, and specificity of 94%. The results of the array-CGH were further validated in an independent cohort of 45 formalin-fixed, paraffin-embedded specimens using real-time polymerase chain reaction. CONCLUSION A number of CNA regions were found to be associated with the survival of SCC patients, and we were able to construct a model to estimate prognosis on the basis of these regions. Assessment of these CNAs could potentially assist in clinical decision-making regarding adjuvant therapy after surgery.
Collapse
Affiliation(s)
- Yan Cao
- Department of Pathology, Plastic Surgery Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, P.R. China
| | - Yu Liu
- State Key Laboratory of Molecular Oncology, Department of Etiology and Carcinogenesis, Cancer Institute (Hospital), Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, P.R. China
| | - Xin Yang
- Department of Pathology, Cancer Institute (Hospital), Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, P.R. China; Key laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Pathology, Peking University Cancer Hospital and Institute, Beijing, P.R. China
| | - XiangYang Liu
- Department of Thoracic Surgical Oncology, Cancer Institute (Hospital), Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, P.R. China
| | - Naijun Han
- State Key Laboratory of Molecular Oncology, Department of Etiology and Carcinogenesis, Cancer Institute (Hospital), Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, P.R. China
| | - Kaitai Zhang
- State Key Laboratory of Molecular Oncology, Department of Etiology and Carcinogenesis, Cancer Institute (Hospital), Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, P.R. China
| | - Dongmei Lin
- Key laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Pathology, Peking University Cancer Hospital and Institute, Beijing, P.R. China.
| |
Collapse
|
43
|
Abstract
Background With one million new cases of colorectal cancer (CRC) diagnosed annually in the world, CRC is the third most commonly diagnosed cancer in the Western world. Patients with stage I-III CRC can be cured with surgery but are at risk for recurrence. Colorectal cancer is characterized by the presence of chromosomal deletions and gains. Large genomic profiling studies have however not been conducted in this disease. The number of a specific genetic aberration in a tumour sample could correlate with recurrence-free survival or overall survival, possibly leading to its use as biomarker for therapeutic decisions. At this point there are not sufficient markers for prediction of disease recurrence in colorectal cancer, which can be used in the clinic to discriminate between stage II patients who will benefit from adjuvant chemotherapy. For instance, the benefit of adjuvant chemotherapy has been most clearly demonstrated in stage III disease with an approximately 30 percent relative reduction in the risk of disease recurrence. The benefits of adjuvant chemotherapy in stage II disease are less certain, the risk for relapse is much smaller in the overall group and the specific patients at risk are hard to identify. Materials and Methods In this study, array-comparative genomic hybridization analysis (array-CGH) was applied to study high-resolution DNA copy number alterations in 93 colon carcinoma samples. These genomic data were combined with parameters like KRAS mutation status, microsatellite status and clinicopathological characteristics. Results Both large and small chromosomal losses and gains were identified in our sample cohort. Recurrent gains were found for chromosome 1q, 7, 8q, 13 and 20 and losses were mostly found for 1p, 4, 8p, 14, 15, 17p, 18, 21 and 22. Data analysis demonstrated that loss of chromosome 4 is linked to a worse prognosis in our patients series. Besides these alterations, two interesting small regions of overlap were identified, which could be associated with disease recurrence. Gain of the 16p13.3 locus (including the RNA binding protein, fox-1 homolog gene, RBFOX1) was linked with a worse recurrence-free survival in our patient cohort. On the other hand, loss of RBFOX1 was only found in patients without disease recurrence. Most interestingly, above mentioned characteristics were also found in stage II patients, for whom there is a high medical need for the identification of new prognostic biomarkers. Conclusions In conclusion, copy number variation of the 16p13.3 locus seems to be an important parameter for prediction of disease recurrence in colon cancer.
Collapse
|
44
|
Tumour Necrosis Factor-α Gene Polymorphism Is Associated with Metastasis in Patients with Triple Negative Breast Cancer. Sci Rep 2015; 5:10244. [PMID: 26165253 PMCID: PMC4499887 DOI: 10.1038/srep10244] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Accepted: 04/07/2015] [Indexed: 12/31/2022] Open
Abstract
Tumour necrosis factor-α (TNF-α) is critical in the regulation of inflammation and tumour progression. TNF-α-308G > A is associated with constitutively elevated TNF-α expression. The purpose of this study was to assess the association between TNF-α-308G > A and breast cancer (BC) risk by subtype and the connection between genotypes and clinical features of BC. A total of 768 patients and 565 controls were enrolled in this study, and genotypes were detected using the TaqMan assay. No effect on susceptibility for any BC subtype was found for the TNF-α-308 polymorphism in our study or in the pooled meta-analysis. This polymorphism was shown to be associated with age at menarche in all BC and in progesterone receptor-negative BC. Interestingly, triple negative breast cancer (TNBC) patients with TNF-α-308A had an increased risk of distant tumour metastasis (OR = 3.80, 95% CI: 1.31-11.02, P = 0.009). Multi-regression analysis showed that TNF-α-308A was also a risk factor for distant tumour metastasis after adjustment for tumour size and lymph node metastasis status (OR = 6.26, 95% CI: 1.88-20.87, P = 0.003). These findings indicate that TNF-α might play a distinct role in the progression of TNBC, especially in distant tumour metastasis of TNBC.
Collapse
|
45
|
Vandin F, Papoutsaki A, Raphael BJ, Upfal E. Accurate computation of survival statistics in genome-wide studies. PLoS Comput Biol 2015; 11:e1004071. [PMID: 25950620 PMCID: PMC4423942 DOI: 10.1371/journal.pcbi.1004071] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2013] [Accepted: 12/03/2014] [Indexed: 02/05/2023] Open
Abstract
A key challenge in genomics is to identify genetic variants that distinguish patients with different survival time following diagnosis or treatment. While the log-rank test is widely used for this purpose, nearly all implementations of the log-rank test rely on an asymptotic approximation that is not appropriate in many genomics applications. This is because: the two populations determined by a genetic variant may have very different sizes; and the evaluation of many possible variants demands highly accurate computation of very small p-values. We demonstrate this problem for cancer genomics data where the standard log-rank test leads to many false positive associations between somatic mutations and survival time. We develop and analyze a novel algorithm, Exact Log-rank Test (ExaLT), that accurately computes the p-value of the log-rank statistic under an exact distribution that is appropriate for any size populations. We demonstrate the advantages of ExaLT on data from published cancer genomics studies, finding significant differences from the reported p-values. We analyze somatic mutations in six cancer types from The Cancer Genome Atlas (TCGA), finding mutations with known association to survival as well as several novel associations. In contrast, standard implementations of the log-rank test report dozens-hundreds of likely false positive associations as more significant than these known associations.
Collapse
Affiliation(s)
- Fabio Vandin
- Department of Mathematics and Computer Science, University of Southern Denmark, Funen, Denmark
- Department of Computer Science, Brown University, Providence, Rhode Island, United States of America
- Center for Computational Molecular Biology, Brown University, Providence, Rhode Island, United States of America
| | - Alexandra Papoutsaki
- Department of Computer Science, Brown University, Providence, Rhode Island, United States of America
- Center for Computational Molecular Biology, Brown University, Providence, Rhode Island, United States of America
| | - Benjamin J. Raphael
- Department of Computer Science, Brown University, Providence, Rhode Island, United States of America
- Center for Computational Molecular Biology, Brown University, Providence, Rhode Island, United States of America
- * E-mail: (BJR); (EU)
| | - Eli Upfal
- Department of Computer Science, Brown University, Providence, Rhode Island, United States of America
- * E-mail: (BJR); (EU)
| |
Collapse
|
46
|
Fagerholm R, Schmidt MK, Khan S, Rafiq S, Tapper W, Aittomäki K, Greco D, Heikkinen T, Muranen TA, Fasching PA, Janni W, Weinshilboum R, Loehberg CR, Hopper JL, Southey MC, Keeman R, Lindblom A, Margolin S, Mannermaa A, Kataja V, Chenevix-Trench G, Investigators KC, Lambrechts D, Wildiers H, Chang-Claude J, Seibold P, Couch FJ, Olson JE, Andrulis IL, Knight JA, García-Closas M, Figueroa J, Hooning MJ, Jager A, Shah M, Perkins BJ, Luben R, Hamann U, Kabisch M, Czene K, Hall P, Easton DF, Pharoah PD, Liu J, Eccles D, Blomqvist C, Nevanlinna H. The SNP rs6500843 in 16p13.3 is associated with survival specifically among chemotherapy-treated breast cancer patients. Oncotarget 2015; 6:7390-407. [PMID: 25823661 PMCID: PMC4480688 DOI: 10.18632/oncotarget.3506] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2015] [Accepted: 01/03/2015] [Indexed: 12/16/2022] Open
Abstract
We have utilized a two-stage study design to search for SNPs associated with the survival of breast cancer patients treated with adjuvant chemotherapy. Our initial GWS data set consisted of 805 Finnish breast cancer cases (360 treated with adjuvant chemotherapy). The top 39 SNPs from this stage were analyzed in three independent data sets: iCOGS (n=6720 chemotherapy-treated cases), SUCCESS-A (n=3596), and POSH (n=518). Two SNPs were successfully validated: rs6500843 (any chemotherapy; per-allele HR 1.16, 95% C.I. 1.08-1.26, p=0.0001, p(adjusted)=0.0091), and rs11155012 (anthracycline therapy; per-allele HR 1.21, 95% C.I. 1.08-1.35, p=0.0010, p(adjusted)=0.0270). The SNP rs6500843 was found to specifically interact with adjuvant chemotherapy, independently of standard prognostic markers (p(interaction)=0.0009), with the rs6500843-GG genotype corresponding to the highest hazard among chemotherapy-treated cases (HR 1.47, 95% C.I. 1.20-1.80). Upon trans-eQTL analysis of public microarray data, the rs6500843 locus was found to associate with the expression of a group of genes involved in cell cycle control, notably AURKA, the expression of which also exhibited differential prognostic value between chemotherapy-treated and untreated cases in our analysis of microarray data. Based on previously published information, we propose that the eQTL genes may be connected to the rs6500843 locus via a RBFOX1-FOXM1 -mediated regulatory pathway.
Collapse
Affiliation(s)
- Rainer Fagerholm
- Department of Obstetrics and Gynecology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Marjanka K. Schmidt
- Netherlands Cancer Institute, Antoni van Leeuwenhoek hospital, Amsterdam, The Netherlands
| | - Sofia Khan
- Department of Obstetrics and Gynecology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Sajjad Rafiq
- Faculty of Medicine, University of Southampton, Southampton General Hospital, Southampton, UK
| | - William Tapper
- Faculty of Medicine, University of Southampton, Southampton General Hospital, Southampton, UK
| | - Kristiina Aittomäki
- Department of Clinical Genetics, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Dario Greco
- Department of Obstetrics and Gynecology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Tuomas Heikkinen
- Department of Obstetrics and Gynecology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Taru A. Muranen
- Department of Obstetrics and Gynecology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Peter A. Fasching
- Department of Gynecology and Obstetrics, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany
- Department of Medicine, Division of Hematology and Oncology, University of California at Los Angeles, Los Angeles, CA, USA
| | - Wolfgang Janni
- Department of Gynecology and Obstetrics, University Hospital Ulm, Ulm, Germany
| | - Richard Weinshilboum
- Division of Clinical Pharmacology, Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic College of Medicine, Mayo Medical School-Mayo Foundation, Rochester, MN, USA
| | - Christian R. Loehberg
- University Breast Center Franconia, Department of Gynecology and Obstetrics, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nuremberg, Comprehensive Cancer Center Erlangen-EMN, Erlangen, Germany
| | - John L. Hopper
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, Victoria, Australia
| | - Melissa C. Southey
- Department of Pathology, The University of Melbourne, Melbourne, Victoria, Australia
| | - Renske Keeman
- Netherlands Cancer Institute, Antoni van Leeuwenhoek hospital, Amsterdam, The Netherlands
| | - Annika Lindblom
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Sara Margolin
- Department of Oncology - Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Arto Mannermaa
- School of Medicine, Institute of Clinical Medicine, Pathology and Forensic Medicine, University of Eastern Finland, Kuopio, Finland
- Cancer Center of Eastern Finland, University of Eastern Finland, Kuopio, Finland
- Imaging Center, Department of Clinical Pathology, Kuopio University Hospital, Kuopio, Finland
| | - Vesa Kataja
- Cancer Center, Kuopio University Hospital, Kuopio, Finland
| | | | | | - Diether Lambrechts
- Vesalius Research Center (VRC), VIB, Leuven, Belgium
- Laboratory for Translational Genetics, Department of Oncology, University of Leuven, Leuven, Belgium
| | - Hans Wildiers
- Multidisciplinary Breast Center, Medical Oncology, University Hospital Leuven, Leuven, Belgium
| | - Jenny Chang-Claude
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Petra Seibold
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Fergus J. Couch
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Janet E. Olson
- Department of Health Sciences Research, Mayo Clinic, Rochester, MN, USA
| | - Irene L. Andrulis
- Lunenfeld-Tanenbaum Research Institute of Mount Sinai Hospital, Toronto, ON, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Julia A. Knight
- Prosserman Centre for Health Research, Lunenfeld-Tanenbaum Research Institute of Mount Sinai Hospital, Toronto, ON, Canada
- Division of Epidemiology, Dalla Lana School of Public Health, University of Toronto, Toronto, ON, Canada
| | - Montserrat García-Closas
- Division of Genetics and Epidemiology, Institute of Cancer Research, Sutton, UK
- Breakthrough Breast Cancer Research Centre, Division of Breast Cancer Research, The Institute of Cancer Research, London, UK
| | - Jonine Figueroa
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA
| | - Maartje J. Hooning
- Department of Medical Oncology, Erasmus MC Cancer Institute, 3008 AE Rotterdam, The Netherlands
| | - Agnes Jager
- Department of Medical Oncology, Erasmus MC Cancer Institute, 3008 AE Rotterdam, The Netherlands
| | - Mitul Shah
- Centre for Cancer Genetic Epidemiology, Department of Oncology, University of Cambridge, UK
| | - Barbara J. Perkins
- Centre for Cancer Genetic Epidemiology, Department of Oncology, University of Cambridge, UK
| | - Robert Luben
- Clinical Gerontology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Ute Hamann
- Molecular Genetics of Breast Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Maria Kabisch
- Molecular Genetics of Breast Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Kamila Czene
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Per Hall
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Douglas F. Easton
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
- Centre for Cancer Genetic Epidemiology, Department of Oncology, University of Cambridge, Cambridge, UK
| | - Paul D.P. Pharoah
- Centre for Cancer Genetic Epidemiology, Department of Oncology, University of Cambridge, UK
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Jianjun Liu
- Human Genetics Division, Genome Institute of Singapore, Singapore
| | - Diana Eccles
- Faculty of Medicine, University of Southampton, Southampton General Hospital, Southampton, UK
| | - Carl Blomqvist
- Department of Oncology, University of Helsinki and Helsinki University Hospital, Helsinki, HUS, Finland
| | - Heli Nevanlinna
- Department of Obstetrics and Gynecology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| |
Collapse
|
47
|
Xu W, Xu J, Shestopaloff K, Dicks E, Green J, Parfrey P, Green R, Savas S. A genome wide association study on Newfoundland colorectal cancer patients' survival outcomes. Biomark Res 2015; 3:6. [PMID: 25866641 PMCID: PMC4393623 DOI: 10.1186/s40364-015-0031-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2014] [Accepted: 02/23/2015] [Indexed: 01/14/2023] Open
Abstract
Background In this study we performed genome-wide association studies to identify candidate SNPs that may predict the risk of disease outcome in colorectal cancer. Methods Patient cohort consisted of 505 unrelated patients with Caucasian ancestry. Germline DNA samples were genotyped using the Illumina® human Omni-1quad SNP chip. Associations of SNPs with overall and disease free survivals were examined primarily for 431 patients with microsatellite instability-low (MSI-L) or stable (MSS) colorectal tumors using Cox proportional hazards method adjusting for clinical covariates. Bootstrap method was applied for internal validation of results. As exploratory analyses, association analyses for the colon (n = 334) and rectal (n = 171) cancer patients were also performed. Results As a result, there was no SNP that reached the genomewide significance levels (p < 5x10−8) in any of the analyses. A small number of genetic markers (n = 10) showed nominal associations (p <10−6) for MSS/MSI-L, colon, or rectal cancer patient groups. These markers were located in two non-coding RNA genes or intergenic regions and none were amino acid substituting polymorphisms. Bootstrap analysis for the MSS/MSI-L cohort data suggested the robustness of the observed nominal associations. Conclusions Likely due to small number of patients, our study did not identify an acceptable level of association of SNPs with outcome in MSS/MSI-L, colon, or rectal cancer patients. A number of SNPs with sub-optimal p-values were, however, identified; these loci may be promising and examined in other larger-sized patient cohorts. Electronic supplementary material The online version of this article (doi:10.1186/s40364-015-0031-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Wei Xu
- Department of Biostatistics, Princess Margaret Cancer Centre, Toronto, ON Canada M5G 2 M9 ; Dalla Lana School of Public Health, University of Toronto, Toronto, ON Canada M5T 3M7
| | - Jingxiong Xu
- Department of Biostatistics, Princess Margaret Cancer Centre, Toronto, ON Canada M5G 2 M9 ; Dalla Lana School of Public Health, University of Toronto, Toronto, ON Canada M5T 3M7
| | | | - Elizabeth Dicks
- Clinical Epidemiology Unit, Faculty of Medicine, Memorial University, St. John's, NL Canada A1B 3V6
| | - Jane Green
- Discipline of Genetics, Faculty of Medicine, Memorial University, St. John's, NL Canada A1B 3 V6
| | - Patrick Parfrey
- Clinical Epidemiology Unit, Faculty of Medicine, Memorial University, St. John's, NL Canada A1B 3V6
| | - Roger Green
- Discipline of Genetics, Faculty of Medicine, Memorial University, St. John's, NL Canada A1B 3 V6
| | - Sevtap Savas
- Discipline of Genetics, Faculty of Medicine, Memorial University, St. John's, NL Canada A1B 3 V6 ; Discipline of Oncology, Faculty of Medicine, Memorial University, St. John's, NL Canada A1B 3 V6
| |
Collapse
|
48
|
Zhuang X, Herbert JMJ, Lodhia P, Bradford J, Turner AM, Newby PM, Thickett D, Naidu U, Blakey D, Barry S, Cross DAE, Bicknell R. Identification of novel vascular targets in lung cancer. Br J Cancer 2015; 112:485-94. [PMID: 25535734 PMCID: PMC4453649 DOI: 10.1038/bjc.2014.626] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Revised: 11/13/2014] [Accepted: 11/26/2014] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND Lung cancer remains the leading cause of cancer-related death, largely owing to the lack of effective treatments. A tumour vascular targeting strategy presents an attractive alternative; however, the molecular signature of the vasculature in lung cancer is poorly explored. This work aimed to identify novel tumour vascular targets in lung cancer. METHODS Enzymatic digestion of fresh tissue followed by endothelial capture with Ulex lectin-coated magnetic beads was used to isolate the endothelium from fresh tumour specimens of lung cancer patients. Endothelial isolates from the healthy and tumour lung tissue were subjected to whole human genome expression profiling using microarray technology. RESULTS Bioinformatics analysis identified tumour endothelial expression of angiogenic factors, matrix metalloproteases and cell-surface transmembrane proteins. Predicted novel tumour vascular targets were verified by RNA-seq, quantitative real-time PCR analysis and immunohistochemistry. Further detailed expression profiling of STEAP1 on 82 lung cancer patients confirmed STEAP1 as a novel target in the tumour vasculature. Functional analysis of STEAP1 using siRNA silencing implicates a role in endothelial cell migration and tube formation. CONCLUSIONS The identification of cell-surface tumour endothelial markers in lung is of interest in therapeutic antibody and vaccine development.
Collapse
MESH Headings
- Aged
- Aged, 80 and over
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/metabolism
- Carcinoma, Non-Small-Cell Lung/blood supply
- Carcinoma, Non-Small-Cell Lung/drug therapy
- Carcinoma, Non-Small-Cell Lung/genetics
- Endothelium, Vascular/metabolism
- Endothelium, Vascular/pathology
- Female
- Gene Expression Profiling
- Genetic Association Studies/methods
- Humans
- Lung/blood supply
- Lung/metabolism
- Lung/pathology
- Lung Neoplasms/blood supply
- Lung Neoplasms/drug therapy
- Lung Neoplasms/genetics
- Male
- Microarray Analysis
- Middle Aged
- Molecular Targeted Therapy
- Neovascularization, Pathologic/drug therapy
- Neovascularization, Pathologic/genetics
- Real-Time Polymerase Chain Reaction
- Sequence Analysis, RNA
Collapse
Affiliation(s)
- X Zhuang
- School of Immunity and Infection,
Institute for Biomedical Research, College of Medical and Dental Sciences,
University of Birmingham, Edgbaston, Birmingham
B15 2TT, UK
- School of Cancer Sciences, College of
Medical and Dental Sciences, University of Birmingham,
Edgbaston, Birmingham
B15 2TT, UK
| | - J M J Herbert
- School of Immunity and Infection,
Institute for Biomedical Research, College of Medical and Dental Sciences,
University of Birmingham, Edgbaston, Birmingham
B15 2TT, UK
- Technology Hub Sequencing and
Bioinformatics, College of Medical and Dental Sciences,
Birmingham
B15, UK
| | - P Lodhia
- School of Immunity and Infection,
Institute for Biomedical Research, College of Medical and Dental Sciences,
University of Birmingham, Edgbaston, Birmingham
B15 2TT, UK
| | - J Bradford
- AstraZeneca, Mereside,
Alderley Park, Macclesfield, Cheshire
SK10 4TG, UK
| | - A M Turner
- School of Clinical and Experimental
Medicine, University of Birmingham, QEHB Research Laboratories,
Mindelsohn Way, Birmingham
B15 2WB, UK
- Birmingham Heartlands Hospital,
Bordesley Green, Birmingham
B9 5SS, UK
| | - P M Newby
- School of Immunity and Infection,
Institute for Biomedical Research, College of Medical and Dental Sciences,
University of Birmingham, Edgbaston, Birmingham
B15 2TT, UK
| | - D Thickett
- School of Clinical and Experimental
Medicine, University of Birmingham, QEHB Research Laboratories,
Mindelsohn Way, Birmingham
B15 2WB, UK
| | - U Naidu
- School of Clinical and Experimental
Medicine, University of Birmingham, QEHB Research Laboratories,
Mindelsohn Way, Birmingham
B15 2WB, UK
- Birmingham Heartlands Hospital,
Bordesley Green, Birmingham
B9 5SS, UK
| | - D Blakey
- AstraZeneca, Mereside,
Alderley Park, Macclesfield, Cheshire
SK10 4TG, UK
| | - S Barry
- AstraZeneca, Mereside,
Alderley Park, Macclesfield, Cheshire
SK10 4TG, UK
| | - D A E Cross
- AstraZeneca, Mereside,
Alderley Park, Macclesfield, Cheshire
SK10 4TG, UK
| | - R Bicknell
- School of Immunity and Infection,
Institute for Biomedical Research, College of Medical and Dental Sciences,
University of Birmingham, Edgbaston, Birmingham
B15 2TT, UK
- School of Cancer Sciences, College of
Medical and Dental Sciences, University of Birmingham,
Edgbaston, Birmingham
B15 2TT, UK
| |
Collapse
|
49
|
Woods NT, Monteiro AN, Thompson ZJ, Amankwah EK, Naas N, Haura EB, Beg AA, Schabath MB. Interleukin polymorphisms associated with overall survival, disease-free survival, and recurrence in non-small cell lung cancer patients. Mol Carcinog 2015; 54 Suppl 1:E172-84. [PMID: 25597281 DOI: 10.1002/mc.22275] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2014] [Revised: 11/24/2014] [Accepted: 12/01/2014] [Indexed: 01/15/2023]
Abstract
Biomarkers based on germline DNA variations could have translational implications by identifying prognostic factors and sub-classifying patients to tailored, patient-specific treatment. To investigate the association between germline variations in interleukin (IL) genes and lung cancer outcomes, we genotyped 251 single nucleotide polymorphisms (SNPs) from 33 different IL genes in 651 non-small cell lung cancer (NSCLC) patients. Analyses were performed to investigate overall survival, disease-free survival, and recurrence. Our analyses revealed 24 different IL SNPs significantly associated with one or more of the lung cancer outcomes of interest. The GG genotype of IL16:rs7170924 was significantly associated with disease-free survival (HR = 0.65; 95% CI 0.50-0.83) and was the only SNP that produced a false discovery rate (FDR) of modest confidence that the association is unlikely to represent a false-positive result (FDR = 0.142). Classification and regression tree (CART) analyses were used to identify potential higher-order interactions. We restricted the CART analyses to the five SNPs that were significantly associated with multiple endpoints (IL1A:rs1800587, IL1B:rs1143634, IL8:s12506479, IL12A:rs662959, and IL13:rs1881457) and IL16:rs7170924 which had the lowest FDR. CART analyses did not yield a tree structure for overall survival; separate CART tree structures were identified for recurrence, based on three SNPs (IL13:rs1881457, IL1B:rs1143634, and IL12A:rs662959), and for disease-free survival, based on two SNPs (IL12A:rs662959 and IL16:rs7170924), which may suggest that these candidate IL SNPs have a specific impact on lung cancer progression and recurrence. These data suggest that germline variations in IL genes are associated with clinical outcomes in NSCLC patients.
Collapse
Affiliation(s)
- Nicholas T Woods
- Department of Cancer Epidemiology, H. Lee Moffitt Cancer Center Research Institute, Tampa, Florida.,Department of Oncologic Sciences, University of South Florida College of Medicine, Tampa, Florida
| | - Alvaro N Monteiro
- Department of Cancer Epidemiology, H. Lee Moffitt Cancer Center Research Institute, Tampa, Florida.,Department of Oncologic Sciences, University of South Florida College of Medicine, Tampa, Florida
| | - Zachary J Thompson
- Department of Biostatistics Bioinformatics, H. Lee Moffitt Cancer Center Research Institute, Tampa, Florida
| | - Ernest K Amankwah
- Department of Cancer Epidemiology, H. Lee Moffitt Cancer Center Research Institute, Tampa, Florida
| | - Nina Naas
- Department of Cancer Epidemiology, H. Lee Moffitt Cancer Center Research Institute, Tampa, Florida
| | - Eric B Haura
- Department of Oncologic Sciences, University of South Florida College of Medicine, Tampa, Florida.,Department of Thoracic Oncology, H. Lee Moffitt Cancer Center Research Institute, Tampa, Florida
| | - Amer A Beg
- Department of Oncologic Sciences, University of South Florida College of Medicine, Tampa, Florida.,Department of Immunology, H. Lee Moffitt Cancer Center Research Institute, Tampa, Florida
| | - Matthew B Schabath
- Department of Cancer Epidemiology, H. Lee Moffitt Cancer Center Research Institute, Tampa, Florida.,Department of Oncologic Sciences, University of South Florida College of Medicine, Tampa, Florida
| |
Collapse
|
50
|
Van Rechem C, Black JC, Greninger P, Zhao Y, Donado C, Burrowes PD, Ladd B, Christiani DC, Benes CH, Whetstine JR. A coding single-nucleotide polymorphism in lysine demethylase KDM4A associates with increased sensitivity to mTOR inhibitors. Cancer Discov 2015; 5:245-54. [PMID: 25564517 DOI: 10.1158/2159-8290.cd-14-1159] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
UNLABELLED SNPs occur within chromatin-modulating factors; however, little is known about how these variants within the coding sequence affect cancer progression or treatment. Therefore, there is a need to establish their biochemical and/or molecular contribution, their use in subclassifying patients, and their impact on therapeutic response. In this report, we demonstrate that coding SNP-A482 within the lysine tridemethylase gene KDM4A/JMJD2A has different allelic frequencies across ethnic populations, associates with differential outcome in patients with non-small cell lung cancer (NSCLC), and promotes KDM4A protein turnover. Using an unbiased drug screen against 87 preclinical and clinical compounds, we demonstrate that homozygous SNP-A482 cells have increased mTOR inhibitor sensitivity. mTOR inhibitors significantly reduce SNP-A482 protein levels, which parallels the increased drug sensitivity observed with KDM4A depletion. Our data emphasize the importance of using variant status as candidate biomarkers and highlight the importance of studying SNPs in chromatin modifiers to achieve better targeted therapy. SIGNIFICANCE This report documents the first coding SNP within a lysine demethylase that associates with worse outcome in patients with NSCLC. We demonstrate that this coding SNP alters the protein turnover and associates with increased mTOR inhibitor sensitivity, which identifies a candidate biomarker for mTOR inhibitor therapy and a therapeutic target for combination therapy.
Collapse
Affiliation(s)
- Capucine Van Rechem
- Massachusetts General Hospital Cancer Center and Department of Medicine, Harvard Medical School, Boston, Massachusetts
| | - Joshua C Black
- Massachusetts General Hospital Cancer Center and Department of Medicine, Harvard Medical School, Boston, Massachusetts
| | - Patricia Greninger
- Massachusetts General Hospital Cancer Center and Department of Medicine, Harvard Medical School, Boston, Massachusetts
| | - Yang Zhao
- Department of Environmental Health, Harvard School of Public Health, Harvard University, Boston, Massachusetts. Department of Epidemiology and Biostatistics, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Carlos Donado
- Massachusetts General Hospital Cancer Center and Department of Medicine, Harvard Medical School, Boston, Massachusetts
| | - Paul D Burrowes
- Massachusetts General Hospital Cancer Center and Department of Medicine, Harvard Medical School, Boston, Massachusetts
| | - Brendon Ladd
- Massachusetts General Hospital Cancer Center and Department of Medicine, Harvard Medical School, Boston, Massachusetts
| | - David C Christiani
- Department of Environmental Health, Harvard School of Public Health, Harvard University, Boston, Massachusetts. Pulmonary and Critical Care Unit, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Cyril H Benes
- Massachusetts General Hospital Cancer Center and Department of Medicine, Harvard Medical School, Boston, Massachusetts
| | - Johnathan R Whetstine
- Massachusetts General Hospital Cancer Center and Department of Medicine, Harvard Medical School, Boston, Massachusetts.
| |
Collapse
|