1
|
Li Y, Chen L, Xue S, Song Z, Liu H, Li H, Shen W, Zhang C, Wu H. Alternative spliceosomal protein Eftud2 mediated Kif3a exon skipping promotes SHH-subgroup medulloblastoma progression. Cell Death Differ 2025:10.1038/s41418-025-01512-9. [PMID: 40275081 DOI: 10.1038/s41418-025-01512-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 04/01/2025] [Accepted: 04/04/2025] [Indexed: 04/26/2025] Open
Abstract
Alternative splicing plays a pivotal role in various facets of organogenesis, immune response, and tumorigenesis. Medulloblastoma represents a prevalent childhood brain tumor, with approximately one-third classified as the Sonic Hedgehog (SHH) subgroup. Nevertheless, the contribution of alternative splicing to medulloblastoma oncogenesis remains elusive. This investigation delineated an upregulation of the spliceosomal protein Eftud2 in the SHH-subgroup medulloblastoma mouse model and human medulloblastoma patients. Targeted ablation of Eftud2 in granule precursor cells (GNPs) within the cerebellum prolonged the survival of SHH-subgroup medulloblastoma mice, indicating a putative association between Eftud2 expression and medulloblastoma prognosis. Functional assays unveiled that EFTUD2 depletion in human medulloblastoma cells significantly curtailed cellular proliferation by impeding the activation of the SHH signaling pathway. Through multi-omics sequencing analysis, it was discerned that Eftud2 influences exons 10-11 skipping of Kif3a, a kinesin motor critical for primary cilia formation. Notably, exons 10-11 skipping in Kif3a augmented human medulloblastoma cell proliferation by potentiating the transcriptional activity of Gli2. These findings underscore a robust correlation between Eftud2 and SHH-subgroup medulloblastoma, emphasizing its regulatory role in modulating downstream transcription factors through the alternative splicing of pivotal genes within the SHH signaling pathway, thereby propelling the aggressive proliferation of SHH-subgroup medulloblastoma.
Collapse
Affiliation(s)
- Ying Li
- Department of Neurobiology, Beijing Institute of Basic Medical Sciences, Beijing, China
- School of Basic Medical Sciences, Beijing Key Laboratory of Neural Regeneration and Repair, Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
| | - Liping Chen
- Department of Neurobiology, Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Saisai Xue
- Department of Neurobiology, Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Zhihong Song
- Department of Neurobiology, Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Heli Liu
- Department of Neurobiology, Beijing Institute of Basic Medical Sciences, Beijing, China
- Institute of Neuroscience, Hengyang Medical College, University of South China, Hengyang, Hunan, China
| | - Hao Li
- Department of Neurobiology, Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Wei Shen
- Department of Neurobiology, Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Chen Zhang
- School of Basic Medical Sciences, Beijing Key Laboratory of Neural Regeneration and Repair, Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China.
| | - Haitao Wu
- Department of Neurobiology, Beijing Institute of Basic Medical Sciences, Beijing, China.
- Key Laboratory of Neuroregeneration, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China.
- Chinese Institute for Brain Research, Beijing, China.
| |
Collapse
|
2
|
Pan Z, Bao J, Wei S. Advancing medulloblastoma therapy: strategies and survival insights. Clin Exp Med 2025; 25:119. [PMID: 40237916 PMCID: PMC12003599 DOI: 10.1007/s10238-025-01648-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2025] [Accepted: 03/22/2025] [Indexed: 04/18/2025]
Abstract
Medulloblastoma, the most common malignant brain tumor in children, presents unique challenges due to its molecular and histological heterogeneity. Advances in molecular profiling have refined risk stratification, enabling personalized treatment strategies and improved survival outcomes. This review synthesizes recent developments in the multimodal management of medulloblastoma, encompassing surgery, craniospinal radiation therapy, and chemotherapy, tailored to patient age and risk classification. Key highlights include subgroup-specific therapies, the role of molecular-targeted treatments, and the integration of genetic testing for germline mutations to guide clinical decision-making. Special emphasis is placed on minimizing treatment-related toxicity while preserving long-term quality of life. Additionally, this manuscript discusses the implications of novel therapeutic approaches for high-risk subgroups, including intensified regimens and systemic therapies for young children. Despite significant progress, challenges remain in addressing long-term complications such as neurocognitive impairments, endocrine dysfunction, and secondary malignancies. Future directions prioritize optimizing therapeutic efficacy while reducing morbidity, underscoring the importance of translating molecular discoveries into clinical practice.
Collapse
Affiliation(s)
- Zhenjiang Pan
- Department of Neurosurgery, Shidong Hospital, No. 999, Shiguang Road, Yangpu District, Shanghai, 200438, China
| | - Jing Bao
- Department of Neurosurgery, Shidong Hospital, No. 999, Shiguang Road, Yangpu District, Shanghai, 200438, China
| | - Shepeng Wei
- Department of Neurosurgery, Shidong Hospital, No. 999, Shiguang Road, Yangpu District, Shanghai, 200438, China.
| |
Collapse
|
3
|
Frassanito P, Thomale UW, Obersnel M, Romano A, Leblond P, Knerlich-Lukoschus F, Due-Tønnessen BJ, Thompson D, Di Rocco F. The state of targeted therapeutic pharmacological approaches in pediatric neurosurgery: report from the European Society for Pediatric Neurosurgery (ESPN) Consensus Conference 2024. Childs Nerv Syst 2025; 41:149. [PMID: 40175630 PMCID: PMC11965156 DOI: 10.1007/s00381-025-06799-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Accepted: 03/18/2025] [Indexed: 04/04/2025]
Abstract
OBJECTIVE The development of novel targeted therapies is opening new perspectives in the treatment of pediatric brain tumors. Their precise role in therapeutic protocols still needs still to be defined. Thus, these novel pharmacological approaches in pediatric neurosurgery were the topic of the European Society for Pediatric Neurosurgery (ESPN) Consensus Conference held in Lyon (France) in January 25-27, 2024. METHOD The paper reviews the current knowledge about targeted therapy as well as the current literature published on the topic. The conference aimed for an interdisciplinary consensus debate among pediatric oncologists and pediatric neurosurgeons on the following questions. Question 1: What is the current role for targeted therapies as neoadjuvant treatments before pediatric brain tumor removal? Question 2: What are the benefits, cost/efficiency, and long-term side effects of targeted therapies in the treatment of pediatric brain tumors? Question 3: Based on contemporary data, at which stage and in which pathologies do targeted therapies play a significant role? RESULTS Ninety-two participants answered consensus polls on the state of the art of targeted therapies, the ethical issues related to their use, and the evolving change in the role of pediatric neurosurgeons. The neoadjuvant role of targeted therapies is difficult to define as there are many different entities to consider. Despite the recently reported potential benefits, questions regarding the use of targeted therapies are manifold, in particular regarding sustainable benefits and long-term side effects. Additionally, challenging cost issues is a limiting factor for the broader availability of these drugs. Studies have demonstrated superiority of targeted therapy compared to chemotherapy both in randomized trials and compared to historical cohorts in the management of a subset of low-grade gliomas. The same drug combinations, BRAFi and MEKi, may be effective in HGG that have relapsed, progressed, or failed to respond to first-line therapy. Similar conclusions on efficacy may be drawn for mTORi in TSC and selumetinib in plexiform neurofibromas. For other tumors, the picture is still obscure due to the lack of data or even the lack of suitable targets. In conclusion, targeted treatment may not always be the best option even when a target has been identified. Safe surgery remains to be a favorable option in the majority of cases. CONCLUSION The constantly evolving drug technology and the absence of long-term safety and efficacy studies made it difficult to reach a consensus on the predefined questions. However, a report of the conference is summarizing the present debate and it might serve as a guideline for future perspectives and ongoing research.
Collapse
Affiliation(s)
- P Frassanito
- Pediatric Neurosurgery, Fondazione Policlinico Universitario A. Gemelli IRCCS, Largo Agostino Gemelli, 8, 00168, Rome, Italy.
| | - U W Thomale
- Pediatric Neurosurgery, Campus Virchow Klinikum, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - M Obersnel
- Pediatric Neurosurgery, Fondazione Policlinico Universitario A. Gemelli IRCCS, Largo Agostino Gemelli, 8, 00168, Rome, Italy
- Catholic University Medical School, Rome, Italy
| | - A Romano
- Pediatric Oncology, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - P Leblond
- Department of Pediatric Oncology, Institute of Pediatric Hematology and Oncology, Leon Berard Comprehensive Cancer Center, Lyon, France
| | - F Knerlich-Lukoschus
- Division of Pediatric Neurosurgery, Department of Neurosurgery, University Medical Center Göttingen, Göttingen, Germany
| | - B J Due-Tønnessen
- Department of Neurosurgery, Oslo University Hospital - Rikshospitalet, Oslo, Norway
| | - D Thompson
- Pediatric Neurosurgery, Great Ormond Street Hospital, London, UK
| | - F Di Rocco
- Departement of Pediatric Neurosurgery, Hôpital Femme Mère Enfant, Lyon, France
- University of Medicine, Université Claude, Bernard 1, Lyon, France
| |
Collapse
|
4
|
Yuen CA, Zheng M, Saint-Germain MA, Kamson DO. Meningioma: Novel Diagnostic and Therapeutic Approaches. Biomedicines 2025; 13:659. [PMID: 40149634 PMCID: PMC11940373 DOI: 10.3390/biomedicines13030659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2025] [Revised: 03/03/2025] [Accepted: 03/05/2025] [Indexed: 03/29/2025] Open
Abstract
Background/Objectives: Meningiomas are the most common intracranial tumors. Surgery and radiation therapy are the cornerstones of treatment and no standard of care therapy exists for refractory meningiomas. This manuscript aims to provide a comprehensive review of novel diagnostic and therapeutic approaches against these tumors. Methods: A search for the existing literature on systemic therapies for meningiomas was performed on PubMed and a search for presently accruing clinical trials was performed on ClinicalTrials.gov. Results: Systemic treatments, including chemotherapy, somatostatin analogs, anti-hormone therapy, and anti-angiogenic therapy, have been extensively studied with marginal success. Targeted therapies are actively being studied for the treatment of meningiomas, including focal adhesion kinase (FAK), sonic hedgehog signaling pathway, phosphoinositide-3-kinase (PI3K), and cyclin-dependent kinases (CDK) inhibitors. These driver mutations are present only in a subset of meningiomas. In stark contrast, somatostatin receptor 2 (SSTR2) is ubiquitously expressed in meningiomas and was formerly targeted with somatostatin analogs with modest success. Theranostic SSTR2-targeting via [68Ga]DOTATATE for PET imaging and β-emitting [177Lu]DOTATATE for the treatment of meningiomas are currently under active investigation. Conclusions: A nuanced approach is needed for the treatment of refractory meningiomas. Targeted therapies show promise.
Collapse
Affiliation(s)
- Carlen A. Yuen
- Chao Family Comprehensive Cancer Center, University of California, Irvine, CA 92697, USA
- Division of Neuro-Oncology, Department of Neurology, University of California, Irvine, CA 92697, USA
| | - Michelle Zheng
- Charlie Dunlop School of Biological Sciences, University of California Irvine, Irvine, CA 92697, USA
| | - Max A. Saint-Germain
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, MD 21231, USA
| | - David O. Kamson
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, MD 21231, USA
- Department of Neurology, School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA
| |
Collapse
|
5
|
Hakime RG, Nagano LFP, Brassesco MS. ROCK2 Downregulation in Pediatric Medulloblastoma Increases Migration and Predicts the Involvement of SHH Non-canonical Signaling. THE YALE JOURNAL OF BIOLOGY AND MEDICINE 2025; 98:3-19. [PMID: 40165809 PMCID: PMC11899262 DOI: 10.59249/qtvt7676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
The participation of the Rho-associated protein kinases (ROCK1 and 2) in the regulation of actin cytoskeleton organization, cell adhesion, motility, and gene expression has been extensively investigated in many tumors of different histology. However, their pathogenic roles in medulloblastoma (MB) remain understudied, demanding a deeper appreciation of their participation in cancer cell dissemination and tumor progression. Herein, we show that ROCK2 is downregulated in MB tumor samples and functionally increases migration of cell lines belonging to the SHH subgroup. A comprehensive comparative bioinformatic scrutiny of differentially expressed genes within a list of ROCK2 candidate substrates, uncovered a network of 21 dysregulated genes from which DYPSL3 (dihydropyrimidinase-related protein 3) denoted a strong positive correlation. Enrichment analysis revealed SHH/RHOA/ROCK2/DYPSL3 as top hub genes and the intersection between two biological processes of most importance in MB: actin cytoskeleton remodeling and neuron development. Of note, evidence shows that both ROCK2 and DYPSL3, interact with RHOA and in many tumor types they act as tumor suppressors, mitigating cell spreading. Alternatively, their impaired activity leads to undifferentiated phenotypes and inappropriate cytoskeletal dynamics affecting cell shape, attachment to the extracellular matrix, and cell movement. In parallel, cell motility is considered a prototypical non-canonical response to SHH mediated by RHOA. Therefore, we propose a model in which the interplay between these pathways may lead to a perturbation of proper cytoskeletal dynamics that underpins cell migration.
Collapse
Affiliation(s)
- Rodrigo Guedes Hakime
- Department of Cell and Molecular Biology, Ribeirão
Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo,
Brazil
- Department of Pediatrics, Ribeirão Preto Medical
School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Luís Fernando Peinado Nagano
- Department of Biology, Faculty of Philosophy, Sciences
and Letters at Ribeirão Preto, University of São Paulo, Brazil
| | - María Sol Brassesco
- Department of Pediatrics, Ribeirão Preto Medical
School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| |
Collapse
|
6
|
Siegel BI, Patil P, Prakash A, Klawinski DM, Hwang EI. Targeted therapy in pediatric central nervous system tumors: a review from the National Pediatric Cancer Foundation. Front Oncol 2025; 15:1504803. [PMID: 40094009 PMCID: PMC11906681 DOI: 10.3389/fonc.2025.1504803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Accepted: 01/23/2025] [Indexed: 03/19/2025] Open
Abstract
Central nervous system tumors represent the leading cause of cancer-related mortality in children. Conventional therapies of surgery, radiation, and cytotoxic chemotherapy have insufficient efficacy for some pediatric CNS tumors and are associated with significant morbidity, prompting an ongoing need for novel treatment approaches. Identification of molecular alterations driving tumorigenesis has led to a rising interest in developing targeted therapies for these tumors. The present narrative review focuses on recent progress in targeted therapies for pediatric CNS tumors. We outline the key implicated cellular pathways, discuss candidate molecular therapies for targeting each pathway, and present an overview of the clinical trial landscape for targeted therapies in pediatric CNS tumors. We then discuss challenges and future directions for targeted therapy, including combinatorial approaches and real-time drug screening for personalized treatment planning.
Collapse
Affiliation(s)
- Benjamin I. Siegel
- Brain Tumor Institute and Gilbert Family Neurofibromatosis Institute, Children’s National Hospital, Washington, DC, United States
- Division of Oncology, Children’s National Hospital, Washington, DC, United States
| | - Prabhumallikarjun Patil
- Children’s Healthcare of Atlanta, Aflac Cancer Center, Atlanta, GA, United States
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, United States
| | - Akul Prakash
- New York University, New York, NY, United States
| | - Darren M. Klawinski
- Division of Hematology/Oncology, Nemours Children’s Health Jacksonville, Jacksonville, FL, United States
| | - Eugene I. Hwang
- Brain Tumor Institute and Gilbert Family Neurofibromatosis Institute, Children’s National Hospital, Washington, DC, United States
| |
Collapse
|
7
|
Ronsley R, Cole B, Ketterl T, Wright J, Ermoian R, Hoffman LM, Margol AS, Leary SES. Pediatric Central Nervous System Embryonal Tumors: Presentation, Diagnosis, Therapeutic Strategies, and Survivorship-A Review. Pediatr Neurol 2024; 161:237-246. [PMID: 39447443 DOI: 10.1016/j.pediatrneurol.2024.09.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 05/28/2024] [Accepted: 09/29/2024] [Indexed: 10/26/2024]
Abstract
Central nervous system (CNS) embryonal tumors represent a diverse group of neoplasms and have a peak incidence in early childhood. These tumors can be located anywhere within the CNS, and presenting symptoms typically represent tumor location. These tumors display distinctive findings on neuroimaging and are staged using magnetic resonance imaging of the brain and spine as well as evaluation of cerebrospinal fluid. Diagnosis is made based on an integrated analysis of histologic and molecular features via tissue sampling. Risk stratification is based on integration of clinical staging and extent of resection with histologic and molecular risk factors. The therapeutic approach for these tumors is multimodal and includes surgery, chemotherapy, and radiation, tailored to the individual patient factors (including age) and specific tumor type. Comprehensive supportive care including management of nausea, nutrition support, pain, fertility preservation, and mitigation of therapy-related morbidity (including hearing protection) is imperative through treatment of CNS embryonal tumors. Despite advances in therapy and supportive care, the long-term consequences of current treatment strategies are substantial. Integration of less toxic, molecularly targeted therapies and a comprehensive, multidisciplinary approach to survivorship care are essential to improving survival and the overall quality of life for survivors.
Collapse
Affiliation(s)
- Rebecca Ronsley
- Ben Towne Center for Childhood Cancer Research, Seattle Children's Research Institute, Seattle, Washington; Division of Hematology, Oncology and Bone Marrow Transplant, Department of Pediatrics, Seattle Children's Hospital, University of Washington, Seattle, Washington; Fred Hutch Cancer Center, Seattle, Washington.
| | - Bonnie Cole
- Department of Laboratory Medicine and Pathology, University of Washington School of Medicine, Seattle, Washington; Department of Laboratories, Seattle Children's Hospital, Seattle, Washington
| | - Tyler Ketterl
- Ben Towne Center for Childhood Cancer Research, Seattle Children's Research Institute, Seattle, Washington; Division of Hematology, Oncology and Bone Marrow Transplant, Department of Pediatrics, Seattle Children's Hospital, University of Washington, Seattle, Washington; Fred Hutch Cancer Center, Seattle, Washington
| | - Jason Wright
- Department of Radiology, University of Washington School of Medicine and Seattle Children's Hospital, Seattle, Washington
| | - Ralph Ermoian
- Department of Radiation Oncology, University of Washington, Seattle, Washington
| | - Lindsey M Hoffman
- Center for Cancer and Blood Disorder, Phoenix Childrens Hospital, Arizona
| | - Ashley S Margol
- Keck School of Medicine of University of Southern California, Cancer and Blood Disease Institute at Children's Hospital Los Angeles, Los Angeles, California
| | - Sarah E S Leary
- Ben Towne Center for Childhood Cancer Research, Seattle Children's Research Institute, Seattle, Washington; Division of Hematology, Oncology and Bone Marrow Transplant, Department of Pediatrics, Seattle Children's Hospital, University of Washington, Seattle, Washington; Fred Hutch Cancer Center, Seattle, Washington
| |
Collapse
|
8
|
Sönksen M, Obrecht-Sturm D, Hernáiz Driever P, Sauerbrey A, Graf N, Kontny U, Reimann C, Langhein M, Kordes UR, Schwarz R, Obser T, Boschann F, Schüller U, Altendorf L, Goschzik T, Pietsch T, Mynarek M, Rutkowski S. Medulloblastoma in children with Fanconi anemia: Association with FA-D1/FA-N, SHH type and poor survival independent of treatment strategies. Neuro Oncol 2024; 26:2125-2139. [PMID: 38919026 PMCID: PMC11534319 DOI: 10.1093/neuonc/noae111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Indexed: 06/27/2024] Open
Abstract
BACKGROUND The outcome of children with medulloblastoma (MB) and Fanconi Anemia (FA), an inherited DNA repair deficiency, has not been described systematically. Treatment is complicated by high vulnerability to treatment-associated side effects, yet structured data are lacking. This study aims to give a comprehensive overview of clinical and molecular characteristics of pediatric FA MB patients. METHODS Clinical data including detailed information on the treatment and toxicities of 6 previously unreported FA MB patients were supplemented with data of 16 published cases. RESULTS We identified 22 cases of children with FA and MB with clinical data available. All MBs with subgroup reporting were SHH-activated (n = 9), confirmed by methylation profiling in 5 patients. FA MB patients exclusively belonged to complementation groups FA-D1 (n = 16) or FA-N (n = 3). Patients were treated with postoperative chemotherapy only (50%) or radiotherapy (RT) ± chemotherapy (27%). Of 23% did not receive adjuvant therapy. Excessive treatment-related toxicities were frequent. Severe hematological toxicity occurred in 91% of patients treated with alkylating chemotherapy, while non-alkylating agents and RT were less toxic. Median overall survival (OS) was 1 year (95%CI: 0.3-1.8). 1-year-progression-free-survival (PFS) was 26.3% ± 10.1% and 1-year-OS was 42.1% ± 11.3%. Adjuvant therapy prolonged survival (1y-OS/1y-PFS 0%/0% without adjuvant therapy vs. 53.3% ± 12.9%/33.3 ± 12.2% with adjuvant therapy, P = .006/P = .086). CONCLUSIONS MB in FA patients is strongly associated with SHH activation and FA-D1/FA-N. Despite the dismal prognosis, adjuvant therapy may prolong survival. Non-alkylating chemotherapy and RT are feasible in selected patients with careful monitoring of toxicities and dose adjustments. Curative therapy for FA MB-SHH remains an unmet medical need.
Collapse
Affiliation(s)
- Marthe Sönksen
- Pediatric Hematology and Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Denise Obrecht-Sturm
- Pediatric Hematology and Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Pablo Hernáiz Driever
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Pediatric Oncology and Hematology, Berlin, Germany
| | | | - Norbert Graf
- Department of Pediatric Oncology and Hematology, Saarland University, Homburg, Germany
| | - Udo Kontny
- Division of Pediatric Hematology, Oncology and Stem Cell Transplantation, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Christian Reimann
- Department of Pediatrics and Adolescent Medicine, University Medical Center Ulm, Ulm, Germany
| | - Mina Langhein
- Pediatric Hematology and Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Uwe R Kordes
- Pediatric Hematology and Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Rudolf Schwarz
- Department for Radiotherapy, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Tobias Obser
- Department of Dermatology and Venereology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Felix Boschann
- Berlin Institute of Health at Charité – Universitätsmedizin Berlin, Berlin, Germany
- Institute of Medical Genetics and Human Genetics, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Ulrich Schüller
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Research Institute Children’s Cancer Center Hamburg, Hamburg, Germany
- Pediatric Hematology and Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Lea Altendorf
- Research Institute Children’s Cancer Center Hamburg, Hamburg, Germany
- Pediatric Hematology and Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Tobias Goschzik
- Institute of Neuropathology, Brain Tumor Reference Center of the German Society for Neuropathology and Neuroanatomy (DGNN), University of Bonn Medical Center, Bonn, Germany
| | - Torsten Pietsch
- Institute of Neuropathology, Brain Tumor Reference Center of the German Society for Neuropathology and Neuroanatomy (DGNN), University of Bonn Medical Center, Bonn, Germany
| | - Martin Mynarek
- Mildred Scheel Cancer Career Center HaTriCS4, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Pediatric Hematology and Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Stefan Rutkowski
- Pediatric Hematology and Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
9
|
Zhou L, van Bree N, Boutin L, Ryu J, Moussaud S, Liu M, Otrocka M, Olsson M, Falk A, Wilhelm M. High-throughput neural stem cell-based drug screening identifies S6K1 inhibition as a selective vulnerability in sonic hedgehog-medulloblastoma. Neuro Oncol 2024; 26:1685-1699. [PMID: 38860311 PMCID: PMC11376459 DOI: 10.1093/neuonc/noae104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Indexed: 06/12/2024] Open
Abstract
BACKGROUND Medulloblastoma (MB) is one of the most common malignant brain tumors in children. Current treatments have increased overall survival but can lead to devastating side effects and late complications in survivors, emphasizing the need for new, improved targeted therapies that specifically eliminate tumor cells while sparing the normally developing brain. METHODS Here, we used a sonic hedgehog (SHH)-MB model based on a patient-derived neuroepithelial stem cell system for an unbiased high-throughput screen with a library of 172 compounds with known targets. Compounds were evaluated in both healthy neural stem cells (NSCs) and tumor cells derived from the same patient. Based on the difference of cell viability and drug sensitivity score between normal cells and tumor cells, hit compounds were selected and further validated in vitro and in vivo. RESULTS We identified PF4708671 (S6K1 inhibitor) as a potential agent that selectively targets SHH-driven MB tumor cells while sparing NSCs and differentiated neurons. Subsequent validation studies confirmed that PF4708671 inhibited the growth of SHH-MB tumor cells both in vitro and in vivo, and that knockdown of S6K1 resulted in reduced tumor formation. CONCLUSIONS Overall, our results suggest that inhibition of S6K1 specifically affects tumor growth, whereas it has less effect on non-tumor cells. Our data also show that the NES cell platform can be used to identify potentially effective new therapies and targets for SHH-MB.
Collapse
Affiliation(s)
- Leilei Zhou
- Department of Microbiology, Tumor, and Cell Biology (MTC), Karolinska Institutet, Stockholm, Sweden
| | - Niek van Bree
- Department of Microbiology, Tumor, and Cell Biology (MTC), Karolinska Institutet, Stockholm, Sweden
| | - Lola Boutin
- Department of Microbiology, Tumor, and Cell Biology (MTC), Karolinska Institutet, Stockholm, Sweden
| | - Jinhye Ryu
- Department of Microbiology, Tumor, and Cell Biology (MTC), Karolinska Institutet, Stockholm, Sweden
| | - Simon Moussaud
- Chemical Biology Consortium Sweden (CBCS), Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Mingzhi Liu
- Department of Microbiology, Tumor, and Cell Biology (MTC), Karolinska Institutet, Stockholm, Sweden
| | - Magdalena Otrocka
- Chemical Biology Consortium Sweden (CBCS), Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Magnus Olsson
- Department of Clinical Science, Intervention, and Technology, Karolinska Institutet, Stockholm, Sweden
| | - Anna Falk
- Department of Experimental Medical Science, Lund Stem Cell Center, Lund University, Lund, Sweden
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Margareta Wilhelm
- Department of Microbiology, Tumor, and Cell Biology (MTC), Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
10
|
Yang C, Trivedi V, Dyson K, Gu T, Candelario KM, Yegorov O, Mitchell DA. Identification of tumor rejection antigens and the immunologic landscape of medulloblastoma. Genome Med 2024; 16:102. [PMID: 39160595 PMCID: PMC11331754 DOI: 10.1186/s13073-024-01363-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 07/12/2024] [Indexed: 08/21/2024] Open
Abstract
BACKGROUND The current standard of care treatments for medulloblastoma are insufficient as these do not take tumor heterogeneity into account. Newer, safer, patient-specific treatment approaches are required to treat high-risk medulloblastoma patients who are not cured by the standard therapies. Immunotherapy is a promising treatment modality that could be key to improving survival and avoiding morbidity. For an effective immune response, appropriate tumor antigens must be targeted. While medulloblastoma patients with subgroup-specific genetic substitutions have been previously reported, the immunogenicity of these genetic alterations remains unknown. The aim of this study is to identify potential tumor rejection antigens for the development of antigen-directed cellular therapies for medulloblastoma. METHODS We developed a cancer immunogenomics pipeline and performed a comprehensive analysis of medulloblastoma subgroup-specific transcription profiles (n = 170, 18 WNT, 46 SHH, 41 Group 3, and 65 Group 4 patient tumors) available through International Cancer Genome Consortium (ICGC) and European Genome-Phenome Archive (EGA). We performed in silico antigen prediction across a broad array of antigen classes including neoantigens, tumor-associated antigens (TAAs), and fusion proteins. Furthermore, we evaluated the antigen processing and presentation pathway in tumor cells and the immune infiltrating cell landscape using the latest computational deconvolution methods. RESULTS Medulloblastoma patients were found to express multiple private and shared immunogenic antigens. The proportion of predicted TAAs was higher than neoantigens and gene fusions for all molecular subgroups, except for sonic hedgehog (SHH), which had a higher neoantigen burden. Importantly, cancer-testis antigens, as well as previously unappreciated neurodevelopmental antigens, were found to be expressed by most patients across all medulloblastoma subgroups. Despite being immunologically cold, medulloblastoma subgroups were found to have distinct immune cell gene signatures. CONCLUSIONS Using a custom antigen prediction pipeline, we identified potential tumor rejection antigens with important implications for the development of immunotherapy for medulloblastoma.
Collapse
Affiliation(s)
- Changlin Yang
- UF Brain Tumor Immunotherapy Program, Preston A. Wells Center for Brain Tumor Therapy, Lillian S. Wells Department of Neurosurgery, University of Florida, 1333 Center Drive, BSB B1-118, Gainesville, FL, 32610, USA
| | - Vrunda Trivedi
- UF Brain Tumor Immunotherapy Program, Preston A. Wells Center for Brain Tumor Therapy, Lillian S. Wells Department of Neurosurgery, University of Florida, 1333 Center Drive, BSB B1-118, Gainesville, FL, 32610, USA
| | - Kyle Dyson
- UF Brain Tumor Immunotherapy Program, Preston A. Wells Center for Brain Tumor Therapy, Lillian S. Wells Department of Neurosurgery, University of Florida, 1333 Center Drive, BSB B1-118, Gainesville, FL, 32610, USA
| | - Tongjun Gu
- Department of Biostatistics, University of Florida, Gainesville, FL, USA
| | - Kate M Candelario
- UF Brain Tumor Immunotherapy Program, Preston A. Wells Center for Brain Tumor Therapy, Lillian S. Wells Department of Neurosurgery, University of Florida, 1333 Center Drive, BSB B1-118, Gainesville, FL, 32610, USA
| | - Oleg Yegorov
- UF Brain Tumor Immunotherapy Program, Preston A. Wells Center for Brain Tumor Therapy, Lillian S. Wells Department of Neurosurgery, University of Florida, 1333 Center Drive, BSB B1-118, Gainesville, FL, 32610, USA
| | - Duane A Mitchell
- UF Brain Tumor Immunotherapy Program, Preston A. Wells Center for Brain Tumor Therapy, Lillian S. Wells Department of Neurosurgery, University of Florida, 1333 Center Drive, BSB B1-118, Gainesville, FL, 32610, USA.
| |
Collapse
|
11
|
Tsiami F, Lago C, Pozza N, Piccioni F, Zhao X, Lülsberg F, Root DE, Tiberi L, Kool M, Schittenhelm J, Bandopadhayay P, Segal RA, Tabatabai G, Merk DJ. Genome-wide CRISPR-Cas9 knockout screens identify DNMT1 as a druggable dependency in sonic hedgehog medulloblastoma. Acta Neuropathol Commun 2024; 12:125. [PMID: 39107797 PMCID: PMC11304869 DOI: 10.1186/s40478-024-01831-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 07/09/2024] [Indexed: 08/10/2024] Open
Abstract
Sonic hedgehog subgroup of medulloblastoma (SHH-MB) is characterized by aberrant activation of the SHH signaling pathway. An inhibition of the positive SHH regulator Smoothened (SMO) has demonstrated promising clinical efficacy. Yet, primary and acquired resistance to SMO inhibitors limit their efficacy. An understanding of underlying molecular mechanisms of resistance to therapy is warranted to bridge this unmet need. Here, we make use of genome-wide CRISPR-Cas9 knockout screens in murine SMB21 and human DAOY cells, in order to unravel genetic dependencies and drug-related genetic interactors that could serve as alternative therapeutic targets for SHH-MB. Our screens reinforce SMB21 cells as a faithful model system for SHH-MB, as opposed to DAOY cells, and identify members of the epigenetic machinery including DNA methyltransferase 1 (DNMT1) as druggable targets in SHH-dependent tumors. We show that Dnmt1 plays a crucial role in normal murine cerebellar development and is required for SHH-MB growth in vivo. Additionally, DNMT1 pharmacological inhibition alone and in combination with SMO inhibition effectively inhibits tumor growth in murine and human SHH-MB cell models and prolongs survival of SHH-MB mouse models by inhibiting SHH signaling output downstream of SMO. In conclusion, our data highlight the potential of inhibiting epigenetic regulators as a novel therapeutic avenue in SMO-inhibitor sensitive as well as resistant SHH-MBs.
Collapse
Affiliation(s)
- Foteini Tsiami
- Department of Neurology and Interdisciplinary Neuro-Oncology, Hertie Institute for Clinical Brain Research, University Hospital Tübingen, Eberhard Karls University, Tübingen, Germany
- Cluster of Excellence iFIT (EXC 2180) "Image Guided and Functionally Instructed Tumor Therapies", Eberhard Karls University, Tübingen, Germany
| | - Chiara Lago
- Armenise-Harvard Laboratory of Brain Disorders and Cancer, CIBIO, Trento, Italy
| | - Noemi Pozza
- Armenise-Harvard Laboratory of Brain Disorders and Cancer, CIBIO, Trento, Italy
| | - Federica Piccioni
- Genetic Perturbation Platform, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Merck Research Laboratories, Cambridge, MA, USA
| | - Xuesong Zhao
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA
| | - Fabienne Lülsberg
- Institute for Anatomy, Anatomy and Cell Biology, Rheinische Friedrich-Wilhelms-University, Bonn, Germany
| | - David E Root
- Genetic Perturbation Platform, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Luca Tiberi
- Armenise-Harvard Laboratory of Brain Disorders and Cancer, CIBIO, Trento, Italy
| | - Marcel Kool
- Hopp Children's Cancer Center (KITZ), Heidelberg, Germany
- Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ) and German Cancer Research Consortium (DKTK), Heidelberg, Germany
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
- University Medical Center Utrecht, Utrecht, the Netherlands
| | - Jens Schittenhelm
- Department of Pathology and Neuropathology, Institute of Neuropathology, University Hospital Tübingen, Eberhard Karls University, Tübingen, Germany
- Comprehensive Cancer Center Tübingen Stuttgart, University Hospital Tübingen, Eberhard Karls University, Tübingen, Germany
| | - Pratiti Bandopadhayay
- Dana-Farber/Boston Children´S Cancer and Blood Disorders Center, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Rosalind A Segal
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA
| | - Ghazaleh Tabatabai
- Department of Neurology and Interdisciplinary Neuro-Oncology, Hertie Institute for Clinical Brain Research, University Hospital Tübingen, Eberhard Karls University, Tübingen, Germany
- Comprehensive Cancer Center Tübingen Stuttgart, University Hospital Tübingen, Eberhard Karls University, Tübingen, Germany
- Cluster of Excellence iFIT (EXC 2180) "Image Guided and Functionally Instructed Tumor Therapies", Eberhard Karls University, Tübingen, Germany
- German Cancer Research Center (DKFZ), German Consortium for Translational Cancer Research (DKTK), Partner Site Tübingen, Heidelberg, Germany
| | - Daniel J Merk
- Department of Neurology and Interdisciplinary Neuro-Oncology, Hertie Institute for Clinical Brain Research, University Hospital Tübingen, Eberhard Karls University, Tübingen, Germany.
- Cluster of Excellence iFIT (EXC 2180) "Image Guided and Functionally Instructed Tumor Therapies", Eberhard Karls University, Tübingen, Germany.
| |
Collapse
|
12
|
Okano A, Miyawaki S, Teranishi Y, Hongo H, Dofuku S, Ohara K, Sakai Y, Shin M, Nakatomi H, Saito N. POLR2A Mutation is a Poor Prognostic Marker of Cerebellopontine Angle Meningioma. Neurosurgery 2024; 95:275-283. [PMID: 38380947 DOI: 10.1227/neu.0000000000002873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 12/19/2023] [Indexed: 02/22/2024] Open
Abstract
BACKGROUND AND OBJECTIVES Recent molecular analyses have shown that the driver genetic mutations of meningiomas were associated with the anatomic location. Among these, POLR2A mutation is common among lesions in the skull base, mainly in the cerebellopontine angle (CPA). The objective of this study was to investigate the efficacy of POLR2A mutation as a prognostic marker for CPA meningiomas. METHODS We retrospectively analyzed the clinical data of 70 patients who had World Health Organization grade I CPA meningiomas. Somatic DNA was analyzed by Sanger sequencing and microsatellite array to examine for NF2 , AKT1 , KLF4 , SMO , and POLR2A mutations and 22q loss. Genetic and clinical parameters were analyzed to identify the factors related with tumor recurrence. RESULTS We detected clearly the clinical features of the CPA cases with POLR2A mutation. Compared with cases without POLR2A mutation, cases with POLR2A mutation had more meningothelial type ( P = 6.9 × 10 -4 ), and higher rate of recurrence ( P = .04). We found that the poor prognostic factors associated with the recurrence of CPA meningiomas were POLR2A mutation ( P = .03, hazard ratio [HR] 9.38, 95% CI 1.26-70.0) and subtotal resection (STR) ( P = 5.1 × 10 -4 , HR 63.1, 95% CI 6.09-655.0). In addition, in the group that underwent STR, POLR2A mutation was a poor prognostic factor associated with tumor recurrence ( P = .03, HR 11.1, 95% CI 1.19-103.7). CONCLUSION POLR2A mutation and STR were the poor prognostic markers associated with the recurrence of CPA meningioma. For CPA meningioma cases that underwent STR, only POLR2A mutation was a poor prognostic factor. Detecting POLR2A mutation may be a cost-effective, easy, and useful marker for prognostication.
Collapse
Affiliation(s)
- Atsushi Okano
- Department of Neurosurgery, Faculty of Medicine, The University of Tokyo, Tokyo , Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Tan QX, Shannon NB, Lim WK, Teo JX, Yap DRY, Lek SM, Tan JWS, Tan SJJ, Hendrikson J, Liu Y, Ng G, Chong CYL, Guo W, Koh KKN, Ng CCY, Rajasegaran V, Wong JS, Seo CJ, Ong CK, Lim TKH, Teh BT, Kon OL, Chia CS, Soo KC, Iyer NG, Ong CAJ. Transcriptomic convergence despite genomic divergence drive field cancerization in synchronous squamous tumors. Front Oncol 2024; 14:1272432. [PMID: 38939336 PMCID: PMC11208456 DOI: 10.3389/fonc.2024.1272432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 05/28/2024] [Indexed: 06/29/2024] Open
Abstract
Introduction Field cancerization is suggested to arise from imbalanced differentiation in individual basal progenitor cells leading to clonal expansion of mutant cells that eventually replace the epithelium, although without evidence. Methods We performed deep sequencing analyses to characterize the genomic and transcriptomic landscapes of field change in two patients with synchronous aerodigestive tract tumors. Results Our data support the emergence of numerous genetic alterations in cancer-associated genes but refutes the hypothesis that founder mutation(s) underpin this phenomenon. Mutational signature analysis identified defective homologous recombination as a common underlying mutational process unique to synchronous tumors. Discussion Our analyses suggest a common etiologic factor defined by mutational signatures and/or transcriptomic convergence, which could provide a therapeutic opportunity.
Collapse
Affiliation(s)
- Qiu Xuan Tan
- Department of Sarcoma, Peritoneal and Rare Tumours (SPRinT), Division of Surgery and Surgical Oncology, National Cancer Centre Singapore, Singapore, Singapore
- Department of Sarcoma, Peritoneal and Rare Tumours (SPRinT), Division of Surgery and Surgical Oncology, Singapore General Hospital, Singapore, Singapore
- Laboratory of Applied Human Genetics, Division of Medical Sciences, National Cancer Centre Singapore, Singapore, Singapore
| | - Nicholas B. Shannon
- Department of Head and Neck Surgery, Division of Surgery and Surgical Oncology, National Cancer Centre Singapore, Singapore, Singapore
| | - Weng Khong Lim
- SingHealth Duke-NUS Institute of Precision Medicine, National Heart Centre Singapore, Singapore, Singapore
- Cancer and Stem Biology Program, Duke-NUS Medical School, Singapore, Singapore
| | - Jing Xian Teo
- SingHealth Duke-NUS Institute of Precision Medicine, National Heart Centre Singapore, Singapore, Singapore
| | - Daniel R. Y. Yap
- Laboratory of Applied Human Genetics, Division of Medical Sciences, National Cancer Centre Singapore, Singapore, Singapore
| | - Sze Min Lek
- Laboratory of Applied Human Genetics, Division of Medical Sciences, National Cancer Centre Singapore, Singapore, Singapore
| | - Joey W. S. Tan
- Department of Sarcoma, Peritoneal and Rare Tumours (SPRinT), Division of Surgery and Surgical Oncology, National Cancer Centre Singapore, Singapore, Singapore
- Department of Sarcoma, Peritoneal and Rare Tumours (SPRinT), Division of Surgery and Surgical Oncology, Singapore General Hospital, Singapore, Singapore
- Laboratory of Applied Human Genetics, Division of Medical Sciences, National Cancer Centre Singapore, Singapore, Singapore
| | - Shih Jia J. Tan
- Laboratory of Applied Human Genetics, Division of Medical Sciences, National Cancer Centre Singapore, Singapore, Singapore
| | - Josephine Hendrikson
- Department of Sarcoma, Peritoneal and Rare Tumours (SPRinT), Division of Surgery and Surgical Oncology, National Cancer Centre Singapore, Singapore, Singapore
- Department of Sarcoma, Peritoneal and Rare Tumours (SPRinT), Division of Surgery and Surgical Oncology, Singapore General Hospital, Singapore, Singapore
- Laboratory of Applied Human Genetics, Division of Medical Sciences, National Cancer Centre Singapore, Singapore, Singapore
| | - Ying Liu
- Department of Sarcoma, Peritoneal and Rare Tumours (SPRinT), Division of Surgery and Surgical Oncology, National Cancer Centre Singapore, Singapore, Singapore
- Department of Sarcoma, Peritoneal and Rare Tumours (SPRinT), Division of Surgery and Surgical Oncology, Singapore General Hospital, Singapore, Singapore
- Laboratory of Applied Human Genetics, Division of Medical Sciences, National Cancer Centre Singapore, Singapore, Singapore
| | - Gillian Ng
- Department of Sarcoma, Peritoneal and Rare Tumours (SPRinT), Division of Surgery and Surgical Oncology, National Cancer Centre Singapore, Singapore, Singapore
- Department of Sarcoma, Peritoneal and Rare Tumours (SPRinT), Division of Surgery and Surgical Oncology, Singapore General Hospital, Singapore, Singapore
- Laboratory of Applied Human Genetics, Division of Medical Sciences, National Cancer Centre Singapore, Singapore, Singapore
| | - Clara Y. L. Chong
- Department of Sarcoma, Peritoneal and Rare Tumours (SPRinT), Division of Surgery and Surgical Oncology, National Cancer Centre Singapore, Singapore, Singapore
- Department of Sarcoma, Peritoneal and Rare Tumours (SPRinT), Division of Surgery and Surgical Oncology, Singapore General Hospital, Singapore, Singapore
- Laboratory of Applied Human Genetics, Division of Medical Sciences, National Cancer Centre Singapore, Singapore, Singapore
| | - Wanyu Guo
- Department of Sarcoma, Peritoneal and Rare Tumours (SPRinT), Division of Surgery and Surgical Oncology, National Cancer Centre Singapore, Singapore, Singapore
- Department of Sarcoma, Peritoneal and Rare Tumours (SPRinT), Division of Surgery and Surgical Oncology, Singapore General Hospital, Singapore, Singapore
- Laboratory of Applied Human Genetics, Division of Medical Sciences, National Cancer Centre Singapore, Singapore, Singapore
| | - Kelvin K. N. Koh
- Laboratory of Applied Human Genetics, Division of Medical Sciences, National Cancer Centre Singapore, Singapore, Singapore
| | - Cedric C. Y. Ng
- Laboratory of Cancer Epigenome, Division of Medical Sciences, National Cancer Centre Singapore, Singapore, Singapore
| | - Vikneswari Rajasegaran
- Laboratory of Cancer Epigenome, Division of Medical Sciences, National Cancer Centre Singapore, Singapore, Singapore
| | - Jolene S.M. Wong
- Department of Sarcoma, Peritoneal and Rare Tumours (SPRinT), Division of Surgery and Surgical Oncology, National Cancer Centre Singapore, Singapore, Singapore
- Department of Sarcoma, Peritoneal and Rare Tumours (SPRinT), Division of Surgery and Surgical Oncology, Singapore General Hospital, Singapore, Singapore
| | - Chin Jin Seo
- Department of Sarcoma, Peritoneal and Rare Tumours (SPRinT), Division of Surgery and Surgical Oncology, National Cancer Centre Singapore, Singapore, Singapore
- Department of Sarcoma, Peritoneal and Rare Tumours (SPRinT), Division of Surgery and Surgical Oncology, Singapore General Hospital, Singapore, Singapore
| | - Choon Kiat Ong
- Cancer and Stem Biology Program, Duke-NUS Medical School, Singapore, Singapore
- Lymphoma Genomics Translational Laboratory, Division of Medical Sciences, National Cancer Centre Singapore, Singapore, Singapore
| | - Tony K. H. Lim
- Department of Anatomical Pathology, Singapore General Hospital, Singapore, Singapore
- Pathology Academic Clinical Program, SingHealth Duke-NUS Academic Medical Centre, Singapore, Singapore
| | - Bin Tean Teh
- Cancer and Stem Biology Program, Duke-NUS Medical School, Singapore, Singapore
- Laboratory of Cancer Epigenome, Division of Medical Sciences, National Cancer Centre Singapore, Singapore, Singapore
- Institute of Molecular and Cell Biology, ASTAR Research Entities, Singapore, Singapore
| | - Oi Lian Kon
- Laboratory of Applied Human Genetics, Division of Medical Sciences, National Cancer Centre Singapore, Singapore, Singapore
| | - Claramae S. Chia
- Department of Sarcoma, Peritoneal and Rare Tumours (SPRinT), Division of Surgery and Surgical Oncology, National Cancer Centre Singapore, Singapore, Singapore
- Department of Sarcoma, Peritoneal and Rare Tumours (SPRinT), Division of Surgery and Surgical Oncology, Singapore General Hospital, Singapore, Singapore
- SingHealth Duke-NUS Oncology Academic Clinical Program, Duke-NUS Medical School, Singapore, Singapore
- SingHealth Duke-NUS Surgery Academic Clinical Program, Duke-NUS Medical School, Singapore, Singapore
| | - Khee Chee Soo
- Department of Sarcoma, Peritoneal and Rare Tumours (SPRinT), Division of Surgery and Surgical Oncology, National Cancer Centre Singapore, Singapore, Singapore
- Department of Sarcoma, Peritoneal and Rare Tumours (SPRinT), Division of Surgery and Surgical Oncology, Singapore General Hospital, Singapore, Singapore
- SingHealth Duke-NUS Oncology Academic Clinical Program, Duke-NUS Medical School, Singapore, Singapore
- SingHealth Duke-NUS Surgery Academic Clinical Program, Duke-NUS Medical School, Singapore, Singapore
| | - N. Gopalakrishna Iyer
- Department of Head and Neck Surgery, Division of Surgery and Surgical Oncology, National Cancer Centre Singapore, Singapore, Singapore
- Cancer and Stem Biology Program, Duke-NUS Medical School, Singapore, Singapore
- Cancer Therapeutics Research Laboratory, Division of Medical Sciences, National Cancer Centre Singapore, Singapore, Singapore
| | - Chin-Ann J. Ong
- Department of Sarcoma, Peritoneal and Rare Tumours (SPRinT), Division of Surgery and Surgical Oncology, National Cancer Centre Singapore, Singapore, Singapore
- Department of Sarcoma, Peritoneal and Rare Tumours (SPRinT), Division of Surgery and Surgical Oncology, Singapore General Hospital, Singapore, Singapore
- Laboratory of Applied Human Genetics, Division of Medical Sciences, National Cancer Centre Singapore, Singapore, Singapore
- Institute of Molecular and Cell Biology, ASTAR Research Entities, Singapore, Singapore
- SingHealth Duke-NUS Oncology Academic Clinical Program, Duke-NUS Medical School, Singapore, Singapore
- SingHealth Duke-NUS Surgery Academic Clinical Program, Duke-NUS Medical School, Singapore, Singapore
| |
Collapse
|
14
|
Adolph JE, Fleischhack G, Tschirner S, Rink L, Dittes C, Mikasch R, Dammann P, Mynarek M, Obrecht-Sturm D, Rutkowski S, Bison B, Warmuth-Metz M, Pietsch T, Pfister SM, Pajtler KW, Milde T, Kortmann RD, Dietzsch S, Timmermann B, Tippelt S. Radiotherapy for Recurrent Medulloblastoma in Children and Adolescents: Survival after Re-Irradiation and First-Time Irradiation. Cancers (Basel) 2024; 16:1955. [PMID: 38893076 PMCID: PMC11171022 DOI: 10.3390/cancers16111955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 05/18/2024] [Accepted: 05/19/2024] [Indexed: 06/21/2024] Open
Abstract
BACKGROUND Radiotherapy (RT) involving craniospinal irradiation (CSI) is important in the initial treatment of medulloblastoma. At recurrence, the re-irradiation options are limited and associated with severe side-effects. METHODS For pre-irradiated patients, patients with re-irradiation (RT2) were matched by sex, histology, time to recurrence, disease status and treatment at recurrence to patients without RT2. RESULTS A total of 42 pre-irradiated patients with RT2 were matched to 42 pre-irradiated controls without RT2. RT2 improved the median PFS [21.0 (CI: 15.7-28.7) vs. 12.0 (CI: 8.1-21.0) months] and OS [31.5 (CI: 27.6-64.8) vs. 20.0 (CI: 14.0-36.7) months]. Concerning long-term survival after ten years, RT2 only lead to small improvements in OS [8% (CI: 1.4-45.3) vs. 0%]. RT2 improved survival most without (re)-resection [PFS: 17.5 (CI: 9.7-41.5) vs. 8.0 (CI: 6.6-12.2)/OS: 31.5 (CI: 27.6-NA) vs. 13.3 (CI: 8.1-20.1) months]. In the RT-naïve patients, CSI at recurrence improved their median PFS [25.0 (CI: 16.8-60.6) vs. 6.6 (CI: 1.5-NA) months] and OS [40.2 (CI: 18.7-NA) vs. 12.4 (CI: 4.4-NA) months]. CONCLUSIONS RT2 could improve the median survival in a matched cohort but offered little benefit regarding long-term survival. In RT-naïve patients, CSI greatly improved their median and long-term survival.
Collapse
Affiliation(s)
- Jonas E. Adolph
- Department of Pediatrics III, Center for Translational Neuro- and Behavioral Sciences (CTNBS), University Hospital of Essen, 45122 Essen, Germany; (G.F.); (S.T.); (L.R.); (C.D.); (S.T.)
| | - Gudrun Fleischhack
- Department of Pediatrics III, Center for Translational Neuro- and Behavioral Sciences (CTNBS), University Hospital of Essen, 45122 Essen, Germany; (G.F.); (S.T.); (L.R.); (C.D.); (S.T.)
| | - Sebastian Tschirner
- Department of Pediatrics III, Center for Translational Neuro- and Behavioral Sciences (CTNBS), University Hospital of Essen, 45122 Essen, Germany; (G.F.); (S.T.); (L.R.); (C.D.); (S.T.)
| | - Lydia Rink
- Department of Pediatrics III, Center for Translational Neuro- and Behavioral Sciences (CTNBS), University Hospital of Essen, 45122 Essen, Germany; (G.F.); (S.T.); (L.R.); (C.D.); (S.T.)
| | - Christine Dittes
- Department of Pediatrics III, Center for Translational Neuro- and Behavioral Sciences (CTNBS), University Hospital of Essen, 45122 Essen, Germany; (G.F.); (S.T.); (L.R.); (C.D.); (S.T.)
| | - Ruth Mikasch
- Department of Pediatrics III, Center for Translational Neuro- and Behavioral Sciences (CTNBS), University Hospital of Essen, 45122 Essen, Germany; (G.F.); (S.T.); (L.R.); (C.D.); (S.T.)
| | - Philipp Dammann
- Department of Neurosurgery and Spine Surgery, University Hospital Essen, 45122 Essen, Germany;
| | - Martin Mynarek
- Department of Pediatric Hematology and Oncology, Center for Obstetrics and Pediatrics, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany; (M.M.); (D.O.-S.); (S.R.)
- Mildred Scheel Cancer Career Center HaTriCS4, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany
| | - Denise Obrecht-Sturm
- Department of Pediatric Hematology and Oncology, Center for Obstetrics and Pediatrics, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany; (M.M.); (D.O.-S.); (S.R.)
| | - Stefan Rutkowski
- Department of Pediatric Hematology and Oncology, Center for Obstetrics and Pediatrics, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany; (M.M.); (D.O.-S.); (S.R.)
| | - Brigitte Bison
- Diagnostic and Interventional Neuroradiology, Faculty of Medicine, University of Augsburg, 86156 Augsburg, Germany;
| | - Monika Warmuth-Metz
- Institute of Diagnostic and Interventional Neuroradiology, University Hospital Wuerzburg, 97080 Wuerzburg, Germany;
| | - Torsten Pietsch
- Institute of Neuropathology, DGNN Brain Tumor Reference Center, University Hospital of Bonn, 53105 Bonn, Germany;
| | - Stefan M. Pfister
- Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; (S.M.P.); (K.W.P.)
- Department of Pediatric Oncology and Hematology, University Hospital Heidelberg, 69120 Heidelberg, Germany;
- Hopp Children’s Cancer Center Heidelberg (KiTZ), 69120 Heidelberg, Germany
- National Center for Tumor Diseases (NCT), 69120 Heidelberg, Germany
| | - Kristian W. Pajtler
- Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; (S.M.P.); (K.W.P.)
- Department of Pediatric Oncology and Hematology, University Hospital Heidelberg, 69120 Heidelberg, Germany;
- Hopp Children’s Cancer Center Heidelberg (KiTZ), 69120 Heidelberg, Germany
- National Center for Tumor Diseases (NCT), 69120 Heidelberg, Germany
| | - Till Milde
- Department of Pediatric Oncology and Hematology, University Hospital Heidelberg, 69120 Heidelberg, Germany;
- Hopp Children’s Cancer Center Heidelberg (KiTZ), 69120 Heidelberg, Germany
- National Center for Tumor Diseases (NCT), 69120 Heidelberg, Germany
- Clinical Cooperation Unit (CCU) Pediatric Oncology, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- German Consortium for Translational Cancer Research (DKTK), 69120 Heidelberg, Germany
| | - Rolf-Dieter Kortmann
- Department of Radio-Oncology, University Leipzig, 04129 Leipzig, Germany; (R.-D.K.); (S.D.)
| | - Stefan Dietzsch
- Department of Radio-Oncology, University Leipzig, 04129 Leipzig, Germany; (R.-D.K.); (S.D.)
- Department of Particle Therapy, University Hospital Essen, West German Proton Therapy Centre Essen, 45122 Essen, Germany;
| | - Beate Timmermann
- Department of Particle Therapy, University Hospital Essen, West German Proton Therapy Centre Essen, 45122 Essen, Germany;
| | - Stephan Tippelt
- Department of Pediatrics III, Center for Translational Neuro- and Behavioral Sciences (CTNBS), University Hospital of Essen, 45122 Essen, Germany; (G.F.); (S.T.); (L.R.); (C.D.); (S.T.)
| |
Collapse
|
15
|
Holmberg KO, Borgenvik A, Zhao M, Giraud G, Swartling FJ. Drivers Underlying Metastasis and Relapse in Medulloblastoma and Targeting Strategies. Cancers (Basel) 2024; 16:1752. [PMID: 38730706 PMCID: PMC11083189 DOI: 10.3390/cancers16091752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 04/12/2024] [Accepted: 04/27/2024] [Indexed: 05/13/2024] Open
Abstract
Medulloblastomas comprise a molecularly diverse set of malignant pediatric brain tumors in which patients are stratified according to different prognostic risk groups that span from very good to very poor. Metastasis at diagnosis is most often a marker of poor prognosis and the relapse incidence is higher in these children. Medulloblastoma relapse is almost always fatal and recurring cells have, apart from resistance to standard of care, acquired genetic and epigenetic changes that correlate with an increased dormancy state, cell state reprogramming and immune escape. Here, we review means to carefully study metastasis and relapse in preclinical models, in light of recently described molecular subgroups. We will exemplify how therapy resistance develops at the cellular level, in a specific niche or from therapy-induced secondary mutations. We further describe underlying molecular mechanisms on how tumors acquire the ability to promote leptomeningeal dissemination and discuss how they can establish therapy-resistant cell clones. Finally, we describe some of the ongoing clinical trials of high-risk medulloblastoma and suggest or discuss more individualized treatments that could be of benefit to specific subgroups.
Collapse
Affiliation(s)
- Karl O. Holmberg
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Rudbeck Laboratory, Uppsala University, 75185 Uppsala, Sweden; (K.O.H.); (M.Z.); (G.G.)
| | - Anna Borgenvik
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA;
- Harvard Medical School, Boston, MA 02115, USA
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Miao Zhao
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Rudbeck Laboratory, Uppsala University, 75185 Uppsala, Sweden; (K.O.H.); (M.Z.); (G.G.)
| | - Géraldine Giraud
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Rudbeck Laboratory, Uppsala University, 75185 Uppsala, Sweden; (K.O.H.); (M.Z.); (G.G.)
- Department of Women and Child Health, Uppsala University, 75124 Uppsala, Sweden
- Department of Pediatric Hematology and Oncology, Uppsala University Children’s Hospital, 75185 Uppsala, Sweden
| | - Fredrik J. Swartling
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Rudbeck Laboratory, Uppsala University, 75185 Uppsala, Sweden; (K.O.H.); (M.Z.); (G.G.)
| |
Collapse
|
16
|
Olaoba OT, Yang M, Adelusi TI, Maidens T, Kimchi ET, Staveley-O’Carroll KF, Li G. Targeted Therapy for Highly Desmoplastic and Immunosuppressive Tumor Microenvironment of Pancreatic Ductal Adenocarcinoma. Cancers (Basel) 2024; 16:1470. [PMID: 38672552 PMCID: PMC11048089 DOI: 10.3390/cancers16081470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 04/05/2024] [Accepted: 04/09/2024] [Indexed: 04/28/2024] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a highly lethal malignancy with a very poor prognosis. Despite advancements in treatment strategies, PDAC remains recalcitrant to therapies because patients are often diagnosed at an advanced stage. The advanced stage of PDAC is characterized by metastasis, which typically renders it unresectable by surgery or untreatable by chemotherapy. The tumor microenvironment (TME) of PDAC comprises highly proliferative myofibroblast-like cells and hosts the intense deposition of a extracellular matrix component that forms dense fibrous connective tissue, a process called the desmoplastic reaction. In desmoplastic TMEs, the incessant aberration of signaling pathways contributes to immunosuppression by suppressing antitumor immunity. This feature offers a protective barrier that impedes the targeted delivery of drugs. In addition, the efficacy of immunotherapy is compromised because of the immune cold TME of PDAC. Targeted therapy approaches towards stromal and immunosuppressive TMEs are challenging. In this review, we discuss cellular and non-cellular TME components that contain actionable targets for drug development. We also highlight findings from preclinical studies and provide updates about the efficacies of new investigational drugs in clinical trials.
Collapse
Affiliation(s)
- Olamide T. Olaoba
- Department of Surgery, University of Missouri, Columbia, MO 65212, USA; (O.T.O.); (M.Y.); (T.I.A.); (T.M.); (E.T.K.)
- Department of Molecular Microbiology and Immunology, University of Missouri, Columbia, MO 65212, USA
| | - Ming Yang
- Department of Surgery, University of Missouri, Columbia, MO 65212, USA; (O.T.O.); (M.Y.); (T.I.A.); (T.M.); (E.T.K.)
| | - Temitope I. Adelusi
- Department of Surgery, University of Missouri, Columbia, MO 65212, USA; (O.T.O.); (M.Y.); (T.I.A.); (T.M.); (E.T.K.)
- Roy Blunt NextGen Precision Health Institute, University of Missouri, Columbia, MO 65212, USA
| | - Tessa Maidens
- Department of Surgery, University of Missouri, Columbia, MO 65212, USA; (O.T.O.); (M.Y.); (T.I.A.); (T.M.); (E.T.K.)
| | - Eric T. Kimchi
- Department of Surgery, University of Missouri, Columbia, MO 65212, USA; (O.T.O.); (M.Y.); (T.I.A.); (T.M.); (E.T.K.)
- Roy Blunt NextGen Precision Health Institute, University of Missouri, Columbia, MO 65212, USA
- Harry S. Truman Memorial Veterans’ Hospital, Columbia, MO 65201, USA
- Ellis Fischel Cancer Center, University of Missouri, Columbia, MO 65212, USA
| | - Kevin F. Staveley-O’Carroll
- Department of Surgery, University of Missouri, Columbia, MO 65212, USA; (O.T.O.); (M.Y.); (T.I.A.); (T.M.); (E.T.K.)
- Roy Blunt NextGen Precision Health Institute, University of Missouri, Columbia, MO 65212, USA
- Harry S. Truman Memorial Veterans’ Hospital, Columbia, MO 65201, USA
- Ellis Fischel Cancer Center, University of Missouri, Columbia, MO 65212, USA
| | - Guangfu Li
- Department of Surgery, University of Missouri, Columbia, MO 65212, USA; (O.T.O.); (M.Y.); (T.I.A.); (T.M.); (E.T.K.)
- Department of Molecular Microbiology and Immunology, University of Missouri, Columbia, MO 65212, USA
- Roy Blunt NextGen Precision Health Institute, University of Missouri, Columbia, MO 65212, USA
- Harry S. Truman Memorial Veterans’ Hospital, Columbia, MO 65201, USA
- Ellis Fischel Cancer Center, University of Missouri, Columbia, MO 65212, USA
| |
Collapse
|
17
|
Nellan A, Jackson S. Targeted therapy done right: Direct sonic hedgehog inhibition for sonic hedgehog medulloblastoma. Neuro Oncol 2024; 26:623-624. [PMID: 38290484 PMCID: PMC10995513 DOI: 10.1093/neuonc/noae018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Indexed: 02/01/2024] Open
Affiliation(s)
- Anandani Nellan
- Pediatric Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
- Surgical Neurology Branch, National Institutes of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, USA
| | - Sadhana Jackson
- Pediatric Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
18
|
Kresbach C, Holst L, Schoof M, Leven T, Göbel C, Neyazi S, Tischendorf J, Loose C, Wrzeszcz A, Yorgan T, Rutkowski S, Schüller U. Intraventricular SHH inhibition proves efficient in SHH medulloblastoma mouse model and prevents systemic side effects. Neuro Oncol 2024; 26:609-622. [PMID: 37767814 PMCID: PMC10995518 DOI: 10.1093/neuonc/noad191] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Indexed: 09/29/2023] Open
Abstract
BACKGROUND Medulloblastoma (MB) is the most common malignant brain tumor in children and requires intensive multimodal therapy. Long-term survival is still dissatisfying and, most importantly, survivors frequently suffer from severe treatment-associated morbidities. The sonic hedgehog pathway (SHH) in SHH MB provides a promising target for specific therapeutic agents. The small molecule Vismodegib allosterically inhibits SMO, the main upstream activator of SHH. Vismodegib has proven effective in the treatment of MB in mice and in clinical studies. However, due to irreversible premature epiphyseal growth plate fusions after systemic application to infant mice and children, its implementation to pediatric patients has been limited. Intraventricular Vismodegib application might provide a promising novel treatment strategy for pediatric medulloblastoma patients. METHODS Infant medulloblastoma-bearing Math1-cre::Ptch1Fl/Fl mice were treated with intraventricular Vismodegib in order to evaluate efficacy on tumor growth and systemic side effects. RESULTS We show that intraventricular Vismodegib treatment of Math1-cre::Ptch1Fl/Fl mice leads to complete or partial tumor remission only 2 days after completed treatment. Intraventricular treatment also significantly improved symptom-free survival in a dose-dependent manner. At the same time, intraventricular application prevented systemic side effects in the form of anatomical or histological bone deformities. CONCLUSIONS We conclude that intraventricular application of a SHH pathway inhibitor combines the advantages of a specific treatment agent with precise drug delivery and might evolve as a promising new way of targeted treatment for SHH MB patients.
Collapse
Affiliation(s)
- Catena Kresbach
- Department of Pediatric Hematology and Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Research Institute Children’s Cancer Center Hamburg, Hamburg, Germany
- Center of Diagnostics, Institute of Neuropathology, Center of Diagnostics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Mildred Scheel Cancer Career Center HaTriCS4, University Medical Center Hamburg- Eppendorf, Hamburg, Germany
| | - Lea Holst
- Research Institute Children’s Cancer Center Hamburg, Hamburg, Germany
| | - Melanie Schoof
- Department of Pediatric Hematology and Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Research Institute Children’s Cancer Center Hamburg, Hamburg, Germany
| | - Tara Leven
- Department of Pediatric Hematology and Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Research Institute Children’s Cancer Center Hamburg, Hamburg, Germany
| | - Carolin Göbel
- Department of Pediatric Hematology and Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Research Institute Children’s Cancer Center Hamburg, Hamburg, Germany
| | - Sina Neyazi
- Department of Pediatric Hematology and Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Research Institute Children’s Cancer Center Hamburg, Hamburg, Germany
| | - Jacqueline Tischendorf
- Department of Pediatric Hematology and Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Research Institute Children’s Cancer Center Hamburg, Hamburg, Germany
| | - Carolin Loose
- Research Institute Children’s Cancer Center Hamburg, Hamburg, Germany
| | - Antonina Wrzeszcz
- Department of Pediatric Hematology and Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Research Institute Children’s Cancer Center Hamburg, Hamburg, Germany
| | - Timur Yorgan
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Stefan Rutkowski
- Department of Pediatric Hematology and Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Ulrich Schüller
- Department of Pediatric Hematology and Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Research Institute Children’s Cancer Center Hamburg, Hamburg, Germany
- Center of Diagnostics, Institute of Neuropathology, Center of Diagnostics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
19
|
Bibbò F, Asadzadeh F, Boccia A, Sorice C, Bianco O, Saccà CD, Majello B, Donofrio V, Bifano D, De Martino L, Quaglietta L, Cristofano A, Covelli EM, Cinalli G, Ferrucci V, De Antonellis P, Zollo M. Targeting Group 3 Medulloblastoma by the Anti-PRUNE-1 and Anti-LSD1/KDM1A Epigenetic Molecules. Int J Mol Sci 2024; 25:3917. [PMID: 38612726 PMCID: PMC11011515 DOI: 10.3390/ijms25073917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 03/26/2024] [Accepted: 03/28/2024] [Indexed: 04/14/2024] Open
Abstract
Medulloblastoma (MB) is a highly malignant childhood brain tumor. Group 3 MB (Gr3 MB) is considered to have the most metastatic potential, and tailored therapies for Gr3 MB are currently lacking. Gr3 MB is driven by PRUNE-1 amplification or overexpression. In this paper, we found that PRUNE-1 was transcriptionally regulated by lysine demethylase LSD1/KDM1A. This study aimed to investigate the therapeutic potential of inhibiting both PRUNE-1 and LSD1/KDM1A with the selective inhibitors AA7.1 and SP-2577, respectively. We found that the pharmacological inhibition had a substantial efficacy on targeting the metastatic axis driven by PRUNE-1 (PRUNE-1-OTX2-TGFβ-PTEN) in Gr3 MB. Using RNA seq transcriptomic feature data in Gr3 MB primary cells, we provide evidence that the combination of AA7.1 and SP-2577 positively affects neuronal commitment, confirmed by glial fibrillary acidic protein (GFAP)-positive differentiation and the inhibition of the cytotoxic components of the tumor microenvironment and the epithelial-mesenchymal transition (EMT) by the down-regulation of N-Cadherin protein expression. We also identified an impairing action on the mitochondrial metabolism and, consequently, oxidative phosphorylation, thus depriving tumors cells of an important source of energy. Furthermore, by overlapping the genomic mutational signatures through WES sequence analyses with RNA seq transcriptomic feature data, we propose in this paper that the combination of these two small molecules can be used in a second-line treatment in advanced therapeutics against Gr3 MB. Our study demonstrates that the usage of PRUNE-1 and LSD1/KDM1A inhibitors in combination represents a novel therapeutic approach for these highly aggressive metastatic MB tumors.
Collapse
Affiliation(s)
- Francesca Bibbò
- Department of Molecular Medicine and Medical Biotechnological DMMBM, University Federico II of Naples, 80131 Naples, Italy; (F.B.); (V.F.); (P.D.A.)
- CEINGE Biotecnologie Avanzate “Franco Salvatore”, 80131 Naples, Italy; (F.A.); (A.B.); (C.S.); (O.B.)
| | - Fatemeh Asadzadeh
- CEINGE Biotecnologie Avanzate “Franco Salvatore”, 80131 Naples, Italy; (F.A.); (A.B.); (C.S.); (O.B.)
- SEMM European School of Molecular Medicine, 20139 Milan, Italy
| | - Angelo Boccia
- CEINGE Biotecnologie Avanzate “Franco Salvatore”, 80131 Naples, Italy; (F.A.); (A.B.); (C.S.); (O.B.)
| | - Carmen Sorice
- CEINGE Biotecnologie Avanzate “Franco Salvatore”, 80131 Naples, Italy; (F.A.); (A.B.); (C.S.); (O.B.)
| | - Orazio Bianco
- CEINGE Biotecnologie Avanzate “Franco Salvatore”, 80131 Naples, Italy; (F.A.); (A.B.); (C.S.); (O.B.)
| | - Carmen Daniela Saccà
- Department of Biology, University Federico II of Naples, 80138 Naples, Italy; (C.D.S.); (B.M.)
| | - Barbara Majello
- Department of Biology, University Federico II of Naples, 80138 Naples, Italy; (C.D.S.); (B.M.)
| | - Vittoria Donofrio
- Department of Pathology, Santobono-Pausilipon Children’s Hospital, AORN, 80129 Naples, Italy; (V.D.); (D.B.)
| | - Delfina Bifano
- Department of Pathology, Santobono-Pausilipon Children’s Hospital, AORN, 80129 Naples, Italy; (V.D.); (D.B.)
| | - Lucia De Martino
- Pediatric Neuro-Oncology, Santobono-Pausilipon Children’s Hospital, AORN, 80129 Naples, Italy; (L.D.M.); (L.Q.)
| | - Lucia Quaglietta
- Pediatric Neuro-Oncology, Santobono-Pausilipon Children’s Hospital, AORN, 80129 Naples, Italy; (L.D.M.); (L.Q.)
| | - Adriana Cristofano
- Pediatric Neuroradiology, Santobono-Pausilipon Children’s Hospital, AORN, 80129 Naples, Italy; (A.C.); (E.M.C.)
| | - Eugenio Maria Covelli
- Pediatric Neuroradiology, Santobono-Pausilipon Children’s Hospital, AORN, 80129 Naples, Italy; (A.C.); (E.M.C.)
| | - Giuseppe Cinalli
- Pediatric Neurosurgery, Santobono-Pausilipon Children’s Hospital, AORN, 80129 Naples, Italy;
| | - Veronica Ferrucci
- Department of Molecular Medicine and Medical Biotechnological DMMBM, University Federico II of Naples, 80131 Naples, Italy; (F.B.); (V.F.); (P.D.A.)
- CEINGE Biotecnologie Avanzate “Franco Salvatore”, 80131 Naples, Italy; (F.A.); (A.B.); (C.S.); (O.B.)
| | - Pasqualino De Antonellis
- Department of Molecular Medicine and Medical Biotechnological DMMBM, University Federico II of Naples, 80131 Naples, Italy; (F.B.); (V.F.); (P.D.A.)
- CEINGE Biotecnologie Avanzate “Franco Salvatore”, 80131 Naples, Italy; (F.A.); (A.B.); (C.S.); (O.B.)
| | - Massimo Zollo
- Department of Molecular Medicine and Medical Biotechnological DMMBM, University Federico II of Naples, 80131 Naples, Italy; (F.B.); (V.F.); (P.D.A.)
- CEINGE Biotecnologie Avanzate “Franco Salvatore”, 80131 Naples, Italy; (F.A.); (A.B.); (C.S.); (O.B.)
- DAI Medicina di Laboratorio e Trasfusionale, ‘AOU Federico II Policlinico’, 80131 Naples, Italy
| |
Collapse
|
20
|
Sheng H, Li H, Zeng H, Zhang B, Lu Y, Liu X, Xu Z, Zhang J, Zhang L. Heterogeneity and tumoral origin of medulloblastoma in the single-cell era. Oncogene 2024; 43:839-850. [PMID: 38355808 PMCID: PMC10942862 DOI: 10.1038/s41388-024-02967-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 02/05/2024] [Indexed: 02/16/2024]
Abstract
Medulloblastoma is one of the most common malignant pediatric brain tumors derived from posterior fossa. The current treatment includes maximal safe surgical resection, radiotherapy, whole cranio-spinal radiation and adjuvant with chemotherapy. However, it can only limitedly prolong the survival time with severe side effects and relapse. Defining the intratumoral heterogeneity, cellular origin and identifying the interaction network within tumor microenvironment are helpful for understanding the mechanisms of medulloblastoma tumorigenesis and relapse. Due to technological limitations, the mechanisms of cellular heterogeneity and tumor origin have not been fully understood. Recently, the emergence of single-cell technology has provided a powerful tool for achieving the goal of understanding the mechanisms of tumorigenesis. Several studies have demonstrated the intratumoral heterogeneity and tumor origin for each subtype of medulloblastoma utilizing the single-cell RNA-seq, which has not been uncovered before using conventional technologies. In this review, we present an overview of the current progress in understanding of cellular heterogeneity and tumor origin of medulloblastoma and discuss novel findings in the age of single-cell technologies.
Collapse
Affiliation(s)
- Hui Sheng
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Haotai Li
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Han Zeng
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Bin Zhang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yu Lu
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Xixi Liu
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Zhongwen Xu
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Jing Zhang
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Liguo Zhang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
21
|
Sinha S, Hembram KC, Chatterjee S. Targeting signaling pathways in cancer stem cells: A potential approach for developing novel anti-cancer therapeutics. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2024; 385:157-209. [PMID: 38663959 DOI: 10.1016/bs.ircmb.2024.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2024]
Abstract
Cancer stem cells (CSCs) have emerged as prime players in the intricate landscape of cancer development, progression, and resistance to traditional treatments. These unique cellular subpopulations own the remarkable capability of self-renewal and differentiation, giving rise to the diverse cellular makeup of tumors and fostering their recurrence following conventional therapies. In the quest for developing more effective cancer therapeutics, the focus has now shifted toward targeting the signaling pathways that govern CSCs behavior. This chapter underscores the significance of these signaling pathways in CSC biology and their potential as pivotal targets for the development of novel chemotherapy approaches. We delve into several key signaling pathways essential for maintaining the defining characteristics of CSCs, including the Wnt, Hedgehog, Notch, JAK-STAT, NF-κB pathways, among others, shedding light on their potential crosstalk. Furthermore, we highlight the latest advancements in CSC-targeted therapies, spanning from promising preclinical models to ongoing clinical trials. A comprehensive understanding of the intricate molecular aspects of CSC signaling pathways and their manipulation holds the prospective to revolutionize cancer treatment paradigms. This, in turn, could lead to more efficacious and personalized therapies with the ultimate goal of eradicating CSCs and enhancing overall patient outcomes. The exploration of CSC signaling pathways represents a key step towards a brighter future in the battle against cancer.
Collapse
Affiliation(s)
- Saptarshi Sinha
- National Institute of Biomedical Genomics, Kalyani, West Bengal, India
| | | | - Subhajit Chatterjee
- Laboratory of Cellular Oncology, Center for Cancer Research, National Cancer Institute, National Institute of Health, Bethesda, MD, United States.
| |
Collapse
|
22
|
Amiri-Farsani M, Taheri Z, Tirbakhsh Gouran S, Chabok O, Safarpour-Dehkordi M, Kazemi Roudsari M. Cancer stem cells: Recent trends in cancer therapy. NUCLEOSIDES, NUCLEOTIDES & NUCLEIC ACIDS 2024; 43:1383-1414. [PMID: 38319997 DOI: 10.1080/15257770.2024.2311789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 01/22/2024] [Accepted: 01/24/2024] [Indexed: 02/08/2024]
Abstract
Cancer stem cells (CSCs) are a subset of tumor cells that were first identified in blood cancers (leukemia) and are considered promising therapeutic targets in cancer treatment. These cells are the cause of many malignancies including metastasis, heterogeneity, drug resistance, and tumor recurrence. They carry out these activities through multiple transcriptional programs and signaling pathways. This review summarizes the characteristics of cancer stem cells, explains their key signaling pathways and factors, and discusses targeted therapies for cancer stem cells. Investigating these mechanisms and signaling pathways responsible for treatment failure may help identify new therapeutic pathways in cancer.
Collapse
Affiliation(s)
- Maryam Amiri-Farsani
- Department of Biology, Faculty of Basic Sciences, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
| | - Zahra Taheri
- Department of Biology and Biotechnology, Pavia University, Pavia, Italy
| | - Somayeh Tirbakhsh Gouran
- Department of Biology, Faculty of Basic Sciences, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
| | - Omid Chabok
- Department of Biology, Faculty of Basic Sciences, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
| | - Maryam Safarpour-Dehkordi
- Department of Biology, Faculty of Basic Sciences, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
| | - Mahsa Kazemi Roudsari
- Department of Biology, Faculty of Basic Sciences, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
| |
Collapse
|
23
|
Zeng LH, Tang C, Yao M, He Q, Qv M, Ren Q, Xu Y, Shen T, Gu W, Xu C, Zou C, Ji X, Wu X, Wang J. Phosphorylation of human glioma-associated oncogene 1 on Ser937 regulates Sonic Hedgehog signaling in medulloblastoma. Nat Commun 2024; 15:987. [PMID: 38307877 PMCID: PMC10837140 DOI: 10.1038/s41467-024-45315-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 01/19/2024] [Indexed: 02/04/2024] Open
Abstract
Aberrant activation of sonic hedgehog (SHH) signaling and its effector transcriptional factor GLI1 are essential for oncogenesis of SHH-dependent medulloblastoma (MBSHH) and basal cell carcinoma (BCC). Here, we show that SHH inactivates p38α (MAPK14) in a smoothened-dependent manner, conversely, p38α directly phosphorylates GLI1 on Ser937/Ser941 (human/mouse) to induce GLI1's proteasomal degradation and negates the transcription of SHH signaling. As a result, Gli1S941E loss-of-function knock-in significantly reduces the incidence and severity of smoothened-M2 transgene-induced spontaneous MBSHH, whereas Gli1S941A gain-of-function knock-in phenocopies Gli1 transgene in causing BCC-like proliferation in skin. Correspondingly, phospho-Ser937-GLI1, a destabilized form of GLI1, positively correlates to the overall survival rate of children with MBSHH. Together, these findings indicate that SHH-induced p38α inactivation and subsequent GLI1 dephosphorylation and stabilization in controlling SHH signaling and may provide avenues for future interventions of MBSHH and BCC.
Collapse
Affiliation(s)
- Ling-Hui Zeng
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang, Province, Hangzhou City University School of Medicine, Hangzhou, 310015, China.
| | - Chao Tang
- Department of Pharmacology, Zhejiang University School of Medicine, Hangzhou, 310058, China
- National Clinical Research Center for Child Health, the Children's Hospital of Zhejiang University School of Medicine, Hangzhou, 310053, China
| | - Minli Yao
- Department of Pharmacology, Zhejiang University School of Medicine, Hangzhou, 310058, China
- Department of Orthopaedics, the Affiliated Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, China
| | - Qiangqiang He
- Department of Pharmacology, Zhejiang University School of Medicine, Hangzhou, 310058, China
- Department of Orthopaedics, the Affiliated Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, China
| | - Meiyu Qv
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang, Province, Hangzhou City University School of Medicine, Hangzhou, 310015, China
- Department of Pharmacology, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Qianlei Ren
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang, Province, Hangzhou City University School of Medicine, Hangzhou, 310015, China
| | - Yana Xu
- Department of Pharmacology, Zhejiang University School of Medicine, Hangzhou, 310058, China
- Department of Orthopaedics, the Affiliated Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, China
| | - Tingyu Shen
- Department of Pharmacology, Zhejiang University School of Medicine, Hangzhou, 310058, China
- Department of Orthopaedics, the Affiliated Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, China
| | - Weizhong Gu
- National Clinical Research Center for Child Health, the Children's Hospital of Zhejiang University School of Medicine, Hangzhou, 310053, China
| | - Chengyun Xu
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang, Province, Hangzhou City University School of Medicine, Hangzhou, 310015, China
- Department of Pharmacology, Zhejiang University School of Medicine, Hangzhou, 310058, China
- National Clinical Research Center for Child Health, the Children's Hospital of Zhejiang University School of Medicine, Hangzhou, 310053, China
| | - Chaochun Zou
- National Clinical Research Center for Child Health, the Children's Hospital of Zhejiang University School of Medicine, Hangzhou, 310053, China
| | - Xing Ji
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang, Province, Hangzhou City University School of Medicine, Hangzhou, 310015, China
- Department of Pharmacology, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Ximei Wu
- Department of Pharmacology, Zhejiang University School of Medicine, Hangzhou, 310058, China.
- Department of Orthopaedics, the Affiliated Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, China.
| | - Jirong Wang
- Department of Geriatrics, Zhejiang Provincial Key Lab of Geriatrics, Zhejiang Hospital, Hangzhou, 310030, China.
| |
Collapse
|
24
|
Buccilli B, Rodriguez Molina MA, Redrovan Palomeque DP, Herrera Sabán CA, C Caliwag FM, Contreras Flores CJS, Abeysiriwardana CWJ, Diarte E, Arruarana VS, Calderon Martinez E. Liquid Biopsies for Monitoring Medulloblastoma: Circulating Tumor DNA as a Biomarker for Disease Progression and Treatment Response. Cureus 2024; 16:e51712. [PMID: 38313884 PMCID: PMC10838584 DOI: 10.7759/cureus.51712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/05/2024] [Indexed: 02/06/2024] Open
Abstract
Pediatric brain tumors, including medulloblastoma (MB), represent a significant challenge in clinical oncology. Early diagnosis, accurate monitoring of therapeutic response, and the detection of minimal residual disease (MRD) are crucial for improving outcomes in these patients. This review aims to explore recent advancements in liquid biopsy techniques for monitoring pediatric brain tumors, with a specific focus on medulloblastoma. The primary research question is how liquid biopsy techniques can be effectively utilized for these purposes. Liquid biopsies, particularly the analysis of circulating tumor DNA (ctDNA) in cerebrospinal fluid (CSF), are investigated as promising noninvasive tools. This comprehensive review examines the components of liquid biopsies, including ctDNA, cell-free DNA (cfDNA), and microRNA (miRNA). Their applications in diagnosis, prognosis, and MRD assessment are critically assessed. The review also discusses the role of liquid biopsies in categorizing medulloblastoma subgroups, risk stratification, and the identification of therapeutic targets. Liquid biopsies have shown promising applications in the pediatric brain tumor field, particularly in medulloblastoma. They offer noninvasive means of diagnosis, monitoring treatment response, and detecting MRD. These biopsies have played a pivotal role in subgroup classification and risk stratification of medulloblastoma patients, aiding in the identification of therapeutic targets. However, challenges related to sensitivity and specificity are noted. In conclusion, this review highlights the growing importance of liquid biopsies, specifically ctDNA analysis in CSF, in pediatric brain tumor management, with a primary focus on medulloblastoma. Liquid biopsies have the potential to revolutionize patient care by enabling early diagnosis, accurate monitoring, and MRD detection. Nevertheless, further research is essential to validate their clinical utility fully. The evolving landscape of liquid biopsy applications underscores their promise in improving outcomes for pediatric brain tumor patients.
Collapse
Affiliation(s)
- Barbara Buccilli
- Department of Human Neuroscience, Sapienza University of Rome, Rome, ITA
- Department of Neurosurgery, Mount Sinai Hospital, New York, USA
| | | | | | - Cindy A Herrera Sabán
- Department of General Practice, Facultad de Ciencias Médicas, Universidad de San Carlos de Guatemala, San Carlos, GTM
| | - Fides M C Caliwag
- Department of General Practice, Ateneo School of Medicine and Public Health, Pasig City, PHL
| | | | | | - Edna Diarte
- Department of Medicine, Universidad Autónoma de Sinaloa, Culiacán, MEX
| | - Victor S Arruarana
- Department of Internal Medicine, Brookdale University Hospital Medical Center, New York, USA
| | | |
Collapse
|
25
|
Hasan A, Khan NA, Uddin S, Khan AQ, Steinhoff M. Deregulated transcription factors in the emerging cancer hallmarks. Semin Cancer Biol 2024; 98:31-50. [PMID: 38123029 DOI: 10.1016/j.semcancer.2023.12.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 11/25/2023] [Accepted: 12/14/2023] [Indexed: 12/23/2023]
Abstract
Cancer progression is a multifaceted process that entails several stages and demands the persistent expression or activation of transcription factors (TFs) to facilitate growth and survival. TFs are a cluster of proteins with DNA-binding domains that attach to promoter or enhancer DNA strands to start the transcription of genes by collaborating with RNA polymerase and other supporting proteins. They are generally acknowledged as the major regulatory molecules that coordinate biological homeostasis and the appropriate functioning of cellular components, subsequently contributing to human physiology. TFs proteins are crucial for controlling transcription during the embryonic stage and development, and the stability of different cell types depends on how they function in different cell types. The development and progression of cancer cells and tumors might be triggered by any anomaly in transcription factor function. It has long been acknowledged that cancer development is accompanied by the dysregulated activity of TF alterations which might result in faulty gene expression. Recent studies have suggested that dysregulated transcription factors play a major role in developing various human malignancies by altering and rewiring metabolic processes, modifying the immune response, and triggering oncogenic signaling cascades. This review emphasizes the interplay between TFs involved in metabolic and epigenetic reprogramming, evading immune attacks, cellular senescence, and the maintenance of cancer stemness in cancerous cells. The insights presented herein will facilitate the development of innovative therapeutic modalities to tackle the dysregulated transcription factors underlying cancer.
Collapse
Affiliation(s)
- Adria Hasan
- Molecular Cell Biology Laboratory, Integral Information and Research Centre-4 (IIRC-4), Integral University, Lucknow 226026, India; Department of Bioengineering, Faculty of Engineering, Integral University, Lucknow 226026, India
| | - Naushad Ahmad Khan
- Department of Surgery, Trauma and Vascular Surgery Clinical Research, Hamad General Hospital, Doha 3050, Qatar
| | - Shahab Uddin
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha 3050, Qatar; Department of Biosciences, Integral University, Lucknow 226026, India; Animal Research Center, Qatar University, Doha, Qatar; Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha 3050, Qatar
| | - Abdul Q Khan
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha 3050, Qatar.
| | - Martin Steinhoff
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha 3050, Qatar; Animal Research Center, Qatar University, Doha, Qatar; Department of Dermatology and Venereology, Rumailah Hospital, Hamad Medical Corporation, Doha 3050, Qatar; Department of Medicine, Weill Cornell Medicine Qatar, Qatar Foundation-Education City, Doha 24144, Qatar; Department of Medicine, Weill Cornell Medicine, 1300 York Avenue, New York, NY 10065, USA; College of Medicine, Qatar University, Doha 2713, Qatar
| |
Collapse
|
26
|
Mushtaq N, Ul Ain R, Hamid SA, Bouffet E. Evolution of Systemic Therapy in Medulloblastoma Including Irradiation-Sparing Approaches. Diagnostics (Basel) 2023; 13:3680. [PMID: 38132264 PMCID: PMC10743079 DOI: 10.3390/diagnostics13243680] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 12/11/2023] [Accepted: 12/13/2023] [Indexed: 12/23/2023] Open
Abstract
The management of medulloblastoma in children has dramatically changed over the past four decades, with the development of chemotherapy protocols aiming at improving survival and reducing long-term toxicities of high-dose craniospinal radiotherapy. While the staging and treatment of medulloblastoma were until recently based on the modified Chang's system, recent advances in the molecular biology of medulloblastoma have revolutionized approaches in the management of this increasingly complex disease. The evolution of systemic therapies is described in this review.
Collapse
Affiliation(s)
- Naureen Mushtaq
- Division of Pediatric Oncology, Department of Oncology, Aga Khan University, Karachi 74800, Pakistan;
| | - Rahat Ul Ain
- Department of Pediatric Hematology/Oncology & Bone Marrow Transplant, University of Child Health Sciences, Children’s Hospital, Lahore 54600, Pakistan;
| | - Syed Ahmer Hamid
- Department of Pediatric Hematology and Oncology, Indus Hospital & Health Network, Karachi 74800, Pakistan;
| | - Eric Bouffet
- Global Neuro-Oncology Program, Department of Global Pediatric Medicine, St. Jude Children’s Research Hospital, St. Jude Global, Memphis, TN 38105, USA
| |
Collapse
|
27
|
Rousseau J, Bennett J, Lim-Fat MJ. Brain Tumors in Adolescents and Young Adults: A Review. Semin Neurol 2023; 43:909-928. [PMID: 37949116 DOI: 10.1055/s-0043-1776775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2023]
Abstract
Brain tumors account for the majority of cancer-related deaths in adolescents and young adults (AYAs), defined as individuals aged 15 to 39. AYAs constitute a distinct population in which both pediatric- and adult-type central nervous system (CNS) tumors can be observed. Clinical manifestations vary depending on tumor location and often include headaches, seizures, focal neurological deficits, and signs of increased intracranial pressure. With the publication of the updated World Health Organization CNS tumor classification in 2021, diagnoses have been redefined to emphasize key molecular alterations. Gliomas represent the majority of malignant brain tumors in this age group. Glioneuronal and neuronal tumors are associated with longstanding refractory epilepsy. The classification of ependymomas and medulloblastomas has been refined, enabling better identification of low-risk tumors that could benefit from treatment de-escalation strategies. Owing to their midline location, germ cell tumors often present with oculomotor and visual alterations as well as endocrinopathies. The management of CNS tumors in AYA is often extrapolated from pediatric and adult guidelines, and generally consists of a combination of surgical resection, radiation therapy, and systemic therapy. Ongoing research is investigating multiple agents targeting molecular alterations, including isocitrate dehydrogenase inhibitors, SHH pathway inhibitors, and BRAF inhibitors. AYA patients with CNS tumors should be managed by multidisciplinary teams and counselled regarding fertility preservation, psychosocial comorbidities, and risks of long-term comorbidities. There is a need for further efforts to design clinical trials targeting CNS tumors in the AYA population.
Collapse
Affiliation(s)
- Julien Rousseau
- Division of Neurology, Department of Medicine, Universite de Montreal, Montreal, Quebec, Canada
| | - Julie Bennett
- Division of Haematology/Oncology, The Hospital for Sick Children, Toronto, Ontario, Canada
- Canadian AYA Neuro-Oncology Network (CANON), Toronto, Ontario, Canada
| | - Mary Jane Lim-Fat
- Canadian AYA Neuro-Oncology Network (CANON), Toronto, Ontario, Canada
- Division of Neurology, Department of Medicine, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
28
|
Chapman OS, Luebeck J, Sridhar S, Wong ITL, Dixit D, Wang S, Prasad G, Rajkumar U, Pagadala MS, Larson JD, He BJ, Hung KL, Lange JT, Dehkordi SR, Chandran S, Adam M, Morgan L, Wani S, Tiwari A, Guccione C, Lin Y, Dutta A, Lo YY, Juarez E, Robinson JT, Korshunov A, Michaels JEA, Cho YJ, Malicki DM, Coufal NG, Levy ML, Hobbs C, Scheuermann RH, Crawford JR, Pomeroy SL, Rich JN, Zhang X, Chang HY, Dixon JR, Bagchi A, Deshpande AJ, Carter H, Fraenkel E, Mischel PS, Wechsler-Reya RJ, Bafna V, Mesirov JP, Chavez L. Circular extrachromosomal DNA promotes tumor heterogeneity in high-risk medulloblastoma. Nat Genet 2023; 55:2189-2199. [PMID: 37945900 PMCID: PMC10703696 DOI: 10.1038/s41588-023-01551-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 09/22/2023] [Indexed: 11/12/2023]
Abstract
Circular extrachromosomal DNA (ecDNA) in patient tumors is an important driver of oncogenic gene expression, evolution of drug resistance and poor patient outcomes. Applying computational methods for the detection and reconstruction of ecDNA across a retrospective cohort of 481 medulloblastoma tumors from 465 patients, we identify circular ecDNA in 82 patients (18%). Patients with ecDNA-positive medulloblastoma were more than twice as likely to relapse and three times as likely to die within 5 years of diagnosis. A subset of tumors harbored multiple ecDNA lineages, each containing distinct amplified oncogenes. Multimodal sequencing, imaging and CRISPR inhibition experiments in medulloblastoma models reveal intratumoral heterogeneity of ecDNA copy number per cell and frequent putative 'enhancer rewiring' events on ecDNA. This study reveals the frequency and diversity of ecDNA in medulloblastoma, stratified into molecular subgroups, and suggests copy number heterogeneity and enhancer rewiring as oncogenic features of ecDNA.
Collapse
Affiliation(s)
- Owen S Chapman
- Bioinformatics and Systems Biology Graduate Program, University of California San Diego, San Diego, CA, USA
- Department of Medicine, University of California San Diego, San Diego, CA, USA
- Sanford Burnham Prebys Medical Discovery Institute, San Diego, CA, USA
| | - Jens Luebeck
- Bioinformatics and Systems Biology Graduate Program, University of California San Diego, San Diego, CA, USA
- Department of Computer Science and Engineering, University of California San Diego, San Diego, CA, USA
| | - Sunita Sridhar
- Department of Medicine, University of California San Diego, San Diego, CA, USA
- Department of Pediatrics, UC San Diego and Rady Children's Hospital, San Diego, CA, USA
| | - Ivy Tsz-Lo Wong
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
- Sarafan ChEM-H, Stanford University, Stanford, CA, USA
| | - Deobrat Dixit
- Sanford Burnham Prebys Medical Discovery Institute, San Diego, CA, USA
- Department of Neurology and Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY, USA
| | - Shanqing Wang
- Department of Computer Science and Engineering, University of California San Diego, San Diego, CA, USA
| | - Gino Prasad
- Department of Computer Science and Engineering, University of California San Diego, San Diego, CA, USA
| | - Utkrisht Rajkumar
- Department of Computer Science and Engineering, University of California San Diego, San Diego, CA, USA
| | - Meghana S Pagadala
- Medical Scientist Training Program, University of California San Diego, San Diego, CA, USA
- Biomedical Sciences Graduate Program, University of California San Diego, San Diego, CA, USA
| | - Jon D Larson
- Sanford Burnham Prebys Medical Discovery Institute, San Diego, CA, USA
| | - Britney Jiayu He
- Center for Personal Dynamic Regulomes, Stanford University, Stanford, CA, USA
| | - King L Hung
- Center for Personal Dynamic Regulomes, Stanford University, Stanford, CA, USA
| | - Joshua T Lange
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
- Sarafan ChEM-H, Stanford University, Stanford, CA, USA
| | - Siavash R Dehkordi
- Department of Computer Science and Engineering, University of California San Diego, San Diego, CA, USA
| | | | - Miriam Adam
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Ling Morgan
- Department of Medicine, University of California San Diego, San Diego, CA, USA
| | - Sameena Wani
- Sanford Burnham Prebys Medical Discovery Institute, San Diego, CA, USA
| | - Ashutosh Tiwari
- Sanford Burnham Prebys Medical Discovery Institute, San Diego, CA, USA
| | - Caitlin Guccione
- Bioinformatics and Systems Biology Graduate Program, University of California San Diego, San Diego, CA, USA
- Department of Medicine, University of California San Diego, San Diego, CA, USA
| | - Yingxi Lin
- Department of Computer Science and Engineering, University of California San Diego, San Diego, CA, USA
| | - Aditi Dutta
- Department of Computer Science and Engineering, University of California San Diego, San Diego, CA, USA
| | - Yan Yuen Lo
- Sanford Burnham Prebys Medical Discovery Institute, San Diego, CA, USA
- Rady Children's Institute for Genomic Medicine, Rady Children's Hospital and Healthcare Center, San Diego, CA, USA
| | - Edwin Juarez
- Department of Medicine, University of California San Diego, San Diego, CA, USA
| | - James T Robinson
- Department of Medicine, University of California San Diego, San Diego, CA, USA
| | - Andrey Korshunov
- Clinical Cooperation Unit Neuropathology (B300), German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), and National Center for Tumor Diseases (NCT), Im Neuenheimer Feld 280, Heidelberg, Germany
| | - John-Edward A Michaels
- Papé Pediatric Research Institute, Department of Pediatrics and Knight Cancer Insitute, Oregon Health and Sciences University, Portland, OR, USA
| | - Yoon-Jae Cho
- Papé Pediatric Research Institute, Department of Pediatrics and Knight Cancer Insitute, Oregon Health and Sciences University, Portland, OR, USA
| | - Denise M Malicki
- Division of Pathology, UC San Diego and Rady Children's Hospital, San Diego, CA, USA
| | - Nicole G Coufal
- Department of Pediatrics, UC San Diego and Rady Children's Hospital, San Diego, CA, USA
| | - Michael L Levy
- Division of Pathology, UC San Diego and Rady Children's Hospital, San Diego, CA, USA
| | - Charlotte Hobbs
- Rady Children's Institute for Genomic Medicine, Rady Children's Hospital and Healthcare Center, San Diego, CA, USA
| | - Richard H Scheuermann
- J. Craig Venter Institute, La Jolla, CA, USA
- Department of Pathology, University of California San Diego, San Diego, CA, USA
| | - John R Crawford
- Department of Pediatrics, University of California Irvine and Children's Hospital Orange County, Irvine, CA, USA
| | - Scott L Pomeroy
- Eli and Edythe Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Neurology, Boston Children's Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Jeremy N Rich
- UPMC Hillman Cancer Center, Pittsburgh, PA, USA
- Department of Neurology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Xinlian Zhang
- Division of Biostatistics and Bioinformatics, Department of Family Medicine and Public Health, University of California San Diego, San Diego, CA, USA
| | - Howard Y Chang
- Center for Personal Dynamic Regulomes, Stanford University, Stanford, CA, USA
- Department of Genetics, Stanford University, Stanford, CA, USA
- Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Jesse R Dixon
- Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Anindya Bagchi
- Sanford Burnham Prebys Medical Discovery Institute, San Diego, CA, USA
| | | | - Hannah Carter
- Department of Medicine, University of California San Diego, San Diego, CA, USA
- Moores Cancer Center, University of California San Diego, San Diego, CA, USA
| | - Ernest Fraenkel
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Eli and Edythe Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Paul S Mischel
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
- Sarafan ChEM-H, Stanford University, Stanford, CA, USA
| | - Robert J Wechsler-Reya
- Sanford Burnham Prebys Medical Discovery Institute, San Diego, CA, USA
- Department of Neurology and Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY, USA
| | - Vineet Bafna
- Department of Computer Science and Engineering, University of California San Diego, San Diego, CA, USA
- Moores Cancer Center, University of California San Diego, San Diego, CA, USA
| | - Jill P Mesirov
- Department of Medicine, University of California San Diego, San Diego, CA, USA
- Moores Cancer Center, University of California San Diego, San Diego, CA, USA
| | - Lukas Chavez
- Department of Medicine, University of California San Diego, San Diego, CA, USA.
- Sanford Burnham Prebys Medical Discovery Institute, San Diego, CA, USA.
- Rady Children's Institute for Genomic Medicine, Rady Children's Hospital and Healthcare Center, San Diego, CA, USA.
- Moores Cancer Center, University of California San Diego, San Diego, CA, USA.
| |
Collapse
|
29
|
Malik JR, Podany AT, Khan P, Shaffer CL, Siddiqui JA, Baranowska‐Kortylewicz J, Le J, Fletcher CV, Ether SA, Avedissian SN. Chemotherapy in pediatric brain tumor and the challenge of the blood-brain barrier. Cancer Med 2023; 12:21075-21096. [PMID: 37997517 PMCID: PMC10726873 DOI: 10.1002/cam4.6647] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 09/18/2023] [Accepted: 10/12/2023] [Indexed: 11/25/2023] Open
Abstract
BACKGROUND Pediatric brain tumors (PBT) stand as the leading cause of cancer-related deaths in children. Chemoradiation protocols have improved survival rates, even for non-resectable tumors. Nonetheless, radiation therapy carries the risk of numerous adverse effects that can have long-lasting, detrimental effects on the quality of life for survivors. The pursuit of chemotherapeutics that could obviate the need for radiotherapy remains ongoing. Several anti-tumor agents, including sunitinib, valproic acid, carboplatin, and panobinostat, have shown effectiveness in various malignancies but have not proven effective in treating PBT. The presence of the blood-brain barrier (BBB) plays a pivotal role in maintaining suboptimal concentrations of anti-cancer drugs in the central nervous system (CNS). Ongoing research aims to modulate the integrity of the BBB to attain clinically effective drug concentrations in the CNS. However, current findings on the interaction of exogenous chemical agents with the BBB remain limited and do not provide a comprehensive explanation for the ineffectiveness of established anti-cancer drugs in PBT. METHODS We conducted our search for chemotherapeutic agents associated with the blood-brain barrier (BBB) using the following keywords: Chemotherapy in Cancer, Chemotherapy in Brain Cancer, Chemotherapy in PBT, BBB Inhibition of Drugs into CNS, Suboptimal Concentration of CNS Drugs, PBT Drugs and BBB, and Potential PBT Drugs. We reviewed each relevant article before compiling the information in our manuscript. For the generation of figures, we utilized BioRender software. FOCUS We focused our article search on chemical agents for PBT and subsequently investigated the role of the BBB in this context. Our search criteria included clinical trials, both randomized and non-randomized studies, preclinical research, review articles, and research papers. FINDING Our research suggests that, despite the availability of potent chemotherapeutic agents for several types of cancer, the effectiveness of these chemical agents in treating PBT has not been comprehensively explored. Additionally, there is a scarcity of studies examining the role of the BBB in the suboptimal outcomes of PBT treatment, despite the effectiveness of these drugs for other types of tumors.
Collapse
Affiliation(s)
- Johid Reza Malik
- Antiviral Pharmacology LaboratoryCollege of Pharmacy, University of Nebraska Medical CenterOmahaNebraskaUSA
| | - Anthony T. Podany
- Antiviral Pharmacology LaboratoryCollege of Pharmacy, University of Nebraska Medical CenterOmahaNebraskaUSA
- Pediatric Clinical Pharmacology ProgramChild Health Research Institute, University of Nebraska Medical CenterOmahaNebraskaUSA
| | - Parvez Khan
- Department of Biochemistry and Molecular BiologyUniversity of Nebraska Medical CenterOmahaNebraskaUSA
| | - Christopher L. Shaffer
- Pediatric Clinical Pharmacology ProgramChild Health Research Institute, University of Nebraska Medical CenterOmahaNebraskaUSA
| | - Jawed A. Siddiqui
- Department of Biochemistry and Molecular BiologyUniversity of Nebraska Medical CenterOmahaNebraskaUSA
| | | | - Jennifer Le
- University of California San Diego Skaggs School of Pharmacy and Pharmaceutical SciencesSan DiegoCaliforniaUSA
| | - Courtney V. Fletcher
- Antiviral Pharmacology LaboratoryCollege of Pharmacy, University of Nebraska Medical CenterOmahaNebraskaUSA
| | - Sadia Afruz Ether
- Antiviral Pharmacology LaboratoryCollege of Pharmacy, University of Nebraska Medical CenterOmahaNebraskaUSA
| | - Sean N. Avedissian
- Antiviral Pharmacology LaboratoryCollege of Pharmacy, University of Nebraska Medical CenterOmahaNebraskaUSA
- Pediatric Clinical Pharmacology ProgramChild Health Research Institute, University of Nebraska Medical CenterOmahaNebraskaUSA
| |
Collapse
|
30
|
Wang Q, Xin X, Dai Q, Sun M, Chen J, Mostafavi E, Shen Y, Li X. Medulloblastoma targeted therapy: From signaling pathways heterogeneity and current treatment dilemma to the recent advances in development of therapeutic strategies. Pharmacol Ther 2023; 250:108527. [PMID: 37703952 DOI: 10.1016/j.pharmthera.2023.108527] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 08/27/2023] [Accepted: 09/05/2023] [Indexed: 09/15/2023]
Abstract
Medulloblastoma (MB) is a major pediatric malignant brain tumor that arises in the cerebellum. MB tumors exhibit highly heterogeneous driven by diverse genetic alterations and could be divided into four major subgroups based on their different biological drivers and molecular features (Wnt, Sonic hedgehog (Shh), group 3, and group 4 MB). Even though the therapeutic strategies for each MB subtype integrate their pathogenesis and were developed to focus on their specific target sites, the unexpected drug non-selective cytotoxicity, low drug accumulation in the brain, and complexed MB tumor microenvironment still be huge obstacles to achieving satisfied MB therapeutic efficiency. This review discussed the current advances in modern MB therapeutic strategy development. Through the recent advances in knowledge of the origin, molecular pathogenesis of MB subtypes and their current therapeutic barriers, we particularly reviewed the current development in advanced MB therapeutic strategy committed to overcome MB treatment obstacles, focusing on novel signaling pathway targeted therapeutic agents and their combination discovery, advanced drug delivery systems design, and MB immunotherapy strategy development.
Collapse
Affiliation(s)
- Qiyue Wang
- School of Pharmaceutical Science, Nanjing Tech University, Nanjing 211816, China
| | - Xiaofei Xin
- Center for Research Development and Evaluation of Pharmaceutical Excipients and Generic Drugs, Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, China
| | - Qihao Dai
- School of Pharmaceutical Science, Nanjing Tech University, Nanjing 211816, China
| | - Mengjuan Sun
- Center for Research Development and Evaluation of Pharmaceutical Excipients and Generic Drugs, Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, China
| | - Jinhua Chen
- Center for Research Development and Evaluation of Pharmaceutical Excipients and Generic Drugs, Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, China
| | - Ebrahim Mostafavi
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA.
| | - Yan Shen
- Center for Research Development and Evaluation of Pharmaceutical Excipients and Generic Drugs, Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, China.
| | - Xueming Li
- School of Pharmaceutical Science, Nanjing Tech University, Nanjing 211816, China.
| |
Collapse
|
31
|
Borlase S, DeCarlo A, Coudière-Morrison L, Liang L, Porter CJ, Ramaswamy V, Werbowetski-Ogilvie TE. Cross-species analysis of SHH medulloblastoma models reveals significant inhibitory effects of trametinib on tumor progression. Cell Death Discov 2023; 9:347. [PMID: 37726268 PMCID: PMC10509237 DOI: 10.1038/s41420-023-01646-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 08/28/2023] [Accepted: 09/08/2023] [Indexed: 09/21/2023] Open
Abstract
Sonic Hedgehog (SHH) medulloblastomas (MBs) exhibit an intermediate prognosis and extensive intertumoral heterogeneity. While SHH pathway antagonists are effective in post-pubertal patients, younger patients exhibit significant side effects, and tumors that harbor mutations in downstream SHH pathway genes will be drug resistant. Thus, novel targeted therapies are needed. Here, we performed preclinical testing of the potent MEK inhibitor (MEKi) trametinib on tumor properties across 2 human and 3 mouse SHH MB models in vitro and in 3 orthotopic MB xenograft models in vivo. Trametinib significantly reduces tumorsphere size, stem/progenitor cell proliferation, viability, and migration. RNA-sequencing on human and mouse trametinib treated cells corroborated these findings with decreased expression of cell cycle, stem cell pathways and SHH-pathway related genes concomitant with increases in genes associated with cell death and ciliopathies. Importantly, trametinib also decreases tumor growth and increases survival in vivo. Cell cycle related E2F target gene sets are significantly enriched for genes that are commonly downregulated in both trametinib treated tumorspheres and primary xenografts. However, IL6/JAK STAT3 and TNFα/NFκB signaling gene sets are specifically upregulated following trametinib treatment in vivo indicative of compensatory molecular changes following long-term MEK inhibition. Our study reveals a novel role for trametinib in effectively attenuating SHH MB tumor progression and warrants further investigation of this potent MEK1/2 inhibitor either alone or in combination with other targeted therapies for the treatment of SHH MB exhibiting elevated MAPK pathway activity.
Collapse
Affiliation(s)
- Stephanie Borlase
- Department of Biochemistry and Medical Genetics, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Alexandria DeCarlo
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
- The Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON, Canada
- Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON, Canada
| | - Ludivine Coudière-Morrison
- Department of Biochemistry and Medical Genetics, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Lisa Liang
- Department of Biochemistry and Medical Genetics, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Christopher J Porter
- Ottawa Bioinformatics Core Facility, Ottawa Hospital Research Institute, Ottawa, ON, Canada
| | - Vijay Ramaswamy
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
- The Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON, Canada
- Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON, Canada
- Division of Haematology/Oncology, The Hospital for Sick Children, Toronto, ON, Canada
| | - Tamra E Werbowetski-Ogilvie
- Department of Biochemistry and Medical Genetics, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada.
- Texas Children's Hospital, Houston, TX, USA.
- Department of Pediatrics, Section of Hematology-Oncology, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
32
|
Manfreda L, Rampazzo E, Persano L, Viola G, Bortolozzi R. Surviving the hunger games: Metabolic reprogramming in medulloblastoma. Biochem Pharmacol 2023; 215:115697. [PMID: 37481140 DOI: 10.1016/j.bcp.2023.115697] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 07/10/2023] [Accepted: 07/11/2023] [Indexed: 07/24/2023]
Abstract
Medulloblastoma is a highly malignant pediatric brain tumor characterized by its aggressive nature and limited treatment options. Metabolic changes have recently emerged as key factors in the development, progression, and response to therapy in various types of cancer. Cancer cells exhibit remarkable adaptability by modulating glucose, lipids, amino acids, and nucleotide metabolism to survive in nutrient- and oxygen-deprived environments. Although medulloblastoma has been extensively studied from a genomic perspective, leading to the identification of four subgroups and their respective subcategories, the investigation of its metabolic phenotype has remained relatively understudied. This review focus on the available literature, aiming to summarize the current knowledge about the main metabolic pathways that are deregulated in medulloblastoma tumors, while emphasizing the controversial aspects and the progress that is yet to be made. Furthermore, we underscored the insights gained so far regarding the impact of metabolism on the development of drug resistance in medulloblastoma and the therapeutic strategies employed to target specific metabolic pathways.
Collapse
Affiliation(s)
- Lorenzo Manfreda
- Department of Women's and Children's Health, University of Padova, Padova, Italy; Pediatric Research Institute, Padova, Italy
| | - Elena Rampazzo
- Department of Women's and Children's Health, University of Padova, Padova, Italy; Pediatric Research Institute, Padova, Italy
| | - Luca Persano
- Department of Women's and Children's Health, University of Padova, Padova, Italy; Pediatric Research Institute, Padova, Italy
| | - Giampietro Viola
- Department of Women's and Children's Health, University of Padova, Padova, Italy; Pediatric Research Institute, Padova, Italy
| | - Roberta Bortolozzi
- Department of Women's and Children's Health, University of Padova, Padova, Italy; Pediatric Research Institute, Padova, Italy; Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova, Italy.
| |
Collapse
|
33
|
Leary SES, Onar-Thomas A, Fangusaro J, Gottardo NG, Cohen K, Smith A, Huang A, Haas-Kogan D, Fouladi M. Children's Oncology Group's 2023 blueprint for research: Central nervous system tumors. Pediatr Blood Cancer 2023; 70 Suppl 6:e30600. [PMID: 37534382 PMCID: PMC10569820 DOI: 10.1002/pbc.30600] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 07/14/2023] [Indexed: 08/04/2023]
Abstract
Tumors of the central nervous system (CNS) are a leading cause of morbidity and mortality in the pediatric population. Molecular characterization in the last decade has redefined CNS tumor diagnoses and risk stratification; confirmed the unique biology of pediatric tumors as distinct entities from tumors that occur in adulthood; and led to the first novel targeted therapies receiving Food and Drug Administration (FDA) approval for children with CNS tumors. There remain significant challenges to overcome: children with unresectable low-grade glioma may require multiple prolonged courses of therapy affecting quality of life; children with high-grade glioma have a dismal long-term prognosis; children with medulloblastoma may suffer significant short- and long-term morbidity from multimodal cytotoxic therapy, and approaches to improve survival in ependymoma remain elusive. The Children's Oncology Group (COG) is uniquely positioned to conduct the next generation of practice-changing clinical trials through rapid prospective molecular characterization and therapy evaluation in well-defined clinical and molecular groups.
Collapse
Affiliation(s)
- Sarah E. S. Leary
- Ben Towne Center for Childhood Cancer Research, Seattle Children’s, Seattle, WA
| | - Arzu Onar-Thomas
- Department of Biostatistics, St. Jude Children’s Research Hospital, Memphis, TN
| | - Jason Fangusaro
- Aflac Cancer and Blood Disorders Center, Children’s Healthcare of Atlanta and Emory University School of Medicine, Atlanta, GA
| | | | - Kenneth Cohen
- The Sidney Kimmel Comprehensive Cancer Center, John’s Hopkins, Baltimore, MD
| | - Amy Smith
- Division of Pediatric Hematology, Oncology and Bone Marrow Transplant, Orlando Health-Arnold Palmer Hospital, Orlando, FL
| | - Annie Huang
- Department of Hematology/Oncology, Hospital for Sick Children, Toronto, Canada
| | - Daphne Haas-Kogan
- Department of Radiation Oncology, Brigham and Women’s Hospital, Dana-Farber Cancer Institute, Boston Children’s Hospital, Harvard Medical School, Boston, MA
| | - Maryam Fouladi
- Division of Hematology, Oncology, and Bone Marrow Transplant, Nationwide Children’s Hospital, Columbus OH
| |
Collapse
|
34
|
Prados MD. Current Strategies for Management of Medulloblastoma. Diagnostics (Basel) 2023; 13:2622. [PMID: 37627881 PMCID: PMC10453892 DOI: 10.3390/diagnostics13162622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 08/04/2023] [Accepted: 08/05/2023] [Indexed: 08/27/2023] Open
Abstract
Medulloblastoma (MB) is the most common malignant central nervous system tumor of childhood, which includes multiple molecular subgroups (4) and subtypes (8 to 12), each with different outcomes and potential therapy options. Long-term survival remains poor for many of the subtypes, with high late mortality risks and poor health-related quality of life. Initial treatment strategies integrate molecular subgroup information with more standard clinical and phenotypic factors to risk stratify newly diagnosed patients. Clinical trials treating relapsed disease, often incurable, now include multiple new approaches in an attempt to improve progression-free and overall survival.
Collapse
Affiliation(s)
- Michael D Prados
- Charles B. Wilson Professor of Neurological Surgery and Professor of Pediatrics, University of California San Francisco, 1450 3rd Street, San Francisco, CA 94150, USA
| |
Collapse
|
35
|
Fang H, Zhang Y, Lin C, Sun Z, Wen W, Sheng H, Lin J. Primary microcephaly gene CENPE is a novel biomarker and potential therapeutic target for non-WNT/non-SHH medulloblastoma. Front Immunol 2023; 14:1227143. [PMID: 37593739 PMCID: PMC10427915 DOI: 10.3389/fimmu.2023.1227143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 07/17/2023] [Indexed: 08/19/2023] Open
Abstract
Background Non-WNT/non-SHH medulloblastoma (MB) is one of the subtypes with the highest genetic heterogeneity in MB, and its current treatment strategies have unsatisfactory results and significant side effects. As a member of the centromere protein (CENP) family, centromeric protein E (CENPE) is a microtubule plus-end-directed kinetochore protein. Heterozygous mutations in CENPE can leads to primary microcephaly syndrome. It has been reported that CENPE is upregulated in MB, but its role in MB development is still unknown. Methods We downloaded the relevant RNA seq data and matched clinical information from the GEO database. Bioinformatics analysis includes differential gene expression analysis, Kaplan-Meier survival analysis, nomogram analysis, ROC curve analysis, immune cell infiltration analysis, and gene function enrichment analysis. Moreover, the effects of CENPE expression on cell proliferation, cell cycle, and p53 signaling pathway of non-WNT/non-SHH MB were validated using CENPE specific siRNA in vitro experiments. Results Compared with normal tissues, CENPE was highly expressed in MB tissues and served as an independent prognostic factor for survival in non-WNT/non-SHH MB patients. The nomogram analysis and ROC curve further confirmed these findings. At the same time, immune cell infiltration analysis showed that CENPE may participate in the immune response and tumor microenvironment (TME) of non-WNT/non-SHH MB. In addition, gene enrichment analysis showed that CENPE was closely related to the cell cycle and p53 pathway in non-WNT/non-SHH MB. In vitro experimental validation showed that knockdown of CENPE inhibited cell proliferation by activating the p53 signaling pathway and blocking the cell cycle. Conclusion The expression of CENPE in non-WNT/non-SHH MB was positively correlated with poor prognosis. CENPE may affect tumor progression by regulating cell cycle, p53 pathway, and immune infiltration. Hence, CENPE is highly likely a novel biomarker and potential therapeutic target for non-WNT/non-SHH MB.
Collapse
Affiliation(s)
- Huangyi Fang
- Wenzhou Medical University, Wenzhou, China
- Department of Neurosurgery, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yusong Zhang
- Wenzhou Medical University, Wenzhou, China
- Department of Surgery, The First People’s Hospital of Jiashan, Jiaxing, China
| | | | - Zhenkai Sun
- Wenzhou Medical University, Wenzhou, China
- Department of Neurosurgery, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Wei Wen
- Wenzhou Medical University, Wenzhou, China
- Department of Neurosurgery, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Hansong Sheng
- Wenzhou Medical University, Wenzhou, China
- Department of Neurosurgery, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Jian Lin
- Wenzhou Medical University, Wenzhou, China
- Department of Neurosurgery, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- The Key Laboratory of Pediatric Hematology and Oncology Diseases of Wenzhou, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
36
|
Slika H, Alimonti P, Raj D, Caraway C, Alomari S, Jackson EM, Tyler B. The Neurodevelopmental and Molecular Landscape of Medulloblastoma Subgroups: Current Targets and the Potential for Combined Therapies. Cancers (Basel) 2023; 15:3889. [PMID: 37568705 PMCID: PMC10417410 DOI: 10.3390/cancers15153889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 07/24/2023] [Accepted: 07/28/2023] [Indexed: 08/13/2023] Open
Abstract
Medulloblastoma is the most common malignant pediatric brain tumor and is associated with significant morbidity and mortality in the pediatric population. Despite the use of multiple therapeutic approaches consisting of surgical resection, craniospinal irradiation, and multiagent chemotherapy, the prognosis of many patients with medulloblastoma remains dismal. Additionally, the high doses of radiation and the chemotherapeutic agents used are associated with significant short- and long-term complications and adverse effects, most notably neurocognitive delay. Hence, there is an urgent need for the development and clinical integration of targeted treatment regimens with greater efficacy and superior safety profiles. Since the adoption of the molecular-based classification of medulloblastoma into wingless (WNT) activated, sonic hedgehog (SHH) activated, group 3, and group 4, research efforts have been directed towards unraveling the genetic, epigenetic, transcriptomic, and proteomic profiles of each subtype. This review aims to delineate the progress that has been made in characterizing the neurodevelopmental and molecular features of each medulloblastoma subtype. It further delves into the implications that these characteristics have on the development of subgroup-specific targeted therapeutic agents. Furthermore, it highlights potential future avenues for combining multiple agents or strategies in order to obtain augmented effects and evade the development of treatment resistance in tumors.
Collapse
Affiliation(s)
- Hasan Slika
- Faculty of Medicine, American University of Beirut, Beirut P.O. Box 11-0236, Lebanon;
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; (D.R.); (C.C.); (S.A.); (E.M.J.)
| | - Paolo Alimonti
- School of Medicine, Vita-Salute San Raffaele University, 20132 Milan, Italy;
| | - Divyaansh Raj
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; (D.R.); (C.C.); (S.A.); (E.M.J.)
| | - Chad Caraway
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; (D.R.); (C.C.); (S.A.); (E.M.J.)
| | - Safwan Alomari
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; (D.R.); (C.C.); (S.A.); (E.M.J.)
| | - Eric M. Jackson
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; (D.R.); (C.C.); (S.A.); (E.M.J.)
| | - Betty Tyler
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; (D.R.); (C.C.); (S.A.); (E.M.J.)
| |
Collapse
|
37
|
Penco-Campillo M, Pages G, Martial S. Angiogenesis and Lymphangiogenesis in Medulloblastoma Development. BIOLOGY 2023; 12:1028. [PMID: 37508458 PMCID: PMC10376362 DOI: 10.3390/biology12071028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 07/19/2023] [Accepted: 07/20/2023] [Indexed: 07/30/2023]
Abstract
Medulloblastoma (MB) is the most prevalent brain tumor in children. Although the current cure rate stands at approximately 70%, the existing treatments that involve a combination of radio- and chemotherapy are highly detrimental to the patients' quality of life. These aggressive therapies often result in a significant reduction in the overall well-being of the patients. Moreover, the most aggressive forms of MB frequently relapse, leading to a fatal outcome in a majority of cases. However, MB is highly vascularized, and both angiogenesis and lymphangiogenesis are believed to play crucial roles in tumor development and spread. In this context, our objective is to provide a comprehensive overview of the current research progress in elucidating the functions of these two pathways.
Collapse
Affiliation(s)
- Manon Penco-Campillo
- Institute for Research on Cancer and Aging (IRCAN), Université Côte d'Azur, CNRS UMR 7284 and INSERM U1081, 33 Avenue de Valombrose, 06107 Nice, France
| | - Gilles Pages
- Institute for Research on Cancer and Aging (IRCAN), Université Côte d'Azur, CNRS UMR 7284 and INSERM U1081, 33 Avenue de Valombrose, 06107 Nice, France
| | - Sonia Martial
- Institute for Research on Cancer and Aging (IRCAN), Université Côte d'Azur, CNRS UMR 7284 and INSERM U1081, 33 Avenue de Valombrose, 06107 Nice, France
| |
Collapse
|
38
|
Rechberger JS, Toll SA, Vanbilloen WJF, Daniels DJ, Khatua S. Exploring the Molecular Complexity of Medulloblastoma: Implications for Diagnosis and Treatment. Diagnostics (Basel) 2023; 13:2398. [PMID: 37510143 PMCID: PMC10378552 DOI: 10.3390/diagnostics13142398] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 07/07/2023] [Accepted: 07/11/2023] [Indexed: 07/30/2023] Open
Abstract
Medulloblastoma is the most common malignant brain tumor in children. Over the last few decades, significant progress has been made in revealing the key molecular underpinnings of this disease, leading to the identification of distinct molecular subgroups with different clinical outcomes. In this review, we provide an update on the molecular landscape of medulloblastoma and treatment strategies. We discuss the four main molecular subgroups (WNT-activated, SHH-activated, and non-WNT/non-SHH groups 3 and 4), highlighting the key genetic alterations and signaling pathways associated with each entity. Furthermore, we explore the emerging role of epigenetic regulation in medulloblastoma and the mechanism of resistance to therapy. We also delve into the latest developments in targeted therapies and immunotherapies. Continuing collaborative efforts are needed to further unravel the complex molecular mechanisms and profile optimal treatment for this devastating disease.
Collapse
Affiliation(s)
- Julian S Rechberger
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN 55905, USA
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN 55905, USA
| | - Stephanie A Toll
- Department of Pediatrics, Division of Hematology/Oncology, Children's Hospital of Michigan, Detroit, MI 48201, USA
| | - Wouter J F Vanbilloen
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN 55905, USA
- Department of Neurology, Elisabeth-Tweesteden Hospital, 5022 Tilburg, The Netherlands
| | - David J Daniels
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN 55905, USA
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN 55905, USA
| | - Soumen Khatua
- Department of Pediatric Hematology/Oncology, Section of Neuro-Oncology, Mayo Clinic, Rochester, MN 55905, USA
| |
Collapse
|
39
|
Nakase Y, Hamada A, Obayashi F, Kitamura N, Hata T, Yamamoto T, Okamoto T. Establishment of induced pluripotent stem cells derived from patients and healthy siblings of a nevoid basal cell carcinoma syndrome family. In Vitro Cell Dev Biol Anim 2023; 59:395-400. [PMID: 37460876 PMCID: PMC10374668 DOI: 10.1007/s11626-023-00778-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 06/06/2023] [Indexed: 07/29/2023]
Abstract
It is known that a nevoid basal cell carcinoma syndrome (NBCCS) is characterized by a combination of developmental abnormalities and a predisposition to form various tumors. Although it is possible to create disease models via gene editing, there are significant potential problems with this approach such as off-target mutations and differences in SNPs. On the other hand, since disease families share common SNPs, research using iPSCs derived from both patients and healthy siblings of the same disease family is very important. Thus, establishment of induced pluripotent stem cells derived from patients and healthy siblings of the same NBCCS family will be of great importance to study the etiology of this disease and to develop therapeutics. In this study, we generated hiPSCs using peripheral blood mononuclear cells derived from the patients and healthy siblings of familial NBCCS with the novel mutation in PTCH1_c.3298_3299insAAG in the feeder- and serum-free culture conditions using SeVdp. In addition, disease-specific hiPSCs such as those expressing the PTCH1_c.3298_3299insAAG mutation could be powerful tools for revealing the genotype-phenotype relationship and pathogenicity of NBCCS.
Collapse
Affiliation(s)
- Yoji Nakase
- Department of Oral Oncology, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3, Kasumi, Minami-Ku, Hiroshima-City, Hiroshima, 734-8553, Japan
| | - Atsuko Hamada
- Department of Oral Oncology, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3, Kasumi, Minami-Ku, Hiroshima-City, Hiroshima, 734-8553, Japan.
| | - Fumitaka Obayashi
- Department of Oral Oncology, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3, Kasumi, Minami-Ku, Hiroshima-City, Hiroshima, 734-8553, Japan
| | - Naoya Kitamura
- Department of Oral and Maxillofacial Surgery, Kochi Medical School, Kochi University, Kochi, Japan
| | - Tsuyoshi Hata
- Department of Oral Surgery, Kawasaki Medical School, Okayama, Japan
- Present affiliation: Kondo Dental Clinic, Medical Corporation Mutsumikai, Okayama, Japan
| | - Tetsuya Yamamoto
- Department of Oral and Maxillofacial Surgery, Kochi Medical School, Kochi University, Kochi, Japan
| | - Tetsuji Okamoto
- Department of Oral Oncology, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3, Kasumi, Minami-Ku, Hiroshima-City, Hiroshima, 734-8553, Japan
- School of Medical Sciences, University of East Asia, Shimonoseki, Japan
| |
Collapse
|
40
|
Ntenti C, Lallas K, Papazisis G. Clinical, Histological, and Molecular Prognostic Factors in Childhood Medulloblastoma: Where Do We Stand? Diagnostics (Basel) 2023; 13:diagnostics13111915. [PMID: 37296767 DOI: 10.3390/diagnostics13111915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 05/26/2023] [Accepted: 05/28/2023] [Indexed: 06/12/2023] Open
Abstract
Medulloblastomas, highly aggressive neoplasms of the central nervous system (CNS) that present significant heterogeneity in clinical presentation, disease course, and treatment outcomes, are common in childhood. Moreover, patients who survive may be diagnosed with subsequent malignancies during their life or could develop treatment-related medical conditions. Genetic and transcriptomic studies have classified MBs into four subgroups: wingless type (WNT), Sonic Hedgehog (SHH), Group 3, and Group 4, with distinct histological and molecular profiles. However, recent molecular findings resulted in the WHO updating their guidelines and stratifying medulloblastomas into further molecular subgroups, changing the clinical stratification and treatment management. In this review, we discuss most of the histological, clinical, and molecular prognostic factors, as well the feasibility of their application, for better characterization, prognostication, and treatment of medulloblastomas.
Collapse
Affiliation(s)
- Charikleia Ntenti
- First Department of Pharmacology, School of Medicine, Aristotle University of Thessaloniki, 54621 Thessaloniki, Greece
| | - Konstantinos Lallas
- Department of Medical Oncology, School of Medicine, Aristotle University of Thessaloniki, 54621 Thessaloniki, Greece
| | - Georgios Papazisis
- Clinical Research Unit, Special Unit for Biomedical Research and Education (BRESU), School of Medicine, Aristotle University of Thessaloniki, 54621 Thessaloniki, Greece
| |
Collapse
|
41
|
Varun BR, Ramani P, Arya I, Palani J, Joseph AP. Epithelial-mesenchymal transition in cancer stem cells: Therapeutic implications. J Oral Maxillofac Pathol 2023; 27:359-363. [PMID: 37854925 PMCID: PMC10581319 DOI: 10.4103/jomfp.jomfp_308_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 09/29/2022] [Accepted: 11/14/2022] [Indexed: 10/20/2023] Open
Abstract
Cancer stem cells (CSCs) are cancer cells that possess characteristics associated with normal stem cells, specifically the ability to give rise to all cell types found in a particular cancer sample. CSCs may generate tumors through the processes of self-renewal and differentiation into multiple cell types. CSCs present in tumors are normally resistant to conventional therapy and may contribute to tumor recurrence. Tumor residuals present after therapy, with CSCs enrichment, have all the hallmarks of epithelial-mesenchymal transition (EMT). In this review, we discuss the relationship between EMT and CSCs in cancer progression and its therapeutic implications in oral squamous cell carcinoma.
Collapse
Affiliation(s)
- BR Varun
- Department of Oral and Maxillofacial Pathology, PMS College of Dental Sciences and Research, Trivandrum, Kerala, India
| | - Pratiba Ramani
- Department of Oral and Maxillofacial Pathology, Saveetha Dental College, Poonamallee High Road, Chennai, Tamil Nadu, India
| | - I Arya
- Department of Oral and Maxillofacial Pathology, PMS College of Dental Sciences and Research, Trivandrum, Kerala, India
| | - Jayanthi Palani
- Department of Oral and Maxillofacial Pathology, Azeezia College of Dental Sciences and Research, Meyyannoor, Kollam, Kerala, India
| | - Anna P. Joseph
- Department of Oral and Maxillofacial Pathology, PMS College of Dental Sciences and Research, Trivandrum, Kerala, India
| |
Collapse
|
42
|
Suthapot P, Chiangjong W, Chaiyawat P, Choochuen P, Pruksakorn D, Sangkhathat S, Hongeng S, Anurathapan U, Chutipongtanate S. Genomics-Driven Precision Medicine in Pediatric Solid Tumors. Cancers (Basel) 2023; 15:1418. [PMID: 36900212 PMCID: PMC10000495 DOI: 10.3390/cancers15051418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 02/10/2023] [Accepted: 02/15/2023] [Indexed: 03/12/2023] Open
Abstract
Over the past decades, several study programs have conducted genetic testing in cancer patients to identify potential genetic targets for the development of precision therapeutic strategies. These biomarker-driven trials have demonstrated improved clinical outcomes and progression-free survival rates in various types of cancers, especially for adult malignancies. However, similar progress in pediatric cancers has been slow due to their distinguished mutation profiles compared to adults and the low frequency of recurrent genomic alterations. Recently, increased efforts to develop precision medicine for childhood malignancies have led to the identification of genomic alterations and transcriptomic profiles of pediatric patients which presents promising opportunities to study rare and difficult-to-access neoplasms. This review summarizes the current state of known and potential genetic markers for pediatric solid tumors and provides perspectives on precise therapeutic strategies that warrant further investigations.
Collapse
Affiliation(s)
- Praewa Suthapot
- Division of Hematology and Oncology, Department of Pediatrics, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok 10400, Thailand
- Department of Biomedical Science and Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Songkhla 90110, Thailand
- Center of Multidisciplinary Technology for Advanced Medicine (CMUTEAM), Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Wararat Chiangjong
- Pediatric Translational Research Unit, Department of Pediatrics, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok 10400, Thailand
| | - Parunya Chaiyawat
- Center of Multidisciplinary Technology for Advanced Medicine (CMUTEAM), Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
- Musculoskeletal Science and Translational Research Center, Department of Orthopedics, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Pongsakorn Choochuen
- Department of Biomedical Science and Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Songkhla 90110, Thailand
- Translational Medicine Research Center, Faculty of Medicine, Prince of Songkla University, Songkhla 90110, Thailand
| | - Dumnoensun Pruksakorn
- Center of Multidisciplinary Technology for Advanced Medicine (CMUTEAM), Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
- Musculoskeletal Science and Translational Research Center, Department of Orthopedics, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Surasak Sangkhathat
- Department of Biomedical Science and Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Songkhla 90110, Thailand
- Translational Medicine Research Center, Faculty of Medicine, Prince of Songkla University, Songkhla 90110, Thailand
- Department of Surgery, Faculty of Medicine, Prince of Songkla University, Songkhla 90110, Thailand
| | - Suradej Hongeng
- Division of Hematology and Oncology, Department of Pediatrics, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok 10400, Thailand
| | - Usanarat Anurathapan
- Division of Hematology and Oncology, Department of Pediatrics, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok 10400, Thailand
| | - Somchai Chutipongtanate
- Division of Epidemiology, Department of Environmental and Public Health Sciences, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| |
Collapse
|
43
|
Zarzosa P, Garcia-Gilabert L, Hladun R, Guillén G, Gallo-Oller G, Pons G, Sansa-Girona J, Segura MF, Sánchez de Toledo J, Moreno L, Gallego S, Roma J. Targeting the Hedgehog Pathway in Rhabdomyosarcoma. Cancers (Basel) 2023; 15:727. [PMID: 36765685 PMCID: PMC9913695 DOI: 10.3390/cancers15030727] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 01/18/2023] [Indexed: 01/27/2023] Open
Abstract
Aberrant activation of the Hedgehog (Hh) signalling pathway is known to play an oncogenic role in a wide range of cancers; in the particular case of rhabdomyosarcoma, this pathway has been demonstrated to be an important player for both oncogenesis and cancer progression. In this review, after a brief description of the pathway and the characteristics of its molecular components, we describe, in detail, the main activation mechanisms that have been found in cancer, including ligand-dependent, ligand-independent and non-canonical activation. In this context, the most studied inhibitors, i.e., SMO inhibitors, have shown encouraging results for the treatment of basal cell carcinoma and medulloblastoma, both tumour types often associated with mutations that lead to the activation of the pathway. Conversely, SMO inhibitors have not fulfilled expectations in tumours-among them sarcomas-mostly associated with ligand-dependent Hh pathway activation. Despite the controversy existing regarding the results obtained with SMO inhibitors in these types of tumours, several compounds have been (or are currently being) evaluated in sarcoma patients. Finally, we discuss some of the reasons that could explain why, in some cases, encouraging preclinical data turned into disappointing results in the clinical setting.
Collapse
Affiliation(s)
- Patricia Zarzosa
- Childhood Cancer and Blood Disorders, Vall d’Hebron Research Institute (VHIR), Hospital Universitari Vall d’Hebron, Universitat Autònoma de Barcelona, 08035 Barcelona, Spain
| | - Lia Garcia-Gilabert
- Childhood Cancer and Blood Disorders, Vall d’Hebron Research Institute (VHIR), Hospital Universitari Vall d’Hebron, Universitat Autònoma de Barcelona, 08035 Barcelona, Spain
| | - Raquel Hladun
- Pediatric Oncology and Hematology Department, Hospital Universitari Vall d’Hebron, Universitat Autònoma de Barcelona, 08035 Barcelona, Spain
| | - Gabriela Guillén
- Pediatric Surgery Department, Hospital Universitari Vall d’Hebron, Universitat Autònoma de Barcelona, 08035 Barcelona, Spain
| | - Gabriel Gallo-Oller
- Childhood Cancer and Blood Disorders, Vall d’Hebron Research Institute (VHIR), Hospital Universitari Vall d’Hebron, Universitat Autònoma de Barcelona, 08035 Barcelona, Spain
| | - Guillem Pons
- Childhood Cancer and Blood Disorders, Vall d’Hebron Research Institute (VHIR), Hospital Universitari Vall d’Hebron, Universitat Autònoma de Barcelona, 08035 Barcelona, Spain
| | - Julia Sansa-Girona
- Childhood Cancer and Blood Disorders, Vall d’Hebron Research Institute (VHIR), Hospital Universitari Vall d’Hebron, Universitat Autònoma de Barcelona, 08035 Barcelona, Spain
| | - Miguel F. Segura
- Childhood Cancer and Blood Disorders, Vall d’Hebron Research Institute (VHIR), Hospital Universitari Vall d’Hebron, Universitat Autònoma de Barcelona, 08035 Barcelona, Spain
| | - Josep Sánchez de Toledo
- Childhood Cancer and Blood Disorders, Vall d’Hebron Research Institute (VHIR), Hospital Universitari Vall d’Hebron, Universitat Autònoma de Barcelona, 08035 Barcelona, Spain
- Pediatric Oncology and Hematology Department, Hospital Universitari Vall d’Hebron, Universitat Autònoma de Barcelona, 08035 Barcelona, Spain
| | - Lucas Moreno
- Pediatric Oncology and Hematology Department, Hospital Universitari Vall d’Hebron, Universitat Autònoma de Barcelona, 08035 Barcelona, Spain
| | - Soledad Gallego
- Childhood Cancer and Blood Disorders, Vall d’Hebron Research Institute (VHIR), Hospital Universitari Vall d’Hebron, Universitat Autònoma de Barcelona, 08035 Barcelona, Spain
- Pediatric Oncology and Hematology Department, Hospital Universitari Vall d’Hebron, Universitat Autònoma de Barcelona, 08035 Barcelona, Spain
| | - Josep Roma
- Childhood Cancer and Blood Disorders, Vall d’Hebron Research Institute (VHIR), Hospital Universitari Vall d’Hebron, Universitat Autònoma de Barcelona, 08035 Barcelona, Spain
| |
Collapse
|
44
|
Cai J, Wang Y, Wang X, Ai Z, Li T, Pu X, Yang X, Yao Y, He J, Cheng SY, Yu T, Liu C, Yue S. AMPK attenuates SHH subgroup medulloblastoma growth and metastasis by inhibiting NF-κB activation. Cell Biosci 2023; 13:15. [PMID: 36683064 PMCID: PMC9867863 DOI: 10.1186/s13578-023-00963-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 01/13/2023] [Indexed: 01/23/2023] Open
Abstract
BACKGROUND Medulloblastoma (MB) is one of the most common malignant pediatric brain tumors. Metastasis and relapse are the leading causes of death in MB patients. The initiation of the SHH subgroup of MB (SHH-MB) is due to the aberrant activation of Sonic Hedgehog (Shh) signaling. However, the mechanisms for its metastasis are still unknown. RESULTS AMP-dependent protein kinase (AMPK) restrains the activation of Shh signaling pathway, thereby impeding the proliferation of SHH-MB cells. More importantly, AMPK also hinders the growth and metastasis of SHH-MB cells by regulating NF-κB signaling pathway. Furthermore, Vismodegib and TPCA-1, which block the Shh and NF-κB pathways, respectively, synergistically restrained the growth, migration, and invasion of SHH-MB cells. CONCLUSIONS This work demonstrates that AMPK functions through two signaling pathways, SHH-GLI1 and NF-κB. AMPK-NF-κB axis is a potential target for molecular therapy of SHH-MB, and the combinational blockade of NF-κB and Shh pathways confers synergy for SHH-MB therapy.
Collapse
Affiliation(s)
- Jing Cai
- grid.89957.3a0000 0000 9255 8984Department of Medical Genetics, Jiangsu Key Laboratory of Xenotransplantation, Nanjing Medical University, Nanjing, 211166 China
| | - Yue Wang
- grid.89957.3a0000 0000 9255 8984Department of Medical Genetics, Jiangsu Key Laboratory of Xenotransplantation, Nanjing Medical University, Nanjing, 211166 China
| | - Xinfa Wang
- grid.452511.6Department of Neurosurgery, Children’s Hospital of Nanjing Medical University, Nanjing, 210093 China
| | - Zihe Ai
- grid.89957.3a0000 0000 9255 8984Department of Medical Genetics, Jiangsu Key Laboratory of Xenotransplantation, Nanjing Medical University, Nanjing, 211166 China
| | - Tianyuan Li
- grid.89957.3a0000 0000 9255 8984Department of Medical Genetics, Jiangsu Key Laboratory of Xenotransplantation, Nanjing Medical University, Nanjing, 211166 China
| | - Xiaohong Pu
- grid.428392.60000 0004 1800 1685Departments of Pathology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008 China
| | - Xin Yang
- grid.89957.3a0000 0000 9255 8984Department of Medical Genetics, Jiangsu Key Laboratory of Xenotransplantation, Nanjing Medical University, Nanjing, 211166 China
| | - Yixing Yao
- Department of Pathology, Suzhou Ninth People’s Hospital, Suzhou, 215200 China
| | - Junping He
- grid.452511.6Department of Neurosurgery, Children’s Hospital of Nanjing Medical University, Nanjing, 210093 China
| | - Steven Y. Cheng
- grid.89957.3a0000 0000 9255 8984Department of Medical Genetics, Jiangsu Key Laboratory of Xenotransplantation, Nanjing Medical University, Nanjing, 211166 China ,grid.89957.3a0000 0000 9255 8984Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, 211166 China
| | - Tingting Yu
- grid.89957.3a0000 0000 9255 8984Department of Medical Genetics, Jiangsu Key Laboratory of Xenotransplantation, Nanjing Medical University, Nanjing, 211166 China
| | - Chen Liu
- grid.89957.3a0000 0000 9255 8984Department of Medical Genetics, Jiangsu Key Laboratory of Xenotransplantation, Nanjing Medical University, Nanjing, 211166 China
| | - Shen Yue
- grid.89957.3a0000 0000 9255 8984Department of Medical Genetics, Jiangsu Key Laboratory of Xenotransplantation, Nanjing Medical University, Nanjing, 211166 China ,grid.89957.3a0000 0000 9255 8984Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, 211166 China
| |
Collapse
|
45
|
AlRayahi J, Alwalid O, Mubarak W, Maaz AUR, Mifsud W. Pediatric Brain Tumors in the Molecular Era: Updates for the Radiologist. Semin Roentgenol 2023; 58:47-66. [PMID: 36732011 DOI: 10.1053/j.ro.2022.09.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 08/28/2022] [Accepted: 09/30/2022] [Indexed: 11/10/2022]
Affiliation(s)
- Jehan AlRayahi
- Department of Pediatric Radiology, Sidra Medicine, Doha, Qatar.
| | - Osamah Alwalid
- Department of Pediatric Radiology, Sidra Medicine, Doha, Qatar
| | - Walid Mubarak
- Department of Pediatric Radiology, Sidra Medicine, Doha, Qatar
| | - Ata Ur Rehman Maaz
- Department of Pediatric Hematology-Oncology, Sidra Medicine, Doha, Qatar
| | | |
Collapse
|
46
|
Muacevic A, Adler JR, Skubitz KM. Patched Homolog 1 (PTCH1) Mutation in a CIC-Rearranged Sarcoma: Lack of Response to the Smoothened (SMO) Vismodegib. Cureus 2023; 15:e34281. [PMID: 36843760 PMCID: PMC9957587 DOI: 10.7759/cureus.34281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/27/2023] [Indexed: 01/28/2023] Open
Abstract
Next-generation sequencing (NGS) to identify potential targets is becoming a common approach to refractory tumors. We describe a patient with a CIC-DUX4 sarcoma that harbored a patched homolog 1 (PTCH1) mutation, a mutation not previously reported in so-called Ewing family tumors. PTCH1 is part of the hedgehog signaling pathway. Basal cell carcinomas (BCC) commonly have PTCH1 mutations, and those with PTCH1 mutations are often responsive to therapy with the hedgehog pathway inhibitor vismodegib. The effect of any mutation in a gene important in cell growth and division is likely dependent upon the background biochemistry of the cell. In the current case, vismodegib was not effective. This case is the first report of a PTCH1 mutation in an Ewing family tumor and demonstrates that the utility of targeting a potential mutation may depend upon many factors, including other mutations in the signaling pathway, and importantly, also the background biochemistry of the malignant cell that may prevent effective treatment targeting.
Collapse
|
47
|
Cooney T, Lindsay H, Leary S, Wechsler-Reya R. Current studies and future directions for medulloblastoma: A review from the pacific pediatric neuro-oncology consortium (PNOC) disease working group. Neoplasia 2022; 35:100861. [PMID: 36516489 PMCID: PMC9755363 DOI: 10.1016/j.neo.2022.100861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 11/22/2022] [Accepted: 11/28/2022] [Indexed: 12/14/2022] Open
Abstract
Medulloblastoma (MB) is the most common malignant central nervous system tumor of childhood, comprising a heterogenous group of tumors each with distinct biology, clinical behavior, and prognosis. Long-term survival remains unacceptable, and those who do survive face high late mortality risk, new chronic treatment-related medical conditions, neurocognitive impairments, and poor health-related quality of life. Up-front treatment strategies now integrate molecular subgrouping with standard clinico-radiological factors to more actually risk stratify newly-diagnosed patients. To what extent this new stratification will lead to improvements in treatment outcome will be determined in the coming years. In parallel, discovery and appreciation for medulloblastoma's inter- and intra-tumoral heterogeneity continues growing. Clinical trials treating relapsed disease now encompass precision medicine, epigenetic modification, and immune therapy approaches. The Pacific Pediatric Neuro-Oncology (PNOC) Medulloblastoma Working Group is committed to developing clinical trials based on these evolving therapeutic strategies and supports translational efforts by PNOC researchers and the multi-stakeholder medulloblastoma community at large.
Collapse
Affiliation(s)
- Tab Cooney
- Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Harvard Medical School, Boston, MA, USA; Department of Pediatrics, Harvard Medical School, Boston, MA, USA.
| | - Holly Lindsay
- Texas Children's Cancer and Hematology Center, Baylor College of Medicine, Houston, TX, USA
| | - Sarah Leary
- Seattle Children's Hospital, Seattle, WA, USA
| | - Robert Wechsler-Reya
- Department of Neurology and Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, NY, USA
| |
Collapse
|
48
|
Ciulla DA, Dranchak P, Pezzullo JL, Mancusi RA, Psaras AM, Rai G, Giner JL, Inglese J, Callahan BP. A cell-based bioluminescence reporter assay of human Sonic Hedgehog protein autoprocessing to identify inhibitors and activators. J Biol Chem 2022; 298:102705. [PMID: 36400200 PMCID: PMC9772569 DOI: 10.1016/j.jbc.2022.102705] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 11/09/2022] [Accepted: 11/10/2022] [Indexed: 11/18/2022] Open
Abstract
The Sonic Hedgehog (SHh) precursor protein undergoes biosynthetic autoprocessing to cleave off and covalently attach cholesterol to the SHh signaling ligand, a vital morphogen and oncogenic effector protein. Autoprocessing is self-catalyzed by SHhC, the SHh precursor's C-terminal enzymatic domain. A method to screen for small molecule regulators of this process may be of therapeutic value. Here, we describe the development and validation of the first cellular reporter to monitor human SHhC autoprocessing noninvasively in high-throughput compatible plates. The assay couples intracellular SHhC autoprocessing using endogenous cholesterol to the extracellular secretion of the bioluminescent nanoluciferase enzyme. We developed a WT SHhC reporter line for evaluating potential autoprocessing inhibitors by concentration response-dependent suppression of extracellular bioluminescence. Additionally, a conditional mutant SHhC (D46A) reporter line was developed for identifying potential autoprocessing activators by a concentration response-dependent gain of extracellular bioluminescence. The D46A mutation removes a conserved general base that is critical for the activation of the cholesterol substrate. Inducibility of the D46A reporter was established using a synthetic sterol, 2-α carboxy cholestanol, designed to bypass the defect through intramolecular general base catalysis. To facilitate direct nanoluciferase detection in the cell culture media of 1536-well plates, we designed a novel anionic phosphonylated coelenterazine, CLZ-2P, as the nanoluciferase substrate. This new reporter system offers a long-awaited resource for small molecule discovery for cancer and for developmental disorders where SHh ligand biosynthesis is dysregulated.
Collapse
Affiliation(s)
- Daniel A Ciulla
- Chemistry Department, Binghamton University, Binghamton, New York, USA
| | - Patricia Dranchak
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland, USA
| | - John L Pezzullo
- State University of New York, College of Environmental Science and Forestry, Syracuse, New York, USA
| | - Rebecca A Mancusi
- Chemistry Department, Binghamton University, Binghamton, New York, USA
| | | | - Ganesha Rai
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland, USA
| | - José-Luis Giner
- State University of New York, College of Environmental Science and Forestry, Syracuse, New York, USA.
| | - James Inglese
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland, USA; National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, USA.
| | - Brian P Callahan
- Chemistry Department, Binghamton University, Binghamton, New York, USA.
| |
Collapse
|
49
|
Manni W, Min W. Signaling pathways in the regulation of cancer stem cells and associated targeted therapy. MedComm (Beijing) 2022; 3:e176. [PMID: 36226253 PMCID: PMC9534377 DOI: 10.1002/mco2.176] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 08/20/2022] [Accepted: 08/22/2022] [Indexed: 11/07/2022] Open
Abstract
Cancer stem cells (CSCs) are defined as a subpopulation of malignant tumor cells with selective capacities for tumor initiation, self-renewal, metastasis, and unlimited growth into bulks, which are believed as a major cause of progressive tumor phenotypes, including recurrence, metastasis, and treatment failure. A number of signaling pathways are involved in the maintenance of stem cell properties and survival of CSCs, including well-established intrinsic pathways, such as the Notch, Wnt, and Hedgehog signaling, and extrinsic pathways, such as the vascular microenvironment and tumor-associated immune cells. There is also intricate crosstalk between these signal cascades and other oncogenic pathways. Thus, targeting pathway molecules that regulate CSCs provides a new option for the treatment of therapy-resistant or -refractory tumors. These treatments include small molecule inhibitors, monoclonal antibodies that target key signaling in CSCs, as well as CSC-directed immunotherapies that harness the immune systems to target CSCs. This review aims to provide an overview of the regulating networks and their immune interactions involved in CSC development. We also address the update on the development of CSC-directed therapeutics, with a special focus on those with application approval or under clinical evaluation.
Collapse
Affiliation(s)
- Wang Manni
- Department of Biotherapy, Cancer Center, West China HospitalSichuan UniversityChengduP. R. China
| | - Wu Min
- Department of Biomedical Sciences, School of Medicine and Health SciencesUniversity of North DakotaGrand ForksNorth DakotaUSA
| |
Collapse
|
50
|
Liu G, Chen T, Zhang X, Ma X, Shi H. Small molecule inhibitors targeting the cancers. MedComm (Beijing) 2022; 3:e181. [PMID: 36254250 PMCID: PMC9560750 DOI: 10.1002/mco2.181] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 08/23/2022] [Accepted: 08/30/2022] [Indexed: 11/23/2022] Open
Abstract
Compared with traditional therapies, targeted therapy has merits in selectivity, efficacy, and tolerability. Small molecule inhibitors are one of the primary targeted therapies for cancer. Due to their advantages in a wide range of targets, convenient medication, and the ability to penetrate into the central nervous system, many efforts have been devoted to developing more small molecule inhibitors. To date, 88 small molecule inhibitors have been approved by the United States Food and Drug Administration to treat cancers. Despite remarkable progress, small molecule inhibitors in cancer treatment still face many obstacles, such as low response rate, short duration of response, toxicity, biomarkers, and resistance. To better promote the development of small molecule inhibitors targeting cancers, we comprehensively reviewed small molecule inhibitors involved in all the approved agents and pivotal drug candidates in clinical trials arranged by the signaling pathways and the classification of small molecule inhibitors. We discussed lessons learned from the development of these agents, the proper strategies to overcome resistance arising from different mechanisms, and combination therapies concerned with small molecule inhibitors. Through our review, we hoped to provide insights and perspectives for the research and development of small molecule inhibitors in cancer treatment.
Collapse
Affiliation(s)
- Gui‐Hong Liu
- Department of BiotherapyState Key Laboratory of BiotherapyCancer Center, West China HospitalSichuan UniversityChengduChina
| | - Tao Chen
- Department of CardiologyThe First Affiliated Hospital of China Medical UniversityShenyangLiaoningChina
| | - Xin Zhang
- Department of BiotherapyState Key Laboratory of BiotherapyCancer Center, West China HospitalSichuan UniversityChengduChina
| | - Xue‐Lei Ma
- Department of BiotherapyState Key Laboratory of BiotherapyCancer Center, West China HospitalSichuan UniversityChengduChina
| | - Hua‐Shan Shi
- Department of BiotherapyState Key Laboratory of BiotherapyCancer Center, West China HospitalSichuan UniversityChengduChina
| |
Collapse
|