1
|
Tolaney SM, Cardillo TM, Chou CC, Dornan C, Faris M. The Mode of Action and Clinical Outcomes of Sacituzumab Govitecan in Solid Tumors. Clin Cancer Res 2025; 31:1390-1399. [PMID: 39903492 PMCID: PMC11995006 DOI: 10.1158/1078-0432.ccr-24-1525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 11/19/2024] [Accepted: 01/02/2025] [Indexed: 02/06/2025]
Abstract
Sacituzumab govitecan (SG), a trophoblast cell-surface antigen-2 (Trop-2)-directed antibody-drug conjugate, is currently approved to treat metastatic triple-negative breast cancer and HR+/HER2- breast cancer and is under clinical investigation for a range of other tumor types. This review describes its mode of action, development, and clinical outcomes. SG is composed of SN-38 (a topoisomerase I inhibitor derived from irinotecan) covalently linked to an anti-Trop-2 mAb (sacituzumab; hRS7) via a hydrolyzable CL2A linker. SN-38 was chosen due to its potent antitumor activity; CL2A occupies the most effective position on SN-38 for maintaining stability during transport, with pH-sensitive payload release in the tumor, and the antigen target (Trop-2) is highly expressed on many solid tumors. SG has an ∼8:1 drug-to-antibody ratio and delivers therapeutic SN-38 concentration to Trop-2+-expressing tumor cells via rapid internalization and efficient payload release. Free SN-38 can subsequently enter the tumor microenvironment and kill adjacent tumor cells with or without Trop-2 expression (bystander effect). SN-38 induces DNA breakage and inhibits nucleic acid synthesis via a drug-induced topoisomerase 1:DNA complex that interferes with cell proliferation, causing apoptosis. Dose-finding studies support SG 10 mg/kg on days 1 and 8 of a 21-day cycle as the monotherapy dose for clinical use; this was determined by therapeutic index improvement based on efficacy and safety. Payload-linker dynamics and SG potency ensure continued tissue penetration. Neutropenia and diarrhea are the most common grade ≥3 treatment-emergent adverse events with SG, but they are manageable. The efficacy of SG has been demonstrated across a broad spectrum of solid tumors.
Collapse
Affiliation(s)
- Sara M. Tolaney
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | | | | | | | - Mary Faris
- Gilead Sciences, Inc., Foster City, California
| |
Collapse
|
2
|
Li N, Yang L, Zhao Z, Du T, Liang G, Li N, Tang J. Antibody-drug conjugates in breast cancer: current evidence and future directions. Exp Hematol Oncol 2025; 14:41. [PMID: 40114224 PMCID: PMC11924693 DOI: 10.1186/s40164-025-00632-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Accepted: 03/04/2025] [Indexed: 03/22/2025] Open
Abstract
Antibody-drug conjugates (ADCs) are a rapidly evolving class of antitumor drugs and have already revolutionized the treatment strategy of many hematologic and solid cancers. So far, trastuzumab emtansine (T-DM1), trastuzumab deruxtecan (T-DXd), sacituzumab govitecan (SG) and datopotamab deruxtecan (Dato-DXd) are the four ADCs that have been approved by US food and drug administration (FDA) in treatment of breast cancer, and SKB264 has been approved by Chinese national medical products administration (NMPA). Many ADCs for treatment of breast cancer are currently being tested in late-phase clinical trials, with several encouraging results achieved recently. However, major issues arise during the use of ADCs, including emergence of acquired resistance, occurrence of treated-related toxicities, and identification of biomarkers of response and resistance. ADCs are being increasingly tested in combination with other agents, and novel next-generation ADC development is progressing rapidly. A better understanding of the design and development of ADCs will promote ADC development for cancer treatment. In this review, we aim to provide a broad overview of the design and the recent advances of ADCs in breast cancer. We also propose several notable future directions of ADCs in treatment of breast cancer.
Collapse
Affiliation(s)
- Ning Li
- Department of Breast Oncology, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Lu Yang
- Department of Radiotherapy, Cancer Center, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, 510080, China
- Shantou University Medical College, Shantou University, Shantou, 515000, China
| | - Zixuan Zhao
- Department of Breast Oncology, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Tian Du
- Department of Breast Oncology, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Gehao Liang
- Department of Breast Oncology, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Na Li
- Department of Breast Oncology, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China.
| | - Jun Tang
- Department of Breast Oncology, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China.
| |
Collapse
|
3
|
Meric-Bernstam F, Yuca E, Evans KW, Zhao M, Maejima T, Karibe T, Raso MG, Tang X, Zheng X, Rizvi YQ, Akcakanat A, Scott SM, Wang B, Byers LA, Tripathy D, Okajima D, Damodaran S. Antitumor Activity and Biomarker Analysis for TROP2 Antibody-Drug Conjugate Datopotamab Deruxtecan in Patient-Derived Breast Cancer Xenograft Models. Clin Cancer Res 2025; 31:573-587. [PMID: 39585341 PMCID: PMC11788653 DOI: 10.1158/1078-0432.ccr-24-1948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 09/13/2024] [Accepted: 11/21/2024] [Indexed: 11/26/2024]
Abstract
PURPOSE Datopotamab deruxtecan (Dato-DXd) is a humanized anti-trophoblast cell-surface antigen-2 (TROP2) IgG1 mAb linked to a potent topoisomerase I inhibitor payload (DXd). Dato-DXd has already shown antitumor activity in breast cancer; however, the determinants of response, including the importance of TROP2 expression, remain unclear. We tested the activity of Dato-DXd in a panel of breast cancer patient-derived xenografts (BCX) varying in TROP2 expression. EXPERIMENTAL DESIGN The antitumor activity of Dato-DXd and isotype-control-DXd (IgG-DXd) was assessed against 11 BCXs varying in TROP2 expression, 10 representing tumors postneoadjuvant chemotherapy. Pharmacodynamic effects were assessed at 24 and 72 hours. The effects of TROP2 expression on Dato-DXd activity was assessed in vitro and in vivo using viral overexpression in BCX-derived cell lines. RESULTS Models differed in their sensitivity to both Dato-DXd and IgG-DXd. Dato-DXd (10 mg/kg) led to objective response in 4 (36%) models and statistically significant prolongation of event-free survival in 8 (73%) models, whereas IgG-DXd (10 mg/kg) led to response in 1 (9%) and prolonged event-free survival in 3 (27%) models. TROP2 RNA and protein were significantly higher in Dato-DXd-sensitive models. In isogenic cell lines derived from Dato-DXd-resistant BCXs, overexpression of TROP2 conferred Dato-DXd antitumor activity in vitro and in vivo. Dato-DXd increased γH2AX and phospho-KAP1 in the two Dato-DXd-sensitive BCXs but not in a Dato-DXd-resistant BCX. In Dato-DXd-sensitive models, antitumor activity was enhanced in combination with a PARP inhibitor, olaparib. CONCLUSIONS Dato-DXd is active in breast cancer models. Dato-DXd has TROP2-dependent and -independent mediators of activity; however, high TROP2 expression enhances Dato-DXd antitumor activity.
Collapse
MESH Headings
- Humans
- Female
- Breast Neoplasms/drug therapy
- Breast Neoplasms/pathology
- Breast Neoplasms/metabolism
- Breast Neoplasms/genetics
- Xenograft Model Antitumor Assays
- Animals
- Immunoconjugates/pharmacology
- Immunoconjugates/administration & dosage
- Cell Adhesion Molecules/metabolism
- Cell Adhesion Molecules/genetics
- Cell Adhesion Molecules/immunology
- Antigens, Neoplasm/metabolism
- Antigens, Neoplasm/genetics
- Antigens, Neoplasm/immunology
- Mice
- Biomarkers, Tumor/metabolism
- Cell Line, Tumor
- Camptothecin/analogs & derivatives
- Camptothecin/pharmacology
- Camptothecin/administration & dosage
- Antibodies, Monoclonal, Humanized/pharmacology
- Antibodies, Monoclonal, Humanized/administration & dosage
- Disease Models, Animal
Collapse
Affiliation(s)
- Funda Meric-Bernstam
- Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Erkan Yuca
- Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Kurt W. Evans
- Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Ming Zhao
- Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | | | | | - Maria Gabriela Raso
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | | | - Xiaofeng Zheng
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Yasmeen Qamar Rizvi
- Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Argun Akcakanat
- Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Stephen M. Scott
- Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Bailiang Wang
- Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Lauren A. Byers
- Department of Thoracic Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Debu Tripathy
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | | | - Senthil Damodaran
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| |
Collapse
|
4
|
Jiang K, Wang S. Advances in antibody-drug conjugates in the treatment of advanced triple-negative breast cancer: a narrative review. TRANSLATIONAL BREAST CANCER RESEARCH : A JOURNAL FOCUSING ON TRANSLATIONAL RESEARCH IN BREAST CANCER 2025; 6:9. [PMID: 39980806 PMCID: PMC11836745 DOI: 10.21037/tbcr-24-38] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 12/30/2024] [Indexed: 02/22/2025]
Abstract
Background and Objective Triple-negative breast cancer (TNBC) is more aggressive when compared with other breast cancer subtypes, and advanced TNBC (aTNBC) has always been a challenge for clinical treatment. In recent years, significant progress has been made in the research of antibody-drug conjugates (ADCs), especially targeting trophoblast cell-surface antigen 2 (TROP2), as an effective regimen to enhance the potential survival benefit and quality of life of relevant patients. The objective of this narrative review is to provide a comprehensive knowledge on latest progress of ADCs in the treatment of aTNBC. Furthermore, the clinical significance and future research directions for ADCs are also discussed. Methods As of December 2023, literature spanning the past decade was comprehensively searched and analyzed across PubMed, Wanfang Data, ClinicalTrials.gov, and relevant academic conferences, to identify the latest published literature or ongoing trials on ADCs for aTNBC. The selected literature primarily focused on the drug structural profile, pharmacological mechanism, important trials targeting different antigens, and other exploratory investigations. Key Content and Findings The advent of precision therapy has been facilitated by the new generation ADCs, which have demonstrated the capacity to prolong survival in patients with refractory aTNBC, and promote the research on molecular biological characteristics of aTNBC. Meanwhile, several clinical issues on treatment are emerging, including a detailed understanding of the clinical profile differences among specific ADCs, identification of the potential indications for ADCs, and management strategies for the adverse effects related to ADCs. Additionally, it is essential to clarify the clinical significance of the expression level of the target antigen for ADCs, to comprehend resistance mechanisms to ADCs, and to determine the optimal sequence of treatments between different ADCs. Furthermore, there is a need to investigate the potential of combination immunotherapy with ADCs. Up to date, the preliminary investigations on the aforementioned issues have been initiated, and further research will facilitate the enhancement of ADCs clinical utilization. Conclusions The use of ADCs has been recommended by various clinical guidelines, and significantly altering the landscape of treatment for aTNBC. Nevertheless, further investigation are required to determine the most effective use of ADCs.
Collapse
Affiliation(s)
- Kuikui Jiang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Shusen Wang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| |
Collapse
|
5
|
Drew Y, Zenke FT, Curtin NJ. DNA damage response inhibitors in cancer therapy: lessons from the past, current status and future implications. Nat Rev Drug Discov 2025; 24:19-39. [PMID: 39533099 DOI: 10.1038/s41573-024-01060-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/17/2024] [Indexed: 11/16/2024]
Abstract
The DNA damage response (DDR) is a network of proteins that coordinate DNA repair and cell-cycle checkpoints to prevent damage being transmitted to daughter cells. DDR defects lead to genomic instability, which enables tumour development, but they also create vulnerabilities that can be used for cancer therapy. Historically, this vulnerability has been taken advantage of using DNA-damaging cytotoxic drugs and radiotherapy, which are more toxic to tumour cells than to normal tissues. However, the discovery of the unique sensitivity of tumours defective in the homologous recombination DNA repair pathway to PARP inhibition led to the approval of six PARP inhibitors worldwide and to a focus on making use of DDR defects through the development of other DDR-targeting drugs. Here, we analyse the lessons learnt from PARP inhibitor development and how these may be applied to new targets to maximize success. We explore why, despite so much research, no other DDR inhibitor class has been approved, and only a handful have advanced to later-stage clinical trials. We discuss why more reliable predictive biomarkers are needed, explore study design from past and current trials, and suggest alternative models for monotherapy and combination studies. Targeting multiple DDR pathways simultaneously and potential combinations with anti-angiogenic agents or immune checkpoint inhibitors are also discussed.
Collapse
Affiliation(s)
- Yvette Drew
- BC Cancer Vancouver Centre and Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Frank T Zenke
- Research Unit Oncology, EMD Serono, Billerica, MA, USA
| | - Nicola J Curtin
- Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK.
| |
Collapse
|
6
|
Sun L, Jia X, Wang K, Li M. Unveiling the future of breast cancer therapy: Cutting-edge antibody-drug conjugate strategies and clinical outcomes. Breast 2024; 78:103830. [PMID: 39500221 PMCID: PMC11570738 DOI: 10.1016/j.breast.2024.103830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 10/23/2024] [Accepted: 10/28/2024] [Indexed: 11/21/2024] Open
Abstract
Breast cancer has become the most prevalent malignant tumor worldwide and remains one of the leading causes of cancer-related mortality among women globally. The prognosis for patients with metastatic breast cancer remains poor, necessitating the exploration of novel therapeutic strategies to improve survival rates. In the era of precision medicine, antibody-drug conjugates (ADCs) have gained significant attention as a targeted therapeutic strategy in breast cancer treatment. ADCs, a relatively new treatment for breast cancer, deliver cytotoxic drugs (payloads), directly into the tumor space, turning chemotherapy into a targeted agent, which enables patients to experience significant improvements with manageable drug toxicity. For the treatment of breast cancer, there are three ADCs approved for breast cancer treatment: Trastuzumab emtansine (T-DM1), Trastuzumab Deruxtecan (T-Dxd) targeting HER-2, and Sacituzumab Govitecan (SG) targeting Trop-2. Recent clinical studies have demonstrated that the benefits of ADC therapies extend beyond HER2-positive breast cancer toinclude hormone receptor (HR)-positive breast cancer, triple-negative breast cancer (TNBC), and HER2-low expressing breast cancer. Notably, the DESTINY-Breast series of studies, particularly focusing on T-Dxd, encompass neoadjuvant, adjuvant, and multiple lines of therapy for advanced breast cancer. This marks the advent of a comprehensive ADC era in breast cancer treatment. This review summarizes the efficacy and adverse effects of ADC therapies that have completed or are currently undergoing phase I-III clinical trials. Additionally, it analyzes potential combination strategies to overcome ADC resistance, aiming to provide clinicians with a comprehensive clinical guide to the use of ADCs in breast cancer treatment.
Collapse
Affiliation(s)
- Lu Sun
- Department of Oncology, The Second Hospital of Dalian Medical University, Dalian, 116023, China.
| | - Xiaomeng Jia
- Department of Oncology, The Second Hospital of Dalian Medical University, Dalian, 116023, China.
| | - Kainan Wang
- Department of Oncology, The Second Hospital of Dalian Medical University, Dalian, 116023, China.
| | - Man Li
- Department of Oncology, The Second Hospital of Dalian Medical University, Dalian, 116023, China.
| |
Collapse
|
7
|
Villacampa G, Cresta Morgado P, Carità L, Navarro V, Pascual T, Dienstmann R. Safety and efficacy of antibody-drug conjugates plus immunotherapy in solid tumours: A systematic review and meta-analysis. Cancer Treat Rev 2024; 131:102847. [PMID: 39454548 DOI: 10.1016/j.ctrv.2024.102847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 10/16/2024] [Accepted: 10/16/2024] [Indexed: 10/28/2024]
Abstract
BACKGROUND Combining antibody-drug conjugate (ADCs) with immune checkpoint inhibitors (ICIs) is emerging as a promising treatment option to increase efficacy outcomes. However, concerns arise regarding the safety of these combinations, as some toxicities may overlap. Currently, there is still limited information about the safety profiles of this strategy. METHODS A systematic review and meta-analysis was conducted to identify clinical trials investigating FDA-approved ADCs in combination with ICI drugs in the metastatic setting across all solid tumors. The primary endpoint of this study was the percentage of adverse events (AEs) of any grade and grade ≥ 3. Secondary endpoints include the percentage of patients with AEs leading to death, treatment discontinuation, proportion of complete responses (CR) and overall response rate (ORR). A parallel search was conducted to quantify the safety profile of ADCs and ICIs in monotherapy. Random effects models were used to estimate pooled outcomes. RESULTS Sixteen trials involving 1,133 patients treated with ADC plus ICI met the inclusion criteria with six different ADCs evaluated. Overall, 55.3 % of patients developed grade ≥ 3 AEs, 30.0 % of patients had treatment discontinuation, and 3.0 % experienced AEs leading to death. When compared to trials evaluating ADC or ICI as monotherapy, the combination results in similar rates of the most common AEs. However, it increases the risk of specific toxicities, such as ILD/pneumonitis (15.0 % with T-DXd plus ICI vs. 11.5 % with T-DXd alone). The pooled ORR was 48.8 % (95 %CI 39.4 % - 58.4 %) and the CR rate was 9.0 % (95 %CI 5.5 - 14.5). PD-L1-positive tumors showed numerically better efficacy outcomes. CONCLUSIONS This meta-analysis shows that the safety profile of the ADC plus ICI is comparable to that of ADC monotherapy. However, it increases the risk of certain toxicities of special interest, such as ILD/pneumonitis, highlighting the need for careful monitoring.
Collapse
Affiliation(s)
- Guillermo Villacampa
- Statistics Unit, Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain; SOLTI Cancer Research Group, Barcelona, Spain.
| | - Pablo Cresta Morgado
- Prostate Cancer Translational Research Group, VHIO, Barcelona, Spain; Oncology Data Science, VHIO, Barcelona, Spain
| | - Lorenzo Carità
- Statistics Unit, Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain
| | - Victor Navarro
- Statistics Unit, Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain
| | - Tomas Pascual
- SOLTI Cancer Research Group, Barcelona, Spain; Translational Genomics and Targeted Therapies in Solid Tumors, August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Barcelona, Spain; Medical Oncology Department, Hospital Clinic of Barcelona, Barcelona, Spain
| | - Rodrigo Dienstmann
- Oncology Data Science, VHIO, Barcelona, Spain; University of Vic - Central University of Catalonia, Vic, Spain
| |
Collapse
|
8
|
Gaudio G, Martino E, Pellizzari G, Cavallone M, Castellano G, Omar A, Katselashvili L, Trapani D, Curigliano G. Developing combination therapies with biologics in triple-negative breast cancer. Expert Opin Biol Ther 2024; 24:1075-1094. [PMID: 39360776 DOI: 10.1080/14712598.2024.2408756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 09/22/2024] [Indexed: 10/11/2024]
Abstract
INTRODUCTION Novel compounds have entered the triple-negative breast cancer (TNBC) treatment algorithm, namely immune checkpoints inhibitors (ICIs), PARP inhibitors and antibody-drug conjugates (ADCs). The optimization of treatment efficacy can be enhanced with the use of combination treatments, and the incorporation of novel compounds. In this review, we discuss the combination treatments under development for the treatment of TNBC. AREAS COVERED The development of new drugs occurring in recent years has boosted the research for novel combinations to target TNBC heterogeneity and improve outcomes. ICIs, ADCs, tyrosine kinase inhibitors (TKIs), and PARP inhibitors have emerged as leading players in this new landscape, while other compounds like novel intracellular pathways inhibitors or cancer vaccines are drawing more and more interest. The future of TNBC is outlined in combination approaches, and based on new cancer targets, including many chemotherapy-free treatments. EXPERT OPINION A large number of TNBC therapies have either proved clinically ineffective or weighted by unacceptable safety profiles. Others, however, have provided promising results and are currently in late-stage clinical trials, while a few have actually changed clinical practice in recent years. As novel, more and more selective drugs come up, combination strategies focusing the concept of synergy are fully warranted for the future.
Collapse
Affiliation(s)
- Gilda Gaudio
- Department of Radiological, Oncological and Pathological Science, Sapienza University of Rome, Rome, Italy
- Early Drug Development for Innovative Therapies, European Institute of Oncology IRCCS, Milan, Italy
| | - Enzo Martino
- Department of Radiological, Oncological and Pathological Science, Sapienza University of Rome, Rome, Italy
- Early Drug Development for Innovative Therapies, European Institute of Oncology IRCCS, Milan, Italy
| | - Gloria Pellizzari
- Early Drug Development for Innovative Therapies, European Institute of Oncology IRCCS, Milan, Italy
- Department of Oncology and Haemato-Oncology (DIPO), University of Milan, Milan, Italy
| | - Matteo Cavallone
- Early Drug Development for Innovative Therapies, European Institute of Oncology IRCCS, Milan, Italy
- Department of Oncology and Haemato-Oncology (DIPO), University of Milan, Milan, Italy
| | - Grazia Castellano
- Early Drug Development for Innovative Therapies, European Institute of Oncology IRCCS, Milan, Italy
- Department of Oncology and Haemato-Oncology (DIPO), University of Milan, Milan, Italy
| | - Abeid Omar
- Early Drug Development for Innovative Therapies, European Institute of Oncology IRCCS, Milan, Italy
- Department of Oncology and Nuclear Medicine, Kenyatta University Teaching Referral and Research Hospital, Nairobi, Kenya
| | - Lika Katselashvili
- Early Drug Development for Innovative Therapies, European Institute of Oncology IRCCS, Milan, Italy
- Department of Oncology, Caucasus Medical Centre, Tbilisi, Georgia
| | - Dario Trapani
- Early Drug Development for Innovative Therapies, European Institute of Oncology IRCCS, Milan, Italy
- Department of Oncology and Haemato-Oncology (DIPO), University of Milan, Milan, Italy
| | - Giuseppe Curigliano
- Early Drug Development for Innovative Therapies, European Institute of Oncology IRCCS, Milan, Italy
- Department of Oncology and Haemato-Oncology (DIPO), University of Milan, Milan, Italy
| |
Collapse
|
9
|
Kulkarni S, Gajjar K, Madhusudan S. Poly (ADP-ribose) polymerase inhibitor therapy and mechanisms of resistance in epithelial ovarian cancer. Front Oncol 2024; 14:1414112. [PMID: 39135999 PMCID: PMC11317305 DOI: 10.3389/fonc.2024.1414112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 07/15/2024] [Indexed: 08/15/2024] Open
Abstract
Advanced epithelial ovarian cancer is the commonest cause of gynaecological cancer deaths. First-line treatment for advanced disease includes a combination of platinum-taxane chemotherapy (post-operatively or peri-operatively) and maximal debulking surgery whenever feasible. Initial response rate to chemotherapy is high (up to 80%) but most patients will develop recurrence (approximately 70-90%) and succumb to the disease. Recently, poly-ADP-ribose polymerase (PARP) inhibition (by drugs such as Olaparib, Niraparib or Rucaparib) directed synthetic lethality approach in BRCA germline mutant or platinum sensitive disease has generated real hope for patients. PARP inhibitor (PARPi) maintenance therapy can prolong survival but therapeutic response is not sustained due to intrinsic or acquired secondary resistance to PARPi therapy. Reversion of BRCA1/2 mutation can lead to clinical PARPi resistance in BRCA-germline mutated ovarian cancer. However, in the more common platinum sensitive sporadic HGSOC, the clinical mechanisms of development of PARPi resistance remains to be defined. Here we provide a comprehensive review of the current status of PARPi and the mechanisms of resistance to therapy.
Collapse
Affiliation(s)
- Sanat Kulkarni
- Department of Medicine, Sandwell and West Birmingham NHS Trust, West Bromwich, United Kingdom
| | - Ketankumar Gajjar
- Department of Gynaecological Oncology, Nottingham University Hospitals, Nottingham, United Kingdom
| | - Srinivasan Madhusudan
- Nottingham Biodiscovery Institute, School of Medicine, University of Nottingham, Nottingham, United Kingdom
- Department of Oncology, Nottingham University Hospitals, Nottingham, United Kingdom
| |
Collapse
|
10
|
Bardia A, Sun S, Thimmiah N, Coates JT, Wu B, Abelman RO, Spring L, Moy B, Ryan P, Melkonyan MN, Partridge A, Juric D, Peppercorn J, Parsons H, Wander SA, Attaya V, Lormil B, Shellock M, Nagayama A, Bossuyt V, Isakoff SJ, Tolaney SM, Ellisen LW. Antibody-Drug Conjugate Sacituzumab Govitecan Enables a Sequential TOP1/PARP Inhibitor Therapy Strategy in Patients with Breast Cancer. Clin Cancer Res 2024; 30:2917-2924. [PMID: 38709212 PMCID: PMC11247314 DOI: 10.1158/1078-0432.ccr-24-0428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 04/17/2024] [Accepted: 05/02/2024] [Indexed: 05/07/2024]
Abstract
PURPOSE The antibody-drug conjugate (ADC) sacituzumab govitecan (SG) comprises the topoisomerase 1 (TOP1) inhibitor (TOP1i) SN-38, coupled to a monoclonal antibody targeting trophoblast cell surface antigen 2 (TROP-2). Poly(ADP-ribose) polymerase (PARP) inhibition may synergize with TOP1i and SG, but previous studies combining systemic PARP and TOP1 inhibitors failed due to dose-limiting myelosuppression. Here, we assess the proof-of-mechanism and clinical feasibility for SG and talazoparib (TZP) employing an innovative sequential dosing schedule. PATIENTS AND METHODS In vitro models tested pharmacodynamic endpoints, and in a phase 1b clinical trial (NCT04039230), 30 patients with metastatic triple-negative breast cancer (mTNBC) received SG and TZP in a concurrent (N = 7) or sequential (N = 23) schedule. Outcome measures included safety, tolerability, preliminary efficacy, and establishment of a recommended phase 2 dose. RESULTS We hypothesized that tumor-selective delivery of TOP1i via SG would reduce nontumor toxicity and create a temporal window, enabling sequential dosing of SG and PARP inhibition. In vitro, sequential SG followed by TZP delayed TOP1 cleavage complex clearance, increased DNA damage, and promoted apoptosis. In the clinical trial, sequential SG/TZP successfully met primary objectives and demonstrated median progression-free survival (PFS) of 7.6 months without dose-limiting toxicities (DLT), while concurrent dosing yielded 2.3 months PFS and multiple DLTs including severe myelosuppression. CONCLUSIONS While SG dosed concurrently with TZP is not tolerated clinically due to an insufficient therapeutic window, sequential dosing of SG followed by TZP proved a viable strategy. These findings support further clinical development of the combination and suggest that ADC-based therapy may facilitate novel, mechanism-based dosing strategies.
Collapse
Affiliation(s)
- Aditya Bardia
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, Massachusetts.
| | - Sheng Sun
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, Massachusetts.
| | - Nayana Thimmiah
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, Massachusetts.
| | - James T. Coates
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, Massachusetts.
| | - Bogang Wu
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, Massachusetts.
| | - Rachel O. Abelman
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, Massachusetts.
| | - Laura Spring
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, Massachusetts.
| | - Beverly Moy
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, Massachusetts.
| | - Phoebe Ryan
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, Massachusetts.
| | - Mark N. Melkonyan
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, Massachusetts.
| | - Ann Partridge
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts.
| | - Dejan Juric
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, Massachusetts.
| | - Jeffrey Peppercorn
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, Massachusetts.
| | - Heather Parsons
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts.
| | - Seth A. Wander
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, Massachusetts.
| | - Victoria Attaya
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts.
| | - Brenda Lormil
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, Massachusetts.
| | - Maria Shellock
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, Massachusetts.
| | - Aiko Nagayama
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, Massachusetts.
| | - Veerle Bossuyt
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, Massachusetts.
| | - Steven J. Isakoff
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, Massachusetts.
| | - Sara M. Tolaney
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts.
| | - Leif W. Ellisen
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, Massachusetts.
- Ludwig Center at Harvard, Boston, Massachusetts.
| |
Collapse
|
11
|
Pretelli G, Mati K, Motta L, Stathis A. Antibody-drug conjugates combinations in cancer treatment. EXPLORATION OF TARGETED ANTI-TUMOR THERAPY 2024; 5:714-741. [PMID: 38966169 PMCID: PMC11222717 DOI: 10.37349/etat.2024.00243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Accepted: 03/22/2024] [Indexed: 07/06/2024] Open
Abstract
Antibody-drug conjugates (ADCs) have emerged as a promising class of anticancer agents. Currently, the Food and Drug Administration has granted approval to 12 compounds, with 2 later undergoing withdrawal. Moreover, several other compounds are currently under clinical development at different stages. Despite substantial antitumoral activity observed among different tumor types, adverse events and the development of resistance represent significant challenges in their use. Over the last years, an increasing number of clinical trials have been testing these drugs in different combinations with other anticancer agents, such as traditional chemotherapy, immune checkpoint inhibitors, monoclonal antibodies, and small targeted agents, reporting promising results based on possible synergistic effects and a potential for improved treatment outcomes among different tumor types. Here we will review combinations of ADCs with other antitumor agents aiming at describing the current state of the art and future directions.
Collapse
Affiliation(s)
- Giulia Pretelli
- Department of Medical Oncology, Vall d’Hebron Institute of Oncology (VHIO), 08035 Barcelona, Spain
| | - Kleida Mati
- Oncology Unit, SALUS Hospital, 1000 Tirana, Albania
| | - Lucia Motta
- Medical Oncology Unit, Humanitas Istituto Clinico Catanese, 95123 Catania, Italy
- Department of Clinical and Experimental Medicine, University of Catania, 95123 Catania, Italy
| | - Anastasios Stathis
- Oncology Institute of Southern Switzerland, EOC, 6500 Bellinzona, Switzerland
- Faculty of Biomedical Sciences, Università della Svizzera Italiana (USI), 6900 Lugano, Switzerland
| |
Collapse
|
12
|
Fernandes I, Chehade R, MacKay H. PARP inhibitors in non-ovarian gynecologic cancers. Ther Adv Med Oncol 2024; 16:17588359241255174. [PMID: 38882441 PMCID: PMC11179472 DOI: 10.1177/17588359241255174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Accepted: 04/25/2024] [Indexed: 06/18/2024] Open
Abstract
Poly(ADP-ribose) polymerase (PARP) inhibitors (PARPis) have transformed the treatment of ovarian cancer, particularly benefiting patients whose tumors harbor genomic events that result in impaired homologous recombination (HR) repair. The use of PARPi over recent years has expanded to include subpopulations of patients with breast, pancreatic, and prostate cancers. Their potential to benefit patients with non-ovarian gynecologic cancers is being recognized. This review examines the underlying biological rationale for exploring PARPi in non-ovarian gynecologic cancers. We consider the clinical data and place this in the context of the current treatment landscape. We review the development of PARPi strategies for treating patients with endometrial, cervical, uterine leiomyosarcoma, and vulvar cancers. Furthermore, we discuss future directions and the importance of understanding HR deficiency in the context of each cancer type.
Collapse
Affiliation(s)
| | - Rania Chehade
- Sunnybrook Odette Cancer Centre, Toronto, ON, Canada
| | - Helen MacKay
- Sunnybrook Odette Cancer Centre, Sunnybrook Research Institute, 2075 Bayview Avenue, Toronto, ON M4N 3M5, Canada
| |
Collapse
|
13
|
Abbas N, Chehade L, Shamseddine A. Personalized treatment with PARP inhibitors in advanced urothelial carcinoma: a case report and literature review. Ther Adv Med Oncol 2024; 16:17588359241245283. [PMID: 38638285 PMCID: PMC11025443 DOI: 10.1177/17588359241245283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Accepted: 03/19/2024] [Indexed: 04/20/2024] Open
Abstract
Bladder cancer (BC) poses a significant health challenge, particularly in metastatic cases, where the prognosis is unfavorable and therapeutic options are limited. Poly ADP-ribose polymerase (PARP) inhibitors have gained approval for use in various cancer types, but their application in BC remains controversial, despite the notable prevalence of DNA damage response alterations in advanced or metastatic urothelial carcinomas. In this report, we describe a 66-year-old heavy-smoking female diagnosed with muscle-invasive BC. She underwent multiple rounds of chemotherapy and radiation, yet her disease remained poorly controlled, leading to metastasis in the left obturator internus muscle. Comprehensive genomic profiling through FoundationOne® Liquid CDx, examining a 324-gene panel using circulating tumor DNA from blood samples, revealed a pathogenic ATM gene alteration (p.Q654fs*10, c.1960delC), suggesting potential eligibility for PARP inhibitor therapy. Remarkably, the patient achieved a complete response to talazoparib, prompting an optimal investigation into BC candidates for this promising therapy.
Collapse
Affiliation(s)
- Noura Abbas
- Naef K. Basile Cancer Institute, American University of Beirut Medical Center, Beirut, Lebanon
| | - Laudy Chehade
- Naef K. Basile Cancer Institute, American University of Beirut Medical Center, Beirut, Lebanon
| | - Ali Shamseddine
- Naef K. Basile Cancer Institute, American University of Beirut Medical Center, P.O. Box 11-0236, Riad El-Solh, Beirut 1107 2020, Lebanon
| |
Collapse
|
14
|
Cardillo TM, Zalath MB, Arrojo R, Sharkey RM, Govindan SV, Chang CH, Goldenberg DM. Sacituzumab govitecan plus platinum-based chemotherapy mediates significant antitumor effects in triple-negative breast, urinary bladder, and small-cell lung carcinomas. Oncotarget 2024; 15:144-158. [PMID: 38386805 PMCID: PMC10883684 DOI: 10.18632/oncotarget.28559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 01/23/2024] [Indexed: 02/24/2024] Open
Abstract
Sacituzumab govitecan (SG) is an antibody-drug conjugate composed of an anti-Trop-2-directed antibody conjugated with the topoisomerase I inhibitory drug, SN-38, via a proprietary hydrolysable linker. SG has received United States Food and Drug Administration (FDA) approval to treat metastatic triple-negative breast cancer (TNBC), unresectable locally advanced or metastatic hormone receptor (HR)-positive, human epidermal growth factor receptor 2 (HER2)-negative breast cancer, and accelerated approval for metastatic urothelial cancer. We investigated the utility of combining SG with platinum-based chemotherapeutics in TNBC, urinary bladder carcinoma (UBC), and small-cell lung carcinoma (SCLC). SG plus carboplatin or cisplatin produced additive growth-inhibitory effects in vitro that trended towards synergy. Immunoblot analysis of cell lysates suggests perturbation of the cell-cycle and a shift towards pro-apoptotic signaling evidenced by an increased Bax to Bcl-2 ratio and down-regulation of two anti-apoptotic proteins, Mcl-1 and survivin. Significant antitumor effects were observed with SG plus carboplatin in mice bearing TNBC or SCLC tumors compared to all controls (P < 0.0062 and P < 0.0017, respectively) and with SG plus cisplatin in UBC and SCLC tumor-bearing animals (P < 0.0362 and P < 0.0001, respectively). These combinations were well tolerated by the animals. Combining SG with platinum-based chemotherapeutics demonstrates the benefit in these indications and warrants further clinical investigation.
Collapse
Affiliation(s)
- Thomas M. Cardillo
- Immunomedics, Inc., Morris Plains, NJ 07950 now acquired by Gilead Sciences, Inc., Foster City, CA 94404, USA
- Gilead Sciences, Inc., Foster City, CA 94404, USA
- At the time the work was conducted, all the authors were employees of Immunomedics, Inc
| | - Maria B. Zalath
- Immunomedics, Inc., Morris Plains, NJ 07950 now acquired by Gilead Sciences, Inc., Foster City, CA 94404, USA
- At the time the work was conducted, all the authors were employees of Immunomedics, Inc
| | - Roberto Arrojo
- Immunomedics, Inc., Morris Plains, NJ 07950 now acquired by Gilead Sciences, Inc., Foster City, CA 94404, USA
- At the time the work was conducted, all the authors were employees of Immunomedics, Inc
| | - Robert M. Sharkey
- Immunomedics, Inc., Morris Plains, NJ 07950 now acquired by Gilead Sciences, Inc., Foster City, CA 94404, USA
- At the time the work was conducted, all the authors were employees of Immunomedics, Inc
| | - Serengulam V. Govindan
- Immunomedics, Inc., Morris Plains, NJ 07950 now acquired by Gilead Sciences, Inc., Foster City, CA 94404, USA
- At the time the work was conducted, all the authors were employees of Immunomedics, Inc
| | - Chien-Hsing Chang
- Immunomedics, Inc., Morris Plains, NJ 07950 now acquired by Gilead Sciences, Inc., Foster City, CA 94404, USA
- At the time the work was conducted, all the authors were employees of Immunomedics, Inc
| | - David M. Goldenberg
- Immunomedics, Inc., Morris Plains, NJ 07950 now acquired by Gilead Sciences, Inc., Foster City, CA 94404, USA
- Current address: Center for Molecular Medicine and Immunology, Mendham, NJ 07945, USA; E-mail,
- At the time the work was conducted, this author was Chairman and Chief Scientific Officer of Immunomedics, Inc., which he founded in 1982
| |
Collapse
|
15
|
Nelson BE, Meric-Bernstam F. Leveraging TROP2 Antibody-Drug Conjugates in Solid Tumors. Annu Rev Med 2024; 75:31-48. [PMID: 37758237 DOI: 10.1146/annurev-med-071322-065903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/03/2023]
Abstract
Antibody-drug conjugates (ADCs) have become the cornerstone of effective therapeutics in solid and hematological malignancies by harnessing potent cytotoxic payloads with targeted tumoricidal delivery. Since the monumental shift occurred with HER2-targeted ADCs, the discovery of the TROP2 antigen has revolutionized the landscape of ADC development. Moving beyond the traditional ADC design, multiple novel ADCs have successfully shaped and improved survival outcomes in patients with various tumor histologies. Here we review and contrast the clinical impact of the well-known TROP2 ADCs currently in clinical use. We also shed light on upcoming investigational TROP2 ADCs showing promise with novel ADC platforms.
Collapse
Affiliation(s)
- Blessie Elizabeth Nelson
- Department of Investigational Cancer Therapeutics, University of Texas MD Anderson Cancer Center, Houston, Texas, USA;
| | - Funda Meric-Bernstam
- Department of Investigational Cancer Therapeutics, University of Texas MD Anderson Cancer Center, Houston, Texas, USA;
| |
Collapse
|
16
|
Lu L, Niu Z, Chao Z, Fu C, Chen K, Shi Y. Exploring the therapeutic potential of ADC combination for triple-negative breast cancer. Cell Mol Life Sci 2023; 80:350. [PMID: 37930428 PMCID: PMC11073441 DOI: 10.1007/s00018-023-04946-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 08/29/2023] [Accepted: 08/31/2023] [Indexed: 11/07/2023]
Abstract
Triple-negative breast cancer (TNBC) is a highly aggressive subtype of breast cancer. Currently, standard treatment options for TNBC are limited to surgery, adjuvant chemotherapy, and radiotherapy. However, these treatment methods are associated with a higher risk of intrinsic or acquired recurrence. Antibody-drug conjugates (ADCs) have emerged as a useful and promising class of cancer therapeutics. ADCs, also known as "biochemical missiles", use a monoclonal antibody (mAb) to target tumor antigens and deliver a cytotoxic drug payload. Currently, several ADCs clinical studies are underway worldwide, including sacituzumab govitecan (SG), which was recently approved by the FDA for the treatment of TNBC. However, due to the fact that only a small portion of TNBC patients respond to ADC therapy and often develop resistance, growing evidence supports the use of ADCs in combination with other treatment strategies to treat TNBC. In this review, we described the current utilization of ADCs and discussed the prospects of ADC combination therapy for TNBC.
Collapse
Affiliation(s)
- Linlin Lu
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, 215000, China
| | - Zihe Niu
- Department of Soochow University School of Medicine, Soochow University Suzhou, Suzhou, 215000, China
| | - Zhujun Chao
- Department of Soochow University School of Medicine, Soochow University Suzhou, Suzhou, 215000, China
| | - Cuiping Fu
- Department of Respiratory, The First Affiliated Hospital of Soochow University, Suzhou, 215000, Jiangsu, China
| | - Kai Chen
- Department of Oncology, The First Affiliated Hospital of Soochow University, 899 Pinghai Road, Suzhou, 215006, Jiangsu, China.
| | - Yaqin Shi
- Department of Oncology, The First Affiliated Hospital of Soochow University, 899 Pinghai Road, Suzhou, 215006, Jiangsu, China.
| |
Collapse
|
17
|
Bhamidipati D, Haro-Silerio JI, Yap TA, Ngoi N. PARP inhibitors: enhancing efficacy through rational combinations. Br J Cancer 2023; 129:904-916. [PMID: 37430137 PMCID: PMC10491787 DOI: 10.1038/s41416-023-02326-7] [Citation(s) in RCA: 61] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 05/18/2023] [Accepted: 06/12/2023] [Indexed: 07/12/2023] Open
Abstract
Poly (ADP-ribose) polymerase inhibitors (PARPi) have significantly changed the treatment landscape for tumours harbouring defects in genes involved in homologous repair (HR) such as BRCA1 and BRCA2. Despite initial responsiveness to PARPi, tumours eventually develop resistance through a variety of mechanisms. Rational combination strategies involving PARPi have been explored and are in various stages of clinical development. PARPi combinations have the potential to enhance efficacy through synergistic activity, and also potentially sensitise innately PARPi-resistant tumours to PARPi. Initial combinations involving PARPi with chemotherapy were hindered by significant overlapping haematologic toxicity, but newer combinations with fewer toxicities and more targeted approaches are undergoing evaluation. In this review, we discuss the mechanisms of PARPi resistance and review the rationale and clinical evidence for various PARPi combinations including combinations with chemotherapy, immunotherapy, and targeted therapies. We also highlight emerging PARPi combinations with promising preclinical evidence.
Collapse
Affiliation(s)
- Deepak Bhamidipati
- Department of Cancer Medicine Fellowship Program, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | | - Timothy A Yap
- Department of Investigational Cancer Therapeutics (Phase I Program), The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
- The Institute for Applied Cancer Science, University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| | - Natalie Ngoi
- Department of Haematology-Oncology, National University Cancer Institute, Singapore, Singapore
| |
Collapse
|
18
|
Chang HL, Schwettmann B, McArthur HL, Chan IS. Antibody-drug conjugates in breast cancer: overcoming resistance and boosting immune response. J Clin Invest 2023; 133:e172156. [PMID: 37712425 PMCID: PMC10503805 DOI: 10.1172/jci172156] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/16/2023] Open
Abstract
Antibody-drug conjugates (ADCs) have emerged as a revolutionary therapeutic class, combining the precise targeting ability of monoclonal antibodies with the potent cytotoxic effects of chemotherapeutics. Notably, ADCs have rapidly advanced in the field of breast cancer treatment. This innovative approach holds promise for strengthening the immune system through antibody-mediated cellular toxicity, tumor-specific immunity, and adaptive immune responses. However, the development of upfront and acquired resistance poses substantial challenges in maximizing the effectiveness of these therapeutics, necessitating a deeper understanding of the underlying mechanisms. These mechanisms of resistance include antigen loss, derangements in ADC internalization and recycling, drug clearance, and alterations in signaling pathways and the payload target. To overcome resistance, ongoing research and development efforts are focused on urgently identifying biomarkers, integrating immune therapy approaches, and designing novel cytotoxic payloads. This Review provides an overview of the mechanisms and clinical effectiveness of ADCs, and explores their unique immune-boosting function, while also highlighting the complex resistance mechanisms and safety challenges that must be addressed. A continued focus on how ADCs impact the tumor microenvironment will help to identify new payloads that can improve patient outcomes.
Collapse
Affiliation(s)
- Hannah L. Chang
- Department of Internal Medicine, Division of Hematology and Oncology
- Harold C. Simmons Comprehensive Cancer Center, and
| | - Blake Schwettmann
- Department of Internal Medicine, Division of Hematology and Oncology
- Harold C. Simmons Comprehensive Cancer Center, and
| | - Heather L. McArthur
- Department of Internal Medicine, Division of Hematology and Oncology
- Harold C. Simmons Comprehensive Cancer Center, and
| | - Isaac S. Chan
- Department of Internal Medicine, Division of Hematology and Oncology
- Harold C. Simmons Comprehensive Cancer Center, and
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| |
Collapse
|
19
|
Grinda T, Rassy E, Pistilli B. Antibody-Drug Conjugate Revolution in Breast Cancer: The Road Ahead. Curr Treat Options Oncol 2023; 24:442-465. [PMID: 36966267 PMCID: PMC10122624 DOI: 10.1007/s11864-023-01072-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/26/2023] [Indexed: 03/27/2023]
Abstract
OPINION STATEMENT Antibody drug-conjugates (ADCs) have revolutionized the treatment of many types of cancer, including breast cancer. Recently, two new ADCs have been approved, trastuzumab deruxtecan and sacituzumab govitecan; both have demonstrated impressive improvements in overall survival, trastuzumab deruxtecan in all three subtypes of metastatic breast cancer and sacituzumab govitecan in luminal and triple negative metastatic breast cancer. These drugs are the results of significant progress and innovation in the construction of the three components of an ADC, the monoclonal antibody, the payload, and the linker, and of the discovery of new target antigens. ADC engineering has profoundly changed the paradigm of cancer treatment, on one side being effective on tumors considered inherently resistant to the payload class of drugs and on the other side demonstrating activity in tumors with very low target expression. Yet, it is likely that we are just at the beginning of a new era as the identification of new targets and the introduction of new ADC constructs and combinations will expand the field of ADC rapidly over the coming years.
Collapse
Affiliation(s)
- Thomas Grinda
- Department of Cancer Medicine, Gustave Roussy, 114 Rue Edouard Vaillant, 94800, Villejuif, France
| | - Elie Rassy
- Department of Cancer Medicine, Gustave Roussy, 114 Rue Edouard Vaillant, 94800, Villejuif, France
| | - Barbara Pistilli
- Department of Cancer Medicine, Gustave Roussy, 114 Rue Edouard Vaillant, 94800, Villejuif, France.
| |
Collapse
|
20
|
Abelman RO, Keenan JC, Ryan PK, Spring LM, Bardia A. Current and Emerging Role of Antibody-Drug Conjugates in HER2-Negative Breast Cancer. Hematol Oncol Clin North Am 2023; 37:151-167. [PMID: 36435607 DOI: 10.1016/j.hoc.2022.08.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Antibody-drug conjugates (ADCs) are rapidly evolving therapies that are uniquely able to deliver potent chemotherapy specifically to cancer cells while largely sparing normal cells. ADCs have 3 components: (1) antibody targeted to a tumor-involved antigen, (2) cytotoxic payload, and (3) linker that connects the cytotoxic agent to the antibody. Once the antibody binds the target on the cell surface, the ADC is incorporated into the cell via receptor-mediated endocytosis. Inside the cells, the linker is cleaved in the lysosome and the payload is then released intracellularly. This article will review ADCs in clinical development for HER2-negative metastatic breast cancer.
Collapse
Affiliation(s)
| | - Jennifer C Keenan
- Massachusetts General Hospital, Harvard Medical School, 55 Fruit St, Boston, MA 02114, USA
| | - Phoebe K Ryan
- Massachusetts General Hospital, Harvard Medical School, 55 Fruit St, Boston, MA 02114, USA
| | - Laura M Spring
- Massachusetts General Hospital, Harvard Medical School, 55 Fruit St, Boston, MA 02114, USA
| | - Aditya Bardia
- Breast Cancer Research, Harvard Medical School, Massachusetts General Hospital, 55 Fruit Street, Boston, MA 02114, USA.
| |
Collapse
|
21
|
Ovejero-Sánchez M, González-Sarmiento R, Herrero AB. DNA Damage Response Alterations in Ovarian Cancer: From Molecular Mechanisms to Therapeutic Opportunities. Cancers (Basel) 2023; 15:448. [PMID: 36672401 PMCID: PMC9856346 DOI: 10.3390/cancers15020448] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/03/2023] [Accepted: 01/04/2023] [Indexed: 01/12/2023] Open
Abstract
The DNA damage response (DDR), a set of signaling pathways for DNA damage detection and repair, maintains genomic stability when cells are exposed to endogenous or exogenous DNA-damaging agents. Alterations in these pathways are strongly associated with cancer development, including ovarian cancer (OC), the most lethal gynecologic malignancy. In OC, failures in the DDR have been related not only to the onset but also to progression and chemoresistance. It is known that approximately half of the most frequent subtype, high-grade serous carcinoma (HGSC), exhibit defects in DNA double-strand break (DSB) repair by homologous recombination (HR), and current evidence indicates that probably all HGSCs harbor a defect in at least one DDR pathway. These defects are not restricted to HGSCs; mutations in ARID1A, which are present in 30% of endometrioid OCs and 50% of clear cell (CC) carcinomas, have also been found to confer deficiencies in DNA repair. Moreover, DDR alterations have been described in a variable percentage of the different OC subtypes. Here, we overview the main DNA repair pathways involved in the maintenance of genome stability and their deregulation in OC. We also recapitulate the preclinical and clinical data supporting the potential of targeting the DDR to fight the disease.
Collapse
Affiliation(s)
- María Ovejero-Sánchez
- Institute of Biomedical Research of Salamanca (IBSAL), 37007 Salamanca, Spain
- Molecular Medicine Unit, Department of Medicine, University of Salamanca, 37007 Salamanca, Spain
- Institute of Molecular and Cellular Biology of Cancer (IBMCC), University of Salamanca-Spanish National Research Council, 37007 Salamanca, Spain
| | - Rogelio González-Sarmiento
- Institute of Biomedical Research of Salamanca (IBSAL), 37007 Salamanca, Spain
- Molecular Medicine Unit, Department of Medicine, University of Salamanca, 37007 Salamanca, Spain
- Institute of Molecular and Cellular Biology of Cancer (IBMCC), University of Salamanca-Spanish National Research Council, 37007 Salamanca, Spain
| | - Ana Belén Herrero
- Institute of Biomedical Research of Salamanca (IBSAL), 37007 Salamanca, Spain
- Molecular Medicine Unit, Department of Medicine, University of Salamanca, 37007 Salamanca, Spain
- Institute of Molecular and Cellular Biology of Cancer (IBMCC), University of Salamanca-Spanish National Research Council, 37007 Salamanca, Spain
| |
Collapse
|