1
|
Gao W, Karsa M, Xiao L, Spurling D, Karsa A, Ronca E, Bongers A, Guo X, Mayoh C, Azfar M, Verhelst SHL, Tanaka K, Cheung LC, Kotecha RS, Lock RB, Burns MR, Vangheluwe P, Norris MD, Haber M, Somers K. Polyamine depletion limits progression of acute leukaemia. Int J Cancer 2025; 156:2360-2376. [PMID: 39985426 DOI: 10.1002/ijc.35362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 01/12/2025] [Accepted: 01/24/2025] [Indexed: 02/24/2025]
Abstract
Cancer cells are addicted to polyamines, polycations essential for cellular function. While dual targeting of cellular polyamine biosynthesis and polyamine uptake is under clinical investigation in solid cancers, preclinical and clinical studies into its potential in haematological malignancies are lacking. Here we investigated the preclinical efficacy of polyamine depletion in acute leukaemia. The polyamine biosynthesis inhibitor difluoromethylornithine (DFMO) inhibited growth of a molecularly diverse panel of acute leukaemia cell lines, while non-malignant cells were unaffected. Responsiveness to DFMO was linked to decreased levels of its molecular target, the rate-limiting polyamine biosynthesis enzyme ODC1, and of the polyamine transporters ATP13A2 and ATP13A3. DFMO increased polyamine uptake and upregulated expression of polyamine transporters in acute leukaemia cells, a compensatory effect abolished by treatment with the polyamine transport inhibitor AMXT 1501. This drug, currently in a phase 1 clinical trial in solid tumours in combination with DFMO, potentiated the inhibitory effects of DFMO, and their combination synergistically inhibited the growth of acute leukaemia cell lines by inducing apoptosis. DFMO and AMXT 1501 limited disease progression in highly aggressive xenograft models of infant KMT2A-rearranged leukaemia, even when treatment was initiated at high disease burden. Increased expression of c-MYC was associated with enhanced sensitivity to the combination of DFMO and AMXT 1501, suggesting this oncoprotein as a potential predictive marker of response to the drug combination. In conclusion, targeting polyamine biosynthesis and polyamine uptake limits disease progression in models of acute leukaemia, supporting further preclinical and clinical investigation into this approach for acute leukaemia.
Collapse
Affiliation(s)
- Weiman Gao
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Sydney, New South Wales, Australia
- School of Clinical Medicine, UNSW Medicine & Health, UNSW Centre for Childhood Cancer research, UNSW Sydney, Sydney, New South Wales, Australia
| | - Mawar Karsa
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Sydney, New South Wales, Australia
- School of Clinical Medicine, UNSW Medicine & Health, UNSW Centre for Childhood Cancer research, UNSW Sydney, Sydney, New South Wales, Australia
| | - Lin Xiao
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Sydney, New South Wales, Australia
- School of Clinical Medicine, UNSW Medicine & Health, UNSW Centre for Childhood Cancer research, UNSW Sydney, Sydney, New South Wales, Australia
| | - Dayna Spurling
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Sydney, New South Wales, Australia
| | - Ayu Karsa
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Sydney, New South Wales, Australia
| | - Emma Ronca
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Sydney, New South Wales, Australia
| | - Angelika Bongers
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Sydney, New South Wales, Australia
| | - Xinyi Guo
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Sydney, New South Wales, Australia
| | - Chelsea Mayoh
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Sydney, New South Wales, Australia
- School of Clinical Medicine, UNSW Medicine & Health, UNSW Centre for Childhood Cancer research, UNSW Sydney, Sydney, New South Wales, Australia
| | - Mujahid Azfar
- Laboratory of Cellular Transport Systems, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Steven H L Verhelst
- Laboratory of Chemical Biology, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Katsunori Tanaka
- Department of Chemical Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, Tokyo, Japan
- Biofunctional Synthetic Chemistry Laboratory, RIKEN Cluster for Pioneering Research, Saitama, Japan
| | - Laurence C Cheung
- Leukaemia Translational Research Laboratory, Telethon Kids Cancer Centre, Telethon Kids Institute, Perth, Western Australia, Australia
- Curtin Medical School, Curtin University, Perth, Western Australia, Australia
- Curtin Health Innovation Research Institute, Curtin University, Perth, Western Australia, Australia
| | - Rishi S Kotecha
- Leukaemia Translational Research Laboratory, Telethon Kids Cancer Centre, Telethon Kids Institute, Perth, Western Australia, Australia
- Curtin Medical School, Curtin University, Perth, Western Australia, Australia
- Department of Clinical Haematology, Oncology, Blood and Marrow Transplantation, Perth Children's Hospital, Perth, Western Australia, Australia
- Division of Paediatrics, School of Medicine, University of Western Australia, Perth, Western Australia, Australia
| | - Richard B Lock
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Sydney, New South Wales, Australia
- School of Clinical Medicine, UNSW Medicine & Health, UNSW Centre for Childhood Cancer research, UNSW Sydney, Sydney, New South Wales, Australia
| | - Mark R Burns
- Aminex Therapeutics, Aminex Therapeutics Inc., Kirkland, Washington, DC, USA
| | - Peter Vangheluwe
- Laboratory of Cellular Transport Systems, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Murray D Norris
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Sydney, New South Wales, Australia
- School of Clinical Medicine, UNSW Medicine & Health, UNSW Centre for Childhood Cancer research, UNSW Sydney, Sydney, New South Wales, Australia
| | - Michelle Haber
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Sydney, New South Wales, Australia
- School of Clinical Medicine, UNSW Medicine & Health, UNSW Centre for Childhood Cancer research, UNSW Sydney, Sydney, New South Wales, Australia
| | - Klaartje Somers
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Sydney, New South Wales, Australia
- School of Clinical Medicine, UNSW Medicine & Health, UNSW Centre for Childhood Cancer research, UNSW Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
2
|
Moreno L, Dubois SG, Bird N, Knox L, Ludwinski D, Pearson ADJ, Beck-Popovic M, Bagatell R. A 2035 Clinical Research Vision and Roadmap for High-Risk Neuroblastoma. Pediatr Blood Cancer 2025; 72:e31660. [PMID: 40186484 DOI: 10.1002/pbc.31660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Revised: 02/07/2025] [Accepted: 03/04/2025] [Indexed: 04/07/2025]
Abstract
Despite the introduction of anti-GD2 antibody therapy, outcomes for children with high-risk neuroblastoma remain poor, with low cure rates and a high proportion of survivors facing long-term sequelae. In this report, leaders from international cooperative groups and patient advocacy organizations review lessons learnt, identify current challenges, and provide a vision to bring new agents into frontline therapy to increase cure rates and reduce long-term toxicities over the next decade. The implementation of this vision requires improved global collaboration, incorporation of novel biomarkers, and a strengthened interaction with the regulatory landscape.
Collapse
Affiliation(s)
- Lucas Moreno
- Vall d'Hebron Comprehensive Cancer Center, Hospital Universitari Vall d'Hebron, Barcelona, Spain
- Vall d'Hebron Institute of Research (VHIR), Barcelona, Spain
- Universitat Autonoma de Barcelona (UAB), Barcelona, Spain
| | - Steven G Dubois
- Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Boston, Massachusetts, USA
| | | | | | - Donna Ludwinski
- Solving Kids' Cancer UK, London, UK
- Solving Kids' Cancer US, New York, New York, USA
| | - Andrew D J Pearson
- Department of Paediatric Oncology, Institute of Cancer Research, London, UK
| | - Maja Beck-Popovic
- Centre Hospitalier Universitaire Vaudois, Unité d'Hémato-Oncologie Pédiatrique, Lausanne, Switzerland
| | - Rochelle Bagatell
- Abramson Cancer Center at the University of Pennsylvania, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| |
Collapse
|
3
|
Simon T, Thole T, Castelli S, Timmermann B, Jazmati D, Schwarz R, Fuchs J, Warmann S, Hubertus J, Schmidt M, Rogasch J, Körber F, Vokuhl C, Schäfer J, Schulte JH, Deubzer H, Rosswog C, Fischer M, Lang P, Langer T, Astrahantseff K, Lode H, Hero B, Eggert A. GPOH Guidelines for Diagnosis and First-line Treatment of Patients with Neuroblastic Tumors, update 2025. KLINISCHE PADIATRIE 2025; 237:117-140. [PMID: 40345224 DOI: 10.1055/a-2556-4302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2025]
Abstract
The clinical course of neuroblastoma is more heterogeneous than any other malignant disease. Many low-risk patients experience regression after limited or even no chemotherapy. However, more than half of high-risk patients die from disease despite intensive multimodal treatment. Precise disease characterization for each patient at diagnosis is key for risk-adapted treatment. The guidelines presented here incorporate results from national and international clinical trials to produce recommendations for diagnosing and treating neuroblastoma patients in German hospitals outside of clinical trials.
Collapse
Affiliation(s)
- Thorsten Simon
- Pediatric Oncology and Hematology, University of Cologne, Cologne, Germany
| | - Theresa Thole
- Pediatric Oncology and Hematology, Charité University Hospital Berlin, Berlin, Germany
| | - Sveva Castelli
- Pediatric Oncology and Hematology, Charité University Hospital Berlin, Berlin, Germany
| | - Beate Timmermann
- Westgerman Protontherapycenter Essen, University of Duisburg-Essen, Duisburg, Germany
| | - Danny Jazmati
- Department of Radiation Oncology, Heinrich Heine University Düsseldorf, Dusseldorf, Germany
| | | | - Jörg Fuchs
- Pediatric Surgery and Urology, University of Tübingen, Tübingen, Germany
| | - Steven Warmann
- Department of Pediatric Surgery, Charité University Hospital Berlin, Berlin, Germany
| | - Jochen Hubertus
- Department of Pediatric Surgery, Marien-Hospital Witten, Witten, Germany
| | | | - Julian Rogasch
- Nuclear Medicine, Charité University Hospital Berlin, Berlin, Germany
| | - Friederike Körber
- Institut und Poliklinik für Radiologische Diagnostik, Kinderradiologie, University of Cologne, Cologne, Germany
| | - Christian Vokuhl
- Pediatric Pathology, Institute for Pathology, University of Bonn, Bonn, Germany
| | - Jürgen Schäfer
- Diagnostic and Interventional Radiology, University of Tübingen, Tübingen, Germany
| | | | - Hedwig Deubzer
- Pediatric Oncology and Hematology, Charité University Hospital Berlin, Berlin, Germany
| | - Carolina Rosswog
- Pediatric Oncology and Hematology, University of Cologne, Cologne, Germany
- Experimental Pediatric Oncology, University of Cologne, Cologne, Germany
| | - Matthias Fischer
- Pediatric Oncology and Hematology, University of Cologne, Cologne, Germany
- Experimental Pediatric Oncology, University of Cologne, Cologne, Germany
| | - Peter Lang
- Pediatric Oncology and Hematology, University of Tübingen, Tübingen, Germany
| | - Thorsten Langer
- Childrens' Hospital, University Hospital Schleswig-Holstein Lübeck Campus, Lübeck, Germany
| | - Kathy Astrahantseff
- Pediatric Oncology and Hematology, Charité University Hospital Berlin, Berlin, Germany
| | - Holger Lode
- Pediatric Oncology and Hematology, University of Greifswald, Greifswald, Germany
| | - Barbara Hero
- Pediatric Oncology and Hematology, University of Cologne, Cologne, Germany
| | - Angelika Eggert
- Pediatric Oncology and Hematology, Charité University Hospital Berlin, Berlin, Germany
| |
Collapse
|
4
|
Liu H, Liu Y, Wang X, Xiao Z, Ni Q, Yu X, Luo G. Antitumor potential of polyamines in cancer. Acta Biochim Biophys Sin (Shanghai) 2025. [PMID: 40103487 DOI: 10.3724/abbs.2025030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2025] Open
Abstract
The dysregulation of polyamines in tumors has made polyamine metabolism an appealing target for cancer therapy. Gene mutations drive the reprogramming of polyamine metabolism in tumors, presenting promising opportunities for clinical treatment. The proposed strategies involve inhibiting polyamine biosynthesis while also targeting the polyamine transport system as antitumor approaches. A growing number of drugs aimed at polyamine biosynthesis and transport systems are undergoing clinical trials. Polyamine metabolism plays a role in regulating cancer signaling pathways, suggesting potential combination therapies for cancer treatment. Furthermore, supplemental polyamine substances have demonstrated antitumor activity, indicating that combining polyamines with downstream targets or immunotherapy could offer significant clinical benefits. These discoveries open new avenues for leveraging polyamine metabolism in anticancer therapy.
Collapse
Affiliation(s)
- He Liu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai 200032, China
- Shanghai Key Laboratory of Precision Medicine for Pancreatic Cancer, Shanghai 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai 200032, China
| | - Yi Liu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai 200032, China
- Shanghai Key Laboratory of Precision Medicine for Pancreatic Cancer, Shanghai 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai 200032, China
| | - Xinyue Wang
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai 200032, China
- Shanghai Key Laboratory of Precision Medicine for Pancreatic Cancer, Shanghai 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai 200032, China
| | - Zhiwen Xiao
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai 200032, China
- Shanghai Key Laboratory of Precision Medicine for Pancreatic Cancer, Shanghai 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai 200032, China
| | - Quanxing Ni
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai 200032, China
- Shanghai Key Laboratory of Precision Medicine for Pancreatic Cancer, Shanghai 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai 200032, China
| | - Xianjun Yu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai 200032, China
- Shanghai Key Laboratory of Precision Medicine for Pancreatic Cancer, Shanghai 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai 200032, China
| | - Guopei Luo
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai 200032, China
- Shanghai Key Laboratory of Precision Medicine for Pancreatic Cancer, Shanghai 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai 200032, China
| |
Collapse
|
5
|
Schultz CR, Aleiwi B, Zhou XE, Suino-Powell K, Melcher K, Almeida NMS, Wilson AK, Ellsworth EL, Bachmann AS. Design, Synthesis, and Biological Activity of Novel Ornithine Decarboxylase (ODC) Inhibitors. J Med Chem 2025; 68:5760-5773. [PMID: 40035393 PMCID: PMC11912471 DOI: 10.1021/acs.jmedchem.4c03120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 01/31/2025] [Accepted: 02/24/2025] [Indexed: 03/05/2025]
Abstract
We here describe the design, synthesis, and biological activity of novel ornithine decarboxylase (ODC) inhibitors that show significantly higher potency in vitro than α-difluoromethylornithine (DFMO), a U.S. Food and Drug Administration (FDA) approved drug. We report two X-ray structures of ODC complexed with new ODC inhibitors, computational docking, molecular dynamics, and binding free energy calculations to validate the experimental models. The X-ray structures reveal that covalent adducts with pyridoxal phosphate (PLP) are formed in the active site of the human ODC enzyme, as verified by their preparation and enzymatic testing. Finally, we verified that the cellular activity of endogenous ODC was inhibited, and polyamine levels were reduced. Given that ODC is a clinically validated target, combined with the fact that DFMO is currently the only ODC inhibitor in clinical use for several indications, the further development of more potent ODC inhibitors with superior activity and physical properties is warranted.
Collapse
Affiliation(s)
- Chad R Schultz
- Department of Pediatrics and Human Development, College of Human Medicine, Michigan State University, Grand Rapids, Michigan 49503, United States
- International Center for Polyamine Disorders, Grand Rapids, Michigan 49503, United States
| | - Bilal Aleiwi
- Department of Pharmacology and Toxicology, College of Human Medicine, East Lansing, Michigan 48824, United States
| | - X Edward Zhou
- Department of Structural Biology, Van Andel Institute, Grand Rapids, Michigan 49503, United States
| | - Kelly Suino-Powell
- Department of Structural Biology, Van Andel Institute, Grand Rapids, Michigan 49503, United States
| | - Karsten Melcher
- Department of Structural Biology, Van Andel Institute, Grand Rapids, Michigan 49503, United States
| | - Nuno M S Almeida
- Department of Chemistry, College of Natural Science, Michigan State University, East Lansing, Michigan 48824, United States
| | - Angela K Wilson
- Department of Chemistry, College of Natural Science, Michigan State University, East Lansing, Michigan 48824, United States
| | - Edmund L Ellsworth
- Department of Pharmacology and Toxicology, College of Human Medicine, East Lansing, Michigan 48824, United States
| | - André S Bachmann
- Department of Pediatrics and Human Development, College of Human Medicine, Michigan State University, Grand Rapids, Michigan 49503, United States
- International Center for Polyamine Disorders, Grand Rapids, Michigan 49503, United States
| |
Collapse
|
6
|
Filisola-Villaseñor JG, Arroyo-Sánchez BI, Navarro-González LJ, Morales-Ríos E, Olin-Sandoval V. Ornithine decarboxylase and its role in cancer. Arch Biochem Biophys 2025; 765:110321. [PMID: 39870288 DOI: 10.1016/j.abb.2025.110321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 01/03/2025] [Accepted: 01/24/2025] [Indexed: 01/29/2025]
Abstract
Cancer is among the leading causes of death worldwide. The effectiveness of conventional chemotherapy has some drawbacks, therefore, there is an urgency to develop novel strategies to fight this disease. Ornithine decarboxylase (ODC) is the most finely tuned enzyme of the polyamine (PA) biosynthesis pathway as it is regulated at different levels: transcriptional, translational, post-translational, and by feedback inhibition. In cancer, this enzyme is overexpressed due to its regulation by the protooncogene c-Myc, thus it has been proposed as a drug target against this disease. This review describes information regarding the biochemistry and regulation of the ODC at different levels and its role in cancer. Moreover, we discuss the molecules aiming on the inhibition of the ODC activity that have been tested as therapeutic options. ODC remains as a therapeutic opportunity that needs to be more explored.
Collapse
Affiliation(s)
| | - Beatriz Irene Arroyo-Sánchez
- Department of Biotechnology and Bioengineering, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Mexico City, Mexico
| | - Luis Janiel Navarro-González
- Department of Biochemistry, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Mexico City, Mexico
| | - Edgar Morales-Ríos
- Department of Biochemistry, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Mexico City, Mexico.
| | - Viridiana Olin-Sandoval
- Department of Biotechnology and Bioengineering, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Mexico City, Mexico.
| |
Collapse
|
7
|
Koulmi K, Cattelan L, Litvinov IV. Evaluating Difluoromethylornithine Safety and Efficacy for Non-Melanoma Skin Cancer Chemoprevention: A Systematic Review. J Cutan Med Surg 2025; 29:143-149. [PMID: 39614759 DOI: 10.1177/12034754241302818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/10/2025]
Abstract
INTRODUCTION Recent FDA approval of difluoromethylornithine (DFMO), an inhibitor of ornithine decarboxylase for the prevention of neuroblastoma in children, has renewed interest in this medication for the prevention of other cancers including keratinocyte carcinomas (KCs). It has been investigated for cancer chemoprevention, including neoplasms of the colon, breast, and prostate. METHODS We assessed the current body of literature that determines DFMO efficacy and safety in non-melanoma skin cancer prevention. A systematic search of PubMed Central, and Web of Sciences was performed. RESULTS In this analysis, 12 studies were included evaluating 1618 patients. Most patients were Caucasian 90% (1452/1618) with a mean age of 61 years, and 73% (1214/1618) had previously been diagnosed with KC. For oral DFMO, reduction in KC was significant in 24% (291/1214) of patients. Nonsignificant reduction was observed in 17% (207/1214) of patients. The remaining studies, representing 59% (716/1214) of patients explored DFMO's pharmacological/biological effects without elucidating its direct impact on KC. Topical DFMO shows modest efficacy in reducing the number of actinic keratosis (AK), as indicated in 4 studies representing 38.12% (154/404) of patients. For patients taking the oral eflornithine, the most frequently reported adverse events included reversible ototoxicity (11% of patients) gastrointestinal disturbances (10.39%). For the topical DFMO transient local cutaneous eruptions were common impacting 28.76% (111/386) of patients. CONCLUSION Current evidence highlights the lack of conclusive data supporting the efficacy of oral DFMO, making it difficult to recommend its use. Conversely, topical DFMO demonstrates more promising outcomes in preventing AKs, presenting a potentially useful alternative in select patients.
Collapse
Affiliation(s)
- Kaouthar Koulmi
- Department of Medicine, McGill University, Montréal, QC, Canada
| | - Leila Cattelan
- Division of Dermatology, McGill University, Montreal, QC, Canada
| | - Ivan V Litvinov
- Cancer Research Program, McGill University Health Centre Research Institute, Montreal, QC, Canada
| |
Collapse
|
8
|
Srinivasan S. Transforming Pediatric Oncology Research: The Role of Collaboration, Precision Medicine, and Evolving Study Designs. Pediatr Blood Cancer 2025; 72:e31486. [PMID: 39676142 DOI: 10.1002/pbc.31486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 11/26/2024] [Accepted: 11/27/2024] [Indexed: 12/17/2024]
Affiliation(s)
- Shyam Srinivasan
- Department of Pediatric Oncology, Tata Memorial Centre, Homi Bhabha National Institute, Mumbai, Maharashtra, India
| |
Collapse
|
9
|
Schramm J, Sholler C, Menachery L, Vazquez L, Saulnier Sholler G. Polyamine Inhibition with DFMO: Shifting the Paradigm in Neuroblastoma Therapy. J Clin Med 2025; 14:1068. [PMID: 40004600 PMCID: PMC11856405 DOI: 10.3390/jcm14041068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Revised: 02/02/2025] [Accepted: 02/05/2025] [Indexed: 02/27/2025] Open
Abstract
Neuroblastoma is a common childhood malignancy, and high-risk presentations, including an MYCN amplified status, continue to result in poor survival. Difluoromethylornithine (DFMO) is a new and well-tolerated treatment for high-risk neuroblastoma. This review article discusses preclinical and clinical data that resulted in the establishment of DFMO as a treatment for neuroblastoma. The review of preclinical data includes a summary of the contribution of polyamine synthetic pathways to high-risk neuroblastoma, the effect that MYCN has on polyamine synthetic pathways, and the proposed mechanism by which DFMO inhibits tumorigenesis. This understanding has led to the discussion of various preclinical combination therapies that may result in a synergistic therapeutic response for high-risk neuroblastoma. We review the clinical trials that show the successful treatment of high-risk neuroblastoma with DFMO, including comparative analysis and traditional neuroblastoma trials using propensity score matching. We review the regulatory path by which DFMO gained approval from the Federal Drug Administration for use as a maintenance therapy following the traditional high-risk neuroblastoma therapy. Finally, we discuss the role of DFMO in future clinical research for neuroblastoma and additional pediatric cancers.
Collapse
|
10
|
Liang X, Guo J, Wang X, Luo B, Fu R, Chen H, Yang Y, Jin Z, Lin C, Zang A, Jia Y, Feng L, Wang L. Overexpression of ornithine decarboxylase 1 mediates the immune-deserted microenvironment and poor prognosis in diffuse large B-cell lymphoma. JOURNAL OF THE NATIONAL CANCER CENTER 2025; 5:57-74. [PMID: 40040873 PMCID: PMC11873660 DOI: 10.1016/j.jncc.2024.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 10/08/2024] [Accepted: 10/15/2024] [Indexed: 03/06/2025] Open
Abstract
Background Previous researches mainly focused on whether cancer stem cells exist in diffuse large B-cell lymphoma (DLBCL). However, subgroups with dismal prognosis and stem cell-like characteristics have been overlooked. Methods Using large scale data (n = 2133), we conducted machine learning algorithms to identify a high risk DLBCL subgroup with stem cell-like features, and then investigated the potential mechanisms in shaping this subgroup using transcriptome, genome and single-cell RNA-seq data, and in vitro experiments. Results We identified a high-risk subgroup (25.6 % of DLBCL) with stem cell-like characteristics and dismal prognosis. This high-risk group (HRG) was featured by upregulation of key enzyme (ODC1) in polyamine metabolism and cold tumor microenvironment (TME), and had a poor prognosis with lower 3-year overall survival (OS) (54.3 % vs. 83.6 %, P < 0.0001) and progression-free survival (PFS) (42.8 % vs. 74.7 %, P < 0.0001) rates compared to the low-risk group. HRG also exhibited malignant proliferative phenotypes similar to Burkitt lymphoma. Patients with MYC rearrangement, double-hit, double-expressors, or complete remission might have either favorable or poor prognosis, which could be further distinguished by our risk stratification model. Genomic analysis revealed widespread copy number losses in the chemokine and interferon coding regions 8p23.1 and 9p21.3 in HRG. We identified ODC1 as a therapeutic vulnerability for HRG-DLBCL. Single-cell analysis and in vitro experiments demonstrated that ODC1 overexpression enhanced DLBCL cell proliferation and drove macrophage polarization towards the M2 phenotype. Conversely, ODC1 inhibition reduced DLBCL cell proliferation, induced cell cycle arrest and apoptosis, and promoted macrophage polarization towards the M1 phenotype. Finally, we developed a comprehensive database of DLBCL for clinical application. Conclusions Our study effectively advances the precise risk stratification of DLBCL and reveals that ODC1 and immune-deserted microenvironment jointly shape a group of DLBCL patients with stem cell-like features. Targeting ODC1 regulates immunotherapies in DLBCL, offering new insights for DLBCL treatment.
Collapse
Affiliation(s)
- Xiaojie Liang
- Department of Hematology, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Jia Guo
- Department of Hematology, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Xiaofang Wang
- Department of Medical Oncology, Affiliated Hospital of Hebei University, Hebei Key Laboratory of Cancer Radiotherapy and Chemotherapy, Baoding, China
| | - Baiwei Luo
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Ruiying Fu
- Department of Hematology, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Haiying Chen
- The First School of Clinical Medicine, Guangdong Medical University, Zhanjiang, China
| | - Yunong Yang
- The First School of Clinical Medicine, Guangdong Medical University, Zhanjiang, China
| | - Zhihao Jin
- The First School of Clinical Medicine, Guangdong Medical University, Zhanjiang, China
| | - Chaoran Lin
- The First School of Clinical Medicine, Guangdong Medical University, Zhanjiang, China
| | - Aimin Zang
- Department of Medical Oncology, Affiliated Hospital of Hebei University, Hebei Key Laboratory of Cancer Radiotherapy and Chemotherapy, Baoding, China
| | - Youchao Jia
- Department of Medical Oncology, Affiliated Hospital of Hebei University, Hebei Key Laboratory of Cancer Radiotherapy and Chemotherapy, Baoding, China
| | - Lin Feng
- School of Mechanical Engineering & Automation, Beihang University, Beijing, China
| | - Liang Wang
- Department of Hematology, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
11
|
Wang T, Liu L, Fang J, Jin H, Natarajan S, Sheppard H, Lu M, Turner G, Confer T, Johnson M, Steinberg J, Ha L, Yadak N, Jain R, Picketts DJ, Ma X, Murphy A, Davidoff AM, Glazer ES, Easton J, Chen X, Wang R, Yang J. Conditional Activation of c-MYC in Distinct Catecholaminergic Cells Drives Development of Neuroblastoma or Somatostatinoma. Cancer Res 2025; 85:424-441. [PMID: 39531507 PMCID: PMC11786959 DOI: 10.1158/0008-5472.can-24-1142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 09/11/2024] [Accepted: 11/07/2024] [Indexed: 11/16/2024]
Abstract
c-MYC is an important driver of high-risk neuroblastoma. A lack of c-MYC-driven genetically engineered mouse models (GEMM) has hampered the ability to better understand mechanisms of neuroblastoma oncogenesis and to develop effective therapies. In this study, we showed that conditional c-MYC induction via Cre recombinase driven by a tyrosine hydroxylase promoter led to a preponderance of PDX1+ somatostatinoma, a type of pancreatic neuroendocrine tumor. However, c-MYC activation via an improved Cre recombinase driven by a dopamine β-hydroxylase promoter resulted in neuroblastoma development. The c-MYC murine neuroblastoma tumors recapitulated the pathologic and genetic features of human neuroblastoma and responded to anti-GD2 immunotherapy and difluoromethylornithine, an FDA-approved inhibitor targeting the MYC transcriptional target ODC1. Thus, c-MYC overexpression results in different but related tumor types depending on the targeted cell. The GEMMs represent valuable tools for testing immunotherapies and targeted therapies for these diseases. Significance: The development of c-MYC-driven genetically engineered neuroblastoma and somatostatinoma mouse models provides useful tools for understanding the tumor cell origin and investigating treatment strategies.
Collapse
Affiliation(s)
- Tingting Wang
- Center for Childhood Cancer Research, Hematology, Oncology and BMT, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Department of Pediatrics at The Ohio State University, Columbus, Ohio
| | - Lingling Liu
- Center for Childhood Cancer Research, Hematology, Oncology and BMT, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Department of Pediatrics at The Ohio State University, Columbus, Ohio
| | - Jie Fang
- Department of Surgery, St. Jude Children’s Research Hospital, Memphis, Tennessee
| | - Hongjian Jin
- Center for Applied Bioinformatics, St. Jude Children’s Research Hospital, Memphis, Tennessee
| | - Sivaraman Natarajan
- Department of Computational Biology, St. Jude Children’s Research Hospital, Memphis, Tennessee
| | - Heather Sheppard
- Comparative Pathology Core, St. Jude Children’s Research Hospital, Memphis, Tennessee
- Department of Pathology, St. Jude Children’s Research Hospital, Memphis, Tennessee
| | - Meifen Lu
- Comparative Pathology Core, St. Jude Children’s Research Hospital, Memphis, Tennessee
- Department of Pathology, St. Jude Children’s Research Hospital, Memphis, Tennessee
| | - Gregory Turner
- Center for In Vivo Imaging and Therapeutics, St. Jude Children’s Research Hospital, Memphis, Tennessee
| | - Thomas Confer
- Center for In Vivo Imaging and Therapeutics, St. Jude Children’s Research Hospital, Memphis, Tennessee
| | - Melissa Johnson
- Center for In Vivo Imaging and Therapeutics, St. Jude Children’s Research Hospital, Memphis, Tennessee
| | - Jeffrey Steinberg
- Center for In Vivo Imaging and Therapeutics, St. Jude Children’s Research Hospital, Memphis, Tennessee
| | - Larry Ha
- Department of Surgery and Center for Cancer Research, College of Medicine, The University of Tennessee Health Science Center, Memphis, Tennessee
| | - Nour Yadak
- Department of Pathology and Laboratory Medicine, College of Medicine, The University of Tennessee Health Science Center, Memphis, Tennessee
| | - Richa Jain
- Department of Pathology and Laboratory Medicine, College of Medicine, The University of Tennessee Health Science Center, Memphis, Tennessee
| | - David J. Picketts
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, Canada
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Canada
| | - Xiaotu Ma
- Department of Computational Biology, St. Jude Children’s Research Hospital, Memphis, Tennessee
| | - Andrew Murphy
- Department of Surgery, St. Jude Children’s Research Hospital, Memphis, Tennessee
| | - Andrew M. Davidoff
- Department of Surgery, St. Jude Children’s Research Hospital, Memphis, Tennessee
- Department of Surgery and Center for Cancer Research, College of Medicine, The University of Tennessee Health Science Center, Memphis, Tennessee
- Department of Pathology and Laboratory Medicine, College of Medicine, The University of Tennessee Health Science Center, Memphis, Tennessee
- St. Jude Graduate School of Biomedical Sciences, St. Jude Children’s Research Hospital, Memphis, Tennessee
| | - Evan S. Glazer
- Department of Surgery and Center for Cancer Research, College of Medicine, The University of Tennessee Health Science Center, Memphis, Tennessee
| | - John Easton
- Department of Computational Biology, St. Jude Children’s Research Hospital, Memphis, Tennessee
| | - Xiang Chen
- Department of Computational Biology, St. Jude Children’s Research Hospital, Memphis, Tennessee
| | - Ruoning Wang
- Center for Childhood Cancer Research, Hematology, Oncology and BMT, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Department of Pediatrics at The Ohio State University, Columbus, Ohio
| | - Jun Yang
- Department of Surgery, St. Jude Children’s Research Hospital, Memphis, Tennessee
- Department of Pathology and Laboratory Medicine, College of Medicine, The University of Tennessee Health Science Center, Memphis, Tennessee
- St. Jude Graduate School of Biomedical Sciences, St. Jude Children’s Research Hospital, Memphis, Tennessee
- College of Graduate Health Sciences, University of Tennessee Health Science Center, Memphis, Tennessee
| |
Collapse
|
12
|
Jahangiri L. Metabolic targeting of neuroblastoma, an update. Cancer Lett 2024; 611:217393. [PMID: 39681211 DOI: 10.1016/j.canlet.2024.217393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 12/01/2024] [Accepted: 12/13/2024] [Indexed: 12/18/2024]
Abstract
Neuroblastoma is a paediatric cancer of the sympathetic nervous system that originates from the neural crest and can be categorised into stages and risk groups. Risk groups inform treatment options and high-risk cases bear a 50 % probability of relapse post-treatment remission. In neuroblastoma, MYCN amplification is the strongest predictor of unfavourable patient prognosis; circa 50 % of high-risk cases display MYCN amplification. This dismal prognosis is perhaps influenced by the MYCN-driven metabolic rewiring of these cells since the MYC family is indicated in the regulation of proliferation, cell death, metabolism, differentiation, and protein synthesis. This review aims to capture the most recent studies that investigate metabolic rewiring in MYCN-amplified and MYCN-activated cells from the perspective of alterations to glycolysis, the TCA cycle, and oxidative phosphorylation, in addition to changes to amino acid, nucleotide, and lipid metabolism that can be relevant to therapy. A better understanding of the metabolic profile of MYCN-amplified disease will facilitate the identification of effective treatment options and improve the prognosis of high-risk neuroblastoma patients.
Collapse
Affiliation(s)
- Leila Jahangiri
- School of Science and Technology, Nottingham Trent University, Clifton Site, Nottingham, NG11 8NS, UK; Division of Cellular and Molecular Pathology, Department of Pathology, Addenbrooke's Hospital, University of Cambridge, Cambridge, CB2 0QQ, UK.
| |
Collapse
|
13
|
Shakeel A, Baloch A, Kumari V, Kazmi SKZ, Aftab K, Abid S, Syed A, Yousuf J, Hasanain M, Anjum MU, Mahmmoud Fadelallah Eljack M. Iwilfin (eflornithine) approved by the FDA as the first and only oral maintenance therapy for high-risk neuroblastoma in adult and pediatric patients: Narrative review. Medicine (Baltimore) 2024; 103:e40662. [PMID: 39612452 PMCID: PMC11608686 DOI: 10.1097/md.0000000000040662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Accepted: 11/06/2024] [Indexed: 12/01/2024] Open
Abstract
Neural crest progenitor cells give rise to neuroblasts, the growing nerve cells of the sympathetic nervous system. These cells can undergo changes leading to neuroblastoma, a malignancy responsible for 15% of all pediatric cancer-related deaths. The molecular pathogenesis of this pediatric cancer involves complex genetic alterations, such as MYCN amplification, chromosomal abnormalities, and gene expression changes. Despite aggressive therapies, survival rates for children with high-risk neuroblastoma (HRNB) have not improved significantly compared to those with less severe forms of the disease. This highlights the challenge of managing HRNB and underscores the need for new, effective treatments. A comprehensive treatment regimen, including immunotherapy, radiation therapy, myeloablative chemotherapy, and surgical removal, has been employed to achieve remission in HRNB patients. While dinutuximab beta immunotherapy is an effective and widely used treatment, it has several potential side effects that must be carefully monitored. New drugs are being developed to reduce these side effects without compromising efficacy. One such drug is DL-alpha-difluoromethylornithine (DFMO), approved by the FDA under the brand name Iwilfin. Numerous clinical trials have shown that DFMO, when used as maintenance therapy, significantly improves event-free survival and overall survival in neuroblastoma patients. However, DFMO has adverse effects that require continuous monitoring. Further research is needed to minimize these side effects and improve its efficacy, particularly in addressing resistance caused by long-term use.
Collapse
Affiliation(s)
- Ayesha Shakeel
- Department of Internal Medicine, Jinnah Sindh Medical University, Karachi, Pakistan
| | - Aniqa Baloch
- Department of Medicine and Surgery, Dow University of Health Sciences, Karachi, Pakistan
| | - Versha Kumari
- Department of Internal Medicine, Jinnah Sindh Medical University, Karachi, Pakistan
| | | | - Kanza Aftab
- Department of Internal Medicine, Jinnah Sindh Medical University, Karachi, Pakistan
| | - Shiza Abid
- Department of Medicine and Surgery, Ayub Medical College, Abbottabad, Pakistan
| | - Amna Syed
- Department of Medicine and Surgery, Dow University of Health Sciences, Karachi, Pakistan
| | - Juvairia Yousuf
- Department of Internal Medicine, Jinnah Sindh Medical University, Karachi, Pakistan
| | - Muhammad Hasanain
- Department of Internal Medicine, Jinnah Sindh Medical University, Karachi, Pakistan
| | - Muhammad Umair Anjum
- Department of Internal Medicine, Jinnah Sindh Medical University, Karachi, Pakistan
| | | |
Collapse
|
14
|
Wang H, Tao Y, Han J, Shen J, Mu H, Wang Z, Wang J, Jin X, Zhang Q, Yang Y, Lin J, Sun M, Ma X, Ren L, LeBlanc AK, Xu J, Hua Y, Sun W. Disrupting YAP1-mediated glutamine metabolism induces synthetic lethality alongside ODC1 inhibition in osteosarcoma. Cell Oncol (Dordr) 2024; 47:1845-1861. [PMID: 39115605 DOI: 10.1007/s13402-024-00967-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/06/2024] [Indexed: 10/11/2024] Open
Abstract
PURPOSE Osteosarcoma, a highly malignant primary bone tumor primarily affecting adolescents, frequently develops resistance to initial chemotherapy, leading to metastasis and limited treatment options. Our study aims to uncover novel therapeutic targets for metastatic and recurrent osteosarcoma. METHODS In this study, we proved the potential of modulating the YAP1-regulated glutamine metabolic pathway to augment the response of OS to DFMO. We initially employed single-cell transcriptomic data to gauge the activation level of polyamine metabolism in MTAP-deleted OS patients. This was further substantiated by transcriptome sequencing data from recurrent and non-recurrent patient tissues, confirming the activation of polyamine metabolism in progressive OS. Through high-throughput drug screening, we pinpointed CIL56, a YAP1 inhibitor, as a promising candidate for a combined therapeutic strategy with DFMO. In vivo, we utilized PDX and CDX models to validate the therapeutic efficacy of this drug combination. In vitro, we conducted western blot analysis, qPCR analysis, immunofluorescence staining, and PuMA experiments to monitor alterations in molecular expression, distribution, and tumor metastasis capability. We employed CCK-8 and colony formation assays to assess the proliferative capacity of cells in the experimental group. We used flow cytometry and reactive oxygen probes to observe changes in ROS and glutamine metabolism within the cells. Finally, we applied RNA-seq in tandem with metabolomics to identify metabolic alterations in OS cells treated with a DFMO and CIL56 combination. This enabled us to intervene and validate the role of the YAP1-mediated glutamine metabolic pathway in DFMO resistance. RESULTS Through single-cell RNA-seq data analysis, we pinpointed a subset of late-stage OS cells with significantly upregulated polyamine metabolism. This upregulation was further substantiated by transcriptomic profiling of recurrent and non-recurrent OS tissues. High-throughput drug screening revealed a promising combination strategy involving DFMO and CIL56. DFMO treatment curbs the phosphorylation of YAP1 protein in OS cells, promoting nuclear entry and initiating the YAP1-mediated glutamine metabolic pathway. This reduces intracellular ROS levels, countering DFMO's anticancer effect. The therapeutic efficacy of DFMO can be amplified both in vivo and in vitro by combining it with the YAP1 inhibitor CIL56 or the glutaminase inhibitor CB-839. This underscores the significant potential of targeting the YAP1-mediated glutamine metabolic pathway to enhance efficacy of DFMO. CONCLUSION Our findings elucidate YAP1-mediated glutamine metabolism as a crucial bypass mechanism against DFMO, following the inhibition of polyamine metabolism. Our study provides valuable insights into the potential role of DFMO in an "One-two Punch" therapy of metastatic and recurrent osteosarcoma.
Collapse
Affiliation(s)
- Hongsheng Wang
- Department of Orthopedics, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, 100 Haining Road, Shanghai, 200080, China
- Shanghai Bone Tumor Institution, Shanghai, China
| | - Yining Tao
- Department of Orthopedics, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, 100 Haining Road, Shanghai, 200080, China
- Shanghai Bone Tumor Institution, Shanghai, China
| | - Jing Han
- Department of Orthopedics, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, 100 Haining Road, Shanghai, 200080, China
- Shanghai Bone Tumor Institution, Shanghai, China
| | - Jiakang Shen
- Department of Orthopedics, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, 100 Haining Road, Shanghai, 200080, China
- Shanghai Bone Tumor Institution, Shanghai, China
| | - Haoran Mu
- Department of Orthopedics, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, 100 Haining Road, Shanghai, 200080, China
- Shanghai Bone Tumor Institution, Shanghai, China
| | - Zhuoying Wang
- Department of Orthopedics, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, 100 Haining Road, Shanghai, 200080, China
- Shanghai Bone Tumor Institution, Shanghai, China
| | - Jinzeng Wang
- National Research Center for Translational Medicine (Shanghai), State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xinmeng Jin
- Department of Orthopedics, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, 100 Haining Road, Shanghai, 200080, China
- Shanghai Bone Tumor Institution, Shanghai, China
| | - Qi Zhang
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuqin Yang
- Department of Laboratory Animal Center, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jun Lin
- Department of Pathology, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Mengxiong Sun
- Department of Orthopedics, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, 100 Haining Road, Shanghai, 200080, China
- Shanghai Bone Tumor Institution, Shanghai, China
| | - Xiaojun Ma
- Department of Orthopedics, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, 100 Haining Road, Shanghai, 200080, China
- Shanghai Bone Tumor Institution, Shanghai, China
| | - Ling Ren
- Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Amy K LeBlanc
- Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Jing Xu
- Department of Orthopedics, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, 100 Haining Road, Shanghai, 200080, China.
- Shanghai Bone Tumor Institution, Shanghai, China.
| | - Yingqi Hua
- Department of Orthopedics, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, 100 Haining Road, Shanghai, 200080, China.
- Shanghai Bone Tumor Institution, Shanghai, China.
| | - Wei Sun
- Department of Orthopedics, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, 100 Haining Road, Shanghai, 200080, China.
- Shanghai Bone Tumor Institution, Shanghai, China.
| |
Collapse
|
15
|
Oing C, Hentrich M. [Conventional versus high-dose salvage chemotherapy for relapsed testicular germ cell tumours]. Aktuelle Urol 2024. [PMID: 39106898 DOI: 10.1055/a-2364-4213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/09/2024]
Abstract
Since the introduction of cisplatin-based combination chemotherapy, patients with metastatic germ cell tumours achieve very high cure rates of >80%. Nevertheless, about 30% of patients relapse despite guideline-endorsed first-line treatment. Of these, again about 50% of patients can still achieve cure with platinum-based salvage chemotherapy and eventually post-chemotherapy residual mass resection.Salvage chemotherapy generally involves platinum-based combination chemotherapy, either as conventional dose cisplatin-based combinations again or as high-dose chemotherapy with subsequent autologous stem cell transplantation.To date, high level evidence from randomised trials supporting the use of salvage high-dose chemotherapy for all patients relapsing after first-line treatment remains lacking, but a large international retrospective registry study had shown a 15% overall survival benefit for patients undergoing salvage high-dose chemotherapy.In this article, we summarise the available literature on the different salvage treatment approaches and discuss these in the light of current treatment guideline recommendations for the management of testicular cancer.
Collapse
Affiliation(s)
- Christoph Oing
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom of Great Britain and Northern Ireland
- Northern Centre for Cancer Care, Newcastle Upon Tyne Hospitals NHS Foundation Trust, Newcastle Upon Tyne, United Kingdom of Great Britain and Northern Ireland
- II. Medizinische Klinik und Poliklinik, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Deutschland
| | - Marcus Hentrich
- Abteilung für Innere Medizin III, Rotkreuzklinikum München, München, Germany
| |
Collapse
|
16
|
Liu TA, Stewart TM, Casero RA. The Synergistic Benefit of Combination Strategies Targeting Tumor Cell Polyamine Homeostasis. Int J Mol Sci 2024; 25:8173. [PMID: 39125742 PMCID: PMC11311409 DOI: 10.3390/ijms25158173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 07/19/2024] [Accepted: 07/22/2024] [Indexed: 08/12/2024] Open
Abstract
Mammalian polyamines, including putrescine, spermidine, and spermine, are positively charged amines that are essential for all living cells including neoplastic cells. An increasing understanding of polyamine metabolism, its molecular functions, and its role in cancer has led to the interest in targeting polyamine metabolism as an anticancer strategy, as the metabolism of polyamines is frequently dysregulated in neoplastic disease. In addition, due to compensatory mechanisms, combination therapies are clinically more promising, as agents can work synergistically to achieve an effect beyond that of each strategy as a single agent. In this article, the nature of polyamines, their association with carcinogenesis, and the potential use of targeting polyamine metabolism in treating and preventing cancer as well as combination therapies are described. The goal is to review the latest strategies for targeting polyamine metabolism, highlighting new avenues for exploiting aberrant polyamine homeostasis for anticancer therapy and the mechanisms behind them.
Collapse
Affiliation(s)
- Ting-Ann Liu
- Department of Biochemistry and Molecular Biology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA;
| | - Tracy Murray Stewart
- The Sidney Kimmel Comprehensive Cancer Center, School of Medicine, Johns Hopkins University, Baltimore, MD 21287, USA;
| | - Robert A. Casero
- The Sidney Kimmel Comprehensive Cancer Center, School of Medicine, Johns Hopkins University, Baltimore, MD 21287, USA;
| |
Collapse
|
17
|
Offenbacher R, Jackson KW, Hayashi M, Zhang J, Peng D, Tan Y, Stewart TM, Ciero P, Foley J, Casero RA, Cahan P, Loeb DM. Polyamine Depletion by D, L-alpha-difluoromethylornithine Inhibits Ewing Sarcoma Metastasis by Inducing Ferroptosis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.14.599064. [PMID: 38948823 PMCID: PMC11212937 DOI: 10.1101/2024.06.14.599064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Polyamine metabolism and signaling play important roles in multiple cancers but have not previously been studied in Ewing sarcoma. Here, we show that blocking polyamine synthesis with D, L-alpha-difluoromethylornithine (DFMO) causes a G1 cell cycle arrest, dose-dependent decreases in sarcosphere formation from Ewing sarcoma cell lines growing in non-adherent conditions and a decrease in clonogenic growth in soft agar. Further, we utilized our orthotopic implantation/amputation model of Ewing sarcoma metastasis to demonstrate that DFMO slowed primary tumor growth in addition to limiting metastasis. RNA sequencing demonstrated gene expression patterns consistent with induction of ferroptosis caused by polyamine depletion. Induction of ferroptosis was validated in vitro by demonstrating that ferrostatin-1, an inhibitor of ferroptosis, allows sphere formation even in the presence of DFMO. Collectively, these results reveal a novel mechanism by which DFMO prevents metastasis - induction of ferroptosis due to polyamine depletion. Our results provide preclinical justification to test the ability of DFMO to prevent metastatic recurrence in Ewing sarcoma patients at high risk for relapse.
Collapse
|
18
|
Jiang J, Yu Y. Eflornithine for treatment of high-risk neuroblastoma. Trends Pharmacol Sci 2024; 45:577-578. [PMID: 38749882 PMCID: PMC11162306 DOI: 10.1016/j.tips.2024.04.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 03/31/2024] [Accepted: 04/17/2024] [Indexed: 06/09/2024]
Affiliation(s)
- Jianxiong Jiang
- Department of Pharmaceutical Sciences, Department of Anatomy and Neurobiology, Drug Discovery Center, Neuroscience Institute, The University of Tennessee Health Science Center, Memphis, TN 38163, USA.
| | - Ying Yu
- Department of Pharmaceutical Sciences, Department of Anatomy and Neurobiology, Drug Discovery Center, Neuroscience Institute, The University of Tennessee Health Science Center, Memphis, TN 38163, USA.
| |
Collapse
|
19
|
Maines LW, Keller SN, Smith RA, Schrecengost RS, Smith CD. Opaganib Downregulates N-Myc Expression and Suppresses In Vitro and In Vivo Growth of Neuroblastoma Cells. Cancers (Basel) 2024; 16:1779. [PMID: 38730731 PMCID: PMC11082966 DOI: 10.3390/cancers16091779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 04/25/2024] [Accepted: 04/29/2024] [Indexed: 05/13/2024] Open
Abstract
Neuroblastoma (NB), the most common cancer in infants and the most common solid tumor outside the brain in children, grows aggressively and responds poorly to current therapies. We have identified a new drug (opaganib, also known as ABC294640) that modulates sphingolipid metabolism by inhibiting the synthesis of sphingosine 1-phosphate (S1P) by sphingosine kinase-2 and elevating dihydroceramides by inhibition of dihydroceramide desaturase. The present studies sought to determine the potential therapeutic activity of opaganib in cell culture and xenograft models of NB. Cytotoxicity assays demonstrated that NB cells, including cells with amplified MYCN, are effectively killed by opaganib concentrations well below those that accumulate in tumors in vivo. Opaganib was shown to cause dose-dependent decreases in S1P and hexosylceramide levels in Neuro-2a cells, while concurrently elevating levels of dihydroceramides. As with other tumor cells, opaganib reduced c-Myc and Mcl-1 protein levels in Neuro-2a cells, and also reduced the expression of the N-Myc protein. The in vivo growth of xenografts of human SK-N-(BE)2 cells with amplified MYCN was suppressed by oral administration of opaganib at doses that are well tolerated in mice. Combining opaganib with temozolomide plus irinotecan, considered the backbone for therapy of relapsed or refractory NB, resulted in increased antitumor activity in vivo compared with temozolomide plus irinotecan or opaganib alone. Mice did not lose additional weight when opaganib was combined with temozolomide plus irinotecan, indicating that the combination is well tolerated. Opaganib has additive antitumor activity toward Neuro-2a tumors when combined with the checkpoint inhibitor anti-CTLA-4 antibody; however, the combination of opaganib with anti-PD-1 or anti-PD-L1 antibodies did not provide increased antitumor activity over that seen with opaganib alone. Overall, the data demonstrate that opaganib modulates sphingolipid metabolism and intracellular signaling in NB cells and inhibits NB tumor growth alone and in combination with other anticancer drugs. Amplified MYCN does not confer resistance to opaganib, and, in fact, the drug attenuates the expression of both c-Myc and N-Myc. The safety of opaganib has been established in clinical trials with adults with advanced cancer or severe COVID-19, and so opaganib has excellent potential for treating patients with NB, particularly in combination with temozolomide and irinotecan or anti-CTLA-4 antibody.
Collapse
Affiliation(s)
| | | | | | | | - Charles D. Smith
- Apogee Biotechnology Corporation, 1214 Research Blvd, Suite 2015, Hummelstown, PA 17036, USA
| |
Collapse
|
20
|
Wang T, Liu L, Fang J, Jin H, Natarajan S, Sheppard H, Lu M, Turner G, Confer T, Johnson M, Steinberg J, Ha L, Yadak N, Jain R, Picketts DJ, Ma X, Murphy A, Davidoff AM, Glazer ES, Easton J, Chen X, Wang R, Yang J. Conditional c-MYC activation in catecholaminergic cells drives distinct neuroendocrine tumors: neuroblastoma vs somatostatinoma. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.12.584622. [PMID: 38559042 PMCID: PMC10980015 DOI: 10.1101/2024.03.12.584622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
The MYC proto-oncogenes (c-MYC, MYCN , MYCL ) are among the most deregulated oncogenic drivers in human malignancies including high-risk neuroblastoma, 50% of which are MYCN -amplified. Genetically engineered mouse models (GEMMs) based on the MYCN transgene have greatly expanded the understanding of neuroblastoma biology and are powerful tools for testing new therapies. However, a lack of c-MYC-driven GEMMs has hampered the ability to better understand mechanisms of neuroblastoma oncogenesis and therapy development given that c-MYC is also an important driver of many high-risk neuroblastomas. In this study, we report two transgenic murine neuroendocrine models driven by conditional c-MYC induction in tyrosine hydroxylase (Th) and dopamine β-hydroxylase (Dbh)-expressing cells. c-MYC induction in Th-expressing cells leads to a preponderance of Pdx1 + somatostatinomas, a type of pancreatic neuroendocrine tumor (PNET), resembling human somatostatinoma with highly expressed gene signatures of δ cells and potassium channels. In contrast, c-MYC induction in Dbh-expressing cells leads to onset of neuroblastomas, showing a better transforming capacity than MYCN in a comparable C57BL/6 genetic background. The c-MYC murine neuroblastoma tumors recapitulate the pathologic and genetic features of human neuroblastoma, express GD2, and respond to anti-GD2 immunotherapy. This model also responds to DFMO, an FDA-approved inhibitor targeting ODC1, which is a known MYC transcriptional target. Thus, establishing c-MYC-overexpressing GEMMs resulted in different but related tumor types depending on the targeted cell and provide useful tools for testing immunotherapies and targeted therapies for these diseases.
Collapse
|
21
|
Yang J. Approval of DFMO for high-risk neuroblastoma patients demonstrates a step of success to target MYC pathway. Br J Cancer 2024; 130:513-516. [PMID: 38316994 PMCID: PMC10876925 DOI: 10.1038/s41416-024-02599-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 01/22/2024] [Accepted: 01/24/2024] [Indexed: 02/07/2024] Open
Abstract
The "undruggable" MYC oncoproteins are deregulated in 70% human cancers. The approval of DFMO, an irreversible inhibitor of ornithine oxidase (ODC1) that is a direct transcriptional target of MYC, demonstrates that patients can benefit from targeting MYC activity via an indirect approach. However, the mechanism of action of DFMO needs further studies to understand how it works in post-immunotherapy neuroblastomas. Efforts to develop a more potent and safer drug to block MYC function will continue despite challenges.
Collapse
Affiliation(s)
- Jun Yang
- Department of Surgery, St Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN, 38105, USA.
- St Jude Graduate School of Biomedical Sciences, St Jude Children's Research Hospital, Memphis, TN, 38105, USA.
- Department of Pathology and Laboratory Medicine, College of Medicine, The University of Tennessee Health Science Center, 930 Madison Ave, Suite 500, Memphis, TN, 38163, USA.
- College of Graduate Health Sciences, University of Tennessee Health Science Center, Memphis, TN, 38163, USA.
| |
Collapse
|
22
|
Hogarty MD, Ziegler DS, Franson A, Chi YY, Tsao-Wei D, Liu K, Vemu R, Gerner EW, Bruckheimer E, Shamirian A, Hasenauer B, Balis FM, Groshen S, Norris MD, Haber M, Park JR, Matthay KK, Marachelian A. Phase 1 study of high-dose DFMO, celecoxib, cyclophosphamide and topotecan for patients with relapsed neuroblastoma: a New Approaches to Neuroblastoma Therapy trial. Br J Cancer 2024; 130:788-797. [PMID: 38200233 PMCID: PMC10912730 DOI: 10.1038/s41416-023-02525-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 11/22/2023] [Accepted: 11/24/2023] [Indexed: 01/12/2024] Open
Abstract
BACKGROUND MYC genes regulate ornithine decarboxylase (Odc) to increase intratumoral polyamines. We conducted a Phase I trial [NCT02030964] to determine the maximum tolerated dose (MTD) of DFMO, an Odc inhibitor, with celecoxib, cyclophosphamide and topotecan. METHODS Patients 2-30 years of age with relapsed/refractory high-risk neuroblastoma received oral DFMO at doses up to 9000 mg/m2/day, with celecoxib (500 mg/m2 daily), cyclophosphamide (250 mg/m2/day) and topotecan (0.75 mg/m2/day) IV for 5 days, for up to one year with G-CSF support. RESULTS Twenty-four patients (median age, 6.8 years) received 136 courses. Slow platelet recovery with 21-day courses (dose-levels 1 and 2) led to subsequent dose-levels using 28-day courses (dose-levels 2a-4a). There were three course-1 dose-limiting toxicities (DLTs; hematologic; anorexia; transaminases), and 23 serious adverse events (78% fever-related). Five patients (21%) completed 1-year of therapy. Nine stopped for PD, 2 for DLT, 8 by choice. Best overall response included two PR and four MR. Median time-to-progression was 19.8 months, and 3 patients remained progression-free at >4 years without receiving additional therapy. The MTD of DFMO with this regimen was 6750 mg/m2/day. CONCLUSION High-dose DFMO is tolerable when added to chemotherapy in heavily pre-treated patients. A randomized Phase 2 trial of DFMO added to chemoimmunotherapy is ongoing [NCT03794349].
Collapse
Affiliation(s)
- Michael D Hogarty
- Division of Oncology, The Children's Hospital of Philadelphia, Philadelphia, PA, USA.
- Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA.
| | - David S Ziegler
- Children's Cancer Institute, Lowy Cancer Research Centre, Randwick, NSW, Australia
- School of Women's and Children's Health, University of New South Wales, Sydney, Australia
- Kids Cancer Centre, Sydney Children's Hospital, Randwick, NSW, Australia
| | - Andrea Franson
- Department of Pediatrics, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Yueh-Yun Chi
- Children's Hospital Los Angeles, University of Southern California Keck School of Medicine, Los Angeles, CA, USA
| | - Denice Tsao-Wei
- Department of Preventive Medicine, University of Southern California, Los Angeles, CA, USA
| | - Kangning Liu
- Division of Oncology, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Rohan Vemu
- Division of Oncology, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | | | | | - Anasheh Shamirian
- Children's Hospital Los Angeles, University of Southern California Keck School of Medicine, Los Angeles, CA, USA
| | - Beth Hasenauer
- Children's Hospital Los Angeles, University of Southern California Keck School of Medicine, Los Angeles, CA, USA
| | - Frank M Balis
- Division of Oncology, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Susan Groshen
- Children's Hospital Los Angeles, University of Southern California Keck School of Medicine, Los Angeles, CA, USA
| | - Murray D Norris
- Children's Cancer Institute, Lowy Cancer Research Centre, Randwick, NSW, Australia
| | - Michelle Haber
- Children's Cancer Institute, Lowy Cancer Research Centre, Randwick, NSW, Australia
| | - Julie R Park
- St. Jude Children's Research Hospital, University of Tennessee, Memphis, TN, USA
| | - Katherine K Matthay
- UCSF Benioff Children's Hospital, UCSF School of Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Araz Marachelian
- Children's Hospital Los Angeles, University of Southern California Keck School of Medicine, Los Angeles, CA, USA
| |
Collapse
|
23
|
Cherkaoui S, Yang L, McBride M, Turn CS, Lu W, Eigenmann C, Allen GE, Panasenko OO, Zhang L, Vu A, Liu K, Li Y, Gandhi OH, Surrey L, Wierer M, White E, Rabinowitz JD, Hogarty MD, Morscher RJ. Reprogramming neuroblastoma by diet-enhanced polyamine depletion. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.07.573662. [PMID: 38260457 PMCID: PMC10802427 DOI: 10.1101/2024.01.07.573662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Neuroblastoma is a highly lethal childhood tumor derived from differentiation-arrested neural crest cells1,2. Like all cancers, its growth is fueled by metabolites obtained from either circulation or local biosynthesis3,4. Neuroblastomas depend on local polyamine biosynthesis, with the inhibitor difluoromethylornithine showing clinical activity5. Here we show that such inhibition can be augmented by dietary restriction of upstream amino acid substrates, leading to disruption of oncogenic protein translation, tumor differentiation, and profound survival gains in the TH-MYCN mouse model. Specifically, an arginine/proline-free diet decreases the polyamine precursor ornithine and augments tumor polyamine depletion by difluoromethylornithine. This polyamine depletion causes ribosome stalling, unexpectedly specifically at adenosine-ending codons. Such codons are selectively enriched in cell cycle genes and low in neuronal differentiation genes. Thus, impaired translation of these codons, induced by the diet-drug combination, favors a pro-differentiation proteome. These results suggest that the genes of specific cellular programs have evolved hallmark codon usage preferences that enable coherent translational rewiring in response to metabolic stresses, and that this process can be targeted to activate differentiation of pediatric cancers.
Collapse
Affiliation(s)
- Sarah Cherkaoui
- Pediatric Cancer Metabolism Laboratory, Children’s Research Center, University of Zurich, 8032 Zurich, Switzerland
- Division of Oncology, University Children’s Hospital Zurich and Children’s Research Center, University of Zurich, 8032 Zurich, Switzerland
| | - Lifeng Yang
- Department of Chemistry, Princeton University, Princeton, NJ 08544, USA
- Ludwig Institute for Cancer Research, Princeton Branch, Princeton University, Princeton, NJ 08544, USA
| | - Matthew McBride
- Department of Chemistry, Princeton University, Princeton, NJ 08544, USA
- Ludwig Institute for Cancer Research, Princeton Branch, Princeton University, Princeton, NJ 08544, USA
| | - Christina S. Turn
- Division of Oncology and Department of Pediatrics, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Wenyun Lu
- Department of Chemistry, Princeton University, Princeton, NJ 08544, USA
- Ludwig Institute for Cancer Research, Princeton Branch, Princeton University, Princeton, NJ 08544, USA
| | - Caroline Eigenmann
- Pediatric Cancer Metabolism Laboratory, Children’s Research Center, University of Zurich, 8032 Zurich, Switzerland
- Division of Oncology, University Children’s Hospital Zurich and Children’s Research Center, University of Zurich, 8032 Zurich, Switzerland
| | - George E. Allen
- Bioinformatics Support Platform, Faculty of Medicine, University of Geneva 1211, Switzerland
- Department of Microbiology and Molecular Medicine, Institute of Genetics and Genomics Geneva, Faculty of Medicine, University of Geneva, 1211 Geneva, Switzerland
| | - Olesya O. Panasenko
- Department of Microbiology and Molecular Medicine, Institute of Genetics and Genomics Geneva, Faculty of Medicine, University of Geneva, 1211 Geneva, Switzerland
- BioCode: RNA to proteins (R2P) Platform, University of Geneva, 1211 Geneva, Switzerland
| | - Lu Zhang
- Ludwig Institute for Cancer Research, Princeton Branch, Princeton University, Princeton, NJ 08544, USA
- Department of Molecular Biology and Biochemistry, Rutgers University, Piscataway, NJ 08901, USA
- Department of Molecular Biology and Biochemistry, Rutgers Cancer Institute of New Jersey, New Brunswick, NJ 08901, USA
| | - Annette Vu
- Division of Oncology and Department of Pediatrics, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Kangning Liu
- Division of Oncology and Department of Pediatrics, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Yimei Li
- Division of Oncology and Department of Pediatrics, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Om H. Gandhi
- Division of Oncology and Department of Pediatrics, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Lea Surrey
- Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Pathology and Laboratory Medicine, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Michael Wierer
- Proteomics Research Infrastructure, Panum Institute, Blegdamsvej 3B, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Eileen White
- Ludwig Institute for Cancer Research, Princeton Branch, Princeton University, Princeton, NJ 08544, USA
- Department of Molecular Biology and Biochemistry, Rutgers University, Piscataway, NJ 08901, USA
- Department of Molecular Biology and Biochemistry, Rutgers Cancer Institute of New Jersey, New Brunswick, NJ 08901, USA
| | - Joshua D. Rabinowitz
- Department of Chemistry, Princeton University, Princeton, NJ 08544, USA
- Ludwig Institute for Cancer Research, Princeton Branch, Princeton University, Princeton, NJ 08544, USA
| | - Michael D. Hogarty
- Division of Oncology and Department of Pediatrics, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Raphael J. Morscher
- Pediatric Cancer Metabolism Laboratory, Children’s Research Center, University of Zurich, 8032 Zurich, Switzerland
- Division of Oncology, University Children’s Hospital Zurich and Children’s Research Center, University of Zurich, 8032 Zurich, Switzerland
- Division of Human Genetics, Medical University Innsbruck, Peter-Mayr-Str. 1, 6020 Innsbruck, Austria
| |
Collapse
|