1
|
Aredo JV, Jamali A, Zhu J, Heater N, Wakelee HA, Vaklavas C, Anagnostou V, Lu J. Liquid Biopsy Approaches for Cancer Characterization, Residual Disease Detection, and Therapy Monitoring. Am Soc Clin Oncol Educ Book 2025; 45:e481114. [PMID: 40305739 DOI: 10.1200/edbk-25-481114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2025]
Abstract
Liquid biopsy encompasses a variety of molecular approaches to detect circulating tumor DNA (ctDNA) and has become a powerful tool in the diagnosis and treatment of solid tumors. Current applications include comprehensive genomic profiling for identifying targetable mutations and therapeutic resistance mechanisms, with emerging applications in minimal residual disease detection and treatment response monitoring. Increasingly, the potential for liquid biopsy in guiding treatment decisions is under active investigation through prospective clinical trials using ctDNA-adaptive interventions in patients with early-stage and metastatic cancers. Limitations arise on the basis of the sensitivity and feasibility of individual liquid biopsy assays; nonetheless, emerging technologies set the stage for improving these shortcomings. As the global oncology community continues to ascertain the clinical value of liquid biopsy across the continuum of patient care, this minimally invasive approach heralds a significant advancement in the promise of precision oncology.
Collapse
Affiliation(s)
- Jacqueline V Aredo
- Division of Oncology, Department of Medicine, Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA
| | - Amna Jamali
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD
- The Johns Hopkins Molecular Tumor Board, Johns Hopkins School of Medicine, Baltimore, MD
| | - Jessica Zhu
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT
| | - Natalie Heater
- Division of Hematology and Oncology, Department of Medicine, Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL
| | - Heather A Wakelee
- Division of Oncology, Department of Medicine, Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA
| | | | - Valsamo Anagnostou
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD
- The Johns Hopkins Molecular Tumor Board, Johns Hopkins School of Medicine, Baltimore, MD
- Lung Cancer Precision Medicine Center of Excellence, Johns Hopkins University School of Medicine, Baltimore, MD
- The Bloomberg∼Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Janice Lu
- Division of Hematology and Oncology, Department of Medicine, Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL
- Circulating Tumor Cell (CTC) Core Facility, Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL
| |
Collapse
|
2
|
Garcia-Murillas I, Abbott CW, Cutts RJ, Boyle SM, Pugh J, Keough KC, Li B, Pyke RM, Navarro FCP, Chen RO, Dunne K, Bunce C, Johnston SRD, Ring A, Russell S, Evans A, Skene A, Smith IE, Turner NC. Whole genome sequencing-powered ctDNA sequencing for breast cancer detection. Ann Oncol 2025; 36:673-681. [PMID: 39914664 DOI: 10.1016/j.annonc.2025.01.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Revised: 12/20/2024] [Accepted: 01/28/2025] [Indexed: 02/28/2025] Open
Abstract
BACKGROUND Circulating tumour DNA (ctDNA)-based detection of molecular residual disease (MRD) presents a strategy to identify patients at high risk of relapse. In this article, we profile early breast cancer patients with an ultrasensitive, whole genome sequencing (WGS)-based, tumour-informed ctDNA platform. MATERIALS AND METHODS We analysed 617 plasma samples (median 8, range 2-14) from 78 patients (23 triple-negative breast cancer, 35 human epidermal growth factor receptor 2-positive, 18 hormone receptor-positive, and 2 unknown). Samples were collected at diagnosis before therapy, cycle 2 of neoadjuvant chemotherapy, post-surgery after neoad'juvant therapy if administered, every 3 months during the first year, and every 6 months thereafter. Plasma DNA was analysed using the NeXT Personal MRD platform, a tumour-informed WGS approach to produce personalized ctDNA sequencing panels tracking a median of 1451 variants per patient. MRD detection was correlated with clinical outcomes. RESULTS ctDNA was detected at levels ranging from 2.19 parts per million (PPM) to 204 900 PPM (median 405 PPM), with 39% of all ctDNA detections in the ultra-low range <100 PPM. Of patients with samples at diagnosis, 98% (49/50) had ctDNA detected before treatment. At a median follow-up of 76 months (range 5-118 months), detection of ctDNA was associated with high risk of future relapse (P < 0.0001; log-rank test) and shortened overall survival (P < 0.0001) with a median lead time from ctDNA detection to clinical relapse of 15 months (range 0.9-61.5 months). MRD was identified in 100% (11/11) of patients who relapsed, with a median level of ctDNA at first MRD detection of 13.1 PPM. No ctDNA-undetected patients relapsed throughout follow-up (64/64). Comparison with exome-powered MRD detection assays showed improved sensitivity and lead time. CONCLUSIONS A whole genome-powered MRD assay detected breast cancer relapse with a long lead time over clinical relapse, and was strongly associated with relapse-free survival. Rates of ctDNA detection at diagnosis were higher than those reported with exome-based tumour-informed assays.
Collapse
Affiliation(s)
- I Garcia-Murillas
- The Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, UK
| | | | - R J Cutts
- The Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, UK
| | | | - J Pugh
- Personalis Inc., Fremont, USA
| | | | - B Li
- Personalis Inc., Fremont, USA
| | | | | | | | - K Dunne
- The Ralph Lauren Centre for Breast Cancer Research, Royal Marsden Hospital, London, UK
| | - C Bunce
- Clinical Trials Unit, Royal Marsden Hospital, London, UK
| | | | - A Ring
- Breast Unit, Royal Marsden Hospital, London, UK
| | - S Russell
- Hinchingbrooke Hospital, Hinchingbrooke Park, Huntingdon, UK
| | - A Evans
- Poole General Hospital, Dorset, UK
| | - A Skene
- Royal Bournemouth Hospital, Bournemouth, UK
| | - I E Smith
- Breast Unit, Royal Marsden Hospital, London, UK
| | - N C Turner
- The Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, UK; The Ralph Lauren Centre for Breast Cancer Research, Royal Marsden Hospital, London, UK; Breast Unit, Royal Marsden Hospital, London, UK.
| |
Collapse
|
3
|
Comino-Méndez I, Velasco-Suelto J, Pascual J, López-López E, Quirós-Ortega ME, Gaona-Romero C, Martín-Muñoz A, Losana P, Heredia Y, Alba E, Guerrero-Zotano A. Identification of minimal residual disease using the clonesight test for ultrasensitive ctDNA detection to anticipate late relapse in early breast cancer. Breast Cancer Res 2025; 27:65. [PMID: 40312346 PMCID: PMC12044774 DOI: 10.1186/s13058-025-02016-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Accepted: 04/04/2025] [Indexed: 05/03/2025] Open
Abstract
BACKGROUND Early-stage breast cancer (BC) diagnosis significantly reduces mortality, yet relapse remains a concern due to undetectable minimal residual disease (MRD). Liquid biopsies offer real-time insights into tumor dynamics, aiding MRD detection and therapy response evaluation. However, MRD detection is challenging due to low tumor DNA levels in circulation. METHODS This prospective study included 20 HR + BC patients who had completed at least 5 years of adjuvant endocrine therapy (ET). Plasma samples were collected every 6 months over a median follow-up period of 2 years. Tumor-specific somatic variants identified through tumor tissue sequencing served as biomarkers for a patient-informed circulating tumor DNA (ctDNA) assay (CloneSight), which utilized a multiplex PCR-based next-generation sequencing (NGS) workflow. RESULTS ctDNA was detected in patients who experienced clinical relapse, with positivity observed up to 68 months (5.7 years) prior to overt recurrence, highlighting its potential for early relapse identification. In non-relapsed patients, ctDNA remained undetectable in 93% of cases, reflecting a potential high level of specificity. The assay detected ctDNA in 50% of relapsed patients, while no ctDNA signal was identified in the majority of non-relapsed cases. CONCLUSION Our exploratory findings indicate that CloneSight could be a promising tool for MRD detection and relapse prediction, providing a cost-effective, patient-informed approach to ctDNA monitoring. The ability of this approach to detect relapse prior to clinical recurrence suggests its potential relevance in improving patient monitoring. These findings suggest that ctDNA-based MRD assays could play a role in future surveillance strategies for HR + BC, though further studies in larger cohorts are needed to confirm their clinical applicability.
Collapse
Affiliation(s)
- Iñaki Comino-Méndez
- Medical Oncology Department, Hospital Universitario Virgen de la Victoria, 29010, Malaga, Spain.
- The Biomedical Research Institute of Málaga, IBIMA-CIMES-UMA), 29010, Malaga, Spain.
- Centro de Investigación Biomédica en Red de Cancer (CIBERONC - CB16, 12/00481), 28029, Madrid, Spain.
| | - Jesús Velasco-Suelto
- Medical Oncology Department, Hospital Universitario Virgen de la Victoria, 29010, Malaga, Spain
- The Biomedical Research Institute of Málaga, IBIMA-CIMES-UMA), 29010, Malaga, Spain
- Centro de Investigación Biomédica en Red de Cancer (CIBERONC - CB16, 12/00481), 28029, Madrid, Spain
| | - Javier Pascual
- Medical Oncology Department, Hospital Universitario Virgen de la Victoria, 29010, Malaga, Spain
- The Biomedical Research Institute of Málaga, IBIMA-CIMES-UMA), 29010, Malaga, Spain
- Centro de Investigación Biomédica en Red de Cancer (CIBERONC - CB16, 12/00481), 28029, Madrid, Spain
| | - Esperanza López-López
- Medical Oncology Department, Hospital Universitario Virgen de la Victoria, 29010, Malaga, Spain
- The Biomedical Research Institute of Málaga, IBIMA-CIMES-UMA), 29010, Malaga, Spain
| | - Maria Elena Quirós-Ortega
- Medical Oncology Department, Hospital Universitario Virgen de la Victoria, 29010, Malaga, Spain
- The Biomedical Research Institute of Málaga, IBIMA-CIMES-UMA), 29010, Malaga, Spain
- Centro de Investigación Biomédica en Red de Cancer (CIBERONC - CB16, 12/00481), 28029, Madrid, Spain
| | - Celia Gaona-Romero
- Medical Oncology Department, Hospital Universitario Virgen de la Victoria, 29010, Malaga, Spain
- The Biomedical Research Institute of Málaga, IBIMA-CIMES-UMA), 29010, Malaga, Spain
| | - Alejandro Martín-Muñoz
- Hematological Malignancies Clinical Research Unit, Centro Nacional de Investigaciones Oncologicas (CNIO), Madrid, Spain
- Altum Sequencing Co, Madrid, Spain
| | | | | | - Emilio Alba
- Medical Oncology Department, Hospital Universitario Virgen de la Victoria, 29010, Malaga, Spain
- The Biomedical Research Institute of Málaga, IBIMA-CIMES-UMA), 29010, Malaga, Spain
- Centro de Investigación Biomédica en Red de Cancer (CIBERONC - CB16, 12/00481), 28029, Madrid, Spain
- Faculty of Medicine, University of Málaga, 29010, Malaga, Spain
| | - Angel Guerrero-Zotano
- Medical Oncology Department, Fundación Instituto Valenciano de Oncología, Valencia, Spain.
| |
Collapse
|
4
|
Sanz-Garcia E, Peinado P, Peláez A, Lopez-Aranda EG, Álvarez-Gallego R, Muñoz C, Toledano C, Mihic L, Ortega J, Lazaro A, Montesino BM, Bressel C, Gonzalo A, Hernando O, Lopez M, Rubio C, Fabra I, Quijano Y, Vicente E, Cubillo A. Circulating tumor DNA using a plasma-only assay predicts survival in patients with oligometastatic colorectal cancer after definitive therapy. J Gastrointest Oncol 2025; 16:580-590. [PMID: 40386606 PMCID: PMC12078829 DOI: 10.21037/jgo-24-819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Accepted: 01/23/2025] [Indexed: 05/20/2025] Open
Abstract
Background Patients with colorectal cancer (CRC) and oligometastases are usually treated with surgery and radiation. The addition of adjuvant chemotherapy is controversial. The detection of circulating tumor DNA (ctDNA) may provide further insight in prognosis as well as help in decision of adjuvant therapies. We aim to show that detection of ctDNA after definitive therapy in oligometastatic CRC is associated with worse outcomes. Methods A single centre prospective study included patients with oligometastatic CRC treated with surgery or radiation with definitive intent. Plasma samples were collected before procedure and 4 weeks after, prior to adjuvant chemotherapy. Plasma samples were analyzed using a tumor-naive assay focusing on genomic and methylation alterations (Guardant Reveal). Disease-free survival (DFS) and overall survival (OS) were estimated using Kaplan Meier method. Results A total of 25 patients were included: 19 were evaluated at baseline and post-treatment. ctDNA detection at baseline was not associated with any clinicopathological characteristics, neither OS nor DFS. In contrast, patients with ctDNA detection post-treatment had worse OS [hazard ratio (HR): 11.28; 95% confidence interval (CI): 1.31-97.05] and a trend to shorter DFS (HR: 2.97; 95% CI: 0.97-9.06). Patients who were persistently negative or cleared ctDNA had similar outcomes. Conclusions ctDNA detection after surgery/radiation in oligometastatic CRC predicts worse OS and DFS. ctDNA could help to guide the decision regarding need of adjuvant chemotherapy in this population.
Collapse
Affiliation(s)
- Enrique Sanz-Garcia
- HM CIOCC MADRID (Clara Campal Comprehensive Cancer Centre), Oncology Department, University Hospital HM Sanchinarro, HM Hospitales, Madrid, Spain
- Division of Medical Oncology and Hematology, Department of Medicine, Princess Margaret Cancer Centre, University of Toronto, Toronto, Canada
| | - Paloma Peinado
- HM CIOCC MADRID (Clara Campal Comprehensive Cancer Centre), Oncology Department, University Hospital HM Sanchinarro, HM Hospitales, Madrid, Spain
- HM Hospitales Health Research Institute, Madrid, Spain
- Department of Medicine, HM Health Faculty, Camilo José Cela University, Boadilla del Monte, Spain
| | - Adrián Peláez
- Respiratory Diseases Networking Biomedical REsearch Centre (CIBERES), Carlos III Health Institute (ISCIII), Madrid, Spain
- Data Analysis Department, HM Hospitales Research Foundation, HM Hospitales, Madrid, Spain
| | | | - Rafael Álvarez-Gallego
- HM CIOCC MADRID (Clara Campal Comprehensive Cancer Centre), Oncology Department, University Hospital HM Sanchinarro, HM Hospitales, Madrid, Spain
- HM Hospitales Health Research Institute, Madrid, Spain
- Department of Medicine, HM Health Faculty, Camilo José Cela University, Boadilla del Monte, Spain
| | - César Muñoz
- HM CIOCC MADRID (Clara Campal Comprehensive Cancer Centre), Oncology Department, University Hospital HM Sanchinarro, HM Hospitales, Madrid, Spain
- HM Hospitales Health Research Institute, Madrid, Spain
- Department of Medicine, HM Health Faculty, Camilo José Cela University, Boadilla del Monte, Spain
| | - Carmen Toledano
- HM CIOCC MADRID (Clara Campal Comprehensive Cancer Centre), Oncology Department, University Hospital HM Sanchinarro, HM Hospitales, Madrid, Spain
- HM Hospitales Health Research Institute, Madrid, Spain
- Department of Medicine, HM Health Faculty, Camilo José Cela University, Boadilla del Monte, Spain
| | - Luka Mihic
- HM CIOCC MADRID (Clara Campal Comprehensive Cancer Centre), Oncology Department, University Hospital HM Sanchinarro, HM Hospitales, Madrid, Spain
- HM Hospitales Health Research Institute, Madrid, Spain
- Department of Medicine, HM Health Faculty, Camilo José Cela University, Boadilla del Monte, Spain
| | - Justo Ortega
- HM CIOCC MADRID (Clara Campal Comprehensive Cancer Centre), Oncology Department, University Hospital HM Sanchinarro, HM Hospitales, Madrid, Spain
- HM Hospitales Health Research Institute, Madrid, Spain
- Department of Medicine, HM Health Faculty, Camilo José Cela University, Boadilla del Monte, Spain
| | | | | | | | - Alicia Gonzalo
- HM CIOCC MADRID (Clara Campal Comprehensive Cancer Centre), Oncology Department, University Hospital HM Sanchinarro, HM Hospitales, Madrid, Spain
| | - Ovidio Hernando
- HM CIOCC MADRID (Clara Campal Comprehensive Cancer Centre), Oncology Department, University Hospital HM Sanchinarro, HM Hospitales, Madrid, Spain
| | - Mercedes Lopez
- HM CIOCC MADRID (Clara Campal Comprehensive Cancer Centre), Oncology Department, University Hospital HM Sanchinarro, HM Hospitales, Madrid, Spain
| | - Carmen Rubio
- HM CIOCC MADRID (Clara Campal Comprehensive Cancer Centre), Oncology Department, University Hospital HM Sanchinarro, HM Hospitales, Madrid, Spain
| | - Isabel Fabra
- HM CIOCC MADRID (Clara Campal Comprehensive Cancer Centre), Oncology Department, University Hospital HM Sanchinarro, HM Hospitales, Madrid, Spain
| | - Yolanda Quijano
- HM CIOCC MADRID (Clara Campal Comprehensive Cancer Centre), Oncology Department, University Hospital HM Sanchinarro, HM Hospitales, Madrid, Spain
| | - Emilio Vicente
- HM CIOCC MADRID (Clara Campal Comprehensive Cancer Centre), Oncology Department, University Hospital HM Sanchinarro, HM Hospitales, Madrid, Spain
| | - Antonio Cubillo
- HM CIOCC MADRID (Clara Campal Comprehensive Cancer Centre), Oncology Department, University Hospital HM Sanchinarro, HM Hospitales, Madrid, Spain
- HM Hospitales Health Research Institute, Madrid, Spain
- Department of Medicine, HM Health Faculty, Camilo José Cela University, Boadilla del Monte, Spain
| |
Collapse
|
5
|
Chen JH, Geng Y, Lucci A. Applications of ctDNA testing to monitor and detect residual disease in breast cancer. Expert Rev Mol Diagn 2025:1-12. [PMID: 40288891 DOI: 10.1080/14737159.2025.2498545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Revised: 04/09/2025] [Accepted: 04/14/2025] [Indexed: 04/29/2025]
Abstract
INTRODUCTION In recent years, circulating tumor DNA (ctDNA) has emerged as a promising method for detection of minimal or molecular residual disease (MRD) among patients with breast cancer. AREAS COVERED In this narrative review, we provide a summary of currently available studies assessing use of ctDNA in detection of MRD in patients after completion of curative therapy. Additionally, we discuss limitations of present studies, future considerations, and an overview of ongoing trials evaluating the clinical utility of MRD-directed therapy interventions. EXPERT OPINION While the clinical utility of MRD-directed therapy guidance remains under investigation, collective data from studies overwhelmingly confirm the prognostic value of ctDNA status across various stages and subtypes of breast cancer. Results from ongoing clinical trials in the coming years will provide more clarity on the overall clinical benefit of MRD-directed interventions for breast cancer patients.
Collapse
Affiliation(s)
- Jennifer H Chen
- Breast Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Yimin Geng
- Research Medical Library, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Anthony Lucci
- Breast Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
6
|
Zeng Z, Yi Z, Xu B. The biological and technical challenges facing utilizing circulating tumor DNA in non-metastatic breast cancer patients. Cancer Lett 2025; 616:217574. [PMID: 39983895 DOI: 10.1016/j.canlet.2025.217574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 02/13/2025] [Accepted: 02/18/2025] [Indexed: 02/23/2025]
Abstract
Breast cancer is one of the most prevalent cancers and has emerged as a major global challenge. Circulating tumor DNA (ctDNA), a liquid biopsy method, overcomes the accessibility limitations of tissue-based testing and is widely used for monitoring minimal residual disease and molecular relapse, predicting prognosis, evaluating the response of neoadjuvant therapy, and optimizing treatment decisions in non-metastatic breast cancer. However, the application of ctDNA still faces many challenges. Here, we survey the clinical applications of ctDNA in non-metastatic breast cancer and discuss the significant biological and technical challenges of utilizing ctDNA. Importantly, we investigate potential avenues for addressing the challenges. In addition, emerging technologies, including fragmentomics detection, methylation sequencing, and long-read sequencing, have clinical potential and could be a future direction. Proper utilization of machine learning facilitates the identification of meaningful patterns from complex fragment and methylation profiles of ctDNA. There is still a lack of clinical trials focused on the subsets of ctDNA (e.g., circulating mitochondrial DNA), ctDNA-inferred drug-resistant clonal evolution, tumor heterogeneity, and ctDNA-guided clinical decision-making in non-metastatic breast cancer. Due to regional differences in the number of registered clinical trials, it is essential to enhance communication and foster global collaboration to advance the field.
Collapse
Affiliation(s)
- Zihang Zeng
- Department of Radiation and Medical Oncology, Hubei Key Laboratory of Tumor Biological Behaviors, Hubei Cancer Clinical Study Center, Zhongnan Hospital of Wuhan University, 430071, Wuhan, China
| | - Zongbi Yi
- Department of Radiation and Medical Oncology, Hubei Key Laboratory of Tumor Biological Behaviors, Hubei Cancer Clinical Study Center, Zhongnan Hospital of Wuhan University, 430071, Wuhan, China.
| | - Binghe Xu
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 100021, Beijing, China.
| |
Collapse
|
7
|
Valenza C, Saldanha EF, Gong Y, De Placido P, Gritsch D, Ortiz H, Trapani D, Conforti F, Cremolini C, Peters S, Mateo J, Subbiah V, Parsons HA, Partridge AH, Curigliano G. Circulating tumor DNA clearance as a predictive biomarker of pathologic complete response in patients with solid tumors treated with neoadjuvant immune checkpoint inhibitors: a systematic review and meta-analysis. Ann Oncol 2025:S0923-7534(25)00130-9. [PMID: 40187491 DOI: 10.1016/j.annonc.2025.03.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2025] [Revised: 03/21/2025] [Accepted: 03/25/2025] [Indexed: 04/07/2025] Open
Abstract
BACKGROUND In patients with solid tumors undergoing neoadjuvant immune checkpoint inhibitor (ICI) therapy, identifying biomarkers to predict pathologic complete response (pCR) preoperatively could enhance treatment modulation. Circulating tumor DNA (ctDNA) clearance is a potential predictor of pCR, though its analytical and clinical validity has yet to be established. This systematic review and meta-analysis aims to assess the role of ctDNA clearance as a predictor of pCR in patients with solid tumors treated with neoadjuvant ICIs. MATERIALS AND METHODS A systematic search of PubMed, EMBASE and conference proceedings up to 5 August 2024 was carried out to identify phase Ib, II or III clinical trials investigating ctDNA clearance and pCR in patients with solid tumors and detectable ctDNA, undergoing neoadjuvant therapy with ICIs. Using a bivariate model, we estimated the pooled sensitivity and specificity of ctDNA clearance in predicting pCR, positive likelihood ratio, negative likelihood ratio and diagnostic odds ratio, with 95% confidence intervals (CIs). RESULTS Thirteen trials involving 380 patients with detectable ctDNA at baseline were included. ctDNA was assessed with a tumor-informed approach in 11 (85%) trials. Overall, 38% of patients achieved pCR and 73% had ctDNA clearance before/at the surgery. Pooled sensitivity was 0.98 (95% CI 0.86-1.00), specificity was 0.53 (95% CI 0.37-0.69), positive likelihood ratio was 2.09 (95% CI 1.48-2.93), negative likelihood ratio was 0.04 (95% CI 0.01-0.26), diagnostic odds ratio was 57.36 (95% CI 8.12-405.12). Significant heterogeneity was observed across studies (I2 ∼70% for all metrics), indicating considerable variability in the diagnostic performance. CONCLUSION The lack of ctDNA clearance may identify patients unlikely to have a pCR. Instead, the confirmatory power of ctDNA clearance is limited by low specificity and high heterogeneity due to the variability of the assays, and warrants further study. Therefore, clinicians should not rely on the use of ctDNA clearance to inform treatment decisions in the neoadjuvant setting.
Collapse
Affiliation(s)
- C Valenza
- Harvard Chan School of Public Health, Harvard University, Boston, USA; Division of New Drugs and Early Drug Development for Innovative Therapies, European Institute of Oncology, IRCCS, Milan, Italy; Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy; Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, USA; Breast Oncology Program, Dana-Farber Brigham Cancer Center, Boston, USA
| | - E F Saldanha
- Harvard Chan School of Public Health, Harvard University, Boston, USA; Division of Medical Oncology and Hematology, Princess Margaret Cancer Centre, University Health Network, University of Toronto, Toronto, Canada
| | - Y Gong
- Harvard Chan School of Public Health, Harvard University, Boston, USA
| | - P De Placido
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, USA; Breast Oncology Program, Dana-Farber Brigham Cancer Center, Boston, USA; Harvard Medical School, Boston, USA; Department of Advanced Biomedical Sciences, University of Naples Federico II, Naples, Italy
| | - D Gritsch
- Harvard Chan School of Public Health, Harvard University, Boston, USA; Harvard Medical School, Boston, USA; Department of Neurology, Massachusetts General Hospital, Boston, USA
| | - H Ortiz
- Harvard Chan School of Public Health, Harvard University, Boston, USA
| | - D Trapani
- Division of New Drugs and Early Drug Development for Innovative Therapies, European Institute of Oncology, IRCCS, Milan, Italy; Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | - F Conforti
- Division of Medical Oncology, Humanitas Gavazzeni, Bergamo, Italy
| | - C Cremolini
- Unit of Medical Oncology 2, Azienda Ospedaliero-Universitaria Pisana, Pisa, Italy; Department of Translational Research and New Technology in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - S Peters
- Centre Hospitalier Universitaire Vaudois (CHUV), Lausanne University, Lausanne, Switzerland
| | - J Mateo
- Vall d'Hebron Institute of Oncology (VHIO), Vall d'Hebron University Hospital Campus, Barcelona, Spain
| | - V Subbiah
- Early-Phase Drug Development, Sarah Cannon Research Institute, Nashville, USA
| | - H A Parsons
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, USA; Breast Oncology Program, Dana-Farber Brigham Cancer Center, Boston, USA; Harvard Medical School, Boston, USA
| | - A H Partridge
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, USA; Breast Oncology Program, Dana-Farber Brigham Cancer Center, Boston, USA; Harvard Medical School, Boston, USA
| | - G Curigliano
- Division of New Drugs and Early Drug Development for Innovative Therapies, European Institute of Oncology, IRCCS, Milan, Italy; Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy.
| |
Collapse
|
8
|
Godfrey TE, Kintsurashvili E, Rasic G, Kaur J, D'Amato C, Meltzer RH. Single-Tube, Switched Temperature Amplicon Barcoding for Multiplex Detection of Rare Mutations in Circulating Tumor DNA. J Mol Diagn 2025; 27:237-246. [PMID: 39952465 PMCID: PMC11966241 DOI: 10.1016/j.jmoldx.2025.01.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 12/06/2024] [Accepted: 01/08/2025] [Indexed: 02/17/2025] Open
Abstract
Detection and analysis of circulating tumor DNA (ctDNA) as a biomarker for cancer is a promising approach. Applications for ctDNA analysis include screening, diagnosis, treatment selection, treatment monitoring, minimal residual disease detection, and recurrence monitoring. Detection of ctDNA is challenging and requires highly sensitive methods. Approaches such as digital PCR are appropriate when only a small number of targets is being interrogated, whereas next-generation sequencing (NGS) is typically used when more targets are being analyzed. There are several NGS methods available, some of which are published and can be implemented in laboratories with the required expertise while other, commercial approaches are proprietary and are only available as a service. Of the published methods, most use some kind of unique molecular identifiers (or barcodes) to facilitate NGS error correction and detection of rare mutations at mutant allele frequencies of <0.1%. However, incorporation of barcodes and amplification of the resulting libraries are not trivial and typically require multiple steps and considerable hands-on time by an experienced molecular biologist. Herein, a novel approach for switched temperature amplicon barcoding was used, in which barcoding and library amplification were performed in the same tube using a two-stage PCR protocol with no additional manipulation. Total hands-on time was 10 to 15 minutes for reaction setup; the library was then cleaned and was ready for sequencing.
Collapse
Affiliation(s)
- Tony E Godfrey
- Department of Surgery, Boston University, Boston, Massachusetts.
| | | | - Gordana Rasic
- Department of Surgery, Boston University, Boston, Massachusetts
| | | | | | | |
Collapse
|
9
|
Janni W, Rack B, Friedl TWP, Hartkopf AD, Wiesmüller L, Pfister K, Mergel F, Fink A, Braun T, Mehmeti F, Uhl N, De Gregorio A, Huober J, Fehm T, Müller V, Rich TA, Dustin DJ, Zhang S, Huesmann ST. Detection of minimal residual disease and prediction of recurrence in breast cancer using a plasma-only circulating tumor DNA assay. ESMO Open 2025; 10:104296. [PMID: 40120523 PMCID: PMC11982450 DOI: 10.1016/j.esmoop.2025.104296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 01/21/2025] [Accepted: 01/22/2025] [Indexed: 03/25/2025] Open
Abstract
BACKGROUND Detection of minimal residual disease (MRD) in early breast cancer (EBC) after curative-intent treatment may identify patients at risk for recurrence. Most circulating tumor DNA (ctDNA)-based MRD assays require knowledge of genomic alterations from tumor tissue. However, tissue availability may be limited in some patients. Here, we evaluated sensitivity and specificity for recurrence detection, using a plasma-only ctDNA MRD assay. MATERIALS AND METHODS For this pilot study, 47 plasma samples from 38 EBC patients were collected at 12 or 36 months post-diagnosis or at clinical recurrence. ctDNA presence was determined by a custom bioinformatics classifier that identifies tumor-derived somatic variants and methylation profiles specific to individual cancer types using a 5-Mb next-generation sequencing panel. RESULTS ctDNA was detected at or before distant recurrence in 11/14 (79%) patients [sensitivity was 85% (11/13) among samples collected within 2 years from recurrence]. Lead time was evaluable in 4/6 (67%) samples collected before distant recurrence with detectable ctDNA and ranged from 3.4 to 18.5 months. ctDNA was not detected in samples from patients without recurrence (n = 13). CONCLUSIONS This study demonstrates the feasibility of MRD detection in EBC using a plasma-only multiomic ctDNA-based approach. Larger studies are ongoing to further validate the clinical performance of the assay and demonstrate its applications.
Collapse
Affiliation(s)
- W Janni
- Department of Obstetrics and Gynecology, University Hospital Ulm, Ulm, Germany
| | - B Rack
- Department of Obstetrics and Gynecology, University Hospital Ulm, Ulm, Germany
| | - T W P Friedl
- Department of Obstetrics and Gynecology, University Hospital Ulm, Ulm, Germany
| | - A D Hartkopf
- Department of Obstetrics and Gynecology, University Hospital Ulm, Ulm, Germany; Department of Obstetrics and Gynecology, University Hospital Tübingen, Tübingen, Germany
| | - L Wiesmüller
- Department of Obstetrics and Gynecology, University Hospital Ulm, Ulm, Germany
| | - K Pfister
- Department of Obstetrics and Gynecology, University Hospital Ulm, Ulm, Germany
| | - F Mergel
- Department of Obstetrics and Gynecology, University Hospital Ulm, Ulm, Germany; Department of Obstetrics and Gynecology, Klinikum am Gesundbrunnen, Heilbronn, Germany
| | - A Fink
- Department of Obstetrics and Gynecology, University Hospital Ulm, Ulm, Germany
| | - T Braun
- Department of Obstetrics and Gynecology, University Hospital Ulm, Ulm, Germany
| | - F Mehmeti
- Department of Obstetrics and Gynecology, University Hospital Ulm, Ulm, Germany
| | - N Uhl
- Department of Obstetrics and Gynecology, University Hospital Ulm, Ulm, Germany
| | - A De Gregorio
- Department of Obstetrics and Gynecology, University Hospital Ulm, Ulm, Germany; Department of Obstetrics and Gynecology, Klinikum am Gesundbrunnen, Heilbronn, Germany
| | - J Huober
- Department of Obstetrics and Gynecology, University Hospital Ulm, Ulm, Germany; Breast Cancer Center St. Gallen, St. Gallen, Switzerland
| | - T Fehm
- Department of Obstetrics and Gynecology, University Hospital Düsseldorf, Düsseldorf, Germany
| | - V Müller
- Department of Obstetrics and Gynecology, University Hospital Hamburg-Eppendorf, Hamburg, Germany
| | - T A Rich
- Guardant Health Inc., Redwood City, USA
| | | | - S Zhang
- Guardant Health Inc., Redwood City, USA
| | - S T Huesmann
- Department of Obstetrics and Gynecology, University Hospital Ulm, Ulm, Germany.
| |
Collapse
|
10
|
Kiavue N, Cabel L. [Benefits and limitations of circulating tumor DNA in breast cancer]. Bull Cancer 2025:S0007-4551(25)00033-5. [PMID: 40011140 DOI: 10.1016/j.bulcan.2024.12.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 12/13/2024] [Accepted: 12/22/2024] [Indexed: 02/28/2025]
Abstract
The detection of circulating tumor DNA (ctDNA) has made significant advances in oncology in recent years. ctDNA offers a range of applications, including the identification of theranostic mutations, monitoring of tumor recurrence, and assessing treatment efficacy. In breast cancer, several ctDNA-based tests for detecting relapse during follow-up are currently under validation, with some already available in countries like the United States. In metastatic breast cancer, ctDNA levels and their dynamics during treatment have prognostic value. The PADA-1 trial demonstrated that a therapeutic adaptation based on the detection of a circulating subclone via circulating tumor DNA (ctDNA) was feasible and potentially beneficial for patients. This review will explore the methods for ctDNA detection and discuss the potential benefits of incorporating this technology into breast cancer monitoring and management across various clinical scenarios.
Collapse
Affiliation(s)
- Nicolas Kiavue
- Département d'oncologie médicale, Institut Curie, Paris, France
| | - Luc Cabel
- Département d'oncologie médicale, Institut Curie, Paris, France; Circulating Tumor Biomarkers Laboratory, Inserm CIC BT-1428, Institut Curie, Paris, France.
| |
Collapse
|
11
|
Xiong X, Zheng LW, Ding Y, Chen YF, Cai YW, Wang LP, Huang L, Liu CC, Shao ZM, Yu KD. Breast cancer: pathogenesis and treatments. Signal Transduct Target Ther 2025; 10:49. [PMID: 39966355 PMCID: PMC11836418 DOI: 10.1038/s41392-024-02108-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 10/27/2024] [Accepted: 12/08/2024] [Indexed: 02/20/2025] Open
Abstract
Breast cancer, characterized by unique epidemiological patterns and significant heterogeneity, remains one of the leading causes of malignancy-related deaths in women. The increasingly nuanced molecular subtypes of breast cancer have enhanced the comprehension and precision treatment of this disease. The mechanisms of tumorigenesis and progression of breast cancer have been central to scientific research, with investigations spanning various perspectives such as tumor stemness, intra-tumoral microbiota, and circadian rhythms. Technological advancements, particularly those integrated with artificial intelligence, have significantly improved the accuracy of breast cancer detection and diagnosis. The emergence of novel therapeutic concepts and drugs represents a paradigm shift towards personalized medicine. Evidence suggests that optimal diagnosis and treatment models tailored to individual patient risk and expected subtypes are crucial, supporting the era of precision oncology for breast cancer. Despite the rapid advancements in oncology and the increasing emphasis on the clinical precision treatment of breast cancer, a comprehensive update and summary of the panoramic knowledge related to this disease are needed. In this review, we provide a thorough overview of the global status of breast cancer, including its epidemiology, risk factors, pathophysiology, and molecular subtyping. Additionally, we elaborate on the latest research into mechanisms contributing to breast cancer progression, emerging treatment strategies, and long-term patient management. This review offers valuable insights into the latest advancements in Breast Cancer Research, thereby facilitating future progress in both basic research and clinical application.
Collapse
Affiliation(s)
- Xin Xiong
- Department of Breast Surgery, Key Laboratory of Breast Cancer in Shanghai, Cancer Institute, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, P. R. China
| | - Le-Wei Zheng
- Department of Breast Surgery, Key Laboratory of Breast Cancer in Shanghai, Cancer Institute, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, P. R. China
| | - Yu Ding
- Department of Breast and Thyroid, Guiyang Maternal and Child Health Care Hospital & Guiyang Children's Hospital, Guiyang, P. R. China
- Department of Clinical Medicine, Guizhou Medical University, Guiyang, P. R. China
| | - Yu-Fei Chen
- Department of Breast Surgery, Key Laboratory of Breast Cancer in Shanghai, Cancer Institute, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, P. R. China
| | - Yu-Wen Cai
- Department of Breast Surgery, Key Laboratory of Breast Cancer in Shanghai, Cancer Institute, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, P. R. China
| | - Lei-Ping Wang
- Department of Breast and Urologic Medical Oncology, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, P. R. China
| | - Liang Huang
- Department of Breast Surgery, Key Laboratory of Breast Cancer in Shanghai, Cancer Institute, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, P. R. China
| | - Cui-Cui Liu
- Department of Breast Surgery, Key Laboratory of Breast Cancer in Shanghai, Cancer Institute, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, P. R. China
| | - Zhi-Ming Shao
- Department of Breast Surgery, Key Laboratory of Breast Cancer in Shanghai, Cancer Institute, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, P. R. China
| | - Ke-Da Yu
- Department of Breast Surgery, Key Laboratory of Breast Cancer in Shanghai, Cancer Institute, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, P. R. China.
| |
Collapse
|
12
|
Thomas A, Mayer EL, DeMichele A, Harbeck N, Curigliano G, Ignatiadis M, Adam V, Zhou Y, Brown TP, Gilham L, Chua BH, Kalinsky K, Wolff AC, O'Reilly S. Further Optimizing Care of Patients With Operable Hormone Receptor-Sensitive Breast Cancer. J Clin Oncol 2025; 43:487-491. [PMID: 39383501 DOI: 10.1200/jco.24.01080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 08/19/2024] [Accepted: 09/11/2024] [Indexed: 10/11/2024] Open
Abstract
Harmonized global collaborations are crucial to improving outcomes in hormone sensitive operable breast cancer.
Collapse
Affiliation(s)
| | | | - Angela DeMichele
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA
| | - Nadia Harbeck
- Breast Center, Department of OB&GYN and CCC Munich, LMU University Hospital, Munich, Germany
| | | | - Michail Ignatiadis
- Jules Bordet Institut, Hôpital Universitaire de Bruxelles, HUB, Brussels, Belgium
| | | | - Yang Zhou
- Yale Cancer Center, Yale School of Medicine, New Haven, CT
| | | | - Leslie Gilham
- Breast Cancer Trials (Australia & New Zealand), Melbourne, Australia
| | - Boon H Chua
- Faculty of Medicine and Health, University of New South Wales, Sydney, NSW, Australia
| | - Kevin Kalinsky
- Winship Cancer Institute at Emory University, Atlanta, GA
| | - Antonio C Wolff
- The Johns Hopkins Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD
| | | |
Collapse
|
13
|
Li J, Wu C, Song Y, Fan Y, Li C, Li H, Zhang S. Exploring the Clinical Value of Perioperative ctDNA-Based Detection of Molecular Residual Disease in Patients With Esophageal Squamous Cell Carcinoma. Thorac Cancer 2025; 16:e70017. [PMID: 39966084 PMCID: PMC11835505 DOI: 10.1111/1759-7714.70017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 02/03/2025] [Accepted: 02/08/2025] [Indexed: 02/20/2025] Open
Abstract
OBJECTIVE To explore the clinical value of molecular residual disease detection based on circulating tumor DNA (ctDNA-MRD) in the perioperative period of esophageal squamous cell carcinoma (ESCC) and to analyze the tumor escape mechanisms in MRD-positive cases. METHODS A total of 35 ESCC patients were prospectively enrolled. Preoperative and postoperative (1 month after surgery) blood and surgical tissue samples were analyzed. ctDNA variants were tracked in plasma to assess ctDNA-MRD, and whole-transcriptome sequencing was performed on MRD-positive and MRD-negative tissue samples. RESULTS Preoperative blood ctDNA was positive in 54.3% of patients, with a 31.6% positive predictive value for recurrence. One month postsurgery, the positive rate of ctDNA was 17.1%, with an 83.3% predictive value for recurrence. Both preoperative and postoperative ctDNA positivity were significant prognostic indicators (HR = 2.78, p < 0.05; HR = 4.42, p < 0.001). Multivariate analysis confirmed ctDNA as an independent prognostic factor (HR = 303.75, p < 0.001). Transcriptomic analysis revealed increased macrophage (W = 15 848; p < 0.01) and follicular helper T (Tfh) cell (W = 10 935; p < 0.01) levels in MRD-positive patients, suggesting a potential link to immune escape in tumors. CONCLUSIONS Plasma ctDNA measured 1 month postoperatively in ESCC patients can effectively detect MRD, and ctDNA-MRD serves as an independent risk factor for postoperative recurrence. The mechanism underlying MRD positivity may involve the polarization of Tfh cells and macrophages, aiding tumor cells in immune escape through the bloodstream.
Collapse
Affiliation(s)
- Jimin Li
- Department of Thoracic SurgeryCancer Hospital Affiliated to Shanxi Medical University, Shanxi Province Cancer Hospital, Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical SciencesTaiyuanChina
| | - Congcong Wu
- Department of Thoracic SurgeryCancer Hospital Affiliated to Shanxi Medical University, Shanxi Province Cancer Hospital, Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical SciencesTaiyuanChina
| | - Yongming Song
- Department of Thoracic SurgeryShanxi Province Cancer Hospital, Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences, Cancer Hospital Affiliated to Shanxi Medical UniversityTaiyuanChina
| | - Yuhui Fan
- Department of Thoracic SurgeryShanxi Province Cancer Hospital, Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences, Cancer Hospital Affiliated to Shanxi Medical UniversityTaiyuanChina
| | - Chao Li
- Department of Thoracic SurgeryShanxi Province Cancer Hospital, Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences, Cancer Hospital Affiliated to Shanxi Medical UniversityTaiyuanChina
| | - Haibo Li
- Department of Thoracic SurgeryJincheng Second People's HospitalJinchengChina
| | - Shuangping Zhang
- Department of Thoracic SurgeryCancer Hospital Affiliated to Shanxi Medical University, Shanxi Province Cancer Hospital, Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical SciencesTaiyuanChina
- Department of Thoracic SurgeryYuncheng Central HospitalYunchengChina
| |
Collapse
|
14
|
Zhou J, Li L, Liu Y, Jia W, Liu Q, Gao X, Wu A, Wu B, Shen Z, Wang Z, Han J, Niu B, Gong Y, Guan Y, Zhou J, Xue H, Zhou W, Hu K, Lu J, Xu L, Xia X, Yi X, Yang L, Lin G. Circulating tumour DNA in predicting and monitoring survival of patients with locally advanced rectal cancer undergoing multimodal treatment: long-term results from a prospective multicenter study. EBioMedicine 2025; 112:105548. [PMID: 39818166 PMCID: PMC11786667 DOI: 10.1016/j.ebiom.2024.105548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Revised: 12/22/2024] [Accepted: 12/22/2024] [Indexed: 01/18/2025] Open
Abstract
BACKGROUND Neoadjuvant chemoradiotherapy (nCRT) is the standard for locally advanced rectal cancer (LARC). However, distant metastasis remains the primary cause of treatment failure. Early identification of high-risk individuals for personalized treatment may offer a solution. Circulating tumour DNA (ctDNA) could assist in this process. METHODS From September 2017 to June 2019, the study prospectively recruited 113 patients with LARC (cT3-4N0M0 or cTanyN + M0) who underwent nCRT followed by radical surgery across 8 tertiary centers. ctDNA was analysed using large-panel targeted sequencing at baseline, during nCRT, pre-surgery, post-surgery, post-adjuvant chemotherapy (ACT), and during annual follow-ups for 3 years. FINDINGS We analysed 103 tissue and 669 plasma samples from 103 patients. With a median 53-month follow-up, significantly worse progression-free survival (PFS) and overall survival (OS) were observed if median variant allele frequency (mVAF) of baseline ctDNA per patient was ≥0.5% (PFS, HR 4.39, p < 0.001; OS, HR 5.61, p = 0.004) or ctDNA was still detectable two weeks into nCRT (PFS, HR 7.63, p < 0.001; OS, HR 5.08, p < 0.001). Furthermore, when compared to the low-risk (C1) group (characterized by "ctDNA undetected during nCRT with baseline mVAF <0.5%" or "ctDNA undetected during nCRT with TMB (tumour mutational burden) ≥20/Mb"), the high-risk (C2) group (characterized by "ctDNA detected during nCRT" or "baseline mVAF ≥0.5% with TMB <20/Mb") showed significantly worse long-term outcomes (3 y-PFS, 55.9% vs. 94.2%; 3 y-OS, 79.4% vs. 100%). The ctDNA clearance during nCRT, baseline mVAF, and TMB may be effective prognostic indicators. INTERPRETATION Our findings reaffirm the clinical monitoring value of ctDNA and demonstrate the strong prognostic value of baseline ctDNA and its early clearance status in patients with LARC undergoing nCRT. This highlights the potential of dynamic ctDNA monitoring as actionable stratified indicators to guide personalized neoadjuvant treatment strategies. FUNDING This work was supported by the Major Grants Program of Beijing Science and Technology Commission (No. D171100002617003) and the National High Level Hospital Clinical Research Funding (2022-PUMCH-C-005).
Collapse
Affiliation(s)
- Jiaolin Zhou
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China
| | - Lifeng Li
- Geneplus-Beijing, Beijing 102206, China
| | - Yuxin Liu
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China
| | - Wenzhuo Jia
- Department of General Surgery, Beijing Hospital, National Center of Gerontology, Beijing 100730, China
| | - Qian Liu
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Xuan Gao
- Geneplus-Beijing, Beijing 102206, China
| | - Aiwen Wu
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Beijing Key Laboratory of Carcinogenesis and Translational Research, Unit III, Gastrointestinal Cancer Center, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Bin Wu
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China
| | - Zhanlong Shen
- Department of Gastroenterological Surgery, Peking University People's Hospital, Beijing 100871, China
| | - Zhenjun Wang
- Department of General Surgery, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, China
| | - Jiagang Han
- Department of General Surgery, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, China
| | - Beizhan Niu
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China
| | | | | | - Jianfeng Zhou
- Department of Medical Oncology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China
| | - Huadan Xue
- Department of Radiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China
| | - Weixun Zhou
- Department of Pathology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China
| | - Ke Hu
- Department of Radiotherapy, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China
| | - Junyang Lu
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China
| | - Lai Xu
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China
| | | | - Xin Yi
- Geneplus-Beijing, Beijing 102206, China
| | - Ling Yang
- Geneplus-Beijing, Beijing 102206, China.
| | - Guole Lin
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China.
| |
Collapse
|
15
|
Garcia-Murillas I, Cutts RJ, Walsh-Crestani G, Phillips E, Hrebien S, Dunne K, Sidhu K, Daber R, Hubert B, Graybill C, DeFord PM, Wooten DJ, Zhao J, Ellsworth RE, Johnston SRD, Ring A, Russell S, Evans A, Skene A, Wheatley D, Smith IE, Korn WM, Turner NC. Longitudinal monitoring of circulating tumor DNA to detect relapse early and predict outcome in early breast cancer. Breast Cancer Res Treat 2025; 209:493-502. [PMID: 39424680 PMCID: PMC11785695 DOI: 10.1007/s10549-024-07508-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 10/03/2024] [Indexed: 10/21/2024]
Abstract
PURPOSE Detection of molecular residual disease (MRD) allows for the identification of breast cancer patients at high-risk of recurrence, with the potential that early initiation of treatment at early stages of relapse could improve patient outcomes. The Invitae Personalized Cancer Monitoring™ assay (PCM) is a newly developed next-generation sequencing approach that utilizes up to 50 patient-specific, tumor-informed DNA variants, to detect circulating tumor DNA (ctDNA). The ability of the PCM assay to detect MRD before clinical relapse was evaluated. METHODS The cohort included 61 female patients with high-risk breast cancer who underwent neoadjuvant chemotherapy. Plasma samples were collected before and during neoadjuvant therapy, after surgery and during monitoring. PCM was used to detect ctDNA at each time point. RESULTS The sensitivity to detect ctDNA in plasma from patients who relapsed during the monitoring phase was 76.9% (10/13). Specificity and positive predictive values were both 100% with all (10/61, 16%) of the patients who had ctDNA detected during the monitoring phase subsequently relapsing. Detection of ctDNA during monitoring was associated with a high-risk of future relapse (HR 37.2, 95% CI 10.5-131.9, p < 0.0001), with a median lead-time from ctDNA detection to clinical relapse of 11.7 months. CONCLUSION PCM detected ctDNA in patients who relapsed with a long lead-time over clinical relapse, shows strong association with relapse-free survival and may be used to identify patients at high-risk for relapse, allowing for earlier intervention.
Collapse
Affiliation(s)
- Isaac Garcia-Murillas
- The Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, UK
| | - Rosalind J Cutts
- The Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, UK
| | - Giselle Walsh-Crestani
- The Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, UK
| | | | - Sarah Hrebien
- The Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, UK
| | - Kathryn Dunne
- The Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, UK
| | - Kally Sidhu
- The Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, UK
| | | | | | | | | | | | | | | | | | | | - Simon Russell
- Hinchingbrooke Hospital, Hinchingbrooke Park, Huntingdon, UK
| | | | | | - Duncan Wheatley
- Department of Oncology, Royal Cornwall Hospitals NHS Trust, Truro, UK
| | - Ian E Smith
- Breast Unit, Royal Marsden Hospital, London, UK
| | - W Michael Korn
- Former Employees of Invitae Corp, San Francisco, CA, USA
- Division of Hematology/Oncology, University of California San Francisco, San Francisco, CA, USA
| | - Nicholas C Turner
- The Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, UK.
- Breast Unit, Royal Marsden Hospital, London, UK.
- The Ralph Lauren Centre for Breast Cancer Research, Royal Marsden Hospital, London, UK.
| |
Collapse
|
16
|
Zhang Y, Yuan X. Minimal residue disease detection in early-stage breast cancer: a review. Mol Biol Rep 2025; 52:106. [PMID: 39777588 DOI: 10.1007/s11033-024-10198-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Accepted: 12/20/2024] [Indexed: 01/11/2025]
Abstract
Over the past five years, circulating tumor DNA (ctDNA) testing has emerged as a game-changer in cancer research, serving as a less invasive and highly sensitive method to monitor tumor dynamics. CtDNA testing has a wide range of potential applications in breast cancer (BC) management, including diagnosis, monitoring treatment responses, identifying resistance mutations, predicting prognosis, and detecting future relapses. In this review, we focus on the prognostic and predictive value of ctDNA testing for BC in both neoadjuvant and adjuvant settings. We also examine the rationale behind mainstream minimal residue disease (MRD) tracking methods and highlight key considerations for successful MRD testing. Clinical evidence has shown that ctDNA-based MRD testing can accurately detect molecular relapse 8-12 months before clinical relapse in early-stage BC. Compared to advanced-stage BC, detecting ctDNA in early-stage BC is more challenging and requires ultra-sensitive testing methods due to the low levels of ctDNA released into the bloodstream, particularly in post-surgical settings, after effective neoadjuvant chemotherapy, and in late adjuvant settings that require longer follow-up. Therefore, future efforts are needed to generate additional clinical evidence in these settings to support the clinical utility and widespread adoption of ctDNA-based MRD testing.
Collapse
Affiliation(s)
- Yuan Zhang
- College of Art and Science, Northeast Agricultural University, Changjiang Road No. 600, Harbin, 150030, China
- Shuwen Biotech Co., Ltd., Moganshan National High tech Zone, Building 3, No. 333, Changhong Middle Street, Deqing, China
| | - Xiaoying Yuan
- Shuwen Biotech Co., Ltd., Moganshan National High tech Zone, Building 3, No. 333, Changhong Middle Street, Deqing, China.
| |
Collapse
|
17
|
Pantel K, Alix-Panabières C. Minimal residual disease as a target for liquid biopsy in patients with solid tumours. Nat Rev Clin Oncol 2025; 22:65-77. [PMID: 39609625 DOI: 10.1038/s41571-024-00967-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/01/2024] [Indexed: 11/30/2024]
Abstract
Metastasis is the leading cause of cancer-related death in patients with solid tumours. Current imaging technologies are not sufficiently sensitive to detect minimal residual disease (MRD; also known as measurable or molecular residual disease) after initial surgery or chemotherapy, pointing to the need for more sensitive tests to detect remaining traces of cancer in the body. Liquid biopsy, or the analysis of tumour-derived or tumour-induced cells or cellular products in the blood or other body fluids, has opened a new diagnostic avenue to detect and monitor MRD. Liquid biopsy is already used in clinical decision making for patients with haematological malignancies. Here, we review current knowledge on the use of circulating tumour DNA (ctDNA) to detect and monitor MRD in patients with solid tumours. We also discuss how ctDNA-guided MRD detection and characterization could herald a new era of novel 'post-adjuvant therapies' with the potential to eliminate MRD and cure patients before terminal metastatic disease is evident on imaging.
Collapse
Affiliation(s)
- Klaus Pantel
- Department of Tumour Biology, University Medical, Center Hamburg-Eppendorf, Hamburg, Germany.
- European Liquid Biopsy Society (ELBS), Hamburg, Germany.
| | - Catherine Alix-Panabières
- European Liquid Biopsy Society (ELBS), Hamburg, Germany.
- Laboratory of Rare Human Circulating Cells (LCCRH) and Liquid Biopsy, University Medical Centre of Montpellier, Montpellier, France.
- CREEC (CREES), Unité Mixte de Recherches, IRD 224-CNRS 5290-Université de Montpellier, Montpellier, France.
| |
Collapse
|
18
|
Yoshinami T. Perspectives for the clinical application of ctDNA analysis to breast cancer drug therapy. Breast Cancer 2025; 32:1-9. [PMID: 38649655 DOI: 10.1007/s12282-024-01571-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 03/14/2024] [Indexed: 04/25/2024]
Abstract
Circulating tumor DNA (ctDNA) consists of DNA fragments released from cancer cells into the blood circulation with quick clearance. Analysis of ctDNA can enable real-time assessment of the presence of cancer cells and their genomic characteristics. Therefore, ctDNA is expected to be one of the most useful biomarkers for cancer. In recent years, several ultra-sensitive assays for ctDNA analysis have been developed, and many clinical trials are using these assays to investigate the efficacy of ctDNA-based therapeutic strategies. In the perioperative phase, real-time identification of minimal residual disease at the molecular level with ctDNA analysis can help evaluate the risk of recurrence to inform escalation or de-escalation of perioperative drug therapy. Many trials have examined whether therapeutic strategies using ctDNA analysis to predict treatment efficacy or resistance to molecular targeted agents can improve prognosis in metastatic breast cancer. In this review, we discuss the most recent ctDNA assays, the significance of introducing ctDNA assays to clinical practice, and the research on their application in perioperative and metastatic phases.
Collapse
Affiliation(s)
- Tetsuhiro Yoshinami
- Department of Breast and Endocrine Surgery, Graduate School of Medicine, Osaka University, Osaka, Japan.
| |
Collapse
|
19
|
Xu Y, Qi Y, Lu Z, Tan Y, Chen D, Luo H. Navigating precision: the crucial role of next-generation sequencing recurrence risk assessment in tailoring adjuvant therapy for hormone receptor-positive, human epidermal growth factor Receptor2-negative early breast cancer. Cancer Biol Ther 2024; 25:2405060. [PMID: 39304993 PMCID: PMC11418226 DOI: 10.1080/15384047.2024.2405060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 09/02/2024] [Accepted: 09/12/2024] [Indexed: 09/25/2024] Open
Abstract
Hormone receptor-positive (HR+)/human epidermal growth factor receptor 2-negative (HER2-) breast cancer is the most common subtype, representing over two-thirds of new diagnoses. Adjuvant therapy, which encompasses various medications and treatment durations, is the standard approach for managing early stage HR+ HER2- breast cancer. Optimizing treatment is essential to minimize unnecessary side effects while addressing the biological variability inherent in HR+/HER2- breast cancers. Incorporating biological biomarkers into treatment decisions, alongside traditional clinical factors, is vital. Gene expression assays can identify patients unlikely to benefit from adjuvant chemotherapy, thereby refining treatment strategies and improving risk assessment. This paper reviews evidence for several genomic tests, including Oncotype DX, MammaPrint, Breast Cancer Index, RucurIndex, and EndoPredict, which assist in tailoring adjuvant therapy. Additionally, we explore the role of liquid biopsies in personalizing treatment, emphasizing the importance of considering late relapse risks and potential benefits of extended systemic therapy for HR+/HER2- breast cancer patients.
Collapse
MESH Headings
- Humans
- Breast Neoplasms/genetics
- Breast Neoplasms/drug therapy
- Breast Neoplasms/metabolism
- Breast Neoplasms/pathology
- Female
- Chemotherapy, Adjuvant/methods
- Receptor, ErbB-2/metabolism
- Receptor, ErbB-2/genetics
- Risk Assessment/methods
- Neoplasm Recurrence, Local/genetics
- Neoplasm Recurrence, Local/pathology
- Neoplasm Recurrence, Local/metabolism
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/metabolism
- High-Throughput Nucleotide Sequencing/methods
- Precision Medicine/methods
- Receptors, Estrogen/metabolism
- Receptors, Progesterone/metabolism
Collapse
Affiliation(s)
- Ying Xu
- Department of Obestetrics and Gynecology, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, China
| | - Yingxue Qi
- The Medical Department, Jiangsu Simcere Diagnostics Co. Ltd. Nanjing Simcere Medical Laboratory Science Co. Ltd., The State Key Laboratory of Neurology and Oncology Drug Development, Nanjing, China
| | - Zhongyu Lu
- The Medical Department, Jiangsu Simcere Diagnostics Co. Ltd. Nanjing Simcere Medical Laboratory Science Co. Ltd., The State Key Laboratory of Neurology and Oncology Drug Development, Nanjing, China
| | - Yuan Tan
- The Medical Department, Jiangsu Simcere Diagnostics Co. Ltd. Nanjing Simcere Medical Laboratory Science Co. Ltd., The State Key Laboratory of Neurology and Oncology Drug Development, Nanjing, China
| | - Dongsheng Chen
- The Medical Department, Jiangsu Simcere Diagnostics Co. Ltd. Nanjing Simcere Medical Laboratory Science Co. Ltd., The State Key Laboratory of Neurology and Oncology Drug Development, Nanjing, China
- Cancer Center, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
- Center of Translational Medicine, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| | - Haijun Luo
- Department of Pathology, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha, China
| |
Collapse
|
20
|
Xi J, Ma CX, O'Shaughnessy J. Current Clinical Utility of Circulating Tumor DNA Testing in Breast Cancer: A Practical Approach. JCO Oncol Pract 2024; 20:1460-1470. [PMID: 39531841 DOI: 10.1200/op.24.00274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 08/26/2024] [Accepted: 08/27/2024] [Indexed: 11/16/2024] Open
Abstract
Circulating tumor DNA (ctDNA) refers to DNA fragments released from cancer cells into the bloodstream. Clinical utility of ctDNA in breast cancer has been explored in both metastatic breast cancer (MBC) and early-stage breast cancer (EBC) settings. In MBC, ctDNA can detect therapeutically targetable genomic alterations and has shown great potential in predicting treatment response or resistance. Accumulating data suggest that ctDNA might also have prognostic value in MBC. In EBC, emerging data have shown ctDNA's predictive and/or prognostic value in both neoadjuvant and adjuvant settings. Minimal residual disease (MRD) detection via ctDNA to detect clinical recurrence after curative therapy is a rapidly advancing field. In this review, we discuss the existing and emerging data regarding ctDNA utility in both MBC and EBC settings.
Collapse
Affiliation(s)
- Jing Xi
- Rocky Mountain Cancer Centers, Denver, CO
| | | | | |
Collapse
|
21
|
Medford AJ, Carmeli AB, Ritchie A, Wagle N, Garraway L, Lander ES, Parikh A. A standing platform for cancer drug development using ctDNA-based evidence of recurrence. Nat Rev Cancer 2024; 24:810-821. [PMID: 39349822 DOI: 10.1038/s41568-024-00742-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/09/2024] [Indexed: 10/26/2024]
Abstract
The time required to conduct clinical trials limits the rate at which we can evaluate and deliver new treatment options to patients with cancer. New approaches to increase trial efficiency while maintaining rigor would benefit patients, especially in oncology, in which adjuvant trials hold promise for intercepting metastatic disease, but typically require large numbers of patients and many years to complete. We envision a standing platform - an infrastructure to support ongoing identification and trial enrolment of patients with cancer with early molecular evidence of disease (MED) after curative-intent therapy for early-stage cancer, based on the presence of circulating tumour DNA. MED strongly predicts subsequent recurrence, with the vast majority of patients showing radiographic evidence of disease within 18 months. Such a platform would allow efficient testing of many treatments, from small exploratory studies to larger pivotal trials. Trials enrolling patients with MED but without radiographic evidence of disease have the potential to advance drug evaluation because they can be smaller (given high probability of recurrence) and faster (given short time to recurrence) than conventional adjuvant trials. Circulating tumour DNA may also provide a valuable early biomarker of treatment effect, which would allow small signal-finding trials. In this Perspective, we discuss how such a platform could be established.
Collapse
Affiliation(s)
- Arielle J Medford
- Department of Medicine, Division of Hematology and Oncology, Massachusetts General Hospital Cancer Center and Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | | | | | | | | | - Eric S Lander
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Science for America, Cambridge, MA, USA.
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Department of Systems Biology, Harvard Medical School, Boston, MA, USA.
| | - Aparna Parikh
- Department of Medicine, Division of Hematology and Oncology, Massachusetts General Hospital Cancer Center and Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
22
|
Genta S, Araujo DV, Hueniken K, Pipinikas C, Ventura R, Rojas P, Jones G, Butler MO, Saibil SD, Yu C, Easson A, Covelli A, Sauder MB, Fournier C, Saeed Kamil Z, Rogalla P, Arteaga DP, Vornicova O, Spiliopoulou P, Muniz TP, Siu LL, Spreafico A. Bespoke ctDNA for longitudinal detection of molecular residual disease in high-risk melanoma patients. ESMO Open 2024; 9:103978. [PMID: 39549683 PMCID: PMC11615122 DOI: 10.1016/j.esmoop.2024.103978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 10/10/2024] [Accepted: 10/11/2024] [Indexed: 11/18/2024] Open
Abstract
BACKGROUND Locally advanced melanoma has a variable prognosis. Currently, there are no reliable criteria to stratify the risk of disease relapse and identify those patients who will benefit the most from adjuvant therapies. Circulating tumor DNA (ctDNA) is an emerging biomarker measuring the presence of tumor-derived DNA in blood. PATIENTS AND METHODS We used a bespoke, tumor-informed assay (RaDaR®, NeoGenomics, Inc.) to detect ctDNA in 276 prospectively collected plasma samples from 66 melanoma patients receiving definitive treatment. Collection time points included landmark (after completion of local treatment) and every 3-6 months for up to 2 years. RESULTS ctDNA was detected in at least one plasma sample in 19 patients (29%), including 6/65 (9%) at landmark (post-surgical sample). Positive ctDNA at landmark was associated with shorter overall survival (OS; median OS 22.7 months versus not reached, log-rank P value = 0.01) and a trend towards a shorter relapse-free survival (RFS; median RFS 15.7 months versus not reached, log-rank P value = 0.07). In 10 patients, ctDNA detection preceded disease relapse by a median of 128 days (range 8-406 days). CONCLUSIONS Our data indicate that ctDNA detection after surgery can identify patients with worse prognosis, and serial ctDNA measurements may enable earlier identification of disease recurrence.
Collapse
Affiliation(s)
- S Genta
- Division of Medical Oncology and Hematology, Princess Margaret Cancer Centre, University Health Network, University of Toronto, Toronto, Canada
| | - D V Araujo
- Division of Medical Oncology, BC Cancer Agency Abbotsford, University of British Columbia, Abbotsford, Canada
| | - K Hueniken
- Department of Biostatistics, Princess Margaret Cancer Centre, Toronto, Canada
| | - C Pipinikas
- NeoGenomics, Babraham Research Campus, Cambridge, UK and Research Triangle Park, North Carolina, USA
| | - R Ventura
- NeoGenomics, Babraham Research Campus, Cambridge, UK and Research Triangle Park, North Carolina, USA
| | - P Rojas
- NeoGenomics, Babraham Research Campus, Cambridge, UK and Research Triangle Park, North Carolina, USA
| | - G Jones
- NeoGenomics, Babraham Research Campus, Cambridge, UK and Research Triangle Park, North Carolina, USA
| | - M O Butler
- Division of Medical Oncology and Hematology, Princess Margaret Cancer Centre, University Health Network, University of Toronto, Toronto, Canada
| | - S D Saibil
- Division of Medical Oncology and Hematology, Princess Margaret Cancer Centre, University Health Network, University of Toronto, Toronto, Canada
| | - C Yu
- Division of Medical Oncology and Hematology, Princess Margaret Cancer Centre, University Health Network, University of Toronto, Toronto, Canada
| | - A Easson
- Division of General Surgery, Department of Surgery, University of Toronto, Toronto, Canada
| | - A Covelli
- Division of General Surgery, Department of Surgery, University of Toronto, Toronto, Canada
| | - M B Sauder
- Princess Margaret Cancer Centre, Toronto, Canada
| | - C Fournier
- Princess Margaret Cancer Centre, Toronto, Canada
| | - Z Saeed Kamil
- Department of Laboratory Medicine and Pathobiology, Toronto General Hospital/University Health Network, University of Toronto, Toronto, Canada
| | - P Rogalla
- Toronto Joint Department of Medical Imaging, University of Toronto, Canada
| | - D P Arteaga
- Division of Medical Oncology and Hematology, Princess Margaret Cancer Centre, University Health Network, University of Toronto, Toronto, Canada
| | - O Vornicova
- Division of Medical Oncology and Hematology, Princess Margaret Cancer Centre, University Health Network, University of Toronto, Toronto, Canada
| | - P Spiliopoulou
- Division of Medical Oncology and Hematology, Princess Margaret Cancer Centre, University Health Network, University of Toronto, Toronto, Canada
| | - T P Muniz
- Division of Medical Oncology and Hematology, Princess Margaret Cancer Centre, University Health Network, University of Toronto, Toronto, Canada
| | - L L Siu
- Division of Medical Oncology and Hematology, Princess Margaret Cancer Centre, University Health Network, University of Toronto, Toronto, Canada
| | - A Spreafico
- Division of Medical Oncology and Hematology, Princess Margaret Cancer Centre, University Health Network, University of Toronto, Toronto, Canada.
| |
Collapse
|
23
|
Tokura M, Ando MM, Kojima Y, Kitadai R, Yazaki S, Atutubo CMN, Li RK, Perez MZ, Gorospe AE, Madrid MA, Ordinario MVC, Imasa MSB, Sudo K, Shimoi T, Suto A, Kohsaka S, Machida R, Sadachi R, Yoshida M, Yatabe Y, Hata T, Nakamura K, Yonemori K, Shiino S. Multicenter Prospective Study in HER2-Positive Early Breast Cancer for Detecting Minimal Residual Disease by Circulating Tumor DNA Analysis With Neoadjuvant Chemotherapy: HARMONY Study. Breast Cancer (Auckl) 2024; 18:11782234241288671. [PMID: 39493594 PMCID: PMC11528640 DOI: 10.1177/11782234241288671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 09/05/2024] [Indexed: 11/05/2024] Open
Abstract
Background Biomarkers to predict the recurrence risk are required to optimize perioperative treatment. Adjuvant chemotherapy for patients with human epidermal growth factor 2-positive (HER2-positive) early breast cancer is decided by pathological responses of neoadjuvant chemotherapy (NAC). However, whether pathological responses are appropriate biomarkers is unclear. Currently, there are several studies using minimal residual disease (MRD) as a predictor of prognosis in solid tumors. However, there is no standard method for detecting MRD. Objectives This study aimed at prospectively evaluating the relationship between MRD detection and recurrence in Asian patients with HER2-positive early breast cancer. Design Prospective, observational, single-group, and exploratory. This study will include 60 patients from 2 institutions in Japan and the Philippines. The invasive disease-free survival (IDFS) rates of the MRD-positive and MRD-negative groups are compared in patients with HER2-positive early breast cancer who undergo surgery after receiving NAC. Methods and analysis Circulating tumor DNA (ctDNA) levels of patients will be evaluated 6 times: before NAC, after NAC, after surgery, and annually after surgery for 3 years. We will analyze the genetic profile of blood and tissue samples using the Todai OncoPanel (TOP) and the methylation level of DNA. The primary endpoint is IDFS. Secondary endpoints include overall survival (OS) and disease-free survival (DFS). Patient enrollment began in June 2022, and new participants are still being recruited. Ethics This study has been approved by the National Cancer Center Hospital Certified Review Board in March 2022 and has been approved by the Research Ethics Board of the participating center. Discussion Our findings will contribute to determining whether MRD detection using TOP is useful for predicting the recurrence of HER2-positive early breast cancer. If this is proven, MRD detected by TOP could be used in the future as a biomarker to assist in the de-/escalation of treatment strategies in the next interventional trial, thereby avoiding overtreatment in patients at low risk, and in the addition of intensive treatment modalities for those in patients at high risk.
Collapse
Affiliation(s)
- Momoko Tokura
- Department of Medical Oncology, National Cancer Center Hospital, Tokyo, Japan
- Department of International Clinical Development, National Cancer Center Hospital, Tokyo, Japan
- Laboratory of Integrative Oncology, National Cancer Center Research Institute, Tokyo, Japan
| | - Mark Malalay Ando
- Department of Medical Oncology, Cebu South Medical Center, Talisay, Philippines
| | - Yuki Kojima
- Department of Medical Oncology, National Cancer Center Hospital, Tokyo, Japan
- Department of International Clinical Development, National Cancer Center Hospital, Tokyo, Japan
| | - Rui Kitadai
- Department of Medical Oncology, National Cancer Center Hospital, Tokyo, Japan
| | - Shu Yazaki
- Department of Medical Oncology, National Cancer Center Hospital, Tokyo, Japan
- Department of International Clinical Development, National Cancer Center Hospital, Tokyo, Japan
| | | | - Rubi K. Li
- Section of Medical Oncology, St. Luke’s Medical Center, Quezon, Philippines
| | - Minda Z. Perez
- Institution of Surgery, St. Luke’s Medical Center, Quezon, Philippines
| | - Agnes E Gorospe
- Section of Medical Oncology, St. Luke’s Medical Center, Quezon, Philippines
| | | | | | | | - Kazuki Sudo
- Department of Medical Oncology, National Cancer Center Hospital, Tokyo, Japan
- Department of International Clinical Development, National Cancer Center Hospital, Tokyo, Japan
- Department of Experimental Therapeutics, National Cancer Center Hospital, Tokyo, Japan
| | - Tatsunori Shimoi
- Department of Medical Oncology, National Cancer Center Hospital, Tokyo, Japan
- Department of International Clinical Development, National Cancer Center Hospital, Tokyo, Japan
| | - Akihiko Suto
- Department of Breast Surgery, National Cancer Center Hospital, Tokyo, Japan
| | - Shinji Kohsaka
- Division of Cellular Signaling, National Cancer Center Research Institute, Tokyo, Japan
| | - Ryunosuke Machida
- Biostatistics Section, Clinical Research Support Office, National Cancer Center Hospital, Tokyo, Japan
| | - Ryo Sadachi
- Biostatistics Section, Clinical Research Support Office, National Cancer Center Hospital, Tokyo, Japan
| | - Masayuki Yoshida
- Department of Diagnostic Pathology, National Cancer Center Hospital, Tokyo, Japan
| | - Yasushi Yatabe
- Department of Diagnostic Pathology, National Cancer Center Hospital, Tokyo, Japan
| | - Tomomi Hata
- International Trial Management Section, Research Management Division, Clinical Research Support Office, National Cancer Center Hospital, Tokyo, Japan
| | - Kenichi Nakamura
- Department of International Clinical Development, National Cancer Center Hospital, Tokyo, Japan
| | - Kan Yonemori
- Department of Medical Oncology, National Cancer Center Hospital, Tokyo, Japan
- Department of International Clinical Development, National Cancer Center Hospital, Tokyo, Japan
- Department of Experimental Therapeutics, National Cancer Center Hospital, Tokyo, Japan
| | - Sho Shiino
- Department of Breast Surgery, National Cancer Center Hospital, Tokyo, Japan
| |
Collapse
|
24
|
Stewart TF, Chalfin H, Simon N, Tan A, Apolo A, McKay RR. Perioperative Use of ctDNA to Guide Treatment for Urothelial Carcinoma: The Future is Now. Bladder Cancer 2024; 10:183-198. [PMID: 39493820 PMCID: PMC11530029 DOI: 10.3233/blc-230105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 08/29/2024] [Indexed: 11/05/2024]
Abstract
Muscle-invasive bladder cancer represents a potentially curable disease, yet often disease recurs and is ultimately fatal. Outcomes for patients with localized urothelial carcinoma are heterogeneous with some patients cured with surgery alone, deriving no benefit from perioperative systemic therapy, while others are left with residual disease and may benefit from additional therapy. Neoadjuvant chemotherapy increases cure rates but comes with significant toxicity. Recently, adjuvant nivolumab has demonstrated significant improvement in disease free survival (DFS), and overall survival analysis is pending. With more therapies approved for urothelial cancer within the last 5 years than ever before, there is incredible potential to improve clinical outcomes and potentially cure more patients with integrated multimodal therapy. Biomarkers are needed to dichotomize those most likely to benefit from perioperative systemic therapy for residual disease, and de-escalate therapy for those likely to be cured with surgery alone. Ultrasensitive assays for circulating tumor DNA (ctDNA) have emerged as a method to identify patients at high risk of recurrence after definitive therapy and may benefit from escalated therapy, while also identifying those least likely to benefit from systemic therapy. Studies have demonstrated that the presence of ctDNA after surgery is prognostic of disease recurrence across multiple cancer types, including bladder cancer, but questions remain as to the utility of these tests, and whether they can be predictive of benefit of adjuvant therapy. Although these liquid biopsies hold significant promise to transform perioperative treatment, prospective studies are needed to validate their utility as prognostic and predictive biomarkers. To bridge this knowledge gap, contemporary clinical trials are incorporating ctDNA as an integral biomarker to guide therapy for MIBC.
Collapse
Affiliation(s)
- Tyler F. Stewart
- Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | | | | | - Alan Tan
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Andrea Apolo
- National Cancer Institute, NIH, Bethesda, MD, USA
| | - Rana R. McKay
- Department of Medicine, University of California San Diego, La Jolla, CA, USA
| |
Collapse
|
25
|
Zhang R, Su C, Jia Y, Xing M, Jin S, Zong H. Molecular mechanisms of HER2-targeted therapy and strategies to overcome the drug resistance in colorectal cancer. Biomed Pharmacother 2024; 179:117363. [PMID: 39236476 DOI: 10.1016/j.biopha.2024.117363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 08/15/2024] [Accepted: 08/26/2024] [Indexed: 09/07/2024] Open
Abstract
HER2 amplification is one of the mechanisms that induce drug resistance to anti-EGFR therapy in colorectal cancer. In recent years, data from several randomized clinical trials show that anti-HER2 therapies improved the prognosis of patients with HER2-positive colorectal cancer. These results indicate that HER2 is a promising therapeutic target in advanced colorectal cancer. Despite the anti-HER2 therapies including monoclonal antibodies, tyrosine kinase inhibitors, and antibody-drug conjugates improving the outcomes, less than 30 % of the patients achieve objective response and eventually have drug resistance. It is necessary to explore the primary and secondary mechanisms for the resistance to anti-HER2 therapies, which will pave the way to overcome the drug resistance. Several studies have reported the potential mechanisms for the resistance to anti-HER2 therapies. In this review, we present a comprehensive overview of the recent advances in clinical research, mechanisms of treatment resistance, and strategies for reversing resistance in HER2-positive colorectal cancer patients.
Collapse
Affiliation(s)
- Rui Zhang
- Department of Oncology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China.
| | - Chang Su
- Department of Oncology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China.
| | - Yongliang Jia
- BGI College & Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450052, China.
| | - Menglu Xing
- Department of Oncology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China.
| | - Shuiling Jin
- Department of Oncology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China.
| | - Hong Zong
- Department of Oncology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China.
| |
Collapse
|
26
|
Xiao C, Guo Y, Xu Y, Huang J, Li J. Clinicopathological characteristics and survival analysis of different molecular subtypes of breast invasive ductal carcinoma achieving pathological complete response through neoadjuvant chemotherapy. World J Surg Oncol 2024; 22:250. [PMID: 39285422 PMCID: PMC11403885 DOI: 10.1186/s12957-024-03535-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 09/09/2024] [Indexed: 09/22/2024] Open
Abstract
BACKGROUND To investigate the prognostic differences following the achievement of a pathological complete response (pCR) through neoadjuvant chemotherapy across different molecular subtypes of breast invasive ductal carcinoma. METHODS Data from the Surveillance, Epidemiology, and End Results (SEER) were identified for patients undergoing neoadjuvant chemotherapy who achieved pathological complete response for invasive ductal carcinoma of the breast between 2010 and 2019.Comparing the clinicopathological characteristics of patients across different molecular subtypes. Univariate and Cox multivariate analyses were utilized to identify independent predictors of overall survival (OS) and cancer-specific survival (CSS). The Kaplan-Meier method is used to compare OS and CSS among different molecular subtypes. After propensity score matching, subgroup analysis results were presented through forest plots. RESULTS This study included 9,380 patients diagnosed with invasive ductal carcinoma, who were categorized into four molecular subtypes: 2,721 (29.01%) HR + /HER-2 + , 1,661 (17.71%) HR + /HER2-, 2,082 (22.20%) HR-/HER2 + , and 2,916 (31.08%) HR-/HER-2-. HR + /HER-2- subgroup exhibited a significantly higher proportion of patients under 50 years old than the other subtype groups (54.67% vs 40.2%, 50.35% and 51.82%, p < 0.01), and had a higher N2 + N3 stage (11.2% vs 7.24%, 8.69% and 7.48%, p < 0.01). Univariate and multivariate analysis revealed that molecular subtype was the independent risk factor for OS and CSS in patients(p < 0.05). The Kaplan-Meier curves indicated that the HR + /HER-2 + subtype had the highest OS and CSS(p < 0.05). Next, were the HR-/HER-2 + and HR-/HER-2- subtypes, with the HR + /HER-2- group having the lowest OS and CSS(p < 0.05). After propensity score matching, the OS and CSS of patients in the HR + /HER-2 + group remained higher compared to HR + /HER-2- group(p < 0.05). CONCLUSIONS Patients with invasive ductal carcinoma of different molecular subtypes exhibit varying prognoses after achieving pCR to neoadjuvant chemotherapy. Those in the HR + /HER-2- group are younger, have a higher lymph node stage, and the lowest OS and CSS, whereas patients in the HR + /HER-2 + group have the highest OS and CSS.
Collapse
MESH Headings
- Humans
- Female
- Breast Neoplasms/pathology
- Breast Neoplasms/mortality
- Breast Neoplasms/drug therapy
- Breast Neoplasms/metabolism
- Neoadjuvant Therapy/methods
- Neoadjuvant Therapy/mortality
- Carcinoma, Ductal, Breast/pathology
- Carcinoma, Ductal, Breast/drug therapy
- Carcinoma, Ductal, Breast/mortality
- Carcinoma, Ductal, Breast/metabolism
- Middle Aged
- Survival Rate
- Prognosis
- Receptor, ErbB-2/metabolism
- Follow-Up Studies
- Antineoplastic Combined Chemotherapy Protocols/therapeutic use
- Adult
- Receptors, Progesterone/metabolism
- SEER Program
- Receptors, Estrogen/metabolism
- Aged
- Biomarkers, Tumor/metabolism
- Biomarkers, Tumor/analysis
- Chemotherapy, Adjuvant/methods
- Retrospective Studies
Collapse
Affiliation(s)
- Cheng Xiao
- Cancer Prevention and Treatment Institute of Chengdu, Department of Thyroid and Breast Surgery, Chengdu Fifth People's Hospital (Affiliated Fifth People's Hospital of Chengdu University of Traditional Chinese Medicine), NO.33 Ma Shi Street, Wenjiang District, Chengdu, 611137, China
| | - Yao Guo
- Cancer Prevention and Treatment Institute of Chengdu, Department of Thyroid and Breast Surgery, Chengdu Fifth People's Hospital (Affiliated Fifth People's Hospital of Chengdu University of Traditional Chinese Medicine), NO.33 Ma Shi Street, Wenjiang District, Chengdu, 611137, China
| | - Yang Xu
- Cancer Prevention and Treatment Institute of Chengdu, Department of Thyroid and Breast Surgery, Chengdu Fifth People's Hospital (Affiliated Fifth People's Hospital of Chengdu University of Traditional Chinese Medicine), NO.33 Ma Shi Street, Wenjiang District, Chengdu, 611137, China
| | - Junhua Huang
- Cancer Prevention and Treatment Institute of Chengdu, Department of Thyroid and Breast Surgery, Chengdu Fifth People's Hospital (Affiliated Fifth People's Hospital of Chengdu University of Traditional Chinese Medicine), NO.33 Ma Shi Street, Wenjiang District, Chengdu, 611137, China
| | - Junyan Li
- Cancer Prevention and Treatment Institute of Chengdu, Department of Thyroid and Breast Surgery, Chengdu Fifth People's Hospital (Affiliated Fifth People's Hospital of Chengdu University of Traditional Chinese Medicine), NO.33 Ma Shi Street, Wenjiang District, Chengdu, 611137, China.
| |
Collapse
|
27
|
Dickinson K, Sharma A, Agnihotram RKV, Altuntur S, Park M, Meterissian S, Burnier JV. Circulating Tumor DNA and Survival in Metastatic Breast Cancer: A Systematic Review and Meta-Analysis. JAMA Netw Open 2024; 7:e2431722. [PMID: 39235812 PMCID: PMC11378006 DOI: 10.1001/jamanetworkopen.2024.31722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/06/2024] Open
Abstract
Importance Metastatic breast cancer (MBC) poses a substantial clinical challenge despite advancements in diagnosis and treatment. While tissue biopsies offer a static snapshot of disease, liquid biopsy-through detection of circulating tumor DNA (ctDNA)-provides minimally invasive, real-time insight into tumor biology. Objective To determine the association between ctDNA and survival outcomes in patients with MBC. Data Sources An electronic search was performed in 5 databases (CINAHL, Cochrane Library, Embase, Medline, and Web of Science) and included all articles published from inception until October 23, 2023. Study Selection To be included in the meta-analysis, studies had to (1) include women diagnosed with MBC; (2) report baseline plasma ctDNA data; and (3) report overall survival, progression-free survival, or disease-free survival with associated hazards ratios. Data Extraction and Synthesis Titles and abstracts were screened independently by 2 authors. Data were pooled using a random-effects model. This study adhered to the Preferred Reporting Items for Systematic Reviews and Meta-analyses (PRISMA) reporting guideline, and quality was assessed using the Newcastle-Ottawa Scale. Main Outcomes and Measures The primary study outcome was the association between detection of specific genomic alterations in ctDNA with survival outcomes. Secondary objectives were associations of study methodology with survival. Results Of 3162 articles reviewed, 37 met the inclusion criteria and reported data from 4264 female patients aged 20 to 94 years. Aggregated analysis revealed a significant association between ctDNA detection and worse survival (hazard ratio, 1.40; 95% CI, 1.22-1.58). Subgroup analysis identified significant associations of TP53 and ESR1 alterations with worse survival (hazard ratios, 1.58 [95% CI, 1.34-1.81] and 1.28 [95% CI, 0.96-1.60], respectively), while PIK3CA alterations were not associated with survival outcomes. Stratifying by detection method, ctDNA detection through next-generation sequencing and digital polymerase chain reaction was associated with worse survival (hazard ratios, 1.48 [95% CI, 1.22-1.74] and 1.28 [95% CI, 1.05-1.50], respectively). Conclusions and Relevance In this systematic review and meta-analysis, detection of specific genomic alterations in ctDNA was associated with worse overall, progression-free, and disease-free survival, suggesting its potential as a prognostic biomarker in MBC. These results may help guide the design of future studies to determine the actionability of ctDNA findings.
Collapse
Affiliation(s)
- Kyle Dickinson
- Cancer Research Program, Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada
| | - Archi Sharma
- Cancer Research Program, Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada
| | | | - Selin Altuntur
- McConnell Resource Centre Medical Library, McGill University Health Centre, Montreal, Quebec, Canada
| | - Morag Park
- Rosalind and Morris Goodman Cancer Institute, McGill University, Montreal, Quebec, Canada
- Gerald Bronfman Department of Oncology, McGill University, Montreal, Quebec, Canada
| | - Sarkis Meterissian
- Gerald Bronfman Department of Oncology, McGill University, Montreal, Quebec, Canada
- Department of Surgery, McGill University Health Centre, Montreal, Quebec, Canada
| | - Julia V Burnier
- Cancer Research Program, Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada
- Gerald Bronfman Department of Oncology, McGill University, Montreal, Quebec, Canada
- Department of Pathology, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
28
|
Yoo TKR, Lee JY, Park H, Cho WK, Jeon S, Jun HR, Lee SB, Chung IY, Kim HJ, Ko BS, Lee JW, Son BH, Ahn SH, Jeong JH, Kim JE, Ahn JH, Jung KH, Kim SB, Lee HJ, Gong G, Kim J, Chun SM. Longitudinal dynamics of circulating tumor DNA for treatment monitoring in patients with breast cancer recurrence. Sci Rep 2024; 14:20252. [PMID: 39215119 PMCID: PMC11364657 DOI: 10.1038/s41598-024-70887-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 08/22/2024] [Indexed: 09/04/2024] Open
Abstract
The prevalence and dynamics of circulating tumor DNA (ctDNA) in patients with breast cancer recurrence or de novo metastatic cancer were examined in a retrospective analysis of a prospective observational cohort. Twenty-three recurrent/metastatic breast cancer cases (8 locoregional, 15 distant metastasis) were enrolled, and sequential plasma samples were obtained. Anchor mutations were selected from the target sequencing of each patient's primary and/or metastatic tumor. An in-house developed assay (UHS assay) was employed for a tumor-informed ctDNA assay during treatment and follow-up. A median of three (range 1-5) anchor mutations per case were applied for ctDNA detection. ctDNA was detected in 14 (63.6%, 14/22) cases at the time of enrollment and 18 (78.5%, 18/23) cases during follow-up. More anchor mutations and higher tumor burden were significantly related to higher ctDNA positive rates (p-value 0.036, 0.043, respectively). The mean enriched variant allele frequency (eVAF) at each time point was significantly higher for stable or progressive disease responses (ANOVA test p-value < 0.001). Eight patients showed an increase in their ctDNA eVAF prior to clinical progression with a mean lead time of 6.2 months (range 1.5-11 months). ctDNA dynamics measured using personalized assay reflected the clinical course of breast cancer recurrence.
Collapse
Affiliation(s)
- Tae-Kyung Robyn Yoo
- Department of Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Ji-Young Lee
- Department of Medical Science, Asan Medical Institute of Convergence Science and Technology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Republic of Korea
- Asan Center for Cancer Genome Discovery, Asan Institute for Life Science, Asan Medical Center, Seoul, Republic of Korea
| | - Hwan Park
- Asan Center for Cancer Genome Discovery, Asan Institute for Life Science, Asan Medical Center, Seoul, Republic of Korea
| | - Whi-Kyung Cho
- Department of Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Seyeon Jeon
- Department of Medical Science, Asan Medical Institute of Convergence Science and Technology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Republic of Korea
- Asan Center for Cancer Genome Discovery, Asan Institute for Life Science, Asan Medical Center, Seoul, Republic of Korea
| | - Ha Ra Jun
- Department of Medical Science, Asan Medical Institute of Convergence Science and Technology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Republic of Korea
- Asan Center for Cancer Genome Discovery, Asan Institute for Life Science, Asan Medical Center, Seoul, Republic of Korea
| | - Sae Byul Lee
- Department of Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Il Yong Chung
- Department of Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Hee Jeong Kim
- Department of Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Beom Seok Ko
- Department of Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Jong Won Lee
- Department of Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Byung Ho Son
- Department of Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Sei-Hyun Ahn
- Department of Surgery, Ewha Womens University Mokdong Hospital, Seoul, Republic of Korea
| | - Jae Ho Jeong
- Department of Oncology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Jeong Eun Kim
- Department of Oncology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Jin-Hee Ahn
- Department of Oncology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Kyung Hae Jung
- Department of Oncology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Sung-Bae Kim
- Department of Oncology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Hee Jin Lee
- Department of Pathology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Gyungyub Gong
- Department of Pathology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Jisun Kim
- Department of Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea.
| | - Sung-Min Chun
- Asan Center for Cancer Genome Discovery, Asan Institute for Life Science, Asan Medical Center, Seoul, Republic of Korea.
- Department of Pathology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
29
|
Verschoor N, Bos MK, Oomen-de Hoop E, Martens JWM, Sleijfer S, Jager A, Beije N. A review of trials investigating ctDNA-guided adjuvant treatment of solid tumors: The importance of trial design. Eur J Cancer 2024; 207:114159. [PMID: 38878446 DOI: 10.1016/j.ejca.2024.114159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 05/24/2024] [Accepted: 05/30/2024] [Indexed: 07/14/2024]
Abstract
Circulating tumor DNA (ctDNA) holds promise as a biomarker for guiding adjuvant treatment decisions in solid tumors. This review systematically assembles ongoing and published trials investigating ctDNA-directed adjuvant treatment strategies. A total of 57 phase II/III trials focusing on ctDNA in minimal residual disease (MRD) detection were identified, with a notable increase in initiation over recent years. Most trials target stage II or III colon/colorectal cancer, followed by breast cancer and non-small cell lung cancer. Trial methodologies vary, with some randomizing ctDNA-positive patients between standard-of-care (SoC) treatment and intensified regimens, while others aim to de-escalate therapy in ctDNA-negative patients. Challenges in trial design include the need for randomized controlled trials to establish clinical utility for ctDNA, ensuring adherence to standard treatment in control arms, and addressing the ethical dilemma of withholding treatment in high-risk ctDNA-positive patients. Longitudinal ctDNA surveillance emerges as a strategy to improve sensitivity for recurrence, particularly in less proliferative tumor types. However, ctDNA as longitudinal marker is often not validated yet. Ultimately, designing effective ctDNA interventional trials requires careful consideration of feasibility, meaningful outcomes, and potential impact on patient care.
Collapse
Affiliation(s)
- Noortje Verschoor
- Department of Medical Oncology, Erasmus MC Cancer Institute, Erasmus University Medical Center, the Netherlands.
| | - Manouk K Bos
- Department of Medical Oncology, Erasmus MC Cancer Institute, Erasmus University Medical Center, the Netherlands
| | - Esther Oomen-de Hoop
- Department of Medical Oncology, Erasmus MC Cancer Institute, Erasmus University Medical Center, the Netherlands
| | - John W M Martens
- Department of Medical Oncology, Erasmus MC Cancer Institute, Erasmus University Medical Center, the Netherlands
| | - Stefan Sleijfer
- Department of Medical Oncology, Erasmus MC Cancer Institute, Erasmus University Medical Center, the Netherlands
| | - Agnes Jager
- Department of Medical Oncology, Erasmus MC Cancer Institute, Erasmus University Medical Center, the Netherlands
| | - Nick Beije
- Department of Medical Oncology, Erasmus MC Cancer Institute, Erasmus University Medical Center, the Netherlands
| |
Collapse
|
30
|
Elkholi IE, Rose AAN, Aguirre-Ghiso JA, Côté JF. How can we integrate the biology of breast cancer cell dormancy into clinical practice? Cancer Cell 2024; 42:1147-1151. [PMID: 38906154 DOI: 10.1016/j.ccell.2024.05.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 05/18/2024] [Accepted: 05/28/2024] [Indexed: 06/23/2024]
Abstract
Clinical practice and clinical research heavily rely on primary tumors, circulating tumor DNA, and/or overt metastases as sources of material for predicting or investigating breast cancer metastatic relapses. However, these approaches do not consider emerging fundamentals in the biology of metastatic dormancy and relapse. Conversely, the field of metastatic dormancy often discounts key clinical factors influencing relapse dynamics (e.g., patient's age and overall health condition). Here, we delineate these disparities into four gaps and propose a framework to bridge them.
Collapse
Affiliation(s)
- Islam E Elkholi
- Gerald Bronfman Department of Oncology, McGill University, Montreal, QC, Canada; Lady Davis Institute, Sir Mortimer B. Davis Jewish General Hospital, Montreal, QC, Canada; Montreal Clinical Research Institute (IRCM), Montreal, QC, Canada; Molecular Biology Programs, Université de Montréal, Montreal, QC, Canada.
| | - April A N Rose
- Gerald Bronfman Department of Oncology, McGill University, Montreal, QC, Canada; Lady Davis Institute, Sir Mortimer B. Davis Jewish General Hospital, Montreal, QC, Canada
| | - Julio A Aguirre-Ghiso
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY, USA; Cancer Dormancy and Tumor Microenvironment Institute, Montefiore Einstein Comprehensive Cancer Center, Albert Einstein College of Medicine, Bronx, NY, USA; Ruth L. & David S. Gottesman Institute for Stem Cell Research & Regenerative Medicine, Albert Einstein College of Medicine, Bronx, NY, USA; Institute for Aging Research, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Jean-François Côté
- Montreal Clinical Research Institute (IRCM), Montreal, QC, Canada; Molecular Biology Programs, Université de Montréal, Montreal, QC, Canada; Department of Biochemistry and Molecular Medicine, Université de Montréal, Montreal, QC, Canada; Department of Anatomy and Cell Biology, McGill University, Montreal, QC, Canada.
| |
Collapse
|
31
|
Afzal MZ, Vahdat LT. Evolving Management of Breast Cancer in the Era of Predictive Biomarkers and Precision Medicine. J Pers Med 2024; 14:719. [PMID: 39063972 PMCID: PMC11278458 DOI: 10.3390/jpm14070719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 06/17/2024] [Accepted: 06/30/2024] [Indexed: 07/28/2024] Open
Abstract
Breast cancer is the most common cancer among women in the world as well as in the United States. Molecular and histological differentiation have helped clinicians optimize treatments with various therapeutics, including hormonal therapy, chemotherapy, immunotherapy, and radiation therapy. Recently, immunotherapy has become the standard of care in locally advanced triple-negative breast cancer and an option across molecular subtypes for tumors with a high tumor mutation burden. Despite the advancements in personalized medicine directing the management of localized and advanced breast cancers, the emergence of resistance to these therapies is the leading cause of death among breast cancer patients. Therefore, there is a critical need to identify and validate predictive biomarkers to direct treatment selection, identify potential responders, and detect emerging resistance to standard therapies. Areas of active scientific and clinical research include novel personalized and predictive biomarkers incorporating tumor microenvironment, tumor immune profiling, molecular characterization, and histopathological differentiation to predict response and the potential emergence of resistance.
Collapse
Affiliation(s)
- Muhammad Zubair Afzal
- Medical Oncology, Comprehensive Breast Program, Dartmouth Cancer Center, Lebanon, NH 03755, USA
| | - Linda T. Vahdat
- Medical Oncology and Hematology (Interim), Dartmouth Cancer Center, Lebanon, NH 03755, USA;
| |
Collapse
|
32
|
Velasco-Suelto J, Gálvez-Carvajal L, Comino-Méndez I, Rueda-Domínguez A. Hodgkin lymphoma and liquid biopsy: a story to be told. J Exp Clin Cancer Res 2024; 43:184. [PMID: 38956619 PMCID: PMC11218217 DOI: 10.1186/s13046-024-03108-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 06/24/2024] [Indexed: 07/04/2024] Open
Abstract
Hodgkin lymphoma (HL) represents a neoplasm primarily affecting adolescents and young adults, necessitating the development of precise diagnostic and monitoring tools. Specifically, classical Hodgkin lymphoma (cHL), comprising 90% of cases, necessitating tailored treatments to minimize late toxicities. Although positron emission tomography/computed tomography (PET/CT) has enhanced response assessment, its limitations underscore the urgency for more reliable progression predictive tools. Genomic characterisation of rare Hodgkin Reed-Sternberg (HRS) cells is challenging but essential. Recent studies employ single-cell molecular analyses, mass cytometry, and Next-Generation Sequencing (NGS) to unveil mutational landscapes. The integration of liquid biopsies, particularly circulating tumor DNA (ctDNA), extracellular vesicles (EVs), miRNAs and cytokines, emerge as groundbreaking approaches. Recent studies demonstrate ctDNA's potential in assessing therapy responses and predicting relapses in HL. Despite cHL-specific ctDNA applications being relatively unexplored, studies emphasize its value in monitoring treatment outcomes. Overall, this review underscores the imperative role of liquid biopsies in advancing HL diagnosis and monitoring.
Collapse
Affiliation(s)
- Jesús Velasco-Suelto
- Unidad de Gestion Clinica Intercentros de Oncologia Medica, Hospitales Universitarios Regional y Virgen de La Victoria, 29010, Malaga, Spain
- The Biomedical Research Institute of Málaga, IBIMA-CIMES-UMA), 29010, Malaga, Spain
| | - Laura Gálvez-Carvajal
- Unidad de Gestion Clinica Intercentros de Oncologia Medica, Hospitales Universitarios Regional y Virgen de La Victoria, 29010, Malaga, Spain
- The Biomedical Research Institute of Málaga, IBIMA-CIMES-UMA), 29010, Malaga, Spain
| | - Iñaki Comino-Méndez
- Unidad de Gestion Clinica Intercentros de Oncologia Medica, Hospitales Universitarios Regional y Virgen de La Victoria, 29010, Malaga, Spain.
- The Biomedical Research Institute of Málaga, IBIMA-CIMES-UMA), 29010, Malaga, Spain.
- Andalusia-Roche Network in Precision Medical Oncology, 41092, Seville, Spain.
- Centro de Investigacion Biomedica en Red de Cancer (CIBERONC - CB16, 12/00481); 28029, Madrid, Spain.
- Clinical and Translational Cancer Research Group, IBIMA Institute, C/ Severo Ochoa, ParqueTecnologico de Andalucia (PTA), 35, 29590, Campanillas-Malaga, Spain.
| | - Antonio Rueda-Domínguez
- Unidad de Gestion Clinica Intercentros de Oncologia Medica, Hospitales Universitarios Regional y Virgen de La Victoria, 29010, Malaga, Spain
- The Biomedical Research Institute of Málaga, IBIMA-CIMES-UMA), 29010, Malaga, Spain
- Andalusia-Roche Network in Precision Medical Oncology, 41092, Seville, Spain
| |
Collapse
|
33
|
Fu Y, Xu Y, Liu W, Zhang J, Wang F, Jian Q, Huang G, Zou C, Xie X, Kim AH, Mathios D, Pang F, Li F, Wang K, Shen J, Yin J. Tumor-informed deep sequencing of ctDNA detects minimal residual disease and predicts relapse in osteosarcoma. EClinicalMedicine 2024; 73:102697. [PMID: 39022798 PMCID: PMC11252770 DOI: 10.1016/j.eclinm.2024.102697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 05/30/2024] [Accepted: 06/03/2024] [Indexed: 07/20/2024] Open
Abstract
Background Current surveillance modalities of osteosarcoma relapse exhibit limited sensitivity and specificity. Although circulating tumor DNA (ctDNA) has been established as a biomarker of minimal residual disease (MRD) in many solid tumors, a sensitive ctDNA detection technique has not been thoroughly explored for longitudinal MRD detection in osteosarcoma. Methods From August 2019 to June 2023, 59 patients diagnosed with osteosarcoma at the First Affiliated Hospital of Sun Yat-sen University were evaluated in this study. Tumor-informed MRD panels were developed through whole exome sequencing (WES) of tumor tissues. Longitudinal blood samples were collected during treatment and subjected to multiplex PCR-based next-generation sequencing (NGS). Kaplan-Meier curves and Log-rank tests were used to compare outcomes, and Cox regression analysis was performed to identify prognostic factors. Findings WES analysis of 83 patients revealed substantial mutational heterogeneity, with non-recurrent mutated genes accounting for 58.1%. Tumor-informed MRD panels were successfully obtained for 85.5% of patients (71/83). Among 59 patients with successful MRD panel customization and available blood samples, 13 patients exhibited positive ctDNA detection after surgery. Patients with negative post-operative ctDNA had better event-free survival (EFS) compared to those with positive ctDNA, at 1-6 months after surgery, after adjuvant chemotherapy, and more than 6 months after surgery (p < 0.05). In both univariate and multivariate Cox regression analysis, ctDNA results emerged as a significant predictor of EFS (p < 0.05). ctDNA detection preceded positive imaging in 5 patients, with an average lead time of 92.6 days. Thirty-nine patients remained disease-free, with ctDNA results consistently negative or turning negative during follow-up. Interpretation Our study underscores the applicability of tumor-informed deep sequencing of ctDNA in osteosarcoma MRD surveillance and, to our knowledge, represents the largest cohort to date. ctDNA detection is a significant prognostic factor, enabling the early identification of tumor relapse and progression compared to standard imaging, thus offering valuable insights in guiding osteosarcoma patient management. Funding The Grants of National Natural Science Foundation of China (No. 82072964, 82072965, 82203798, 82203026), the Natural Science Foundation of Guangdong (No. 2023A1515012659, 2023A1515010302), and the Regional Combination Project of Basic and Applied Basic Research Foundation of Guangdong (No. 2020A1515110010).
Collapse
Affiliation(s)
- Yiwei Fu
- Department of Musculoskeletal Oncology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China
- Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China
| | - Yu Xu
- Department of Musculoskeletal Oncology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China
- Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China
| | - Weihai Liu
- Department of Musculoskeletal Oncology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China
- Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China
| | - Jiajun Zhang
- Department of Musculoskeletal Oncology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China
- Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China
| | - Fen Wang
- Department of Pathology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China
| | | | - Gang Huang
- Department of Musculoskeletal Oncology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China
- Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China
| | - Changye Zou
- Department of Musculoskeletal Oncology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China
- Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China
| | - Xianbiao Xie
- Department of Musculoskeletal Oncology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China
- Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China
| | - Albert H. Kim
- Department of Neurological Surgery, Washington University School of Medicine, St. Louis, MO, 63110, USA
- The Brain Tumor Center, Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Dimitrios Mathios
- Department of Neurological Surgery, Washington University School of Medicine, St. Louis, MO, 63110, USA
- The Brain Tumor Center, Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Fei Pang
- OrigiMed, Shanghai, 201124, China
| | - Feng Li
- OrigiMed, Shanghai, 201124, China
| | - Kai Wang
- OrigiMed, Shanghai, 201124, China
| | - Jingnan Shen
- Department of Musculoskeletal Oncology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China
- Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China
| | - Junqiang Yin
- Department of Musculoskeletal Oncology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China
- Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China
| |
Collapse
|
34
|
Turabi K, Klute K, Radhakrishnan P. Decoding the Dynamics of Circulating Tumor DNA in Liquid Biopsies. Cancers (Basel) 2024; 16:2432. [PMID: 39001494 PMCID: PMC11240538 DOI: 10.3390/cancers16132432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 06/27/2024] [Accepted: 06/28/2024] [Indexed: 07/16/2024] Open
Abstract
Circulating tumor DNA (ctDNA), a fragment of tumor DNA found in the bloodstream, has emerged as a revolutionary tool in cancer management. This review delves into the biology of ctDNA, examining release mechanisms, including necrosis, apoptosis, and active secretion, all of which offer information about the state and nature of the tumor. Comprehensive DNA profiling has been enabled by methods such as whole genome sequencing and methylation analysis. The low abundance of the ctDNA fraction makes alternative techniques, such as digital PCR and targeted next-generation exome sequencing, more valuable and accurate for mutation profiling and detection. There are numerous clinical applications for ctDNA analysis, including non-invasive liquid biopsies for minimal residual disease monitoring to detect cancer recurrence, personalized medicine by mutation profiling for targeted therapy identification, early cancer detection, and real-time evaluation of therapeutic response. Integrating ctDNA analysis into routine clinical practice creates promising avenues for successful and personalized cancer care, from diagnosis to treatment and follow-up.
Collapse
Affiliation(s)
- Khadija Turabi
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE 68198, USA
- Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Kelsey Klute
- Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA
- Division of Oncology and Hematology, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Prakash Radhakrishnan
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE 68198, USA
- Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA
| |
Collapse
|
35
|
Kok VC, Huang T, Hsu Y, Chang Y, Yang P. Select gene mutations associated with survival outcomes in ER-positive ERBB2-negative early-stage invasive breast cancer: A single-institutional tissue bank study. Cancer Med 2024; 13:e70035. [PMID: 39031010 PMCID: PMC11258552 DOI: 10.1002/cam4.70035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 05/27/2024] [Accepted: 07/09/2024] [Indexed: 07/22/2024] Open
Abstract
INTRODUCTION The prognostic capability of targeted sequencing of primary tumors in patients with estrogen receptor-positive, human epidermal growth factor receptor-2-negative early-stage invasive breast cancer (EBC) in a real-world setting is uncertain. Therefore, we aimed to determine the correlation between a 22-gene mutational profile and long-term survival outcomes in patients with ER+/ERBB2- EBC. PATIENTS AND METHODS A total of 73 women diagnosed with ER+/ERBB2- EBC between January 10, 2004, and June 2, 2008, were followed up until December 31, 2022. Univariate and multivariate Cox models were constructed to plot the relapse-free survival (RFS) and overall survival (OS). The log-rank test derived p-value was obtained. For external validation, we performed a survival analysis of 1163 comparable patients retrieved from the Molecular Taxonomy of Breast Cancer International Consortium (METABRIC) dataset. RESULTS At follow-up, 16 (21.9%) patients had relapsed, while 21 (nearly 29%) harbored mutant genes. Thirty-three missense mutations were detected in 14 genes. The median ages were 51 and 46 years in patients with and without mutations, respectively. Patients with any mutation had a 1.85-fold higher risk of relapse (hazard ratio [HR]: 1.85, 95% confidence interval [CI]: 0.60-5.69) compared to those without any mutation. Patients who harbored any of the six genes (MAP2K4, FGFR3, APC, KIT, RB1, and PTEN) had a nearly 6-fold increase in the risk of relapse (HR: 5.82, 95% CI: 1.31-18.56; p = 0.0069). Multivariate Cox models revealed that the adjusted HR for RFS and OS were 6.67 (95% CI: 1.32-27.57) and 8.31 (p = 0.0443), respectively. METABRIC analysis also demonstrated a trend to significantly worse RFS (p = 0.0576) in the subcohort grouped by having a mutation in any of the six genes. CONCLUSIONS Our single-institution tissue bank study of Taiwanese women with ER+/ERBB2- EBC suggests that a novel combination of six gene mutations might have prognostic capability for survival outcomes.
Collapse
Affiliation(s)
- Victor C. Kok
- Division of Medical OncologyKuang Tien General Hospital Cancer CenterTaichungTaiwan
| | - To‐Yu Huang
- Department of Medical ResearchMacKay Memorial HospitalNew TaipeiTaiwan
| | - Yi‐Chiung Hsu
- Department of Biomedical Sciences and EngineeringNational Central UniversityTaoyuanTaiwan
- Center for Astronautical Physics and EngineeringNational Central UniversityTaoyuanTaiwan
| | - Yuan‐Ching Chang
- Department of General SurgeryMacKay Memorial HospitalTaipeiTaiwan
| | - Po‐Sheng Yang
- Department of General SurgeryMacKay Memorial HospitalTaipeiTaiwan
- Department of MedicineMackay Medical CollegeNew TaipeiTaiwan
| |
Collapse
|
36
|
Tolaney SM, DeMichele A, Takano T, Rugo HS, Perou C, Lynce F, Parsons HA, Santa-Maria CA, Rocque GB, Yao W, Sun SW, Mocci S, Partridge AH, Carey LA. OptimICE-RD: sacituzumab govitecan + pembrolizumab vs pembrolizumab (± capecitabine) for residual triple-negative breast cancer. Future Oncol 2024; 20:2343-2355. [PMID: 38922307 PMCID: PMC11520537 DOI: 10.1080/14796694.2024.2357534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 05/16/2024] [Indexed: 06/27/2024] Open
Abstract
Patients with early-stage triple-negative breast cancer (TNBC) with residual invasive disease after neoadjuvant therapy have a high risk of recurrence even with neoadjuvant and adjuvant treatment with pembrolizumab. Sacituzumab govitecan, a Trop-2-directed antibody-drug conjugate with a topoisomerase I inhibitor payload, improved progression-free survival (PFS) and overall survival (OS) versus chemotherapy in patients with pre-treated metastatic TNBC. Moreover, preclinical data suggest that topoisomerase I inhibitors may enhance the effects of immune checkpoint inhibitors through activation of the cGAS-STING pathway. Here we describe the international randomized phase III AFT-65/ASCENT-05/OptimICE-RD trial, which evaluates the efficacy and safety of sacituzumab govitecan plus pembrolizumab versus treatment of physician's choice (pembrolizumab ± capecitabine) among patients with early-stage TNBC with residual invasive disease after neoadjuvant therapy.Clinical Trial Registration: NCT05633654 (ClinicalTrials.gov)Other Study ID Number(s): Gilead Study ID: GS-US-595-6184Registration date: 1 December 2022Study start date: 12 December 2022Recruitment status: Recruiting.
Collapse
Affiliation(s)
- Sara M Tolaney
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215,USA
- Harvard Medical School, Boston, MA 02115, USA
| | - Angela DeMichele
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Toshimi Takano
- The Cancer Institute Hospital of JFCR, Koto City, Tokyo, 135-8550, Japan
| | - Hope S Rugo
- University of California Comprehensive Cancer Center, San Francisco, CA 94143, USA
| | - Charles Perou
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Filipa Lynce
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215,USA
- Harvard Medical School, Boston, MA 02115, USA
| | - Heather Anne Parsons
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215,USA
- Harvard Medical School, Boston, MA 02115, USA
| | | | | | - Wenliang Yao
- Gilead Sciences, Inc., Foster City, CA 94404, USA
| | - Shawn W Sun
- Gilead Sciences, Inc., Foster City, CA 94404, USA
| | | | - Ann H Partridge
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215,USA
- Harvard Medical School, Boston, MA 02115, USA
| | - Lisa A Carey
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| |
Collapse
|
37
|
Klocker EV, Hasenleithner S, Bartsch R, Gampenrieder SP, Egle D, Singer CF, Rinnerthaler G, Hubalek M, Schmitz K, Bago-Horvath Z, Petzer A, Heibl S, Heitzer E, Balic M, Gnant M. Clinical applications of next-generation sequencing-based ctDNA analyses in breast cancer: defining treatment targets and dynamic changes during disease progression. Mol Oncol 2024. [PMID: 38867388 DOI: 10.1002/1878-0261.13671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 03/03/2024] [Accepted: 05/17/2024] [Indexed: 06/14/2024] Open
Abstract
The advancements in the detection and characterization of circulating tumor DNA (ctDNA) have revolutionized precision medicine and are likely to transform standard clinical practice. The non-invasive nature of this approach allows for molecular profiling of the entire tumor entity, while also enabling real-time monitoring of the effectiveness of cancer therapies as well as the identification of resistance mechanisms to guide targeted therapy. Although the field of ctDNA studies offers a wide range of applications, including in early disease, in this review we mainly focus on the role of ctDNA in the dynamic molecular characterization of unresectable locally advanced and metastatic BC (mBC). Here, we provide clinical practice guidance for the rapidly evolving field of molecular profiling of mBC, outlining the current landscape of liquid biopsy applications and how to choose the right ctDNA assay. Additionally, we underline the importance of exploring the clinical relevance of novel molecular alterations that potentially represent therapeutic targets in mBC, along with mutations where targeted therapy is already approved. Finally, we present a potential roadmap for integrating ctDNA analysis into clinical practice.
Collapse
Affiliation(s)
- Eva Valentina Klocker
- Division of Oncology, Department of Internal Medicine, Medical University of Graz, Austria
| | - Samantha Hasenleithner
- Institute of Human Genetics, Diagnostic and Research Center for Molecular BioMedicine, Medical University of Graz, Austria
| | - Rupert Bartsch
- Division of Oncology, Department of Medicine I, Medical University of Vienna, Austria
| | - Simon P Gampenrieder
- Third Medical Department with Hematology and Medical Oncology, Hemostaseology, Rheumatology and Infectious Diseases, Oncologic Center, Paracelsus Medical University Salzburg, Austria
| | - Daniel Egle
- Department of Gynecology, Breast Cancer Center Tirol, Medical University of Innsbruck, Austria
| | - Christian F Singer
- Department of Gynecology, Breast Cancer Center Vienna, Medical University of Vienna, Austria
| | - Gabriel Rinnerthaler
- Division of Oncology, Department of Internal Medicine, Medical University of Graz, Austria
| | - Michael Hubalek
- Department of Gynecology, Breast Health Center Schwaz, Austria
| | - Katja Schmitz
- Institute of Pathology, University Medical Center Göttingen, Germany
- Tyrolpath Obrist Brunhuber GmbH and Krankenhaus St. Vinzenz, Zams, Austria
| | | | - Andreas Petzer
- Department of Internal Medicine I for Hematology with Stem Cell Transplantation, Hemostaseology and Medical Oncology, Barmherzige Schwestern, Elisabethinen, Ordensklinikum Linz GmbH, Austria
| | - Sonja Heibl
- Department of Internal Medicine IV, Klinikum Wels-Grieskirchen GmbH, Austria
| | - Ellen Heitzer
- Institute of Human Genetics, Diagnostic and Research Center for Molecular BioMedicine, Christian Doppler Laboratory for Liquid Biopsies for early Detection of Cancer, Medical University of Graz, Austria
| | - Marija Balic
- Division of Oncology, Department of Internal Medicine, Medical University of Graz, Austria
- Division of Hematology and Medical Oncology, University of Pittsburgh School of Medicine, PA, USA
| | - Michael Gnant
- Comprehensive Cancer Center, Medical University of Vienna, Austria
| |
Collapse
|
38
|
Capella MP, Fallah P, Basik M. Personalized circulating tumor DNA response to local radiotherapy in a patient with an early lobular breast cancer: A case report. Oncol Lett 2024; 27:282. [PMID: 38736743 PMCID: PMC11082640 DOI: 10.3892/ol.2024.14415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 03/26/2024] [Indexed: 05/14/2024] Open
Abstract
The detection of circulating tumor DNA (ctDNA) in the plasma of cancer patients is emerging as a very sensitive and specific prognostic biomarker. Previous studies with ctDNA have focused on the ability of ctDNA detection to predict micrometastatic and eventual clinical metastatic relapse. There are few data on the role of ctDNA in monitoring response to local therapy. The present study reports the case of a patient with early-stage lobular breast cancer, with a detectable ctDNA test which resolved with local radiotherapy to the breast. This case suggests that ctDNA is sensitive enough to detect the response of minimal residual disease, localized in the breast, to radiation therapy, and thus may assist in providing indications for local breast cancer treatment.
Collapse
Affiliation(s)
- Mariana Pilon Capella
- Department of Medicine and Oncology, Lady Davis Institute and Segal Cancer Centre, Jewish General Hospital, McGill University Montreal, Montreal, QC H3T 1E2, Canada
| | - Parvaneh Fallah
- Department of Medicine and Oncology, Lady Davis Institute and Segal Cancer Centre, Jewish General Hospital, McGill University Montreal, Montreal, QC H3T 1E2, Canada
| | - Mark Basik
- Division of Oncology, Lady Davis Institute and Segal Cancer Centre, Jewish General Hospital, McGill University Montreal, Montreal, QC H3T 1E2, Canada
| |
Collapse
|
39
|
Chen J, Gale RP, Hu Y, Yan W, Wang T, Zhang W. Measurable residual disease (MRD)-testing in haematological and solid cancers. Leukemia 2024; 38:1202-1212. [PMID: 38637690 PMCID: PMC11147778 DOI: 10.1038/s41375-024-02252-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 04/06/2024] [Accepted: 04/09/2024] [Indexed: 04/20/2024]
Affiliation(s)
- Junren Chen
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China.
- Tianjin Institutes of Health Science, Tianjin, China.
| | - Robert Peter Gale
- Centre for Haematology, Department of Immunology and Inflammation, Imperial College of Science, Technology and Medicine, London, UK
| | - Yu Hu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
- Tianjin Institutes of Health Science, Tianjin, China
| | - Wen Yan
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
- Tianjin Institutes of Health Science, Tianjin, China
| | - Tiantian Wang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
- Tianjin Institutes of Health Science, Tianjin, China
| | - Wei Zhang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
- Tianjin Institutes of Health Science, Tianjin, China
| |
Collapse
|
40
|
Gao L, Medford A, Spring L, Bar Y, Hu B, Jimenez R, Isakoff SJ, Bardia A, Peppercorn J. Searching for the "Holy Grail" of breast cancer recurrence risk: a narrative review of the hunt for a better biomarker and the promise of circulating tumor DNA (ctDNA). Breast Cancer Res Treat 2024; 205:211-226. [PMID: 38355821 DOI: 10.1007/s10549-024-07253-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 01/08/2024] [Indexed: 02/16/2024]
Abstract
BACKGROUND This paper is a narrative review of a major clinical challenge at the heart of breast cancer care: determining which patients are at risk of recurrence, which require systemic therapy, and which remain at risk in the survivorship phase of care despite initial therapy. METHODS We review the literature on prognostic and predictive biomarkers in breast cancer with a focus on detection of minimal residual disease. RESULTS While we have many tools to estimate and refine risk that are used to individualize local and systemic therapy, we know that we continue to over treat many patients and undertreat others. Many patients also experience what is, at least in hindsight, needless fear of recurrence. In this review, we frame this dilemma for the practicing breast oncologist and discuss the search for what we term the "holy grail" of breast cancer evaluation: the ideal biomarker of residual distant disease. We review the history of attempts to address this problem and the up-to-date science on biomarkers, circulating tumor cells and circulating tumor DNA (ctDNA). CONCLUSION This review suggests that the emerging promise of ctDNA may help resolve a crticical dilemma at the heart of breast cancer care, and improve prognostication, treatment selection, and outcomes for patients with breast cancer.
Collapse
Affiliation(s)
- Lucy Gao
- Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Arielle Medford
- Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Laura Spring
- Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Yael Bar
- Massachusetts General Hospital, Boston, MA, USA
| | - Bonnie Hu
- Massachusetts General Hospital, Boston, MA, USA
| | - Rachel Jimenez
- Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Steven J Isakoff
- Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Aditya Bardia
- Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Jeffrey Peppercorn
- Massachusetts General Hospital, Boston, MA, USA.
- Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
41
|
Alba-Bernal A, Godoy-Ortiz A, Domínguez-Recio ME, López-López E, Quirós-Ortega ME, Sánchez-Martín V, Roldán-Díaz MD, Jiménez-Rodríguez B, Peralta-Linero J, Bellagarza-García E, Troyano-Ramos L, Garrido-Ruiz G, Hierro-Martín MI, Vicioso L, González-Ortiz Á, Linares-Valencia N, Velasco-Suelto J, Carbajosa G, Garrido-Aranda A, Lavado-Valenzuela R, Álvarez M, Pascual J, Comino-Méndez I, Alba E. Increased blood draws for ultrasensitive ctDNA and CTCs detection in early breast cancer patients. NPJ Breast Cancer 2024; 10:36. [PMID: 38750090 PMCID: PMC11096188 DOI: 10.1038/s41523-024-00642-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Accepted: 05/01/2024] [Indexed: 05/18/2024] Open
Abstract
Early breast cancer patients often experience relapse due to residual disease after treatment. Liquid biopsy is a methodology capable of detecting tumor components in blood, but low concentrations at early stages pose challenges. To detect them, next-generation sequencing has promise but entails complex processes. Exploring larger blood volumes could overcome detection limitations. Herein, a total of 282 high-volume plasma and blood-cell samples were collected for dual ctDNA/CTCs detection using a single droplet-digital PCR assay per patient. ctDNA and/or CTCs were detected in 100% of pre-treatment samples. On the other hand, post-treatment positive samples exhibited a minimum variant allele frequency of 0.003% for ctDNA and minimum cell number of 0.069 CTCs/mL of blood, surpassing previous investigations. Accurate prediction of residual disease before surgery was achieved in patients without a complete pathological response. A model utilizing ctDNA dynamics achieved an area under the ROC curve of 0.92 for predicting response. We detected disease recurrence in blood in the three patients who experienced a relapse, anticipating clinical relapse by 34.61, 9.10, and 7.59 months. This methodology provides an easily implemented alternative for ultrasensitive residual disease detection in early breast cancer patients.
Collapse
Affiliation(s)
- Alfonso Alba-Bernal
- Unidad de Gestion Clinica Intercentros de Oncologia Medica, Hospitales Universitarios Regional y Virgen de la Victoria, 29010, Malaga, Spain
- The Biomedical Research Institute of Málaga (IBIMA-CIMES-UMA), 29010, Malaga, Spain
- Andalusia-Roche Network in Precision Medical Oncology, 41092, Sevilla, Spain
| | - Ana Godoy-Ortiz
- Unidad de Gestion Clinica Intercentros de Oncologia Medica, Hospitales Universitarios Regional y Virgen de la Victoria, 29010, Malaga, Spain
- The Biomedical Research Institute of Málaga (IBIMA-CIMES-UMA), 29010, Malaga, Spain
- Centro de Investigacion Biomedica en Red de Cancer (CIBERONC - CB16/12/00481), 28029, Madrid, Spain
| | - María Emilia Domínguez-Recio
- Unidad de Gestion Clinica Intercentros de Oncologia Medica, Hospitales Universitarios Regional y Virgen de la Victoria, 29010, Malaga, Spain
- The Biomedical Research Institute of Málaga (IBIMA-CIMES-UMA), 29010, Malaga, Spain
| | - Esperanza López-López
- Unidad de Gestion Clinica Intercentros de Oncologia Medica, Hospitales Universitarios Regional y Virgen de la Victoria, 29010, Malaga, Spain
- The Biomedical Research Institute of Málaga (IBIMA-CIMES-UMA), 29010, Malaga, Spain
| | - María Elena Quirós-Ortega
- Unidad de Gestion Clinica Intercentros de Oncologia Medica, Hospitales Universitarios Regional y Virgen de la Victoria, 29010, Malaga, Spain
- The Biomedical Research Institute of Málaga (IBIMA-CIMES-UMA), 29010, Malaga, Spain
- Andalusia-Roche Network in Precision Medical Oncology, 41092, Sevilla, Spain
| | - Victoria Sánchez-Martín
- Unidad de Gestion Clinica Intercentros de Oncologia Medica, Hospitales Universitarios Regional y Virgen de la Victoria, 29010, Malaga, Spain
- Centro de Investigacion Biomedica en Red de Cancer (CIBERONC - CB16/12/00481), 28029, Madrid, Spain
| | - María Dunia Roldán-Díaz
- Unidad de Gestion Clinica Intercentros de Oncologia Medica, Hospitales Universitarios Regional y Virgen de la Victoria, 29010, Malaga, Spain
- The Biomedical Research Institute of Málaga (IBIMA-CIMES-UMA), 29010, Malaga, Spain
| | - Begoña Jiménez-Rodríguez
- Unidad de Gestion Clinica Intercentros de Oncologia Medica, Hospitales Universitarios Regional y Virgen de la Victoria, 29010, Malaga, Spain
- The Biomedical Research Institute of Málaga (IBIMA-CIMES-UMA), 29010, Malaga, Spain
- Centro de Investigacion Biomedica en Red de Cancer (CIBERONC - CB16/12/00481), 28029, Madrid, Spain
| | - Jesús Peralta-Linero
- Unidad de Gestion Clinica Intercentros de Oncologia Medica, Hospitales Universitarios Regional y Virgen de la Victoria, 29010, Malaga, Spain
- The Biomedical Research Institute of Málaga (IBIMA-CIMES-UMA), 29010, Malaga, Spain
| | - Estefanía Bellagarza-García
- Unidad de Gestion Clinica Intercentros de Oncologia Medica, Hospitales Universitarios Regional y Virgen de la Victoria, 29010, Malaga, Spain
| | - Laura Troyano-Ramos
- Unidad de Gestion Clinica Intercentros de Oncologia Medica, Hospitales Universitarios Regional y Virgen de la Victoria, 29010, Malaga, Spain
| | - Guadalupe Garrido-Ruiz
- Radiology Department, Hospital Clinico Universitario Virgen de la Victoria de Malaga, 29010, Malaga, Spain
| | - M Isabel Hierro-Martín
- The Biomedical Research Institute of Málaga (IBIMA-CIMES-UMA), 29010, Malaga, Spain
- Unidad de Gestion Clinica Provincial de Anatomia Patologica de Malaga, Hospital Clinico Universitario Virgen de la Victoria de Malaga, 29010, Malaga, Spain
- University of Málaga, Faculty of Medicine, 29010, Malaga, Spain
| | - Luis Vicioso
- The Biomedical Research Institute of Málaga (IBIMA-CIMES-UMA), 29010, Malaga, Spain
- Unidad de Gestion Clinica Provincial de Anatomia Patologica de Malaga, Hospital Clinico Universitario Virgen de la Victoria de Malaga, 29010, Malaga, Spain
- University of Málaga, Faculty of Medicine, 29010, Malaga, Spain
| | - Álvaro González-Ortiz
- Unidad de Gestion Clinica Intercentros de Oncologia Medica, Hospitales Universitarios Regional y Virgen de la Victoria, 29010, Malaga, Spain
| | - Noelia Linares-Valencia
- Unidad de Gestion Clinica Intercentros de Oncologia Medica, Hospitales Universitarios Regional y Virgen de la Victoria, 29010, Malaga, Spain
- The Biomedical Research Institute of Málaga (IBIMA-CIMES-UMA), 29010, Malaga, Spain
| | - Jesús Velasco-Suelto
- Unidad de Gestion Clinica Intercentros de Oncologia Medica, Hospitales Universitarios Regional y Virgen de la Victoria, 29010, Malaga, Spain
- The Biomedical Research Institute of Málaga (IBIMA-CIMES-UMA), 29010, Malaga, Spain
| | - Guillermo Carbajosa
- Unidad de Gestion Clinica Intercentros de Oncologia Medica, Hospitales Universitarios Regional y Virgen de la Victoria, 29010, Malaga, Spain
- University of Málaga, Faculty of Medicine, 29010, Malaga, Spain
| | - Alicia Garrido-Aranda
- Unidad de Gestion Clinica Intercentros de Oncologia Medica, Hospitales Universitarios Regional y Virgen de la Victoria, 29010, Malaga, Spain
- The Biomedical Research Institute of Málaga (IBIMA-CIMES-UMA), 29010, Malaga, Spain
- Andalusia-Roche Network in Precision Medical Oncology, 41092, Sevilla, Spain
- Laboratorio de biologia molecular del cancer (LBMC), Centro de investigaciones medico-sanitarias (CIMES-UMA), 29010, Malaga, Spain
| | - Rocío Lavado-Valenzuela
- Unidad de Gestion Clinica Intercentros de Oncologia Medica, Hospitales Universitarios Regional y Virgen de la Victoria, 29010, Malaga, Spain
- The Biomedical Research Institute of Málaga (IBIMA-CIMES-UMA), 29010, Malaga, Spain
- Andalusia-Roche Network in Precision Medical Oncology, 41092, Sevilla, Spain
- Centro de Investigacion Biomedica en Red de Cancer (CIBERONC - CB16/12/00481), 28029, Madrid, Spain
- Laboratorio de biologia molecular del cancer (LBMC), Centro de investigaciones medico-sanitarias (CIMES-UMA), 29010, Malaga, Spain
| | - Martina Álvarez
- The Biomedical Research Institute of Málaga (IBIMA-CIMES-UMA), 29010, Malaga, Spain
- Andalusia-Roche Network in Precision Medical Oncology, 41092, Sevilla, Spain
- Centro de Investigacion Biomedica en Red de Cancer (CIBERONC - CB16/12/00481), 28029, Madrid, Spain
- University of Málaga, Faculty of Medicine, 29010, Malaga, Spain
- Laboratorio de biologia molecular del cancer (LBMC), Centro de investigaciones medico-sanitarias (CIMES-UMA), 29010, Malaga, Spain
| | - Javier Pascual
- Unidad de Gestion Clinica Intercentros de Oncologia Medica, Hospitales Universitarios Regional y Virgen de la Victoria, 29010, Malaga, Spain
- The Biomedical Research Institute of Málaga (IBIMA-CIMES-UMA), 29010, Malaga, Spain
- Andalusia-Roche Network in Precision Medical Oncology, 41092, Sevilla, Spain
- Centro de Investigacion Biomedica en Red de Cancer (CIBERONC - CB16/12/00481), 28029, Madrid, Spain
| | - Iñaki Comino-Méndez
- Unidad de Gestion Clinica Intercentros de Oncologia Medica, Hospitales Universitarios Regional y Virgen de la Victoria, 29010, Malaga, Spain.
- The Biomedical Research Institute of Málaga (IBIMA-CIMES-UMA), 29010, Malaga, Spain.
- Andalusia-Roche Network in Precision Medical Oncology, 41092, Sevilla, Spain.
- Centro de Investigacion Biomedica en Red de Cancer (CIBERONC - CB16/12/00481), 28029, Madrid, Spain.
| | - Emilio Alba
- Unidad de Gestion Clinica Intercentros de Oncologia Medica, Hospitales Universitarios Regional y Virgen de la Victoria, 29010, Malaga, Spain
- The Biomedical Research Institute of Málaga (IBIMA-CIMES-UMA), 29010, Malaga, Spain
- Andalusia-Roche Network in Precision Medical Oncology, 41092, Sevilla, Spain
- Centro de Investigacion Biomedica en Red de Cancer (CIBERONC - CB16/12/00481), 28029, Madrid, Spain
- University of Málaga, Faculty of Medicine, 29010, Malaga, Spain
| |
Collapse
|
42
|
Hashimoto T, Nakamura Y, Oki E, Kobayashi S, Yuda J, Shibuki T, Bando H, Yoshino T. Bridging horizons beyond CIRCULATE-Japan: a new paradigm in molecular residual disease detection via whole genome sequencing-based circulating tumor DNA assay. Int J Clin Oncol 2024; 29:495-511. [PMID: 38551727 PMCID: PMC11043144 DOI: 10.1007/s10147-024-02493-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Accepted: 02/16/2024] [Indexed: 04/26/2024]
Abstract
Circulating tumor DNA (ctDNA) is the fraction of cell-free DNA in patient blood that originates from a tumor. Advances in DNA sequencing technologies and our understanding of the molecular biology of tumors have increased interest in exploiting ctDNA to facilitate detection of molecular residual disease (MRD). Analysis of ctDNA as a promising MRD biomarker of solid malignancies has a central role in precision medicine initiatives exemplified by our CIRCULATE-Japan project involving patients with resectable colorectal cancer. Notably, the project underscores the prognostic significance of the ctDNA status at 4 weeks post-surgery and its correlation to adjuvant therapy efficacy at interim analysis. This substantiates the hypothesis that MRD is a critical prognostic indicator of relapse in patients with colorectal cancer. Despite remarkable advancements, challenges endure, primarily attributable to the exceedingly low ctDNA concentration in peripheral blood, particularly in scenarios involving low tumor shedding and the intrinsic error rates of current sequencing technologies. These complications necessitate more sensitive and sophisticated assays to verify the clinical utility of MRD across all solid tumors. Whole genome sequencing (WGS)-based tumor-informed MRD assays have recently demonstrated the ability to detect ctDNA in the parts-per-million range. This review delineates the current landscape of MRD assays, highlighting WGS-based approaches as the forefront technique in ctDNA analysis. Additionally, it introduces our upcoming endeavor, WGS-based pan-cancer MRD detection via ctDNA, in our forthcoming project, SCRUM-Japan MONSTAR-SCREEN-3.
Collapse
Affiliation(s)
- Tadayoshi Hashimoto
- Translational Research Support Office, National Cancer Center Hospital East, Kashiwa, Japan
- Department of Gastroenterology and Gastrointestinal Oncology, National Cancer Center Hospital East, 6-5-1 Kashiwanoha, Kashiwa, Chiba, 277-8577, Japan
| | - Yoshiaki Nakamura
- Translational Research Support Office, National Cancer Center Hospital East, Kashiwa, Japan
- Department of Gastroenterology and Gastrointestinal Oncology, National Cancer Center Hospital East, 6-5-1 Kashiwanoha, Kashiwa, Chiba, 277-8577, Japan
| | - Eiji Oki
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Shin Kobayashi
- Department of Hepatobiliary and Pancreatic Surgery, National Cancer Center Hospital East, Kashiwa, Japan
| | - Junichiro Yuda
- Department of Hematology, National Cancer Center Hospital East, Kashiwa, Japan
| | - Taro Shibuki
- Translational Research Support Office, National Cancer Center Hospital East, Kashiwa, Japan
| | - Hideaki Bando
- Translational Research Support Office, National Cancer Center Hospital East, Kashiwa, Japan
- Department of Gastroenterology and Gastrointestinal Oncology, National Cancer Center Hospital East, 6-5-1 Kashiwanoha, Kashiwa, Chiba, 277-8577, Japan
| | - Takayuki Yoshino
- Department of Gastroenterology and Gastrointestinal Oncology, National Cancer Center Hospital East, 6-5-1 Kashiwanoha, Kashiwa, Chiba, 277-8577, Japan.
| |
Collapse
|
43
|
Zhang S, Jiang Y, Zhou L, Xu J, Zhang G, Shen L, Xu Y. Genomic Characteristics and Its Therapeutic Implications in Breast Cancer Patients with Detectable Molecular Residual Disease. Cancer Res Treat 2024; 56:538-548. [PMID: 38062709 PMCID: PMC11016634 DOI: 10.4143/crt.2023.1059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 12/03/2023] [Indexed: 04/13/2024] Open
Abstract
PURPOSE Molecular residual disease (MRD) is the main cause of postoperative recurrence of breast cancer. However, the baseline tumor genomic characteristics and therapeutic implications of breast cancer patients with detectable MRD after surgery are still unknown. MATERIALS AND METHODS In this study, we enrolled 80 patients with breast cancer who underwent next-generation sequencing-based genetic testing of 1,021 cancer-related genes performed on baseline tumor and postoperative plasma, among which 18 patients had detectable MRD after surgery. RESULTS Baseline clinical characteristics found that patients with higher clinical stages were more likely to have detectable MRD. Analysis of single nucleotide variations and small insertions/deletions in baseline tumors showed that somatic mutations in MAP3K1, ATM, FLT1, GNAS, POLD1, SPEN, and WWP2 were significantly enriched in patients with detectable MRD. Oncogenic signaling pathway analysis revealed that alteration of the Cell cycle pathway was more likely to occur in patients with detectable MRD (p=0.012). Mutational signature analysis showed that defective DNA mismatch repair and activation-induced cytidine deaminase (AID) mediated somatic hypermutation (SHM) were associated with detectable MRD. According to the OncoKB database, 77.8% (14/18) of patients with detectable MRD had U.S. Food and Drug Administration-approved mutational biomarkers and targeted therapy. CONCLUSION Our study reports genomic characteristics of breast cancer patients with detectable MRD. The cell cycle pathway, defective DNA mismatch repair, and AID-mediated SHM were found to be the possible causes of detectable MRD. We also found the vast majority of patients with detectable MRD have the opportunity to access targeted therapy.
Collapse
Affiliation(s)
- Shu Zhang
- Department of Breast and Thyroid Surgery, Daping Hospital, Army Military Medical University, Chongqing, China
| | - Yan Jiang
- Department of Breast and Thyroid Surgery, Daping Hospital, Army Military Medical University, Chongqing, China
| | - Lu Zhou
- Department of Breast and Thyroid Surgery, Daping Hospital, Army Military Medical University, Chongqing, China
| | - Jing Xu
- Department of Breast and Thyroid Surgery, Daping Hospital, Army Military Medical University, Chongqing, China
| | - Gang Zhang
- Department of Breast and Thyroid Surgery, Daping Hospital, Army Military Medical University, Chongqing, China
| | - Lu Shen
- Geneplus-Beijing, Beijing, China
| | - Yan Xu
- Department of Breast and Thyroid Surgery, Daping Hospital, Army Military Medical University, Chongqing, China
| |
Collapse
|
44
|
Abbasi AB, Wu V, Lang JE, Esserman LJ. Precision Oncology in Breast Cancer Surgery. Surg Oncol Clin N Am 2024; 33:293-310. [PMID: 38401911 DOI: 10.1016/j.soc.2023.12.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/26/2024]
Abstract
Outcomes for patients with breast cancer have improved over time due to increased screening and the availability of more effective therapies. It is important to recognize that breast cancer is a heterogeneous disease that requires treatment based on molecular characteristics. Early endpoints such as pathologic complete response correlate with event-free survival, allowing the opportunity to consider de-escalation of certain cancer treatments to avoid overtreatment. This article discusses clinical trials of tailoring treatment (eg, I-SPY2) and screening (eg, WISDOM) to individual patients based on their unique risk features.
Collapse
Affiliation(s)
- Ali Benjamin Abbasi
- Department of Surgery, San Francisco Breast Care Center, University of California, Box 1710, UCSF, San Francisco, CA 94143, USA
| | - Vincent Wu
- Department of Surgery, Cleveland Clinic Breast Services, 9500 Euclid Avenue, A80, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Julie E Lang
- Department of Surgery, Cleveland Clinic Breast Services, 9500 Euclid Avenue, A80, Cleveland Clinic, Cleveland, OH 44195, USA.
| | - Laura J Esserman
- Department of Surgery, San Francisco Breast Care Center, University of California, Box 1710, UCSF, San Francisco, CA 94143, USA
| |
Collapse
|
45
|
Sanz-Garcia E, Zou J, Avery L, Spreafico A, Waldron J, Goldstein D, Hansen A, Cho BCJ, de Almeida J, Hope A, Hosni A, Hahn E, Perez-Ordonez B, Zhao Z, Smith C, Zheng Y, Singaravelan N, Bratman SV, Siu LL. Multimodal detection of molecular residual disease in high-risk locally advanced squamous cell carcinoma of the head and neck. Cell Death Differ 2024; 31:460-468. [PMID: 38409276 PMCID: PMC11043441 DOI: 10.1038/s41418-024-01272-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 02/11/2024] [Accepted: 02/14/2024] [Indexed: 02/28/2024] Open
Abstract
Up to 30% of patients with locally advanced head and neck squamous cell carcinoma (LA-HNSCC) relapse. Molecular residual disease (MRD) detection using multiple assays after definitive therapy has not been reported. In this study, we included patients with LA-HNSCC (stage III Human Papilloma virus (HPV)-positive, III-IVB HPV-negative) treated with curative intent. Plasma was collected pre-treatment, at 4-6 weeks (FU1) and 8-12 weeks (FU2) post-treatment. Circulating tumor DNA (ctDNA) was analyzed using a tumor-informed (RaDaR®) and a tumor-naïve (CAPP-seq) assay. HPV DNA was measured using HPV-sequencing (HPV-seq) and digital PCR (dPCR). A total of 86 plasma samples from 32 patients were analyzed; all patients with at least 1 follow-up sample. Most patients were stage III HPV-positive (50%) and received chemoradiation (78%). No patients had radiological residual disease at FU2. With a median follow-up of 25 months, there were 7 clinical relapses. ctDNA at baseline was detected in 15/17 (88%) by RaDaR and was not associated with recurrence free survival (RFS). Two patients relapsed within a year after definitive therapy and showed MRD at FU2 using RaDaR; detection of ctDNA during follow-up was associated with shorter RFS (p < 0.001). ctDNA detection by CAPP-seq pre-treatment and during follow-up was not associated with RFS (p = 0.09). HPV DNA using HPV-seq or dPCR during follow-up was associated with shorter RFS (p < 0.001). Sensitivity and specificity for MRD at FU2 using RaDaR was 40% and 100% versus 20 and 90.5% using CAPP-seq. Sensitivity and specificity for MRD during follow-up using HPV-seq was 100% and 91.7% versus 50% and 100% using dPCR. In conclusion, HPV DNA and ctDNA can be detected in LA-HNSCC before definitive therapy. The RaDaR assay but not CAPP-seq may detect MRD in patients who relapse within 1 year. HPV-seq may be more sensitive than dPCR for MRD detection.
Collapse
Affiliation(s)
- Enrique Sanz-Garcia
- Division of Medical Oncology and Hematology, Princess Margaret Cancer Centre, University Health Network, University of Toronto, Toronto, ON, Canada
| | - Jinfeng Zou
- Princess Margaret Cancer Research Institute, University Health Network, University of Toronto, Toronto, ON, Canada
| | - Lisa Avery
- Department of Biostatistics, Princess Margaret Cancer Centre, University Health Network, University of Toronto, Toronto, ON, Canada
| | - Anna Spreafico
- Division of Medical Oncology and Hematology, Princess Margaret Cancer Centre, University Health Network, University of Toronto, Toronto, ON, Canada
| | - John Waldron
- Department of Radiation Oncology, Princess Margaret Cancer Centre, University Health Network, University of Toronto, Toronto, ON, Canada
| | - David Goldstein
- Department of Surgical Oncology, Division of ENT, Princess Margaret Cancer Centre, University Health Network, University of Toronto, Toronto, ON, Canada
| | - Aaron Hansen
- Division of Medical Oncology and Hematology, Princess Margaret Cancer Centre, University Health Network, University of Toronto, Toronto, ON, Canada
| | - B C John Cho
- Department of Radiation Oncology, Princess Margaret Cancer Centre, University Health Network, University of Toronto, Toronto, ON, Canada
| | - John de Almeida
- Department of Surgical Oncology, Division of ENT, Princess Margaret Cancer Centre, University Health Network, University of Toronto, Toronto, ON, Canada
| | - Andrew Hope
- Department of Radiation Oncology, Princess Margaret Cancer Centre, University Health Network, University of Toronto, Toronto, ON, Canada
| | - Ali Hosni
- Department of Radiation Oncology, Princess Margaret Cancer Centre, University Health Network, University of Toronto, Toronto, ON, Canada
| | - Ezra Hahn
- Department of Radiation Oncology, Princess Margaret Cancer Centre, University Health Network, University of Toronto, Toronto, ON, Canada
| | - Bayardo Perez-Ordonez
- Department of Pathology, Princess Margaret Cancer Centre, University Health Network, University of Toronto, Toronto, ON, Canada
| | - Zhen Zhao
- Princess Margaret Cancer Research Institute, University Health Network, University of Toronto, Toronto, ON, Canada
| | | | - Yangqiao Zheng
- Princess Margaret Cancer Research Institute, University Health Network, University of Toronto, Toronto, ON, Canada
| | - Nitthusha Singaravelan
- Cancer Genomics Program, Princess Margaret Cancer Center, University Health Network, University of Toronto, Toronto, ON, Canada
| | - Scott V Bratman
- Princess Margaret Cancer Research Institute, University Health Network, University of Toronto, Toronto, ON, Canada
- Department of Radiation Oncology, Princess Margaret Cancer Centre, University Health Network, University of Toronto, Toronto, ON, Canada
| | - Lillian L Siu
- Division of Medical Oncology and Hematology, Princess Margaret Cancer Centre, University Health Network, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
46
|
Shaw JA, Page K, Wren E, de Bruin EC, Kalashnikova E, Hastings R, McEwen R, Zhang E, Wadsley M, Acheampong E, Renner D, Gleason KL, Ambasager B, Stetson D, Fernandez-Garcia D, Guttery D, Allsopp RC, Rodriguez A, Zimmermann B, Sethi H, Aleshin A, Liu MC, Richards C, Stebbing J, Ali S, Rehman F, Cleator S, Kenny L, Ahmed S, Armstrong AC, Coombes RC. Serial Postoperative Circulating Tumor DNA Assessment Has Strong Prognostic Value During Long-Term Follow-Up in Patients With Breast Cancer. JCO Precis Oncol 2024; 8:e2300456. [PMID: 38691816 PMCID: PMC11161241 DOI: 10.1200/po.23.00456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 12/09/2023] [Accepted: 01/18/2024] [Indexed: 05/03/2024] Open
Abstract
PURPOSE Here, we report the sensitivity of a personalized, tumor-informed circulating tumor DNA (ctDNA) assay (Signatera) for detection of molecular relapse during long-term follow-up of patients with breast cancer. METHODS A total of 156 patients with primary breast cancer were monitored clinically for up to 12 years after surgery and adjuvant chemotherapy. Semiannual blood samples were prospectively collected, and analyzed retrospectively to detect residual disease by ultradeep sequencing using ctDNA assays, developed from primary tumor whole-exome sequencing data. RESULTS Personalized Signatera assays detected ctDNA ahead of clinical or radiologic relapse in 30 of the 34 patients who relapsed (patient-level sensitivity of 88.2%). Relapse was predicted with a lead interval of up to 38 months (median, 10.5 months; range, 0-38 months), and ctDNA positivity was associated with shorter relapse-free survival (P < .0001) and overall survival (P < .0001). All relapsing triple-negative patients (n = 7/23) had a ctDNA-positive test within a median of 8 months (range, 0-19 months), while the 16 nonrelapsed patients with triple-negative breast cancer remained ctDNA-negative during a median follow-up of 58 months (range, 8-99 months). The four patients who had negative tests before relapse all had hormone receptor-positive (HR+) disease and conversely, five of the 122 nonrelapsed patients (all HR+) had an occasional positive test. CONCLUSION Serial postoperative ctDNA assessment has strong prognostic value, provides a potential window for earlier therapeutic intervention, and may enable more effective monitoring than current clinical tests such as cancer antigen 15-3. Our study provides evidence that those with serially negative ctDNA tests have superior clinical outcomes, providing reassurance to patients with breast cancer. For select cases with HR+ disease, decisions about treatment management might require serial monitoring despite the ctDNA-positive result.
Collapse
Affiliation(s)
- Jacqueline A. Shaw
- Leicester Cancer Research Centre, University of Leicester, Leicester, United Kingdom
| | - Karen Page
- Leicester Cancer Research Centre, University of Leicester, Leicester, United Kingdom
| | - Evie Wren
- Department of Surgery and Cancer, Imperial College London, London, United Kingdom
| | - Elza C. de Bruin
- Oncology R&D, Research & Early Development, AstraZeneca, Cambridge, United Kingdom
| | | | - Robert Hastings
- Leicester Cancer Research Centre, University of Leicester, Leicester, United Kingdom
| | - Rob McEwen
- Oncology R&D, Research & Early Development, AstraZeneca, Cambridge, United Kingdom
| | - Eddie Zhang
- Oncology R&D, Research & Early Development, AstraZeneca, Waltham, MA
| | - Marc Wadsley
- Leicester Cancer Research Centre, University of Leicester, Leicester, United Kingdom
| | - Emmanuel Acheampong
- Leicester Cancer Research Centre, University of Leicester, Leicester, United Kingdom
| | | | - Kelly L.T. Gleason
- Department of Surgery and Cancer, Imperial College London, London, United Kingdom
| | - Bana Ambasager
- Department of Surgery and Cancer, Imperial College London, London, United Kingdom
| | - Daniel Stetson
- Oncology R&D, Research & Early Development, AstraZeneca, Waltham, MA
| | | | - David Guttery
- Leicester Cancer Research Centre, University of Leicester, Leicester, United Kingdom
| | - Rebecca C. Allsopp
- Leicester Cancer Research Centre, University of Leicester, Leicester, United Kingdom
| | | | | | | | | | | | - Cathy Richards
- University Hospitals Leicester NHS Trust, Leicester, United Kingdom
| | - Justin Stebbing
- Department of Surgery and Cancer, Imperial College London, London, United Kingdom
| | - Simak Ali
- Department of Surgery and Cancer, Imperial College London, London, United Kingdom
| | - Farah Rehman
- Imperial College Healthcare NHS Trust, London, United Kingdom
| | - Susan Cleator
- Imperial College Healthcare NHS Trust, London, United Kingdom
| | - Laura Kenny
- Department of Surgery and Cancer, Imperial College London, London, United Kingdom
| | - Samreen Ahmed
- University Hospitals Leicester NHS Trust, Leicester, United Kingdom
| | - Anne C. Armstrong
- Division of Cancer Sciences, The Christie NHS Foundation Trust, Manchester, United Kingdom
| | - R. Charles Coombes
- Department of Surgery and Cancer, Imperial College London, London, United Kingdom
| |
Collapse
|
47
|
Swanton C, Bernard E, Abbosh C, André F, Auwerx J, Balmain A, Bar-Sagi D, Bernards R, Bullman S, DeGregori J, Elliott C, Erez A, Evan G, Febbraio MA, Hidalgo A, Jamal-Hanjani M, Joyce JA, Kaiser M, Lamia K, Locasale JW, Loi S, Malanchi I, Merad M, Musgrave K, Patel KJ, Quezada S, Wargo JA, Weeraratna A, White E, Winkler F, Wood JN, Vousden KH, Hanahan D. Embracing cancer complexity: Hallmarks of systemic disease. Cell 2024; 187:1589-1616. [PMID: 38552609 PMCID: PMC12077170 DOI: 10.1016/j.cell.2024.02.009] [Citation(s) in RCA: 73] [Impact Index Per Article: 73.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 01/25/2024] [Accepted: 02/08/2024] [Indexed: 04/02/2024]
Abstract
The last 50 years have witnessed extraordinary developments in understanding mechanisms of carcinogenesis, synthesized as the hallmarks of cancer. Despite this logical framework, our understanding of the molecular basis of systemic manifestations and the underlying causes of cancer-related death remains incomplete. Looking forward, elucidating how tumors interact with distant organs and how multifaceted environmental and physiological parameters impinge on tumors and their hosts will be crucial for advances in preventing and more effectively treating human cancers. In this perspective, we discuss complexities of cancer as a systemic disease, including tumor initiation and promotion, tumor micro- and immune macro-environments, aging, metabolism and obesity, cancer cachexia, circadian rhythms, nervous system interactions, tumor-related thrombosis, and the microbiome. Model systems incorporating human genetic variation will be essential to decipher the mechanistic basis of these phenomena and unravel gene-environment interactions, providing a modern synthesis of molecular oncology that is primed to prevent cancers and improve patient quality of life and cancer outcomes.
Collapse
Affiliation(s)
- Charles Swanton
- The Francis Crick Institute, London, UK; Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK.
| | - Elsa Bernard
- The Francis Crick Institute, London, UK; INSERM U981, Gustave Roussy, Villejuif, France
| | | | - Fabrice André
- INSERM U981, Gustave Roussy, Villejuif, France; Department of Medical Oncology, Gustave Roussy, Villejuif, France; Paris Saclay University, Kremlin-Bicetre, France
| | - Johan Auwerx
- Laboratory of Integrative Systems Physiology, Ecole Polytechnique Federale de Lausanne, Lausanne, Switzerland
| | - Allan Balmain
- UCSF Helen Diller Family Comprehensive Cancer Center, San Francisco, CA, USA
| | | | - René Bernards
- Division of Molecular Carcinogenesis, Oncode Institute, the Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Susan Bullman
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - James DeGregori
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | | | - Ayelet Erez
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Gerard Evan
- The Francis Crick Institute, London, UK; Kings College London, London, UK
| | - Mark A Febbraio
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia
| | - Andrés Hidalgo
- Department of Immunobiology, Yale University, New Haven, CT 06519, USA; Area of Cardiovascular Regeneration, Centro Nacional de Investigaciones Cardiovasculares, 28029 Madrid, Spain
| | - Mariam Jamal-Hanjani
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK
| | - Johanna A Joyce
- Department of Oncology, Ludwig Institute for Cancer Research, University of Lausanne, Lausanne, Switzerland
| | | | - Katja Lamia
- Department of Molecular Medicine, Scripps Research Institute, La Jolla, CA, USA
| | - Jason W Locasale
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC, USA; Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, NC, USA
| | - Sherene Loi
- Division of Cancer Research, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia; The Sir Department of Medical Oncology, The University of Melbourne, Parkville, VIC, Australia
| | | | - Miriam Merad
- Department of immunology and immunotherapy, Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Kathryn Musgrave
- Translational and Clinical Research Institute, Newcastle University, Newcastle, UK; Department of Haematology, The Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Ketan J Patel
- MRC Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | - Sergio Quezada
- Cancer Immunology Unit, Research Department of Haematology, University College London Cancer Institute, London, UK
| | - Jennifer A Wargo
- Department of Surgical Oncology, Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ashani Weeraratna
- Sidney Kimmel Cancer Center, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Eileen White
- Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, USA; Ludwig Princeton Branch, Ludwig Institute for Cancer Research, Princeton, NJ, USA
| | - Frank Winkler
- Neurology Clinic and National Center for Tumor Diseases, University Hospital Heidelberg, Heidelberg, Germany; Clinical Cooperation Unit Neuro-oncology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - John N Wood
- Molecular Nociception Group, WIBR, University College London, London, UK
| | | | - Douglas Hanahan
- Lausanne Branch, Ludwig Institute for Cancer Research, Lausanne, Switzerland; Swiss institute for Experimental Cancer Research (ISREC), EPFL, Lausanne, Switzerland; Agora Translational Cancer Research Center, Lausanne, Switzerland.
| |
Collapse
|
48
|
Lynce F, Mainor C, Donahue RN, Geng X, Jones G, Schlam I, Wang H, Toney NJ, Jochems C, Schlom J, Zeck J, Gallagher C, Nanda R, Graham D, Stringer-Reasor EM, Denduluri N, Collins J, Chitalia A, Tiwari S, Nunes R, Kaltman R, Khoury K, Gatti-Mays M, Tarantino P, Tolaney SM, Swain SM, Pohlmann P, Parsons HA, Isaacs C. Adjuvant nivolumab, capecitabine or the combination in patients with residual triple-negative breast cancer: the OXEL randomized phase II study. Nat Commun 2024; 15:2691. [PMID: 38538574 PMCID: PMC10973408 DOI: 10.1038/s41467-024-46961-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 03/15/2024] [Indexed: 04/04/2024] Open
Abstract
Chemotherapy and immune checkpoint inhibitors have a role in the post-neoadjuvant setting in patients with triple-negative breast cancer (TNBC). However, the effects of nivolumab, a checkpoint inhibitor, capecitabine, or the combination in changing peripheral immunoscore (PIS) remains unclear. This open-label randomized phase II OXEL study (NCT03487666) aimed to assess the immunologic effects of nivolumab, capecitabine, or the combination in terms of the change in PIS (primary endpoint). Secondary endpoints included the presence of ctDNA, toxicity, clinical outcomes at 2-years and association of ctDNA and PIS with clinical outcomes. Forty-five women with TNBC and residual invasive disease after standard neoadjuvant chemotherapy were randomized to nivolumab, capecitabine, or the combination. Here we show that a combination of nivolumab plus capecitabine leads to a greater increase in PIS from baseline to week 6 (91%) compared with nivolumab (47%) or capecitabine (53%) alone (log-rank p = 0.08), meeting the pre-specified primary endpoint. In addition, the presence of circulating tumor DNA (ctDNA) is associated with disease recurrence, with no new safety signals in the combination arm. Our results provide efficacy and safety data on this combination in TNBC and support further development of PIS and ctDNA analyses to identify patients at high risk of recurrence.
Collapse
Affiliation(s)
- Filipa Lynce
- Division of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA.
- Breast Oncology Program, Dana-Farber Brigham Cancer Center, Boston, MA, USA.
- Harvard Medical School, Boston, MA, USA.
| | - Candace Mainor
- MedStar Georgetown University Hospital, Washington, DC, USA
| | - Renee N Donahue
- Center for Immuno-Oncology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Xue Geng
- Georgetown University, Washington, DC, USA
| | | | - Ilana Schlam
- MedStar Washington Hospital Center, Washington, DC, USA
- Tufts Medical Center, Boston, MA, USA
| | | | - Nicole J Toney
- Center for Immuno-Oncology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Caroline Jochems
- Center for Immuno-Oncology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Jeffrey Schlom
- Center for Immuno-Oncology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Jay Zeck
- MedStar Georgetown University Hospital, Washington, DC, USA
| | | | | | - Deena Graham
- Hackensack University Medical Center, Hackensack, NJ, USA
| | | | | | - Julie Collins
- MedStar Georgetown University Hospital, Washington, DC, USA
- AstraZeneca, Arlington, VA, USA
| | - Ami Chitalia
- MedStar Washington Hospital Center, Washington, DC, USA
| | - Shruti Tiwari
- MedStar Washington Hospital Center, Washington, DC, USA
| | - Raquel Nunes
- Johns Hopkins Sidney Kimmel Cancer Center, Baltimore, MD, USA
- AstraZeneca, Arlington, VA, USA
| | | | - Katia Khoury
- University of Alabama at Birmingham, Birmingham, AL, USA
| | | | - Paolo Tarantino
- Division of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Sara M Tolaney
- Division of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Breast Oncology Program, Dana-Farber Brigham Cancer Center, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | | | - Paula Pohlmann
- MedStar Georgetown University Hospital, Washington, DC, USA
| | - Heather A Parsons
- Division of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Breast Oncology Program, Dana-Farber Brigham Cancer Center, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | | |
Collapse
|
49
|
Conforti F, Pala L, De Pas T, Zattarin E, Catania C, Cocorocchio E, Rossi G, Laszlo D, Colleoni M, Zambelli A, Hortobagyi GN, Cortes J, Piccart MJ, Dowsett M, Gelber RD, Viale G. Fine-Tuning Adjuvant Endocrine Therapy for Early-Stage Breast Cancer: An Expert Consensus on Open Issues for Future Research. Clin Cancer Res 2024; 30:1093-1103. [PMID: 37906083 DOI: 10.1158/1078-0432.ccr-23-1836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 08/29/2023] [Accepted: 10/19/2023] [Indexed: 11/02/2023]
Abstract
After decades of research, improving the efficacy of adjuvant endocrine therapy (ET) for early-stage breast cancer becomes increasingly difficult. Beyond technological breakthroughs and the availability of new classes of drugs, further improvement of adjuvant ET will require applying a rigorous research approach in poorly investigated areas. We critically discuss some key principles that should inform future research to improve ET efficacy, including identifying specific subgroups of patients who can benefit from escalating or de-escalating approaches, optimizing available and new treatment strategies for different clinical contexts, and dissecting the direct and indirect biological effects of therapeutic interventions. Four main issues regarding adjuvant ET were identified as relevant areas, where a better application of such principles can provide positive results in the near future: (i) tailoring the optimal duration of adjuvant ET, (ii) optimizing ovarian function suppression for premenopausal women, (iii) dissecting the biological effects of estrogen receptor manipulation, and (iv) refining the selection of patients to candidate for treatments escalation.
Collapse
Affiliation(s)
- Fabio Conforti
- Department of Medical Oncology, Cliniche Humanitas Gavazzeni, Bergamo, Italy
| | - Laura Pala
- Department of Medical Oncology, Cliniche Humanitas Gavazzeni, Bergamo, Italy
| | - Tommaso De Pas
- Department of Medical Oncology, Cliniche Humanitas Gavazzeni, Bergamo, Italy
| | - Emma Zattarin
- Department of Medical Oncology, Cliniche Humanitas Gavazzeni, Bergamo, Italy
| | - Chiara Catania
- Department of Medical Oncology, Cliniche Humanitas Gavazzeni, Bergamo, Italy
| | - Emilia Cocorocchio
- Department of Medical Oncology, Cliniche Humanitas Gavazzeni, Bergamo, Italy
| | - Giovanna Rossi
- Department of Medical Oncology, Cliniche Humanitas Gavazzeni, Bergamo, Italy
| | - Daniele Laszlo
- Department of Medical Oncology, Cliniche Humanitas Gavazzeni, Bergamo, Italy
| | - Marco Colleoni
- Division of Medical Senology, IEO, European Institute of Oncology IRCCS, Milan, Italy
| | - Alberto Zambelli
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
- IRCCS Humanitas Research Hospital, Humanitas Cancer Center, Milan, Italy
| | - Gabriel N Hortobagyi
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Javier Cortes
- International Breast Cancer Center, Pangaea Oncology, Quironsalud Group, Madrid and Barcelona, Spain
- Universidad Europea de Madrid, Faculty of Biomedical and Health Sciences, Department of Medicine, Madrid, Spain
| | - Martine J Piccart
- Institut Jules Bordet, Université Libre de Bruxelles, Brussels, Belgium
| | - Mitch Dowsett
- Breast Unit, Royal Marsden Hospital, London, United Kingdom
| | - Richard D Gelber
- Department of Data Science, Division of Biostatistics, Dana-Farber Cancer Institute, Harvard Medical School, Harvard T.H. Chan School of Public Health, and Frontier Science Foundation, Boston, Massachusetts
| | - Giuseppe Viale
- Department of Pathology, IEO, European Institute of Oncology, IRCCS, Milan, Italy
| |
Collapse
|
50
|
Liu LP, Zong SY, Zhang AL, Ren YY, Qi BQ, Chang LX, Yang WY, Chen XJ, Chen YM, Zhang L, Zou Y, Guo Y, Zhang YC, Ruan M, Zhu XF. Early Detection of Molecular Residual Disease and Risk Stratification for Children with Acute Myeloid Leukemia via Circulating Tumor DNA. Clin Cancer Res 2024; 30:1143-1151. [PMID: 38170574 DOI: 10.1158/1078-0432.ccr-23-2589] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 11/07/2023] [Accepted: 12/29/2023] [Indexed: 01/05/2024]
Abstract
PURPOSE Patient-tailored minimal residual disease (MRD) monitoring based on circulating tumor DNA (ctDNA) sequencing of leukemia-specific mutations enables early detection of relapse for pre-emptive treatment, but its utilization in pediatric acute myelogenous leukemia (AML) is scarce. Thus, we aim to examine the role of ctDNA as a prognostic biomarker in monitoring response to the treatment of pediatric AML. EXPERIMENTAL DESIGN A prospective longitudinal study with 50 children with AML was launched, and sequential bone marrow (BM) and matched plasma samples were collected. The concordance of mutations by next-generation sequencing-based BM-DNA and ctDNA was evaluated. In addition, progression-free survival (PFS) and overall survival (OS) were estimated. RESULTS In 195 sample pairs from 50 patients, the concordance of leukemia-specific mutations between ctDNA and BM-DNA was 92.8%. Patients with undetectable ctDNA were linked to improved OS and PFS versus detectable ctDNA in the last sampling (both P < 0.001). Patients who cleared their ctDNA post three cycles of treatment had similar PFS compared with persistently negative ctDNA (P = 0.728). In addition, patients with >3 log reduction but without clearance in ctDNA were associated with an improved PFS as were patients with ctDNA clearance (P = 0.564). CONCLUSIONS Thus, ctDNA-based MRD monitoring appears to be a promising option to complement the overall assessment of pediatric patients with AML, wherein patients with continuous ctDNA negativity have the option for treatment de-escalation in subsequent therapy. Importantly, patients with >3 log reduction but without clearance in ctDNA may not require an aggressive treatment plan due to improved survival, but this needs further study to delineate.
Collapse
Affiliation(s)
- Li-Peng Liu
- Division of Pediatric Blood Diseases Center, State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
- Tianjin Institutes of Health Science, Tianjin, China
| | - Su-Yu Zong
- Division of Pediatric Blood Diseases Center, State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
- Tianjin Institutes of Health Science, Tianjin, China
| | - Ao-Li Zhang
- Division of Pediatric Blood Diseases Center, State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
- Tianjin Institutes of Health Science, Tianjin, China
| | - Yuan-Yuan Ren
- Division of Pediatric Blood Diseases Center, State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
- Tianjin Institutes of Health Science, Tianjin, China
| | - Ben-Quan Qi
- Division of Pediatric Blood Diseases Center, State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
- Tianjin Institutes of Health Science, Tianjin, China
| | - Li-Xian Chang
- Division of Pediatric Blood Diseases Center, State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
- Tianjin Institutes of Health Science, Tianjin, China
| | - Wen-Yu Yang
- Division of Pediatric Blood Diseases Center, State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
- Tianjin Institutes of Health Science, Tianjin, China
| | - Xiao-Juan Chen
- Division of Pediatric Blood Diseases Center, State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
- Tianjin Institutes of Health Science, Tianjin, China
| | - Yu-Mei Chen
- Division of Pediatric Blood Diseases Center, State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
- Tianjin Institutes of Health Science, Tianjin, China
| | - Li Zhang
- Division of Pediatric Blood Diseases Center, State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
- Tianjin Institutes of Health Science, Tianjin, China
| | - Yao Zou
- Division of Pediatric Blood Diseases Center, State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
- Tianjin Institutes of Health Science, Tianjin, China
| | - Ye Guo
- Division of Pediatric Blood Diseases Center, State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
- Tianjin Institutes of Health Science, Tianjin, China
| | - Ying-Chi Zhang
- Division of Pediatric Blood Diseases Center, State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
- Tianjin Institutes of Health Science, Tianjin, China
| | - Min Ruan
- Division of Pediatric Blood Diseases Center, State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
- Tianjin Institutes of Health Science, Tianjin, China
| | - Xiao-Fan Zhu
- Division of Pediatric Blood Diseases Center, State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
- Tianjin Institutes of Health Science, Tianjin, China
| |
Collapse
|