1
|
Sánchez-Vañó R, Balaguer J, Borrego-Dorado I, Esteban-Figueruelo A, Gámez C, Hladun R, López-Almaraz R, Llempén ML, Rodado S, Rubio-Aparicio PM. Recommendations for the use of nuclear medicine imaging in patients with neuroblastoma. Clin Transl Oncol 2025; 27:2401-2415. [PMID: 39508974 DOI: 10.1007/s12094-024-03755-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 10/04/2024] [Indexed: 11/15/2024]
Abstract
Neuroblastoma (NB) is the most common extracranial solid cancer in children. Despite intensive multimodality treatment, long-term survival of patients with high-risk NB, which comprises more than half of all cases, remains poor. Nuclear medicine is key in diagnosis, staging, response assessment and long-term follow-up of NB. The emergence of novel tracers and the increasing complexity of studies require updated guidelines for nuclear medicine imaging in NB. Standardising diagnostic techniques are essential for improving study comparability and ensuring test quality. This article aims to provide a comprehensive review of NB radionuclide diagnostic imaging, including its characteristics, accuracy, advantages, and limitations. It offers practical recommendations to multidisciplinary teams responsible for treating patients with NB. This review summarises the opinions of leading experts from the Neuroblastoma Spanish Group within the Spanish Society of Paediatric Haematology and Oncology (SEHOP) and the Spanish Society of Nuclear Medicine and Molecular Imaging (SEMNIM).
Collapse
Affiliation(s)
| | - Julia Balaguer
- Servicio de Hemato-Oncología Pediátrica, Hospital Universitario La Fe and Polytechnic Hospital, Valencia, Spain.
| | - Isabel Borrego-Dorado
- Servicio de Medicina Nuclear, Hospital Universitario Virgen del Rocío, Seville, Spain
| | | | - Cristina Gámez
- Servicio de Medicina Nuclear, Hospital Universitario Vall d'Hebron, Barcelona, Spain
| | - Raquel Hladun
- Servicio de Hemato-Oncología Pediátrica, Hospital Universitario Vall d'Hebron, Barcelona, Spain
| | - Ricardo López-Almaraz
- Unidad de Hemato-Oncología Pediátrica, Hospital Universitario Cruces and Pediatric Oncology Group Biocruces Bizkaia Health Research Institute, Barakaldo, Spain
| | - Mercedes L Llempén
- Servicio de Oncología Pediátrica, Hospital Universitario Virgen del Rocío, Seville, Spain
| | - Sonia Rodado
- Servicio de Medicina Nuclear, Hospital Universitario La Paz, Madrid, Spain
| | | |
Collapse
|
2
|
Li S, Sang B, Liu J, Liu Y, Xu Y, Sun X, Yang J. Application of modified Curie and SIOPEN skeleton scoring systems in 18F-AlF-NOTA-octreotide PET/CT for neuroblastoma. Ann Nucl Med 2025; 39:353-363. [PMID: 39674843 DOI: 10.1007/s12149-024-02006-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Accepted: 11/27/2024] [Indexed: 12/16/2024]
Abstract
OBJECTIVE The study aimed to explore the role of fluorine-18-aluminum fluoride-1,4,7-triazacyclononane-1,4,7-triacetic acid-octreotide (18F-OC) positron emission tomography/computed tomography (PET/CT) in neuroblastoma (NB) and compared it with Iodine-123 labeled metaiodobenzylguanidine (123I-MIBG) scintigraphy with single photon emission computed tomography/computed tomography (SPECT/CT), as well as to investigate the feasibility of the modified Curie scoring system and International Society of Pediatric Oncology Europe Neuroblastoma (SIOPEN) skeleton scoring system applied in 18F-OC PET/CT. METHODS Patients with pathologically confirmed NB underwent 123I-MIBG scintigraphy with SPECT/CT and 18F-OC PET/CT according the standard imaging protocols. The interval between the two imaging techniques ranged from 0 to 22 days (median interval: 9 days). The number of lesions in modified Curie scoring system and SIOPEN skeleton scoring system applied on 123I-MIBG SPECT/CT and 18F-OC PET/CT was compared. RESULTS A total of 50 NB patients (male: female = 25:25) with a median age of 62-month-old were enrolled. 123I-MIBG and 18F-OC imaging were positive in 22 patients and negative in 27 patients. 1 patient had positive 18F-OC but negative 123I-MIBG results (p = 1.000). In lesion-based analysis, 18F-OC PET/CT revealed more positive lesions than 123I-MIBG scintigraphy with SPECT/CT (57 vs. 44, p < 0.001), regardless of bone/bone marrow lesions (43 vs. 37, p = 0.031) or soft tissue lesions (14 vs. 7, p = 0.016). The Curie scores of the two imaging techniques showed a significant difference (p = 0.047), whereas no statistic difference for SIOPEN scores (p = 0.688). The Curie and SIOPEN scores were significantly higher in patients with the presence of MYCN amplification or positive bone marrow puncture result (p < 0.05). CONCLUSION 18F-OC could be used in the evaluation of NB, and the modified Curie scoring system could be used to semi-quantify the disease extent of NB in 18F-OC PET/CT.
Collapse
Affiliation(s)
- Siqi Li
- Nuclear Medicine Department, Beijing Friendship Hospital, Capital Medical University, 95 Yong'an Road, Xicheng District, Beijing, 100050, China
| | - Baojun Sang
- Department of Nuclear Medicine, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250117, Shandong, China
| | - Jun Liu
- Nuclear Medicine Department, Beijing Friendship Hospital, Capital Medical University, 95 Yong'an Road, Xicheng District, Beijing, 100050, China
| | - Yuxuan Liu
- Department of Nuclear Medicine, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250117, Shandong, China
| | - Yanfeng Xu
- Nuclear Medicine Department, Beijing Friendship Hospital, Capital Medical University, 95 Yong'an Road, Xicheng District, Beijing, 100050, China
| | - Xiaorong Sun
- Department of Nuclear Medicine, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250117, Shandong, China
| | - Jigang Yang
- Nuclear Medicine Department, Beijing Friendship Hospital, Capital Medical University, 95 Yong'an Road, Xicheng District, Beijing, 100050, China.
| |
Collapse
|
3
|
Zhou Z, Yang X, Wang G, Wang X, Liu J, Xu Y, Ying K, Wang W, Yang J. The prognostic significance of semi-quantitative metabolic parameters and tumoral metabolic activity based on 123I-MIBG SPECT/CT in pretreatment neuroblastoma patients. Cancer Imaging 2025; 25:45. [PMID: 40165328 PMCID: PMC11956495 DOI: 10.1186/s40644-025-00858-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2024] [Accepted: 03/10/2025] [Indexed: 04/02/2025] Open
Abstract
PURPOSE To assess the prognosis predictive value of semi-quantitative metabolic parameters and tumoral metabolic activity based on 123I-meta-iodobenzylguanidine (MIBG) SPECT/CT in pretreatment neuroblastoma (NB) patients. METHODS A total of 50 children (25 girls, 25 boys, median age 37 months, range 1-102 months) with newly diagnosed NB, consecutively examined with pretherapeutic 123I-MIBG SPECT/CT between 2018 and 2024, were included in this retrospective study. The semi-quantitative metabolic parameters and activity of primary tumor were measured, including Tmax/Lmax, Tmean/Lmean, Tmax/Lmean, Tmax/Mmax, Tmean/Mmean and asphericity (ASP). The ratio was maximum or mean count of primary tumor, liver and muscle. Clinical data and image-related factors was recorded as well. The outcome endpoint was event-free survival (EFS). Independent predictors were identified through univariate and multivariate logistic regression analyses. Receiver operating characteristic (ROC) and Kaplan Meier analysis with log-rank test for EFS were performed. RESULTS Median follow-up was 42 months (range 2.5-74 months; 4 patients showed disease progression/relapse, 7 patients died). The univariate and multivariate Cox regression analysis demonstrated that bone/bone marrow metastasis [95% confidence interval (CI): 1.051, 18.570, p = 0.043], Tmax/Lmax (95% CI: 1.074, 1.459, p = 0.004) and ASP (95% CI: 2.618, 273.477, p = 0.006) were independent predictors of EFS. The Kaplan Meier survival analyses demonstrated that Tmax/Lmax undefined[Formula: see text]]]>6 and ASP [Formula: see text]undefined]]>34% and with bone/bone marrow metastasis had worse outcomes. CONCLUSION In this exploratory study, pretherapeutic 123I-MIBG image-derived semi-quantitative metabolic parameters and tumor asphericity provided prognostic value for EFS in NB patients. Tmax/Lmax [Formula: see text]undefined]]>6 and ASP [Formula: see text]undefined]]>34%, along with the presence of bone/bone marrow metastasis, could be considered as supplementary factors alongside existing ones.
Collapse
Affiliation(s)
- Ziang Zhou
- Department of Nuclear Medicine, Beijing Friendship Hospital, Capital Medical University, 95 Yong An Road, Xi Cheng District, Beijing, 100050, China
| | - Xu Yang
- Department of Nuclear Medicine, Beijing Friendship Hospital, Capital Medical University, 95 Yong An Road, Xi Cheng District, Beijing, 100050, China
| | - Guanyun Wang
- Department of Nuclear Medicine, Beijing Friendship Hospital, Capital Medical University, 95 Yong An Road, Xi Cheng District, Beijing, 100050, China
| | - Xiaoya Wang
- Department of Nuclear Medicine, Beijing Friendship Hospital, Capital Medical University, 95 Yong An Road, Xi Cheng District, Beijing, 100050, China
| | - Jun Liu
- Department of Nuclear Medicine, Beijing Friendship Hospital, Capital Medical University, 95 Yong An Road, Xi Cheng District, Beijing, 100050, China
| | - Yanfeng Xu
- Department of Nuclear Medicine, Beijing Friendship Hospital, Capital Medical University, 95 Yong An Road, Xi Cheng District, Beijing, 100050, China
| | - Kan Ying
- Department of Nuclear Medicine, Beijing Friendship Hospital, Capital Medical University, 95 Yong An Road, Xi Cheng District, Beijing, 100050, China
| | - Wei Wang
- Department of Nuclear Medicine, Beijing Friendship Hospital, Capital Medical University, 95 Yong An Road, Xi Cheng District, Beijing, 100050, China
| | - Jigang Yang
- Department of Nuclear Medicine, Beijing Friendship Hospital, Capital Medical University, 95 Yong An Road, Xi Cheng District, Beijing, 100050, China.
| |
Collapse
|
4
|
van Zogchel LMJ, Decarolis B, van Wezel EM, Zappeij-Kannegieter L, Gelineau NU, Schumacher-Kuckelkorn R, Simon T, Berthold F, van Noesel MM, Fiocco M, van der Schoot CE, Hero B, Stutterheim J, Tytgat GAM. Sensitive liquid biopsy monitoring correlates with outcome in the prospective international GPOH-DCOG high-risk neuroblastoma RT-qPCR validation study. J Exp Clin Cancer Res 2024; 43:331. [PMID: 39722049 DOI: 10.1186/s13046-024-03261-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Accepted: 12/18/2024] [Indexed: 12/28/2024] Open
Abstract
BACKGROUND Liquid biopsies offer less burdensome sensitive disease monitoring. Bone marrow (BM) metastases, common in various cancers including neuroblastoma, is associated with poor outcomes. In pediatric high-risk neuroblastoma most patients initially respond to treatment, but in the majority the disease recurs with only 40% long-term survivors, stressing the need for more sensitive detection of disseminated disease during therapy. METHODS To validate sensitive neuroblastoma mRNA RT-qPCR BM testing, we prospectively assessed serial BM samples from 345 international high-risk neuroblastoma patients, treated in trials NB2004 (GPOH) or NBL2009 (DCOG), using PHOX2B, TH, DDC, CHRNA3, and GAP43 RT-qPCR mRNA markers and BM GD2-immunocytology. Association between BM-infiltration levels and event-free survival (EFS) and overall survival (OS) was estimated by using Cox regression models and Kaplan-Meier's methodology. RESULTS BM infiltration >10% by RT-qPCR at diagnosis was prognostic for survival (adjusted hazard ratio (HR) 1.82 [95%CI 1.25-2.63] and 2.04 [1.33-3.14] for EFS and OS, respectively). Any post-induction RT-qPCR positivity correlated with poor EFS and OS, with a HR of 2.10 [1.27-3.49] and 1.76 [1.01-3.08] and 5-years EFS of 26.6% [standard error 5.2%] versus 60.4% [6.7] and OS of 43.8% [5.9] versus 65.7% [6.6] for RT-qPCR-positive patients versus RT-qPCR-negative patients. In contrast, post-induction immunocytology positivity was not associated with EFS or OS (HR 1.22 [0.68-2.19] and 1.26 [0.54-2.42]). CONCLUSION This study validates the association of not clearing of BM metastases by sensitive RT-qPCR detection with very poor outcome. We therefore propose implementation of RT-qPCR for minimal residual disease testing in neuroblastoma to guide therapy.
Collapse
Affiliation(s)
- Lieke M J van Zogchel
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
- Department of Experimental Immunohematology, Sanquin Research and Landsteiner Laboratory of the Amsterdam UMC, Amsterdam, The Netherlands
| | - Boris Decarolis
- Department of Pediatric Oncology and Hematology, University Children's Hospital of Cologne, and Medical Faculty, University of Cologne, Köln, Germany
| | - Esther M van Wezel
- Department of Experimental Immunohematology, Sanquin Research and Landsteiner Laboratory of the Amsterdam UMC, Amsterdam, The Netherlands
| | - Lily Zappeij-Kannegieter
- Department of Immunocytology, Sanquin Research and Landsteiner Laboratory of the Amsterdam UMC, Amsterdam, The Netherlands
| | - Nina U Gelineau
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
- Department of Experimental Immunohematology, Sanquin Research and Landsteiner Laboratory of the Amsterdam UMC, Amsterdam, The Netherlands
| | - Roswitha Schumacher-Kuckelkorn
- Department of Pediatric Oncology and Hematology, University Children's Hospital of Cologne, and Medical Faculty, University of Cologne, Köln, Germany
| | - Thorsten Simon
- Department of Pediatric Oncology and Hematology, University Children's Hospital of Cologne, and Medical Faculty, University of Cologne, Köln, Germany
| | - Frank Berthold
- Department of Pediatric Oncology and Hematology, University Children's Hospital of Cologne, and Medical Faculty, University of Cologne, Köln, Germany
| | - Max M van Noesel
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
- Division Imaging & Oncology, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Marta Fiocco
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
- Mathematical Institute, Leiden University, Leiden, The Netherlands
- Department of Biomedical data Science, Section Medical Statistics, Leiden University Medical Center, Leiden, The Netherlands
| | - C Ellen van der Schoot
- Department of Experimental Immunohematology, Sanquin Research and Landsteiner Laboratory of the Amsterdam UMC, Amsterdam, The Netherlands
| | - Barbara Hero
- Department of Pediatric Oncology and Hematology, University Children's Hospital of Cologne, and Medical Faculty, University of Cologne, Köln, Germany
| | | | - Godelieve A M Tytgat
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands.
- Department of Experimental Immunohematology, Sanquin Research and Landsteiner Laboratory of the Amsterdam UMC, Amsterdam, The Netherlands.
- Department of Genetics, Utrecht University Medical Center, Utrecht, the Netherlands.
| |
Collapse
|
5
|
Sweet C, Shmuel N, Shoaf JN, Stoecklein M, Muthukrishnan A, Stern E, Nguyen NC. A Pictorial Review of I-123 MIBG Imaging of Neuroblastoma Utilizing a State-of-the-Art CZT SPECT/CT System. Nucl Med Mol Imaging 2024; 58:1-8. [PMID: 38250182 PMCID: PMC10796310 DOI: 10.1007/s13139-023-00825-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 09/09/2023] [Accepted: 09/12/2023] [Indexed: 01/23/2024] Open
Abstract
The field of nuclear medicine is entering a new era of gamma-camera technology. Solid-state SPECT/CT systems will gradually replace the thallium-activated sodium-iodide NaI(Tl) systems. This digital technology allows drastic improvements in image quality, radiotracer dose reduction, and procedure efficiency. This pictorial review presents our initial experience on an NM/CT 870 CZT system (GE Healthcare), equipped with dual-head cadmium zinc telluride (CZT) detectors, for I-123 metaiodobenzylguanidine (MIBG) imaging in pediatric neuroblastoma. On planar imaging, CZT shows greater image quality than at conventional gamma-camera using the Infinia Hawkeye (GE Healthcare). Physiologic structures such as salivary glands and myocardium show sharper borders with a more notable signal-to-noise ratio at CZT than conventional gamma camera. On SPECT imaging, the CZT scanner, combined with resolution recovery, demonstrates either comparable or greater image quality at 80% of the conventional gamma camera’s acquisition time. Due to the 2.46-mm detector pixel with fully registered collimator holes matching each pixel and direct conversion of photons into electrical signals, the CZT gamma camera system provides significant advantages in photon localization and energy resolution.
Collapse
Affiliation(s)
- Cassidy Sweet
- Department of Radiology, UPMC Children’s Hospital of Pittsburgh, Pittsburgh, PA USA
| | | | - Jennifer N. Shoaf
- Department of Radiology, UPMC Children’s Hospital of Pittsburgh, Pittsburgh, PA USA
| | - Marcy Stoecklein
- Department of Radiology, UPMC Children’s Hospital of Pittsburgh, Pittsburgh, PA USA
| | | | | | - Nghi C. Nguyen
- Department of Radiology, University of Texas, Southwestern Medical Center, Dallas, TX USA
| |
Collapse
|
6
|
Ouvrard E, Kaseb A, Poterszman N, Porot C, Somme F, Imperiale A. Nuclear medicine imaging for bone metastases assessment: what else besides bone scintigraphy in the era of personalized medicine? Front Med (Lausanne) 2024; 10:1320574. [PMID: 38288299 PMCID: PMC10823373 DOI: 10.3389/fmed.2023.1320574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 12/28/2023] [Indexed: 01/31/2024] Open
Abstract
Accurate detection and reliable assessment of therapeutic responses in bone metastases are imperative for guiding treatment decisions, preserving quality of life, and ultimately enhancing overall survival. Nuclear imaging has historically played a pivotal role in this realm, offering a diverse range of radiotracers and imaging modalities. While the conventional bone scan using 99mTc marked bisphosphonates has remained widely utilized, its diagnostic performance is hindered by certain limitations. Positron emission tomography, particularly when coupled with computed tomography, provides improved spatial resolution and diagnostic performance with various pathology-specific radiotracers. This review aims to evaluate the performance of different nuclear imaging modalities in clinical practice for detecting and monitoring the therapeutic responses in bone metastases of diverse origins, addressing their limitations and implications for image interpretation.
Collapse
Affiliation(s)
- Eric Ouvrard
- Nuclear Medicine and Molecular Imaging, Institut de Cancérologie Strasbourg Europe (ICANS), University Hospitals of Strasbourg, University of Strasbourg, Strasbourg, France
| | - Ashjan Kaseb
- Nuclear Medicine and Molecular Imaging, Institut de Cancérologie Strasbourg Europe (ICANS), University Hospitals of Strasbourg, University of Strasbourg, Strasbourg, France
- Radiology, College of Medicine, University of Jeddah, Jeddah, Saudi Arabia
| | - Nathan Poterszman
- Nuclear Medicine and Molecular Imaging, Institut de Cancérologie Strasbourg Europe (ICANS), University Hospitals of Strasbourg, University of Strasbourg, Strasbourg, France
| | - Clémence Porot
- Radiopharmacy, Institut de Cancérologie Strasbourg Europe (ICANS), Strasbourg, France
| | - Francois Somme
- Nuclear Medicine and Molecular Imaging, Institut de Cancérologie Strasbourg Europe (ICANS), University Hospitals of Strasbourg, University of Strasbourg, Strasbourg, France
| | - Alessio Imperiale
- Nuclear Medicine and Molecular Imaging, Institut de Cancérologie Strasbourg Europe (ICANS), University Hospitals of Strasbourg, University of Strasbourg, Strasbourg, France
- IPHC, UMR 7178, CNRS/Unistra, Strasbourg, France
| |
Collapse
|
7
|
Streby KA, Parisi MT, Shulkin BL, LaBarre B, Bagatell R, Diller L, Grupp SA, Matthay KK, Voss SD, Yu AL, London WB, Park JR, Yanik GA, Naranjo A. Impact of diagnostic and end-of-induction Curie scores with tandem high-dose chemotherapy and autologous transplants for metastatic high-risk neuroblastoma: A report from the Children's Oncology Group. Pediatr Blood Cancer 2023; 70:e30418. [PMID: 37199022 PMCID: PMC10511015 DOI: 10.1002/pbc.30418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 04/12/2023] [Accepted: 04/26/2023] [Indexed: 05/19/2023]
Abstract
BACKGROUND Diagnostic mIBG (meta-iodobenzylguanidine) scans are an integral component of response assessment in children with high-risk neuroblastoma. The role of end-of-induction (EOI) Curie scores (CS) was previously described in patients undergoing a single course of high-dose chemotherapy (HDC) and autologous hematopoietic cell transplant (AHCT) as consolidation therapy. OBJECTIVE We now examine the prognostic significance of CS in patients randomized to tandem HDC and AHCT on the Children's Oncology Group (COG) trial ANBL0532. STUDY DESIGN A retrospective analysis of mIBG scans obtained from patients enrolled in COG ANBL0532 was performed. Evaluable patients had mIBG-avid, International Neuroblastoma Staging System (INSS) stage 4 disease, did not progress during induction therapy, consented to consolidation randomization, and received either single or tandem HDC (n = 80). Optimal CS cut points maximized the outcome difference (≤CS vs. >CS cut-off) according to the Youden index. RESULTS For recipients of tandem HDC, the optimal cut point at diagnosis was CS = 12, with superior event-free survival (EFS) from study enrollment for patients with CS ≤ 12 (3-year EFS 74.2% ± 7.9%) versus CS > 12 (59.2% ± 7.1%) (p = .002). At EOI, the optimal cut point was CS = 0, with superior EOI EFS for patients with CS = 0 (72.9% ± 6.4%) versus CS > 0 (46.5% ± 9.1%) (p = .002). CONCLUSION In the setting of tandem transplantation for children with high-risk neuroblastoma, CS at diagnosis and EOI may identify a more favorable patient group. Patients treated with tandem HDC who exhibited a CS ≤ 12 at diagnosis or CS = 0 at EOI had superior EFS compared to those with CS above these cut points.
Collapse
Affiliation(s)
- Keri A. Streby
- Division of Hematology/Oncology/BMT, Department of Pediatrics, Nationwide Children’s Hospital/The Ohio State University, Columbus, Ohio
| | - Marguerite T. Parisi
- Department of Radiology, Seattle Children’s Hospital/University of Washington School of Medicine, Seattle, Washington
- Department of Pediatrics, Seattle Children’s Hospital/University of Washington School of Medicine, Seattle, Washington
| | - Barry L. Shulkin
- Department of Radiological Sciences, St. Jude Children’s Research Hospital, Adjunct Professor of Radiology, University of Tennessee Health Science Center, Memphis, Tennessee
| | - Brian LaBarre
- Children’s Oncology Group Statistics & Data Center, Department of Biostatistics, University of Florida, Gainesville, Florida
| | - Rochelle Bagatell
- Department of Pediatrics, Children’s Hospital of Philadelphia and University of Pennsylvania, Philadelphia, Pennsylvania
| | - Lisa Diller
- Dana-Farber/Boston Children’s Cancer and Blood Disorders Center, Harvard Medical School, Boston, Massachusetts
| | - Stephan A. Grupp
- Department of Pediatrics, Children’s Hospital of Philadelphia and University of Pennsylvania, Philadelphia, Pennsylvania
| | - Katherine K. Matthay
- Department of Pediatrics, University of California San Francisco School of Medicine, San Francisco, California
| | - Stephan D. Voss
- Department of Radiology, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts
| | - Alice L. Yu
- University of California in San Diego, San Diego, California
- Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
| | - Wendy B. London
- Dana-Farber/Boston Children’s Cancer and Blood Disorders Center, Harvard Medical School, Boston, Massachusetts
| | - Julie R. Park
- Department of Oncology, St. Jude Children’s Research Hospital, Memphis, Tennessee
| | - Gregory A. Yanik
- Department of Pediatrics, University of Michigan Medical Center, Ann Arbor, Michigan
| | - Arlene Naranjo
- Children’s Oncology Group Statistics & Data Center, Department of Biostatistics, University of Florida, Gainesville, Florida
| |
Collapse
|
8
|
Heczey A, Xu X, Courtney AN, Tian G, Barragan GA, Guo L, Amador CM, Ghatwai N, Rathi P, Wood MS, Li Y, Zhang C, Demberg T, Di Pierro EJ, Sher AC, Zhang H, Mehta B, Thakkar SG, Grilley B, Wang T, Weiss BD, Montalbano A, Subramaniam M, Xu C, Sachar C, Wells DK, Dotti G, Metelitsa LS. Anti-GD2 CAR-NKT cells in relapsed or refractory neuroblastoma: updated phase 1 trial interim results. Nat Med 2023; 29:1379-1388. [PMID: 37188782 DOI: 10.1038/s41591-023-02363-y] [Citation(s) in RCA: 80] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 04/24/2023] [Indexed: 05/17/2023]
Abstract
Vα24-invariant natural killer T cells (NKTs) have anti-tumor properties that can be enhanced by chimeric antigen receptors (CARs). Here we report updated interim results from the first-in-human phase 1 evaluation of autologous NKTs co-expressing a GD2-specific CAR with interleukin 15 (IL15) (GD2-CAR.15) in 12 children with neuroblastoma (NB). The primary objectives were safety and determination of maximum tolerated dose (MTD). The anti-tumor activity of GD2-CAR.15 NKTs was assessed as a secondary objective. Immune response evaluation was an additional objective. No dose-limiting toxicities occurred; one patient experienced grade 2 cytokine release syndrome that was resolved by tocilizumab. The MTD was not reached. The objective response rate was 25% (3/12), including two partial responses and one complete response. The frequency of CD62L+NKTs in products correlated with CAR-NKT expansion in patients and was higher in responders (n = 5; objective response or stable disease with reduction in tumor burden) than non-responders (n = 7). BTG1 (BTG anti-proliferation factor 1) expression was upregulated in peripheral GD2-CAR.15 NKTs and is a key driver of hyporesponsiveness in exhausted NKT and T cells. GD2-CAR.15 NKTs with BTG1 knockdown eliminated metastatic NB in a mouse model. We conclude that GD2-CAR.15 NKTs are safe and can mediate objective responses in patients with NB. Additionally, their anti-tumor activity may be enhanced by targeting BTG1. ClinicalTrials.gov registration: NCT03294954 .
Collapse
Affiliation(s)
- Andras Heczey
- Department of Pediatrics, Center for Advanced Innate Cell Therapy, Baylor College of Medicine, Houston, TX, USA.
- Department of Medicine, Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX, USA.
| | - Xin Xu
- Department of Pediatrics, Center for Advanced Innate Cell Therapy, Baylor College of Medicine, Houston, TX, USA
| | - Amy N Courtney
- Department of Pediatrics, Center for Advanced Innate Cell Therapy, Baylor College of Medicine, Houston, TX, USA
| | - Gengwen Tian
- Department of Pediatrics, Center for Advanced Innate Cell Therapy, Baylor College of Medicine, Houston, TX, USA
| | - Gabriel A Barragan
- Department of Pediatrics, Center for Advanced Innate Cell Therapy, Baylor College of Medicine, Houston, TX, USA
| | - Linjie Guo
- Department of Pediatrics, Center for Advanced Innate Cell Therapy, Baylor College of Medicine, Houston, TX, USA
| | - Claudia Martinez Amador
- Department of Pediatrics, Center for Advanced Innate Cell Therapy, Baylor College of Medicine, Houston, TX, USA
| | - Nisha Ghatwai
- Department of Pediatrics, Center for Advanced Innate Cell Therapy, Baylor College of Medicine, Houston, TX, USA
| | - Purva Rathi
- Department of Pediatrics, Center for Advanced Innate Cell Therapy, Baylor College of Medicine, Houston, TX, USA
| | - Michael S Wood
- Department of Pediatrics, Center for Advanced Innate Cell Therapy, Baylor College of Medicine, Houston, TX, USA
| | - Yanchuan Li
- Department of Pediatrics, Center for Advanced Innate Cell Therapy, Baylor College of Medicine, Houston, TX, USA
| | - Chunchao Zhang
- Department of Pediatrics, Center for Advanced Innate Cell Therapy, Baylor College of Medicine, Houston, TX, USA
| | - Thorsten Demberg
- Department of Pediatrics, Center for Advanced Innate Cell Therapy, Baylor College of Medicine, Houston, TX, USA
| | - Erica J Di Pierro
- Department of Pediatrics, Center for Advanced Innate Cell Therapy, Baylor College of Medicine, Houston, TX, USA
| | - Andrew C Sher
- Department of Radiology, Texas Children's Hospital, Baylor College of Medicine, Houston, TX, USA
| | - Huimin Zhang
- Department of Medicine, Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX, USA
| | - Birju Mehta
- Department of Medicine, Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX, USA
| | - Sachin G Thakkar
- Department of Medicine, Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX, USA
| | - Bambi Grilley
- Department of Medicine, Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX, USA
| | - Tao Wang
- Biostatistics and Data Management Resource, Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA
| | - Brian D Weiss
- Department of Pediatrics, Cincinnati Children's Hospital, Cincinnati, OH, USA
| | | | | | | | | | | | - Gianpietro Dotti
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Leonid S Metelitsa
- Department of Pediatrics, Center for Advanced Innate Cell Therapy, Baylor College of Medicine, Houston, TX, USA.
- Department of Medicine, Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
9
|
Shah HJ, Ruppell E, Bokhari R, Aland P, Lele VR, Ge C, McIntosh LJ. Current and upcoming radionuclide therapies in the direction of precision oncology: A narrative review. Eur J Radiol Open 2023; 10:100477. [PMID: 36785643 PMCID: PMC9918751 DOI: 10.1016/j.ejro.2023.100477] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 11/30/2022] [Accepted: 12/13/2022] [Indexed: 02/01/2023] Open
Abstract
As new molecular tracers are identified to target specific receptors, tissue, and tumor types, opportunities arise for the development of both diagnostic tracers and their therapeutic counterparts, termed "theranostics." While diagnostic tracers utilize positron emitters or gamma-emitting radionuclides, their theranostic counterparts are typically bound to beta and alpha emitters, which can deliver specific and localized radiation to targets with minimal collateral damage to uninvolved surrounding structures. This is an exciting time in molecular imaging and therapy and a step towards personalized and precise medicine in which patients who were either without treatment options or not candidates for other therapies now have expanded options, with tangible data showing improved outcomes. This manuscript explores the current state of theranostics, providing background, treatment specifics, and toxicities, and discusses future potential trends.
Collapse
Affiliation(s)
- Hina J. Shah
- Department of Radiology, Division of Nuclear Medicine, Brigham and Women’s Hospital, Boston, MA 02115, USA,Department of Imaging, Dana-Farber Cancer Institute, Boston, MA 02115, USA,Corresponding author at: Department of Radiology, Division of Nuclear Medicine, Brigham and Women’s Hospital, Boston, MA 02115, USA.
| | - Evan Ruppell
- Department of Radiology, University of Massachusetts Chan Medical School, Memorial Health Care, Worcester, MA 01655, USA
| | - Rozan Bokhari
- Department of Radiology, Beth Israel Lahey Health, Burlington, MA 01803, USA
| | - Parag Aland
- In-charge Nuclear Medicine and PET/CT, Infinity Medical Centre, Mumbai, Maharashtra 400015, India
| | - Vikram R. Lele
- Chief, Department of Nuclear Medicine and PET/CT, Jaslok Hospital and Research Centre, Mumbai, Maharashtra 400026, India
| | - Connie Ge
- University of Massachusetts Chan Medical School, Worcester, MA 01655, USA
| | - Lacey J. McIntosh
- Division of Oncologic and Molecular Imaging, University of Massachusetts Chan Medical School / Memorial Health Care, Worcester, MA 0165, USA
| |
Collapse
|
10
|
van Heerden J, van den Akker M, Verlooy J, Van Roy N, Laureys G, Norga K. Dilemmas in the Management of an Infant with Neuroblastoma Metastasized to the Muscles. Case Rep Oncol 2023; 16:558-567. [PMID: 37900821 PMCID: PMC10601722 DOI: 10.1159/000531433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 06/01/2023] [Indexed: 10/31/2023] Open
Abstract
The risk stratification of infants with metastatic neuroblastoma (NB) has evolved over time from stage 4/M or IVs/4S/MS/Ms according to various staging systems. Despite these developments for some genetic aberrations, the prognostic value and the impact of soft tissue metastases in infants are not fully understood, nor well described in the different classification systems, hampering the definitions to uniformly treat patients and predict prognosis. A literature review on staging of infants with M/MS disease was performed at the occasion of the diagnosis of NB in an 8-month-old boy who presented with atypical metastatic sites in soft tissue and an aberrant tumor biology. The definitions of stage 4/4S/4s/M/MS/Ms were evaluated and compared to enable tumor risk stratification and inform management. International NB groups use different criteria for defining stage of infants with metastasized NB, resulting in differences in management. Limited literature is available on soft tissue metastases, especially muscular metastases, and is poorly incorporated into management guidelines mainly due to the lack of data. The uncertain prognosis of rare genetic aberrancies may add to the difficulties in treatment decisions. In some rare cases of NB in infants, the international treatment classification is not sufficient for staging and treatment decisions. Based on tumor progression, biology of unknown significance and a lack of evidence to classify a child under 12 months with NB and multiple muscular metastases, the patient was treated as stage 4/M and intermediate-risk protocols with a favorable outcome.
Collapse
Affiliation(s)
- Jaques van Heerden
- Department of Pediatric Haematology and Oncology, Antwerp University Hospital, Antwerp, Belgium
| | - Machiel van den Akker
- Department of Pediatric Haematology and Oncology, Antwerp University Hospital, Antwerp, Belgium
| | - Joris Verlooy
- Department of Pediatric Haematology and Oncology, Antwerp University Hospital, Antwerp, Belgium
| | - Nadine Van Roy
- Cancer Research Institute Ghent (CRIG), Ghent University, Ghent, Belgium
- Center for Medical Genetics, Ghent University Hospital, Ghent, Belgium
| | - Geneviève Laureys
- Cancer Research Institute Ghent (CRIG), Ghent University, Ghent, Belgium
- Department of Pediatric Haematology, Oncology and Stem cell transplantation, Ghent University Hospital, Ghent, Belgium
| | - Koen Norga
- Department of Pediatric Haematology and Oncology, Antwerp University Hospital, Antwerp, Belgium
| |
Collapse
|
11
|
Olgun N, Cecen E, Ince D, Kizmazoglu D, Baysal B, Onal A, Ozdogan O, Guleryuz H, Cetingoz R, Demiral A, Olguner M, Celik A, Kamer S, Ozer E, Altun Z, Aktas S. Dinutuximab beta plus conventional chemotherapy for relapsed/refractory high-risk neuroblastoma: A single-center experience. Front Oncol 2022; 12:1041443. [PMID: 36620564 PMCID: PMC9816792 DOI: 10.3389/fonc.2022.1041443] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Accepted: 12/02/2022] [Indexed: 12/24/2022] Open
Abstract
Background Relapsed/refractory high-risk neuroblastoma has a dismal prognosis. Anti-GD2-mediated chemo-immunotherapy has a notable anti-tumor activity in patients with relapsed/refractory high-risk neuroblastoma. The purpose of this study was to analyze the efficacy and safety of the combination of immunotherapy with dinutuximab beta (DB) and chemotherapy in patients with relapsed/refractory high-risk neuroblastoma. Methods All patients received the Turkish Pediatric Oncology Group NB 2009 national protocol for HR-NB treatment at the time of diagnosis. Salvage treatments were administered after progression or relapse. The patients who could not achieve remission in primary or metastatic sites were included in the study. The most common chemotherapy scheme was irinotecan and temozolomide. DB was administered intravenously for 10 days through continuous infusion with 10 mg/m2 per day. The patients received 2 to 14 successive cycles with duration of 28 days each. Disease assessment was performed after cycles 2, 4, and 6 and every 2 to 3 cycles thereafter. Results Between January 2020 and March 2022, nineteen patients received a total of 125 cycles of DB and chemotherapy. Objective responses were achieved in 12/19 (63%) patients, including complete remission in 6/19 and partial response in 6/19. Stable disease was observed in two patients. The remaining five patients developed bone/bone marrow and soft tissue progression after 2-4 cycles of treatment. The most common Grade ≥3 toxicities were leukopenia, thrombocytopenia, hypertransaminasemia, fever, rash/itching and capillary leak syndrome, respectively. Conclusion Our study results suggest that DB-based chemo-immunotherapy seems to be suitable with encouraging response rates in patients with relapsed/refractory high-risk neuroblastoma.
Collapse
Affiliation(s)
- Nur Olgun
- Department of Pediatric Oncology, Dokuz Eylul University Institute of Oncology, Izmir, Türkiye,*Correspondence: Nur Olgun,
| | - Emre Cecen
- Department of Pediatric Oncology, Dokuz Eylul University Institute of Oncology, Izmir, Türkiye
| | - Dilek Ince
- Department of Pediatric Oncology, Dokuz Eylul University Institute of Oncology, Izmir, Türkiye
| | - Deniz Kizmazoglu
- Department of Pediatric Oncology, Dokuz Eylul University Institute of Oncology, Izmir, Türkiye
| | - Birsen Baysal
- Department of Pediatric Oncology, Dokuz Eylul University Institute of Oncology, Izmir, Türkiye
| | - Ayse Onal
- Department of Pediatric Oncology, Dokuz Eylul University Institute of Oncology, Izmir, Türkiye
| | - Ozhan Ozdogan
- Department of Nuclear Medicine, Dokuz Eylul University School of Medicine, Izmir, Türkiye
| | - Handan Guleryuz
- Department of Radiology, Dokuz Eylul University School of Medicine, Izmir, Türkiye
| | - Riza Cetingoz
- Department of Radiation Oncology, Dokuz Eylul University School of Medicine, Izmir, Türkiye
| | - Ayse Demiral
- Department of Radiation Oncology, Dokuz Eylul University School of Medicine, Izmir, Türkiye
| | - Mustafa Olguner
- Department of Pediatric Surgery, Dokuz Eylul University School of Medicine, Izmir, Türkiye
| | - Ahmet Celik
- Department of Pediatric Surgery, Ege University School of Medicine, Izmir, Türkiye
| | - Serra Kamer
- Department of Radiation Oncology, Ege University School of Medicine, Izmir, Türkiye
| | - Erdener Ozer
- Department of Pathology, Dokuz Eylul University School of Medicine, Izmir, Türkiye
| | - Zekiye Altun
- Department of Basic Oncology, Dokuz Eylul University Institute of Oncology, Izmir, Türkiye
| | - Safiye Aktas
- Department of Basic Oncology, Dokuz Eylul University Institute of Oncology, Izmir, Türkiye
| |
Collapse
|
12
|
Park JR, Villablanca JG, Hero B, Kushner BH, Wheatley K, Beiske KH, Ladenstein RL, Baruchel S, Macy ME, Moreno L, Seibel NL, Pearson AD, Matthay KK, Valteua-Couanet D. Early-phase clinical trial eligibility and response evaluation criteria for refractory, relapsed, or progressive neuroblastoma: A consensus statement from the National Cancer Institute Clinical Trials Planning Meeting. Cancer 2022; 128:3775-3783. [PMID: 36101004 PMCID: PMC9614386 DOI: 10.1002/cncr.34445] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Revised: 06/13/2022] [Accepted: 07/18/2022] [Indexed: 11/07/2022]
Abstract
BACKGROUND International standardized criteria for eligibility, evaluable disease sites, and disease response assessment in patients with refractory, progressive, or relapsed high-risk neuroblastoma enrolled in early-phase clinical trials are lacking. METHODS A National Cancer Institute-sponsored Clinical Trials Planning Meeting was convened to develop an international consensus to refine the tumor site eligibility criteria and evaluation of disease response for early-phase clinical trials in children with high-risk neuroblastoma. RESULTS Standardized data collection of patient and disease characteristics (including specified genomic data), eligibility criteria, a definition of evaluable disease, and response evaluations for primary and metastatic sites of disease were developed. Eligibility included two distinct patient groups: progressive disease and refractory disease. The refractory disease group was subdivided into responding persistent disease and stable persistent disease to better capture the clinical heterogeneity of refractory neuroblastoma. Requirements for defining disease evaluable for a response assessment were provided; they included requirements for biopsy to confirm viable neuroblastoma and/or ganglioneuroblastoma in those patients with soft tissue or bone disease not avid for iodine-123 meta-iodobenzylguanidine. Standardized evaluations for response components and time intervals for response evaluations were established. CONCLUSIONS The use of international consensus eligibility, evaluability, and response criteria for early-phase clinical studies will facilitate the collection of comparable data across international trials and promote more rapid identification of effective treatment regimens for high-risk neuroblastoma.
Collapse
Affiliation(s)
- Julie R. Park
- Seattle Children’s Hospital and Department of Pediatrics University of Washington School of Medicine, Seattle WA, 98105
| | - Judith G. Villablanca
- Children’s Hospital Los Angeles and Department of Pediatrics, USC Keck School of Medicine, Los Angeles, CA
| | - Barbara Hero
- Children’s Hospital and University of Cologne, D 50924 Koeln, Germany
| | | | | | - Klaus H. Beiske
- Oslo University Hospital, Department of Pathology, Oslo, Norway
| | - Ruth L. Ladenstein
- Children’s Cancer Research Institute, St Anna Children’s Hospital, Vienna, Austria
| | | | - Margaret E. Macy
- Department of Pediatrics, University of Colorado Anschutz Medical Campus and Children’s Hospital Colorado, Aurora, Colorado
| | - Lucas Moreno
- Division of Paediatric Haematology and Oncology, Vall d’Hebron Hospital Universitari, Barcelona, Spain
| | - Nita L. Seibel
- Clinical Investigations Branch, National Cancer Institute, Bethesda, MD 20892
| | - Andrew D. Pearson
- Divisions of Cancer Therapeutics and Clinical Studies, Institute of Cancer Research and Children and Young People’s Unit, The Royal Marsden NHS Foundation Trust, Sutton, Surrey UK (Retired)
| | | | | |
Collapse
|
13
|
Seo ES, Shin M, Lim H, Cho HW, Ju HY, Cho YS, Yoo KH, Koo HH, Lee JW, Sung KW. Clinical implication of residual MIBG-positive disease in the follow-up of high-risk neuroblastoma treated with tandem high-dose chemotherapy and autologous stem cell transplantation. Pediatr Blood Cancer 2022; 69:e29502. [PMID: 34889513 DOI: 10.1002/pbc.29502] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 10/24/2021] [Accepted: 11/09/2021] [Indexed: 01/14/2023]
Abstract
BACKGROUND The implication of residual metaiodobenzylguanidine (MIBG)-positive disease in the era of tandem high-dose chemotherapy (HDCT) with autologous stem cell transplantation (auto-SCT) has not yet been established in neuroblastoma. Moreover, most published studies have not evaluated the long-term prognosis of patients with residual MIBG-positive disease following treatment completion. Therefore, we investigated the prognostic significance of residual MIBG-positive disease at each treatment phase and after treatment completion. METHODS We assessed MIBG scans labeled with either iodine-123 (123 I) or 131 I from 150 patients with MIBG-avid and high-risk neuroblastoma enrolled in the NB-2004, -2009, and -2014 trials at postinduction, posttandem HDCT/auto-SCT, and completion of treatment. RESULTS The residual MIBG-positive disease at postinduction and posttandem HDCT/auto-SCT evaluation was highly correlated with the risk of progression. However, at treatment completion, there was no significant difference in survival and risk of progression between patients with residual MIBG-positive disease and MIBG-negative patients. Patients with persistent MIBG-positive disease at the end of treatment were more likely to have indolent tumor characteristics, such as favorable histology at diagnosis, lower incidence of MYCN amplification, and slow response to chemotherapy. CONCLUSION Residual MIBG-positive disease during treatment predicted unfavorable outcomes for patients with high-risk neuroblastoma, even under tandem HDCT/auto-SCT. However, persistent MIBG uptake at the completion of all treatments may not always indicate an active disease.
Collapse
Affiliation(s)
- Eun Seop Seo
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Muheon Shin
- Department of Nuclear Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Hana Lim
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Hee Won Cho
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Hee Young Ju
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Young-Seok Cho
- Department of Nuclear Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Keon Hee Yoo
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Hong Hoe Koo
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Ji Won Lee
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Ki Woong Sung
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| |
Collapse
|
14
|
Schmidt M, Decarolis B, Franzius C, Hero B, Pfluger T, Rogasch JMM, Simon T. Durchführung und Befundung der 123I-mIBG-Szintigraphie bei Kindern und Jugendlichen mit Neuroblastom (Version 3) – DGN-Handlungsempfehlung (S1-Leitlinie), Stand: 2/2020 – AWMF-Registernummer: 031-040. Nuklearmedizin 2022; 61:96-110. [PMID: 35421899 DOI: 10.1055/a-1778-3052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
ZusammenfasssungDie aktualisierte 3. Fassung der 123I-mIBG-Szintigrafie bei Kindern und Jugendlichen berücksichtigt folgende aktuelle Entwicklungen: Die Leitlinie fokussiert auf die diagnostische Anwendung von 123I-mIBG beim Neuroblastom. 131I-mIBG kommt bei der Radionuklidtherapie zum Einsatz. An wenigen Stellen wird auf Besonderheiten des 131I-mIBG bei der Befundung von Posttherapie-Szintigrammen eingegangen. Es werden aktuelle Entwicklungen in der Patientenvorbereitung bei den Medikamenteninterferenzen und Empfehlungen zur Schilddrüsenblockade berücksichtigt. Neue Empfehlungen der zu applizierenden Aktivität werden genannt und die damit assoziierten Probleme diskutiert. Die Bildakquisition unter Berücksichtigung von SPECT bzw. SPECT/CT des Körperstammes inkl. des Kopfes wird berücksichtigt. Die Befundung unter Verwendung des SIOPEN-Scores wird neu aufgenommen. Auf PET bzw. PET/CT mit 18F-DOPA bzw. 68Ga-DotaTATE wird verwiesen.
Collapse
Affiliation(s)
- Matthias Schmidt
- Klinik und Poliklinik für Nuklearmedizin, Universitätsklinikum Köln, Köln (Cologne), Germany
| | - Boris Decarolis
- Klinik und Poliklinik für Kinderheilkunde, Abteilung Kinderonkologie und -Hämatologie, Universitätsklinikum Köln, Köln (Cologne), Germany
| | - Christiane Franzius
- Zentrum für moderne Diagnostik (ZeMoDi), MR- und MR/PET, Schwachhauser Heerstraße 63 A, 28211 Bremen, ZeMoDi, Bremen, Germany
| | - Barbara Hero
- Klinik und Poliklinik für Kinderheilkunde, Abteilung Kinderonkologie und -Hämatologie, Universitätsklinikum Köln, Köln (Cologne), Germany
| | - Thomas Pfluger
- Department of Nuclear Medicine, Ludwig-Maximilians-University, Munich, Germany
| | | | - Thorsten Simon
- Klinik und Poliklinik für Kinderheilkunde, Abteilung Kinderonkologie und -Hämatologie, Universitätsklinikum Köln, Köln (Cologne), Germany
| |
Collapse
|
15
|
Thomas Lucas J. Risk Factors Associated with Metastatic Site Failure in Patients with High-Risk Neuroblastoma. Clin Transl Radiat Oncol 2022; 34:42-50. [PMID: 35345864 PMCID: PMC8956847 DOI: 10.1016/j.ctro.2022.02.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Revised: 02/17/2022] [Accepted: 02/20/2022] [Indexed: 11/29/2022] Open
Abstract
We observed an increased hazard for failure at metastatic sites which remain persistently avid on MIBG following systemic therapy. -Limited response to induction therapy described by Curie and SIOPEN score selects patients at greater risk for poly-metastatic site failure. -The low proportion of metastatic sites treated with radiotherapy precluded definitive testing of its impact on the hazard for metastatic site failure. -Patients who are unable to undergo transplant, and/or have extensive disease at diagnosis (lung metastases) may be poor candidates for consolidative metastatic site directed radiotherapy given the high competing risk of failure at a new metastatic site.
Purpose This retrospective study sought to identify predictors of metastatic site failure (MSF) at new and/or original (present at diagnosis) sites in high-risk neuroblastoma patients. Methods and materials Seventy-six high-risk neuroblastoma patients treated on four institutional prospective trials from 1997 to 2014 with induction chemotherapy, surgery, myeloablative chemotherapy, stem-cell rescue, and were eligible for consolidative primary and metastatic site (MS) radiotherapy were eligible for study inclusion. Computed-tomography and I123 MIBG scans were used to assess disease response and Curie scores at diagnosis, post-induction, post-transplant, and treatment failure. Outcomes were described using the Kaplan–Meier estimator. Cox proportional hazards frailty (cphfR) and CPH regression (CPHr) were used to identify covariates predictive of MSF at a site identified either at diagnosis or later. Results MSF occurred in 42 patients (55%). Consolidative MS RT was applied to 30 MSs in 10 patients. Original-MSF occurred in 146 of 383 (38%) nonirradiated and 18 of 30 (60%) irradiated MSs (p = 0.018). Original- MSF occurred in postinduction MIBG-avid MSs in 68 of 81 (84%) nonirradiated and 12 of 14 (85%) radiated MSs (p = 0.867). The median overall and progression-free survival rates were 61 months (95% CI 42.6Not Reached) and 24.1 months (95% CI 16.538.7), respectively. Multivariate CPHr identified inability to undergo transplant (HR 32.4 95%CI 9.396.8, p < 0.001) and/or maintenance chemotherapy (HR 5.2, 95%CI 1.716.2, p = 0.005), and the presence of lung metastases at diagnosis (HR 4.4 95%CI 1.711.1, p = 0.002) as predictors of new MSF. The new MSF-free survival rate at 3 years was 25% and 87% in patients with and without high-risk factors. Conclusions Incremental improvements in systemic therapy influence the patterns and type of metastatic site failure in neuroblastoma. Persistence of MIBG-avidity following induction chemotherapy and transplant at MSs increased the hazard for MSF.
Collapse
|
16
|
Nyakale Elizabeth N, Kabunda J. Nuclear medicine therapy of malignant pheochromocytomas, neuroblastomas and ganglioneuromas. Nucl Med Mol Imaging 2022. [DOI: 10.1016/b978-0-12-822960-6.00174-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
17
|
Rufini V, Triumbari EKA, Garganese MC. Imaging adrenal medulla. Nucl Med Mol Imaging 2022. [DOI: 10.1016/b978-0-12-822960-6.00014-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
|
18
|
Biassoni L, Privitera L. 123I-Meta-Iodobenzylguanidine Single-Photon Emission Computerized Tomography/Computerized Tomography Scintigraphy in the Management of Neuroblastoma. Indian J Nucl Med 2021; 36:293-299. [PMID: 34658554 PMCID: PMC8481844 DOI: 10.4103/ijnm.ijnm_10_21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Accepted: 01/28/2021] [Indexed: 11/04/2022] Open
Abstract
Neuroblastoma is the most common pediatric extracranial solid tumor. High-risk neuroblastoma is the most frequent presentation with an overall survival of approximately 50%. 123I-meta-iodobenzylguanidine (123I-mIBG) scintigraphy in the assessment of the primary tumor and its metastases at diagnosis and after chemotherapy is a cornerstone imaging modality. In particular, the bulk of skeletal metastatic disease evaluated with 123I-mIBG at diagnosis and the following chemotherapy has a prognostic value. Currently, single-photon emission computerized tomography/computerised tomography (SPECT/CT) is considered a fundamental part of 123I-mIBG scintigraphy. 123I-mIBG SPECT/CT is a highly specific and sensitive imaging biomarker and it has been the basis of all existing neuroblastoma trials requiring molecular imaging. The introduction of SPECT/CT has shown not only the heterogeneity of the mIBG uptake within the primary tumor but also the presence of completely mIBG nonavid metastatic lesions with mIBG-avid primary neuroblastomas. It is currently possible to semi-quantitatively assess tracer uptake with standardized uptake value, which allows a more precise evaluation of the tracer avidity and can help monitor chemotherapy response. The patchy mIBG uptake has consequences from a theranostic perspective and may partly explain the failure of some neuroblastomas to respond to 131I-mIBG molecular radiotherapy. Various positron emission tomography tracers, targeting different aspects of neuroblastoma cell biology, are being tested as possible alternatives to 123I-mIBG.
Collapse
Affiliation(s)
- Lorenzo Biassoni
- Department of Radiology, Great Ormond Street Hospital for Children, London, UK
| | - Laura Privitera
- Department of Developmental Biology and Cancer Research, UCL GOS Institute of Child Health, London, UK
| |
Collapse
|
19
|
Szychot E, Morgenstern D, Chopra M, Sorrentino S, Arthurs O, Sebire N, Arfeen F, Brodkiewicz A, Humphries P, Biassoni L. Clinical impact of primary tumour 123ImIBG response to induction chemotherapy in children with high-risk neuroblastoma. Int J Clin Oncol 2021; 27:253-261. [PMID: 34626287 DOI: 10.1007/s10147-021-02039-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Accepted: 09/23/2021] [Indexed: 10/20/2022]
Abstract
BACKGROUND More than 50% children with high-risk neuroblastoma (HR-NBL) experience disease progression, which we hypothesise is due to non-response of primary tumour to treatment. Current imaging techniques are unable to characterise response in primary tumour (necrotic versus viable tissue) at diagnosis or follow-up. OBJECTIVES Compare clinico-histological characteristics between primary 123ImIBG-avid tumours that became entirely 123ImIBG-non-avid (responders) after induction chemotherapy (IC) versus primary 123ImIBG-avid tumour that remained 123ImIBG-avid (non-responders). METHODS Retrospective review of clinico-radiological data of children diagnosed with 123ImIBG-avid HR-NBL at our centre (2005-2016). Patients received Rapid COJEC IC and two additional courses of TVD if metastatic response was inadequate. Primary tumour 123ImIBG response was assessed qualitatively as positive, negative or intermediate at diagnosis and after IC. Post-surgical histopathology slices were marked considering percentage of viable tissue. RESULTS Sixteen of 61 patients showed complete primary tumour 123ImIBG response, 20 partial response, while 25 no response. There was no statistically significant difference between clinical demographics of complete responders and group of non- or partial responders. Mean percentage of viable tumour cells was higher in non-responders than in complete responders (44.6% vs 20.6%; p = 0.05). Five-year EFS was significantly higher in complete responders than non-responders (43 ± 15% vs 7 ± 6%; p < 0.005). CONCLUSIONS 123ImIBG response in primary HR-NBL correlates with amount of necrotic tissue, skeletal metastatic 123ImIBG response and outcome. An entirely 123ImIBG non-avid tumour can still harbour viable tumour cells. Therefore, our findings do not support utility of primary tumour 123ImIBG response in decision making regarding residual tumour surgery. Combining both, primary and metastatic 123ImIBG response will improve interpretability of clinical trial results.
Collapse
Affiliation(s)
- Elwira Szychot
- Clinical Studies, The Institute of Cancer Research, Sutton, UK. .,Oak Centre for Children and Young People, Royal Marsden Hospital, Sutton, SM2 5PT, UK. .,Department of Paediatrics, Paediatric Oncology and Immunology, Pomeranian Medical University, Szczecin, Poland.
| | - Daniel Morgenstern
- Departments of Haematology/Oncology, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK.,Hospital for Sick Children, Toronto, Canada
| | - Mark Chopra
- Department of Radiology, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| | - Stefania Sorrentino
- Department of Radiology, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK.,Unit of Paediatric Oncology, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Owen Arthurs
- Department of Radiology, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| | - Neil Sebire
- Department of Pathology, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| | - Farrukh Arfeen
- Department of Radiology, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| | - Andrzej Brodkiewicz
- Department of Paediatrics, Child's Nephrology, Dialysis Therapy and Acute Poisoning, Szczecin, Poland
| | - Paul Humphries
- Department of Radiology, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| | - Lorenzo Biassoni
- Department of Radiology, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| |
Collapse
|
20
|
Imaging for Staging of Pediatric Abdominal Tumors: An Update, From the AJR Special Series on Cancer Staging. AJR Am J Roentgenol 2021; 217:786-799. [PMID: 33825502 DOI: 10.2214/ajr.20.25310] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The three most common pediatric solid tumors of the abdomen are neuroblastoma, Wilms tumor, and hepatoblastoma. These embryonal tumors most commonly present in the first decade of life. Each tumor has unique imaging findings, including locoregional presentation and patterns of distant spread. Neuroblastoma, Wilms tumor, and hepatoblastoma have unique staging systems that rely heavily on imaging and influence surgical and oncologic management. The staging systems include image-defined risk factors for neuroblastoma, the Children's Oncology Group staging system for Wilms tumor, and the pretreatment extent of tumor system (PRETEXT) for hepatoblastoma. It is important for radiologists to be aware of these staging systems to optimize image acquisition and interpretation. This article provides a practical and clinically oriented approach to the role of imaging in the staging of these common embryonal tumors of childhood. The selection among imaging modalities, key findings for determining tumor stage, and the role of imaging in posttreatment response evaluation and surveil-lance are discussed. Recent updates to the relevant staging systems are highlighted with attention to imaging findings of particular prognostic importance. The information presented will help radiologists tailor the imaging approach to the individual patient and guide optimal oncologic management.
Collapse
|
21
|
Rafael MS, Cohen-Gogo S, Irwin MS, Vali R, Shammas A, Morgenstern DA. Theranostics in Neuroblastoma. PET Clin 2021; 16:419-427. [PMID: 34053585 DOI: 10.1016/j.cpet.2021.03.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Theranostics combines diagnosis and targeted therapy, achieved by the use of the same or similar molecules labeled with different radiopharmaceuticals or identical with different dosages. One of the best examples is the use of metaiodobenzylguanidine (MIBG). In the management of neuroblastoma-the most common extracranial solid tumor in children. MIBG has utility not only for diagnosis, risk-stratification, and response monitoring but also for cancer therapy, particularly in the setting of relapsed/refractory disease. Improved techniques and new emerging radiopharmaceuticals likely will strengthen the role of nuclear medicine in the management of neuroblastoma.
Collapse
Affiliation(s)
- Margarida Simao Rafael
- Division of Haematology/Oncology, Department of Paediatrics, The Hospital for Sick Children, University of Toronto, 555 University Ave, Toronto, ON M5G 1X8, Canada
| | - Sarah Cohen-Gogo
- Division of Haematology/Oncology, Department of Paediatrics, The Hospital for Sick Children, University of Toronto, 555 University Ave, Toronto, ON M5G 1X8, Canada
| | - Meredith S Irwin
- Division of Haematology/Oncology, Department of Paediatrics, The Hospital for Sick Children, University of Toronto, 555 University Ave, Toronto, ON M5G 1X8, Canada
| | - Reza Vali
- Division of Nuclear Medicine, Department of Diagnostic Imaging, The Hospital for Sick Children, University of Toronto, 555 University Ave, Toronto, ON M5G 1X8, Canada.
| | - Amer Shammas
- Division of Nuclear Medicine, Department of Diagnostic Imaging, The Hospital for Sick Children, University of Toronto, 555 University Ave, Toronto, ON M5G 1X8, Canada
| | - Daniel A Morgenstern
- Division of Haematology/Oncology, Department of Paediatrics, The Hospital for Sick Children, University of Toronto, 555 University Ave, Toronto, ON M5G 1X8, Canada
| |
Collapse
|
22
|
Qiu ZL, Saito S, Kayano D, Wakabayashi H, Kinuya S. Comparison of the detecting capability between 123I-mIBG and post-therapeutic 131I-mIBG scintigraphy for curie scoring in patients with neuroblastoma after chemotherapy. Ann Nucl Med 2021; 35:649-661. [PMID: 33866530 DOI: 10.1007/s12149-020-01569-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 12/11/2020] [Indexed: 11/25/2022]
Abstract
OBJECTIVE To evaluate the detecting capability between planar imaging (PI) and PI combined with single-photon emission computed tomography/computed tomography (PICWS), including 123I- and 131I-labeled metaiodobenzylguanidine (mIBG) and to compare the detecting capability between 123I-mIBG and post-therapeutic 131I-mIBG scintigraphy including PI and PICWS for Curie scoring in patients with neuroblastoma. METHODS Sixty-two patients with 66 pairs of complete images with neuroblastoma were enrolled in this retrospective study. RESULTS Comparing the Curie scoring between 123I-mIBG PI and PICWS and between post-therapeutic 131I-mIBG PI and PICWS, findings were concordantly negative in 28.79% and 18.18% of studies, concordantly positive in 66.67% and 74.24% of studies, and discordant in 4.54% and 7.58% of studies, respectively. PICWS was superior to PI including 123I- and 131I-mIBG in the evaluation of Curie scoring for neuroblastoma patients (both P < 0.001). Comparing the Curie scores between 123I- and post-therapeutic 131I-mIBG PI and between 123I- and post-therapeutic 131I-mIBG PICWS, concordantly negative imaging was visualized in 22.73% and 19.70% of studies, concordantly positive imaging in 66.67% and 69.70% of studies, and discordant imaging in 10.60% and 10.60% of studies, respectively. Post-therapeutic 131I-mIBG was significantly better than that of 123I-mIBG scintigraphy including PI and PICWS in detecting the Curie scoring for neuroblastoma patients (both P < 0.001). CONCLUSION The present study demonstrates that 131I- or 123I-mIBG PICWS are more helpful in the evaluation of Curie scores than that of conventional PI and that post-therapeutic 131I-mIBG is superior to 123I-mIBG scintigraphy for the detecting capability of Curie scoring in patients with neuroblastoma.
Collapse
Affiliation(s)
- Zhong-Ling Qiu
- Department of Nuclear Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai, 200233, China
| | - Shintaro Saito
- Department of Nuclear Medicine, Kanazawa University Hospital, 13-1 Takara-machi, Kanazawa, Ishikawa, 920-8641, Japan
| | - Daiki Kayano
- Department of Nuclear Medicine, Kanazawa University Hospital, 13-1 Takara-machi, Kanazawa, Ishikawa, 920-8641, Japan.
| | - Hiroshi Wakabayashi
- Department of Nuclear Medicine, Kanazawa University Hospital, 13-1 Takara-machi, Kanazawa, Ishikawa, 920-8641, Japan
| | - Seigo Kinuya
- Department of Nuclear Medicine, Kanazawa University Hospital, 13-1 Takara-machi, Kanazawa, Ishikawa, 920-8641, Japan
| |
Collapse
|
23
|
Ussowicz M, Wieczorek A, Dłużniewska A, Pieczonka A, Dębski R, Drabko K, Goździk J, Balwierz W, Handkiewicz-Junak D, Wachowiak J. Factors Modifying Outcome After MIBG Therapy in Children With Neuroblastoma-A National Retrospective Study. Front Oncol 2021; 11:647361. [PMID: 33912462 PMCID: PMC8075349 DOI: 10.3389/fonc.2021.647361] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Accepted: 03/16/2021] [Indexed: 12/21/2022] Open
Abstract
Background Neuroblastoma is the most common pediatric extracranial tumor with varied prognoses, but the survival of treated refractory or relapsing patients remains poor. Objective This analysis presents the outcomes of children with neuroblastoma undergoing MIBG therapy in Poland in 2006-2019. Study Design A retrospective cohort of 55 patients with refractory or relapsed neuroblastoma treated with I-131 MIBG in Poland in 2006-2019 was analyzed. The endpoints were overall survival (OS), event-free survival (EFS), cumulative incidence (CI) of second cancers and CI of hypothyroidism. Survival curves were estimated using the Kaplan-Meier method and compared between the cohorts by the log-rank test. Cox modeling was adopted to estimate hazard ratios for OS and EFS, considering factors with P < 0.2. Results Fifty-five patients with a median age of 78.4 months (range 18-193) with neuroblastoma underwent one or more (4 patients) courses of MIBG I-131 therapy. Fifteen patients were not administered chemotherapy, 3 children received standard-dose chemotherapy, and 37 patients were administered high-dose chemotherapy (HDCT) (busulfan-melphalan in 24 and treosulfan-based in 12 patients). Forty-six patients underwent stem cell transplantation, with autologous (35 patients), haploidentical (6), allogeneic (4), and syngeneic grafts (1). The median time from first MIBG therapy to SCT was 22 days. Children with relapsing tumors had inferior OS compared to those with primary resistant disease (21.2% vs 58.7%, p=0.0045). Survival was better in patients without MYCN gene amplification. MIBG therapy was never curative, except in patients further treated with HDCT with stem cell rescue irrespective of the donor type. 31 patients were referred for immune therapy after MIBG therapy, and the 5-year OS in this group was superior to the untreated children (55.2% vs 32.7%, p=0.003), but the difference in the 5-year EFS was not significant (25.6% vs 32.9%, p=ns). In 3 patients, a second malignancy was diagnosed. In 19.6% of treated children, hypothyroidism was diagnosed within 5 years after MIBG therapy. Conclusion MIBG therapy can be incorporated into the therapeutic strategy of relapsed or resistant neuroblastoma patients as preconditioning with HDCT rather than stand-alone therapy. Follow-up is required due to the incidence of thyroid failure and risk of second cancers.
Collapse
Affiliation(s)
- Marek Ussowicz
- Department and Clinic of Pediatric Oncology, Hematology and Bone Marrow Transplantation, Wroclaw Medical University, Wrocław, Poland
| | - Aleksandra Wieczorek
- Department of Pediatric Oncology and Hematology, University Children's Hospital, Jagiellonian University Collegium Medicum, Kraków, Poland
| | - Agnieszka Dłużniewska
- Stem Cell Transplant Center, University Children's Hospital, Department of Clinical Immunology and Transplantology, Jagiellonian University Collegium Medicum, Kraków, Poland
| | - Anna Pieczonka
- Department of Pediatric Oncology, Hematology and Transplantology (EBMT CIC 641, CIBMTR Center 10797), University of Medical Sciences, Poznań, Poland
| | - Robert Dębski
- Department of Pediatric Hematology and Oncology, Collegium Medicum, Nicolaus Copernicus University Torun, Bydgoszcz, Poland
| | - Katarzyna Drabko
- Department of Pediatric Hematology, Oncology and Stem Cell Transplantation, Medical University, Lublin, Poland
| | - Jolanta Goździk
- Stem Cell Transplant Center, University Children's Hospital, Department of Clinical Immunology and Transplantology, Jagiellonian University Collegium Medicum, Kraków, Poland
| | - Walentyna Balwierz
- Department of Pediatric Oncology and Hematology, University Children's Hospital, Jagiellonian University Collegium Medicum, Kraków, Poland
| | - Daria Handkiewicz-Junak
- Department of Nuclear Medicine and Endocrine Oncology, Maria Sklodowska-Curie National Research Institute of Oncology, Gliwice, Poland
| | - Jacek Wachowiak
- Department of Pediatric Oncology, Hematology and Transplantology (EBMT CIC 641, CIBMTR Center 10797), University of Medical Sciences, Poznań, Poland
| |
Collapse
|
24
|
Samim A, Tytgat GA, Bleeker G, Wenker ST, Chatalic KL, Poot AJ, Tolboom N, van Noesel MM, Lam MG, de Keizer B. Nuclear Medicine Imaging in Neuroblastoma: Current Status and New Developments. J Pers Med 2021; 11:jpm11040270. [PMID: 33916640 PMCID: PMC8066332 DOI: 10.3390/jpm11040270] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 04/01/2021] [Indexed: 12/20/2022] Open
Abstract
Neuroblastoma is the most common extracranial solid malignancy in children. At diagnosis, approximately 50% of patients present with metastatic disease. These patients are at high risk for refractory or recurrent disease, which conveys a very poor prognosis. During the past decades, nuclear medicine has been essential for the staging and response assessment of neuroblastoma. Currently, the standard nuclear imaging technique is meta-[123I]iodobenzylguanidine ([123I]mIBG) whole-body scintigraphy, usually combined with single-photon emission computed tomography with computed tomography (SPECT-CT). Nevertheless, 10% of neuroblastomas are mIBG non-avid and [123I]mIBG imaging has relatively low spatial resolution, resulting in limited sensitivity for smaller lesions. More accurate methods to assess full disease extent are needed in order to optimize treatment strategies. Advances in nuclear medicine have led to the introduction of radiotracers compatible for positron emission tomography (PET) imaging in neuroblastoma, such as [124I]mIBG, [18F]mFBG, [18F]FDG, [68Ga]Ga-DOTA peptides, [18F]F-DOPA, and [11C]mHED. PET has multiple advantages over SPECT, including a superior resolution and whole-body tomographic range. This article reviews the use, characteristics, diagnostic accuracy, advantages, and limitations of current and new tracers for nuclear medicine imaging in neuroblastoma.
Collapse
Affiliation(s)
- Atia Samim
- Princess Maxima Center for Pediatric Oncology, Heidelberglaan 25, 3584 CS Utrecht, The Netherlands; (A.S.); (G.A.M.T.); (S.T.M.W.); (K.L.S.C.); (A.J.P.); (N.T.); (M.M.v.N.)
- Department of Radiology and Nuclear Medicine, University Medical Center Utrecht/Wilhelmina Children’s Hospital, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands;
| | - Godelieve A.M. Tytgat
- Princess Maxima Center for Pediatric Oncology, Heidelberglaan 25, 3584 CS Utrecht, The Netherlands; (A.S.); (G.A.M.T.); (S.T.M.W.); (K.L.S.C.); (A.J.P.); (N.T.); (M.M.v.N.)
| | - Gitta Bleeker
- Department of Radiology and Nuclear Medicine, Northwest Clinics, Wilhelminalaan 12, 1815 JD Alkmaar, The Netherlands;
| | - Sylvia T.M. Wenker
- Princess Maxima Center for Pediatric Oncology, Heidelberglaan 25, 3584 CS Utrecht, The Netherlands; (A.S.); (G.A.M.T.); (S.T.M.W.); (K.L.S.C.); (A.J.P.); (N.T.); (M.M.v.N.)
- Department of Radiology and Nuclear Medicine, University Medical Center Utrecht/Wilhelmina Children’s Hospital, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands;
| | - Kristell L.S. Chatalic
- Princess Maxima Center for Pediatric Oncology, Heidelberglaan 25, 3584 CS Utrecht, The Netherlands; (A.S.); (G.A.M.T.); (S.T.M.W.); (K.L.S.C.); (A.J.P.); (N.T.); (M.M.v.N.)
- Department of Radiology and Nuclear Medicine, University Medical Center Utrecht/Wilhelmina Children’s Hospital, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands;
| | - Alex J. Poot
- Princess Maxima Center for Pediatric Oncology, Heidelberglaan 25, 3584 CS Utrecht, The Netherlands; (A.S.); (G.A.M.T.); (S.T.M.W.); (K.L.S.C.); (A.J.P.); (N.T.); (M.M.v.N.)
- Department of Radiology and Nuclear Medicine, University Medical Center Utrecht/Wilhelmina Children’s Hospital, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands;
| | - Nelleke Tolboom
- Princess Maxima Center for Pediatric Oncology, Heidelberglaan 25, 3584 CS Utrecht, The Netherlands; (A.S.); (G.A.M.T.); (S.T.M.W.); (K.L.S.C.); (A.J.P.); (N.T.); (M.M.v.N.)
- Department of Radiology and Nuclear Medicine, University Medical Center Utrecht/Wilhelmina Children’s Hospital, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands;
| | - Max M. van Noesel
- Princess Maxima Center for Pediatric Oncology, Heidelberglaan 25, 3584 CS Utrecht, The Netherlands; (A.S.); (G.A.M.T.); (S.T.M.W.); (K.L.S.C.); (A.J.P.); (N.T.); (M.M.v.N.)
| | - Marnix G.E.H. Lam
- Department of Radiology and Nuclear Medicine, University Medical Center Utrecht/Wilhelmina Children’s Hospital, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands;
| | - Bart de Keizer
- Princess Maxima Center for Pediatric Oncology, Heidelberglaan 25, 3584 CS Utrecht, The Netherlands; (A.S.); (G.A.M.T.); (S.T.M.W.); (K.L.S.C.); (A.J.P.); (N.T.); (M.M.v.N.)
- Department of Radiology and Nuclear Medicine, University Medical Center Utrecht/Wilhelmina Children’s Hospital, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands;
- Correspondence: ; Tel.: +31-887-571-794
| |
Collapse
|
25
|
Van Heerden J, Kruger M, Esterhuizen TM, Hendricks M, Du Plessis J, Engelbrecht G, Janse van Vuuren M, van Emmenes B, Uys R, Burger C, Nyakale N, More S, Brink A. The Association between Tumour Markers and Meta-iodobenzylguanidine Scans in South African Children with High-risk Neuroblastoma. Clin Oncol (R Coll Radiol) 2021; 33:517-526. [PMID: 33781675 DOI: 10.1016/j.clon.2021.03.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 02/04/2021] [Accepted: 03/04/2021] [Indexed: 12/13/2022]
Abstract
AIMS Diagnostic and post-induction 123I-meta-iodobenzylguanidine (123I-mIBG) scans have prognostic significance in the treatment of neuroblastoma, but data from low- and middle-income countries are limited due to resource constraints. The aim of this study was to determine the association between neuroblastoma-associated tumour markers (lactate dehydrogenase [LDH], ferritin and MYCN amplification) and 123I-mIBG scans (modified Curie scores and metastatic disease patterns) in predicting complete metastatic response rates (mCR) and overall survival. MATERIALS AND METHODS Two hundred and ninety patients diagnosed with high-risk neuroblastoma in South Africa between January 2000 and May 2018 and a subanalysis of 78 patients with diagnostic 123I-mIBG scans were included. Data collection included LDH, ferritin and MYCN amplification at diagnosis. Two nuclear physicians independently determined the modified Curie scores and pattern of distribution for each diagnostic and post-induction 123I-mIBG scans with high inter-rater agreement (r = 0.952) and reliability (K = 0.805). The cut-off values for the diagnostic and post-induction modified Curie scores of ≥7.0 (P = 0.026) and 3 (P = 0.009), respectively, were generated. The association between the tumour markers and the modified Curie score of the 123I-mIBG scans was determined using post-induction mCR and 2-year overall survival. RESULTS Diagnostic LDH (P < 0.001), ferritin (P < 0.001) and the diagnostic modified Curie scores (P = 0.019) significantly predicted mCR. Only ferritin correlated with diagnostic modified Curie scores (P = 0.003) but had a low correlation coefficient of 0.353. On multivariable analysis, the only significant covariate for 2-year overall survival at diagnosis was LDH <750 U/l (P = 0.024). A post-induction chemotherapy modified Curie score ≤3.0 had a 2-year overall survival of 46.2% compared with 30.8% for a score >3.0 (P = 0.484). CONCLUSION LDH, ferritin and the diagnostic 123I-mIBG scans significantly predicted mCR, but only LDH predicted 2-year overall survival. Ferritin and the modified Curie scores correlated with each other. MYCN amplification neither correlated with any aspect of the 123I-mIBG scans nor significantly predicted mCR or 2-year overall survival. LDH and ferritin are therefore appropriate neuroblastoma tumour markers to be used in low- and middle-income countries with limited or no access to mIBG scans and/or MYCN amplification studies.
Collapse
Affiliation(s)
- J Van Heerden
- Paediatric Haematology and Oncology, Department of Paediatrics and Child Health, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg Hospital, Cape Town, South Africa; Paediatric Haematology and Oncology, Department of Paediatrics, Antwerp University Hospital, Antwerp, Belgium.
| | - M Kruger
- Paediatric Haematology and Oncology, Department of Paediatrics and Child Health, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg Hospital, Cape Town, South Africa
| | - T M Esterhuizen
- Division of Epidemiology and Biostatistics, Faculty of Medicine and Health Sciences, Stellenbosch University, South Africa
| | - M Hendricks
- Department of Paediatrics and Child Health, Faculty of Health Sciences, University of Cape Town, Paediatric Haematology and Oncology Service, Red Cross War Memorial Children's Hospital, Cape Town, South Africa
| | - J Du Plessis
- Department of Paediatrics, Faculty of Health Sciences, University of the Free State, Division of Paediatric Haematology and Oncology, Universitas Hospital, Bloemfontein, South Africa
| | - G Engelbrecht
- Department of Nuclear Medicine, University of the Free State, Universitas Hospital, Bloemfontein, South Africa
| | - M Janse van Vuuren
- Drs B Vorster and M Janse van Vuuren Incorporated, Nuclear Physicians, Bloemfontein, South Africa
| | - B van Emmenes
- Division of Paediatric Haematology and Oncology Hospital, Department of Paediatrics, Frere Hospital, East London, South Africa
| | - R Uys
- Paediatric Haematology and Oncology, Department of Paediatrics and Child Health, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg Hospital, Cape Town, South Africa
| | - C Burger
- Department of Nuclear Medicine, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg Hospital, Cape Town, South Africa
| | - N Nyakale
- Department of Nuclear Medicine, Faculty of Health Sciences, University of KwaZulu-Natal, Inkosi Albert Luthuli Academic Hospital, Durban, South Africa
| | - S More
- Department of Paediatrics and Child Health, Division of Nuclear Medicine, Faculty of Health Sciences, University of Cape Town, Red Cross War Memorial Children's Hospital, Cape Town, South Africa
| | - A Brink
- Department of Paediatrics and Child Health, Division of Nuclear Medicine, Faculty of Health Sciences, University of Cape Town, Red Cross War Memorial Children's Hospital, Cape Town, South Africa
| |
Collapse
|
26
|
Coenen HH, Ermert J. Expanding PET-applications in life sciences with positron-emitters beyond fluorine-18. Nucl Med Biol 2021; 92:241-269. [PMID: 32900582 DOI: 10.1016/j.nucmedbio.2020.07.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 07/09/2020] [Indexed: 12/20/2022]
Abstract
Positron-emission-tomography (PET) has become an indispensable diagnostic tool in modern nuclear medicine. Its outstanding molecular imaging features allow repetitive studies on one individual and with high sensitivity, though no interference. Rather few positron-emitters with near favourable physical properties, i.e. carbon-11 and fluorine-18, furnished most studies in the beginning, preferably if covalently bound as isotopic label of small molecules. With the advancement of PET-devices the scope of in vivo research in life sciences and especially that of medical applications expanded, and other than "standard" PET-nuclides received increasing significance, like the radiometals copper-64 and gallium-68. Especially during the last decades, positron-emitters of other chemical elements have gotten into the focus of interest, concomitant with the technical advancements in imaging and radionuclide production. With known nuclear imaging properties and main production methods of emerging positron-emitters their usefulness for medical application is promising and even proven for several ones already. Unfortunate decay properties could be corrected for, and β+-emitters, especially with a longer half-life, provided new possibilities for application where slower processes are of importance. Further on, (bio)chemical features of positron-emitters of other elements, among there many metals, not only expanded the field of classical clinical investigations, but also opened up new fields of application. Appropriately labelled peptides, proteins and nanoparticles lend itself as newer probes for PET-imaging, e.g. in theragnostic or PET/MR hybrid imaging. Furthermore, the potential of non-destructive in-vivo imaging with positron-emission-tomography directs the view on further areas of life sciences. Thus, exploiting the excellent methodology for basic research on molecular biochemical functions and processes is increasingly encouraged as well in areas outside of health, such as plant and environmental sciences.
Collapse
Affiliation(s)
- Heinz H Coenen
- Institut für Neurowissenschaften und Medizin, INM-5, Nuklearchemie, Forschungszentrum Jülich GmbH, D-52425 Jülich, Germany.
| | - Johannes Ermert
- Institut für Neurowissenschaften und Medizin, INM-5, Nuklearchemie, Forschungszentrum Jülich GmbH, D-52425 Jülich, Germany.
| |
Collapse
|
27
|
Pictorial review of the clinical applications of MIBG in neuroblastoma: current practices. Clin Transl Imaging 2020. [DOI: 10.1007/s40336-020-00392-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
28
|
Heczey A, Courtney AN, Montalbano A, Robinson S, Liu K, Li M, Ghatwai N, Dakhova O, Liu B, Raveh-Sadka T, Chauvin-Fleurence CN, Xu X, Ngai H, Di Pierro EJ, Savoldo B, Dotti G, Metelitsa LS. Anti-GD2 CAR-NKT cells in patients with relapsed or refractory neuroblastoma: an interim analysis. Nat Med 2020; 26:1686-1690. [PMID: 33046868 DOI: 10.1038/s41591-020-1074-2] [Citation(s) in RCA: 185] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 08/21/2020] [Indexed: 11/09/2022]
Abstract
Vα24-invariant natural killer T (NKT) cells have shown potent anti-tumor properties in murine tumor models and have been linked to favorable outcomes in patients with cancer. However, low numbers of these cells in humans have hindered their clinical applications. Here we report interim results from all three patients enrolled on dose level 1 in a phase 1 dose-escalation trial of autologous NKT cells engineered to co-express a GD2-specific chimeric antigen receptor (CAR) with interleukin-15 in children with relapsed or resistant neuroblastoma (NCT03294954). Primary and secondary objectives were to assess safety and anti-tumor responses, respectively, with immune response evaluation as an additional objective. We ex vivo expanded highly pure NKT cells (mean ± s.d., 94.7 ± 3.8%) and treated patients with 3 × 106 CAR-NKT cells per square meter of body surface area after lymphodepleting conditioning with cyclophosphamide/fludarabine (Cy/Flu). Cy/Flu conditioning was the probable cause for grade 3-4 hematologic adverse events, as they occurred before CAR-NKT cell infusion, and no dose-limiting toxicities were observed. CAR-NKT cells expanded in vivo, localized to tumors and, in one patient, induced an objective response with regression of bone metastatic lesions. These initial results suggest that CAR-NKT cells can be expanded to clinical scale and safely applied to treat patients with cancer.
Collapse
Affiliation(s)
- Andras Heczey
- Department of Pediatrics, Texas Children's Cancer Center, Baylor College of Medicine, Houston, TX, USA. .,Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX, USA. .,Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX, USA.
| | - Amy N Courtney
- Department of Pediatrics, Texas Children's Cancer Center, Baylor College of Medicine, Houston, TX, USA
| | | | - Simon Robinson
- Department of Pediatrics, Texas Children's Cancer Center, Baylor College of Medicine, Houston, TX, USA
| | - Ka Liu
- Department of Pediatrics, Texas Children's Cancer Center, Baylor College of Medicine, Houston, TX, USA
| | - Mingmei Li
- Department of Pediatrics, Texas Children's Cancer Center, Baylor College of Medicine, Houston, TX, USA
| | - Nisha Ghatwai
- Department of Pediatrics, Texas Children's Cancer Center, Baylor College of Medicine, Houston, TX, USA
| | - Olga Dakhova
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX, USA
| | - Bin Liu
- Department of Pediatrics, Texas Children's Cancer Center, Baylor College of Medicine, Houston, TX, USA
| | | | | | - Xin Xu
- Department of Pediatrics, Texas Children's Cancer Center, Baylor College of Medicine, Houston, TX, USA
| | - Ho Ngai
- Department of Pediatrics, Texas Children's Cancer Center, Baylor College of Medicine, Houston, TX, USA
| | - Erica J Di Pierro
- Department of Pediatrics, Texas Children's Cancer Center, Baylor College of Medicine, Houston, TX, USA
| | - Barbara Savoldo
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Gianpietro Dotti
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Leonid S Metelitsa
- Department of Pediatrics, Texas Children's Cancer Center, Baylor College of Medicine, Houston, TX, USA. .,Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX, USA. .,Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
29
|
Barr EK, Laurie K, Wroblewski K, Applebaum MA, Cohn SL. Association between end-induction response according to the revised International Neuroblastoma Response Criteria (INRC) and outcome in high-risk neuroblastoma patients. Pediatr Blood Cancer 2020; 67:e28390. [PMID: 32710697 PMCID: PMC7722196 DOI: 10.1002/pbc.28390] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 04/05/2020] [Accepted: 04/14/2020] [Indexed: 11/06/2022]
Abstract
BACKGROUND The 1993 International Neuroblastoma Response Criteria (INRC) were revised in 2017 to include modern functional imaging studies and methods for quantifying disease in bone marrow. We hypothesized the 2017 INRC would enable more precise assessment of response to treatment and provide superior prognostic information compared with the 1993 criteria. METHODS High-risk (HR) neuroblastoma patients from two institutions in Chicago diagnosed between 2006 and 2016 were identified. Patients were assessed post induction chemotherapy via the 1993 and 2017 INRC and classified as responder (≥ mixed response [MXR] or ≥ minor response [MR], respectively) or nonresponder (< MXR or < MR). Event-free survival (EFS) and overall survival (OS) for responders versus nonresponders were determined from end induction and stratified by Cox regression. Patients with progressive disease at end induction were eliminated from the EFS analyses but included in the OS analysis. RESULTS The 1993 criteria classified 52 of the 60 HR patients as responders, whereas 54 responders were identified using the 2017 criteria (Spearman correlation r = 0.82, P < 0.001). No statistically significant difference in EFS was observed for responders versus nonresponders using either criteria (P = 0.48 and P = 0.08). However, superior OS was observed for responders (P = 0.01) using either criteria. Both criteria were sensitive in identifying responders among those with good outcomes. The specificity to identify nonresponders among those with poor outcomes was poor. CONCLUSIONS In HR neuroblastoma, end-induction response defined by the 1993 or 2017 INRC is associated with survival. Larger cohorts are needed to determine if the 2017 INRC provides more precise prognostication.
Collapse
Affiliation(s)
- Erin K. Barr
- Department of Pediatrics, Texas Tech University Health Sciences, Lubbock, Texas
| | - Kathryn Laurie
- Pediatric Hematology, Oncology & Stem Cell Transplantation, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, Illinois
| | - Kristen Wroblewski
- Department of Public Health Sciences, University of Chicago, Chicago, Illinois
| | | | - Susan L. Cohn
- Department of Pediatrics, University of Chicago, Chicago, Illinois
| |
Collapse
|
30
|
Seo ES, Lee EJ, Lee B, Shin M, Cho YS, Hyun JK, Cho HW, Ju HY, Yoo KH, Koo HH, Lee JW, Sung KW. Metastatic Burden Defines Clinically and Biologically Distinct Subgroups of Stage 4 High-Risk Neuroblastoma. J Clin Med 2020; 9:jcm9092730. [PMID: 32847064 PMCID: PMC7565784 DOI: 10.3390/jcm9092730] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 08/20/2020] [Indexed: 12/17/2022] Open
Abstract
This study aimed to identify the prognostic subgroups of stage 4 high-risk neuroblastoma based on metastatic burden and explore their distinct clinical and genomic features. Patients aged ≥18 months with stage 4 and metaiodobenzylguanidine-avid neuroblastoma were enrolled. One hundred and thirty eligible patients were treated under the tandem high-dose chemotherapy scheme. Prognostic significance of metastatic burden measured by the modified Curie score was analyzed using a competing risk approach, and the optimal cut-point was determined. Metastasis-specific subgroups (cut-point: 26) were compared using clinicopathological variables, and differential gene expression analysis and gene set variation analysis (GSVA) were performed using RNA sequencing (RNA-seq). Metastatic burden at diagnosis showed a progressive association with relapse/progression. After applying the cut-point, patients with high metastatic burden showed >3-fold higher risk of relapse/progression than those with low metastatic burden. Moreover, patients with high metastatic burden showed smaller primary tumors and higher biochemical marker levels than those with low metastatic burden. In the genomic analysis, 51 genes were found to be differentially expressed based on the set criteria. GSVA revealed 55 gene sets, which significantly distinguished patients with high metastatic burden from those with low metastatic burden at a false discovery rate <0.25. The results indicated the prognostic significance of metastatic burden in stage 4 high-risk neuroblastoma, and we identified the distinct clinicopathological and genomic features based on metastatic burden. This study may aid in the better understanding and risk-stratification of stage 4 high-risk neuroblastoma patients.
Collapse
Affiliation(s)
- Eun Seop Seo
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Korea; (E.S.S.); (J.K.H.); (H.W.C.); (H.Y.J.); (K.H.Y.); (H.H.K.)
| | - Eun-jin Lee
- Samsung Genome Institute, Samsung Medical Center, Seoul 06351, Korea; (E.-j.L.); (B.L.)
| | - Boram Lee
- Samsung Genome Institute, Samsung Medical Center, Seoul 06351, Korea; (E.-j.L.); (B.L.)
| | - Muheon Shin
- Department of Nuclear Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Korea; (M.S.); (Y.-S.C.)
| | - Young-Seok Cho
- Department of Nuclear Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Korea; (M.S.); (Y.-S.C.)
| | - Ju Kyung Hyun
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Korea; (E.S.S.); (J.K.H.); (H.W.C.); (H.Y.J.); (K.H.Y.); (H.H.K.)
| | - Hee Won Cho
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Korea; (E.S.S.); (J.K.H.); (H.W.C.); (H.Y.J.); (K.H.Y.); (H.H.K.)
| | - Hee Young Ju
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Korea; (E.S.S.); (J.K.H.); (H.W.C.); (H.Y.J.); (K.H.Y.); (H.H.K.)
| | - Keon Hee Yoo
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Korea; (E.S.S.); (J.K.H.); (H.W.C.); (H.Y.J.); (K.H.Y.); (H.H.K.)
| | - Hong Hoe Koo
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Korea; (E.S.S.); (J.K.H.); (H.W.C.); (H.Y.J.); (K.H.Y.); (H.H.K.)
| | - Ji Won Lee
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Korea; (E.S.S.); (J.K.H.); (H.W.C.); (H.Y.J.); (K.H.Y.); (H.H.K.)
- Correspondence: (J.W.L.); (K.W.S.); Tel.: +82-2-3410-0659 (J.W.L.); +82-2-3410-3529 (K.W.S.); Fax: +82-2-3410-0049 (K.W.S.)
| | - Ki Woong Sung
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Korea; (E.S.S.); (J.K.H.); (H.W.C.); (H.Y.J.); (K.H.Y.); (H.H.K.)
- Correspondence: (J.W.L.); (K.W.S.); Tel.: +82-2-3410-0659 (J.W.L.); +82-2-3410-3529 (K.W.S.); Fax: +82-2-3410-0049 (K.W.S.)
| |
Collapse
|
31
|
Pauwels E, Van Aerde M, Bormans G, Deroose CM. Molecular imaging of norepinephrine transporter-expressing tumors: current status and future prospects. THE QUARTERLY JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING : OFFICIAL PUBLICATION OF THE ITALIAN ASSOCIATION OF NUCLEAR MEDICINE (AIMN) [AND] THE INTERNATIONAL ASSOCIATION OF RADIOPHARMACOLOGY (IAR), [AND] SECTION OF THE SOCIETY OF RADIOPHARMACEUTICAL CHEMISTRY AND BIOLOGY 2020; 64:234-249. [PMID: 32397701 DOI: 10.23736/s1824-4785.20.03261-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The human norepinephrine transporter (hNET) is a transmembrane protein responsible for reuptake of norepinephrine in presynaptic sympathetic nerve terminals and adrenal chromaffin cells. Neural crest tumors, such as neuroblastoma, paraganglioma and pheochromocytoma often show high hNET expression. Molecular imaging of these tumors can be done using radiolabeled norepinephrine analogs that target hNET. Currently, the most commonly used radiopharmaceutical for hNET imaging is meta-[123I]iodobenzylguanidine ([123I]MIBG) and this has been the case since its development several decades ago. The γ-emitter, iodine-123 only allows for planar scintigraphy and single photon emission computed tomography imaging. These modalities typically have a poorer spatial resolution and lower sensitivity than positron emission tomography (PET). Additional practical disadvantages include the fact that a two-day imaging protocol is required and the need for thyroid blockade. Therefore, several PET alternatives for hNET imaging are actively being explored. This review gives an in-depth overview of the current status and recent developments in clinical trials leading to the next generation of clinical PET ligands for imaging of hNET-expressing tumors.
Collapse
Affiliation(s)
- Elin Pauwels
- Nuclear Medicine and Molecular Imaging, Department of Imaging and Pathology, University Hospitals Leuven, Leuven, Belgium.,Nuclear Medicine and Molecular Imaging, Department of Imaging and Pathology, KU Leuven, Belgium
| | - Matthias Van Aerde
- Nuclear Medicine and Molecular Imaging, Department of Imaging and Pathology, University Hospitals Leuven, Leuven, Belgium.,Nuclear Medicine and Molecular Imaging, Department of Imaging and Pathology, KU Leuven, Belgium
| | - Guy Bormans
- Radiopharmaceutical Research, Department of Pharmacy and Pharmacology, KU Leuven, Leuven, Belgium
| | - Christophe M Deroose
- Nuclear Medicine and Molecular Imaging, Department of Imaging and Pathology, University Hospitals Leuven, Leuven, Belgium - .,Nuclear Medicine and Molecular Imaging, Department of Imaging and Pathology, KU Leuven, Belgium
| |
Collapse
|
32
|
Yanishevski D, McCarville MB, Doubrovin M, Spiegl HR, Zhao X, Lu Z, Federico SM, Furman WL, Murphy AJ, Davidoff AM. Impact of MYCN status on response of high-risk neuroblastoma to neoadjuvant chemotherapy. J Pediatr Surg 2020; 55:130-134. [PMID: 31685267 DOI: 10.1016/j.jpedsurg.2019.09.067] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2019] [Accepted: 09/29/2019] [Indexed: 10/25/2022]
Abstract
BACKGROUND/PURPOSE MYCN-amplification in neuroblastoma is associated with an aggressive clinical phenotype. We evaluated the association of MYCN amplification with tumor response to neoadjuvant chemotherapy. METHODS Primary tumor response, assessed by percentage volume change on CT scan and degree of tumor resection, assessed by the operating surgeon, were retrospectively compared in 84 high-risk neuroblastoma patients. There were thirty-four (40%) with MYCN-amplified tumors and fifty (60%) with non-amplified tumors treated at our institution from 1999 to 2016. Metastatic disease response was assessed on MIBG scan by change in Curie score. RESULTS MYCN-amplification was associated with a greater mean percentage reduction in primary tumor volume after neoadjuvant chemotherapy (72.27% versus 46.83% [non-amplified tumors], p = 0.001). The percentage of patients with a Curie score > 2 at diagnosis who then had a score ≤ 2 after neoadjuvant chemotherapy was not significantly different (8 [61.5%] and 8 [34.8%], respectively, p = 0.37). Twenty-eight (85.7%) patients with MYCN-amplification had ≥90% surgical resection compared to 45 (91.84%) patients with non-amplified tumors (p = 0.303). CONCLUSIONS MYCN-amplification in high-risk neuroblastoma was associated with a better response of the primary tumor to neoadjuvant chemotherapy, but not metastatic sites, than in patients with non-amplified tumors. This did not significantly impact the ability to resect ≥90% of the primary tumor/locoregional disease. TYPE OF STUDY Treatment Study LEVEL OF EVIDENCE: Level III.
Collapse
Affiliation(s)
- David Yanishevski
- Department of Surgery, St. Jude Children's Research Hospital, Memphis, TN; College of Medicine, University of Tennessee Health Science Center, Memphis, TN
| | - M Beth McCarville
- Department of Diagnostic Imaging, St. Jude Children's Research Hospital, Memphis,TN
| | - Mikhail Doubrovin
- Department of Diagnostic Imaging, St. Jude Children's Research Hospital, Memphis,TN
| | - Hannah R Spiegl
- Department of Surgery, St. Jude Children's Research Hospital, Memphis, TN; College of Medicine, University of Tennessee Health Science Center, Memphis, TN
| | - Xiwen Zhao
- Department of Biostatistics, St. Jude Children's Research Hospital, Memphis, TN
| | - Zhaohua Lu
- Department of Biostatistics, St. Jude Children's Research Hospital, Memphis, TN
| | - Sara M Federico
- Department of Oncology, St. Jude Children's Research Hospital, Memphis, TN
| | - Wayne L Furman
- Department of Oncology, St. Jude Children's Research Hospital, Memphis, TN
| | - Andrew J Murphy
- Department of Surgery, St. Jude Children's Research Hospital, Memphis, TN; Division of Pediatric Surgery, Department of Surgery, University of Tennessee Health Science Center, Memphis, TN
| | - Andrew M Davidoff
- Department of Surgery, St. Jude Children's Research Hospital, Memphis, TN; Division of Pediatric Surgery, Department of Surgery, University of Tennessee Health Science Center, Memphis, TN.
| |
Collapse
|
33
|
Abstract
Neuroblastoma is a heterogenous disease, with solid tumors arising in the adrenal gland or paraspinal regions in young children. Neuroblastoma is unique, with varied presentation and prognosis based on primary location and tumor stage. Tumor behavior and response to treatment ranges from spontaneous regression to disseminated, lethal disease depending on the individual biology of a patient's tumor. Stratification of the disease has changed, with patients now placed in low, intermediate, and high-risk categories depending on age, stage, and tumor biology. Long-term survival for the high-risk subset of patients with metastatic disease is <40% despite aggressive multimodal therapy. Derived from sympathoadrenal cells of the adrenal medulla and sympathetic nervous system, both malignant neuroblastoma and differentiated tumors have specialized norepinephrine transporter (NET) receptors which are naturally occurring in the sympathetic nervous system throughout the body. Metaiodobenzylguanidine (MIBG) is a norepinephrine analog that undergoes active uptake by NET receptors resulting in accumulation in neuroblastoma as well as tissues normally expressing the NET receptor. When radioiodine labeled, MIBG can be used for both diagnosis and treatment. This article describes the history of MIBG use in neuroblastoma, including its utility as an imaging modality for diagnosis as well as the varied ways in which is it included in the multimodal treatment algorithm.
Collapse
|
34
|
Van Heerden J, Hendricks M, Geel J, Sartorius B, Hadley GP, Du Plessis J, Büchner A, Naidu G, Van Emmenes B, Van Zyl A, Kruger M. Overall survival for neuroblastoma in South Africa between 2000 and 2014. Pediatr Blood Cancer 2019; 66:e27944. [PMID: 31368239 DOI: 10.1002/pbc.27944] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 06/27/2019] [Accepted: 07/01/2019] [Indexed: 12/30/2022]
Abstract
BACKGROUND Outcome data for neuroblastoma in sub-Saharan Africa are minimal, whereas poor outcome is reported in low- and middle-income countries. A multi-institutional retrospective study across South Africa was undertaken to determine outcome. METHODS Patients treated between January 2000 and December 2014 in nine South African pediatric oncology units were included. Kaplan-Meier curves and Cox regression models were employed to determine two-year survival rates and to identify prognostic factors. RESULTS Data from 390 patients were analyzed. The median age was 39.9 months (range, 0-201 months). The majority presented with stage 4 disease (70%). The main chemotherapy regimens were OPEC/OJEC (44.8%), St Jude NB84 protocol (28.96%), and Rapid COJEC (22.17%). Only 44.4% had surgery across all risk groups, whereas only 16.5% of high-risk patients received radiotherapy. The two-year overall survival (OS) for the whole cohort was 37.6%: 94.1%, 81.6%, and 66.7%, respectively, for the very-low-risk, low-risk, and intermediate-risk groups and 27.6% for the high-risk group (P < 0.001, 95% CI). The median survival time for the whole group was 13 months (mean, 41.9 months; range, 0.1-209 months). MYCN-nonamplified patients had a superior two-year OS of 51.3% in comparison with MYCN-amplified patients at 37.3% (P = 0.002, 95% CI). CONCLUSIONS Limited disease had an OS comparable with high-income countries, but advanced disease had a poor OS. South Africa should focus on early diagnosis and implementation of a national protocol with equitable access to treatment.
Collapse
Affiliation(s)
- Jaques Van Heerden
- Paediatric Haematology and Oncology, Department of Paediatrics and Child Health, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg Hospital, Cape Town, South Africa
| | - Marc Hendricks
- Haematology Oncology Service, Red Cross War Memorial Children's Hospital, Department of Paediatrics and Child Health, Faculty of Health Sciences, University of Cape Town, South Africa
| | - Jennifer Geel
- Faculty of Health Sciences, Division of Paediatric Haematology and Oncology, Department of Paediatrics and Child Health, University of the Witwatersrand, Charlotte Maxeke Johannesburg Academic Hospital, Johannesburg, South Africa
| | - Benn Sartorius
- Discipline of Public Health Medicine, School of Nursing and Public Health, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa.,Department of Health and Medical Sciences, University of Washington, Washington, Seattle
| | - G P Hadley
- Department of Paediatric Surgery, Faculty of Health Sciences, Nelson R Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa
| | - Jan Du Plessis
- Department of Paediatrics, Faculty of Health Sciences, University of the Free State, Division of Paediatric Haematology and Oncology, Universitas Hospital, Bloemfontein, South Africa
| | - Ané Büchner
- Paediatric Haematology and Oncology, Department of Paediatrics, University of Pretoria, Steve Biko Academic Hospital, Pretoria, South Africa
| | - Gita Naidu
- Faculty of Health Sciences, Division of Paediatric Haematology and Oncology, Department of Paediatrics and Child Health, University of the Witwatersrand, Chris Hani Baragwanath Academic Hospital, Johannesburg, South Africa
| | - Barry Van Emmenes
- Division of Paediatric Haematology and Oncology, Department of Paediatrics, Frere Hospital, East London, South Africa
| | - Anel Van Zyl
- Paediatric Haematology and Oncology, Department of Paediatrics and Child Health, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg Hospital, Cape Town, South Africa
| | - Mariana Kruger
- Paediatric Haematology and Oncology, Department of Paediatrics and Child Health, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg Hospital, Cape Town, South Africa
| |
Collapse
|
35
|
Peinemann F, van Dalen EC, Enk H, Tytgat GAM, Cochrane Childhood Cancer Group. Anti-GD2 antibody-containing immunotherapy postconsolidation therapy for people with high-risk neuroblastoma treated with autologous haematopoietic stem cell transplantation. Cochrane Database Syst Rev 2019; 4:CD012442. [PMID: 31016728 PMCID: PMC6479178 DOI: 10.1002/14651858.cd012442.pub2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
BACKGROUND Neuroblastoma is a rare malignant disease that primarily affects children. The tumours mainly develop in the adrenal medullary tissue, and an abdominal mass is the most common presentation. High-risk disease is characterised by metastasis and other primary tumour characteristics resulting in increased risk for an adverse outcome. The GD2 carbohydrate antigen is expressed on the cell surface of neuroblastoma tumour cells and is thus a promising target for anti-GD2 antibody-containing immunotherapy. OBJECTIVES To assess the efficacy of anti-GD2 antibody-containing postconsolidation immunotherapy after high-dose chemotherapy (HDCT) and autologous haematopoietic stem cell transplantation (HSCT) compared to standard therapy after HDCT and autologous HSCT in people with high-risk neuroblastoma. Our primary outcomes were overall survival and treatment-related mortality. Our secondary outcomes were progression-free survival, event-free survival, early toxicity, late non-haematological toxicity, and health-related quality of life. SEARCH METHODS We searched the electronic databases CENTRAL (2018, Issue 9), MEDLINE (PubMed), and Embase (Ovid) on 20 September 2018. We searched trial registries and conference proceedings on 28 October 2018. Further searches included reference lists of recent reviews and relevant articles as well as contacting experts in the field. There were no limits on publication year or language. SELECTION CRITERIA Randomised controlled trials evaluating anti-GD2 antibody-containing immunotherapy after HDCT and autologous HSCT in people with high-risk neuroblastoma. DATA COLLECTION AND ANALYSIS Two review authors independently performed study selection, abstracted data on study and participant characteristics, and assessed risk of bias and GRADE. Any differences were resolved by discussion, with third-party arbitration unnecessary. We performed analyses according to the guidelines of the Cochrane Handbook for Systematic Reviews of Interventions. We used the five GRADE considerations, that is study limitations, consistency of effect, imprecision, indirectness, and publication bias, to judge the quality of the evidence. MAIN RESULTS We identified one randomised controlled trial that included 226 people with high-risk neuroblastoma who were pre-treated with autologous HSCT. The study randomised 113 participants to receive immunotherapy including isotretinoin, granulocyte-macrophage colony-stimulating factor (GM-CSF), interleukin-2, and ch14.18, a type of anti-GD2 antibody also known as dinutuximab. The study randomised another 113 participants to receive standard therapy including isotretinoin.The results on overall survival favoured the dinutuximab-containing immunotherapy group (hazard ratio (HR) 0.50, 95% confidence interval (CI) 0.31 to 0.80; P = 0.004). The results on event-free survival also favoured the dinutuximab-containing immunotherapy group (HR 0.61, 95% CI 0.41 to 0.92; P = 0.020). Randomised data on adverse events were not reported separately. The study did not report progression-free survival, late non-haematological toxicity, and health-related quality of life as separate endpoints. We graded the quality of the evidence as moderate. AUTHORS' CONCLUSIONS The evidence base favours dinutuximab-containing immunotherapy compared to standard therapy concerning overall survival and event-free survival in people with high-risk neuroblastoma pre-treated with autologous HSCT. Randomised data on adverse events are lacking, therefore more research is needed before definitive conclusions can be made regarding this outcome.
Collapse
Affiliation(s)
- Frank Peinemann
- Children's Hospital, University of ColognePediatric Oncology and HematologyKerpener Str. 62CologneGermany50937
| | - Elvira C van Dalen
- Princess Máxima Center for Pediatric OncologyHeidelberglaan 25UtrechtNetherlands3584 CS
| | - Heike Enk
- c/o Cochrane Childhood CancerAmsterdamNetherlands
| | - Godelieve AM Tytgat
- Princess Máxima Center for Pediatric OncologyHeidelberglaan 25UtrechtNetherlands3584 CS
| | | |
Collapse
|
36
|
Sokol EA, Engelmann R, Kang W, Pinto N, Starkey A, Lai H, Nadel H, Shulkin BL, Pu Y, Appelbaum D, Yanik GA, Cohn SL, Armato SG, Volchenboum S. Computer-assisted Curie scoring for metaiodobenzylguanidine (MIBG) scans in patients with neuroblastoma. Pediatr Blood Cancer 2018; 65:e27417. [PMID: 30198643 PMCID: PMC6317352 DOI: 10.1002/pbc.27417] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 07/03/2018] [Accepted: 07/23/2018] [Indexed: 11/06/2022]
Abstract
BACKGROUND Radiolabeled metaiodobenzylguanidine (MIBG) is sensitive and specific for detecting neuroblastoma. The extent of MIBG-avid disease is assessed using Curie scores. Although Curie scoring is prognostic in patients with high-risk neuroblastoma, there is no standardized method to assess the response of specific sites of disease over time. The goal of this study was to develop approaches for Curie scoring to facilitate the calculation of scores and comparison of specific sites on serial scans. PROCEDURE We designed three semiautomated methods for determining Curie scores, each with increasing degrees of computer assistance. Method A was based on visual assessment and tallying of MIBG-avid lesions. For method B, scores were tabulated from a schematic that associated anatomic regions to MIBG-positive lesions. For method C, an anatomic mesh was used to mark MIBG-positive lesions with automatic assignment and tallying of scores. Five imaging physicians experienced in MIBG interpretation scored 38 scans using each method, and the feasibility and utility of the methods were assessed using surveys. RESULTS There was good reliability between methods and observers. The user-interface methods required 57 to 110 seconds longer than the visual method. Imaging physicians indicated that it was useful that methods B and C enabled tracking of lesions. Imaging physicians preferred method B to method C because of its efficiency. CONCLUSIONS We demonstrate the feasibility of semiautomated approaches for Curie score calculation. Although more time was needed for strategies B and C, the ability to track and document individual MIBG-positive lesions over time is a strength of these methods.
Collapse
Affiliation(s)
| | - Roger Engelmann
- Department of Radiology, The University of Chicago, Chicago, Illinois
| | - Wenjun Kang
- Center for Research Informatics, The University of Chicago, Chicago, Illinois
| | - Navin Pinto
- Department of Pediatrics, University of Washington School of Medicine, Seattle, Washington
| | - Adam Starkey
- Department of Radiology, The University of Chicago, Chicago, Illinois
| | - Hollie Lai
- Department of Radiology, Children’s Hospital of Orange County, Orange, California
| | - Helen Nadel
- Department of Radiology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Barry L. Shulkin
- Department of Diagnostic Imaging, St. Jude Children’s Research Hospital, Memphis, Tennessee
| | - Yonglin Pu
- Department of Radiology, The University of Chicago, Chicago, Illinois
| | - Daniel Appelbaum
- Department of Radiology, The University of Chicago, Chicago, Illinois
| | - Gregory A. Yanik
- Department of Pediatrics, University of Michigan School of Medicine, Ann Arbor, Michigan
| | - Susan L. Cohn
- Department of Pediatrics, The University of Chicago, Chicago, Illinois
| | - Samuel G. Armato
- Department of Radiology, The University of Chicago, Chicago, Illinois
| | - Samuel Volchenboum
- Department of Pediatrics, The University of Chicago, Chicago, Illinois,Center for Research Informatics, The University of Chicago, Chicago, Illinois
| |
Collapse
|
37
|
Riaz S, Bashir H, Khan SJ, Qazi A. I-131 mIBG Scintigraphy Curie Versus SIOPEN Scoring: Prognostic Value in Stage 4 Neuroblastoma. Mol Imaging Radionucl Ther 2018; 27:121-125. [PMID: 30317848 PMCID: PMC6191737 DOI: 10.4274/mirt.52533] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
Objective: I-131 mIBG scan semi-quantitative analysis with modified Curie and the International Society of Pediatric Oncology Europe Neuroblastoma (SIOPEN) scoring systems is helpful in the evaluation of disease extent and has prognostic impact in stage 4 neuroblastoma. Methods: Retrospective, cross-sectional analysis of baseline I-131 mIBG scans in 21 patients with stage 4 or 4S neuroblastoma diagnosed between January 2007 and December 2015. All scans were assessed for Curie and SIOPEN scores. Distribution of scores was evaluated for risk factors i.e. age at diagnosis (>18 months) and early relapse (within 12 months). A curie score <2 and SIOPEN score <4 at diagnosis were correlated with event-free survival (EFS) and overall survival (OS). Results: The data set comprised of 12 (57%) males and 9 (43%) females. Patients with age >18 months (n=9) at diagnosis or early relapse (n=9) had higher Curie [mean 5+7.5 standard deviation (SD), p=0.004] and SIOPEN (mean 5.2+10.8 SD, p=0.02) scores. Patients with a Curie score <2 and a SIOPEN score of <4 had better EFS and OS than patients with higher scores. Curie: 5-year EFS=Curie <2 (79%) versus Curie >2 (33%) (p=0.03); 5-year OS=Curie <2 (56%) versus Curie >2 (36%) (p=0.01). SIOPEN: 5-year EFS=SIOPEN <4 (70%) versus SIOPEN >4 (17%) (p=0.002); 5-year OS=SIOPEN <4 (58%) versus SIOPEN >4 (17%) (p=0.04). There was no statistically significant difference between the two scoring systems in terms of survival predictive value (Hazard ratio 2.38, 95% CI: 0.33-16.9, p=0.38). Conclusion: I-131 mIBG Curie and SIOPEN scores have prognostication value in stage 4 neuroblastoma and should be routinely applied. Higher scores predict unfavorable prognosis.
Collapse
Affiliation(s)
- Saima Riaz
- Shaukat Khanum Memorial Cancer Hospital and Research Centre, Clinic of Nuclear Medicine, Lahore, Pakistan
| | - Humayun Bashir
- Shaukat Khanum Memorial Cancer Hospital and Research Centre, Clinic of Nuclear Medicine, Lahore, Pakistan
| | - Saadiya Javed Khan
- Shaukat Khanum Memorial Cancer Hospital and Research Centre, Clinic of Pediatric Oncology, Lahore, Pakistan
| | - Abid Qazi
- Canal Bank, Clinic of Surgery, Lahore, Pakistan
| |
Collapse
|
38
|
Agrawal A, Rangarajan V, Shah S, Puranik A, Purandare N. MIBG (metaiodobenzylguanidine) theranostics in pediatric and adult malignancies. Br J Radiol 2018; 91:20180103. [PMID: 30048149 DOI: 10.1259/bjr.20180103] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Metaiodobenzylguanidine, a guanithidine analog, labeled with 123I and 131I, is used for imaging and therapy of neuroblastomas and various neural crest tumors like paragangliomas, pheochromocytomas, medullary cancer of thyroid and carcinoids since the past three to four decades. In this review article, we shall revisit metaiodobenzylguanidine as a radiopharmaceutical and its various applications in neural crest tumors.
Collapse
Affiliation(s)
- Archi Agrawal
- 1 Department of Nuclear Medicine and Molecular Imaging, Tata Memorial Hospital , Mumbai , India
| | - Venkatesh Rangarajan
- 1 Department of Nuclear Medicine and Molecular Imaging, Tata Memorial Hospital , Mumbai , India
| | - Sneha Shah
- 1 Department of Nuclear Medicine and Molecular Imaging, Tata Memorial Hospital , Mumbai , India
| | - Ameya Puranik
- 1 Department of Nuclear Medicine and Molecular Imaging, Tata Memorial Hospital , Mumbai , India
| | - Nilendu Purandare
- 1 Department of Nuclear Medicine and Molecular Imaging, Tata Memorial Hospital , Mumbai , India
| |
Collapse
|
39
|
Feasibility of Busulfan Melphalan and Stem Cell Rescue After 131I-MIBG and Topotecan Therapy for Refractory or Relapsed Metastatic Neuroblastoma: The French Experience. J Pediatr Hematol Oncol 2018; 40:426-432. [PMID: 29642099 DOI: 10.1097/mph.0000000000001137] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
High-risk neuroblastoma is characterized by poor long-term survival, especially for very high-risk (VHR) patients (poor response of metastases after induction therapy). The benefits of a tandem high-dose therapy and hematologic stem cell reinfusion (HSCR) have been shown in these patients. Further dose escalation will be limited by toxicity. It is thus important to evaluate the efficacy and tolerability of the addition of new agents such as I-MIBG (131Iode metaiodobenzylguanidine) to be combined with high-dose therapy in the consolidation phase. We report the feasibility of busulfan/melphalan (BuMel) after I-MIBG therapy with HSCR in patients with refractory or relapsed metastatic neuroblastoma. From November 2008 to March 2015, 9 patients received BuMel after I-MIBG therapy and topotecan. The main toxicity was digestive with only 1 patient developing grade 4 sinusoidal obstructive syndrome. Seven patients are alive at a median follow-up of 25 months. Among them, 2 are in ongoing complete remission and 1 in ongoing stable disease. These results suggest that BuMel with HSCR can be administered safely 2 months after I-MIBG therapy associated with topotecan for VHR patients. This strategy will be compared with tandem high-dose chemotherapy (thiotepa and busulfan-melphalan), followed by HSCR in the upcoming SIOPEN VHR Neuroblastoma Protocol.
Collapse
|
40
|
Voss SD. Staging and following common pediatric malignancies: MRI versus CT versus functional imaging. Pediatr Radiol 2018; 48:1324-1336. [PMID: 30078040 DOI: 10.1007/s00247-018-4162-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 03/23/2018] [Accepted: 05/08/2018] [Indexed: 12/19/2022]
Abstract
Most pediatric malignancies require some form of cross-sectional imaging, either for staging or response assessment. The majority of these are solid tumors and this review addresses the role of MRI, as well as other cross-sectional and functional imaging techniques, for evaluating the most common pediatric solid tumors. The primary emphasis is on neuroblastoma, hepatoblastoma and Wilms tumor, three of the most common non-central-nervous-system (CNS) pediatric solid tumors encountered in young children. The initial focus will be a review of the imaging techniques and approaches used for diagnosis, staging and early post-treatment response assessment, followed by a discussion of the role surveillance imaging plays in pediatric oncology and a brief review of other emerging imaging techniques. The lessons learned here can be applied to most other pediatric tumors, including rhabdomyosarcoma, Ewing sarcoma and osteosarcoma, as well as germ cell tumors, neurofibromatosis and other rare tumors. Although lymphoma, in particular Hodgkin lymphoma, represents one of the more common pediatric malignancies, this is not discussed in detail here. Rather, many of the lessons that we have learned from lymphoma, specifically with regard to how we integrate both anatomical imaging and functional imaging techniques, is applied to the discussion of the other pediatric solid tumors.
Collapse
Affiliation(s)
- Stephan D Voss
- Department of Radiology, Boston Children's Hospital, Harvard Medical School, 300 Longwood Ave., Boston, MA, 02115, USA.
| |
Collapse
|
41
|
SPECT/CT MIBG Imaging Is Crucial in the Follow-up of the Patients With High-Risk Neuroblastoma. Clin Nucl Med 2018; 43:232-238. [PMID: 29401147 DOI: 10.1097/rlu.0000000000001984] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Planar whole-body imaging with I-radiolabeled metaiodobenzylguanidine (I-MIBG) is routinely used in the follow-up evaluation of neuroblastoma. In recent years, SPECT with integrated low-dose CT (SPECT/CT) has become more accessible. We investigated how much SPECT/CT can have additional diagnostic value over planar imaging in detection of residual and recurrent neuroblastoma. METHODS A total of 170 planar I-MIBG imaging scans with SPECT/CT follow-up scans performed in 147 patients with known high-risk neuroblastoma were retrospectively analyzed. Regions of increased I-MIBG uptake on planar images and the findings on SPECT/CT were compared. RESULTS In 61% of the studies, the whole-body planar images and SPECT/CT images yielded the same result. In 39% of the time, however, SPECT/CT images provided additional information. CONCLUSIONS In the follow-up of patients with high-risk neuroblastoma, SPECT/CT can significantly improve planar imaging interpretation and impact patient management.
Collapse
|
42
|
Fletcher JI, Ziegler DS, Trahair TN, Marshall GM, Haber M, Norris MD. Too many targets, not enough patients: rethinking neuroblastoma clinical trials. Nat Rev Cancer 2018; 18:389-400. [PMID: 29632319 DOI: 10.1038/s41568-018-0003-x] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Neuroblastoma is a rare solid tumour of infancy and early childhood with a disproportionate contribution to paediatric cancer mortality and morbidity. Combination chemotherapy, radiation therapy and immunotherapy remains the standard approach to treat high-risk disease, with few recurrent, actionable genetic aberrations identified at diagnosis. However, recent studies indicate that actionable aberrations are far more common in relapsed neuroblastoma, possibly as a result of clonal expansion. In addition, although the major validated disease driver, MYCN, is not currently directly targetable, multiple promising approaches to target MYCN indirectly are in development. We propose that clinical trial design needs to be rethought in order to meet the challenge of providing rigorous, evidence-based assessment of these new approaches within a fairly small patient population and that experimental therapies need to be assessed at diagnosis in very-high-risk patients rather than in relapsed and refractory patients.
Collapse
Affiliation(s)
- Jamie I Fletcher
- Children's Cancer Institute Australia, Lowy Cancer Research Centre, UNSW Sydney, Kensington, NSW, Australia
- School of Women's and Children's Health, UNSW Sydney, Kensington, NSW, Australia
| | - David S Ziegler
- Children's Cancer Institute Australia, Lowy Cancer Research Centre, UNSW Sydney, Kensington, NSW, Australia
- School of Women's and Children's Health, UNSW Sydney, Kensington, NSW, Australia
- Kids Cancer Centre, Sydney Children's Hospital, Randwick, NSW, Australia
| | - Toby N Trahair
- Children's Cancer Institute Australia, Lowy Cancer Research Centre, UNSW Sydney, Kensington, NSW, Australia
- School of Women's and Children's Health, UNSW Sydney, Kensington, NSW, Australia
- Kids Cancer Centre, Sydney Children's Hospital, Randwick, NSW, Australia
| | - Glenn M Marshall
- Children's Cancer Institute Australia, Lowy Cancer Research Centre, UNSW Sydney, Kensington, NSW, Australia
- Kids Cancer Centre, Sydney Children's Hospital, Randwick, NSW, Australia
| | - Michelle Haber
- Children's Cancer Institute Australia, Lowy Cancer Research Centre, UNSW Sydney, Kensington, NSW, Australia
- School of Women's and Children's Health, UNSW Sydney, Kensington, NSW, Australia
| | - Murray D Norris
- Children's Cancer Institute Australia, Lowy Cancer Research Centre, UNSW Sydney, Kensington, NSW, Australia.
- University of New South Wales Centre for Childhood Cancer Research, UNSW Sydney, Kensington, NSW, Australia.
| |
Collapse
|
43
|
Neuroblastoma: clinical and biological approach to risk stratification and treatment. Cell Tissue Res 2018; 372:195-209. [PMID: 29572647 DOI: 10.1007/s00441-018-2821-2] [Citation(s) in RCA: 174] [Impact Index Per Article: 24.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Accepted: 02/28/2018] [Indexed: 01/15/2023]
Abstract
Neuroblastoma is the most common extra-cranial solid tumor of childhood and the most common in the first year of life. It is a unique malignancy in that infants often present with either localized or metastatic disease that can spontaneously regress without intervention while older children can succumb to the disease after months to years of arduous therapy. Given this wide range of outcomes, the International Neuroblastoma Risk Group was created to stratify patients based on presenting characteristics and tumor biology in order to guide intensity of treatment strategies. The goal has been to decrease therapy for low-risk patients to avoid long-term complications while augmenting and targeting therapies for high-risk patients to improve overall survival. The international risk stratification depends on age, stage, histology, MYCN gene amplification status, tumor cell ploidy and segmental chromosomal abnormalities. Treatment for asymptomatic low-risk patients with an estimated survival of > 98% is often observation or surgical resection alone, whereas intermediate-risk patients with an estimated survival of > 90% require moderate doses of response-adjusted chemotherapy along with resection. High-risk patients undergo multiple cycles of combination chemotherapy before surgery, followed by consolidation with myeloablative autologous hematopoietic stem cell transplantation and local radiation and finally immunotherapy with differentiation therapy as maintenance phase. With this approach, outcome for patients with neuroblastoma has improved, as the field continues to expand efforts in more targeted therapies for high-risk patients.
Collapse
|
44
|
Amoroso L, Erminio G, Makin G, Pearson ADJ, Brock P, Valteau-Couanet D, Castel V, Pasquet M, Laureys G, Thomas C, Luksch R, Ladenstein R, Haupt R, Garaventa A, SIOPEN Group. Topotecan-Vincristine-Doxorubicin in Stage 4 High-Risk Neuroblastoma Patients Failing to Achieve a Complete Metastatic Response to Rapid COJEC: A SIOPEN Study. Cancer Res Treat 2018; 50:148-155. [PMID: 28324923 PMCID: PMC5784636 DOI: 10.4143/crt.2016.511] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Accepted: 03/09/2017] [Indexed: 11/29/2022] Open
Abstract
PURPOSE Metastatic response to induction therapy for high-risk neuroblastoma is a prognostic factor. In the International Society of Paediatric Oncology Europe Neuroblastoma (SIOPEN) HR-NBL-1 protocol, only patients with metastatic complete response (CR) or partial response (PR) with ≤ three abnormal skeletal areas on iodine 123-metaiodobenzylguanidine ([123I]mIBG) scintigraphy and no bone marrow disease proceed to high dose therapy (HDT). In this study, topotecan-vincristine-doxorubicin (TVD) was evaluated in patients failing to achieve these criteria, with the aim of improving the metastatic response rate. MATERIALS AND METHODS Patients with metastatic high-risk neuroblastoma who had not achieved the SIOPEN criteria for HDT after induction received two courses of topotecan 1.5 mg/m2/day for 5 days, followed by a 48-hour infusion of vincristine, 2 mg/m2, and doxorubicin, 45 mg/m2. RESULTS Sixty-three patients were eligible and evaluable. Following two courses of TVD, four (6.4%) patients had an overall CR, while 28 (44.4%) had a PR with a combined response rate of 50.8% (95% confidence interval [CI], 37.9 to 63.6). Of these, 23 patients achieved a metastatic CR or a PR with ≤ 3 mIBG skeletal areas and no bone marrow disease (36.5%; 95% CI, 24.7 to 49.6) and were eligible to receive HDT. Toxicity was mostly haematological, affecting 106 of the 126 courses (84.1%; 95% CI, 76.5 to 90.0), and dose reduction was necessary in six patients. Stomatitis was the second most common nonhematological toxicity, occurring in 20 patients (31.7%). CONCLUSION TVD was effective in improving the response rate of high-risk neuroblastoma patients after induction with COJEC enabling them to proceed to HDT. However, the long-term benefits of TVD needs to be determined in randomized clinical trials.
Collapse
Affiliation(s)
| | - Giovanni Erminio
- Epidemiology and Biostatistics Unit, Istituto Giannina Gaslini, Genova, Italy
| | - Guy Makin
- Institute of Cancer Sciences, Manchester Cancer Research Centre, Manchester Academic Health Sciences Centre, University of Manchester, Manchester, UK
| | - Andrew D. J. Pearson
- Divisions of Cancer Therapeutics and Clinical Studies, Institute of Cancer Research and Children and Young People’s Unit, The Royal Marsden NHS Foundation Trust, London, UK
| | - Penelope Brock
- Paediatric Oncology, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| | | | - Victoria Castel
- Paediatric Oncology, Hospital Universitario La Fe, Valencia, Spain
| | - Marlène Pasquet
- Department of Hematology-Oncology Hopital des Enfants, Toulouse, France
| | - Genevieve Laureys
- Department of Paediatric Hematology, Oncology and Stem Cell Transplantation, Ghent University Hospital, Ghent, Belgium
| | - Caroline Thomas
- Pediatric Intensive Care and Onco-Hematology Units, Nantes Hospital, Nantes, France
| | - Roberto Luksch
- Department of Paediatric Oncology, Istituto Nazionale Tumori, Milan, Italy
| | - Ruth Ladenstein
- Children’s Cancer Research Institute, St. Anna Children’s Hospital, Vienna, Austria
| | - Riccardo Haupt
- Epidemiology and Biostatistics Unit, Istituto Giannina Gaslini, Genova, Italy
| | | | - SIOPEN Group
- Paediatric Oncology, Istituto Giannina Gaslini, Genova, Italy
- Epidemiology and Biostatistics Unit, Istituto Giannina Gaslini, Genova, Italy
- Institute of Cancer Sciences, Manchester Cancer Research Centre, Manchester Academic Health Sciences Centre, University of Manchester, Manchester, UK
- Divisions of Cancer Therapeutics and Clinical Studies, Institute of Cancer Research and Children and Young People’s Unit, The Royal Marsden NHS Foundation Trust, London, UK
- Paediatric Oncology, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
- Paediatric Oncology, Institute Gustave Roussy, Villejuif, France
- Paediatric Oncology, Hospital Universitario La Fe, Valencia, Spain
- Department of Hematology-Oncology Hopital des Enfants, Toulouse, France
- Department of Paediatric Hematology, Oncology and Stem Cell Transplantation, Ghent University Hospital, Ghent, Belgium
- Pediatric Intensive Care and Onco-Hematology Units, Nantes Hospital, Nantes, France
- Department of Paediatric Oncology, Istituto Nazionale Tumori, Milan, Italy
- Children’s Cancer Research Institute, St. Anna Children’s Hospital, Vienna, Austria
| |
Collapse
|
45
|
Yordanova A, Eppard E, Kürpig S, Bundschuh RA, Schönberger S, Gonzalez-Carmona M, Feldmann G, Ahmadzadehfar H, Essler M. Theranostics in nuclear medicine practice. Onco Targets Ther 2017; 10:4821-4828. [PMID: 29042793 PMCID: PMC5633297 DOI: 10.2147/ott.s140671] [Citation(s) in RCA: 141] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The importance of personalized medicine has been growing, mainly due to a more urgent need to avoid unnecessary and expensive treatments. In nuclear medicine, the theranostic approach is an established tool for specific molecular targeting, both for diagnostics and therapy. The visualization of potential targets can help predict if a patient will benefit from a particular treatment. Thanks to the quick development of radiopharmaceuticals and diagnostic techniques, the use of theranostic agents has been continually increasing. In this article, important milestones of nuclear therapies and diagnostics in the context of theranostics are highlighted. It begins with a well-known radioiodine therapy in patients with thyroid cancer and then progresses through various approaches for the treatment of advanced cancer with targeted therapies. The aim of this review was to provide a summary of background knowledge and current applications, and to identify the advantages of targeted therapies and imaging in nuclear medicine practices.
Collapse
Affiliation(s)
- Anna Yordanova
- Department of Nuclear Medicine (Clinical Nuclear Medicine)
| | | | | | | | | | | | - Georg Feldmann
- Department of Medicine 3, University Hospital Bonn, Bonn, Germany
| | | | - Markus Essler
- Department of Nuclear Medicine (Clinical Nuclear Medicine)
| |
Collapse
|
46
|
Xia J, Zhang H, Hu Q, Liu SY, Zhang LQ, Zhang A, Zhang XL, Wang YQ, Liu AG. Comparison of diagnosing and staging accuracy of PET (CT) and MIBG on patients with neuroblastoma: Systemic review and meta-analysis. Curr Med Sci 2017; 37:649-660. [PMID: 29058276 DOI: 10.1007/s11596-017-1785-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2017] [Revised: 08/31/2017] [Indexed: 12/24/2022]
Abstract
To perform a systemic review and meta-analysis of the diagnostic accuracy of PET (CT) and metaiodobenzylguanidine (MIBG) for diagnosing neuroblastoma (NB), electronic databases were searched as well as relevant references and conference proceedings. The diagnostic accuracy of MIBG and PET (CT) was calculated for NB, primary NB, and relapse/metastasis of NB based on their sensitivity, specificity, and area under the summary receiver operating characteristic curve (AUSROC) in terms of per-lesion and per-patient data. A total of 40 eligible studies comprising 1134 patients with 939 NB lesions were considered for the meta-analysis. For the staging of NB, the per-lesion AUSROC value of MIBG was lower than that of PET (CT) [0.8064±0.0414 vs. 0.9366±0.0166 (P<0.05)]. The per-patient AUSROC value of MIBG and PET (CT) for the diagnosis of NB was 0.8771±0.0230 and 0.6851±0.2111, respectively. The summary sensitivity for MIBG and PET (CT) was 0.79 and 0.89, respectively. The summary specificity for MIBG and PET (CT) was 0.84 and 0.71, respectively. PET (CT) showed higher per-lesion accuracy than MIBG and might be the preferred modality for the staging of NB. On the other hand, MIBG has a comparable diagnosing performance with PET (CT) in per-patient analysis but shows a better specificity.
Collapse
Affiliation(s)
- Jia Xia
- Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Hang Zhang
- Department of Biliary-Pancreatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Qun Hu
- Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Shuang-You Liu
- Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Liu-Qing Zhang
- Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Ai Zhang
- Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Xiao-Ling Zhang
- Department of Hematology, Shenzhen Children's Hospital, Shenzhen, 518038, China
| | - Ya-Qin Wang
- Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Ai-Guo Liu
- Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
47
|
Ladenstein R, Lambert B, Pötschger U, Castellani MR, Lewington V, Bar-Sever Z, Oudoux A, Śliwińska A, Taborska K, Biassoni L, Yanik GA, Naranjo A, Parisi MT, Shulkin BL, Nadel H, Gelfand MJ, Matthay KK, Park JR, Kreissman SG, Valteau-Couanet D, Boubaker A. Validation of the mIBG skeletal SIOPEN scoring method in two independent high-risk neuroblastoma populations: the SIOPEN/HR-NBL1 and COG-A3973 trials. Eur J Nucl Med Mol Imaging 2017; 45:292-305. [PMID: 28940046 DOI: 10.1007/s00259-017-3829-7] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Accepted: 09/03/2017] [Indexed: 01/05/2023]
Abstract
BACKGROUND Validation of the prognostic value of the SIOPEN mIBG skeletal scoring system in two independent stage 4, mIBG avid, high-risk neuroblastoma populations. RESULTS The semi-quantitative SIOPEN score evaluates skeletal meta-iodobenzylguanidine (mIBG) uptake on a 0-6 scale in 12 anatomical regions. Evaluable mIBG scans from 216 COG-A3973 and 341 SIOPEN/HR-NBL1 trial patients were reviewed pre- and post-induction chemotherapy. The prognostic value of skeletal scores for 5-year event free survival (5 yr.-EFS) was tested in the source and validation cohorts. At diagnosis, both cohorts showed a gradual non-linear increase in risk with cumulative scores. Several approaches were explored to test the relationship between score and EFS. Ultimately, a cutoff score of ≤3 was the most useful predictor across trials. A SIOPEN score ≤ 3 pre-induction was found in 15% SIOPEN patients and in 22% of COG patients and increased post-induction to 60% in SIOPEN patients and to 73% in COG patients. Baseline 5 yr.-EFS rates in the SIOPEN/HR-NBL1 cohort for scores ≤3 were 47% ± 7% versus 26% ± 3% for higher scores at diagnosis (p < 0.007) and 36% ± 4% versus 14% ± 4% (p < 0.001) for scores obtained post-induction. The COG-A3973 showed 5 yr.-EFS rates for scores ≤3 of 51% ± 7% versus 34% ± 4% for higher scores (p < 0.001) at diagnosis and 43% ± 5% versus 16% ± 6% (p = 0.004) for post-induction scores. Hazard ratios (HR) significantly favoured patients with scores ≤3 after adjustment for age and MYCN-amplification. Optimal outcomes were recorded in patients who achieved complete skeletal response. CONCLUSIONS Validation in two independent cohorts confirms the prognostic value of the SIOPEN skeletal score. In particular, patients with an absolute SIOPEN score > 3 after induction have very poor outcomes and should be considered for alternative therapeutic strategies.
Collapse
Affiliation(s)
- Ruth Ladenstein
- Children's Cancer Research Institute, Zimmermannplatz 10, 1090, Vienna, Austria. .,Medical University, Department of Paediatrics, Vienna, Austria.
| | - Bieke Lambert
- Radiology and Nuclear Medicine, Ghent University, Ghent, Belgium
| | - Ulrike Pötschger
- Children's Cancer Research Institute, Zimmermannplatz 10, 1090, Vienna, Austria
| | - Maria-Rita Castellani
- Nuclear Medicine Division, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | | | - Zvi Bar-Sever
- Schneider Children's Medical Center of Israel, Petah-Tikva, Israel
| | - Aurore Oudoux
- Department of Nuclear Medicine Lille, Oscar Lambret Center, Lille, France
| | | | | | - Lorenzo Biassoni
- Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| | | | - Arlene Naranjo
- Children's Oncology Group Statistics and Data Center, University of Florida, Gainesville, FL, USA
| | - Marguerite T Parisi
- Department of Radiology, University of Washington School of Medicine/ Seattle Children's Hospital, Seattle, WA, USA
| | - Barry L Shulkin
- Department of Diagnostic Imaging, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Helen Nadel
- Department of Radiology, BC Children's Hospital, Vancouver, BC, Canada
| | - Michael J Gelfand
- Department of Radiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Katherine K Matthay
- Department of Pediatrics, University of California San Francisco School of Medicine, San Francisco, CA, USA
| | - Julie R Park
- Department of Pediatrics, University of Washington School of Medicine/ Seattle Children's Hospital, Seattle, WA, USA
| | - Susan G Kreissman
- Department of Pediatrics, Duke University Medical Center, Durham, NC, USA
| | - Dominique Valteau-Couanet
- Pediatric and Adolescent Oncology, Gustave Roussy Institute, Université Paris-Sud, Villejuif, France
| | - Ariane Boubaker
- Institute of Radiology, Clinique de La Source, Lausanne, Switzerland
| |
Collapse
|
48
|
Yanik GA, Parisi MT, Naranjo A, Nadel H, Gelfand MJ, Park JR, Ladenstein RL, Poetschger U, Boubaker A, Valteau-Couanet D, Lambert B, Castellani MR, Bar-Sever Z, Oudoux A, Kaminska A, Kreissman SG, Shulkin BL, Matthay KK. Validation of Postinduction Curie Scores in High-Risk Neuroblastoma: A Children's Oncology Group and SIOPEN Group Report on SIOPEN/HR-NBL1. J Nucl Med 2017; 59:502-508. [PMID: 28887399 DOI: 10.2967/jnumed.117.195883] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Accepted: 07/12/2017] [Indexed: 11/16/2022] Open
Abstract
A semiquantitative 123I-metaiodobenzylguanidine (123I-MIBG) scoring method (the Curie score, or CS) was previously examined in the Children's Oncology Group (COG) high-risk neuroblastoma trial, COG A3973, with a postinduction CS of more than 2 being associated with poor event-free survival (EFS). The validation of the CS in an independent dataset, International Society of Paediatric Oncology European Neuroblastoma/High-Risk Neuroblastoma 1 (SIOPEN/HR-NBL1), is now reported. Methods: A retrospective analysis of 123I-MIBG scans obtained from patients who had been prospectively enrolled in SIOPEN/HR-NBL1 was performed. All patients exhibited 123I-MIBG-avid, International Neuroblastoma Staging System stage 4 neuroblastoma. 123I-MIBG scans were evaluated at 2 time points, diagnosis (n = 345) and postinduction (n = 330), before consolidation myeloablative therapy. Scans of 10 anatomic regions were evaluated, with each region being scored 0-3 on the basis of disease extent and a cumulative CS generated. Cut points for outcome analysis were identified by Youden methodology. CSs from patients enrolled in COG A3973 were used for comparison. Results: The optimal cut point for CS at diagnosis was 12 in SIOPEN/HR-NBL1, with a significant outcome difference by CS noted (5-y EFS, 43.0% ± 5.7% [CS ≤ 12] vs. 21.4% ± 3.6% [CS > 12], P < 0.0001). The optimal CS cut point after induction was 2 in SIOPEN/HR-NBL1, with a postinduction CS of more than 2 being associated with an inferior outcome (5-y EFS, 39.2% ± 4.7% [CS ≤ 2] vs. 16.4% ± 4.2% [CS > 2], P < 0.0001). The postinduction CS maintained independent statistical significance in Cox models when adjusted for the covariates of age and MYCN gene copy number. Conclusion: The prognostic significance of postinduction CSs has now been validated in an independent cohort of patients (SIOPEN/HR-NBL1), with a postinduction CS of more than 2 being associated with an inferior outcome in 2 independent large, cooperative group trials.
Collapse
Affiliation(s)
- Gregory A Yanik
- Department of Pediatrics and Communicable Diseases, University of Michigan Medical Center, Ann Arbor, Michigan
| | - Marguerite T Parisi
- Department of Radiology, University of Washington School of Medicine/Seattle Children's Hospital, Seattle, Washington.,Department of Pediatrics, University of Washington School of Medicine/Seattle Children's Hospital, Seattle, Washington
| | - Arlene Naranjo
- Children's Oncology Group Statistics and Data Center, University of Florida, Gainesville, Florida
| | - Helen Nadel
- Department of Radiology, BC Children's Hospital, Vancouver, British Columbia, Canada
| | - Michael J Gelfand
- Department of Radiology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Julie R Park
- Department of Pediatrics, University of Washington School of Medicine/Seattle Children's Hospital, Seattle, Washington
| | - Ruth L Ladenstein
- Department of Pediatrics, St. Anna Children's Hospital, Vienna, Austria
| | - Ulrike Poetschger
- Department of Statistics, St. Anna Children's Cancer Research Institute, Vienna, Austria
| | - Ariane Boubaker
- Institute of Radiology, Clinique de La Source, Lausanne, Switzerland
| | - Dominique Valteau-Couanet
- Department of Pediatric and Adolescent Oncology, Gustave Roussy Institute, Universite Paris-Sud, Villejuif, France
| | - Bieke Lambert
- Radiology and Nuclear Medicine, Ghent University, Ghent, Belgium
| | | | - Zvi Bar-Sever
- Schneider Children's Medical Center of Israel, Petah-Tivka, Israel
| | | | - Anna Kaminska
- Children's Memorial Health Institute, Warsaw, Poland
| | - Susan G Kreissman
- Department of Pediatrics, Duke University Medical Center, Durham, North Carolina
| | - Barry L Shulkin
- Department of Diagnostic Imaging, St. Jude Children's Research Hospital, Memphis, Tennessee; and
| | - Katherine K Matthay
- Department of Pediatrics, University of California San Francisco School of Medicine, San Francisco, California
| |
Collapse
|
49
|
Rogasch JMM, Hundsdoerfer P, Furth C, Wedel F, Hofheinz F, Krüger PC, Lode H, Brenner W, Eggert A, Amthauer H, Schatka I. Individualized risk assessment in neuroblastoma: does the tumoral metabolic activity on 123I-MIBG SPECT predict the outcome? Eur J Nucl Med Mol Imaging 2017; 44:2203-2212. [PMID: 28808732 DOI: 10.1007/s00259-017-3786-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2017] [Accepted: 07/19/2017] [Indexed: 01/26/2023]
Abstract
PURPOSE Risk-adapted treatment in children with neuroblastoma (NB) is based on clinical and genetic factors. This study evaluated the metabolic tumour volume (MTV) and its asphericity (ASP) in pretherapeutic 123I-MIBG SPECT for individualized image-based prediction of outcome. METHODS This retrospective study included 23 children (11 girls, 12 boys; median age 1.8 years, range 0.3-6.8 years) with newly diagnosed NB consecutively examined with pretherapeutic 123I-MIBG SPECT. Primary tumour MTV and ASP were defined using semiautomatic thresholds. Cox regression analysis, receiver operating characteristic analysis (cut-off determination) and Kaplan-Meier analysis with the log-rank test for event-free survival (EFS) were performed for ASP, MTV, laboratory parameters (including urinary homovanillic acid-to-creatinine ratio, HVA/C), and clinical (age, stage) and genetic factors. Predictive accuracy of the optimal multifactorial model was determined in terms of Harrell's C and likelihood ratio χ 2. RESULTS Median follow-up was 36 months (range 7-107 months; eight patients showed disease progression/relapse, four patients died). The only significant predictors of EFS in the univariate Cox regression analysis were ASP (p = 0.029; hazard ratio, HR, 1.032 for a one unit increase), MTV (p = 0.038; HR 1.012) and MYCN amplification status (p = 0.047; HR 4.67). The mean EFS in patients with high ASP (>32.0%) and low ASP were 21 and 88 months, respectively (p = 0.013), and in those with high MTV (>46.7 ml) and low MTV were 22 and 87 months, respectively (p = 0.023). A combined risk model of either high ASP and high HVA/C or high MTV and high HVA/C best predicted EFS. CONCLUSIONS In this exploratory study, pretherapeutic image-derived and laboratory markers of tumoral metabolic activity in NB (ASP, MTV, urinary HVA/C) allowed the identification of children with a high and low risk of progression/relapse under current therapy.
Collapse
Affiliation(s)
- Julian M M Rogasch
- Department of Nuclear Medicine, Charité - Universitätsmedizin Berlin, Augustenburger Platz 1, 13353, Berlin, Germany.
| | - Patrick Hundsdoerfer
- Department of Pediatric Oncology/Hematology, Charité - Universitätsmedizin Berlin, Berlin, Germany
- Berlin Institute of Health (BIH), 10178, Berlin, Germany
| | - Christian Furth
- Department of Nuclear Medicine, Charité - Universitätsmedizin Berlin, Augustenburger Platz 1, 13353, Berlin, Germany
| | - Florian Wedel
- Department of Nuclear Medicine, Charité - Universitätsmedizin Berlin, Augustenburger Platz 1, 13353, Berlin, Germany
| | - Frank Hofheinz
- PET Center, Helmholtz Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Dresden, Germany
| | - Paul-Christian Krüger
- Institute for Diagnostic Radiology and Neuroradiology, University Medicine Greifswald, Greifswald, Germany
| | - Holger Lode
- Department of Pediatric Oncology and Hematology, University Medicine Greifswald, Greifswald, Germany
| | - Winfried Brenner
- Department of Nuclear Medicine, Charité - Universitätsmedizin Berlin, Augustenburger Platz 1, 13353, Berlin, Germany
| | - Angelika Eggert
- Department of Pediatric Oncology/Hematology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Holger Amthauer
- Department of Nuclear Medicine, Charité - Universitätsmedizin Berlin, Augustenburger Platz 1, 13353, Berlin, Germany
| | - Imke Schatka
- Department of Nuclear Medicine, Charité - Universitätsmedizin Berlin, Augustenburger Platz 1, 13353, Berlin, Germany
| |
Collapse
|
50
|
Park JR, Bagatell R, Cohn SL, Pearson AD, Villablanca JG, Berthold F, Burchill S, Boubaker A, McHugh K, Nuchtern JG, London WB, Seibel NL, Lindwasser OW, Maris JM, Brock P, Schleiermacher G, Ladenstein R, Matthay KK, Valteau-Couanet D. Revisions to the International Neuroblastoma Response Criteria: A Consensus Statement From the National Cancer Institute Clinical Trials Planning Meeting. J Clin Oncol 2017; 35:2580-2587. [PMID: 28471719 PMCID: PMC5676955 DOI: 10.1200/jco.2016.72.0177] [Citation(s) in RCA: 237] [Impact Index Per Article: 29.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Purpose More than two decades ago, an international working group established the International Neuroblastoma Response Criteria (INRC) to assess treatment response in children with neuroblastoma. However, this system requires modification to incorporate modern imaging techniques and new methods for quantifying bone marrow disease that were not previously widely available. The National Cancer Institute sponsored a clinical trials planning meeting in 2012 to update and refine response criteria for patients with neuroblastoma. Methods Multidisciplinary investigators from 13 countries reviewed data from published trials performed through cooperative groups, consortia, and single institutions. Data from both prospective and retrospective trials were used to refine the INRC. Monthly international conference calls were held from 2011 to 2015, and consensus was reached through review by working group leadership and the National Cancer Institute Clinical Trials Planning Meeting leadership council. Results Overall response in the revised INRC will integrate tumor response in the primary tumor, soft tissue and bone metastases, and bone marrow. Primary and metastatic soft tissue sites will be assessed using Response Evaluation Criteria in Solid Tumors (RECIST) and iodine-123 (123I) -metaiodobenzylguanidine (MIBG) scans or [18F]fluorodeoxyglucose-positron emission tomography scans if the tumor is MIBG nonavid. 123I-MIBG scans, or [18F]fluorodeoxyglucose-positron emission tomography scans for MIBG-nonavid disease, replace technetium-99m diphosphonate bone scintigraphy for osteomedullary metastasis assessment. Bone marrow will be assessed by histology or immunohistochemistry and cytology or immunocytology. Bone marrow with ≤ 5% tumor involvement will be classified as minimal disease. Urinary catecholamine levels will not be included in response assessment. Overall response will be defined as complete response, partial response, minor response, stable disease, or progressive disease. Conclusion These revised criteria will provide a uniform assessment of disease response, improve the interpretability of clinical trial results, and facilitate collaborative trial designs.
Collapse
Affiliation(s)
- Julie R. Park
- Julie R. Park, Seattle Children’s Hospital and University of Washington School of Medicine, Seattle, WA; Rochelle Bagatell and John M. Maris, Children’s Hospital of Philadelphia and University of Pennsylvania School of Medicine, Philadelphia, PA; Susan L. Cohn, University of Chicago, Chicago, IL; Andrew D. Pearson, Institute of Cancer Research and Royal Marsden National Health Service (NHS) Foundation Trust, Sutton, Surrey; Susan Burchill, Leeds Institute of Cancer and Pathology, St James University Hospital, Leeds; Kieran McHugh and Penelope Brock, Great Ormond Street Hospital for Children, NHS Trust, London, United Kingdom; Judith G. Villablanca, Children’s Hospital Los Angeles and University of Southern California Keck School of Medicine, Los Angeles; Katherine K. Matthay, University of California San Francisco School of Medicine, San Francisco, CA; Frank Berthold, Children’s Hospital and University of Cologne, Köln, Germany; Ariane Boubaker, Institute of Radiology, Clinique de La Source, Lausanne, Switzerland; Jed G. Nuchtern, Texas Children’s Hospital and Baylor College of Medicine, Houston, TX; Wendy B. London, Dana-Farber/Boston Children’s Cancer and Blood Disorder Center, Harvard Medical School, Boston, MA; Nita L. Seibel and O. Wolf Lindwasser, National Cancer Institute, Bethesda, MD; Gudrun Schleiermacher, Institut Curie, Paris; Dominique Valteau-Couanet, Gustave Roussy, Villejuif, France; and Ruth Ladenstein, Children’s Cancer Research Institute, St Anna Children’s Hospital, Vienna, Austria
| | - Rochelle Bagatell
- Julie R. Park, Seattle Children’s Hospital and University of Washington School of Medicine, Seattle, WA; Rochelle Bagatell and John M. Maris, Children’s Hospital of Philadelphia and University of Pennsylvania School of Medicine, Philadelphia, PA; Susan L. Cohn, University of Chicago, Chicago, IL; Andrew D. Pearson, Institute of Cancer Research and Royal Marsden National Health Service (NHS) Foundation Trust, Sutton, Surrey; Susan Burchill, Leeds Institute of Cancer and Pathology, St James University Hospital, Leeds; Kieran McHugh and Penelope Brock, Great Ormond Street Hospital for Children, NHS Trust, London, United Kingdom; Judith G. Villablanca, Children’s Hospital Los Angeles and University of Southern California Keck School of Medicine, Los Angeles; Katherine K. Matthay, University of California San Francisco School of Medicine, San Francisco, CA; Frank Berthold, Children’s Hospital and University of Cologne, Köln, Germany; Ariane Boubaker, Institute of Radiology, Clinique de La Source, Lausanne, Switzerland; Jed G. Nuchtern, Texas Children’s Hospital and Baylor College of Medicine, Houston, TX; Wendy B. London, Dana-Farber/Boston Children’s Cancer and Blood Disorder Center, Harvard Medical School, Boston, MA; Nita L. Seibel and O. Wolf Lindwasser, National Cancer Institute, Bethesda, MD; Gudrun Schleiermacher, Institut Curie, Paris; Dominique Valteau-Couanet, Gustave Roussy, Villejuif, France; and Ruth Ladenstein, Children’s Cancer Research Institute, St Anna Children’s Hospital, Vienna, Austria
| | - Susan L. Cohn
- Julie R. Park, Seattle Children’s Hospital and University of Washington School of Medicine, Seattle, WA; Rochelle Bagatell and John M. Maris, Children’s Hospital of Philadelphia and University of Pennsylvania School of Medicine, Philadelphia, PA; Susan L. Cohn, University of Chicago, Chicago, IL; Andrew D. Pearson, Institute of Cancer Research and Royal Marsden National Health Service (NHS) Foundation Trust, Sutton, Surrey; Susan Burchill, Leeds Institute of Cancer and Pathology, St James University Hospital, Leeds; Kieran McHugh and Penelope Brock, Great Ormond Street Hospital for Children, NHS Trust, London, United Kingdom; Judith G. Villablanca, Children’s Hospital Los Angeles and University of Southern California Keck School of Medicine, Los Angeles; Katherine K. Matthay, University of California San Francisco School of Medicine, San Francisco, CA; Frank Berthold, Children’s Hospital and University of Cologne, Köln, Germany; Ariane Boubaker, Institute of Radiology, Clinique de La Source, Lausanne, Switzerland; Jed G. Nuchtern, Texas Children’s Hospital and Baylor College of Medicine, Houston, TX; Wendy B. London, Dana-Farber/Boston Children’s Cancer and Blood Disorder Center, Harvard Medical School, Boston, MA; Nita L. Seibel and O. Wolf Lindwasser, National Cancer Institute, Bethesda, MD; Gudrun Schleiermacher, Institut Curie, Paris; Dominique Valteau-Couanet, Gustave Roussy, Villejuif, France; and Ruth Ladenstein, Children’s Cancer Research Institute, St Anna Children’s Hospital, Vienna, Austria
| | - Andrew D. Pearson
- Julie R. Park, Seattle Children’s Hospital and University of Washington School of Medicine, Seattle, WA; Rochelle Bagatell and John M. Maris, Children’s Hospital of Philadelphia and University of Pennsylvania School of Medicine, Philadelphia, PA; Susan L. Cohn, University of Chicago, Chicago, IL; Andrew D. Pearson, Institute of Cancer Research and Royal Marsden National Health Service (NHS) Foundation Trust, Sutton, Surrey; Susan Burchill, Leeds Institute of Cancer and Pathology, St James University Hospital, Leeds; Kieran McHugh and Penelope Brock, Great Ormond Street Hospital for Children, NHS Trust, London, United Kingdom; Judith G. Villablanca, Children’s Hospital Los Angeles and University of Southern California Keck School of Medicine, Los Angeles; Katherine K. Matthay, University of California San Francisco School of Medicine, San Francisco, CA; Frank Berthold, Children’s Hospital and University of Cologne, Köln, Germany; Ariane Boubaker, Institute of Radiology, Clinique de La Source, Lausanne, Switzerland; Jed G. Nuchtern, Texas Children’s Hospital and Baylor College of Medicine, Houston, TX; Wendy B. London, Dana-Farber/Boston Children’s Cancer and Blood Disorder Center, Harvard Medical School, Boston, MA; Nita L. Seibel and O. Wolf Lindwasser, National Cancer Institute, Bethesda, MD; Gudrun Schleiermacher, Institut Curie, Paris; Dominique Valteau-Couanet, Gustave Roussy, Villejuif, France; and Ruth Ladenstein, Children’s Cancer Research Institute, St Anna Children’s Hospital, Vienna, Austria
| | - Judith G. Villablanca
- Julie R. Park, Seattle Children’s Hospital and University of Washington School of Medicine, Seattle, WA; Rochelle Bagatell and John M. Maris, Children’s Hospital of Philadelphia and University of Pennsylvania School of Medicine, Philadelphia, PA; Susan L. Cohn, University of Chicago, Chicago, IL; Andrew D. Pearson, Institute of Cancer Research and Royal Marsden National Health Service (NHS) Foundation Trust, Sutton, Surrey; Susan Burchill, Leeds Institute of Cancer and Pathology, St James University Hospital, Leeds; Kieran McHugh and Penelope Brock, Great Ormond Street Hospital for Children, NHS Trust, London, United Kingdom; Judith G. Villablanca, Children’s Hospital Los Angeles and University of Southern California Keck School of Medicine, Los Angeles; Katherine K. Matthay, University of California San Francisco School of Medicine, San Francisco, CA; Frank Berthold, Children’s Hospital and University of Cologne, Köln, Germany; Ariane Boubaker, Institute of Radiology, Clinique de La Source, Lausanne, Switzerland; Jed G. Nuchtern, Texas Children’s Hospital and Baylor College of Medicine, Houston, TX; Wendy B. London, Dana-Farber/Boston Children’s Cancer and Blood Disorder Center, Harvard Medical School, Boston, MA; Nita L. Seibel and O. Wolf Lindwasser, National Cancer Institute, Bethesda, MD; Gudrun Schleiermacher, Institut Curie, Paris; Dominique Valteau-Couanet, Gustave Roussy, Villejuif, France; and Ruth Ladenstein, Children’s Cancer Research Institute, St Anna Children’s Hospital, Vienna, Austria
| | - Frank Berthold
- Julie R. Park, Seattle Children’s Hospital and University of Washington School of Medicine, Seattle, WA; Rochelle Bagatell and John M. Maris, Children’s Hospital of Philadelphia and University of Pennsylvania School of Medicine, Philadelphia, PA; Susan L. Cohn, University of Chicago, Chicago, IL; Andrew D. Pearson, Institute of Cancer Research and Royal Marsden National Health Service (NHS) Foundation Trust, Sutton, Surrey; Susan Burchill, Leeds Institute of Cancer and Pathology, St James University Hospital, Leeds; Kieran McHugh and Penelope Brock, Great Ormond Street Hospital for Children, NHS Trust, London, United Kingdom; Judith G. Villablanca, Children’s Hospital Los Angeles and University of Southern California Keck School of Medicine, Los Angeles; Katherine K. Matthay, University of California San Francisco School of Medicine, San Francisco, CA; Frank Berthold, Children’s Hospital and University of Cologne, Köln, Germany; Ariane Boubaker, Institute of Radiology, Clinique de La Source, Lausanne, Switzerland; Jed G. Nuchtern, Texas Children’s Hospital and Baylor College of Medicine, Houston, TX; Wendy B. London, Dana-Farber/Boston Children’s Cancer and Blood Disorder Center, Harvard Medical School, Boston, MA; Nita L. Seibel and O. Wolf Lindwasser, National Cancer Institute, Bethesda, MD; Gudrun Schleiermacher, Institut Curie, Paris; Dominique Valteau-Couanet, Gustave Roussy, Villejuif, France; and Ruth Ladenstein, Children’s Cancer Research Institute, St Anna Children’s Hospital, Vienna, Austria
| | - Susan Burchill
- Julie R. Park, Seattle Children’s Hospital and University of Washington School of Medicine, Seattle, WA; Rochelle Bagatell and John M. Maris, Children’s Hospital of Philadelphia and University of Pennsylvania School of Medicine, Philadelphia, PA; Susan L. Cohn, University of Chicago, Chicago, IL; Andrew D. Pearson, Institute of Cancer Research and Royal Marsden National Health Service (NHS) Foundation Trust, Sutton, Surrey; Susan Burchill, Leeds Institute of Cancer and Pathology, St James University Hospital, Leeds; Kieran McHugh and Penelope Brock, Great Ormond Street Hospital for Children, NHS Trust, London, United Kingdom; Judith G. Villablanca, Children’s Hospital Los Angeles and University of Southern California Keck School of Medicine, Los Angeles; Katherine K. Matthay, University of California San Francisco School of Medicine, San Francisco, CA; Frank Berthold, Children’s Hospital and University of Cologne, Köln, Germany; Ariane Boubaker, Institute of Radiology, Clinique de La Source, Lausanne, Switzerland; Jed G. Nuchtern, Texas Children’s Hospital and Baylor College of Medicine, Houston, TX; Wendy B. London, Dana-Farber/Boston Children’s Cancer and Blood Disorder Center, Harvard Medical School, Boston, MA; Nita L. Seibel and O. Wolf Lindwasser, National Cancer Institute, Bethesda, MD; Gudrun Schleiermacher, Institut Curie, Paris; Dominique Valteau-Couanet, Gustave Roussy, Villejuif, France; and Ruth Ladenstein, Children’s Cancer Research Institute, St Anna Children’s Hospital, Vienna, Austria
| | - Ariane Boubaker
- Julie R. Park, Seattle Children’s Hospital and University of Washington School of Medicine, Seattle, WA; Rochelle Bagatell and John M. Maris, Children’s Hospital of Philadelphia and University of Pennsylvania School of Medicine, Philadelphia, PA; Susan L. Cohn, University of Chicago, Chicago, IL; Andrew D. Pearson, Institute of Cancer Research and Royal Marsden National Health Service (NHS) Foundation Trust, Sutton, Surrey; Susan Burchill, Leeds Institute of Cancer and Pathology, St James University Hospital, Leeds; Kieran McHugh and Penelope Brock, Great Ormond Street Hospital for Children, NHS Trust, London, United Kingdom; Judith G. Villablanca, Children’s Hospital Los Angeles and University of Southern California Keck School of Medicine, Los Angeles; Katherine K. Matthay, University of California San Francisco School of Medicine, San Francisco, CA; Frank Berthold, Children’s Hospital and University of Cologne, Köln, Germany; Ariane Boubaker, Institute of Radiology, Clinique de La Source, Lausanne, Switzerland; Jed G. Nuchtern, Texas Children’s Hospital and Baylor College of Medicine, Houston, TX; Wendy B. London, Dana-Farber/Boston Children’s Cancer and Blood Disorder Center, Harvard Medical School, Boston, MA; Nita L. Seibel and O. Wolf Lindwasser, National Cancer Institute, Bethesda, MD; Gudrun Schleiermacher, Institut Curie, Paris; Dominique Valteau-Couanet, Gustave Roussy, Villejuif, France; and Ruth Ladenstein, Children’s Cancer Research Institute, St Anna Children’s Hospital, Vienna, Austria
| | - Kieran McHugh
- Julie R. Park, Seattle Children’s Hospital and University of Washington School of Medicine, Seattle, WA; Rochelle Bagatell and John M. Maris, Children’s Hospital of Philadelphia and University of Pennsylvania School of Medicine, Philadelphia, PA; Susan L. Cohn, University of Chicago, Chicago, IL; Andrew D. Pearson, Institute of Cancer Research and Royal Marsden National Health Service (NHS) Foundation Trust, Sutton, Surrey; Susan Burchill, Leeds Institute of Cancer and Pathology, St James University Hospital, Leeds; Kieran McHugh and Penelope Brock, Great Ormond Street Hospital for Children, NHS Trust, London, United Kingdom; Judith G. Villablanca, Children’s Hospital Los Angeles and University of Southern California Keck School of Medicine, Los Angeles; Katherine K. Matthay, University of California San Francisco School of Medicine, San Francisco, CA; Frank Berthold, Children’s Hospital and University of Cologne, Köln, Germany; Ariane Boubaker, Institute of Radiology, Clinique de La Source, Lausanne, Switzerland; Jed G. Nuchtern, Texas Children’s Hospital and Baylor College of Medicine, Houston, TX; Wendy B. London, Dana-Farber/Boston Children’s Cancer and Blood Disorder Center, Harvard Medical School, Boston, MA; Nita L. Seibel and O. Wolf Lindwasser, National Cancer Institute, Bethesda, MD; Gudrun Schleiermacher, Institut Curie, Paris; Dominique Valteau-Couanet, Gustave Roussy, Villejuif, France; and Ruth Ladenstein, Children’s Cancer Research Institute, St Anna Children’s Hospital, Vienna, Austria
| | - Jed G. Nuchtern
- Julie R. Park, Seattle Children’s Hospital and University of Washington School of Medicine, Seattle, WA; Rochelle Bagatell and John M. Maris, Children’s Hospital of Philadelphia and University of Pennsylvania School of Medicine, Philadelphia, PA; Susan L. Cohn, University of Chicago, Chicago, IL; Andrew D. Pearson, Institute of Cancer Research and Royal Marsden National Health Service (NHS) Foundation Trust, Sutton, Surrey; Susan Burchill, Leeds Institute of Cancer and Pathology, St James University Hospital, Leeds; Kieran McHugh and Penelope Brock, Great Ormond Street Hospital for Children, NHS Trust, London, United Kingdom; Judith G. Villablanca, Children’s Hospital Los Angeles and University of Southern California Keck School of Medicine, Los Angeles; Katherine K. Matthay, University of California San Francisco School of Medicine, San Francisco, CA; Frank Berthold, Children’s Hospital and University of Cologne, Köln, Germany; Ariane Boubaker, Institute of Radiology, Clinique de La Source, Lausanne, Switzerland; Jed G. Nuchtern, Texas Children’s Hospital and Baylor College of Medicine, Houston, TX; Wendy B. London, Dana-Farber/Boston Children’s Cancer and Blood Disorder Center, Harvard Medical School, Boston, MA; Nita L. Seibel and O. Wolf Lindwasser, National Cancer Institute, Bethesda, MD; Gudrun Schleiermacher, Institut Curie, Paris; Dominique Valteau-Couanet, Gustave Roussy, Villejuif, France; and Ruth Ladenstein, Children’s Cancer Research Institute, St Anna Children’s Hospital, Vienna, Austria
| | - Wendy B. London
- Julie R. Park, Seattle Children’s Hospital and University of Washington School of Medicine, Seattle, WA; Rochelle Bagatell and John M. Maris, Children’s Hospital of Philadelphia and University of Pennsylvania School of Medicine, Philadelphia, PA; Susan L. Cohn, University of Chicago, Chicago, IL; Andrew D. Pearson, Institute of Cancer Research and Royal Marsden National Health Service (NHS) Foundation Trust, Sutton, Surrey; Susan Burchill, Leeds Institute of Cancer and Pathology, St James University Hospital, Leeds; Kieran McHugh and Penelope Brock, Great Ormond Street Hospital for Children, NHS Trust, London, United Kingdom; Judith G. Villablanca, Children’s Hospital Los Angeles and University of Southern California Keck School of Medicine, Los Angeles; Katherine K. Matthay, University of California San Francisco School of Medicine, San Francisco, CA; Frank Berthold, Children’s Hospital and University of Cologne, Köln, Germany; Ariane Boubaker, Institute of Radiology, Clinique de La Source, Lausanne, Switzerland; Jed G. Nuchtern, Texas Children’s Hospital and Baylor College of Medicine, Houston, TX; Wendy B. London, Dana-Farber/Boston Children’s Cancer and Blood Disorder Center, Harvard Medical School, Boston, MA; Nita L. Seibel and O. Wolf Lindwasser, National Cancer Institute, Bethesda, MD; Gudrun Schleiermacher, Institut Curie, Paris; Dominique Valteau-Couanet, Gustave Roussy, Villejuif, France; and Ruth Ladenstein, Children’s Cancer Research Institute, St Anna Children’s Hospital, Vienna, Austria
| | - Nita L. Seibel
- Julie R. Park, Seattle Children’s Hospital and University of Washington School of Medicine, Seattle, WA; Rochelle Bagatell and John M. Maris, Children’s Hospital of Philadelphia and University of Pennsylvania School of Medicine, Philadelphia, PA; Susan L. Cohn, University of Chicago, Chicago, IL; Andrew D. Pearson, Institute of Cancer Research and Royal Marsden National Health Service (NHS) Foundation Trust, Sutton, Surrey; Susan Burchill, Leeds Institute of Cancer and Pathology, St James University Hospital, Leeds; Kieran McHugh and Penelope Brock, Great Ormond Street Hospital for Children, NHS Trust, London, United Kingdom; Judith G. Villablanca, Children’s Hospital Los Angeles and University of Southern California Keck School of Medicine, Los Angeles; Katherine K. Matthay, University of California San Francisco School of Medicine, San Francisco, CA; Frank Berthold, Children’s Hospital and University of Cologne, Köln, Germany; Ariane Boubaker, Institute of Radiology, Clinique de La Source, Lausanne, Switzerland; Jed G. Nuchtern, Texas Children’s Hospital and Baylor College of Medicine, Houston, TX; Wendy B. London, Dana-Farber/Boston Children’s Cancer and Blood Disorder Center, Harvard Medical School, Boston, MA; Nita L. Seibel and O. Wolf Lindwasser, National Cancer Institute, Bethesda, MD; Gudrun Schleiermacher, Institut Curie, Paris; Dominique Valteau-Couanet, Gustave Roussy, Villejuif, France; and Ruth Ladenstein, Children’s Cancer Research Institute, St Anna Children’s Hospital, Vienna, Austria
| | - O. Wolf Lindwasser
- Julie R. Park, Seattle Children’s Hospital and University of Washington School of Medicine, Seattle, WA; Rochelle Bagatell and John M. Maris, Children’s Hospital of Philadelphia and University of Pennsylvania School of Medicine, Philadelphia, PA; Susan L. Cohn, University of Chicago, Chicago, IL; Andrew D. Pearson, Institute of Cancer Research and Royal Marsden National Health Service (NHS) Foundation Trust, Sutton, Surrey; Susan Burchill, Leeds Institute of Cancer and Pathology, St James University Hospital, Leeds; Kieran McHugh and Penelope Brock, Great Ormond Street Hospital for Children, NHS Trust, London, United Kingdom; Judith G. Villablanca, Children’s Hospital Los Angeles and University of Southern California Keck School of Medicine, Los Angeles; Katherine K. Matthay, University of California San Francisco School of Medicine, San Francisco, CA; Frank Berthold, Children’s Hospital and University of Cologne, Köln, Germany; Ariane Boubaker, Institute of Radiology, Clinique de La Source, Lausanne, Switzerland; Jed G. Nuchtern, Texas Children’s Hospital and Baylor College of Medicine, Houston, TX; Wendy B. London, Dana-Farber/Boston Children’s Cancer and Blood Disorder Center, Harvard Medical School, Boston, MA; Nita L. Seibel and O. Wolf Lindwasser, National Cancer Institute, Bethesda, MD; Gudrun Schleiermacher, Institut Curie, Paris; Dominique Valteau-Couanet, Gustave Roussy, Villejuif, France; and Ruth Ladenstein, Children’s Cancer Research Institute, St Anna Children’s Hospital, Vienna, Austria
| | - John M. Maris
- Julie R. Park, Seattle Children’s Hospital and University of Washington School of Medicine, Seattle, WA; Rochelle Bagatell and John M. Maris, Children’s Hospital of Philadelphia and University of Pennsylvania School of Medicine, Philadelphia, PA; Susan L. Cohn, University of Chicago, Chicago, IL; Andrew D. Pearson, Institute of Cancer Research and Royal Marsden National Health Service (NHS) Foundation Trust, Sutton, Surrey; Susan Burchill, Leeds Institute of Cancer and Pathology, St James University Hospital, Leeds; Kieran McHugh and Penelope Brock, Great Ormond Street Hospital for Children, NHS Trust, London, United Kingdom; Judith G. Villablanca, Children’s Hospital Los Angeles and University of Southern California Keck School of Medicine, Los Angeles; Katherine K. Matthay, University of California San Francisco School of Medicine, San Francisco, CA; Frank Berthold, Children’s Hospital and University of Cologne, Köln, Germany; Ariane Boubaker, Institute of Radiology, Clinique de La Source, Lausanne, Switzerland; Jed G. Nuchtern, Texas Children’s Hospital and Baylor College of Medicine, Houston, TX; Wendy B. London, Dana-Farber/Boston Children’s Cancer and Blood Disorder Center, Harvard Medical School, Boston, MA; Nita L. Seibel and O. Wolf Lindwasser, National Cancer Institute, Bethesda, MD; Gudrun Schleiermacher, Institut Curie, Paris; Dominique Valteau-Couanet, Gustave Roussy, Villejuif, France; and Ruth Ladenstein, Children’s Cancer Research Institute, St Anna Children’s Hospital, Vienna, Austria
| | - Penelope Brock
- Julie R. Park, Seattle Children’s Hospital and University of Washington School of Medicine, Seattle, WA; Rochelle Bagatell and John M. Maris, Children’s Hospital of Philadelphia and University of Pennsylvania School of Medicine, Philadelphia, PA; Susan L. Cohn, University of Chicago, Chicago, IL; Andrew D. Pearson, Institute of Cancer Research and Royal Marsden National Health Service (NHS) Foundation Trust, Sutton, Surrey; Susan Burchill, Leeds Institute of Cancer and Pathology, St James University Hospital, Leeds; Kieran McHugh and Penelope Brock, Great Ormond Street Hospital for Children, NHS Trust, London, United Kingdom; Judith G. Villablanca, Children’s Hospital Los Angeles and University of Southern California Keck School of Medicine, Los Angeles; Katherine K. Matthay, University of California San Francisco School of Medicine, San Francisco, CA; Frank Berthold, Children’s Hospital and University of Cologne, Köln, Germany; Ariane Boubaker, Institute of Radiology, Clinique de La Source, Lausanne, Switzerland; Jed G. Nuchtern, Texas Children’s Hospital and Baylor College of Medicine, Houston, TX; Wendy B. London, Dana-Farber/Boston Children’s Cancer and Blood Disorder Center, Harvard Medical School, Boston, MA; Nita L. Seibel and O. Wolf Lindwasser, National Cancer Institute, Bethesda, MD; Gudrun Schleiermacher, Institut Curie, Paris; Dominique Valteau-Couanet, Gustave Roussy, Villejuif, France; and Ruth Ladenstein, Children’s Cancer Research Institute, St Anna Children’s Hospital, Vienna, Austria
| | - Gudrun Schleiermacher
- Julie R. Park, Seattle Children’s Hospital and University of Washington School of Medicine, Seattle, WA; Rochelle Bagatell and John M. Maris, Children’s Hospital of Philadelphia and University of Pennsylvania School of Medicine, Philadelphia, PA; Susan L. Cohn, University of Chicago, Chicago, IL; Andrew D. Pearson, Institute of Cancer Research and Royal Marsden National Health Service (NHS) Foundation Trust, Sutton, Surrey; Susan Burchill, Leeds Institute of Cancer and Pathology, St James University Hospital, Leeds; Kieran McHugh and Penelope Brock, Great Ormond Street Hospital for Children, NHS Trust, London, United Kingdom; Judith G. Villablanca, Children’s Hospital Los Angeles and University of Southern California Keck School of Medicine, Los Angeles; Katherine K. Matthay, University of California San Francisco School of Medicine, San Francisco, CA; Frank Berthold, Children’s Hospital and University of Cologne, Köln, Germany; Ariane Boubaker, Institute of Radiology, Clinique de La Source, Lausanne, Switzerland; Jed G. Nuchtern, Texas Children’s Hospital and Baylor College of Medicine, Houston, TX; Wendy B. London, Dana-Farber/Boston Children’s Cancer and Blood Disorder Center, Harvard Medical School, Boston, MA; Nita L. Seibel and O. Wolf Lindwasser, National Cancer Institute, Bethesda, MD; Gudrun Schleiermacher, Institut Curie, Paris; Dominique Valteau-Couanet, Gustave Roussy, Villejuif, France; and Ruth Ladenstein, Children’s Cancer Research Institute, St Anna Children’s Hospital, Vienna, Austria
| | - Ruth Ladenstein
- Julie R. Park, Seattle Children’s Hospital and University of Washington School of Medicine, Seattle, WA; Rochelle Bagatell and John M. Maris, Children’s Hospital of Philadelphia and University of Pennsylvania School of Medicine, Philadelphia, PA; Susan L. Cohn, University of Chicago, Chicago, IL; Andrew D. Pearson, Institute of Cancer Research and Royal Marsden National Health Service (NHS) Foundation Trust, Sutton, Surrey; Susan Burchill, Leeds Institute of Cancer and Pathology, St James University Hospital, Leeds; Kieran McHugh and Penelope Brock, Great Ormond Street Hospital for Children, NHS Trust, London, United Kingdom; Judith G. Villablanca, Children’s Hospital Los Angeles and University of Southern California Keck School of Medicine, Los Angeles; Katherine K. Matthay, University of California San Francisco School of Medicine, San Francisco, CA; Frank Berthold, Children’s Hospital and University of Cologne, Köln, Germany; Ariane Boubaker, Institute of Radiology, Clinique de La Source, Lausanne, Switzerland; Jed G. Nuchtern, Texas Children’s Hospital and Baylor College of Medicine, Houston, TX; Wendy B. London, Dana-Farber/Boston Children’s Cancer and Blood Disorder Center, Harvard Medical School, Boston, MA; Nita L. Seibel and O. Wolf Lindwasser, National Cancer Institute, Bethesda, MD; Gudrun Schleiermacher, Institut Curie, Paris; Dominique Valteau-Couanet, Gustave Roussy, Villejuif, France; and Ruth Ladenstein, Children’s Cancer Research Institute, St Anna Children’s Hospital, Vienna, Austria
| | - Katherine K. Matthay
- Julie R. Park, Seattle Children’s Hospital and University of Washington School of Medicine, Seattle, WA; Rochelle Bagatell and John M. Maris, Children’s Hospital of Philadelphia and University of Pennsylvania School of Medicine, Philadelphia, PA; Susan L. Cohn, University of Chicago, Chicago, IL; Andrew D. Pearson, Institute of Cancer Research and Royal Marsden National Health Service (NHS) Foundation Trust, Sutton, Surrey; Susan Burchill, Leeds Institute of Cancer and Pathology, St James University Hospital, Leeds; Kieran McHugh and Penelope Brock, Great Ormond Street Hospital for Children, NHS Trust, London, United Kingdom; Judith G. Villablanca, Children’s Hospital Los Angeles and University of Southern California Keck School of Medicine, Los Angeles; Katherine K. Matthay, University of California San Francisco School of Medicine, San Francisco, CA; Frank Berthold, Children’s Hospital and University of Cologne, Köln, Germany; Ariane Boubaker, Institute of Radiology, Clinique de La Source, Lausanne, Switzerland; Jed G. Nuchtern, Texas Children’s Hospital and Baylor College of Medicine, Houston, TX; Wendy B. London, Dana-Farber/Boston Children’s Cancer and Blood Disorder Center, Harvard Medical School, Boston, MA; Nita L. Seibel and O. Wolf Lindwasser, National Cancer Institute, Bethesda, MD; Gudrun Schleiermacher, Institut Curie, Paris; Dominique Valteau-Couanet, Gustave Roussy, Villejuif, France; and Ruth Ladenstein, Children’s Cancer Research Institute, St Anna Children’s Hospital, Vienna, Austria
| | - Dominique Valteau-Couanet
- Julie R. Park, Seattle Children’s Hospital and University of Washington School of Medicine, Seattle, WA; Rochelle Bagatell and John M. Maris, Children’s Hospital of Philadelphia and University of Pennsylvania School of Medicine, Philadelphia, PA; Susan L. Cohn, University of Chicago, Chicago, IL; Andrew D. Pearson, Institute of Cancer Research and Royal Marsden National Health Service (NHS) Foundation Trust, Sutton, Surrey; Susan Burchill, Leeds Institute of Cancer and Pathology, St James University Hospital, Leeds; Kieran McHugh and Penelope Brock, Great Ormond Street Hospital for Children, NHS Trust, London, United Kingdom; Judith G. Villablanca, Children’s Hospital Los Angeles and University of Southern California Keck School of Medicine, Los Angeles; Katherine K. Matthay, University of California San Francisco School of Medicine, San Francisco, CA; Frank Berthold, Children’s Hospital and University of Cologne, Köln, Germany; Ariane Boubaker, Institute of Radiology, Clinique de La Source, Lausanne, Switzerland; Jed G. Nuchtern, Texas Children’s Hospital and Baylor College of Medicine, Houston, TX; Wendy B. London, Dana-Farber/Boston Children’s Cancer and Blood Disorder Center, Harvard Medical School, Boston, MA; Nita L. Seibel and O. Wolf Lindwasser, National Cancer Institute, Bethesda, MD; Gudrun Schleiermacher, Institut Curie, Paris; Dominique Valteau-Couanet, Gustave Roussy, Villejuif, France; and Ruth Ladenstein, Children’s Cancer Research Institute, St Anna Children’s Hospital, Vienna, Austria
| |
Collapse
|